WorldWideScience

Sample records for hard spectral state

  1. RAPID SPECTRAL CHANGES OF CYGNUS X-1 IN THE LOW/HARD STATE WITH SUZAKU

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, S.; Makishima, K. [Cosmic Radiation Laboratory, Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198 (Japan); Negoro, H. [Department of Physics, College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Torii, S.; Noda, H. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Mineshige, S. [Department of Astronomy, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2013-04-20

    Rapid spectral changes in the hard X-ray on a timescale down to {approx}0.1 s are studied by applying a ''shot analysis'' technique to the Suzaku observations of the black hole binary Cygnus X-1, performed on 2008 April 18 during the low/hard state. We successfully obtained the shot profiles, covering 10-200 keV with the Suzaku HXD-PIN and HXD-GSO detector. It is notable that the 100-200 keV shot profile is acquired for the first time owing to the HXD-GSO detector. The intensity changes in a time-symmetric way, though the hardness changes in a time-asymmetric way. When the shot-phase-resolved spectra are quantified with the Compton model, the Compton y-parameter and the electron temperature are found to decrease gradually through the rising phase of the shot, while the optical depth appears to increase. All the parameters return to their time-averaged values immediately within 0.1 s past the shot peak. We have not only confirmed this feature previously found in energies below {approx}60 keV, but also found that the spectral change is more prominent in energies above {approx}100 keV, implying the existence of some instant mechanism for direct entropy production. We discuss possible interpretations of the rapid spectral changes in the hard X-ray band.

  2. Hard X-ray spectral and timing properties of IGR J17454-2919 consistent with a black hole in the hard state

    DEFF Research Database (Denmark)

    Tendulkar, Shriharsh P.; Bachetti, Matteo; Tomsick, J.

    2014-01-01

    frequencies. The Lorentzian has a width of 2 Hz and a fractional rms of 25+/-3%. The hard power-law index, the high energy of the cutoff, and the level of variability all are consistent with properties expected for an accreting black hole in the hard state. While we cannot completely rule out the possibility...... of a low magnetic field neutron star, a black hole is more likely....

  3. Accretion flow diagnostics with X-ray spectral timing: the hard state of SWIFT J1753.5-0127

    NARCIS (Netherlands)

    Cassatella, P.; Uttley, P.; Maccarone, T.

    2012-01-01

    Recent XMM-Newton studies of X-ray variability in the hard states of black hole X-ray binaries (BHXRBs) indicate that the variability is generated in the ‘standard’ optically thick accretion disc that is responsible for the multi-colour blackbody emission. The variability originates in the disc as

  4. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kawate, T. [Kwasan and Hida Observatory, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502 (Japan); Nishizuka, N. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Oi, A. [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Ohyama, M. [Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, Shiga 1-1, Baba Hikone city, Siga 522-8522 (Japan); Nakajima, H., E-mail: kawate@kusastro.kyoto-u.ac.jp [Nobeyama Solar Radio Observatory, NAOJ, Nobeyama, Minamisaku, Nagano 384-1305 (Japan)

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  5. A NICER Look at the Aql X-1 Hard State

    Science.gov (United States)

    Bult, Peter; Arzoumanian, Zaven; Cackett, Edward M.; Chakrabarty, Deepto; Gendreau, Keith C.; Guillot, Sebastien; Homan, Jeroen; Jaisawal, Gaurava K.; Keek, Laurens; Kenyon, Steve; Lamb, Frederick K.; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig; Miller, Jon M.; Prigozhin, Gregory; Soong, Yang; Strohmayer, Tod E.; Uttley, Phil

    2018-05-01

    We report on a spectral-timing analysis of the neutron star low-mass X-ray binary (LMXB) Aql X-1 with the Neutron Star Interior Composition Explorer (NICER) on the International Space Station (ISS). Aql X-1 was observed with NICER during a dim outburst in 2017 July, collecting approximately 50 ks of good exposure. The spectral and timing properties of the source correspond to that of a (hard) extreme island state in the atoll classification. We find that the fractional amplitude of the low-frequency (soft thermal emission and the power-law emission. Additionally, we measure hard time lags, indicating the thermal emission at 0.5 keV leads the power-law emission at 10 keV on a timescale of ∼100 ms at 0.3 Hz to ∼10 ms at 3 Hz. Our results demonstrate that the thermal emission in the hard state is intrinsically variable, and is driving the modulation of the higher energy power-law. Interpreting the thermal spectrum as disk emission, we find that our results are consistent with the disk propagation model proposed for accretion onto black holes.

  6. Spectral evolution of the Atoll source 4U 1728-34 with RXTE and INTEGRAL: evidence for hard X-ray tail

    NARCIS (Netherlands)

    Tarana, A.; Belloni, T.; Bazzano, A.; Homan, J.; Méndez, M.; Ubertini, P.; Comastri, A.; Angelini, L.; Cappi, M.

    We report the temporal and spectral results on the INTEGRAL and RXTE 2006-2007 observation campaign of the Atoll source 4U 1728-34 (GX 354-0). The source shows, more than once, spectral evolution as revealed by the hardness intensity diagram. The soft state is well described by a Comptonization with

  7. Galactic Black Holes in the Hard State: A Multi-Wavelength View of Accretion and Ejection

    Science.gov (United States)

    Kalemci; Tomsick, John A.; Migliari; Corbel; Markoff

    2010-01-01

    The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.

  8. High spectral resolution measurements of a solar flare hard X-ray burst

    International Nuclear Information System (INIS)

    Lin, R.P.; Schwartz, R.A.; NASA, Goddard Space Flight Center, Greenbelt, MD)

    1987-01-01

    Observations are reported of an intense solar flare hard X-ray burst on June 27, 1980, made with a balloon-borne array of liquid nitrogen-cooled Ge detector which provided unprecedented spectral resolution (no more than 1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 0.1-1 billion K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting about 3-15 sec, which have a hard spectrum and a break energy of 30-65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 kev to at least 100 keV through the event. The double power-law shape indicates that DC electric field acceleration, similar to that occurring in the earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. 39 references

  9. CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. I. IN TWO FREQUENCY OR ENERGY RANGES

    International Nuclear Information System (INIS)

    Song Qiwu; Huang Guangli; Nakajima, Hiroshi

    2011-01-01

    Solar microwave and hard X-ray spectral evolutions are co-analyzed in the 2000 June 10 and 2002 April 10 flares, and are simultaneously observed by the Owens-Valley Solar Array in the microwave band and by Yohkoh/Hard X-ray Telescope or RHESSI in the hard X-ray band, with multiple subpeaks in their light curves. The microwave and hard X-ray spectra are fitted by a power law in two frequency ranges of the optical thin part and two photon energy ranges, respectively. Similar to an earlier event in Shao and Huang, the well-known soft-hard-soft pattern of the lower energy range changed to the hard-soft-hard (HSH) pattern of the higher energy range during the spectral evolution of each subpeak in both hard X-ray flares. This energy dependence is actually supported by a positive correlation between the overall light curves and spectral evolution in the lower energy range, while it becomes an anti-correlation in the higher energy range. Regarding microwave data, the HSH pattern appears in the spectral evolution of each subpeak in the lower frequency range, which is somewhat similar to Huang and Nakajima. However, it returns back to the well-known pattern of soft-hard-harder for the overall spectral evolution in the higher frequency range of both events. This frequency dependence is confirmed by an anti-correlation between the overall light curves and spectral evolution in the lower frequency range, but it becomes a positive correlation in the higher frequency range. The possible mechanisms are discussed, respectively, for reasons why hard X-ray and microwave spectral evolutions have different patterns in different energy and frequency intervals.

  10. A HARD X-RAY POWER-LAW SPECTRAL CUTOFF IN CENTAURUS X-4

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Deepto; Nowak, Michael A. [MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Tomsick, John A.; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Grefenstette, Brian W.; Fürst, Felix; Harrison, Fiona A.; Rana, Vikram [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Psaltis, Dimitrios [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Bachetti, Matteo; Barret, Didier [Observatoire Midi-Pyrénées, Université de Toulouse III - Paul Sabatier, F-31400 Toulouse (France); Christensen, Finn E. [Division of Astrophysics, National Space Institute, Technical University of Denmark, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Kaspi, Victoria M. [Department of Physics, McGill University, Montreal, PQ H3A 2T8 (Canada); Miller, Jon M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wik, Daniel R.; Zhang, William W. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wilms, Jörn, E-mail: deepto@mit.edu [Dr. Karl-Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universität Erlangen-Nürnberg, D-96049 Bamberg (Germany)

    2014-12-20

    The low-mass X-ray binary (LMXB) Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1×10{sup 33} D{sub kpc}{sup 2} erg s{sup –1}, with ≅60% in the thermal component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with kT{sub e} = 18 keV, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively inefficient accretion flow. The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen X-4's behavior with PSR J1023+0038, IGR J18245–2452, and XSS J12270–4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.

  11. Polarization and spectral features of the hard x-ray continuum from non-thermal plasmas

    International Nuclear Information System (INIS)

    Hesse, M.; Platz, P.

    1989-12-01

    Starting from the cross-sections for the free-free radiation obtained within the relativistic Born-Elwert theory, we calculate the spectral and polarization properties of the hard X-ray continuum (hν > 50 KeV) for plasmas containing fast electrons with an anisotropic velocity distribution. The physical and geometrical quantities of our model are oriented towards the future lower-hybrid current drive (LHCD) experiments on Tore-Supra. Our parameter space covers parallel and perpendicular temperatures, the nuclear charge of the ions (mainly Z = 14 and 28), the cut-off energy of the electrons, the radial current profile and the viewing angle. Extensive calculations open on the optimum conditions for polarization measurements and also give guide-lines for the quantitative interpretation of data under real plasma conditions. A second part of this report will treat with the operational principles and expected performances of hard X-ray polarimeters

  12. A Hard X-Ray Power-Law Spectral Cutoff in Centaurus X-4

    DEFF Research Database (Denmark)

    Chakrabarty, Deepto; Tomsick, John A.; Grefenstette, Brian W.

    2015-01-01

    The low-mass X-ray binary Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unkno...... behavior with PSR J1023+0038, IGR J18245-2452, and XSS J12270-4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity....

  13. Dressed Hard States and Black Hole Soft Hair.

    Science.gov (United States)

    Mirbabayi, Mehrdad; Porrati, Massimo

    2016-11-18

    A recent, intriguing Letter by Hawking, Perry, and Strominger suggests that soft photons and gravitons can be regarded as black hole hair and may be relevant to the black hole information paradox. In this Letter we make use of factorization theorems for infrared divergences of the S matrix to argue that by appropriately dressing in and out hard states, the soft-quanta-dependent part of the S matrix becomes essentially trivial. The information paradox can be fully formulated in terms of dressed hard states, which do not depend on soft quanta.

  14. Spectral representations of neutron-star equations of state

    International Nuclear Information System (INIS)

    Lindblom, Lee

    2010-01-01

    Methods are developed for constructing spectral representations of cold (barotropic) neutron-star equations of state. These representations are faithful in the sense that every physical equation of state has a representation of this type and conversely every such representation satisfies the minimal thermodynamic stability criteria required of any physical equation of state. These spectral representations are also efficient, in the sense that only a few spectral coefficients are generally required to represent neutron-star equations of state quiet accurately. This accuracy and efficiency is illustrated by constructing spectral fits to a large collection of 'realistic' neutron-star equations of state.

  15. Broadband spectrally dynamic solid state illumination source

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, David B; Asghar, Ali; Gupta, Shalini; Kang, Hun; Pan, Ming [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Strassburg, Martin [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Georgia State University, Department of Physics and Astronomy, Atlanta, GA 30302-4106 (United States); Summers, Chris; Ferguson, Ian T [Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332 (United States)

    2006-06-15

    Solid state lighting has done well recently in niche markets such as signage and displays, however, no available SSL technologies incorporate all the necessary attributes for general illumination. Development of a novel solid state general illumination source is discussed here. Two LEDs emitting at two distinct wavelengths can be monolithically grown and used to excite two or more phosphors with varied excitation spectra. The combined phosphorescence spectrum can then be controlled by adjusting the relative intensities of the two LED emissions. Preliminary phosphor analysis shows such a scheme to be viable for use in a spectrally dynamic broadband general illumination source. A tunnel junction is envisioned as a means of current spreading in a buried layer for three terminal operation. However, tunnel junction properties in GaN based materials are not well understood, and require further optimization to be practical devices. Preliminary results on GaN tunnel junctions are presented here as well. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Correction: MAXI J1543-564 in hard intermediate state

    Science.gov (United States)

    Kennea, J. A.; Motta, S.; Curran, P.; Krimm, P. A. Evans. H. A.; Romano, P.; Mangano, V.; Yamaoka, K.; Negoro, H.

    2011-09-01

    A correction to Kennea et al. (ATEL #3662): With a measured photon index of ~2.7, the Swift/XRT spectrum of MAXI J1543-564 is currently consistent with the source being in the hard intermediate state, or under the Remillard and McClintock (2006) definition, the steep power-law state. We apologize for this error, and thank Tomaso Belloni for bringing it to our attention.

  17. Spectral and Timing States in Black Hole Binaries

    Science.gov (United States)

    Wilms, J.

    Results on the long term variability of galactic black hole candidates are reviewed. I mainly present the results of a > 2 year long campaign with RXTE to monitor the canonical soft state black hole candidates LMC X-1 and LMC X-3 using monthly observations. These observations are presented within the context of the RXTE-ASM long term quasi-periodic variability on timescales of about 150d. For LMC X-3, times of low ASM count rate are correlated with a significant hardening of the X-ray spectrum. The observation with the lowest flux during the whole monitoring campaign can be modeled with a simple γ=1.7 power law -- a hard state spectrum. Since these spectral hardenings occur on the 150 d timescale it is probable that they are associated with periodic changes in the accretion rate. Possible causes for this behavior are discussed, e.g. a wind driven limit-cycle or long-term variability of the donor star.

  18. A NICER Look at the Aql X-1 Hard State

    DEFF Research Database (Denmark)

    Bult, Peter; Arzoumanian, Zaven; Cackett, Edward M.

    2018-01-01

    of good exposure. The spectral and timing properties of the source correspond to that of a (hard) extreme island state in the atoll classification. We find that the fractional amplitude of the low-frequency (limited noise shows a dramatic turnover as a function of energy: it peaks at 0.5 ke......V with nearly 25% rms, drops to 12% rms at 2 keV, and rises to 15% rms at 10 keV. Through the analysis of covariance spectra, we demonstrate that band-limited noise exists in both the soft thermal emission and the power-law emission. Additionally, we measure hard time lags, indicating the thermal emission at 0...

  19. EVIDENCE OF LIGHT-BENDING EFFECTS AND ITS IMPLICATION FOR SPECTRAL STATE TRANSITIONS

    International Nuclear Information System (INIS)

    Reis, R. C.; Miller, J. M.; Reynolds, M. T.; Fabian, A. C.; Walton, D. J.; Steiner, J. F.; Cackett, E.

    2013-01-01

    It has long been speculated that the nature of the hard X-ray corona may be an important second driver of black hole state transitions, in addition to the mass accretion rate through the disk. However, a clear physical picture of coronal changes has not yet emerged. We present results from a systematic analysis of Rossi X-Ray Timing Explorer observations of the stellar-mass black hole binary XTE J1650-500. All spectra with significant hard X-ray detections were fit using a self-consistent, relativistically blurred disk reflection model suited to high ionization regimes. Importantly, we find evidence that both the spectral and timing properties of black hole states may be partially driven by the height of the X-ray corona above the disk, and related changes in how gravitational light bending affects the corona-disk interaction. Specifically, the evolution of the power-law, thermal disk, and relativistically convolved reflection components in our spectral analysis indicates that: (1) the disk inner radius remains constant at r in =1.65 ± 0.08 GM/c 2 (consistent with values found for the ISCO of XTE J1650-500 in other works) throughout the transition from the brighter phases of the low-hard state to the intermediate states (both the hard-intermediate and soft-intermediate), through to the soft state and back; (2) the ratio between the observed reflected X-ray flux and power-law continuum (the 'reflection fraction', R) increases sharply at the transition between the hard-intermediate and soft-intermediate states ('ballistic' jets are sometimes launched at this transition); (3) both the frequency and coherence of the high-frequency quasi-periodic oscillations observed in XTE J1650-500 increase with R. We discuss our results in terms of black hole states and the nature of black hole accretion flows across the mass scale.

  20. ENERGY-DEPENDENT POWER SPECTRAL STATES AND ORIGIN OF APERIODIC VARIABILITY IN BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Yu Wenfei; Zhang Wenda

    2013-01-01

    We found that the black hole candidate MAXI J1659–152 showed distinct power spectra, i.e., power-law noise (PLN) versus band-limited noise (BLN) plus quasi-periodic oscillations (QPOs) below and above about 2 keV, respectively, in observations with Swift and the Rossi X-ray Timing Explorer during the 2010 outburst, indicating a high energy cutoff of the PLN and a low energy cutoff of the BLN and QPOs around 2 keV. The emergence of the PLN and the fading of the BLN and QPOs initially took place below 2 keV when the source entered the hard intermediate state and settled in the soft state three weeks later. The evolution was accompanied by the emergence of the disk spectral component and decreases in the amplitudes of variability in the soft and hard X-ray bands. Our results indicate that the PLN is associated with an optically thick disk in both hard and intermediate states, and the power spectral state is independent of the X-ray energy spectral state in a broadband view. We suggest that in the hard or intermediate state, the BLN and QPOs emerge from the innermost hot flow subjected to Comptonization, while the PLN originates from the optically thick disk farther out. The energy cutoffs of the PLN and the BLN or QPOs then follow the temperature of the seed photons from the inner edge of the optically thick disk, while the high frequency cutoff of the PLN follows the orbital frequency of the inner edge of the optically thick disk as well.

  1. X-Ray Spectral Analysis of the Steady States of GRS1915+105

    Science.gov (United States)

    Peris, Charith S.; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa D.; Varnière, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-05-01

    We report on the X-ray spectral behavior within the steady states of GRS1915+105. Our work is based on the full data set of the source obtained using the Proportional Counter Array (PCA) on the Rossi X-ray Timing Explorer (RXTE) and 15 GHz radio data obtained using the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to these regions as steady-soft and steady-hard. GRS1915+105 displays significant curvature in the coronal component in both the soft and hard data within the RXTE/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius ({R}{{in}}), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations, we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes η ˜ 0.68+/- 0.35 and η ˜ 1.12+/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of the model parameters to the state definitions shows that almost all of the steady-soft observations match the criteria of either a thermal or steep power-law state, while a large portion of the steady-hard observations match the hard-state criteria when the disk fraction constraint is neglected.

  2. Spectral stability of shifted states on star graphs

    Science.gov (United States)

    Kairzhan, Adilbek; Pelinovsky, Dmitry E.

    2018-03-01

    We consider the nonlinear Schrödinger (NLS) equation with the subcritical power nonlinearity on a star graph consisting of N edges and a single vertex under generalized Kirchhoff boundary conditions. The stationary NLS equation may admit a family of solitary waves parameterized by a translational parameter, which we call the shifted states. The two main examples include (i) the star graph with even N under the classical Kirchhoff boundary conditions and (ii) the star graph with one incoming edge and N  -  1 outgoing edges under a single constraint on coefficients of the generalized Kirchhoff boundary conditions. We obtain the general counting results on the Morse index of the shifted states and apply them to the two examples. In the case of (i), we prove that the shifted states with even N ≥slant 4 are saddle points of the action functional which are spectrally unstable under the NLS flow. In the case of (ii), we prove that the shifted states with the monotone profiles in the N  -  1 edges are spectrally stable, whereas the shifted states with non-monotone profiles in the N  -  1 edges are spectrally unstable, the two families intersect at the half-soliton states which are spectrally stable but nonlinearly unstable under the NLS flow. Since the NLS equation on a star graph with shifted states can be reduced to the homogeneous NLS equation on an infinite line, the spectral instability of shifted states is due to the perturbations breaking this reduction. We give a simple argument suggesting that the spectrally stable shifted states in the case of (ii) are nonlinearly unstable under the NLS flow due to the perturbations breaking the reduction to the homogeneous NLS equation.

  3. Critical state transformation in hard superconductors resulting from thermomagnetic avalanches

    International Nuclear Information System (INIS)

    Chabanenko, V.V.; Kuchuk, E.I.; Rusakov, V.F.; Abaloszewa, I.; Nabialek, A.; Perez-Rodriguez, F.

    2016-01-01

    The results of experimental investigations of magnetic flux dynamics in finite superconductors, obtained using integral and local measurements methods, are presented. Local methods were aimed at clarifying the role of demagnetizing factor in dynamic formation of a complex magnetic structure of the critical state of hard superconductors. To understand the reasons for cardinal restructuring of the induction, we further analyzed the literature data of flux dynamics visualization during avalanches, obtained by magneto-optical methods. New features in the behavior of the magnetic flux during and after the avalanche were discovered. Two stages of the formation of the induction structures in the avalanche area were established, i.e. of homogeneous and heterogeneous filling with the magnetic flux. The mechanism of the inversion of the induction profile was considered. Oscillations in the speed of the front of the magnetic flux were revealed. Transformation of the critical state near the edge of the sample was analyzed. The role of thermal effects and of de-magnetizing factor in the dissipative flux dynamics was shown. Generalized information allowed, in the framework of the Bean concept, to present a model the transformation of the picture of the induction of the critical state and of the superconducting currents of a finite superconductor as a result of flux avalanches for two regimes - of screening and trapping of the magnetic flux.

  4. Spectral coherent-state quantum cryptography.

    Science.gov (United States)

    Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi

    2008-11-01

    A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.

  5. Coherent states and covariant semi-spectral measures

    International Nuclear Information System (INIS)

    Scutaru, H.

    1976-01-01

    The close connection between Mackey's theory of imprimitivity systems and the so called generalized coherent states introduced by Perelomov is established. Coherent states give a covariant description of the ''localization'' of a quantum system in the phase space in a similar way as the imprimitivity systems give a covariant description of the localization of a quantum system in the configuration space. The observation that for any system of coherent states one can define a covariant semi-spectral measure made possible a rigurous formulation of this idea. A generalization of the notion of coherent states is given. Covariant semi-spectral measures associated with systems of coherent states are defined and characterized. Necessary and sufficient conditions for a unitary representation of a Lie group to be i) a subrepresentation of an induced one and ii) a representation with coherent states are given (author)

  6. A state space algorithm for the spectral factorization

    NARCIS (Netherlands)

    Kraffer, F.; Kraffer, F.; Kwakernaak, H.

    1997-01-01

    This paper presents an algorithm for the spectral factorization of a para-Hermitian polynomial matrix. The algorithm is based on polynomial matrix to state space and vice versa conversions, and avoids elementary polynomial operations in computations; It relies on well-proven methods of numerical

  7. NuSTAR and integral observations of a low/hard state of 1E1740.7-2942

    Energy Technology Data Exchange (ETDEWEB)

    Natalucci, Lorenzo; Bazzano, Angela; Fiocchi, Mariateresa; Ubertini, Pietro [Istituto di Astrofisica e Planetologia Spaziali, INAF, via del Fosso del Cavaliere, I-00133 Roma (Italy); Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Krivonos, Roman [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Smith, David M. [Physics Department and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Bachetti, Matteo; Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fürst, Felix; Grefenstette, Brian W.; Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Kuulkers, Erik [European Space Astronomy Centre (ESA/ESAC), Science Operations Department, E-28691 Villanueva de la Cañada (Madrid) (Spain); Miller, Jon M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Pottschmidt, Katja [CRESST and NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Stern, Daniel, E-mail: lorenzo.natalucci@iaps.inaf.it [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); and others

    2014-01-01

    The microquasar 1E1740.7-2942, also known as the 'Great Annihilator,' was observed by NuSTAR in the summer of 2012. We have analyzed in detail two observations taken ∼2 weeks apart, for which we measure hard and smooth spectra typical of the low/hard state. A few weeks later the source flux declined significantly. Nearly simultaneous coverage by INTEGRAL is available from its Galactic Center monitoring campaign lasting ∼2.5 months. These data probe the hard state spectrum from 1E1740.7-2942 before the flux decline. We find good agreement between the spectra taken with IBIS/ISGRI and NuSTAR, with the measurements being compatible with a change in flux with no spectral variability. We present a detailed analysis of the NuSTAR spectral and timing data and upper limits for reflection of the high energy emission. We show that the high energy spectrum of this X-ray binary is well described by thermal Comptonization.

  8. High spectral efficiency optical CDMA system based on guard-time and optical hard-limiting (OHL)

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, R M; Bennett, C V; Mendez, A J; Hernandez, V J; Lennon, W J

    2003-12-02

    Optical code-division multiple access (OCDMA) is an interesting subject of research because of its potential to support asynchronous, bursty communications. OCDMA has been investigated for local area networks, access networks, and, more recently, as a packet label for emerging networks. Two-dimensional (2-D) OCDMA codes are preferred in current research because of the flexibility of designing the codes and their higher cardinality and spectral efficiency (SE) compared with direct sequence codes based on on-off keying and intensity modulation/direct detection, and because they lend themselves to being implemented with devices developed for wavelength-division-multiplexed (WDM) transmission (the 2-D codes typically combine wavelength and time as the two dimensions of the codes). This paper shows rigorously that 2-D wavelength/time codes have better SE than one-dimensional (1-D) CDMA/WDM combinations (of the same cardinality). Then, the paper describes a specific set of wavelength/time (W/T) codes and their implementation. These 2-D codes are high performance because they simultaneously have high cardinality (/spl Gt/10), per-user high bandwidth (>1 Gb/s), and high SE (>0.10 b/s/Hz). The physical implementation of these W/T codes is described and their performance evaluated by system simulations and measurements on an OCDMA technology demonstrator. This research shows that OCDMA implementation complexity (e.g., incorporating double hard-limiting and interference estimation) can be avoided by using a guard time in the codes and an optical hard limiter in the receiver.

  9. AstroSat /LAXPC Observation of Cygnus X-1 in the Hard State

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Ranjeev; Pahari, Mayukh [Inter-University Centre for Astronomy and Astrophysics, Pune 411007 (India); Yadav, J S; Chauhan, Jai Verdhan; Antia, H M; Chitnis, V R; Dedhia, Dhiraj; Katoch, Tilak; Madhwani, P.; Shah, Parag [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai (India); Agrawal, P C [UM-DAE Center of Excellence for Basic Sciences, University of Mumbai, Kalina, Mumbai-400098 (India); Manchanda, R K [University of Mumbai, Kalina, Mumbai-400098 (India); Paul, B, E-mail: rmisra@iucaa.in [Dept. of Astronomy and Astrophysics, Raman Research Institute, Bengaluru-560080 (India)

    2017-02-01

    We report the first analysis of data from AstroSat /LAXPC observations of Cygnus X-1 in 2016 January. LAXPC spectra reveals that the source was in the canonical hard state, represented by a prominent thermal Comptonization component having a photon index of ∼1.8 and high temperature of kT{sub e} > 60 keV along with weak reflection and possible disk emission. The power spectrum can be characterized by two broad lorentzian functions centered at ∼0.4 and ∼3 Hz. The rms of the low-frequency component decreases from ∼15% at around 4 keV to ∼10% at around 50 keV, while that of the high-frequency one varies less rapidly from ∼13.5% to ∼11.5% in the same energy range. The time lag between the hard (20–40 keV) and soft (5–10 keV) bands varies in a step-like manner being nearly constant at ∼50 milliseconds from 0.3 to 0.9 Hz, decreasing to ∼8 milliseconds from 2 to 5 Hz and finally dropping to ∼2 milliseconds for higher frequencies. The time lags increase with energy for both the low and high-frequency components. The event mode LAXPC data allows for flux resolved spectral analysis on a timescale of 1 s, which clearly shows that the photon index increased from ∼1.72 to ∼1.80 as the flux increased by nearly a factor of two. We discuss the results in the framework of the fluctuation propagation model.

  10. A magnetic model for low/hard state of black hole binaries

    Science.gov (United States)

    Ye, Yong-Chun; Wang, Ding-Xiong; Huang, Chang-Yin; Cao, Xiao-Feng

    2016-03-01

    A magnetic model for the low/hard state (LHS) of two black hole X-ray binaries (BHXBs), H1743-322 and GX 339-4, is proposed based on transport of the magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with a quasi-steady jet is modeled based on transport of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio/X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model.

  11. CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. II. IN THREE SOURCES OF A FLARING LOOP

    International Nuclear Information System (INIS)

    Huang Guangli; Li Jianping

    2011-01-01

    Based on the spatially resolvable data of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Nobeyama Radio Heliograph (NoRH), co-analysis of solar hard X-ray and microwave spectral evolution is performed in three separate sources located in one looptop (LT) and two footpoints (FPs) of a huge flaring loop in the 2003 October 24 flare. The RHESSI image spectral evolution in 10-100 keV is always fitted by the well-known soft-hard-soft (SHS) pattern in the three sources. When the total energy is divided into four intervals similar to the Yohkoh/Hard X-ray Telescope, i.e., 12.5-32.5 keV, 32.5-52.5 keV, 52.5-72.5 keV, and 72.5-97.5 keV, the SHS pattern in lower energies is converted gradually to the hard-soft-hard (HSH) pattern in higher energies in all three sources. However, the break energy in the LT and the northeast FP (∼32.5 keV) is evidently smaller than that in the southwest FP (∼72.5 keV). Regarding microwave spectral evolution of the NoRH data, the well-known soft-hard-harder pattern appeared in the southwest FP, while the HSH pattern coexisted in the LT and the northeast FP. The different features of the hard X-ray and microwave spectral evolutions in the three sources may be explained by the loop-loop interaction with another huge loop in the LT and with a compact loop in the northeast FP, where the trapping effect is much stronger than that in the southwest FP. The comparison between the LT and FP spectral indices suggests that the radiation mechanism of X-rays may be quite different in different energy intervals and sources. The calculated electron spectral indices from the predicted mechanisms of X-rays gradually become closer to those from the microwave data with increasing X-ray energies.

  12. Exponential critical-state model for magnetization of hard superconductors

    International Nuclear Information System (INIS)

    Chen, D.; Sanchez, A.; Munoz, J.S.

    1990-01-01

    We have calculated the initial magnetization curves and hysteresis loops for hard type-II superconductors based on the exponential-law model, J c (H i ) =k exp(-|H i |/H 0 ), where k and H 0 are constants. After discussing the general behavior of penetrated supercurrents in an infinitely long column specimen, we define a general cross-sectional shape based on two equal circles of radius a, which can be rendered into a circle, a rectangle, or many other shapes. With increasing parameter p (=ka/H 0 ), the computed M-H curves show obvious differences with those computed from Kim's model and approach the results of a simple infinitely narrow square pulse J c (H i ). For high-T c superconductors, our results can be applied to the study of the magnetic properties and the critical-current density of single crystals, as well as to the determination of the intergranular critical-current density from magnetic measurements

  13. Development of a modular directional and spectral neutron detection system using solid-state detectors

    Energy Technology Data Exchange (ETDEWEB)

    Weltz, A., E-mail: weltza3@gmail.com; Torres, B.; McElwain, L.; Dahal, R.; Huang, J.; Bhat, I.; Lu, J.; Danon, Y.

    2015-08-21

    A detection system using room-temperature, microstructured solid-state thermal neutron detectors with very low leakage current has been developed at Rensselaer Polytechnic Institute (RPI) with the ability to provide positional and spectral information about an unknown neutron source. The Directional and Spectral Neutron Detection System (DSNDS) utilizes a set of small-but-scalable, zero-bias solid-state thermal neutron detectors which have demonstrated high thermal neutron efficiency and adequate gamma insensitivity. The DSNDS can gather spectral information about an unknown neutron source with a relatively small number of detectors, simplifying the detector electronics and minimizing cost; however, the DSNDS is modular in design, providing the capability to increase the detection efficiency and angular resolution. The system used in this paper was comprised of a stack of five high-density polyethylene (HDPE) disks with a thickness of 5 cm and a diameter of 30 cm, the middle disk containing 16 detectors positioned as one internal (moderated) and one external (unmoderated) ring of solid-state neutron detectors. These two detector rings provide the ability to determine the directionality of a neutron source. The system gathers spectral information about a neutron source in two ways: by measuring the relative responses of the internal ring of detectors as well as measuring the ratio of the internal-to-external detector responses. Experiments were performed with variable neutron spectra: a {sup 252}Cf spontaneous fission neutron source which was HDPE moderated, HDPE reflected, lead (Pb) shielded, and bare in order to benchmark the system for spectral sensitivity. Simulations were performed in order to characterize the neutron spectra corresponding to each of the source configurations and showed agreement with experimental measurements. The DSNDS demonstrates the ability to determine the relative angle of the source and the hardness of the neutron spectrum. By using the

  14. Prediction of the association state of insulin using spectral parameters.

    Science.gov (United States)

    Uversky, Vladimir N; Garriques, Liza Nielsen; Millett, Ian S; Frokjaer, Sven; Brange, Jens; Doniach, Sebastian; Fink, Anthony L

    2003-04-01

    Human insulin exists in different association states, from monomer to hexamer, depending on the conditions. In the presence of zinc the "normal" state is a hexamer. The structural properties of 20 variants of human insulin were studied by near-UV circular dichroism, fluorescence spectroscopy, and small-angle X-ray scattering (SAXS). The mutants showed different degrees of association (monomer, dimers, tetramers, and hexamers) at neutral pH. A correlation was shown between the accessibility of tyrosines to acrylamide quenching and the degree of association of the insulin mutants. The near-UV CD spectra of the insulins were affected by protein association and by mutation-induced structural perturbations. However, the shape and intensity of difference CD spectra, obtained by subtraction of the spectra measured in 20% acetic acid (where all insulin species were monomeric) from the corresponding spectra measured at neutral pH, correlate well with the degree of insulin association. In fact, the near-UV CD difference spectra for monomeric, dimeric, tetrameric, and hexameric insulin are very distinctive, both in terms of intensity and shape. The results show that the spectral properties of the insulins reflect their state of association, and can be used to predict their oligomeric state. Copyright 2003 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 92:847-858, 2003

  15. Modelling hard and soft states of Cygnus X-1 with propagating mass accretion rate fluctuations

    Science.gov (United States)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2017-12-01

    We present a timing analysis of three Rossi X-ray Timing Explorer observations of the black hole binary Cygnus X-1 with the propagating mass accretion rate fluctuations model PROPFLUC. The model simultaneously predicts power spectra, time lags and coherence of the variability as a function of energy. The observations cover the soft and hard states of the source, and the transition between the two. We find good agreement between model predictions and data in the hard and soft states. Our analysis suggests that in the soft state the fluctuations propagate in an optically thin hot flow extending up to large radii above and below a stable optically thick disc. In the hard state, our results are consistent with a truncated disc geometry, where the hot flow extends radially inside the inner radius of the disc. In the transition from soft to hard state, the characteristics of the rapid variability are too complex to be successfully described with PROPFLUC. The surface density profile of the hot flow predicted by our model and the lack of quasi-periodic oscillations in the soft and hard states suggest that the spin of the black hole is aligned with the inner accretion disc and therefore probably with the rotational axis of the binary system.

  16. Spectro-Timing Study of GX 339-4 in a Hard Intermediate State

    Science.gov (United States)

    Furst, F.; Grinberg, V.; Tomsick, J. A.; Bachetti, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Ghandi, P.; Zhang, William W.

    2016-01-01

    We present an analysis of Nuclear Spectroscopic Telescope Array observations of a hard intermediate state of the transient black hole GX 339-4 taken in 2015 January. With the source softening significantly over the course of the 1.3 day long observation we split the data into 21 sub-sets and find that the spectrum of all of them can be well described by a power-law continuum with an additional relativistically blurred reflection component. The photon index increases from approx. 1.69 to approx. 1.77 over the course of the observation. The accretion disk is truncated at around nine gravitational radii in all spectra. We also perform timing analysis on the same 21 individual data sets, and find a strong type-C quasi-periodic oscillation (QPO), which increases in frequency from approx. 0.68 to approx. 1.05 Hz with time. The frequency change is well correlated with the softening of the spectrum. We discuss possible scenarios for the production of the QPO and calculate predicted inner radii in the relativistic precession model as well as the global disk mode oscillations model. We find discrepancies with respect to the observed values in both models unless we allow for a black hole mass of approx. 100 Mass compared to the Sun, which is highly unlikely. We discuss possible systematic uncertainties, in particular with the measurement of the inner accretion disk radius in the relativistic reflection model. We conclude that the combination of observed QPO frequencies and inner accretion disk radii, as obtained from spectral fitting, is difficult to reconcile with current models.

  17. INTEGRAL SPI Observations of Cygnus X-1 in the Soft State: What about the Jet Contribution in Hard X-Rays?

    Science.gov (United States)

    Jourdain, E.; Roques, J. P.; Chauvin, M.

    2014-07-01

    During the first 7 yr of the INTEGRAL mission (2003-2009), Cyg X-1 has essentially been detected in its hard state (HS), with some incursions in intermediate HSs. This long, spectrally stable period allowed in particular the measurement of the polarization of the high-energy component that has long been observed above 200 keV in this peculiar object. This result strongly suggests that here we see the contribution of the jet, known to emit a strong synchrotron radio emission. In 2010 June, Cyg X-1 underwent a completed transition toward a soft state (SS). It gave us the unique opportunity to study in detail the corona emission in this spectral state, and to investigate in particular the behavior of the jet contribution. Indeed, during the SS, the hard X-ray emission decreases drastically, with its maximum energy shifted toward lower energy and its flux divided by a factor of ~5-10. Interestingly, the radio emission follows a similar drop, supporting the correlation between the jet emission and the hard component, even though the flux is too low to quantify the polarization characteristics. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), the Czech Republic and Poland with the participation of Russia and USA.

  18. Comparison of Time/Phase Lags in the Hard State and Plateau State of GRS 1915+105

    NARCIS (Netherlands)

    Pahari, M.; Neilsen, J.; Yadav, J.S.; Misra, R.; Uttley, P.

    2013-01-01

    We investigate the complex behavior of energy- and frequency-dependent time/phase lags in the plateau state and the radio-quiet hard (χ) state of GRS 1915+105. In our timing analysis, we find that when the source is faint in the radio, quasi-periodic oscillations (QPOs) are observed above 2 Hz and

  19. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  20. Rapid spectral and flux time variations in a solar burst observed at various dm-mm wavelengths and at hard x rays

    International Nuclear Information System (INIS)

    Zodivaz, A.M.; Kaufmann, P.; Correia, E.; Costa, J.E.R.; Takakura, T.; Cliver, E.W.; Tapping, K.F.; Air Force Geophysics Lab., Hanscom AFB, MA; National Research Council of Canada, Ottawa, Ontario)

    1986-01-01

    A solar burst was observed with high sensitivity and time resolution at cm-mm wavelengths by two different radio observatories (Itapetinga and Algonquin), with high spectral time resolution at dm-mm wavelengths by patrol instruments (Sagamore Hill), and at hard x rays (HXM Hinotori). At the onset of the major burst time structure there was a rapid rise in the spectral turnover frequency (from 5 to 15 GHz), in about 10s, coincident to a reduction of the spectral index in the optically thin part of the spectrum. The burst maxima were not time coincident at the optically thin radio frequencies and at the different hard x ray energy ranges. The profiles at higher radio frequencies exhibited better time coincidence to the high energy x rays. The hardest x ray spectrum (-3) coincided with peak radio emission at the higher frequency (44 GHz). The event appeared to be built up by a first major injection of softer particles followed by other injections of harder particles. Ultrafast time structures were identified as superimposed on the burst emission at the cm-mm high sensitivity data at x rays, with predominant repetition rates ranging from 2.0 to 3.5 Hz

  1. Equation of state and jamming density for equivalent bi- and polydisperse, smooth, hard sphere systems.

    NARCIS (Netherlands)

    Ogarko, V.; Luding, Stefan

    2012-01-01

    We study bi- and polydisperse mixtures of hard sphere fluids with extreme size ratios up to 100. Simulation results are compared with previously found analytical equations of state by looking at the compressibility factor, Z, and agreement is found with much better than 1% deviation in the fluid

  2. Flexible equation of state for a hard sphere and Lennard–Jones fluid ...

    Indian Academy of Sciences (India)

    Equation of state; Lennard–Jones potential; hard-sphere potential; liquid mixture; computer simulation. ... deviation than Barker–Henderson BH2 for LJ fluids, and results are much closer to molecular dynamics (MD) simulations than expectations and reproduce the existing simulation data and present EoS for LJ potential, ...

  3. The evolution of the disc variability along the hard state of the black hole transient GX 339-4

    Science.gov (United States)

    De Marco, B.; Ponti, G.; Muñoz-Darias, T.; Nandra, K.

    2015-12-01

    We report on the analysis of hard-state power spectral density function (PSD) of GX 339-4 down to the soft X-ray band, where the disc significantly contributes to the total emission. At any luminosity probed, the disc in the hard state is intrinsically more variable than in the soft state. However, the fast decrease of disc variability as a function of luminosity, combined with the increase of disc intensity, causes a net drop of fractional variability at high luminosities and low energies, which reminds the well-known behaviour of disc-dominated energy bands in the soft state. The peak frequency of the high-frequency Lorentzian (likely corresponding to the high-frequency break seen in active galactic nuclei, AGN) scales with luminosity, but we do not find evidence for a linear scaling. In addition, we observe that this characteristic frequency is energy dependent. We find that the normalization of the PSD at the peak of the high-frequency Lorentzian decreases with luminosity at all energies, though in the soft band this trend is steeper. Together with the frequency shift, this yields quasi-constant high-frequency (5-20 Hz) fractional rms at high energies, with less than 10 per cent scatter. This reinforces previous claims suggesting that the high-frequency PSD solely scales with black hole mass. On the other hand, this constancy breaks down in the soft band (where the scatter increases to ˜30 per cent). This is a consequence of the additional contribution from the disc component, and resembles the behaviour of optical variability in AGN.

  4. Spectral State Evolution of 4U 1820-30: the Stability of the Spectral Index of Comptonization Tail

    Science.gov (United States)

    Titarchuk, Lev G.; Seifina, Elena; Frontera, Filippo

    2013-01-01

    We analyze the X-ray spectra and their timing properties of the compact Xray binary 4U 1820-30. We establish spectral transitions in this source seen with BeppoSAX and the Rossi X-ray Timing Explorer (RXTE). During the RXTE observations (1996 - 2009), the source were approximately approximately 75% of its time in the soft state making the lower banana and upper banana transitions combined with long-term low-high state transitions. We reveal that all of the X-ray spectra of 4U 1820-30 are fit by a composition of a thermal (blackbody) component, a Comptonization component (COMPTB) and a Gaussian-line component. Thus using this spectral analysis we find that the photon power-law index Gamma of the Comptonization component is almost unchangeable (Gamma approximately 2) while the electron temperature kTe changes from 2.9 to 21 keV during these spectral events. We also establish that for these spectral events the normalization of COMPTB component (which is proportional to mass accretion rate ?M) increases by factor 8 when kTe decreases from 21 keV to 2.9 keV. Before this index stability effect was also found analyzing X-ray data for Z-source GX 340+0 and for atolls, 4U 1728-34, GX 3+1. Thus, we can suggest that this spectral stability property is a spectral signature of an accreting neutron star source. On the other hand in a black hole binary G monotonically increases with ?Mand ultimately its value saturates at large ?M.

  5. State of the art in hard-on-hard bearings: how did we get here and what have we achieved?

    Science.gov (United States)

    Zywiel, Michael G; Sayeed, Siraj A; Johnson, Aaron J; Schmalzried, Thomas P; Mont, Michael A

    2011-03-01

    Total hip arthroplasty has shown excellent results in decreasing pain and improving function in patients with degenerative disease of the hip. Improvements in prosthetic materials, designs and implant fixation have now resulted in wear of the bearing surface being the limitation of this technology, and a number of hard-on-hard couples have been introduced to address this concern. The purpose of this article is to review the origins, development, survival rates and potential advantages and disadvantages of the following hard-on-hard bearings for total hip arthroplasty: metal-on-metal standard total hip arthroplasty; metal-on-metal hip resurfacing arthroplasty, ceramic-on-ceramic total hip arthroplasty; and ceramic-on-metal bearings. Improvements in the manufacturing of metal-on-metal bearings over the past 50 years have resulted in implants that provide low wear rates and allow for the use of large femoral heads. However, concerns remain regarding elevated serum metal ion levels, potential teratogenic effects and potentially devastating adverse local tissue reactions, whose incidence and pathogenesis remains unclear. Modern total hip resurfacing has shown excellent outcomes over 10 years in the hands of experienced surgeons. Current ceramic-on-ceramic bearings have demonstrated excellent survival with exceptionally low wear rates and virtually no local adverse effects. Concerns remain for insertional chipping, in vivo fracture and the variable incidence of squeaking. Contemporary ceramic-on-metal interfaces are in the early stages of clinical use, with little data reported to date. Hard-on-hard bearings for total hip arthroplasty have improved dramatically over the past 50 years. As bearing designs continue to improve with new and modified materials and improved manufacturing techniques, it is likely that the use of hard-on-hard bearings will continue to increase, especially in young and active patients.

  6. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    Energy Technology Data Exchange (ETDEWEB)

    Malek, Ali; Balawender, Robert, E-mail: rbalawender@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw (Poland)

    2015-02-07

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor.

  7. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    International Nuclear Information System (INIS)

    Malek, Ali; Balawender, Robert

    2015-01-01

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor

  8. Detection of X-ray spectral state transitions in mini-outbursts of black hole transient GRS 1739-278

    Science.gov (United States)

    Yan, Zhen; Yu, Wenfei

    2017-10-01

    We report the detection of the state transitions and hysteresis effect in the two mini-outbursts of the black hole (BH) transient GRS 1739-278 following its 2014 major outburst. The X-ray spectral evolutions in these two mini-outbursts are similar to the major outburst in spite of their peak luminosities and the outburst durations are one order of magnitude lower. We found L_hard{-to-soft} and Lpeak,soft of the mini-outbursts also follow the correlation previously found in other X-ray binaries. L_hard{-to-soft} of the mini-outbursts is still higher than that of the persistent BH binary Cyg X-1, which supports that there is a link between the maximum luminosity a source can reach in the hard state and the corresponding non-stationary accretion represented by substantial rate of change in the mass accretion rate during flares/outbursts. The detected luminosity range of these two mini-outbursts is roughly in 3.5 × 10-5 to 0.015 (D/7.5 kpc)2(M/8M⊙) LEdd. The X-ray spectra of other BH transients at such low luminosities are usually dominated by a power-law component, and an anti-correlation is observed between the photon index and the X-ray luminosity below 1 per cent LEdd. So, the detection of X-ray spectral state transitions indicates that the accretion flow evolution in these two mini-outbursts of GRS 1739-278 are different from other BH systems at such low-luminosity regime.

  9. Analysis of enamel microhardness at various hard tissue states and depth of the microfissures

    Directory of Open Access Journals (Sweden)

    S. P. Yarova

    2013-08-01

    micro-hardness of enamel have been identified in the cervical area: the presence of defects of type I - in intact teeth, defects of II and III types - in the teeth with wedge-shaped defect. The least indices, regardless of the depth of micro-cracks in teeth, were diagnosed in cervical caries. In samples with carious and non-carious pathology the largest micro-hardness of enamel in the cervical area were recorded in deep micro-cracks type III, and the lowest - in the teeth with defects type I. In intact samples, conversely, the strength of enamel was higher in minor defects type I, lower - in the presence of micro-cracks type II. Changes in the mechanical properties of the enamel were due to its chemical composition, which was confirmed by microroentgen-spectral analysis. Thus, the content of calcium and phosphorus in the cervical region was significantly different depending on the pathology of hard tissues (p <0,05. The higher content of macro-elements was determined in the wedge-shaped defects. Some discrepancy of the obtained indices with the depth of micro-cracks indicates that complex of adaptive processes occurs not only in the enamel but in the strength of the enamel, depending on the depth of cracks and pathology of hard tissues and demand further investigation. The revealed features should be used for a substantiation of principles of treatment and prophylaxis of the dental hard tissues defects.

  10. Response of hard superconductors to crossed magnetic fields: elliptic critical-state model

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Salazar, C.; Perez-Rodriguez, F

    2004-05-01

    The behavior of hard superconductors subjected to crossed magnetic fields is theoretically investigated by employing an elliptic critical-state model. Here the anisotropy is induced by flux-line cutting. The model reproduces successfully the collapse of the magnetic moment under the action of a sweeping magnetic field, applied perpendicularly to a dc field, for diamagnetic and paramagnetic initial states. Besides, it explains the transition from the diamagnetic state to the paramagnetic one when the magnitudes of the crossed magnetic fields are of the same order.

  11. Effect of non-stationary accretion on spectral state transitions: An example of a persistent neutron star LMXB 4U1636–536

    Science.gov (United States)

    Zhang, Hui; Yu, Wen-Fei

    2018-03-01

    Observations of black hole and neutron star X-ray binaries show that the luminosity of the hard-to-soft state transition is usually higher than that of the soft-to-hard state transition, indicating additional parameters other than mass accretion rate are required to interpret spectral state transitions. It has been found in some individual black hole or neutron star soft X-ray transients that the luminosity corresponding to the hard-to-soft state transition is positively correlated with the peak luminosity of the following soft state. In this work, we report the discovery of the same correlation in the single persistent neutron star low mass X-ray binary (LMXB) 4U 1636–536 based on data from the All Sky Monitor (ASM) on board RXTE, the Gas Slit Camera (GSC) on board MAXI and the Burst Alert Telescope (BAT) on board Swift. We also found such a positive correlation holds in this persistent neutron star LMXB in a luminosity range spanning about a factor of four. Our results indicate that non-stationary accretion also plays an important role in driving X-ray spectral state transitions in persistent accreting systems with small accretion flares, which is much less dramatic compared with the bright outbursts seen in many Galactic LMXB transients.

  12. Neutron spectrum perturbations due to scattering materials and their effect on the average neutron energy, the spectral index, and the hardness parameter

    International Nuclear Information System (INIS)

    Wright, H.L.; Meason, J.L.; Wolf, M.; Harvey, J.T.

    1976-01-01

    Measurements have been performed on the perturbing effect of a number of scattering materials by the 'free-field' neutron leakage spectrum from a Godiva Type Critical Assembly (White Sands Missile Range Fast Burst Reactor). The results of these measurements are interpreted in relation to some of the general parameters characterizing a neutron environment, namely, the average neutron energy >10 KeV, the spectral index and the hardness parameter. Three neutron spectrum measurements have been performed, each under different experimental configurations of scattering materials. Results from these measurements show the following with relation to the spectral index: (1) The neutron environment on the core surface and at 12-inches from the core surface (free-field) yield a spectral index of 6.8, (2) The neutron environment behind a 4.75-inch Plexiglas plate yield 4.6 for the spectral index and (3) The neutron environment behind a 2-inch aluminum plate yield 6.7 for the spectral index. It is concluded that the core surface and the 12-inch from core surface neutron environment are identical with the 'free-field' neutron environment at 20-inches when considering only those neutrons with energy >10 KeV. On the other hand, it appears that the 4.75 inches of Plexiglas severely perturbs the 'free-field' neutron environment, i.e., a much harder neutron spectrum >10 KeV. In the situation where 2-inches of aluminum is used as the perturbing medium, essentially no change in the neutron spectrum >10 KeV is noted

  13. Influence of different geological structures on stress–strain state of hard rock mass

    Science.gov (United States)

    Kuznetzov, NN; Fedotova, YuV

    2018-03-01

    The results of numerical simulation of stress–strain state in a hard rock mass area with the complex geological structures are presented. The variants of the stress value change are considered depending on the boundary conditions and physical properties of the model blocks. Furthermore, the possibility of in-situ stress formation under the influence of energy coming from the deeper Earth’s layers is demonstrated in terms of the Khibiny Massif.

  14. Thermodynamics and dynamics of the hard-sphere system: From stable to metastable states

    Energy Technology Data Exchange (ETDEWEB)

    Bomont, Jean-Marc, E-mail: jean-marc.bomont@univ-lorraine.fr; Bretonnet, Jean-Louis

    2014-08-17

    Highlights: • Three different scaling laws, devoted to transport properties of hard-sphere system, are investigated over a wide range of packing fractions. • A new semiempirical relation linking the transport properties to the excess pressure is derived. • The present relation allows to better understand the link between the thermodynamic and the dynamic properties of the hard-sphere system. - Abstract: A set of three different scaling laws is investigated, which are devoted to link the transport properties, i.e. diffusion coefficient, shear viscosity, bulk viscosity and thermal conductivity, to the thermodynamic properties for the athermal hard-sphere system, over the wider range of packing fraction covering the stable and metastable regimes. Except for the thermal conductivity, the Rosenfeld (1999) [15] relation is found to be applicable to the stable states while the Adam and Gibbs (1965) [24] relation holds well for the metastable states. In contrast, the modified Cohen and Turnbull (1959) [25] relation proposed here gives sound support for a universal scaling law connecting the dynamic and thermodynamic properties, over the domain of packing fraction including the stable and metastable states. In particular, it is found that the most relevant control parameter is not the excess entropy, but the logarithm derivative of the excess entropy with respect to the packing fraction. In the same context, the Stokes–Einstein relation between the diffusion coefficient and the shear viscosity is also examined. The possible violation of the Stokes–Einstein relation is investigated over a large domain of packing fractions.

  15. Thermodynamics and dynamics of the hard-sphere system: From stable to metastable states

    International Nuclear Information System (INIS)

    Bomont, Jean-Marc; Bretonnet, Jean-Louis

    2014-01-01

    Highlights: • Three different scaling laws, devoted to transport properties of hard-sphere system, are investigated over a wide range of packing fractions. • A new semiempirical relation linking the transport properties to the excess pressure is derived. • The present relation allows to better understand the link between the thermodynamic and the dynamic properties of the hard-sphere system. - Abstract: A set of three different scaling laws is investigated, which are devoted to link the transport properties, i.e. diffusion coefficient, shear viscosity, bulk viscosity and thermal conductivity, to the thermodynamic properties for the athermal hard-sphere system, over the wider range of packing fraction covering the stable and metastable regimes. Except for the thermal conductivity, the Rosenfeld (1999) [15] relation is found to be applicable to the stable states while the Adam and Gibbs (1965) [24] relation holds well for the metastable states. In contrast, the modified Cohen and Turnbull (1959) [25] relation proposed here gives sound support for a universal scaling law connecting the dynamic and thermodynamic properties, over the domain of packing fraction including the stable and metastable states. In particular, it is found that the most relevant control parameter is not the excess entropy, but the logarithm derivative of the excess entropy with respect to the packing fraction. In the same context, the Stokes–Einstein relation between the diffusion coefficient and the shear viscosity is also examined. The possible violation of the Stokes–Einstein relation is investigated over a large domain of packing fractions

  16. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    International Nuclear Information System (INIS)

    De Marco, B.; Ponti, G.; Nandra, K.; Muñoz-Darias, T.

    2015-01-01

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4 in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation

  17. CORONA, JET, AND RELATIVISTIC LINE MODELS FOR SUZAKU/RXTE/CHANDRA-HETG OBSERVATIONS OF THE CYGNUS X-1 HARD STATE

    International Nuclear Information System (INIS)

    Nowak, Michael A.; Trowbridge, Sarah N.; Davis, John E.; Hanke, Manfred; Wilms, Joern; Markoff, Sera B.; Maitra, Dipankar; Tramper, Frank; Pottschmidt, Katja; Coppi, Paolo

    2011-01-01

    Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard 'low states'. Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the 'focused wind' from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary's focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c 2 . All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus, whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum dependent, none of the broad line fits allow for an inner disk radius that is >40 GM/c 2 .

  18. On the stability of critical state in hard superconductors with nonhomogeneous temperature profile

    CERN Document Server

    Tajlanov, N A

    2002-01-01

    One studied the problem on thermal and magnetic breaking of critical state in hard superconductors. One assumes that initial distribution of temperature and of electrical field is very nonhomogeneous one. In quasi-stationary approximation one determined the limit of occurrence of thermal and magnetic instability in a superconductor. The derived integral criterion is shown to take account of the effect of each segment of a superconductor on the threshold of occurrence of critical state instability on contrast to similar criterion for homogeneous temperature profile

  19. Comparison of time/phase lags in the hard state and plateau state of GRS 1915+105

    Energy Technology Data Exchange (ETDEWEB)

    Pahari, Mayukh; Yadav, J. S. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India (MP) (India); Neilsen, Joseph [Boston University, Boston, MA 02215 (United States); Misra, Ranjeev [Inter University Center for Astronomy and Astrophysics, Pune (India); Uttley, Phil, E-mail: mp@tifr.res.in [Astronomical Institute, " Anton Pannekoek," University of Amsterdam, Science Park 904, 1098-XH Amsterdam (Netherlands)

    2013-12-01

    We investigate the complex behavior of energy- and frequency-dependent time/phase lags in the plateau state and the radio-quiet hard (χ) state of GRS 1915+105. In our timing analysis, we find that when the source is faint in the radio, quasi-periodic oscillations (QPOs) are observed above 2 Hz and typically exhibit soft lags (soft photons lag hard photons), whereas QPOs in the radio-bright plateau state are found below 2.2 Hz and consistently show hard lags. The phase lag at the QPO frequency is strongly anti-correlated with that frequency, changing sign at 2.2 Hz. However, the phase lag at the frequency of the first harmonic is positive and nearly independent of that frequency at ∼0.172 rad, regardless of the radio emission. The lag energy dependence at the first harmonic is also independent of radio flux. However, the lags at the QPO frequency are negative at all energies during the radio-quiet state, but lags at the QPO frequency during the plateau state are positive at all energies and show a 'reflection-type' evolution of the lag energy spectra with respect to the radio-quiet state. The lag energy dependence is roughly logarithmic, but there is some evidence for a break around 4-6 keV. Finally, the Fourier-frequency-dependent phase lag spectra are fairly flat during the plateau state, but increase from negative to positive during the radio-quiet state. We discuss the implications of our results in light of some generic models.

  20. NuSTAR and INTEGRAL observations of a low/hard state of 1E1740.7-2942

    DEFF Research Database (Denmark)

    Natalucci, Lorenzo; Tomsick, John A.; Bazzano, Angela

    2014-01-01

    The microquasar 1E1740.7-2942, also known as the "Great Annihilator", was observed by NuSTAR in the Summer of 2012. We have analyzed in detail two observations taken ~2 weeks apart, for which we measure hard and smooth spectra typical of the low/hard state. A few weeks later the source flux decli...

  1. Design and realization of a hard X-ray prototype imager with spectral selection for the Laser MegaJoule

    International Nuclear Information System (INIS)

    Dennetiere, David

    2012-01-01

    In the Laser MegaJoule (LMJ) project context, measurements need to be done by diagnostics in order to achieve ignition. Amongst these diagnostics, some of the X-ray imagers will have to observe hydrodynamics instabilities on the micron balloon surface. X-ray radiography or self-emission imaging are the techniques used to obtain such imaging. None of the existing X-ray imagers designed for LMJ is currently able to record this kind of image. The X-ray imager designed during this thesis will have to achieve a high resolution image at high energy and will have to meet all the requirements subsequent to its use on a large facility like LMJ. We have studied and optimized an already existing diagnostic: EHRXI. We have extended its covered spectral range up to 12 keV. We measured its resolution that is under 5 μm in a 1 mm diameter field of view. This diagnostic has been successfully used on laser experiments in ELFIE 100 TW and OMEGA. After analyzing the performances and weaknesses of EHRXI, we were able to design a LMJ diagnostic prototype: Merssix. This microscope will achieve a resolution under 5 μm in a 500 μm diameter field of view with a covered spectral range up to 22 keV. Merssix has been specifically designed for LMJ and adapted to fit its experimental framework. Its design allows it in particular to be used for radiography in a complex X-ray producing environment. (author) [fr

  2. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    Science.gov (United States)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  3. Hard X-ray measurements of A0535+26 during low state

    International Nuclear Information System (INIS)

    Polcaro, V.F.; Bazzano, A.; La Padula, C.; Ubertini, P.; Vialetto, G.

    1982-01-01

    A number of measurements of the recurrent transient X-ray source A0535+26 have been made during its outburst phase, since its detection in 1975 by Ariel V. The optical counterpart of the source (Be Star 245770) has also been extensively studied both in active and quiescent state in optical I.R. and U.V. bands. These data show a positive correlation with the X-ray flux during on state. The X-ray flux from the source during the outburst increases to about twice the Crab intensity in soft X-ray band and gradually decreases to 100 mCrab during 30 to 50 days. However positive detection of the sources has not been reported until now during the low state. In this paper we present the spectral measurements of the source in the energy band 20-100 KeV made during the low state in 1981. (orig.)

  4. Spectro-Timing Study of GX 339-4 in a Hard Intermediate State

    DEFF Research Database (Denmark)

    Fürst, F.; Grinberg, V.; Tomsick, J. A.

    2016-01-01

    We present an analysis of Nuclear Spectroscopic Telescope Array observations of a hard intermediate state of the transient black hole GX 339-4 taken in 2015 January. With the source softening significantly over the course of the 1.3 day long observation we split the data into 21 sub-sets and find...... that the spectrum of all of them can be well described by a power-law continuum with an additional relativistically blurred reflection component. The photon index increases from ∼1.69 to ∼1.77 over the course of the observation. The accretion disk is truncated at around nine gravitational radii in all spectra. We...

  5. Ground-state properties of a dilute homogeneous Bose gas of hard disks in two dimensions

    International Nuclear Information System (INIS)

    Mazzanti, F.; Polls, A.; Fabrocini, A.

    2005-01-01

    The energy and structure of a dilute hard-disks Bose gas are studied in the framework of a variational many-body approach based on a Jastrow correlated ground-state wave function. The asymptotic behaviors of the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation obtained by a free minimization of the hypernetted chain energy functional. Our results show important deviations from those of the available low density expansions, already at gas parameter values x∼0.001. The condensate fraction in 2D is also computed and found generally lower than the 3D one at the same x

  6. Spectral and temporal properties of the X-ray pulsar SMC X-1 at hard X-rays

    Science.gov (United States)

    Kunz, M.; Gruber, D. E.; Kendziorra, E .; Kretschmar, P.; Maisack, M.; Mony, B.; Staubert, R.; Doebereiner, S.; Englhauser, J.; Pietsch, W.

    1993-01-01

    The binary X-ray pulsar SMC X- 1 has been observed at hard X-rays with the High Energy X-Ray Experiment (HEXE) on nine occasions between Nov. 1987 and March 1989. A thin thermal bremsstrahlung fit to the phase averaged spectrum yields a plasma temperature (14.4 +/- 1.3) keV and a luminosity above (1.1 +/- 0.1) x 10 exp 38 erg/s in the 20-80 keV band. Pulse period values have been established for three observations, confirming the remarkably stable spin-up trend of SMC X-1. In one of the three observations the pulse profile was seen to deviate from a dominant double pulsation, while at the same time the pulsed fraction was unusually large. For one observation we determined for the first time the pulsed fraction in narrow energy bands. It increases with photon energy from about 20 percent up to over 60 percent in the energy range from 20 to 80 keV.

  7. GRS 1758–258: RXTE Monitoring of a Rare Persistent Hard State Black Hole

    Directory of Open Access Journals (Sweden)

    M. Obst

    2011-01-01

    Full Text Available GRS 1758–258 is the least studied of the three persistent black hole X-ray binaries in our Galaxy. It is also one of only two known black hole candidates, including all black hole transients, which shows a decrease of its 3-10 keV flux when entering the thermally dominated soft state, rather than an increase.We present the spectral evolution of GRS 1758–258 from RXTE-PCA observations spanning a time of about 11 years from 1996 to 2007. During this time, seven dim soft states are detected. We also consider INTEGRAL monitoring observations of the source and compare the long-term behavior to that of the bright persistent black hole X-ray binary Cygnus X-1. We discuss the observed state transitions in the light of physical scenarios for black hole transitions.

  8. Changes in phase composition and stress state of surface layers of VK20 hard alloy after ion bombardment

    International Nuclear Information System (INIS)

    Platonov, G.L.; Leonov, E.Yu.; Anikin, V.N.; Anikeev, A.I.

    1988-01-01

    Titanium ion bombardment of the surface of the hard VK20 alloy is studied for its effect on variations in the phase and chemical composition of its surface layers. It is stated that ion treatment results in the appearance of the η-phase of Co 6 W 6 C composition in the surface layer of the VK20 alloy, in the increase of distortions and decrease of coherent scattering blocks of the hard alloy carbide phase. Such a bombardment is found to provoke a transition of the plane-stressed state of the hard alloy surface into the volume-stressed state. It is established that ion treatment does not cause an allotropic transition of the cobalt phase α-modification, formed during grinding of the hard alloy, into the β-modification

  9. Study of adsorption states for lubricant molecule using hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Ikenaga, E.; Kobata, M.; Kim, J.J.; Wakabayashi, A.; Nishino, Y.; Tamasaku, K.; Sakane, Y.; Ishikawa, T.; Komiya, S.; Kobayashi, K.

    2007-01-01

    The adsorption states for lubricant molecules have been investigated using hard X-ray (hν = 7.95 keV) photoemission spectroscopy (HX-PES). This method has the advantage for the organic molecules to be able to measure damage few. Being aware of the fact that P atoms exist only in cyclotriphosphazene base, we measured the take-off angle dependence of the P1s spectra. Each spectrum consists from two peaks, that is, substrate NiP peak and cyclotriphosphazene P peak. The cyclotriphosphazene P peak rapidly disappears with increasing take-off angle. We have also measured C1s spectra. Combining these experimental results, we have found that the adsorption state of cyclotriphosphazene end group is undergoing

  10. Reflection Spectra of the Black Hole Binary Candidate MAXI J1535-571 in the Hard State Observed by NuSTAR

    Science.gov (United States)

    Xu, Yanjun; Harrison, Fiona A.; García, Javier A.; Fabian, Andrew C.; Fürst, Felix; Gandhi, Poshak; Grefenstette, Brian W.; Madsen, Kristin K.; Miller, Jon M.; Parker, Michael L.; Tomsick, John A.; Walton, Dominic J.

    2018-01-01

    We report on a Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the recently discovered bright black hole candidate MAXI J1535-571. NuSTAR observed the source on MJD 58003 (five days after the outburst was reported). The spectrum is characteristic of a black hole binary in the hard state. We observe clear disk reflection features, including a broad Fe Kα line and a Compton hump peaking around 30 keV. Detailed spectral modeling reveals a narrow Fe Kα line complex centered around 6.5 keV on top of the strong relativistically broadened Fe Kα line. The narrow component is consistent with distant reflection from moderately ionized material. The spectral continuum is well described by a combination of cool thermal disk photons and a Comptonized plasma with the electron temperature {{kT}}{{e}}=19.7+/- 0.4 keV. An adequate fit can be achieved for the disk reflection features with a self-consistent relativistic reflection model that assumes a lamp-post geometry for the coronal illuminating source. The spectral fitting measures a black hole spin a> 0.84, inner disk radius {R}{in}lamp-post height h={7.2}-2.0+0.8 {r}{{g}} (statistical errors, 90% confidence), indicating no significant disk truncation and a compact corona. Although the distance and mass of this source are not currently known, this suggests the source was likely in the brighter phases of the hard state during this NuSTAR observation.

  11. Non-Abelian fractional quantum Hall states for hard-core bosons in one dimension

    Science.gov (United States)

    Paredes, Belén

    2012-05-01

    I present a family of one-dimensional bosonic liquids analogous to non-Abelian fractional quantum Hall states. A new quantum number is introduced to characterize these liquids, the chiral momentum, which differs from the usual angular or linear momentum in one dimension. As their two-dimensional counterparts, these liquids minimize a k-body hard-core interaction with the minimum total chiral momentum. They exhibit global order, with a hidden organization of the particles in k identical copies of a one-dimensional Laughlin state. For k=2 the state is a p-wave paired phase corresponding to the Pfaffian quantum Hall state. By imposing conservation of the total chiral momentum, an exact parent Hamiltonian is derived which involves long-range tunneling and interaction processes with an amplitude decaying with the chord distance. This family of non-Abelian liquids is shown to be in formal correspondence with a family of spin-(k)/(2) liquids which are total singlets made out of k indistinguishable resonating valence bond states. The corresponding spin Hamiltonians are obtained.

  12. A complex guided spectral transform Lanczos method for studying quantum resonance states

    International Nuclear Information System (INIS)

    Yu, Hua-Gen

    2014-01-01

    A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the original Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO, and compared to previous calculations

  13. Imaging the equilibrium state and magnetization dynamics of partially built hard disk write heads

    Energy Technology Data Exchange (ETDEWEB)

    Valkass, R. A. J., E-mail: rajv202@ex.ac.uk; Yu, W.; Shelford, L. R.; Keatley, P. S.; Loughran, T. H. J.; Hicken, R. J. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Cavill, S. A. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Laan, G. van der; Dhesi, S. S. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Bashir, M. A.; Gubbins, M. A. [Research and Development, Seagate Technology, 1 Disc Drive, Springtown Industrial Estate, Derry BT48 0BF (United Kingdom); Czoschke, P. J.; Lopusnik, R. [Recording Heads Operation, Seagate Technology, 7801 Computer Avenue South, Bloomington, Minnesota 55435 (United States)

    2015-06-08

    Four different designs of partially built hard disk write heads with a yoke comprising four repeats of NiFe (1 nm)/CoFe (50 nm) were studied by both x-ray photoemission electron microscopy (XPEEM) and time-resolved scanning Kerr microscopy (TRSKM). These techniques were used to investigate the static equilibrium domain configuration and the magnetodynamic response across the entire structure, respectively. Simulations and previous TRSKM studies have made proposals for the equilibrium domain configuration of similar structures, but no direct observation of the equilibrium state of the writers has yet been made. In this study, static XPEEM images of the equilibrium state of writer structures were acquired using x-ray magnetic circular dichroism as the contrast mechanism. These images suggest that the crystalline anisotropy dominates the equilibrium state domain configuration, but competition with shape anisotropy ultimately determines the stability of the equilibrium state. Dynamic TRSKM images were acquired from nominally identical devices. These images suggest that a longer confluence region may hinder flux conduction from the yoke into the pole tip: the shorter confluence region exhibits clear flux beaming along the symmetry axis, whereas the longer confluence region causes flux to conduct along one edge of the writer. The observed variations in dynamic response agree well with the differences in the equilibrium magnetization configuration visible in the XPEEM images, confirming that minor variations in the geometric design of the writer structure can have significant effects on the process of flux beaming.

  14. Utilize the spectral line pair of the same ionized state ion to measure the ion temperature of tokamak plasma

    International Nuclear Information System (INIS)

    Lin Xiaodong

    2000-01-01

    Making use of a Fabry-Perot interferometer driven by a piezoelectric crystal and selecting the suitable separation of plates, the ion temperature is defined by measuring the superimposed profile of the spectral line pair of the same ionized state ions in Tokamak. The advantage of this method is to higher spectral resolution and wider spectral range select

  15. Spectral flow of trimer states of two heavy impurities and one light condensed boson

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas

    2014-01-01

    The spectral flow of three-body (trimer) states consisting of two heavy (impurity) particles sitting in a condensate of light bosons is considered. Assuming that the condensate is weakly interaction and that an impurity and a boson have a zero-range two-body interaction, we use the Born...

  16. [The elemental composition of teeth hard tissues depending on the state of the environment].

    Science.gov (United States)

    Suladze, N; Shishniashvili, T; Margvelashvili, V; Kobakhidze, K

    2014-01-01

    At present, great attention is paid to the origin of man-made micro elemental anomalies. To monitor the state of the environment and its effects on the human body, of great importance is the determination of the amount and distribution of various chemical elements in the dentin and enamel of the teeth. To determine the essential (Ca, Zn, Mn, Ni), conditionally essential (Rb, Ni, Sr) and toxic (Pb, Hg) trace elements in the mineralized tissues of the teeth and to identify the relationship between the elemental composition of the tooth structure and the state of the general and dental health depending on the state of the environment, we have examined 29 children aged 3-4 years who have carried out analysis of hard tissue of teeth (teeth used for remote medical reasons) for the maintenance of nine chemical elements. Children living in a relatively environmentally favorable conditions essential value and conditionally essential elements in the mineralized tissues of the teeth were within normal limits, and toxic elements slightly increased limits that differ from those of children living in environmentally disadvantaged areas. In particular, these essential elements were significantly reduced (except for zinc), as indicators of toxic elements - mercury and lead, increased by 12.5% and 44.5%, respectively, which is clearly reflected on the state of dental health because noted decompensated form of tooth decay. Thus, deviations in a state of general and dental health of children associated with an imbalance of macro-and microelements in the mineralized tissues of the teeth.

  17. Solid state linear dichroic infrared spectral analysis of benzimidazoles and their N 1-protonated salts

    Science.gov (United States)

    Ivanova, B. B.

    2005-11-01

    A stereo structural characterization of 2,5,6-thrimethylbenzimidazole (MBIZ) and 2-amino-benzimidaziole (2-NH 2-BI) and their N 1 protonation salts was carried out using a polarized solid state linear dichroic infrared spectral (IR-LD) analysis in nematic liquid crystal suspension. All experimental predicted structures were compared with the theoretical ones, obtained by ab initio calculations. The Cs to C2v* symmetry transformation as a result of protonation processes, with a view of its reflection on the infrared spectral characteristics was described.

  18. Work Hard / Play Hard

    OpenAIRE

    Burrows, J.; Johnson, V.; Henckel, D.

    2016-01-01

    Work Hard / Play Hard was a participatory performance/workshop or CPD experience hosted by interdisciplinary arts atelier WeAreCodeX, in association with AntiUniversity.org. As a socially/economically engaged arts practice, Work Hard / Play Hard challenged employees/players to get playful, or go to work. 'The game changes you, you never change the game'. Employee PLAYER A 'The faster the better.' Employer PLAYER B

  19. The Roles of Ideological State Apparatus in Maintaining Hegemony in Charles Dicken's Hard Times

    OpenAIRE

    Prasetya, Farid Adi

    2013-01-01

    One of literary works, a novel, may be reflects social phenomenon. The correlation between literary works and social phenomenon includes an analysis towards a novel entitled Hard Times by Charles Dickens, which covers a social phenomenon. The overall image of Hard Times is a society of industrial city namely Coketown, which has unequal economic condition. Through characters that appear in the novel, it can be analyzed, Hard Times reflects social clashes that are triggered by economic conditio...

  20. Homogeneous Free Cooling State in Binary Granular Fluids of Inelastic Rough Hard Spheres

    Science.gov (United States)

    Santos, Andrés

    2011-05-01

    In a recent paper [A. Santos, G. M. Kremer, and V. Garzó, Prog. Theor. Phys. Suppl. 184, 31-48 (2010)] the collisional energy production rates associated with the translational and rotational granular temperatures in a granular fluid mixture of inelastic rough hard spheres have been derived. In the present paper the energy production rates are explicitly decomposed into equipartition rates (tending to make all the temperatures equal) plus genuine cooling rates (reflecting the collisional dissipation of energy). Next the homogeneous free cooling state of a binary mixture is analyzed, with special emphasis on the quasi-smooth limit. A previously reported singular behavior (according to which a vanishingly small amount of roughness has a finite effect, with respect to the perfectly smooth case, on the asymptotic long-time translational/translational temperature ratio) is further elaborated. Moreover, the study of the time evolution of the temperature ratios shows that this dramatic influence of roughness already appears in the transient regime for times comparable to the relaxation time of perfectly smooth spheres.

  1. The Spatial Assessment of the Current Seismic Hazard State for Hard Rock Underground Mines

    Science.gov (United States)

    Wesseloo, Johan

    2018-06-01

    Mining-induced seismic hazard assessment is an important component in the management of safety and financial risk in mines. As the seismic hazard is a response to the mining activity, it is non-stationary and variable both in space and time. This paper presents an approach for implementing a probabilistic seismic hazard assessment to assess the current hazard state of a mine. Each of the components of the probabilistic seismic hazard assessment is considered within the context of hard rock underground mines. The focus of this paper is the assessment of the in-mine hazard distribution and does not consider the hazard to nearby public or structures. A rating system and methodologies to present hazard maps, for the purpose of communicating to different stakeholders in the mine, i.e. mine managers, technical personnel and the work force, are developed. The approach allows one to update the assessment with relative ease and within short time periods as new data become available, enabling the monitoring of the spatial and temporal change in the seismic hazard.

  2. SUZAKU BROADBAND SPECTROSCOPY OF SWIFT J1753.5-0127 IN THE LOW-HARD STATE

    International Nuclear Information System (INIS)

    Reynolds, Mark T.; Miller, Jon M.; Homan, Jeroen; Miniutti, Giovanni

    2010-01-01

    We present Suzaku observations of the Galactic black hole candidate Swift J1753.5-0127 in the low-hard state (LHS). The broadband coverage of Suzaku enables us to detect the source over the energy range 0.6-250 keV. The broadband spectrum (2-250 keV) is found to be consistent with a simple power-law (Γ ∼ 1.63). In agreement with previous observations of this system, a significant excess of soft X-ray flux is detected consistent with the presence of a cool accretion disk. Estimates of the disk inner radius infer a value consistent with the innermost stable circular orbit (ISCO; R in ∼ g , for certain values of, e.g., N H , i), although we cannot conclusively rule out the presence of an accretion disk truncated at larger radii (R in ∼ 10-50R g ). A weak, relativistically broadened iron line is also detected, in addition to disk reflection at higher energy. However, the iron-K line profile favors an inner radius larger than the ISCO (R in ∼ 10-20R g ). The implications of these observations for models of the accretion flow in the LHS are discussed.

  3. Multiwavelength Study of Quiescent States of Mrk 421 with Unprecedented Hard X-Ray Coverage Provided by NuSTAR in 2013

    CERN Document Server

    Baloković, M.; Madejski, G.; Furniss, A.; Chiang, J.; Ajello, M.; Alexander, D.M.; Barret, D.; Blandford, R.; Boggs, S.E.; Christensen, F.E.; Craig, W.W.; Forster, K.; Giommi, P.; Grefenstette, B.W.; Hailey, C.J.; Harrison, F.A.; Hornstrup, A.; Kitaguchi, T.; Koglin, J.E.; Madsen, K.K.; Mao, P.H.; Miyasaka, H.; Mori, K.; Perri, M.; Pivovaroff, M.J.; Puccetti, S.; Rana, V.; Stern, D.; Tagliaferri, G.; Urry, C.M.; Westergaard, N.J.; Zhang, W.W.; Zoglauer, A.; Archambault, S.; Archer, A.A.; Barnacka, A.; Benbow, W.; Bird, R.; Buckley, J.; Bugaev, V.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M.P.; Cui, W.; Dickinson, H.J.; Dumm, J.; Eisch, J.D.; Falcone, A.; Feng, Q.; Finley, J.P.; Fleischhack, H.; Fortson, L.; Griffin, S.; Griffiths, S.T.; Grube, J.; Gyuk, G.; Huetten, M.; Haakansson, N.; Holder, J.; Humensky, T.B.; Johnson, C.A.; Kaaret, P.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krause, M.; Krennrich, F.; Lang, M.J.; Maier, G.; McArthur, S.; Meagher, K.; Moriarty, P.; Nelson, T.; Nieto, D.; Ong, R.A.; Park, N.; Pohl, M.; Popkow, A.; Pueschel, E.; Reynolds, P.T.; Richards, G.T.; Roache, E.; Santander, M.; Sembroski, G.H.; Shahinyan, K.; Smith, A.W.; Staszak, D.; Telezhinsky, I.; Todd, N.W.; Tucci, J.V.; Tyler, J.; Vincent, S.; Weinstein, A.; Wilhelm, A.; Williams, D.A.; Zitzer, B.; Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J.L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; de Angelis, A.; De Lotto, B.; Wilhelmi, E. D. de Oña; Delgado Mendez, C.; Di Pierro, F.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Elsaesser, D.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M.V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; López, R. J. García; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Eisenacher, D.; Godinović, N.; González Muñoz, A.; Guberman, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J.M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas-Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Orito, R.; Overkemping, A.; Paiano, S.; Palacio, S.; Palatiello, M.; Paoletti, R.; Paredes, J.M.; Paredes-Fortuny, X.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Garcia, J. Rodriguez; Saito, T.; Satalecka, K.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S.N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Takalo, L.O.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D.F.; Toyama, T.; Treves, A.; Verguilov, V.; Vovk, I.; Ward, J.E.; Will, M.; Wu, M.H.; Zanin, R.; Perkins, J.; Verrecchia, F.; Leto, C.; Böttcher, M.; Villata, M.; Raiteri, C.M.; Acosta-Pulido, J.A.; Bachev, R.; Berdyugin, A.; Blinov, D.A.; Carnerero, M.I.; Chen, W.P.; Chinchilla, P.; Damljanovic, G.; Eswaraiah, C.; Grishina, T.S.; Ibryamov, S.; Jordan, B.; Jorstad, S.G.; Joshi, M.; Kopatskaya, E.N.; Kurtanidze, O.M.; Kurtanidze, S.O.; Larionova, E.G.; Larionova, L.V.; Larionov, V.M.; Latev, G.; Lin, H.C.; Marscher, A.P.; Mokrushina, A.A.; Morozova, D.A.; Nikolashvili, M.G.; Semkov, E.; Strigachev, A.; Troitskaya, Yu. V.; Troitsky, I.S.; Vince, O.; Barnes, J.; Güver, T.; Moody, J.W.; Sadun, A.C.; Sun, S.; Hovatta, T.; Richards, J.L.; Max-Moerbeck, W.; Readhead, A.C.; Lähteenmäki, A.; Tornikoski, M.; Tammi, J.; Ramakrishnan, V.; Reinthal, R.; Angelakis, E.; Fuhrmann, L.; Myserlis, I.; Karamanavis, V.; Sievers, A.; Ungerechts, H.; Zensus, J.A.

    2016-01-01

    We present coordinated multiwavelength observations of the bright, nearby BL Lac object Mrk 421 taken in 2013 January-March, involving GASP-WEBT, Swift, NuSTAR, Fermi-LAT, MAGIC, VERITAS, and other collaborations and instruments, providing data from radio to very-high-energy (VHE) gamma-ray bands. NuSTAR yielded previously unattainable sensitivity in the 3-79 keV range, revealing that the spectrum softens when the source is dimmer until the X-ray spectral shape saturates into a steep power law with a photon index of approximately 3, with no evidence for an exponential cutoff or additional hard components up to about 80 keV. For the first time, we observed both the synchrotron and the inverse-Compton peaks of the spectral energy distribution (SED) simultaneously shifted to frequencies below the typical quiescent state by an order of magnitude. The fractional variability as a function of photon energy shows a double-bump structure which relates to the two bumps of the broadband SED. In each bump, the variabilit...

  4. State of the Art of Hard and Soft Ionization Mass Spectrometry

    International Nuclear Information System (INIS)

    Helal, A.I.

    2008-01-01

    The principles of hard and soft ionization sources, providing some details on the practical aspects of their uses as well as ionization mechanisms are discussed. The conditions and uses of hard ionization methods such as electron impact, thermal ionization and inductively coupled plasma techniques are discussed. Moreover, new generation of soft ionization methods such as matrix-assisted laser desorption/ionization, electro spray ionization and direct analysis in real time are illustrated

  5. SPECTRAL ENERGY DISTRIBUTION OF MARKARIAN 501: QUIESCENT STATE VERSUS EXTREME OUTBURST

    International Nuclear Information System (INIS)

    Acciari, V. A.; Benbow, W.; Arlen, T.; Aune, T.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Boettcher, M.; Boltuch, D.; Bradbury, S. M.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Finley, J. P.; Duke, C.; Errando, M.; Falcone, A.; Finnegan, G.

    2011-01-01

    The very high energy (VHE; E > 100 GeV) blazar Markarian 501 (Mrk 501) has a well-studied history of extreme spectral variability and is an excellent laboratory for studying the physical processes within the jets of active galactic nuclei. However, there are few detailed multiwavelength studies of Mrk 501 during its quiescent state, due to its low luminosity. A short-term multiwavelength study of Mrk 501 was coordinated in 2009 March, focusing around a multi-day observation with the Suzaku X-ray satellite and including γ-ray data from VERITAS, MAGIC, and the Fermi Gamma-ray Space Telescope with the goal of providing a well-sampled multiwavelength baseline measurement of Mrk 501 in the quiescent state. The results of these quiescent-state observations are compared to the historically extreme outburst of 1997 April 16, with the goal of examining variability of the spectral energy distribution (SED) between the two states. The derived broadband SED shows the characteristic double-peaked profile. We find that the X-ray peak shifts by over two orders of magnitude in photon energy between the two flux states while the VHE peak varies little. The limited shift in the VHE peak can be explained by the transition to the Klein-Nishina (KN) regime. Synchrotron self-Compton models are matched to the data and the implied KN effects are explored.

  6. Spectral Energy Distribution of Markarian 501: Quiescent State Versus Extreme Outburst

    Science.gov (United States)

    Acciari, V. A.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Böttcher, M.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Dickherber, R.; Duke, C.; Errando, M.; Falcone, A.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Huang, D.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Madhavan, A. S.; Maier, G.; McArthur, S.; McCann, A.; Moriarty, P.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pichel, A.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Steele, D.; Swordy, S. P.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wood, M.; Zitzer, B.; VERITAS Collaboration; Aleksić, J.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Dazzi, F.; De Angelis, A.; De Cea del Pozo, E.; De Lotto, B.; De Maria, M.; De Sabata, F.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Errando, M.; Ferenc, D.; Fonseca, M. V.; Font, L.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giavitto, G.; Godinović, N.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Kranich, D.; Krause, J.; La Barbera, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Lorenz, E.; Majumdar, P.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Struebig, J. C.; Suric, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Vankov, H.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Paneque, D.; Hayashida, M.

    2011-03-01

    The very high energy (VHE; E > 100 GeV) blazar Markarian 501 (Mrk 501) has a well-studied history of extreme spectral variability and is an excellent laboratory for studying the physical processes within the jets of active galactic nuclei. However, there are few detailed multiwavelength studies of Mrk 501 during its quiescent state, due to its low luminosity. A short-term multiwavelength study of Mrk 501 was coordinated in 2009 March, focusing around a multi-day observation with the Suzaku X-ray satellite and including γ-ray data from VERITAS, MAGIC, and the Fermi Gamma-ray Space Telescope with the goal of providing a well-sampled multiwavelength baseline measurement of Mrk 501 in the quiescent state. The results of these quiescent-state observations are compared to the historically extreme outburst of 1997 April 16, with the goal of examining variability of the spectral energy distribution (SED) between the two states. The derived broadband SED shows the characteristic double-peaked profile. We find that the X-ray peak shifts by over two orders of magnitude in photon energy between the two flux states while the VHE peak varies little. The limited shift in the VHE peak can be explained by the transition to the Klein-Nishina (KN) regime. Synchrotron self-Compton models are matched to the data and the implied KN effects are explored.

  7. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  8. Are resting state spectral power measures related to executive functions in healthy young adults?

    Science.gov (United States)

    Gordon, Shirley; Todder, Doron; Deutsch, Inbal; Garbi, Dror; Getter, Nir; Meiran, Nachshon

    2018-01-08

    Resting-state electroencephalogram (rsEEG) has been found to be associated with psychopathology, intelligence, problem solving, academic performance and is sometimes used as a supportive physiological indicator of enhancement in cognitive training interventions (e.g. neurofeedback, working memory training). In the current study, we measured rsEEG spectral power measures (relative power, between-band ratios and asymmetry) in one hundred sixty five young adults who were also tested on a battery of executive function (EF). We specifically focused on upper Alpha, Theta and Beta frequency bands given their putative role in EF. Our indices enabled finding correlations since they had decent-to-excellent internal and retest reliability and very little range restriction relative to a nation-wide representative large sample. Nonetheless, Bayesian statistical inference indicated support for the null hypothesis concerning lack of monotonic correlation between EF and rsEEG spectral power measures. Therefore, we conclude that, contrary to the quite common interpretation, these rsEEG spectral power measures do not indicate individual differences in the measured EF abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The hard ellipsoid-of-revolution fluid II. The y-expansion equation of state

    NARCIS (Netherlands)

    Mulder, B.M.; Frenkel, D.

    1985-01-01

    The γ-expansion as introduced by Barboy and Gelbart is applied to a system of hard ellipsoids-of-revolution. The expansion is truncated after the third order term yielding an approximate theory requiring the second- and third-virial coefficients as inputs. As the third virial coefficient is not

  10. Soft drink effects on sensorimotor rhythm brain computer interface performance and resting-state spectral power.

    Science.gov (United States)

    Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He

    2016-08-01

    Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.

  11. On the Nature of the Variability Power Decay towards Soft Spectral States in X-Ray Binaries. Case Study in Cyg X-1

    Science.gov (United States)

    Titarchuk, Lev; Shaposhinikov, Nikolai

    2007-01-01

    A characteristic feature of the Fourier Power Density Spectrum (PDS) observed from black hole X-ray binaries in low/hard and intermediate spectral states is a broad band-limited noise, characterized by a constant below some frequency (a "break" frequency) and a power law above this frequency. It has been shown that the variability of this type can be produced by the inward diffusion of the local driving perturbations in a bounded configuration (accretion disk or corona). In the framework of this model, the perturbation diffusion time to is related to the phenomenological break frequency, while the PDS power-law slope above the "break" is determined by the viscosity distribution over the configuration. The perturbation diffusion scenario explains the decay of the power of X-ray variability observed in a number of compact sources (containing black hole and neutron star) during an evolution of theses sources from low/hard to high/soft states. We compare the model predictions with the subset of data from Cyg X-1 collected by the Rossi X-ray Time Explorer (RXTE). Our extensive analysis of the Cyg X-1 PDSs demonstrates that the observed integrated power P(sub x), decreases approximately as a square root of the characteristic frequency of the driving oscillations v(sub dr). The RXTE observations of Cyg X-1 allow us to infer P(sub dr), and t(sub o) as a function of v(sub dr). We also apply the basic parameters of observed PDSs, power-law index and low frequency quasiperiodic oscillations. to infer Reynolds (Re) number from the observations using the method developed in our previous paper. Our analysis shows that Re-number increases from values about 10 in low/hard state to that about 70 during the high/soft state. Subject headings: accretion, accretion disks-black hole physics-stars:individual (Cyg X-1) :radiation mechanisms: nonthermal-physical data and processes

  12. A delayed transition to the hard state for 4U 1630-47 at the end of its 2010 outburst

    Energy Technology Data Exchange (ETDEWEB)

    Tomsick, John A. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Yamaoka, Kazutaka [Solar-Terrestrial Environment Laboratory, Department of Particles and Astronomy, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Corbel, Stephane [AIM - Unité Mixte de Recherche CEA - CNRS - Université Paris VII - UMR 7158, CEA-Saclay, Service d' Astrophysique, F-91191 Gif-sur-Yvette Cedex (France); Kalemci, Emrah [Sabanci University, Orhanli-Tuzla, Istanbul 34956 (Turkey); Migliari, Simone [Department d' Astronomia i Meteorologia, Universitat de Barcelona, Marti I Franques 1, E-08028 Barcelona (Spain); Kaaret, Philip, E-mail: jtomsick@ssl.berkeley.edu [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States)

    2014-08-10

    Here we report on Swift and Suzaku observations near the end of an outburst from the black hole transient 4U 1630-47 and Chandra observations when the source was in quiescence. 4U 1630-47 made a transition from a soft state to the hard state ∼50 days after the main outburst ended. During this unusual delay, the flux continued to drop, and one Swift measurement found the source with a soft spectrum at a 2-10 keV luminosity of L = 1.07 × 10{sup 35} erg s{sup –1} for an estimated distance of 10 kpc. While such transients usually make a transition to the hard state at L/L{sub Edd} = 0.3%-3%, where L{sub Edd} is the Eddington luminosity, the 4U 1630-47 spectrum remained soft at L/L{sub Edd} = 0.008 M{sub 10}{sup −1}% (as measured in the 2-10 keV band), where M{sub 10} is the mass of the black hole in units of 10 M{sub ☉}. An estimate of the luminosity in the broader 0.5-200 keV bandpass gives L/L{sub Edd} = 0.03 M{sub 10}{sup −1}%, which is still an order of magnitude lower than typical. We also measured an exponential decay of the X-ray flux in the hard state with an e-folding time of 3.39 ± 0.06 days, which is much less than previous measurements of 12-15 days during decays by 4U 1630-47 in the soft state. With the ∼100 ks Suzaku observation, we do not see evidence for a reflection component, and the 90% confidence limits on the equivalent width of a narrow iron Kα emission line are <40 eV for a narrow line and <100 eV for a line of any width, which is consistent with a change of geometry (either a truncated accretion disk or a change in the location of the hard X-ray source) in the hard state. Finally, we report a 0.5-8 keV luminosity upper limit of <2 × 10{sup 32} erg s{sup –1} in quiescence, which is the lowest value measured for 4U 1630-47 to date.

  13. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  14. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-03-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  15. Plasma spraying of refractory metals and refractory hard materials. State of the art

    International Nuclear Information System (INIS)

    Eschnauer, H.; Lugscheider, E.; Jaeger, D.

    1989-01-01

    Suitable spraying processes for manufacturing refractory metals, refractory hard materials as well as spray materials with refractory components are the VPS- and IPS-spraying techniques. The advantages of these special spraying process variations are described. The reactive spraying materials are systematically organized. The characteristical properties used in purpose of improving the substrate surfaces are explained. Finally some examples of the latest results of research concerning plasma spraying of reactive materials are shown. 16 refs., 10 figs. (Author)

  16. Fluids of Pseudo-Hard Bodies: From Simulations to Equations of State

    Czech Academy of Sciences Publication Activity Database

    Rouha, M.; Nezbeda, Ivo

    2009-01-01

    Roč. 278, 1-2 (2009), s. 15-19 ISSN 0378-3812 R&D Projects: GA AV ČR IAA400720710; GA AV ČR IAA400720802 Institutional research plan: CEZ:AV0Z40720504 Keywords : pseudo-hard bodies * virial coefficients * perturbed virial expansion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.857, year: 2009

  17. Two-photon spectral amplitude of entangled states resolved in separable Schmidt modes

    International Nuclear Information System (INIS)

    Avella, A; Brida, G; Gramegna, M; Shurupov, A; Genovese, M; Chekhova, M

    2015-01-01

    The ability to access high dimensionality in Hilbert spaces represents a demanding key-stone for state-of-the-art quantum information. The manipulation of entangled states in continuous variables, wavevector as well frequency, represents a powerful resource in this sense. The number of dimensions of the Hilbert space that can be used in practical information protocols can be determined by the number of Schmidt modes that it is possible to address one by one. In the case of wavevector variables, the Schmidt modes can be losslessly selected using single-mode fibre and a spatial light modulator, but no similar procedure exists for the frequency space. The aim of this work is to present a technique to engineer the spectral properties of biphoton light, emitted via ultrafast spontaneous parametric down conversion, in such a way that the two-photon spectral amplitude (TPSA) contains several non-overlapping Schmidt modes, each of which can be filtered losslessly in frequency variables. Such TPSA manipulation is operated by a fine balancing of parameters like the pump frequency, the shaping of pump pulse spectrum, the dispersion dependence of spontaneous parametric down-conversion crystals as well as their length. Measurements have been performed exploiting the group velocity dispersion induced by the passage of optical fields through dispersive media, operating a frequency-to-time two-dimensional Fourier transform of the TPSA. Exploiting this kind of measurement we experimentally demonstrate the ability to control the Schmidt modes structure in TPSA through the pump spectrum manipulation. (paper)

  18. Spectral properties of minimal-basis-set orbitals: Implications for molecular electronic continuum states

    Science.gov (United States)

    Langhoff, P. W.; Winstead, C. L.

    Early studies of the electronically excited states of molecules by John A. Pople and coworkers employing ab initio single-excitation configuration interaction (SECI) calculations helped to simulate related applications of these methods to the partial-channel photoionization cross sections of polyatomic molecules. The Gaussian representations of molecular orbitals adopted by Pople and coworkers can describe SECI continuum states when sufficiently large basis sets are employed. Minimal-basis virtual Fock orbitals stabilized in the continuous portions of such SECI spectra are generally associated with strong photoionization resonances. The spectral attributes of these resonance orbitals are illustrated here by revisiting previously reported experimental and theoretical studies of molecular formaldehyde (H2CO) in combination with recently calculated continuum orbital amplitudes.

  19. Anomalous metallic state with strong charge fluctuations in BaxTi8O16 +δ revealed by hard x-ray photoemission spectroscopy

    Science.gov (United States)

    Dash, S.; Kajita, T.; Okawa, M.; Saitoh, T.; Ikenaga, E.; Saini, N. L.; Katsufuji, T.; Mizokawa, T.

    2018-04-01

    We have studied a charge-orbital driven metal-insulator transition (MIT) in hollandite-type BaxTi8O16 +δ by means of hard x-ray photoemission spectroscopy (HAXPES). The Ti 2 p HAXPES indicates strong Ti3 +/Ti4 + charge fluctuation in the metallic phase above the MIT temperature. The metallic phase is characterized by a power-law spectral function near the Fermi level which would be a signature of bad metal with non-Drude polaronic behavior. The power-law spectral shape is associated with the large Seebeck coefficient of the metallic phase in BaxTi8O16 +δ .

  20. Ground-state and spectral properties of an asymmetric Hubbard ladder

    Science.gov (United States)

    Abdelwahab, Anas; Jeckelmann, Eric; Hohenadler, Martin

    2015-04-01

    We investigate a ladder system with two inequivalent legs, namely, a Hubbard chain and a one-dimensional electron gas. Analytical approximations, the density-matrix renormalization group method, and continuous-time quantum Monte Carlo simulations are used to determine ground-state properties, gaps, and spectral functions of this system at half-filling. Evidence for the existence of four different phases as a function of the Hubbard interaction and the rung hopping is presented. First, a Luttinger liquid exists at very weak interchain hopping. Second, a Kondo-Mott insulator with spin and charge gaps induced by an effective rung exchange coupling is found at moderate interchain hopping or strong Hubbard interaction. Third, a spin-gapped paramagnetic Mott insulator with incommensurate excitations and pairing of doped charges is observed at intermediate values of the rung hopping and the interaction. Fourth, the usual correlated band insulator is recovered for large rung hopping. We show that the wave numbers of the lowest single-particle excitations are different in each insulating phase. In particular, the three gapped phases exhibit markedly different spectral functions. We discuss the relevance of asymmetric two-leg ladder systems as models for atomic wires deposited on a substrate.

  1. NuSTAR AND SUZAKU OBSERVATIONS OF THE HARD STATE IN CYGNUS X-1: LOCATING THE INNER ACCRETION DISK

    International Nuclear Information System (INIS)

    Parker, M. L.; Lohfink, A.; Fabian, A. C.; Alston, W. N.; Kara, E.; Tomsick, J. A.; Boggs, S. E.; Craig, W. W.; Miller, J. M.; Yamaoka, K.; Nowak, M.; Grinberg, V.; Christensen, F. E.; Fürst, F.; Grefenstette, B. W.; Harrison, F. A.; Gandhi, P.; Hailey, C. J.; King, A. L.; Stern, D.

    2015-01-01

    We present simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR ) and Suzaku observations of the X-ray binary Cygnus X-1 in the hard state. This is the first time this state has been observed in Cyg X-1 with NuSTAR, which enables us to study the reflection and broadband spectra in unprecedented detail. We confirm that the iron line cannot be fit with a combination of narrow lines and absorption features, instead requiring a relativistically blurred profile in combination with a narrow line and absorption from the companion wind. We use the reflection models of García et al. to simultaneously measure the black hole spin, disk inner radius, and coronal height in a self-consistent manner. Detailed fits to the iron line profile indicate a high level of relativistic blurring, indicative of reflection from the inner accretion disk. We find a high spin, a small inner disk radius, and a low source height and rule out truncation to greater than three gravitational radii at the 3σ confidence level. In addition, we find that the line profile has not changed greatly in the switch from soft to hard states, and that the differences are consistent with changes in the underlying reflection spectrum rather than the relativistic blurring. We find that the blurring parameters are consistent when fitting either just the iron line or the entire broadband spectrum, which is well modeled with a Comptonized continuum plus reflection model

  2. Spectral state transitions of the Ultraluminous X-ray Source IC 342 X-1

    Science.gov (United States)

    Marlowe, H.; Kaaret, P.; Lang, C.; Feng, H.; Grisé, F.; Miller, N.; Cseh, D.; Corbel, S.; Mushotzky, R. F.

    2014-10-01

    We observed the Ultraluminous X-ray Source (ULX) IC 342 X-1 simultaneously in X-ray and radio with Chandra and the JVLA to investigate previously reported unresolved radio emission coincident with the ULX. The Chandra data reveal a spectrum that is much softer than observed previously and is well modelled by a thermal accretion disc spectrum. No significant radio emission above the rms noise level was observed within the region of the ULX, consistent with the interpretation as a thermal state though other states cannot be entirely ruled out with the current data. We estimate the mass of the black hole using the modelled inner disc temperature to be 30 M_{⊙} ≲ M√{cosi}≲ 200 M_{⊙} based on a Shakura-Sunyaev disc model. Through a study of the hardness and high-energy curvature of available X-ray observations, we find that the accretion state of X-1 is not determined by luminosity alone.

  3. Analysis spectral shapes from California and central United States ground motion

    International Nuclear Information System (INIS)

    1994-01-01

    The objective of this study is to analyze the spectral shapes from earthquake records with magnitudes and distances comparable to those that dominate seismic hazard at Oak Ridge, in order to provide guidance for the selection of site-specific design-spectrum shapes for use in Oak Ridge. The authors rely heavily on California records because the number of relevant records from the central and eastern United States (CEUS) is not large enough for drawing statistically significant conclusions. They focus on the 0.5 to 10-Hz frequency range for two reasons: (1) this is the frequency range of most engineering interest, and (2) they avoid the effect of well-known differences in the high-frequency energy content between California and CEUS ground motions

  4. Good Choices in Hard Times: Fifteen Ideas for States To Reduce Hunger and Stimulate the Economy.

    Science.gov (United States)

    Albee, Michelle; Cates, Jessica; Hayes, Louise; Henchy, Geri; Hess, Doug; Odell, Denise; Parker, Lynn; Phelps, Anne; Schwartz, Sonya; Vollinger, Ellen; Weedall, Crystal; Weill, Jim; Woo, Nicole

    This resource guide puts forth 15 ideas for actions in food stamp and other child nutrition programs that states, schools, and cities can implement to feed more hungry low-income residents, especially children, and provide a direct federal economic stimulus for the state and its businesses. The guide asserts that states risk accelerating a…

  5. First hard X-ray detection of the non-thermal emission around the Arches cluster: morphology and spectral studies with NuSTAR

    DEFF Research Database (Denmark)

    Krivonos, Roman A.; Tomsick, John A.; Bauer, Franz E.

    2014-01-01

    The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe Ku line emission at 6.4 keV from material that is n......The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe Ku line emission at 6.4 keV from material...... and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity...... of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agreement with the low-energy cosmic-ray proton excitation scenario....

  6. Increased power spectral density in resting-state pain-related brain networks in fibromyalgia.

    Science.gov (United States)

    Kim, Ji-Young; Kim, Seong-Ho; Seo, Jeehye; Kim, Sang-Hyon; Han, Seung Woo; Nam, Eon Jeong; Kim, Seong-Kyu; Lee, Hui Joong; Lee, Seung-Jae; Kim, Yang-Tae; Chang, Yongmin

    2013-09-01

    Fibromyalgia (FM), characterized by chronic widespread pain, is known to be associated with heightened responses to painful stimuli and atypical resting-state functional connectivity among pain-related regions of the brain. Previous studies of FM using resting-state functional magnetic resonance imaging (rs-fMRI) have focused on intrinsic functional connectivity, which maps the spatial distribution of temporal correlations among spontaneous low-frequency fluctuation in functional MRI (fMRI) resting-state data. In the current study, using rs-fMRI data in the frequency domain, we investigated the possible alteration of power spectral density (PSD) of low-frequency fluctuation in brain regions associated with central pain processing in patients with FM. rsfMRI data were obtained from 19 patients with FM and 20 age-matched healthy female control subjects. For each subject, the PSDs for each brain region identified from functional connectivity maps were computed for the frequency band of 0.01 to 0.25 Hz. For each group, the average PSD was determined for each brain region and a 2-sample t test was performed to determine the difference in power between the 2 groups. According to the results, patients with FM exhibited significantly increased frequency power in the primary somatosensory cortex (S1), supplementary motor area (SMA), dorsolateral prefrontal cortex, and amygdala. In patients with FM, the increase in PSD did not show an association with depression or anxiety. Therefore, our findings of atypical increased frequency power during the resting state in pain-related brain regions may implicate the enhanced resting-state baseline neural activity in several brain regions associated with pain processing in FM. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  7. Monte Carlo simulation and equation of state for flexible charged hard-sphere chain fluids: Polyampholyte and polyelectrolyte solutions

    International Nuclear Information System (INIS)

    Jiang, Hao; Adidharma, Hertanto

    2014-01-01

    The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must therefore be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions

  8. Perturbation and variational approach for the equation of state for hard-sphere and Lennard—Jones fluids

    International Nuclear Information System (INIS)

    Khasare, S.B.

    2012-01-01

    The present work uses the concept of a scaled particle along with the perturbation and variation approach, to develop an equation of state (EOS) for a mixture of hard sphere (HS), Lennard—Jones (LJ) fluids. A suitable flexible functional form for the radial distribution function G(R) is assumed for the mixture, with R as a variable. The function G(R) has an arbitrary parameter m and a different equation of state can be obtained with a suitable choice of m. For m = 0.75 and m = 0.83 results are close to molecular dynamics (MD) result for pure HS and LJ fluid respectively. (physics of gases, plasmas, and electric discharges)

  9. Cygnus X-3 transition from the ultrasoft to the hard state

    DEFF Research Database (Denmark)

    Beckmann, V.; Soldi, S.; Belanger, G.

    2007-01-01

    Aims. The nature of Cygnus X-3 is still not understood well. This binary system might host a black hole or a neutron star. Recent observations by INTEGRAL have shown that Cygnus X- 3 was again in an extremely ultrasoft state. Here we present our analysis of the transition from the ultrasoft state...

  10. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states

    International Nuclear Information System (INIS)

    Gamba, Irene M.; Tharkabhushanam, Sri Harsha

    2009-01-01

    We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann transport equation (BTE) in d-dimensions for variable hard sphere (VHS) collision kernels with conservative or non-conservative binary interactions. The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computation is reduced to a separate integral over the unit sphere S d-1 . The conservation of moments is enforced by Lagrangian constraints. The resulting scheme, implemented in free space, is very versatile and adjusts in a very simple manner to several cases that involve energy dissipation due to local micro-reversibility (inelastic interactions) or elastic models of slowing down process. Our simulations are benchmarked with available exact self-similar solutions, exact moment equations and analytical estimates for the homogeneous Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmarking of the simulations involves the selection of a time self-similar rescaling of the numerical distribution function which is performed using the continuous spectrum of the equation for Maxwell molecules as studied first in Bobylev et al. [A.V. Bobylev, C. Cercignani, G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, Journal of Statistical Physics 111 (2003) 403-417] and generalized to a wide range of related models in Bobylev et al. [A.V. Bobylev, C. Cercignani, I.M. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Communication in Mathematical Physics, in press. URL: ( )]. The method also produces accurate results in the case of inelastic diffusive Boltzmann equations for hard spheres (inelastic collisions under thermal bath), where overpopulated non-Gaussian exponential tails have been conjectured in computations by stochastic methods [T.V. Noije, M. Ernst, Velocity distributions in homogeneously

  11. MAXI/GSC detection of a hard-to-soft transition of NS-LMXB GS 1826-238

    Science.gov (United States)

    Nakahira, S.; Mihara, T.; Sugizaki, M.; Serino, M.; Morii, M.; Sugimoto, J.; Takagi, T.; Yoshikawa, A.; Matsuoka, M.; Kawai, N.; Yoshii, T.; Tachibana, Y.; Ueno, S.; Tomida, H.; Kimura, M.; Ishikawa, M.; Nakagawa, Y. E.; Negoro, H.; Nakajima, M.; Fukushima, K.; Onodera, T.; Suzuki, K.; Fujita, M.; Namba, T.; Honda, F.; Yoshida, A.; Sakamoto, T.; Kawakubo, Y.; Ohtsuki, H.; Tsunemi, H.; Uchida, D.; Ueda, Y.; Shidatsu, M.; Kawamuro, T.; Hori, T.; Kawagoe, A.; Tsuboi, Y.; Yamauchi, M.; Morooka, Y.; Yamaoka, K.

    2014-06-01

    We report on a hard-to-soft spectral transition of an X-ray burster GS 1826-238 detected with MAXI/GSC. This source had been consistently observed in the hard state for more than 25 years since the discovery in 1988 (Tanaka 1989, Barret et al. ...

  12. A Hard Day's Night? The United States and the Global War on Terrorism

    National Research Council Canada - National Science Library

    Johnson, Thomas H; Russell, James A

    2005-01-01

    ...) -- a threat noted for its commitment, determination, innovation, and lethality. The United States is struggling to configure its instruments of national power to address a threat that has thus far proven unresponsive to these national instruments...

  13. Selected elements of rock burst state assessment in case studies from the Silesian hard coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Kabiesz; Janusz Makowka [Central Mining Institute, Katowice (Poland)

    2009-09-15

    Exploitation of coal seams in the Upper Silesian Coal Basin is conducted in complex and difficult conditions. These difficulties are connected with the occurrence of many natural mining hazards and limitations resulting from the existing in this area surface infrastructure. One of the most important problems of Polish mining is the rock burst hazard and reliable evaluation of its condition. During long-years' mining practice in Poland a comprehensive system of evaluation and control of this hazard was developed. In the paper the main aspects of rock burst hazard state evaluation will be presented, comprising: 1) rock mass inclination for rock bursts, i.e., rock strength properties investigation, comprehensive parametric evaluation of rock mass inclination for rock bursts, prognosis of seismic events induced by mining operations, methods of computer-aided modelling of stress and rock mass deformation parameters distribution, strategic rock mass classification under rock burst degrees; 2) immediate seismic and rock burst hazard state evaluation, i.e., low diameter test drilling method, seismologic and seismoacoustic method, comprehensive method of rock burst hazard state evaluation, non-standard methods of evaluation; 3) legal aspects of rock burst hazard state evaluation. Selected elements of the hazard state evaluation system are illustrated with specific practical examples of their application. 11 refs., 14 figs.

  14. In situ chemical state analysis of buried polymer/metal adhesive interface by hard X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ozawa, Kenichi; Kakubo, Takashi; Shimizu, Katsunori; Amino, Naoya; Mase, Kazuhiko; Ikenaga, Eiji; Nakamura, Tetsuya; Kinoshita, Toyohiko; Oji, Hiroshi

    2014-01-01

    Highlights: • Chemical state analysis of the buried rubber/brass interface is conducted by HAXPES. • Ultrathin rubber films are prepared on the brass surface by two methods. • A high density of Cu 2 S is found on the rubber side of the buried adhesive layer. • The chemical states of the buried and exposed interfaces are compared. - Abstract: Chemical state analysis of adhesive interfaces is important to understand an adhesion mechanism between two different materials. Although photoelectron spectroscopy (PES) is an ideal tool for such an analysis, the adhesive interfaces must be exposed to the surface because PES is essentially a surface sensitive technique. However, an in situ observation is possible by hard X-ray PES (HAXPES) owing to its large probing depth. In the present study, HAXPES is applied to investigate the adhesive interface between rubber and brass without exposing the interface. It is demonstrated that copper sulfides formed at the buried rubber/brass interface are distinguished from S-containing species in the rubber overlayer. The chemical state of the buried interface is compared with that of the “exposed” interface prepared by so-called a filter-paper method

  15. REMOTE DIAGNOSTICS OF TURNOUTS STATE ON TIMING AND SPECTRAL COMPOSITION IN CURRENT CURVE

    Directory of Open Access Journals (Sweden)

    S. Yu. Buryak

    2015-03-01

    Full Text Available Purpose. Development and implementation the points system diagnostics that would allow determining remotely the current state of turnout with all possible faults, gradual and sudden failures, damages, and in real time to report about their appearance. Methodology. State diagnostics on the values analysis of turnout main parameters is proposed to carry out with the help of a computer and analog-to-digital converter (ADC. Connecting measurements performance is advisable to produce to a shunt ammeter, installed in the working circuit of the point feed panel. ADC converts the analog signal of lost volts at the shunt into digital form and transmits it to a computer which stores the received data on its own recording medium for their further processing and storage. There is special software that is capable to reconnect signal and construct its temporal characteristic as well as decompose it on the spectral components. Using it one can analyze the obtained data, which allows diagnosing state of points upon change the nature, values and composition of the current curve. Findings. The computer diagnosis method was confirmed in practice for possible indications of problems that are associated with both the mechanical part of the turnout and the electrical part of it, while controlling parameters such as the amount of current normal transition, when working on frictions, the duration of the transition, properly adjusted headset and attachment points, the state of the motor. Originality. The use of computer technology in the diagnosis of the state of turnouts during their operation to monitor the current values of technical indicators, analysis and storage for all types of electric switches with different types of engines both DC and AC occurs through digitization and recording signal from measuring shunt of point feeder panel. Practical value. The proposed method enables timely, still in the early stages of defect parts, damages or failures of nodes

  16. Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States

    Science.gov (United States)

    Nelson, James R.; Guarda, Sonia

    1995-05-01

    Visible absorption spectra of particulate and dissolved materials were characterized on the continental shelf off the southeastern United States (the South Atlantic Bight), emphasizing cross-shelf and seasonal variability. A coastal front separates turbid coastal waters from clearer midshelf waters. Spatial and seasonal patterns were evident in absorption coefficients for phytoplankton, detritus, and colored dissolved organic matter (CDOM); spectral shape parameters for CDOM and detritus; and phytoplankton chlorophyll-specific absorption. The magnitude of CDOM absorption reflected seasonal differences in freshwater discharge and the salinity of the midshelf waters. In the spring of 1993 (high discharge), CDOM absorption at 443 nm was >10 times that of total particulate absorption between 12 and 50 km offshore (0.28-0.69 m-1 versus 0.027-0.062 m-1) and up to 10 times the CDOM absorption measured in the previous summer (low discharge). Phytoplankton chlorophyll-specific absorption in the blue increased with distance from shore (from shift in phytoplankton species composition (from predominantly diatoms inshore to a cyanobacteria-dominated assemblage midshelf in summer), pigment packaging, and higher carotenoid:chlorophyll with distance from shore.

  17. Optimal and robust control of quantum state transfer by shaping the spectral phase of ultrafast laser pulses.

    Science.gov (United States)

    Guo, Yu; Dong, Daoyi; Shu, Chuan-Cun

    2018-04-04

    Achieving fast and efficient quantum state transfer is a fundamental task in physics, chemistry and quantum information science. However, the successful implementation of the perfect quantum state transfer also requires robustness under practically inevitable perturbative defects. Here, we demonstrate how an optimal and robust quantum state transfer can be achieved by shaping the spectral phase of an ultrafast laser pulse in the framework of frequency domain quantum optimal control theory. Our numerical simulations of the single dibenzoterrylene molecule as well as in atomic rubidium show that optimal and robust quantum state transfer via spectral phase modulated laser pulses can be achieved by incorporating a filtering function of the frequency into the optimization algorithm, which in turn has potential applications for ultrafast robust control of photochemical reactions.

  18. Hardness of the subchondral bone of the patella in the normal state, in chondromalacia, and in osteoarthrosis.

    Science.gov (United States)

    Björkström, S; Goldie, I F

    1982-06-01

    The hardness of bone is its property of withstanding the impact of a penetrating agent. It has been found that articular degenerative changes in, for example, the tibia (knee) are combined with a decrease in the hardness of the subchondral bone. In this investigation the hardness of subchondral bone in chondromalacia and osteoarthrosis of the patella has been analysed and compared with normal subchondral bone. Using an indentation method originally described by Brinell the hardness of the subchondral bone was evaluated in 7 normal patellae, in 20 with chondromalacia and in 33 with osteoarthrosis. A microscopic and microradiographic study of the subchondral bone was carried out simultaneously. Hardness was lowest in the normal material. The mean hardness value beneath the degenerated cartilage differed only slightly from that of the normal material, but the variation of values was increased. The hardness in bone in the chondromalacia area was lower than the hardness in bone covered by surrounding normal cartilage. The mean hardness value in bone beneath normal parts of cartilage in specimens with chondromalacia was higher than the mean hardness value of the normal material. In the microscopic and microradiographic examination it became evident that there was a relationship between trabecular structure and subchondral bone hardness; high values: coarse and solid structure; low values: slender and less regular structure.

  19. A rad-hard, steady state, digital imaging bolometer system for ITER

    International Nuclear Information System (INIS)

    Wurden, G.A.

    1995-01-01

    The concept and design of a new type of bolometer system which can function with excellent spatial resolution and good time resolution in the next generation of long-pulse (or steady-state), harsh-neutron environment fusion plasmas, is outlined. It uses a cooled pinhole camera design, employing a robust, passive, segmented radiation absorber, cooled from the back-side. Infrared emission from the absorber's front surface is relayed by metal mirror optics to a shielded, high-resolution IR video camera with ± 0.01 C temperature resolution. It can make thousands of simultaneous ''pixel'' measurements at up to 50--60 Hz, without any signal wires through the vacuum interface

  20. Hard x-ray Morphological and Spectral Studies of the Galactic Center Molecular Cloud SGR B2: Constraining Past SGR A* Flaring Activity

    DEFF Research Database (Denmark)

    Zhang, Shuo; Hailey, Charles J.; Mori, Kaya

    2015-01-01

    In 2013, NuSTAR observed the Sgr B2 region and for the first time resolved its hard X-ray emission on subarcminute scales. Two prominent features are detected above 10 keV:. a newly emerging cloud, G0.66-0.13, and the central 90 '' radius region containing two compact cores, Sgr B2(M) and Sgr B2(N......), surrounded by diffuse emission. It is inconclusive whether the remaining level of Sgr. B2 emission is still decreasing or has reached a constant background level. A decreasing X-ray emission can be best explained by the X-ray reflection nebula scenario, where the cloud reprocesses a past giant outburst from...... Sgr A*. In the X-ray reflection nebula (XRN) scenario, the 3-79 keV Sgr. B2 spectrum allows us to self-consistently test the XRN model using both the Fe K alpha line and the continuum emission. The peak luminosity of the past Sgr A* outburst is constrained to L3-79keV∼5 x 1038 ergs s-1. A newly...

  1. Systematic analysis of low/hard state RXTE spectra of GX 339–4 to constrain the geometry of the system

    Science.gov (United States)

    Bagri, Kalyani; Misra, Ranjeev; Rao, Anjali; Singh Yadav, Jagdish; Pandey, Shiv Kumar

    2018-05-01

    One of the popular models for the low/hard state of black hole binaries is that the standard accretion disk is truncated and the hot inner region produces, via Comptonization, hard X-ray flux. This is supported by the value of the high energy photon index, which is often found to be small, ∼ 1.7(2. This would mean that the medium is not photon deficient, reconciling the presence of a broad Fe line in the observed hard state. To test this hypothesis, we have analyzed the RXTE observations of GX 339–4 from the four outbursts during 2002–2011 and identify observations when the system was in the hard state and showed a broad Fe line. We have then attempted to fit these observationswith models,which include smeared reflection, to understandwhether the intrinsic photon index can indeed be large. We find that, while for some observations the inclusion of reflection does increase the photon index, there are hard state observations with a broad Fe line that have photon indices less than 2.

  2. Assessment of state- and territorial-level preparedness capacity for serving deaf and hard-of-hearing populations in disasters.

    Science.gov (United States)

    Ivey, Susan L; Tseng, Winston; Dahrouge, Donna; Engelman, Alina; Neuhauser, Linda; Huang, Debbie; Gurung, Sidhanta

    2014-01-01

    Substantial evidence exists that emergency preparedness and response efforts are not effectively reaching populations with functional and access needs, especially barriers related to literacy, language, culture, or disabilities. More than 36 million Americans are Deaf or hard of hearing (Deaf/HH). These groups experienced higher risks of injury, death, and property loss in recent disasters than the general public. We conducted a participatory research study to examine national recommendations on preparedness communication for the Deaf/HH. We assessed whether previous recommendations regarding the Deaf/HH have been incorporated into state- and territorial-level emergency operations plans (EOPs), interviewed state- and territorial-level preparedness directors about capacity to serve the Deaf/HH, and proposed strategies to benefit Deaf/HH populations during emergencies. We analyzed 55 EOPs and 50 key informant (KI) interviews with state directors. Fifty-five percent of EOPs mentioned vulnerable populations; however, only 31% specifically mentioned Deaf/HH populations in their plan. Study findings indicated significant relationships among the following factors: a state-level KI's familiarity with communication issues for the Deaf/HH, making relay calls (i.e., calls to services to relay communication between Deaf and hearing people), and whether the KI's department provides trainings about serving Deaf/HH populations in emergencies. We found significant associations between a state's percentage of Deaf/HH individuals and a KI's familiarity with Deaf/HH communication issues and provision by government of any disability services to Deaf/HH populations in emergencies. Further, we found significant relationships between KIs attending training on serving the Deaf/HH and familiarity with Deaf/HH communication issues, including how to make relay calls. This study provides new knowledge that can help emergency agencies improve their preparedness training, planning, and capacity

  3. Monitoring the metabolic state of fungal hyphae and the presence of melanin by nonlinear spectral imaging.

    Science.gov (United States)

    Knaus, Helene; Blab, Gerhard A; Agronskaia, Alexandra V; van den Heuvel, Dave J; Gerritsen, Hans C; Wösten, Han A B

    2013-10-01

    Label-free nonlinear spectral imaging microscopy (NLSM) records two-photon-excited fluorescence emission spectra of endogenous fluorophores within the specimen. Here, NLSM is introduced as a novel, minimally invasive method to analyze the metabolic state of fungal hyphae by monitoring the autofluorescence of NAD(P)H and flavin adenine dinucleotide (FAD). Moreover, the presence of melanin was analyzed by NLSM. NAD(P)H, FAD, and melanin were used as biomarkers for freshness of mushrooms of Agaricus bisporus (white button mushroom) that had been stored at 4°C for 0 to 17 days. During this period, the mushrooms did not show changes in morphology or color detectable by eye. In contrast, FAD/NAD(P)H and melanin/NAD(P)H ratios increased over time. For instance, these ratios increased from 0.92 to 2.02 and from 0.76 to 1.53, respectively, at the surface of mushroom caps that had been harvested by cutting the stem. These ratios were lower under the skin than at the surface of fresh mushrooms (0.78 versus 0.92 and 0.41 versus 0.76, respectively), indicative of higher metabolism and lower pigment formation within the fruiting body. Signals were different not only between tissues of the mushroom but also between neighboring hyphae. These data show that NLSM can be used to determine the freshness of mushrooms and to monitor the postharvest browning process at an early stage. Moreover, these data demonstrate the potential of NLSM to address a broad range of fundamental and applied microbiological processes.

  4. Study of the Correlations and the MAXI Hardness Ratio between the Anomalous and Normal Low States of LMC X-3

    Science.gov (United States)

    Torpin, Trevor; Boyd, Patricia T.; Smale, Alan P.

    2015-01-01

    The bright, unusual black-hole X-ray binary LMC X-3 has been monitored virtually continuously by the Japanese MAXI X-ray All-Sky Monitor aboard the International Space Station (Matsuoka, et al., PASJ, 2009) from August 2009 to the present. Comparison with RXTE PCA and ASM light curves during the ~2.33-year period of overlap demonstrate that despite slight differences in energy-band boundaries both the ASM and MAXI faithfully reproduce characteristics of the high-amplitude, nonperiodic long-term variability, on the order of 100-300 days, clearly seen in the more sensitive PCA monitoring. The mechanism for this variability at a timescale many times longer than the 1.7-day orbital period is still unknown. Models to explain the long-term variability invoke mechanisms such as changes in mass transfer rate, and/or a precessing warped accretion disk. Observations of LMC X-3 have not definitely determined whether wind accretion or Roche-love overflow is the driver of the long-term variability. Recent MAXI monitoring of LMC X-3 includes excellent coverage of a rare anomalous low state (ALS) where the X-ray source cannot be distinguished from the background, as well as several normal low states, in which the source count rate passes smoothly through a low, yet detectable value. Pointed Swift XRT and UVOT observations also sample this ALS and one normal low state well. We combine these data sets to study the correlations between the wavelength regimes observed during the ALS versus the normal low. We also examine the behavior of the X-ray hardness ratios using XRT and MAXI monitoring data during the ALS versus the normal low state.

  5. Attractive and repulsive interactions among methanol molecules in supercritical state investigated by Raman spectroscopy and perturbed hard-sphere theory.

    Science.gov (United States)

    Saitow, Ken-ichi; Sasaki, Jungo

    2005-03-08

    The short-range structure of supercritical methanol (CH(3)OH) is investigated by measuring the spontaneous Raman spectra of the C-O stretching mode. The spectra are obtained at a reduced temperature, T(r)=T/T(c)=1.02 (522.9 K), which permits the neat fluid to be studied isothermally as a function of density. As the density increases, the spectral peaks shift toward the lower energy side and the spectra broaden. In the supercritical region, the amount of shifting shows nonlinear density dependence and the width becomes anomalously large. We use the perturbed hard-sphere model to analyze these density dependencies along the vibrational coordinate. The amount of shifting is decomposed into attractive and repulsive components, and the changes in attractive and repulsive energies are evaluated as functions of density and packing fraction, both of which are continuously varied by a factor of 120. Here we show that the shift amount consists principally of the attractive component at all densities, since the attractive energy is about eight times the repulsive energy. The density dependence of the widths is analyzed by calculating homogeneous and inhomogeneous widths as a function of density. The results show that, although vibrational dephasing and density inhomogeneity contribute similarly to the width at low and middle densities, at high density the main contributor turns out to be the vibrational dephasing. We estimate the local density enhancements of supercritical CH(3)OH as function of bulk density by two methods. The results of these analyses show common features, and both the estimated local density enhancements of CH(3)OH are considerably larger than the local density enhancements of simple fluids, i.e., those having nonhydrogen bonding. It is revealed that the local density of supercritical CH(3)OH is 40%-60% greater than the local densities of the simple fluids. We also estimate the local density fluctuation using the obtained values of attractive shift

  6. Hard X-ray spectral investigations of gamma-ray bursts 120521C and 130606A at high-redshift z ˜ 6

    Science.gov (United States)

    Yasuda, T.; Urata, Y.; Enomoto, J.; Tashiro, M. S.

    2017-04-01

    This study presents a temporal and spectral analysis of the prompt emission of two high-redshift gamma-ray bursts (GRBs), 120521C at z ˜ 6 and 130606A at z ˜ 5.91, using data obtained from the Swift-XRT/BAT and the Suzaku-WAM simultaneously. Based on follow-up XRT observations, the longest durations of the prompt emissions were approximately 80 s (120521C) and 360 s (130606A) in the rest-frames of the two GRBs. These objects are thus categorized as long-duration GRBs; however, the durations are short compared with the predicted duration of GRBs originating from first-generation stars. Because of the wide bandpass of the instruments, covering the ranges 15 keV-5 MeV (BAT-WAM) and 0.3 keV-5.0 MeV (XRT-BAT-WAM), we could successfully determine the νFν peak energies E_peak^src in the rest-frame and isotropic-equivalent radiated energies Eiso; E^src_peak = 682^{+845}_{-207} keV and E_iso = (8. 25^{+2.24}_{-1.96}) × 10^{52} erg for 120521C, and E^src_peak = 1209^{+553}_{-304} keV and E_iso = (2.82^{+0.17}_{-0.71}) × 10^{53} erg for 130606A. These obtained characteristic parameters are in accordance with the well-known relationship between E_peak^src and Eiso (Amati relationship). In addition, we examined the relationships between E_peak^src and the 1-s peak luminosity, Lp, and between E_peak^src and the geometrical corrected radiated energy, Eγ, and confirmed the E_peak^src-Lp (Yonetoku) and E_peak^src-Eγ (Ghirlanda) relationships. The results imply that these high-redshift GRBs at z ˜ 6, which are expected to have radiated during the reionization epoch, have properties similar to those of low-redshift GRBs regarding X-ray prompt emission.

  7. X-Ray Timing Analysis of Cyg X-3 Using AstroSat/LAXPC: Detection of Milli-hertz Quasi-periodic Oscillations during the Flaring Hard X-Ray State

    Energy Technology Data Exchange (ETDEWEB)

    Pahari, Mayukh; Misra, Ranjeev [Inter-University Center for Astronomy and Astrophysics, Ganeshkhind, Pune 411007 (India); Antia, H M; Yadav, J S; Chauhan, Jai Verdhan; Chitnis, V R; Dedhia, Dhiraj; Katoch, Tilak; Madhwani, P; Shah, Parag [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Agrawal, P C [UM-DAE Center of Excellence for Basic Sciences, University of Mumbai, Kalina, Mumbai 400098 (India); Manchanda, R K [University of Mumbai, Kalina, Mumbai 400098 (India); Paul, B, E-mail: mayukh@iucaa.in [Department of Astronomy and Astrophysics, Raman Research Institute, Bengaluru 560080 (India)

    2017-11-01

    We present here results from the X-ray timing and spectral analysis of the X-ray binary Cyg X-3 using observations from the Large Area X-ray proportional Counter on board AstroSat . Consecutive light curves observed over a period of one year show the binary orbital period of 17253.56 ± 0.19 s. Another low-amplitude, slow periodicity of the order of 35.8 ± 1.4 days is observed, which may be due to the orbital precession as suggested earlier by Molteni et al. During the rising binary phase, power density spectra from different observations during the flaring hard X-ray state show quasi-periodic oscillations (QPOs) at ∼5–8 mHz, ∼12–14 mHz, and ∼18–24 mHz frequencies at the minimum confidence of 99%. However, during the consecutive binary decay phase, no QPO is detected up to 2 σ significance. Energy-dependent time-lag spectra show soft lag (soft photons lag hard photons) at the mHz QPO frequency and the fractional rms of the QPO increases with the photon energy. During the binary motion, the observation of mHz QPOs during the rising phase of the flaring hard state may be linked to the increase in the supply of the accreting material in the disk and corona via stellar wind from the companion star. During the decay phase, the compact source moves in the outer wind region causing the decrease in supply of material for accretion. This may cause weakening of the mHz QPOs below the detection limit. This is also consistent with the preliminary analysis of the orbital phase-resolved energy spectra presented in this paper.

  8. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    Science.gov (United States)

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the

  9. Spectral Characterization of the Wave Energy Resource for Puerto Rico (PR) and the United States Virgin Islands (USVI)

    Science.gov (United States)

    Garcia, C. G.; Canals, M.; Irizarry, A. A.

    2016-02-01

    Nowadays a significant amount of wave energy assessments have taken place due to the development of the ocean energy markets worldwide. Energy contained in surface gravity waves is scattered along frequency components that can be described using wave spectra. Correspondingly, characterization and quantification of harvestable wave energy is inherently dictated by the nature of the two-dimensional wave spectrum. The present study uses spectral wave data from the operational SWAN-based CariCOOS Nearshore Wave Model to evaluate the capture efficiency of multiple wave energy converters (WEC). This study revolves around accurately estimating available wave energy as a function of varying spectral distributions, effectively providing a detailed insight concerning local wave conditions for PR and USVI and the resulting available-energy to generated-power ratio. Results in particular, provide a comprehensive characterization of three years' worth of SWAN-based datasets by outlining where higher concentrations of wave energy are localized in the spectrum. Subsequently, the aforementioned datasets were processed to quantify the amount of energy incident on two proposed sites located in PR and USVI. Results were largely influenced by local trade wind activity, which drive predominant sea states, and the amount of North-Atlantic swells that propagate towards the region. Each wave event was numerically analyzed in the frequency domain to evaluate the capacity of a WEC to perform under different spectral distribution scenarios, allowing for a correlation between electrical power output and spectral energy distribution to be established.

  10. Radial profiles of hard X-ray emission during steady state current drive in the TRIAM-1M tokamak

    International Nuclear Information System (INIS)

    Nakamura, Y.; Takabatake, Y.; Jotaki, E.; Moriyama, S.; Nagao, A.; Nakamura, K.; Hiraki, N.; Itoh, S.

    1990-01-01

    The hard X-ray emission from the TRIAM-1M tokamak plasma during steady state lower hybrid current drive with a discharge duration of a few minutes was measured with sodium iodide scintillation spectrometers. The radial profiles of the X-ray emission were also measured and indicate that, in the low density regime (n e =(1-3)x10 12 cm -3 ), the current carrying high energy electrons are mainly in the inner region of the plasma column and their radial profile remains unchanged during current drive. On the other hand, high density discharges (n e =(3-6)x10 12 cm -3 ) are always accompanied by an abrupt drop of the plasma current, and the X-ray emission profile changes from peaked to broad. This change can be attributed to the conditions of wave accessibility. As the electron density increases, the accessibility of the plasma to lower hybrid waves with low values of the parallel wave number n parallel is significantly reduced and high energy electrons resonating with the waves are produced at the plasma periphery. Interaction of these electrons with the limiters causes an increase of the electron density in this region; waves with low n parallel then become completely excluded from the inner part of the plasma column. This interpretation is supported by measurements of the density profile and impurity radiation, and has been confirmed in an investigation of discharges with additional gas puffing. (author). 17 refs, 21 figs

  11. Hard state neutron star and black hole X-ray binaries in the radio:X-ray luminosity plane

    Science.gov (United States)

    Gallo, Elena; Degenaar, Nathalie; van den Eijnden, Jakob

    2018-05-01

    Motivated by the large body of literature around the phenomenological properties of accreting black hole (BH) and neutron star (NS) X-ray binaries in the radio:X-ray luminosity plane, we carry out a comparative regression analysis on 36 BHs and 41 NSs in hard X-ray states, with data over 7 dex in X-ray luminosity for both. The BHs follow a radio to X-ray (logarithmic) luminosity relation with slope β = 0.59 ± 0.02, consistent with the NSs' slope (β =0.44^{+0.05}_{-0.04}) within 2.5σ. The best-fitting intercept for the BHs significantly exceeds that for the NSs, cementing BHs as more radio loud, by a factor ˜22. This discrepancy can not be fully accounted for by the mass or bolometric correction gap, nor by the NS boundary layer contribution to the X-rays, and is likely to reflect physical differences in the accretion flow efficiency, or the jet powering mechanism. Once importance sampling is implemented to account for the different luminosity distributions, the slopes of the non-pulsating and pulsating NS subsamples are formally inconsistent (>3σ), unless the transitional millisecond pulsars (whose incoherent radio emission mechanism is not firmly established) are excluded from the analysis. We confirm the lack of a robust partitioning of the BH data set into separate luminosity tracks.

  12. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease

    NARCIS (Netherlands)

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-01-01

    Oswal et al. characterise the effect of deep brain stimulation (DBS) on STN-cortical synchronisation in Parkinson-s disease. They propose that cortical driving of the STN in beta frequencies is subdivided anatomically and spectrally, corresponding to the hyperdirect and indirect pathways. DBS

  13. Development of hard X-ray photoelectron SPLEED-based spectrometer applicable for probing of buried magnetic layer valence states

    Energy Technology Data Exchange (ETDEWEB)

    Kozina, Xeniya, E-mail: kozina@uni-mainz.de [Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198 (Japan); Ikenaga, Eiji [Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198 (Japan); Viol Barbosa, Carlos Eduardo; Ouardi, Siham; Karel, Julie [Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden (Germany); Yamamoto, Masafumi [Division of Electronics for Informatics, Hokkaido University, Sapporo 060-0814 (Japan); Kobayashi, Keisuke [Japan Atomic Energy Agency, SPring-8, Hyogo 679-5148 (Japan); Elmers, Hans Joachim; Schönhense, Gerd [Institut für Physik, Johannes Gutenberg – Universität, 55099 Mainz (Germany); Felser, Claudia [Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden (Germany)

    2016-08-15

    Highlights: • A high-voltage compatible spin-HAXPES detector based on SPLEED from W(001) has been developed. • Magnetic properties of a TMR device were studied by core-level photoemission on the Fe 2p{sub 3/2} states. • The developed instrument enabled probing of buried layers in the region of the valence states. - Abstract: A novel design of high-voltage compatible polarimeter for spin-resolved hard X-ray photoelectron spectroscopy (Spin-HAXPES) went into operation at beamline BL09XU of SPring-8 in Hyogo, Japan. The detector is based on the well-established principle of electron diffraction from a W(001) single-crystal at a scattering energy of 103.5 eV. It's special feature is that it can be operated at a high negative bias potential up to 10 kV, necessary to access the HAXPES range. The polarimeter is operated behind a large hemispherical analyzer (Scienta R-4000). It was optimized for high transmission of the transfer optics. A delay-line detector (20 mm dia.) is positioned at the exit plane of the analyzer enabling conventional multichannel intensity spectroscopy simultaneously with single-channel spin analysis. The performance of the combined setup is demonstrated by the spin-resolved data for the valence-region of a FeCo functional layer of a tunneling device, buried beneath 3 nm of oxidic material. The well-structured spin polarization spectrum validates Spin-HAXPES in the valence energy range as powerful method for bulk electronic structure analysis. The spin polarization spectrum exhibits a rich structure, originating from clearly discernible transitions in the majority and minority partial spin spectra.

  14. Entanglement in random pure states: spectral density and average von Neumann entropy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Santosh; Pandey, Akhilesh, E-mail: skumar.physics@gmail.com, E-mail: ap0700@mail.jnu.ac.in [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India)

    2011-11-04

    Quantum entanglement plays a crucial role in quantum information, quantum teleportation and quantum computation. The information about the entanglement content between subsystems of the composite system is encoded in the Schmidt eigenvalues. We derive here closed expressions for the spectral density of Schmidt eigenvalues for all three invariant classes of random matrix ensembles. We also obtain exact results for average von Neumann entropy. We find that maximum average entanglement is achieved if the system belongs to the symplectic invariant class. (paper)

  15. A method to decompose spectral changes in Synechocystis PCC 6803 during light-induced state transitions

    Czech Academy of Sciences Publication Activity Database

    Acuna, A.M.; Kaňa, Radek; Gwizdala, M.; Snellenburg, J.J.; van Alphen, P.; van Oort, B.; Kirilovsky, D.; van Grondelle, R.; van Stokkum, I.H.M.

    2016-01-01

    Roč. 130, 1-3 SI (2016), s. 237-249 ISSN 0166-8595 R&D Projects: GA ČR GBP501/12/G055; GA MŠk(CZ) LO1416; GA MŠk(CZ) ED2.1.00/19.0392 Institutional support: RVO:61388971 Keywords : Cyanobacteria * Spectrally resolved fluorometry * Singular value decomposition Subject RIV: EF - Botanics Impact factor: 3.864, year: 2016

  16. Multiwavelength study of quiescent states of MRK 421 with unprecedented hard x-ray coverage provided by NuSTAR in 2013

    DEFF Research Database (Denmark)

    Baloković, M.; Paneque, D.; Madejski, G.

    2016-01-01

    V. For the first time, we observed both the synchrotron and the inverse-Compton peaks of the spectral energy distribution (SED) simultaneously shifted to frequencies below the typical quiescent state by an order of magnitude. The fractional variability as a function of photon energy shows a double-bump structure...

  17. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ping; Zhang, Kan; Du, Suxuan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Meng, Qingnan [College of Construction Engineering, Jilin University, Changchun, 130026 (China); He, Xin [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Wang, Shuo [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Wen, Mao, E-mail: wenmao225@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Zheng, Weitao, E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China)

    2017-06-15

    Highlights: • Intrinsically hydrophilic NbN films can transfer to hydrophobic Nb-Ag-N films by doping Ag atoms into NbN sublattice. • Solute Ag can promote that the hydrophobic Ag{sub 2}O groups formed on the Nb-Ag-N film surface through self-oxidation. • The present work may provide a straightforward approach for the production of robust hydrophobic ceramic surfaces. - Abstract: Robust hydrophobic surfaces based on ceramics capable of withstanding harsh conditions such as abrasion, erosion and high temperature, are required in a broad range of applications. The metal cations with coordinative saturation or low electronegativity are commonly chosen to achieve the intrinsically hydrophobic ceramic by reducing Lewis acidity, and thus the ceramic systems are limited. In this work, we present a different picture that robust hydrophobic surface with high hardness (≥20 GPa) can be fabricated through doping Ag atoms into intrinsically hydrophilic ceramic film NbN by reactive co-sputtering. The transition of wettability from hydrophilic to hydrophobic of Nb-Ag-N films induced by Ag doping results from the appearance of Ag{sub 2}O groups on the films surfaces through self-oxidation, because Ag cations (Ag{sup +}) in Ag{sub 2}O are the filled-shell (4d{sup 10}5S{sup 0}) electronic structure with coordinative saturation that have no tendency to interact with water. The results show that surface Ag{sub 2}O benefited for hydrophobicity comes from the solute Ag atoms rather than precipitate metal Ag, in which the more Ag atoms incorporated into Nb-sublattice are able to further improve the hydrophobicity, whereas the precipitation of Ag nanoclusters would worsen it. The present work opens a window for fabricating robust hydrophobic surface through tailoring surface chemical bond states by doping Ag into transition metal nitrides.

  18. [State Recognition of Solid Fermentation Process Based on Near Infrared Spectroscopy with Adaboost and Spectral Regression Discriminant Analysis].

    Science.gov (United States)

    Yu, Shuang; Liu, Guo-hai; Xia, Rong-sheng; Jiang, Hui

    2016-01-01

    In order to achieve the rapid monitoring of process state of solid state fermentation (SSF), this study attempted to qualitative identification of process state of SSF of feed protein by use of Fourier transform near infrared (FT-NIR) spectroscopy analysis technique. Even more specifically, the FT-NIR spectroscopy combined with Adaboost-SRDA-NN integrated learning algorithm as an ideal analysis tool was used to accurately and rapidly monitor chemical and physical changes in SSF of feed protein without the need for chemical analysis. Firstly, the raw spectra of all the 140 fermentation samples obtained were collected by use of Fourier transform near infrared spectrometer (Antaris II), and the raw spectra obtained were preprocessed by use of standard normal variate transformation (SNV) spectral preprocessing algorithm. Thereafter, the characteristic information of the preprocessed spectra was extracted by use of spectral regression discriminant analysis (SRDA). Finally, nearest neighbors (NN) algorithm as a basic classifier was selected and building state recognition model to identify different fermentation samples in the validation set. Experimental results showed as follows: the SRDA-NN model revealed its superior performance by compared with other two different NN models, which were developed by use of the feature information form principal component analysis (PCA) and linear discriminant analysis (LDA), and the correct recognition rate of SRDA-NN model achieved 94.28% in the validation set. In this work, in order to further improve the recognition accuracy of the final model, Adaboost-SRDA-NN ensemble learning algorithm was proposed by integrated the Adaboost and SRDA-NN methods, and the presented algorithm was used to construct the online monitoring model of process state of SSF of feed protein. Experimental results showed as follows: the prediction performance of SRDA-NN model has been further enhanced by use of Adaboost lifting algorithm, and the correct

  19. A Skew-t space-varying regression model for the spectral analysis of resting state brain activity.

    Science.gov (United States)

    Ismail, Salimah; Sun, Wenqi; Nathoo, Farouk S; Babul, Arif; Moiseev, Alexader; Beg, Mirza Faisal; Virji-Babul, Naznin

    2013-08-01

    It is known that in many neurological disorders such as Down syndrome, main brain rhythms shift their frequencies slightly, and characterizing the spatial distribution of these shifts is of interest. This article reports on the development of a Skew-t mixed model for the spatial analysis of resting state brain activity in healthy controls and individuals with Down syndrome. Time series of oscillatory brain activity are recorded using magnetoencephalography, and spectral summaries are examined at multiple sensor locations across the scalp. We focus on the mean frequency of the power spectral density, and use space-varying regression to examine associations with age, gender and Down syndrome across several scalp regions. Spatial smoothing priors are incorporated based on a multivariate Markov random field, and the markedly non-Gaussian nature of the spectral response variable is accommodated by the use of a Skew-t distribution. A range of models representing different assumptions on the association structure and response distribution are examined, and we conduct model selection using the deviance information criterion. (1) Our analysis suggests region-specific differences between healthy controls and individuals with Down syndrome, particularly in the left and right temporal regions, and produces smoothed maps indicating the scalp topography of the estimated differences.

  20. Understanding the Long-Term Spectral Variability of Cygnus X-1 from BATSE and ASM Observations

    Science.gov (United States)

    Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Linqing; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present a spectral analysis of observations of Cygnus X-1 by the RXTE/ASM (1.5-12 keV) and CGRO/BATSE (20-300 keV), including about 1200 days of simultaneous data. We find a number of correlations between intensities and hardnesses in different energy bands from 1.5 keV to 300 keV. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness (as previously reported) but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the flux in the 20-100 keV range. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. The observations show that there has to be another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superimposed on a constant soft blackbody component. These variability patterns are in agreement with the dependence of the rms variability on the photon energy in the two states. We interpret the observed correlations in terms of theoretical Comptonization models. In the hard state, the variability appears to be driven mostly by changing flux in seed photons Comptonized in a hot thermal plasma cloud with an approximately constant power supply. In the soft state, the variability is consistent with flares of hybrid, thermal/nonthermal, plasma with variable power above a stable cold disk. Also, based on broadband pointed observations simultaneous with those of the ASM and BATSE, we find the intrinsic bolometric luminosity increases by a

  1. VLBI OBSERVATION OF MICROQUASAR CYG X-3 DURING AN X-RAY STATE TRANSITION FROM SOFT TO HARD IN THE 2007 MAY-JUNE FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong-Sook; Kim, Sang Joon [School of Space Science, Kyunghee University, Seocheon-dong, Giheung-si, Gyeonggi-do 446-701 (Korea, Republic of); Kim, Soon-Wook [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Yuseong, Daejeon 305-348 (Korea, Republic of); Kurayama, Tomoharu [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065 (Japan); Honma, Mareki [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Sasao, Tetsuo, E-mail: evony@kasi.re.kr, E-mail: skim@kasi.re.kr [Yaeyama Star Club, Ookawa, Ishigaki, Okinawa 904-0022 (Japan)

    2013-07-20

    We present a radio observation of microquasar Cyg X-3 during an X-ray state transition from ultrasoft to hard state in the 2007 May-June flare using the VLBI Exploration of Radio Astrometry at 22 GHz. During the transition, a short-lived mini-flare of {approx}< 3 hr was detected prior to the major flare. In such a transition, a jet ejection is believed to occur, but there have been no direct observations to support it. An analysis of Gaussian fits to the observed visibility amplitudes shows a time variation of the source axis, or a structural change, during the mini-flare. Our model fits, together with other multiwavelength observations in the radio, soft, and hard X-rays, and the shock-in-jet models for other flaring activities at GHz wavebands, suggest a high possibility of synchrotron flares during the mini-flare, indicative of a predominant contribution from jet activity. Therefore, the mini-flare with an associated structural change is indicative of a jet ejection event in the state transition from ultrasoft to hard state.

  2. The peculiarities of spectral manifestations of high-voltage electric discharge in different phase states of ion systems.

    Science.gov (United States)

    Gafurov, M M; Aliev, A R; Ataev, M B; Rabadanov, K Sh

    2013-10-01

    The effects of high-voltage pulsed discharge (HVPD activation) on vibrational spectra of ion salt systems have been studied. The peculiarities of spectral display of HVPD in ion melts and aqueous solutions of electrolytes, in ion-conducting phases of crystalline and glassy salt systems have been investigated. After HVPD a salt system is in non-equilibrium activated state. In the activated state of a salt system, the relaxation time of the vibrational excited states of molecular ions is shorter than in the equilibrium state if the vibrational relaxation rate increases with temperature in the system. For those systems for which the relaxation rate decreases at elevated temperatures, the relaxation time of the vibrational excited states of molecular ions is longer than in the equilibrium state. HVPD activation of a salt system can change the configuration of the electron shell of molecular ions. Therefore, the lifetime values of activated state of salt systems are abnormally large. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Induced spherococcoid hard wheat

    International Nuclear Information System (INIS)

    Yanev, Sh.

    1981-01-01

    A mutant has been obtained - a spheroccocoid line -through irradiation of hard wheat seed with fast neutrons. It is distinguished by semispherical glumes and smaller grain; the plants have low stem with erect leaves but with shorter spikes and with lesser number of spikelets than those of the initial cultivar. Good productive tillering and resistance to lodging contributed to 23.5% higher yield. The line was superior to the standard and the initial cultivars by 14.2% as regards protein content, and by up to 22.8% - as to flour gluten. It has been successfully used in hybridization producing high-yielding hard wheat lines resistant to lodging, with good technological and other indicators. The possibility stated is of obtaining a spherococcoid mutant in tetraploid (hard) wheat out of the D-genome as well as its being suited to hard wheat breeding to enhance protein content, resistance to lodging, etc. (author)

  4. Efficient Basis Formulation for (1+1-Dimensional SU(2 Lattice Gauge Theory: Spectral Calculations with Matrix Product States

    Directory of Open Access Journals (Sweden)

    Mari Carmen Bañuls

    2017-11-01

    Full Text Available We propose an explicit formulation of the physical subspace for a (1+1-dimensional SU(2 lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  5. Efficient basis formulation for 1+1 dimensional SU(2) lattice gauge theory. Spectral calculations with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-07-20

    We propose an explicit formulation of the physical subspace for a 1+1 dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  6. Efficient basis formulation for 1+1 dimensional SU(2) lattice gauge theory. Spectral calculations with matrix product states

    International Nuclear Information System (INIS)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan; Cichy, Krzysztof; Adam Mickiewicz Univ., Poznan; Jansen, Karl

    2017-01-01

    We propose an explicit formulation of the physical subspace for a 1+1 dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  7. Efficient Basis Formulation for (1 +1 )-Dimensional SU(2) Lattice Gauge Theory: Spectral Calculations with Matrix Product States

    Science.gov (United States)

    Bañuls, Mari Carmen; Cichy, Krzysztof; Cirac, J. Ignacio; Jansen, Karl; Kühn, Stefan

    2017-10-01

    We propose an explicit formulation of the physical subspace for a (1 +1 )-dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  8. Algorithms for polynomial spectral factorization and bounded-real balanced state space representations

    NARCIS (Netherlands)

    Rapisarda, P.; Trentelman, H.L.; Minh, H.B.

    We illustrate an algorithm that starting from the image representation of a strictly bounded-real system computes a minimal balanced state variable, from which a minimal balanced state realization is readily obtained. The algorithm stems from an iterative procedure to compute a storage function,

  9. Quantum spectral curve for arbitrary state/operator in AdS{sub 5}/CFT{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Nikolay [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); St.Petersburg INP,Gatchina, 188 300, St.Petersburg (Russian Federation); Kazakov, Vladimir [LPT, École Normale Superieure,24, rue Lhomond 75005 Paris (France); Université Paris-VI,Place Jussieu, 75005 Paris (France); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ08540 (United States); Leurent, Sébastien [Institut de Mathématiques de Bourgogne, UMR 5584 du CNRS,Université de Bourgogne, 9 avenue Alain Savary, 21000 DIJON (France); Volin, Dmytro [Nordita KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); School of Mathematics, Trinity College Dublin,College Green, Dublin 2 (Ireland)

    2015-09-28

    We give a derivation of quantum spectral curve (QSC) — a finite set of Riemann-Hilbert equations for exact spectrum of planar N=4 SYM theory proposed in our recent paper Phys. Rev. Lett. 112 (2014). We also generalize this construction to all local single trace operators of the theory, in contrast to the TBA-like approaches worked out only for a limited class of states. We reveal a rich algebraic and analytic structure of the QSC in terms of a so called Q-system — a finite set of Baxter-like Q-functions. This new point of view on the finite size spectral problem is shown to be completely compatible, though in a far from trivial way, with already known exact equations (analytic Y-system/TBA, or FiNLIE). We use the knowledge of this underlying Q-system to demonstrate how the classical finite gap solutions and the asymptotic Bethe ansatz emerge from our formalism in appropriate limits.

  10. The Wertheim integral equation theory with the ideal chain approximation and a dimer equation of state: Generalization to mixtures of hard-sphere chain fluids

    International Nuclear Information System (INIS)

    Chang, J.; Sandler, S.I.

    1995-01-01

    We have extended the Wertheim integral equation theory to mixtures of hard spheres with two attraction sites in order to model homonuclear hard-sphere chain fluids, and then solved these equations with the polymer-Percus--Yevick closure and the ideal chain approximation to obtain the average intermolecular and overall radial distribution functions. We obtain explicit expressions for the contact values of these distribution functions and a set of one-dimensional integral equations from which the distribution functions can be calculated without iteration or numerical Fourier transformation. We compare the resulting predictions for the distribution functions with Monte Carlo simulation results we report here for five selected binary mixtures. It is found that the accuracy of the prediction of the structure is the best for dimer mixtures and declines with increasing chain length and chain-length asymmetry. For the equation of state, we have extended the dimer version of the thermodynamic perturbation theory to the hard-sphere chain mixture by introducing the dimer mixture as an intermediate reference system. The Helmholtz free energy of chain fluids is then expressed in terms of the free energy of the hard-sphere mixture and the contact values of the correlation functions of monomer and dimer mixtures. We compared with the simulation results, the resulting equation of state is found to be the most accurate among existing theories with a relative average error of 1.79% for 4-mer/8-mer mixtures, which is the worst case studied in this work. copyright 1995 American Institute of Physics

  11. Modeling epileptic brain states using EEG spectral analysis and topographic mapping.

    Science.gov (United States)

    Direito, Bruno; Teixeira, César; Ribeiro, Bernardete; Castelo-Branco, Miguel; Sales, Francisco; Dourado, António

    2012-09-30

    Changes in the spatio-temporal behavior of the brain electrical activity are believed to be associated to epileptic brain states. We propose a novel methodology to identify the different states of the epileptic brain, based on the topographic mapping of the time varying relative power of delta, theta, alpha, beta and gamma frequency sub-bands, estimated from EEG. Using normalized-cuts segmentation algorithm, points of interest are identified in the topographic mappings and their trajectories over time are used for finding out relations with epileptogenic propagations in the brain. These trajectories are used to train a Hidden Markov Model (HMM), which models the different epileptic brain states and the transition among them. Applied to 10 patients suffering from focal seizures, with a total of 30 seizures over 497.3h of data, the methodology shows good results (an average point-by-point accuracy of 89.31%) for the identification of the four brain states--interictal, preictal, ictal and postictal. The results suggest that the spatio-temporal dynamics captured by the proposed methodology are related to the epileptic brain states and transitions involved in focal seizures. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The hard X-ray spectrum of Cyg X-1 during the transition in November 1975

    International Nuclear Information System (INIS)

    Sommer, M.; Maurus, H.; Urbach, R.

    1976-01-01

    Some observations are reported of the hard X-ray spectrum of Cyg X-1 during a transition to the high state in November 1975, made with a balloon-borne X-ray detector. The range covered was 25 to 150 keV. The data obtained appeared to confirm the characteristic spectral time variation, and suggested a single power law spectrum from 3 to 80 keV, with an increasing spectral index during the upward transition to the high state. A power spectrum is expected if it is assumed that the universe Compton effect is the basic mechanism that produces the hard X-ray tail of Cyg X-1. Spectral time variation may be caused by a varying intensity of an inner soft photon source within a stable hot cloud. (U.K.)

  13. Conserving relativistic many-body approach: Equation of state, spectral function, and occupation probabilities of nuclear matter

    International Nuclear Information System (INIS)

    de Jong, F.; Malfliet, R.

    1991-01-01

    Starting from a relativistic Lagrangian we derive a ''conserving'' approximation for the description of nuclear matter. We show this to be a nontrivial extension over the relativistic Dirac-Brueckner scheme. The saturation point of the equation of state calculated agrees very well with the empirical saturation point. The conserving character of the approach is tested by means of the Hugenholtz--van Hove theorem. We find the theorem fulfilled very well around saturation. A new value for compression modulus is derived, K=310 MeV. Also we calculate the occupation probabilities at normal nuclear matter densities by means of the spectral function. The average depletion κ of the Fermi sea is found to be κ∼0.11

  14. Spectral probes of the holographic Fermi ground state: Dialing between the electron star and AdS Dirac hair

    International Nuclear Information System (INIS)

    Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad; Sun Yawen; Zaanen, Jan

    2011-01-01

    We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces. As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.

  15. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2013-12-15

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment.

  16. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2013-01-01

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment

  17. Equation of state of a hard core fluid with a two-Yukawa tail: toward a simple analytic theory

    International Nuclear Information System (INIS)

    Jedrzejek, C.

    1980-01-01

    Thermodynamic properties of simple fluids are calculated using variational theory for a system of hard-core potential with a two-Yukawa tail. Likewise one Yukawa-tail case the working formulas are analytic. Five parameters of the two Yukawa system are chosen so as to get the best fit to a real argon potential or an ''argon-like'' Lennard-Jones potential. The results are fairly good in light of the extreme simplicity of the method. The discrepancies result from using the variational method and a different shape of Yukawa type potential in comparision to the real argon and Lennard-Jones potentials. (author)

  18. Hardness and excitation energy

    Indian Academy of Sciences (India)

    It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the ...

  19. The spectral diversity of resting-state fluctuations in the human brain.

    Directory of Open Access Journals (Sweden)

    Klaudius Kalcher

    Full Text Available In order to assess whole-brain resting-state fluctuations at a wide range of frequencies, resting-state fMRI data of 20 healthy subjects were acquired using a multiband EPI sequence with a low TR (354 ms and compared to 20 resting-state datasets from standard, high-TR (1800 ms EPI scans. The spatial distribution of fluctuations in various frequency ranges are analyzed along with the spectra of the time-series in voxels from different regions of interest. Functional connectivity specific to different frequency ranges (<0.1 Hz; 0.1-0.25 Hz; 0.25-0.75 Hz; 0.75-1.4 Hz was computed for both the low-TR and (for the two lower-frequency ranges the high-TR datasets using bandpass filters. In the low-TR data, cortical regions exhibited highest contribution of low-frequency fluctuations and the most marked low-frequency peak in the spectrum, while the time courses in subcortical grey matter regions as well as the insula were strongly contaminated by high-frequency signals. White matter and CSF regions had highest contribution of high-frequency fluctuations and a mostly flat power spectrum. In the high-TR data, the basic patterns of the low-TR data can be recognized, but the high-frequency proportions of the signal fluctuations are folded into the low frequency range, thus obfuscating the low-frequency dynamics. Regions with higher proportion of high-frequency oscillations in the low-TR data showed flatter power spectra in the high-TR data due to aliasing of the high-frequency signal components, leading to loss of specificity in the signal from these regions in high-TR data. Functional connectivity analyses showed that there are correlations between resting-state signal fluctuations of distant brain regions even at high frequencies, which can be measured using low-TR fMRI. On the other hand, in the high-TR data, loss of specificity of measured fluctuations leads to lower sensitivity in detecting functional connectivity. This underlines the advantages of low

  20. Standard hardness conversion tables for metals relationship among brinell hardness, vickers hardness, rockwell hardness, superficial hardness, knoop hardness, and scleroscope hardness

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 Conversion Table 1 presents data in the Rockwell C hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.2 Conversion Table 2 presents data in the Rockwell B hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.3 Conversion Table 3 presents data on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, and Knoop hardness of nickel and high-nickel alloys (nickel content o...

  1. Hard coatings

    International Nuclear Information System (INIS)

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  2. Emerging quasi-0D states at vanishing total entropy of the 1D hard sphere system: A coarse-grained similarity to the car parking problem

    Science.gov (United States)

    Frusawa, Hiroshi

    2014-05-01

    A coarse-grained system of one-dimensional (1D) hard spheres (HSs) is created using the Delaunay tessellation, which enables one to define the quasi-0D state. It is found from comparing the quasi-0D and 1D free energy densities that a frozen state due to the emergence of quasi-0D HSs is thermodynamically more favorable than fluidity with a large-scale heterogeneity above crossover volume fraction of ϕc=e/(1+e)=0.731⋯ , at which the total entropy of the 1D state vanishes. The Delaunay-based lattice mapping further provides a similarity between the dense HS system above ϕc and the jamming limit in the car parking problem.

  3. Emerging quasi-0D states at vanishing total entropy of the 1D hard sphere system: A coarse-grained similarity to the car parking problem

    International Nuclear Information System (INIS)

    Frusawa, Hiroshi

    2014-01-01

    A coarse-grained system of one-dimensional (1D) hard spheres (HSs) is created using the Delaunay tessellation, which enables one to define the quasi-0D state. It is found from comparing the quasi-0D and 1D free energy densities that a frozen state due to the emergence of quasi-0D HSs is thermodynamically more favorable than fluidity with a large-scale heterogeneity above crossover volume fraction of ϕ c =e/(1+e)=0.731⋯ , at which the total entropy of the 1D state vanishes. The Delaunay-based lattice mapping further provides a similarity between the dense HS system above ϕ c and the jamming limit in the car parking problem.

  4. Application of Microtremor Horizontal-to-Vertical Spectral Ratio (MHVSR) Analysis for Site Characterization: State of the Art

    Science.gov (United States)

    Molnar, S.; Cassidy, J. F.; Castellaro, S.; Cornou, C.; Crow, H.; Hunter, J. A.; Matsushima, S.; Sánchez-Sesma, F. J.; Yong, A.

    2018-03-01

    Nakamura (Q Rep Railway Tech Res Inst 30:25-33, 1989) popularized the application of the horizontal-to-vertical spectral ratio (HVSR) analysis of microtremor (seismic noise or ambient vibration) recordings to estimate the predominant frequency and amplification factor of earthquake shaking. During the following quarter century, popularity in the microtremor HVSR (MHVSR) method grew; studies have verified the stability of a site's MHVSR response over time and validated the MHVSR response with that of earthquake HVSR response. Today, MHVSR analysis is a popular reconnaissance tool used worldwide for seismic microzonation and earthquake site characterization in numerous regions, specifically, in the mapping of site period or fundamental frequency and inverted for shear-wave velocity depth profiles, respectively. However, the ubiquity of MHVSR analysis is predominantly a consequence of its ease in application rather than our full understanding of its theory. We present the state of the art in MHVSR analyses in terms of the development of its theoretical basis, current state of practice, and we comment on its future for applications in earthquake site characterization.

  5. Application of microtremor horizontal-to-vertical spectral ratio (MHVSR) analysis for site characterization: State of the art

    Science.gov (United States)

    Molnar, S.; Cassidy, J. F.; Castellaro, S.; Cornou, C.; Crow, H.; Hunter, J. A.; Matsushima, S.; Sanchez-Sesma, F. J.; Yong, Alan

    2018-01-01

    Nakamura (Q Rep Railway Tech Res Inst 30:25–33, 1989) popularized the application of the horizontal-to-vertical spectral ratio (HVSR) analysis of microtremor (seismic noise or ambient vibration) recordings to estimate the predominant frequency and amplification factor of earthquake shaking. During the following quarter century, popularity in the microtremor HVSR (MHVSR) method grew; studies have verified the stability of a site’s MHVSR response over time and validated the MHVSR response with that of earthquake HVSR response. Today, MHVSR analysis is a popular reconnaissance tool used worldwide for seismic microzonation and earthquake site characterization in numerous regions, specifically, in the mapping of site period or fundamental frequency and inverted for shear-wave velocity depth profiles, respectively. However, the ubiquity of MHVSR analysis is predominantly a consequence of its ease in application rather than our full understanding of its theory. We present the state of the art in MHVSR analyses in terms of the development of its theoretical basis, current state of practice, and we comment on its future for applications in earthquake site characterization.

  6. Nustar Detection of Hard X-Ray Phase Lags from the Accreting Pulsar GS 0834-430

    DEFF Research Database (Denmark)

    Miyasaka, Hiromasa; Bachetti, Matteo; Harrison, Fiona A.

    2013-01-01

    The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834-430 during its 2012 outburst-the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV w...

  7. Two interacting hard disks within a circular cavity: towards a quasi-equilibrium quantal equation of states

    International Nuclear Information System (INIS)

    Nakazono, Naofumi; Kato, Takeo; Nakamura, Katsuhiro

    2005-01-01

    Two interacting hard disks confined in a circular cavity are investigated. Each disk shows a free motion except when bouncing elastically with its partner and with the boundary wall. According to the analysis of Lyapunov exponents, this system is classically nonintegrable and almost chaotic because of the (short-range) interaction between the disks. The system can be quantized by incorporating the excluded volume effect for the wave function. Eigenvalues and eigenfunctions are obtained by tuning the relative size between the disks and the billiard. The pressure P is defined as the derivative of each eigenvalue with respect to the cavity volume V. Since the energy spectra of eigenvalues versus the disk size show a multitude of level repulsions, P-V characteristics shows the anomalous pressure fluctuations accompanied by many van der Waals-like peaks in each of excited eigenstates taken as a quasi-equilibrium. For each eigenstate, we calculate the expectation values of the square distance between two disks, and point out their relationship with the pressure fluctuations. Role of Bose and Fermi statistics is also investigated

  8. Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function

    NARCIS (Netherlands)

    Ten Kate, O.M.; De Jong, M.; Hintzen, H.T.; Van der Kolk, E.

    2013-01-01

    Solar cells of which the efficiency is not limited by the Shockley-Queisser limit can be obtained by integrating a luminescent spectral conversion layer into the cell structure. We have calculated the maximum efficiency of state-of-the-art c-Si, pc-Si, a-Si, CdTe, GaAs, CIS, CIGS, CGS, GaSb, and Ge

  9. Abnormal resting state effective connectivity within the default mode network in major depressive disorder: A spectral dynamic causal modeling study.

    Science.gov (United States)

    Li, Liang; Li, Baojuan; Bai, Yuanhan; Liu, Wenlei; Wang, Huaning; Leung, Hoi-Chung; Tian, Ping; Zhang, Linchuan; Guo, Fan; Cui, Long-Biao; Yin, Hong; Lu, Hongbing; Tan, Qingrong

    2017-07-01

    Understanding the neural basis underlying major depressive disorder (MDD) is essential for the diagnosis and treatment of this mental disorder. Aberrant activation and functional connectivity of the default mode network (DMN) have been consistently found in patients with MDD. It is not known whether effective connectivity within the DMN is altered in MDD. The primary object of this study is to investigate the effective connectivity within the DMN during resting state in MDD patients before and after eight weeks of antidepressant treatment. We defined four regions of the DMN (medial frontal cortex, posterior cingulate cortex, left parietal cortex, and right parietal cortex) for each participant using a group independent component analysis. The coupling parameters reflecting the causal interactions among the DMN regions were estimated using spectral dynamic causal modeling (DCM). Twenty-seven MDD patients and 27 healthy controls were included in the statistical analysis. Our results showed declined influences from the left parietal cortex to other DMN regions in the pre-treatment patients as compared with healthy controls. After eight weeks of treatment, the influence from the right parietal cortex to the posterior cingulate cortex significantly decreased. These findings suggest that the reduced excitatory causal influence of the left parietal cortex is the key alteration of the DMN in patients with MDD, and the disrupted causal influences that parietal cortex exerts on the posterior cingulate cortex is responsive to antidepressant treatment.

  10. Detecting and monitoring water stress states in maize crops using spectral ratios obtained in the photosynthetic domain

    Science.gov (United States)

    Baranoski, Gladimir V. G.; Van Leeuwen, Spencer R.

    2017-07-01

    The reliable detection and monitoring of changes in the water status of crops composed of plants like maize, a highly adaptable C4 species in large demand for both food and biofuel production, are longstanding remote sensing goals. Existing procedures employed to achieve these goals rely predominantly on the spectral signatures of plant leaves in the infrared domain where the light absorption within the foliar tissues is dominated by water. It has been suggested that such procedures could be implemented using subsurface reflectance to transmittance ratios obtained in the visible (photosynthetic) domain with the assistance of polarization devices. However, the experiments leading to this proposition were performed on detached maize leaves, which were not influenced by the whole (living) plant's adaptation mechanisms to water stress. In this work, we employ predictive simulations of light-leaf interactions in the photosynthetic domain to demonstrate that the living specimens' physiological responses to dehydration stress should be taken into account in this context. Our findings also indicate that a reflectance to transmittance ratio obtained in the photosynthetic domain at a lower angle of incidence without the use of polarization devices may represent a cost-effective alternative for the assessment of water stress states in maize crops.

  11. Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods

    Science.gov (United States)

    Antoine, Xavier; Levitt, Antoine; Tang, Qinglin

    2017-08-01

    We propose a preconditioned nonlinear conjugate gradient method coupled with a spectral spatial discretization scheme for computing the ground states (GS) of rotating Bose-Einstein condensates (BEC), modeled by the Gross-Pitaevskii Equation (GPE). We first start by reviewing the classical gradient flow (also known as imaginary time (IMT)) method which considers the problem from the PDE standpoint, leading to numerically solve a dissipative equation. Based on this IMT equation, we analyze the forward Euler (FE), Crank-Nicolson (CN) and the classical backward Euler (BE) schemes for linear problems and recognize classical power iterations, allowing us to derive convergence rates. By considering the alternative point of view of minimization problems, we propose the preconditioned steepest descent (PSD) and conjugate gradient (PCG) methods for the GS computation of the GPE. We investigate the choice of the preconditioner, which plays a key role in the acceleration of the convergence process. The performance of the new algorithms is tested in 1D, 2D and 3D. We conclude that the PCG method outperforms all the previous methods, most particularly for 2D and 3D fast rotating BECs, while being simple to implement.

  12. State-of-the-Art Report for the Deep URL Facility Development : Aspo Hard Rock Laboratory, Grimsel Test Site

    International Nuclear Information System (INIS)

    Kim, Kyung Su; Bae, Dae Seok; Kim, Geon Young

    2012-01-01

    This report analysed the development status on the SKB's Hard Rock Laboratory and Nagra's Grimsel Test Site facilities to investigate their facility overview, operation system, site condition, project history and procedure, and current experiment programmes of underground research laboratory. SKB and Nagra had launched high level radioactive waste disposal project around 1970's. Actual site investigation activities were initiated since 1990's and the time schedule for siting programmes to determine the final disposal site were taken fifteen to thirty years. Furthermore, ten to twenty years will be needed to site characterization, facility design, construction, and operation commissioning. Nagra had constructed Grimsel Test Site facility in southern Switzerland Apls with the collaboration of KWO electrical company in early 1980's. This facility is characterized of a centre of excellence for underground Research and Development (R and D) to support projects for the disposal of radioactive and chemo-toxic waste and not a potential repository site. The SKB's Aspo HRL constructed in outside Oskarshamn is a unique PBG-URL facility. SKB is conducting full-scale research and development here in preparation for the construction of a final repository for spent nuclear fuel. The research programmes for the development of disposal technologies is performed over thirty to fifty years prior to repository operation. In 2000's, research on long-term phenomena, i.e., optimization of disposal concept, understanding of coupling process, validation of mathematical model, test and development of safety assessment models, characterization of deep geochemical environment, and long-term demonstration experiments have been leading the issues of research and development

  13. Investigation of the near-surface structures of polar InN films by chemical-state-discriminated hard X-ray photoelectron diffraction

    International Nuclear Information System (INIS)

    Yang, A. L.; Yamashita, Y.; Kobata, M.; Yoshikawa, H.; Sakata, O.; Kobayashi, K.; Matsushita, T.; Píš, I.; Imura, M.; Yamaguchi, T.; Nanishi, Y.

    2013-01-01

    Near-surface structures of polar InN films were investigated by laboratory-based hard X-ray photoelectron diffraction (HXPD) with chemical-state-discrimination. HXPD patterns from In 3d 5/2 and N 1s core levels of the In-polar and N-polar InN films were different from each other and compared with the simulation results using a multiple-scattering cluster model. It was found that the near-surface structure of the In-polar InN film was close to the ideal wurtzite structure. On the other hand, on the N-polar InN film, defects-rich surface was formed. In addition, the existence of the In-polar domains was observed in the HXPD patterns.

  14. Breaking Up Is Hard to Count: The Rise of Divorce in the United States, 1980–2010

    Science.gov (United States)

    Kennedy, Sheela; Ruggles, Steven

    2014-01-01

    This article critically evaluates the available data on trends in divorce in the United States. We find that both vital statistics and retrospective survey data on divorce after 1990 underestimate recent marital instability. These flawed data have led some analysts to conclude that divorce has been stable or declining for the past three decades. Using new data from the American Community Survey and controlling for changes in the age composition of the married population, we conclude that there was actually a substantial increase in age-standardized divorce rates between 1990 and 2008. Divorce rates have doubled over the past two decades among persons over age 35. Among the youngest couples, however, divorce rates are stable or declining. If current trends continue, overall age-standardized divorce rates could level off or even decline over the next few decades. We argue that the leveling of divorce among persons born since 1980 probably reflects the increasing selectivity of marriage. PMID:24399141

  15. Breaking up is hard to count: the rise of divorce in the United States, 1980-2010.

    Science.gov (United States)

    Kennedy, Sheela; Ruggles, Steven

    2014-04-01

    This article critically evaluates the available data on trends in divorce in the United States. We find that both vital statistics and retrospective survey data on divorce after 1990 underestimate recent marital instability. These flawed data have led some analysts to conclude that divorce has been stable or declining for the past three decades. Using new data from the American Community Survey and controlling for changes in the age composition of the married population, we conclude that there was actually a substantial increase in age-standardized divorce rates between 1990 and 2008. Divorce rates have doubled over the past two decades among persons over age 35. Among the youngest couples, however, divorce rates are stable or declining. If current trends continue, overall age-standardized divorce rates could level off or even decline over the next few decades. We argue that the leveling of divorce among persons born since 1980 probably reflects the increasing selectivity of marriage.

  16. The variable hard x-ray emission of NGC 4945 as observed by NUSTAR

    DEFF Research Database (Denmark)

    Puccetti, Simonetta; Comastri, Andrea; Fiore, Fabrizio

    2014-01-01

    We present a broadband (~0.5-79 keV) spectral and temporal analysis of multiple NuSTAR observations combined with archival Suzaku and Chandra data of NGC 4945, the brightest extragalactic source at 100 keV. We observe hard X-ray (>10 keV) flux and spectral variability, with flux variations of a f...... of a factor of two on timescales of 20 ks. A variable primary continuum dominates the high-energy spectrum (>10 keV) in all states, while the reflected/scattered flux that dominates at E...

  17. Stability of the nonequilibrium states of a superconductor with a finite difference between the populations of the electron- and hole-like spectral branches

    International Nuclear Information System (INIS)

    Gal'perin, Y.M.; Kozub, V.I.; Spivak, B.Z.

    1981-01-01

    The stability of the nonequilibrium states of a superconductor with a finite difference between the populations of the electron- and hole-like spectral branches is investigated. It is shown that an instability similar to the Cooper instability of a normal metal arises at a sufficiently large value of the imbalance. This eliminates the imbalance within quantum-mechanical (nonkinetic) time periods. The consistency of the allowance for the imbalance in the nonequilibrium Ginzburg-Landau equations is discussed

  18. Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations

    Science.gov (United States)

    Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava

    2018-06-01

    The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.

  19. Unique Strain of Rickettsia parkeri Associated with the Hard Tick Dermacentor parumapertus Neumann in the Western United States.

    Science.gov (United States)

    Paddock, Christopher D; Allerdice, Michelle E J; Karpathy, Sandor E; Nicholson, William L; Levin, Michael L; Smith, Travis C; Becker, Tom; Delph, Robert J; Knight, Robert N; Ritter, Jana M; Sanders, Jeanine H; Goddard, Jerome

    2017-05-01

    In 1953, investigators at the Rocky Mountain Laboratories in Hamilton, MT, described the isolation of a spotted fever group Rickettsia (SFGR) species from Dermacentor parumapertus ticks collected from black-tailed jackrabbits ( Lepus californicus ) in northern Nevada. Several decades later, investigators characterized this SFGR (designated the parumapertus agent) by using mouse serotyping methods and determined that it represented a distinct rickettsial serotype closely related to Rickettsia parkeri ; nonetheless, the parumapertus agent was not further characterized or studied. To our knowledge, no isolates of the parumapertus agent remain in any rickettsial culture collection, which precludes contemporary phylogenetic placement of this enigmatic SFGR. To rediscover the parumapertus agent, adult-stage D. parumapertus ticks were collected from black-tailed jackrabbits shot or encountered as roadkills in Arizona, Utah, or Texas from 2011 to 2016. A total of 339 ticks were collected and evaluated for infection with Rickettsia species. Of 112 D. parumapertus ticks collected in south Texas, 16 (14.3%) contained partial ompA sequences with the closest identity (99.6%) to Rickettsia sp. strain Atlantic rainforest Aa46, an SFGR that is closely related or identical to an SFGR species that causes a mild rickettsiosis in several states of Brazil. A pure isolate, designated strain Black Gap, was cultivated in Vero E6 cells, and sequence analysis of the rrs , gltA , sca0 , sca5 , and sca4 genes also revealed the closest genetic identity to Rickettsia sp. Atlantic rainforest Aa46. Phylogenetic analysis of the five concatenated rickettsial genes place Rickettsia sp. strain Black Gap and Rickettsia sp. Atlantic rainforest Aa46 with R. parkeri in a distinct and well-supported clade. IMPORTANCE We suggest that Rickettsia sp. Black Gap and Rickettsia sp. Atlantic rainforest Aa46 represent nearly identical strains of R. parkeri and that Rickettsia sp. Black Gap or a very similar

  20. Hard Copy Market Overview

    Science.gov (United States)

    Testan, Peter R.

    1987-04-01

    during 1987. The color hard copy market continues to be in a state of constant change, typical of any immature market. However, much of the change is positive. During 1985, the color hard copy market generated 1.2 billion. By 1990, total market revenue is expected to exceed 5.5 billion. The business graphics CHC application area is expected to grow at a compound annual growth rate greater than 40 percent to 1990.

  1. Spectral states evolution of 4U 1728-34 observed by INTEGRAL and RXTE: non-thermal component detection

    NARCIS (Netherlands)

    Tarana, A.; Belloni, T.; Bazzano, A.; Mendez, M.; Ubertini, P.

    We report results of a one-year monitoring of the low-mass X-ray binary (LMXB) source (atoll type) 4U 1728-34 with INTEGRAL and RXTE. Three time intervals were covered by INTEGRAL, during which the source showed strong spectral evolution. We studied the broad-band X-ray spectra in detail by fitting

  2. A Black Hole Spectral Signature

    Science.gov (United States)

    Titarchuk, Lev; Laurent, Philippe

    2000-03-01

    An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole'', an unique observational signature. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we present analytical calculations and Monte-Carlo simulations of the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) into the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Greens) function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index over a wide range of the plasma temperature 0 - 10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200-400 keV which are related to the average energy of electrons mec2 impinging upon the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore we demonstrate that the change of spectral shapes from the soft X-ray state to the hard X-ray state is clearly to be

  3. Thermal hydraulic test of advanced fuel bundle with spectral shift rod (SSR) for BWR. Effect of thermal hydraulic parameters on steady state characteristics

    International Nuclear Information System (INIS)

    Kondo, Takao; Kitou, Kazuaki; Chaki, Masao; Ohga, Yukiharu; Makigami, Takeshi

    2011-01-01

    Japanese national project of next generation light water reactor (LWR) development started in 2008. Under this project, spectral shift rod (SSR) is being developed. SSR, which replaces conventional water rod (WR) of boiling water reactor (BWR) fuel bundle, was invented to enhance the BWR's merit, spectral shift effect for uranium saving. In SSR, water boils by neutron and gamma-ray direct heating and water level is formed as a boundary of the upper steam region and the lower water region. This SSR water level can be controlled by core flow rate, which amplifies the change of average core void fraction, resulting in the amplified spectral shift effect. This paper presents the steady state test results of the base geometry case in SSR thermal hydraulic test, which was conducted under the national project of next generation LWR. In the test, thermal hydraulic parameters, such as flow rate, pressure, inlet subcooling and heater rod power are changed to evaluate these effects on SSR water level and other SSR characteristics. In the test results, SSR water level rose as flow rate rose, which showed controllability of SSR water level by flow rate. The sensitivities of other thermal hydraulic parameters on SSR water level were also evaluated. The obtained data of parameter's sensitivities is various enough for the further analytical evaluation. The fluctuation of SSR water level was also measured to be small enough. As a result, it was confirmed that SSR's steady state performance was as planned and that SSR design concept is feasible. (author)

  4. Selection of side-chain carbons in a high-molecular-weight, hydrophobic peptide using solid-state spectral editing methods

    International Nuclear Information System (INIS)

    Kumashiro, Kristin K.; Niemczura, Walter P.; Kim, Minna S.; Sandberg, Lawrence B.

    2000-01-01

    Solid-state spectral editing techniques have been used by others to simplify 13 C CPMAS spectra of small organic molecules, synthetic organic polymers, and coals. One approach utilizes experiments such as cross-polarization-with-polarization-inversion and cross-polarization-with-depolarization to generate subspectra. This work shows that this particular methodology is also applicable to natural-abundance 13 C CPMAS NMR studies of high-molecular-weight biopolymers. The editing experiments are demonstrated first with model peptides and then with α-elastin, a high-molecular-weight peptidyl preparation obtained from the elastic fibers in mammalian tissue. The latter has a predominance of small, nonpolar residues, which is evident in the crowded aliphatic region of typical 13 C CPMAS spectra. Spectral editing is particularly useful for simplifying the aliphatic region of the NMR spectrum of this elastin preparation

  5. Plasma satellites of X-ray spectral lines of ions in a plasma of solid-state targets, heated by a picosecond laser pulse

    International Nuclear Information System (INIS)

    Belyaev, V.S.; Vinogradov, V.I.; Kurilov, A.S.; Matafonov, A.P.; Lisitsa, V.S.; Gavrilenko, V.P.; Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Magunov, A.I.; Pikuz, S.A.

    2003-01-01

    The results of measuring the ions X-ray spectral lines by the interaction of the picosecond laser pulses with the solid-state target are presented. The spectra of the X-ray radiation were observed on the fluorine ion line. The spectral lines satellites, testifying to the availability, are identified. The position of the satellites and the distance between them make it possible to connect them with the intensive electrostatic oscillations with the amplitude, exceeding 10 8 V/cm, and the frequency close to 7 x 10 14 s -1 , substantially lower than the laser wave frequency. The experimental results are compared with the calculated data on the multicharge ions spectra [ru

  6. A mixed-method evaluation of the New York State Eat Well Play Hard Community Projects: Building local capacity for sustainable childhood obesity prevention.

    Science.gov (United States)

    Reid, Kaydian S; Sekhobo, Jackson P; Gantner, Leigh A; Holbrook, MaryEllen K; Allsopp, Marie; Whalen, Linda B; Koren-Roth, Amy

    2018-04-01

    This study used a mixed-method, comparative case study approach to assess the level of capacity built for childhood obesity prevention among seven New York State Eat Well Play Hard-Community Projects (EWPH-CP). Data were collected through a self-reported survey in 2007, semi-structured interviews in 2009, and EWPH-CP program documentation throughout the 2006-2010 funding cycle. Quantitative and qualitative analyses were used along with an integrative framework for assessing local capacity building to characterize the capacity built by the study coalitions. Four coalitions rated membership characteristics as a challenge at the beginning of the funding cycle. Towards the end of the funding cycle, all seven coalitions reported activities that were initially focused on building their membership (i.e., member capacity) or positive working relationships (i.e. relational capacity), before eventually pursuing support and resources (i.e., organizational capacity) for implementing their chosen community-oriented programmatic goals (i.e., programmatic capacity). Five coalitions reported environmental changes aimed at increasing physical activity or fruit and vegetable intake. Technical assistance provided to coalitions was credited with contributing to the achievement of programmatic goals. These results suggest that the coalitions succeeded in building local capacity for increasing age-appropriate physical activity or fruit and vegetables intake in the target communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hard X-ray variability of V404 Cygni during the 2015 outburst

    Science.gov (United States)

    Sánchez-Fernández, C.; Kajava, J. J. E.; Motta, S. E.; Kuulkers, E.

    2017-06-01

    Aims: Hard X-ray spectra of black hole binaries (BHB) are produced by Comptonization of soft seed photons by hot electrons near the black hole. The slope of the resulting energy spectra is governed by two main parameters: the electron temperature (Te) and optical depth (τ) of the emitting plasma. Given the extreme brightness of V404 Cyg during the 2015 outburst, we aim to constrain the source spectral properties using an unprecedented time resolution in hard X-rays, and to monitor the evolution of Te and τ over the outburst. Methods: We have extracted and analysed 602 X-ray spectra of V404 Cyg obtained by the IBIS/ISGRI instrument on-board INTEGRAL during the 2015 June outburst, using effective integration times ranging between 8 and 176 000 s. We fitted the resulting spectra in the 20-200 keV energy range. Results: We find that while the light curve and soft X-ray spectra of V404 Cyg are remarkably different from those of other BHBs, the spectral evolution of V404 Cyg in hard X-rays and the relations between the spectral parameters are consistent with those observed in other BHBs. We identify a hard branch in which the Te is anti-correlated with the hard X-ray flux, and a soft flaring branch in which the relation reverses. In addition, we find that during long X-ray plateaus detected at intermediate fluxes, the thermal Comptonization models fail to describe the spectra. However, the statistics improve if we allow NH to vary freely in the fits to these spectra. Conclusions: We conclude that the hard branch in V404 Cyg is analogous to the canonical hard state of BHBs. V404 Cyg never seems to enter the canonical soft state, although the soft flaring branch bears resemblance to the BHB intermediate state and ultra-luminous state. The X-ray plateaus are likely the result of absorption by a Compton-thick outflow (NH ≳ 1024 cm-2) which reduces the observed flux by a factor of about 10. Variable covering of the central source by this Compton-thick material may be the

  8. Correlating non-linear properties with spectral states of RXTE data: possible observational evidences for four different accretion modes around compact objects

    Science.gov (United States)

    Adegoke, Oluwashina; Dhang, Prasun; Mukhopadhyay, Banibrata; Ramadevi, M. C.; Bhattacharya, Debbijoy

    2018-05-01

    By analysing the time series of RXTE/PCA data, the non-linear variabilities of compact sources have been repeatedly established. Depending on the variation in temporal classes, compact sources exhibit different non-linear features. Sometimes they show low correlation/fractal dimension, but in other classes or intervals of time they exhibit stochastic nature. This could be because the accretion flow around a compact object is a non-linear general relativistic system involving magnetohydrodynamics. However, the more conventional way of addressing a compact source is the analysis of its spectral state. Therefore, the question arises: What is the connection of non-linearity to the underlying spectral properties of the flow when the non-linear properties are related to the associated transport mechanisms describing the geometry of the flow? This work is aimed at addressing this question. Based on the connection between observed spectral and non-linear (time series) properties of two X-ray binaries: GRS 1915+105 and Sco X-1, we attempt to diagnose the underlying accretion modes of the sources in terms of known accretion classes, namely, Keplerian disc, slim disc, advection dominated accretion flow and general advective accretion flow. We explore the possible transition of the sources from one accretion mode to others with time. We further argue that the accretion rate must play an important role in transition between these modes.

  9. Spectral stratigraphy

    Science.gov (United States)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  10. Using spectral decomposition of the signals from laurdan-derived probes to evaluate the physical state of membranes in live cells [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Serge Mazeres

    2017-08-01

    Full Text Available Background: We wanted to investigate the physical state of biological membranes in live cells under the most physiological conditions possible. Methods: For this we have been using laurdan, C-laurdan or M-laurdan to label a variety of cells, and a biphoton microscope equipped with both a thermostatic chamber and a spectral analyser. We also used a flow cytometer to quantify the 450/530 nm ratio of fluorescence emissions by whole cells. Results: We find that using all the information provided by spectral analysis to perform spectral decomposition dramatically improves the imaging resolution compared to using just two channels, as commonly used to calculate generalized polarisation (GP. Coupled to a new plugin called Fraction Mapper, developed to represent the fraction of light intensity in the first component in a stack of two images, we obtain very clear pictures of both the intra-cellular distribution of the probes, and the polarity of the cellular environments where the lipid probes are localised. Our results lead us to conclude that, in live cells kept at 37°C, laurdan, and M-laurdan to a lesser extent, have a strong tendency to accumulate in the very apolar environment of intra-cytoplasmic lipid droplets, but label the plasma membrane (PM of mammalian cells ineffectively. On the other hand, C-laurdan labels the PM very quickly and effectively, and does not detectably accumulate in lipid droplets. Conclusions: From using these probes on a variety of mammalian cell lines, as well as on cells from Drosophila and Dictyostelium discoideum, we conclude that, apart from the lipid droplets, which are very apolar, probes in intracellular membranes reveal a relatively polar and hydrated environment, suggesting a very marked dominance of liquid disordered states. PMs, on the other hand, are much more apolar, suggesting a strong dominance of liquid ordered state, which fits with their high sterol contents.

  11. Use of mass spectral method for plotting P-T and T-x pro ection of state diagram of LiF-ZrF4 system

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Rykov, A.N.; Novoselova, A.V.

    1979-01-01

    T-x and P-T projections of the state diagram for the system LiF-ZrF 4 were constructed. The Knudsen effusion technique with the mass-spectral analysis of the evaporation products was employed to determine the vapor composition and pressure. LiF, LiF 2 , Li 3 F 3 , ZrF 4 , LiZrF 5 , Li 2 ZrF 6 , LiZrF 9 molecules were found in the saturated vapor of the system. Heats of evaporation of the molecules and their partial pressures depending on the melt composition were determined. Dissociation enthalpies of the complex molecules were calcuted

  12. Characterization of vanadate-based transition-state-analogue complexes of phosphoglucomutase by spectral and NMR techniques

    International Nuclear Information System (INIS)

    Ray, W.J. Jr; Burgner, J.W. II; Post, C.B.

    1990-01-01

    Near ultraviolet spectral studies were conducted on two inhibitor complexes obtained by treating the dephospho form of the phosphoglucomutase·Mg 2+ complex with inorganic vanadate in the presence of either glucose 1-phosphate or glucose 6-phosphate. Part of the spectral differences between the two inhibitor complexes arises because the glucose phosphate moiety in the complex derived from glucose 1-phosphate binds to the enzyme in a different way from the glucose phosphate moiety in the complex derived from glucose 6-phosphate and because these alternative binding modes produce different environmental effects on the aromatic chromophores of the dephospho enzyme. These spectra differences are strikingly similar to those induced by the binding of glucose 1-phosphate and glucose 6-phosphate to the phospho enzyme. 31 P NMR studies of the phosphate group in these complexes also provide support for this binding pattern. Difference spectroscopy was used to resolve the spectrum of both inhibitor complexes to obtain the absorbance of their oxyvanadium chromophores. A spectrum more nearly like that of a normal vanadate ester is observed for the oxyvanadium chromophore in the corresponding complex involving glucose 1-phosphate and Li + instead of Mg 2+

  13. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1995-06-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). (orig.)

  14. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1996-01-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). copyright 1996 American Institute of Physics

  15. X-ray spectral study of the Th6p,5f electron states in ThO2 and ThF4

    International Nuclear Information System (INIS)

    Teterin, Y.A.; Nikitin, A.S.; Teterin, A.Y.; Ivanov, K.E.; Utkin, I.O.; Nerehov, V.A.; Ryzhkov, M.V.; Vukchevich, I.J.

    2002-01-01

    The study of the Th6p,5f electron states in Th, ThO 2 and ThF was carried out on the basis of the X-ray photoelectron fine spectral structure parameters in the binding energy range of 0-∼ 1000 eV, X-ray O 4,5 (Th) emission spectra of the shallow (0-∼50 eV) electrons and results of theoretical calculations. As a result, despite the absence of the Th5f electrons in thorium atoms, the Th5f atomic orbitals were established to participate in the formation of molecular orbitals in thorium dioxide and tetrafluoride. In the MO LCAO approximation this allowed to suggest the possible existence of filled Th5f electronic states in thorium compounds. On the basis of the X-ray O 4,5 (Th) emission spectral structure parameters the effective formation of the inner valence molecular orbitals in the studied compounds was confirmed. (authors)

  16. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  17. Microscopic approach of the spectral property of 1+ and high-spin states in 124Te nucleus

    International Nuclear Information System (INIS)

    Shi Zhuyi; Ni Shaoyong; Tong Hong; Zhao Xingzhi

    2004-01-01

    Using a microscopic sdIBM-2+2q·p· approach, the spectra of the low-spin and partial high-spin states in 124 Te nucleus are relatively successfully calculated. In particular, the 1 1 + , 1 2 + , 3 1 + , 3 2 + and 5 1 + states are successfully reproduced, the energy relationship resulting from this approach identifies that the 6 1 + , 8 1 + and 10 1 + states belong to the aligned states of the two protons. This can explain the recent experimental results that the collective structures may coexist with the single-particle states. So this approach becomes a powerful tool for successfully describing the spectra of general nuclei without clear symmetry and of isotopes located at transitional regions. Finally, the aligned-state structure and the broken-pair energy of the two-quasi-particle are discussed

  18. Effect of localization states on the electroluminescence spectral width of blue–green light emitting InGaN/GaN multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China and School of Electronic and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Zhao, De Gang, E-mail: dgzhao@red.semi.ac.cn; Jiang, De Sheng; Chen, Ping; Liu, Zong Shun; Zhu, Jian Jun; Li, Xiang; Shi, Ming; Zhao, Dan Mei [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Liu, Jian Ping; Zhang, Shu Ming; Wang, Hui; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2015-11-15

    The electroluminescence (EL) spectra of blue–green light emitting InGaN/GaN multiple quantum well (MQW) structures grown via metal-organic chemical vapor deposition are investigated. With increasing In content in InGaN well layers, the peak energy redshifts, the emission intensity reduces and the inhomogeneous broadening of the luminescence band increases. In addition, it is found that the EL spectra shrink with increasing injection current at low excitation condition, which may be ascribed to both Coulomb screening of polarization field and carrier transferring from shallower localization states to the deeper ones, while at high currents the state-filling effect in all localization states may become significant and lead to a broadening of EL spectra. However, surprisingly, for the MQW sample with much higher In content, the EL spectral bandwidth can be almost unchanged with increasing current at the high current range, since a large number of carriers may be captured by the nonradiative recombination centers distributed outside the localized potential traps and the state-filling effect in the localization states is suppressed.

  19. Some considerations on the restoration of Galilei invariance in the nuclear many-body problem. Pt. I. Mathematical tools, spectral functions and spectroscopic factors of simple bound states

    International Nuclear Information System (INIS)

    Schmid, K.W.

    2001-01-01

    The mathematical tools to restore Galilei invariance in the nuclear many-body problem with the help of projection techniques are presented. For simple oscillator configurations recursion relations for the various elementary contractions are derived. The method is then applied to simple configurations for the ground states of 4 He, 16 O and 40 Ca as well as to the corresponding one-hole and one-particle states. As a first application the spectral functions and spectroscopic factors for the above-mentioned doubly even nuclei are investigated. It turns out that the conventional picture of an uncorrelated system underestimates the single-particle strengths of the hole states from the last occupied shell while that of the higher excited hole states is overestimated considerably. These results are in complete agreement with those derived by Dieperink and de Forest using different methods. Similar effects are seen for the particle states which have not been studied before. All the calculations presented here are performed analytically and thus can be checked explicitly by the interested reader. (orig.)

  20. Effect of localization states on the electroluminescence spectral width of blue–green light emitting InGaN/GaN multiple quantum wells

    International Nuclear Information System (INIS)

    Liu, Wei; Zhao, De Gang; Jiang, De Sheng; Chen, Ping; Liu, Zong Shun; Zhu, Jian Jun; Li, Xiang; Shi, Ming; Zhao, Dan Mei; Liu, Jian Ping; Zhang, Shu Ming; Wang, Hui; Yang, Hui

    2015-01-01

    The electroluminescence (EL) spectra of blue–green light emitting InGaN/GaN multiple quantum well (MQW) structures grown via metal-organic chemical vapor deposition are investigated. With increasing In content in InGaN well layers, the peak energy redshifts, the emission intensity reduces and the inhomogeneous broadening of the luminescence band increases. In addition, it is found that the EL spectra shrink with increasing injection current at low excitation condition, which may be ascribed to both Coulomb screening of polarization field and carrier transferring from shallower localization states to the deeper ones, while at high currents the state-filling effect in all localization states may become significant and lead to a broadening of EL spectra. However, surprisingly, for the MQW sample with much higher In content, the EL spectral bandwidth can be almost unchanged with increasing current at the high current range, since a large number of carriers may be captured by the nonradiative recombination centers distributed outside the localized potential traps and the state-filling effect in the localization states is suppressed

  1. Distinctive Spectral Features of Exciton and Excimer States in the Ultrafast Electronic Deactivation of the Adenine Dinucleotide

    Science.gov (United States)

    Stuhldreier, Mayra C.; Röttger, Katharina; Temps, Friedrich

    We report the observation by transient absorption spectroscopy of distinctive spectro-temporal signatures of delocalized exciton versus relaxed, weakly bound excimer states in the ultrafast electronic deactivation after UV photoexcitation of the adenine dinucleotide.

  2. In Quest of the Alanine R3 Radical: Multivariate EPR Spectral Analyses of X-Irradiated Alanine in the Solid State.

    Science.gov (United States)

    Jåstad, Eirik O; Torheim, Turid; Villeneuve, Kathleen M; Kvaal, Knut; Hole, Eli O; Sagstuen, Einar; Malinen, Eirik; Futsaether, Cecilia M

    2017-09-28

    The amino acid l-α-alanine is the most commonly used material for solid-state electron paramagnetic resonance (EPR) dosimetry, due to the formation of highly stable radicals upon irradiation, with yields proportional to the radiation dose. Two major alanine radical components designated R1 and R2 have previously been uniquely characterized from EPR and electron-nuclear double resonance (ENDOR) studies as well as from quantum chemical calculations. There is also convincing experimental evidence of a third minor radical component R3, and a tentative radical structure has been suggested, even though no well-defined spectral signature has been observed experimentally. In the present study, temperature dependent EPR spectra of X-ray irradiated polycrystalline alanine were analyzed using five multivariate methods in further attempts to understand the composite nature of the alanine dosimeter EPR spectrum. Principal component analysis (PCA), maximum likelihood common factor analysis (MLCFA), independent component analysis (ICA), self-modeling mixture analysis (SMA), and multivariate curve resolution (MCR) were used to extract pure radical spectra and their fractional contributions from the experimental EPR spectra. All methods yielded spectral estimates resembling the established R1 spectrum. Furthermore, SMA and MCR consistently predicted both the established R2 spectrum and the shape of the R3 spectrum. The predicted shape of the R3 spectrum corresponded well with the proposed tentative spectrum derived from spectrum simulations. Thus, results from two independent multivariate data analysis techniques strongly support the previous evidence that three radicals are indeed present in irradiated alanine samples.

  3. State-of-the art comparability of corrected emission spectra. 2. Field laboratory assessment of calibration performance using spectral fluorescence standards.

    Science.gov (United States)

    Resch-Genger, Ute; Bremser, Wolfram; Pfeifer, Dietmar; Spieles, Monika; Hoffmann, Angelika; DeRose, Paul C; Zwinkels, Joanne C; Gauthier, François; Ebert, Bernd; Taubert, R Dieter; Voigt, Jan; Hollandt, Jörg; Macdonald, Rainer

    2012-05-01

    In the second part of this two-part series on the state-of-the-art comparability of corrected emission spectra, we have extended this assessment to the broader community of fluorescence spectroscopists by involving 12 field laboratories that were randomly selected on the basis of their fluorescence measuring equipment. These laboratories performed a reference material (RM)-based fluorometer calibration with commercially available spectral fluorescence standards following a standard operating procedure that involved routine measurement conditions and the data evaluation software LINKCORR developed and provided by the Federal Institute for Materials Research and Testing (BAM). This instrument-specific emission correction curve was subsequently used for the determination of the corrected emission spectra of three test dyes, X, QS, and Y, revealing an average accuracy of 6.8% for the corrected emission spectra. This compares well with the relative standard uncertainties of 4.2% for physical standard-based spectral corrections demonstrated in the first part of this study (previous paper in this issue) involving an international group of four expert laboratories. The excellent comparability of the measurements of the field laboratories also demonstrates the effectiveness of RM-based correction procedures.

  4. Spectral characterization of mangrove leaves in the Brazilian Amazonian Coast: Turiaçu Bay, Maranhão State

    Directory of Open Access Journals (Sweden)

    Flávia Rebelo-Mochel

    2007-12-01

    Full Text Available Mangrove communities are tropical systems which have fewer species than tropical forests, especially in Latin America and display a single architecture, usually lacking the various strata commonly found in other forest ecosystems. The identification of mangrove communities by orbital data is not a difficult task but the most interesting challenge is to identify themselves by the dominant species. The first step toward that floristic identification is the spectral characterization of detached leaves. Leaves from four species of mangrove trees were spectrally characterized considering the Directional Hemispherical Reflectance Factor (DHRF determined through radiometric measurements using an integrating sphere LICOR 1800 attached to a spectroradiometer SPECTRON SE-590. In the visible bands (0.45-0.69 µm the button-shaped mangrove Conocarpus erectus was brighter and the red mangrove Rhizophora mangle was darker than the other two species which shows very close DHRF values. Otherwise the black mangrove Avicennia germinans and the white mangrove Laguncularia racemosa can be distinguished from one another in the Near Infra Red (NIR region (0.76-0.90 µm and in this region of the spectrum the DHRF of C. erectus and R. mangle become very close.Comunidades de manguezais são sistemas tropicais que apresentam poucas espécies constituintes em relação às florestas tropicais úmidas, especialmente na América Latina e apresentam arquitetura simples, freqüentemente com a falta de vários estratos encontrados em outros ecossistemas florestais. A identificação de manguezais mediante a observação de dados orbitais não é uma tarefa muito complicada, porém um desafio interessante seria sua diferenciação mediante a identificação de espécies dominantes. O primeiro passo para essa identificação florística é a caracterização espectral de folhas isoladas. Folhas de quatro espécies arbóreas de manguezais foram caracterizadas espectralmente

  5. Extreme ultraviolet (EUV) solar spectral irradiance (SSI) for ionospheric application - history and contemporary state-of-art

    Science.gov (United States)

    Schmidtke, G.; Jacobi, Ch.; Nikutowski, B.; Erhardt, Ch.

    2014-11-01

    After a historical survey of space related EUV measurements in Germany and the role of Karl Rawer in pursuing this work, we describe present developments in EUV spectroscopy and provide a brief outlook on future activities. The group of Karl Rawer has performed the first scientific space project in Western Europe on 19th October 1954. Then it was decided to include the field of solar EUV spectroscopy in ionospheric investigations. Starting in 1957 an intensified development of instrumentation was going on to explore solar EUV radiation, atmospheric airglow and auroral emissions until the institute had to stop space activities in the early nineteen-eighties. EUV spectroscopy was continued outside of the institute during eight years. This area of work was supported again by the institute developing the Auto-Calibrating Spectrometers (SolACES) for a mission on the International Space Station (ISS). After more than six years in space the instrument is still in operation. Meanwhile the work on the primary task also to validate EUV data available from other space missions has made good progress. The first results of validating those data and combine them into one set of EUV solar spectral irradiance are very promising. It will be recommended for using it by the science and application community. Moreover, a new low-cost type of an EUV spectrometer is presented for monitoring the solar EUV radiation. It shall be further developed for providing EUV-TEC data to be applied in ionospheric models replacing the Covington index F10.7. Applying these data for example in the GNSS signal evaluation a more accurate determination of GNSS receiver positions is expected for correcting the propagation delays of navigation signals traveling through the ionosphere from space to earth. - Latest results in the field of solar EUV spectroscopy are discussed, too.

  6. Hard breakup of two nucleons from the 3He nucleus

    International Nuclear Information System (INIS)

    Sargsian, Misak M.; Granados, Carlos

    2009-01-01

    We investigate a large angle photodisintegration of two nucleons from the 3 He nucleus within the framework of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with large relative momentum. Assuming the dominance of the quark-interchange mechanism in a hard nucleon-nucleon scattering, the HRM allows the expression of the amplitude of a two-nucleon breakup reaction through the convolution of photon-quark scattering, NN hard scattering amplitude, and nuclear spectral function, which can be calculated using a nonrelativistic 3 He wave function. The photon-quark scattering amplitude can be explicitly calculated in the high energy regime, whereas for NN scattering one uses the fit of the available experimental data. The HRM predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale as s -11 . Second, the s 11 weighted cross section will have the shape of energy dependence similar to that of s 10 weighted NN elastic scattering cross section. Also one predicts an enhancement of the pp breakup relative to the pn breakup cross section as compared to the results from low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn breakup cross sections. This is due to the fact that the same-helicity pp-component is strongly suppressed in the ground state wave function of 3 He. Because of this suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer NN breakup reactions for circularly polarized photons. For the pp breakup this asymmetry is predicted to be zero while for the pn it is close to (2/3).

  7. Hard processes in hadronic interactions

    International Nuclear Information System (INIS)

    Satz, H.; Wang, X.N.

    1995-01-01

    Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks' duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley

  8. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S-star state

    Czech Academy of Sciences Publication Activity Database

    Kloz, Miroslav; Weissenborn, J.; Polívka, T.; Frank, H.A.; Kennis, J.T.M.

    2016-01-01

    Roč. 18, č. 21 (2016), s. 14619-14628 ISSN 1463-9076 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : beta-carotene * excited-state * ultrafast dynamics * resonance Raman * excitation * conversion * pathway * laser * S-1 Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 4.123, year: 2016

  9. Comprehensive hard materials

    CERN Document Server

    2014-01-01

    Comprehensive Hard Materials deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued res...

  10. Contribution of the New WORLDVIEW-2 Spectral Bands for Urban Mapping in Coastal Areas: Case Study SÃO LUÍS ( MARANHÃO State, Brazil)

    Science.gov (United States)

    Souza, U. D. V.; kux, H. J. H.

    2012-07-01

    The objective of this study is to verify the contribution of the spectral bands from the new WorldView-2 satellite for the extraction of urban targets aiming a detailed mapping from the city of São Luis, at the coastal zone of Maranhão State, Brazil. This satellite system has 3 bands in the visible portion of the spectrum and also the following 4 new bands: Coastal (400-450 nm), Yellow (585- 625 nm), Red Edge (705-745 nm), and Near Infrared 2 (860-1040 nm). As for the methodology used, initially a fusion was made among the panchromatic and the multispectral bands, combining the spectral information of the multispectral bands with the geometric information of the panchromatic band. Following the ortho-rectification of the dataset was done, using ground control points (GCPs) obtained during field survey. The classification reached high values of Kappa indices. The use of the new bands Red Edge and Near Infrared 2, allowed the improvement of discriminations at tidal flats, mangrove and other vegetation types. The Yellow band improved the discrimination of bare soils - very important information for urban planning - and ceramic roofs. The Coastal band allowed to map the tidal channels which cross the urban area of São Luis, a typical feature of this coastal area. The functionalities of software GEODMA used, allowed an efficient attribute selection which improved the land cover classification from the test sites. The new WorldView-2 bands permit the identification and extraction of the features mentioned, because these bands are positioned at important parts of the electromagnetic spectrum, such as band Red Edge, which strongly improves the discrimination of vegetation conditions. Combining both higher spatial and spectral resolutions, WorldView-2 data allows an improvement on the discrimination of physical characteristics of the targets of interest, thus permitting a higher precision of land use/land cover maps, contributing to urban planning. The test sites of this

  11. Long term variability of Cygnus X-1. V. State definitions with all sky monitors

    NARCIS (Netherlands)

    Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M.A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G.L.; Hanke, M.; Kühnel, M.; Markoff, S.; Pooley, G.G.; Rothschild, R.E.; Tomsick, J.A.; Wilson-Hodge, C.A.; Wilms, J.

    2013-01-01

    We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different

  12. Observation of hard X-rays line emission from Her X-1

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; la Padula, C.; Ubertini, P.; Vialetto, G.; Manchanda, R.K.; Damle, S.V.

    1982-04-01

    We present the results of a hard X-ray measurement of the binary source Her X-1, carried out with a balloon borne X-ray telescope consisting of two Multiwire Proportional Counters, having 900 cm/sup 2/ sensitive area each and spectral resolution of 15% and 24% FWHM respectively at 60 keV. The source was observed during the 'Mid-on' state. Our data confirm the previously reported high energy emission line overimposed on the low energy thermal spectrum.

  13. Noncommutativity from spectral flow

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas; Ilderton, Anton [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2007-07-27

    We investigate the transition from second- to first-order systems. Quantum mechanically, this transforms configuration space into phase space and hence introduces noncommutativity in the former. This transition may be described in terms of spectral flow. Gaps in the energy or mass spectrum may become large which effectively truncates the available state space. Using both operator and path integral languages we explicitly discuss examples in quantum mechanics (light-front) quantum field theory and string theory.

  14. Comprehensive spectral analysis of Cyg X-1 using RXTE data

    International Nuclear Information System (INIS)

    Shahid, Rizwan; Jaaffrey, S. N. A.; Misra, Ranjeev

    2012-01-01

    We analyze a large number (> 500) of pointed Rossi X-Ray Timing Explorer (RXTE) observations of Cyg X-1 and model the spectrum of each one. A subset of the observations for which there is a simultaneous reliable measure of the hardness ratio by the All Sky Monitor shows that the sample covers nearly all the spectral shapes of Cyg X-1. Each observation is fitted with a generic empirical model consisting of a disk black body spectrum, a Comptonized component whose input photon shape is the same as the disk emission, a Gaussian to represent the iron line and a reflection feature. The relative strength, width of the iron line and the reflection parameter are in general correlated with the high energy photon spectral index Γ. This is broadly consistent with a geometry where for the hard state (low Γ ∼ 1.7) there is a hot inner Comptonizing region surrounded by a truncated cold disk. The inner edge of the disk moves inwards as the source becomes softer till finally in the soft state (high Γ > 2.2) the disk fills the inner region and active regions above the disk produce the Comptonized component. However, the reflection parameter shows non-monotonic behavior near the transition region (Γ ∼ 2), which suggests a more complex geometry or physical state of the reflector. In addition, the inner disk temperature, during the hard state, is on average higher than in the soft one, albeit with large scatter. These inconsistencies could be due to limitations in the data and the empirical model used to fit them. The flux of each spectral component is well correlated with Γ, which shows that unlike some other black hole systems, Cyg X-1 does not show any hysteresis behavior. In the soft state, the flux of the Comptonized component is always similar to the disk one, which confirms that the ultra-soft state (seen in other brighter black hole systems) is not exhibited by Cyg X-1. The rapid variation of the Compton amplification factor with Γ naturally explains the absence of

  15. Electronic spectral study of interaction of electron donor – acceptor dyes in the ground and excited state with a metal ion. Effect of molecular structure of the dye

    International Nuclear Information System (INIS)

    Sardar, Sanjib Kr; Mandal, Prasun K.; Bagchi, Sanjib

    2014-01-01

    Interaction of manganese (II) ion with electron donor (D)–acceptor (A) dyes having symmetric D–A–D configuration of chromophores (ketocyanine dye) and the corresponding parent merocyanines (D–A configuration) in acetonitrile has been compared by monitoring the electronic absorption, and steady state and time resolved fluorescence characteristics of the dyes. Absorption spectral studies point to the formation of a 1:1 metal ion–dye (S 0 -state) complex. Equilibrium constant (K 0 ) and other thermodynamic parameters for complex formation have been determined for all the systems. Symmetric ketocyanine dyes (D–A–D) form stronger complex than the corresponding dye with D–A configuration. Quenching of fluorescence is caused due to complex formation with the cation. However, for very low concentration of salts, where complex formation is insignificant, an enhancement of fluorescence intensity takes place due to addition of salt. The absorption band of the dye undergoes a slight blue shift in the same concentration range of the metal ion. Fluorescence life time of the excited state also increases with an increase in salt concentration in that concentration range. Results have been explained in terms of formation of a weak association complex where one or more cations replace equivalent solvent molecules in the cybotatic region around the dye. The binding constant of the association complex involving cation and the dye (S 1 -state) has been determined. While the value of the binding constant is higher for a symmetric D–A–D dye relative to that for the corresponding dye with D–A configuration, the extent of fluorescence enhancement for the latter is larger. Values of decay constant for the different photophysical processes have been calculated. Formation of association complex in the S 1 -state is characterised by a slower nonradiative decay of S 1 -state of the dyes. -- Highlights: • A ketocyanine dye forms 1:1 complex with metal ions. • Slight

  16. Hard probes 2006 Asilomar

    CERN Multimedia

    2006-01-01

    "The second international conference on hard and electromagnetic probes of high-energy nuclear collisions was held June 9 to 16, 2006 at the Asilomar Conference grounds in Pacific Grove, California" (photo and 1/2 page)

  17. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  18. X-RAY SPECTRAL VARIABILITY IN NGC 3783

    International Nuclear Information System (INIS)

    Reis, R. C.; Miller, J. M.; Fabian, A. C.; Walton, D. J.; Reynolds, C. S.; Trippe, M.; Mushotzky, R. F.; Brenneman, L. W.; Nowak, M. A.

    2012-01-01

    NGC 3783 was observed for approximately 210 ks by Suzaku and in this time showed significant spectral and flux variability at both short (20 ks) and long (100 ks) timescales. The full observation is found to consist of approximately six 'spectral periods' where the behavior of the soft (0.3-1.0 keV) and hard (2-10 keV) bands are somewhat distinct. Using a variety of methods we find that the strong warm absorber present in this source does not change on these timescales, confirming that the broadband variability is intrinsic to the central source. The time-resolved difference-spectra are well modeled with an absorbed power law below 10 keV, but show an additional hard excess at ≈20 keV in the latter stages of the observation. This suggests that, in addition to the variable power law, there is a further variable component that varies with time but not monotonically with flux. We show that a likely interpretation is that this further component is associated with variations in the reflection fraction or possibly ionization state of the accretion disk a few gravitational radii from the black hole.

  19. Thermodynamic perturbation theory for fused hard-sphere and hard-disk chain fluids

    International Nuclear Information System (INIS)

    Zhou, Y.; Hall, C.K.; Stell, G.

    1995-01-01

    We find that first-order thermodynamic perturbation theory (TPT1) which incorporates the reference monomer fluid used in the generalized Flory--AB (GF--AB) theory yields an equation of state for fused hard-sphere (FHS) chain fluids that has accuracy comparable to the GF--AB and GF--dimer--AC theories. The new TPT1 equation of state is significantly more accurate than other extensions of the TPT1 theory to FHS chain fluids. The TPT1 is also extended to two-dimensional fused hard-disk chain fluids. For the fused hard-disk dimer fluid, the extended TPT1 equation of state is found to be more accurate than the Boublik hard-disk dimer equation of state. copyright 1995 American Institute of Physics

  20. A Simple Spectral Observer

    Directory of Open Access Journals (Sweden)

    Lizeth Torres

    2018-05-01

    Full Text Available The principal aim of a spectral observer is twofold: the reconstruction of a signal of time via state estimation and the decomposition of such a signal into the frequencies that make it up. A spectral observer can be catalogued as an online algorithm for time-frequency analysis because is a method that can compute on the fly the Fourier transform (FT of a signal, without having the entire signal available from the start. In this regard, this paper presents a novel spectral observer with an adjustable constant gain for reconstructing a given signal by means of the recursive identification of the coefficients of a Fourier series. The reconstruction or estimation of a signal in the context of this work means to find the coefficients of a linear combination of sines a cosines that fits a signal such that it can be reproduced. The design procedure of the spectral observer is presented along with the following applications: (1 the reconstruction of a simple periodical signal, (2 the approximation of both a square and a triangular signal, (3 the edge detection in signals by using the Fourier coefficients, (4 the fitting of the historical Bitcoin market data from 1 December 2014 to 8 January 2018 and (5 the estimation of a input force acting upon a Duffing oscillator. To round out this paper, we present a detailed discussion about the results of the applications as well as a comparative analysis of the proposed spectral observer vis-à-vis the Short Time Fourier Transform (STFT, which is a well-known method for time-frequency analysis.

  1. Spectral dimension of quantum geometries

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2014-01-01

    The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)

  2. NICER observations of MAXI J1820+070 suggest a rapidly-brightening black hole X-ray binary in the hard state

    Science.gov (United States)

    Uttley, P.; Gendreau, K.; Markwardt, C.; Strohmayer, T. E.; Bult, P.; Arzoumanian, Z.; Pottschmidt, K.; Ray, P. S.; Remillard, R.; Pasham, D.; Steiner, J.; Neilsen, J.; Homan, J.; Miller, J. M.; Iwakiri, W.; Fabian, A. C.

    2018-03-01

    NICER observed the new X-ray transient MAXI J1820+070 (ATel #11399, #11400, #11403, #11404, #11406, #11418, #11420, #11421) on multiple occasions from 2018 March 12 to 14. & nbsp;During this time the source brightened rapidly, from a total NICER mean count rate of 880 count/s on March 12 to 2800 count/s by March 14 17:00 & nbsp;UTC, corresponding to a change in 2-10 keV modelled flux (see below) from 1.9E-9 to 5E-9 erg cm-2 s-1. & nbsp; The broadband X-ray spectrum is absorbed by a low column density (fitting the model given below, we obtain 1.5E21 cm-2), in keeping with the low Galactic column in the direction of the source (ATel #11418; Dickey & Lockman, 1990, ARAA, 28, 215; Kalberla et al. 2005, A &A, 440, 775) and consists of a hard power-law component with weak reflection features (broad iron line and narrow 6.4 keV line core) and an additional soft X-ray component.

  3. Soft and hard pomerons

    International Nuclear Information System (INIS)

    Maor, Uri; Tel Aviv Univ.

    1995-09-01

    The role of s-channel unitarity screening corrections, calculated in the eikonal approximation, is investigated for soft Pomeron exchange responsible for elastic and diffractive hadron scattering in the high energy limit. We examine the differences between our results and those obtained from the supercritical Pomeron-Regge model with no such corrections. It is shown that screening saturation is attained at different scales for different channels. We then proceed to discuss the new HERA data on hard (PQCD) Pomeron diffractive channels and discuss the relationship between the soft and hard Pomerons and the relevance of our analysis to this problem. (author). 18 refs, 9 figs, 1 tab

  4. Hard exclusive QCD processes

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, W.

    2007-01-15

    Hard exclusive processes in high energy electron proton scattering offer the opportunity to get access to a new generation of parton distributions, the so-called generalized parton distributions (GPDs). This functions provide more detailed informations about the structure of the nucleon than the usual PDFs obtained from DIS. In this work we present a detailed analysis of exclusive processes, especially of hard exclusive meson production. We investigated the influence of exclusive produced mesons on the semi-inclusive production of mesons at fixed target experiments like HERMES. Further we give a detailed analysis of higher order corrections (NLO) for the exclusive production of mesons in a very broad range of kinematics. (orig.)

  5. Hard-hat day

    CERN Multimedia

    2003-01-01

    CERN will be organizing a special information day on Friday, 27th June, designed to promote the wearing of hard hats and ensure that they are worn correctly. A new prevention campaign will also be launched.The event will take place in the hall of the Main Building from 11.30 a.m. to 2.00 p.m., when you will be able to come and try on various models of hard hat, including some of the very latest innovative designs, ask questions and pass on any comments and suggestions.

  6. Study of Cu-Al-Zn alloys hardness temperature dependence

    International Nuclear Information System (INIS)

    Kurmanova, D.T.; Skakov, M.K.; Melikhov, V.D.

    2001-01-01

    In the paper the results of studies for the Cu-Al-Zn ternary alloys hardness temperature dependence are presented. The method of 'hot hardness' has been used during study of the solid state phase transformations and under determination of the hot stability boundaries. Due to the samples brittleness a hardness temperature dependence definition is possible only from 350-400 deg. C. Sensitivity of the 'hot hardness' method is decreasing within high plasticity range, so the measurements have been carried out only up to 700-800 deg. C. It is shown, that the alloys hardness dependence character from temperature is close to exponential one within the certain structure modification existence domain

  7. Health State Monitoring of Bladed Machinery with Crack Growth Detection in BFG Power Plant Using an Active Frequency Shift Spectral Correction Method

    Directory of Open Access Journals (Sweden)

    Weifang Sun

    2017-08-01

    Full Text Available Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages.

  8. Health State Monitoring of Bladed Machinery with Crack Growth Detection in BFG Power Plant Using an Active Frequency Shift Spectral Correction Method.

    Science.gov (United States)

    Sun, Weifang; Yao, Bin; He, Yuchao; Chen, Binqiang; Zeng, Nianyin; He, Wangpeng

    2017-08-09

    Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information) belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages.

  9. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  10. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  11. Hard times; Schwere Zeiten

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Markus

    2012-10-02

    The prices of silicon and solar wafers keep dropping. According to market research specialist IMS research, this is the result of weak traditional solar markets and global overcapacities. While many manufacturers are facing hard times, big producers of silicon are continuing to expand.

  12. Hardness of Clustering

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Hardness of Clustering. Both k-means and k-medians intractable (when n and d are both inputs even for k =2). The best known deterministic algorithms. are based on Voronoi partitioning that. takes about time. Need for approximation – “close” to optimal.

  13. Rock-hard coatings

    OpenAIRE

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  14. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  15. Crab Nebula Variations in Hard X-rays

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2012-01-01

    The Crab Nebula was surprisingly variable from 2001-2010, with less variability before 2001 and since mid-2010. We presented evidence for spectral softening from RXTE, Swift/BAT, and Fermi GBM during the mid-2008-2010 flux decline. We see no clear connections between the hard X-ray variations and the GeV flares

  16. New hard X-ray sources at 380 declination

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F.

    1981-01-01

    We report the detection of three new hard X-rays sources emitting in the range 15-150 KeV. Their observation was carried out by means of a balloon borne payload, consisting of two large area high spectral resolution Multiwire Spectroscopic Proportional Counters. (orig.)

  17. Anti-correlated Soft Lags in the Intermediate State of Black Hole Source GX 339-4

    OpenAIRE

    Sriram, K.; Rao, A. R.; Choi, C. S.

    2010-01-01

    We report the few hundred second anti-correlated soft lags between soft and hard energy bands in the source GX 339-4 using RXTE observations. In one observation, anti-correlated soft lags were observed using the ISGRI/INTEGRAL hard energy band and the PCA/RXTE soft energy band light curves. The lags were observed when the source was in hard and soft intermediate states, i.e., in a steep power-law state.We found that the temporal and spectral properties were changed during the lag timescale. T...

  18. THE STRESS-STRAIN STATE OF AN INFINITELY LONG ELASTIC ARRAYS OF DIFFERENT WIDTHS AND LIMITED THICKNESS ON THE HARD GROUND WHEN THEY HAVE FLAT DEFORMATION

    Directory of Open Access Journals (Sweden)

    I. K. Badalakha

    2009-12-01

    Full Text Available The article presents the results of solving several problems of a flat deformation of elastic infinitely long massifs of different width and limited thickness. Various cases of conditions at the massif/base contact. The relationships between stressed and strained states previously suggested by the author, which differ from the generalized Hooke’s law, are used in the solutions.

  19. "You're Trying Hard, but It's Still Going to Die": Indigenous Youth and Language Tensions in Peru and the United States

    Science.gov (United States)

    Sumida Huaman, Elizabeth

    2014-01-01

    This article discusses emerging research on youth and Indigenous languages. Based on a comparative and international Indigenous education study in Peru and the United States, the intersection between Indigenous community spaces, schools, and languages is examined. Given global trends of Indigenous language loss, comparative research provides the…

  20. Novel Aspects of Hard Diffraction in QCD

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2005-01-01

    Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, and nuclear shadowing and antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency

  1. Aespoe hard rock laboratory Sweden

    International Nuclear Information System (INIS)

    1992-01-01

    The aim of the new Aespoe hard rock laboratory is to demonstrate state of the art of technology and evaluation methods before the start of actual construction work on the planned deep repository for spent nuclear fuel. The nine country OECD/NEA project in the Stripa mine in Sweden has been an excellent example of high quality international research co-operation. In Sweden the new Aespoe hard rock laboratory will gradually take over and finalize this work. SKB very much appreciates the continued international participation in Aespoe which is of great value for the quality efficiency, and confidence in this kind of work. We have invited a number of leading experts to this first international seminar to summarize the current state of a number of key questions. The contributions show the great progress that has taken place during the years. The results show that there is a solid scientific basis for using this knowledge on site specific preparation and work on actual repositories. (au)

  2. Decision No. 3632/93 ECCS made by the Commission on 28 December 1993 concerning the communal regularisation of state subsidies for hard coal mining

    International Nuclear Information System (INIS)

    Miert, K. van.

    1994-01-01

    Articles 2 and 3 are of particular interest. Article 2 Section 1 provides that coal mining may only be subsidised if this leads to the realisation of one of the aims named there. Article 2 Section 2 provides that after expiration of a three-year transition period subsidies may only be financed from public funds. Article 3 names the requirements for the admissibility of operating subsidies. In particular, Article 3 Section 2 stipulates that every member state must submit plans for the modernisation, rationalisation and restructuring of the business concerned if it intends to grant it subsidies during any of the business years from 1994 to 2002. (orig.) [de

  3. Hard Electromagnetic Processes

    International Nuclear Information System (INIS)

    Richard, F.

    1987-09-01

    Among hard electromagnetic processes, I will use the most recent data and focus on quantitative test of QCD. More specifically, I will retain two items: - hadroproduction of direct photons, - Drell-Yan. In addition, I will briefly discuss a recent analysis of ISR data obtained with AFS (Axial Field Spectrometer) which sheds a new light on the e/π puzzle at low P T

  4. Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka, E-mail: yishii@uic.edu [University of Illinois at Chicago, Department of Chemistry (United States)

    2016-02-15

    This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40–80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055–15058, 2015) combines the reverse {sup 13}C, {sup 15}N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of “highlighted” labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching {sup 13}CO or {sup 15}N signals for a pair of consecutively labeled residues by recoupling {sup 13}CO–{sup 15}N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ∼15 % loss of signals for the highlighted residues while quenching as much as ∼90 % of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D {sup 15}N/{sup 13}C{sub α} correlation and 2D {sup 13}C{sub α}/{sup 13}CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and {sup 1}H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using {sup 13}C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (∼300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable

  5. Multiwavelength Spectral Variability of Mkn 501 in Outburst

    Science.gov (United States)

    Hempfling, Christina

    2012-10-01

    We propose simultaneous multiwavelength observations of the blazar Mrk501 in flaring state with XMM-Newton, FACT and Swift. Bright TeV gamma-ray flares have been detected repeatedly from Mrk501. Leptonic blazar models predict an simultaneous increase in the gamma-ray and X-ray bands. However, Mrk 501 also showed so-called orphan flares, as well as flares featuring time lags that are hard to explain by current models. Available data lack detailed light curves and hence are not sufficient to make strong statements on the nature of the responsible processes. These observations of a flare of Mrk501 in the gamma-ray and X-ray band with high spectral sensitivity and time resolution will yield a big contribution to the comprehension of blazar emission processes.

  6. Hard scattering in γp interactions

    International Nuclear Information System (INIS)

    Ahmed, T.; Andreev, V.; Andrieu, B.

    1992-10-01

    We report on the investigation of the final state in interactions of quasi-real photons with protons. The data were taken with the H1 detector at the HERA ep collider. Evidence for hard interactions is seen in both single particle spectra and jet formation. The data can best be described by inclusion of resolved photon processes as predicted by QCD. (orig.)

  7. Caught between a Rock and a Hard Place: The Title IX Generation, Mathematics, and the State of Feminist Quantitative Social Science Research

    Directory of Open Access Journals (Sweden)

    Jill R. Williams

    2012-12-01

    Full Text Available In this essay I reflect on the fortieth anniversary of the Mink Equal Opportunity in Education Act of 1972 (Title IX, which prohibited discrimination based on sex in federally funded education programs in the United States and inspired educational programs that encourage girls to pursue math and science careers. I argue that despite the feminist underpinnings of Title IX, in recent years feminism has discouraged the advancement of women in math and science by excluding quantitative research from its publications, quantitative researchers from women's and gender studies programs, and quantitative training from its curriculum. I examine my own experience of growing up with Title IX programs, the long-term ramifications of those programs, and my recent struggles to do feminist demography to show how the relationship of feminism to the promotion of quantitative sciences has changed over time. I argue that there is an unfinished revolution in feminism and a stall in the development of feminist quantitative social science research that can only be resolved by creating intellectual space for feminist quantitative work in the academy.

  8. Hard rock excavation at the CSM/OCRD test site using crater theory and current United States controlled smooth wall blasting practices, June 1982

    International Nuclear Information System (INIS)

    Sperry, P.E.; Chitombo, G.P.; Hustrulid, W.A.

    1984-08-01

    This report is the fourth in a series describing experiments conducted by the Colorado School of Mines for the Office of Crystalline Repository Development (OCRD) to determine the extent of blast damage in rock surrounding an underground opening. The report describes the application of tunnel design procedures based upon crater theory and current United States controlled smooth wall blasting practices for the excavation of the CSM/OCRD test room in the Colorado School of Mines, Experimental Mine (Edgar Mine) in Idaho Springs, Colorado. Ten blast rounds were used to excavate the test room. The first seven rounds were designed with Swedish Techniques, and described in the third report in this series, and the design of rounds eight through ten used crater theory. Crater theory is described in this document along with its application to the CSM/OCRD Room excavation. Calculation for spacing, burden, number and type of holes, explosives placement, and overall powder factor are discussed. A series of single charge cratering test shots, designed to evaluate some of the input data for the blast designs, are discussed. The input data include: Strain Energy Factor E, a dimensionless factor which varies according to the explosive and rock type; Critical Depth, N, the charge depth at which the explosive begins to fracture rock at the free face; Optimum Depth Ratio Δ 0 , which is a ratio between Optimum Charge Depth, d 0 , and Critical Charge Depth, d/sub c/; and charge Weight, W. A non-linear least squared regression method to best fit the general bell-shape curve of the crater results is discussed. Both scaled weight and scaled volume criteria are reported in the analysis of results. 10 references, 17 figures, 16 tables

  9. Remember Hard but Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions

    Directory of Open Access Journals (Sweden)

    Jiushu Xie

    2016-09-01

    Full Text Available Previous studies have found that bodily stimulation, such as hardness, biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between hard and rigid and between soft and flexible in Chinese, to investigate whether the experience of hardness affected cognitive functions requiring either rigidity (memory or flexibility (creativity. In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition than a cushioned one (the soft condition. In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity and flexibility. They support the embodiment proposition that cognitive functions and representations could be grounded via metaphorical association in bodily states.

  10. The Soft State of Cygnus X-1 Observed With NuSTAR: A Variable Corona and a Stable Inner Disk

    DEFF Research Database (Denmark)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.

    2016-01-01

    We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variabilit...

  11. ANTI-CORRELATED SOFT LAGS IN THE INTERMEDIATE STATE OF BLACK HOLE SOURCE GX 339-4

    International Nuclear Information System (INIS)

    Sriram, K.; Choi, C. S.; Rao, A. R.

    2010-01-01

    We report the few hundred second anti-correlated soft lags between soft and hard energy bands in the source GX 339-4 using RXTE observations. In one observation, anti-correlated soft lags were observed using the ISGRI/INTEGRAL hard energy band and the PCA/RXTE soft energy band light curves. The lags were observed when the source was in hard and soft intermediate states, i.e., in a steep power-law state. We found that the temporal and spectral properties were changed during the lag timescale. The anti-correlated soft lags are associated with spectral variability during which the geometry of the accretion disk is changed. The observed temporal and spectral variations are explained using the framework of truncated disk geometry. We found that during the lag timescale, the centroid frequency of quasi-periodic oscillation is decreased, the soft flux is decreased along with an increase in the hard flux, and the power-law index steepens together with a decrease in the disk normalization parameter. We argue that these changes could be explained if we assume that the hot corona condenses and forms a disk in the inner region of the accretion disk. The overall spectral and temporal changes support the truncated geometry of the accretion disk in the steep power-law state or in the intermediate state.

  12. Spectral entropy and haemodynamic response to surgery during ...

    African Journals Online (AJOL)

    Adele

    Spectral entropy and haemodynamic response to surgery during sevoflurane anaesthesia. Introduction. Apart from somatic responses, surgery also evokes autonomic responses, including haemodynamic responses. Spectral entropy has been validated as a means to monitor the hypnotic state during sevoflurane ...

  13. Spectral functions of hadrons in lattice QCD

    International Nuclear Information System (INIS)

    Nakahara, Y.; Asakawa, M.; Hatsuda, T.

    2000-01-01

    Using the maximum entropy method, spectral functions of the pseudo-scalar and vector mesons are extracted from lattice Monte Carlo data of the imaginary time Green's functions. The resonance and continuum structures as well as the ground state peaks are successfully obtained. Error analysis of the resultant spectral functions is also given on the basis of the Bayes probability theory. (author)

  14. Revisiting the definition of local hardness and hardness kernel.

    Science.gov (United States)

    Polanco-Ramírez, Carlos A; Franco-Pérez, Marco; Carmona-Espíndola, Javier; Gázquez, José L; Ayers, Paul W

    2017-05-17

    An analysis of the hardness kernel and local hardness is performed to propose new definitions for these quantities that follow a similar pattern to the one that characterizes the quantities associated with softness, that is, we have derived new definitions for which the integral of the hardness kernel over the whole space of one of the variables leads to local hardness, and the integral of local hardness over the whole space leads to global hardness. A basic aspect of the present approach is that global hardness keeps its identity as the second derivative of energy with respect to the number of electrons. Local hardness thus obtained depends on the first and second derivatives of energy and electron density with respect to the number of electrons. When these derivatives are approximated by a smooth quadratic interpolation of energy, the expression for local hardness reduces to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba. However, when one combines the first directional derivatives with smooth second derivatives one finds additional terms that allow one to differentiate local hardness for electrophilic attack from the one for nucleophilic attack. Numerical results related to electrophilic attacks on substituted pyridines, substituted benzenes and substituted ethenes are presented to show the overall performance of the new definition.

  15. Hard gap in epitaxial semiconductor-superconductor nanowires

    DEFF Research Database (Denmark)

    Chang, W.; Albrecht, S. M.; Jespersen, T. S.

    2015-01-01

    a continuum of subgap states---a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by proximity effect in a semiconductor, using epitaxial Al-InAs superconductor-semiconductor nanowires. The hard gap, along with favorable material properties and gate...

  16. STRONGER REFLECTION FROM BLACK HOLE ACCRETION DISKS IN SOFT X-RAY STATES

    International Nuclear Information System (INIS)

    Steiner, James F.; Remillard, Ronald A.; García, Javier A.; McClintock, Jeffrey E.

    2016-01-01

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe–K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe–K line, namely, the Compton power law. We find that reflection is several times more pronounced (∼3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.

  17. STRONGER REFLECTION FROM BLACK HOLE ACCRETION DISKS IN SOFT X-RAY STATES

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, James F.; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, MIT, 70 Vassar Street, Cambridge, MA 02139 (United States); García, Javier A.; McClintock, Jeffrey E., E-mail: jsteiner@mit.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-10-01

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe–K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe–K line, namely, the Compton power law. We find that reflection is several times more pronounced (∼3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.

  18. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  19. Hard and Soft Governance

    DEFF Research Database (Denmark)

    Moos, Lejf

    2009-01-01

    of Denmark, and finally the third layer: the leadership used in Danish schools. The use of 'soft governance' is shifting the focus of governance and leadership from decisions towards influence and power and thus shifting the focus of the processes from the decision-making itself towards more focus......The governance and leadership at transnational, national and school level seem to be converging into a number of isomorphic forms as we see a tendency towards substituting 'hard' forms of governance, that are legally binding, with 'soft' forms based on persuasion and advice. This article analyses...... and discusses governance forms at several levels. The first layer is the global: the methods of 'soft governance' that are being utilised by transnational agencies. The second layer is the national and local: the shift in national and local governance seen in many countries, but here demonstrated in the case...

  20. Zirconium nitride hard coatings

    International Nuclear Information System (INIS)

    Roman, Daiane; Amorim, Cintia Lugnani Gomes de; Soares, Gabriel Vieira; Figueroa, Carlos Alejandro; Baumvol, Israel Jacob Rabin; Basso, Rodrigo Leonardo de Oliveira

    2010-01-01

    Zirconium nitride (ZrN) nanometric films were deposited onto different substrates, in order to study the surface crystalline microstructure and also to investigate the electrochemical behavior to obtain a better composition that minimizes corrosion reactions. The coatings were produced by physical vapor deposition (PVD). The influence of the nitrogen partial pressure, deposition time and temperature over the surface properties was studied. Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and corrosion experiments were performed to characterize the ZrN hard coatings. The ZrN films properties and microstructure changes according to the deposition parameters. The corrosion resistance increases with temperature used in the films deposition. Corrosion tests show that ZrN coating deposited by PVD onto titanium substrate can improve the corrosion resistance. (author)

  1. Critical state of anisotropic hard superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Salazar, C; Perez-RodrIguez, F [Instituto de FIsica, Universidad Autonoma de Puebla, Apdo Post J-48, Puebla, Pue 72570 (Mexico)

    2003-11-01

    The magnetic response of anisotropic irreversible type-II superconductors is investigated theoretically. Using an elliptic vertical law for the electric field E as a function of the current density J, we have reproduced available experimental magnetization curves of YBCO samples with the c axis lying in the sample plane. Specifically, we could reproduce quantitatively and interpret correctly the appearance of additional extrema and segments with relatively small slopes of the virgin magnetization curves when the direction of the applied magnetic field differs from the principal axes. The notable deformation of magnetization curves in a tilted magnetic field is connected to the strong coupling between the components of the magnetic induction.

  2. Hard photoproduction of multiparticle hadronic final states

    International Nuclear Information System (INIS)

    Paul, E.

    1992-02-01

    Recent results from fixed-target experiments on the photoproduction of hadrons have shown that pointlike photon interaction processes of lowest order in QCD can be studied. These are the flavour-dependent γg-fusion process which is the keyprocess to explore the gluon structure function of the nucleon at small x g and the QCD-Compton process which is a tool to study gluon fragmentation. The status of experimental results and comparison to QCD prediction is reviewed. The γg-fusion process will be measured in ep scatterings with almost real photons at HERA photon energies (equivalent to up to 50 TeV in the rest frame of the proton) down to x g > or approx. 10 -4 . Resolved (partonlike) photon interactions are predicted to be measurable at these high energies, too. (orig.)

  3. Remember Hard But Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions

    Science.gov (United States)

    Xie, Jiushu; Lu, Zhi; Wang, Ruiming; Cai, Zhenguang G.

    2016-01-01

    Previous studies have found that bodily stimulation, such as hardness biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between “hard” and “rigid” and between “soft” and “flexible” in Chinese, to investigate whether the experience of hardness affects cognitive functions whose performance depends prospectively on rigidity (memory) and flexibility (creativity). In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition) than a cushioned one (the soft condition). In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity or flexibility. They support the embodiment proposition that cognitive functions and representations can be grounded in bodily states via metaphorical associations. PMID:27672373

  4. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  5. Janka hardness using nonstandard specimens

    Science.gov (United States)

    David W. Green; Marshall Begel; William Nelson

    2006-01-01

    Janka hardness determined on 1.5- by 3.5-in. specimens (2×4s) was found to be equivalent to that determined using the 2- by 2-in. specimen specified in ASTM D 143. Data are presented on the relationship between Janka hardness and the strength of clear wood. Analysis of historical data determined using standard specimens indicated no difference between side hardness...

  6. Effects of excitation spectral width on decay profile of weakly confined excitons

    International Nuclear Information System (INIS)

    Kojima, O.; Isu, T.; Ishi-Hayase, J.; Kanno, A.; Katouf, R.; Sasaki, M.; Tsuchiya, M.

    2008-01-01

    We report the effect due to a simultaneous excitation of several exciton states on the radiative decay profiles on the basis of the nonlocal response of weakly confined excitons in GaAs thin films. In the case of excitation of single exciton state, the transient grating signal has two decay components. The fast decay component comes from nonlocal response, and the long-lived component is attributed to free exciton decay. With an increase of excitation spectral width, the nonlocal component becomes small in comparison with the long-lived component, and disappears under irradiation of a femtosecond-pulse laser with broader spectral width. The transient grating spectra clearly indicates the contribution of the weakly confined excitons to the signal, and the exciton line width hardly changes by excitation spectral width. From these results, we concluded that the change of decay profile is attributed not to the many-body effect but to the effect of simultaneous excitation of several exciton states

  7. 2TB hard disk drive

    CERN Multimedia

    This particular object was used up until 2012 in the Data Centre. It slots into one of the Disk Server trays. Hard disks were invented in the 1950s. They started as large disks up to 20 inches in diameter holding just a few megabytes (link is external). They were originally called "fixed disks" or "Winchesters" (a code name used for a popular IBM product). They later became known as "hard disks" to distinguish them from "floppy disks (link is external)." Hard disks have a hard platter that holds the magnetic medium, as opposed to the flexible plastic film found in tapes and floppies.

  8. Cloud-based processing of multi-spectral imaging data

    Science.gov (United States)

    Bernat, Amir S.; Bolton, Frank J.; Weiser, Reuven; Levitz, David

    2017-03-01

    Multispectral imaging holds great promise as a non-contact tool for the assessment of tissue composition. Performing multi - spectral imaging on a hand held mobile device would allow to bring this technology and with it knowledge to low resource settings to provide a state of the art classification of tissue health. This modality however produces considerably larger data sets than white light imaging and requires preliminary image analysis for it to be used. The data then needs to be analyzed and logged, while not requiring too much of the system resource or a long computation time and battery use by the end point device. Cloud environments were designed to allow offloading of those problems by allowing end point devices (smartphones) to offload computationally hard tasks. For this end we present a method where the a hand held device based around a smartphone captures a multi - spectral dataset in a movie file format (mp4) and compare it to other image format in size, noise and correctness. We present the cloud configuration used for segmenting images to frames where they can later be used for further analysis.

  9. Leadership in Hard Times.

    Science.gov (United States)

    Smette, David H.

    2003-01-01

    With state budgets in trouble across the United States, many school districts have already been hit with midyear cuts. Morale is the first and biggest issue administrators and school boards have to tackle. Successful leaders must be able to forecast what lies ahead and plan for the future. Good communication with staff and the public is crucial to…

  10. Hard processes. Vol. 1

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Khoze, V.A.; Lipatov, L.N.

    1984-01-01

    Deep inelastic (hard) processes are now at the epicenter of modern high-energy physics. These processes are governed by short-distance dynamics, which reveals the intrinsic structure of elementary particles. The theory of deep inelastic processes is now sufficiently well settled. The authors' aim was to give an effective tool to theoreticians and experimentalists who are engaged in high-energy physics. This book is intended primarily for physicists who are only beginning to study the field. To read the book, one should be acquainted with the Feynman diagram technique and with some particular topics from elementary particle theory (symmetries, dispersion relations, Regge pole theory, etc.). Theoretical consideration of deep inelastic processes is now based on quantum chromodynamics (QCD). At the same time, analysis of relevant physical phenomena demands a synthesis of QCD notions (quarks, gluons) with certain empirical characteristics. Therefore, the phenomenological approaches presented are a necessary stage in a study of this range of phenomena which should undoubtedly be followed by a detailed description based on QCD and electroweak theory. The authors were naturally unable to dwell on experimental data accumulated during the past decade of intensive investigations. Priority was given to results which allow a direct comparison with theoretical predictions. (Auth.)

  11. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V. (GVSt), Herne (Germany)

    2015-07-01

    International the coal market in 2014 was the first time in a long time in a period of stagnation. In Germany, the coal consumption decreased even significantly, mainly due to the decrease in power generation. Here the national energy transition has now been noticable affected negative for coal use. The political guidances can expect a further significant downward movement for the future. In the present phase-out process of the German hard coal industry with still three active mines there was in 2014 no decommissioning. But the next is at the end of 2015, and the plans for the time after mining have been continued. [German] International war der Markt fuer Steinkohle 2014 erstmals seit langem wieder von einer Stagnation gekennzeichnet. In Deutschland ging der Steinkohlenverbrauch sogar deutlich zurueck, vor allem wegen des Rueckgangs in der Stromerzeugung. Hier hat sich die nationale Energiewende nun spuerbar und fuer die Steinkohlennutzung negativ ausgewirkt. Die politischen Weichenstellungen lassen fuer die Zukunft eine weitere erhebliche Abwaertsbewegung erwarten. Bei dem im Auslaufprozess befindlichen deutschen Steinkohlenbergbau mit noch drei aktiven Bergwerken gab es 2014 keine Stilllegung. Doch die naechste steht zum Jahresende 2015 an, und die Planungen fuer die Zeit nach dem Bergbau sind fortgefuehrt worden.

  12. The underlying event in hard scattering processes

    International Nuclear Information System (INIS)

    Field, R.

    2002-01-01

    The authors study the behavior of the underlying event in hard scattering proton-antiproton collisions at 1.8 TeV and compare with the QCD Monte-Carlo models. The underlying event is everything except the two outgoing hard scattered jets and receives contributions from the beam-beam remnants plus initial and final-state radiation. The data indicate that neither ISAJET or HERWIG produce enough charged particles (with p T > 0.5 GeV/c) from the beam-beam remnant component and that ISAJET produces too many charged particles from initial-state radiation. PYTHIA which uses multiple parton scattering to enhance the underlying event does the best job describing the data

  13. Spectral synchronicity in brain signals

    KAUST Repository

    de Jesus Euan Campos, Carolina; Ombao, Hernando; Ortega, Joaquí n

    2018-01-01

    This paper addresses the problem of identifying brain regions with similar oscillatory patterns detected from electroencephalograms. We introduce the hierarchical spectral merger (HSM) clustering method where the feature of interest is the spectral curve and the similarity metric used is the total variance distance. The HSM method is compared with clustering using features derived from independent-component analysis. Moreover, the HSM method is applied to 2 different electroencephalogram datasets. The first was recorded at resting state where the participant was not engaged in any cognitive task; the second was recorded during a spontaneous epileptic seizure. The results of the analyses using the HSM method demonstrate that clustering could evolve over the duration of the resting state and during epileptic seizure.

  14. Spectral synchronicity in brain signals

    KAUST Repository

    de Jesus Euan Campos, Carolina

    2018-05-04

    This paper addresses the problem of identifying brain regions with similar oscillatory patterns detected from electroencephalograms. We introduce the hierarchical spectral merger (HSM) clustering method where the feature of interest is the spectral curve and the similarity metric used is the total variance distance. The HSM method is compared with clustering using features derived from independent-component analysis. Moreover, the HSM method is applied to 2 different electroencephalogram datasets. The first was recorded at resting state where the participant was not engaged in any cognitive task; the second was recorded during a spontaneous epileptic seizure. The results of the analyses using the HSM method demonstrate that clustering could evolve over the duration of the resting state and during epileptic seizure.

  15. Reflections on hard X-ray photon-in/photon-out spectroscopy for electronic structure studies

    Energy Technology Data Exchange (ETDEWEB)

    Glatzel, Pieter, E-mail: glatzel@esrf.fr [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Weng, Tsu-Chien; Kvashnina, Kristina; Swarbrick, Janine; Sikora, Marcin [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Gallo, Erik [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Department of Inorganic, Physical and Materials Chemistry, INSTM Reference Center and NIS Centre of Excellence, Università di Torino, Via P. Giuria 7, I-10125 Torino (Italy); Smolentsev, Nikolay [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Research Center for Nanoscale Structure of Matter, Southern Federal University, str. Zorge 5, 344090 Rostov-on-Don (Russian Federation); Mori, Roberto Alonso [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France)

    2013-06-15

    Highlights: ► Overview of some recent developments in hard X-ray RXES/RIXS. ► Evaluation of spectral line broadening in RXES/RIXS. ► Modelling of RXES/RIXS by ground state DFT calculations. ► Discussion on when HERFD provides a good approximation to XAS. -- Abstract: An increasing community of researchers in various fields of natural sciences is combining X-ray absorption with X-ray emission spectroscopy (XAS–XES) to study electronic structure. With the applications becoming more diverse, the objectives and the requirements in photon-in/photon-out spectroscopy are becoming broader. It is desirable to find simple experimental protocols, robust data reduction and theoretical tools that help the experimentalist to understand their data and learn about the electronic structure. This article presents a collection of considerations on non-resonant and resonant XES with the aim to guide the experimentalist to make good use of this technique.

  16. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  17. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  18. Introduction to spectral theory

    CERN Document Server

    Levitan, B M

    1975-01-01

    This monograph is devoted to the spectral theory of the Sturm- Liouville operator and to the spectral theory of the Dirac system. In addition, some results are given for nth order ordinary differential operators. Those parts of this book which concern nth order operators can serve as simply an introduction to this domain, which at the present time has already had time to become very broad. For the convenience of the reader who is not familar with abstract spectral theory, the authors have inserted a chapter (Chapter 13) in which they discuss this theory, concisely and in the main without proofs, and indicate various connections with the spectral theory of differential operators.

  19. CO2 laser milling of hard tissue

    Science.gov (United States)

    Werner, Martin; Ivanenko, Mikhail; Harbecke, Daniela; Klasing, Manfred; Steigerwald, Hendrik; Hering, Peter

    2007-02-01

    Drilling of bone and tooth tissue belongs to recurrent medical procedures (screw- and pin-bores, bores for implant inserting, trepanation etc.). Small round bores can be in general quickly produced with mechanical drills. Problems arise however by angled drilling, by the necessity to fulfill the drilling without damaging of sensitive soft tissue beneath the bone, or by the attempt to mill precisely noncircular small cavities. We present investigations on laser hard tissue "milling", which can be advantageous for solving these problems. The "milling" is done with a CO2 laser (10.6 μm) with pulse duration of 50 - 100 μs, combined with a PC-controlled galvanic beam scanner and with a fine water-spray, which helps to avoid thermal side-effects. The damaging of underlying soft tissue can be prevented through control of the optical or acoustical ablation signal. The ablation of hard tissue is accompanied with a strong glowing, which is absent during the laser beam action on soft tissue. The acoustic signals from the diverse tissue types exhibit distinct differences in the spectral composition. Also computer image analysis could be a useful tool to control the operation. Laser "milling" of noncircular cavities with 1 - 4 mm width and about 10 mm depth is particularly interesting for dental implantology. In ex-vivo investigations we found conditions for fast laser "milling" of the cavities without thermal damage and with minimal tapering. It included exploration of different filling patterns (concentric rings, crosshatch, parallel lines and their combinations), definition of maximal pulse duration, repetition rate and laser power, optimal position of the spray. The optimized results give evidences for the applicability of the CO2 laser for biologically tolerable "milling" of deep cavities in the hard tissue.

  20. Probabilistic Amplitude Shaping With Hard Decision Decoding and Staircase Codes

    Science.gov (United States)

    Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi; Steiner, Fabian

    2018-05-01

    We consider probabilistic amplitude shaping (PAS) as a means of increasing the spectral efficiency of fiber-optic communication systems. In contrast to previous works in the literature, we consider probabilistic shaping with hard decision decoding (HDD). In particular, we apply the PAS recently introduced by B\\"ocherer \\emph{et al.} to a coded modulation (CM) scheme with bit-wise HDD that uses a staircase code as the forward error correction code. We show that the CM scheme with PAS and staircase codes yields significant gains in spectral efficiency with respect to the baseline scheme using a staircase code and a standard constellation with uniformly distributed signal points. Using a single staircase code, the proposed scheme achieves performance within $0.57$--$1.44$ dB of the corresponding achievable information rate for a wide range of spectral efficiencies.

  1. The Chandra Source Catalog: Spectral Properties

    Science.gov (United States)

    Doe, Stephen; Siemiginowska, Aneta L.; Refsdal, Brian L.; Evans, Ian N.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Glotfelty, Kenny J.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Primini, Francis A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2009-09-01

    The first release of the Chandra Source Catalog (CSC) contains all sources identified from eight years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard) using the Bayesian algorithm (BEHR, Park et al. 2006). The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package, developed by the Chandra X-ray Center; see Freeman et al. 2001). Two models were fit to each source: an absorbed power law and a blackbody emission. The fitted parameter values for the power-law and blackbody models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy flux computed from the normalizations of predefined power-law and black-body models needed to match the observed net X-ray counts. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. This work is supported by NASA contract NAS8-03060 (CXC).

  2. Searching remote homology with spectral clustering with symmetry in neighborhood cluster kernels.

    Directory of Open Access Journals (Sweden)

    Ujjwal Maulik

    Full Text Available Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of "recent" paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request.sarkar@labri.fr.

  3. Hardness variability in commercial technologies

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Winokur, P.S.; Meisenheimer, T.L.; Sexton, F.W.; Roeske, S.B.; Knoll, M.G.

    1994-01-01

    The radiation hardness of commercial Floating Gate 256K E 2 PROMs from a single diffusion lot was observed to vary between 5 to 25 krad(Si) when irradiated at a low dose rate of 64 mrad(Si)/s. Additional variations in E 2 PROM hardness were found to depend on bias condition and failure mode (i.e., inability to read or write the memory), as well as the foundry at which the part was manufactured. This variability is related to system requirements, and it is shown that hardness level and variability affect the allowable mode of operation for E 2 PROMs in space applications. The radiation hardness of commercial 1-Mbit CMOS SRAMs from Micron, Hitachi, and Sony irradiated at 147 rad(Si)/s was approximately 12, 13, and 19 krad(Si), respectively. These failure levels appear to be related to increases in leakage current during irradiation. Hardness of SRAMs from each manufacturer varied by less than 20%, but differences between manufacturers are significant. The Qualified Manufacturer's List approach to radiation hardness assurance is suggested as a way to reduce variability and to improve the hardness level of commercial technologies

  4. Hard Distraction and Deep Inelastic Scattering

    International Nuclear Information System (INIS)

    BJORKEN, J.D.

    1994-01-01

    Since the advent of hard-collision physics, the study of diffractive processes- 'shadow physics' - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word 'diffraction' is sometimes used by high-energy physicists in a loose way. So I here begin by defining what I mean by the term: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the 'lego' phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width Δη does not have a power-law decrease with increasing sub energy Δη, but behaves at most like some power of pseudorapidity Δη∼ logs. The term 'hard diffraction' shall simply refer to those diffractive processes which have jets in the final-state phase-space. We may also distinguish, if desired, two subclasses, as suggested by Ingelman i) Diffractive hard processes have jets on only one side of the rapidity gap. ii) Hard diffractive processes have jets on both sides of the rapidity gap

  5. Spectral Learning for Supervised Topic Models.

    Science.gov (United States)

    Ren, Yong; Wang, Yining; Zhu, Jun

    2018-03-01

    Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.

  6. On Longitudinal Spectral Coherence

    DEFF Research Database (Denmark)

    Kristensen, Leif

    1979-01-01

    It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between ...... observation sites and the turbulence intensity influence the results. The limitations of the theory are discussed....

  7. On scale dependence of hardness

    International Nuclear Information System (INIS)

    Shorshorov, M.Kh.; Alekhin, V.P.; Bulychev, S.I.

    1977-01-01

    The concept of hardness as a structure-sensitive characteristic of a material is considered. It is shown that in conditions of a decreasing stress field under the inventor the hardness function is determined by the average distance, Lsub(a), between the stops (fixed and sessile dislocations, segregation particles, etc.). In the general case, Lsub(a) depends on the size of the impression and explains the great diversity of hardness functions. The concept of average true deformation rate on depression is introduced

  8. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  9. Spectral Lag Evolution among γ-Ray Burst Pulses Lan-Wei Jia1 ...

    Indian Academy of Sciences (India)

    pulses with observations by CGRO/BATSE. No universal spectral lag evolution feature and pulse luminosity-lag relation within a GRB is observed. ... Key words. γ-rays: bursts—spectral lag—GRB pulse. 1. Introduction. It is found that soft photons lag behind the hard photons and is usually seen in long. GRBs (e.g., Norris et ...

  10. Spectral functions from hadronic τ decays

    International Nuclear Information System (INIS)

    Davier, Michel

    2002-01-01

    Hadronic decays of the τ lepton provide a clean environment to study hadron dynamics in an energy regime dominated by romances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonpertubative contributions. the τ vector spectral functions for the 2π and 4π final states are used together with e p+ e p- data in order to compute vacuum polarization integrals occurring in the calculations of the anomalous magnetic moment of the muon and the running of the electromagnetic coupling

  11. Hard diffraction and small-x

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In the United States, phrases such as ''small-x evolution'', ''the BFKL Pomeron'', ''deep-inelastic rapiditygap events'' and ''hard-diffraction'' do not generate the same intensity of discussion amongst high-energy physicists that they do in Europe. However, for three days in the fall such discussion filled the air at Fermilab. The ''2nd Workshop on Small-x and Diffractive Physics at the Tevatron'' was a review of the rapid theoretical and experimental progress taking place in this field. Although Quantum Chromo-dynamics (QCD) has been established as the theory of strong interactions for twenty years, as yet neither perturbative high-energy calculations nor low-energy non-perturbative techniques have been successfully extended to the mixture of high energy and low transverse momenta which characterize traditional ''soft'' diffractive processes. The simplest soft diffractive process is elastic scattering. In this case it is easiest to accept that there is an exchanged ''pomeron'', which can be pictured as a virtual entity with no electric charge or strong charge (colour), perhaps like an excitation of the vacuum. The same pomeron is expected to appear in all diffractive processes. Understanding the pomeron in QCD is a fundamental theoretical and experimental challenge. In the last two or three years the ''frontier'' in this challenging area of QCD has been pushed back significantly in both theory and experiment. Progress has been achieved by studying the evolution of hard collisions to relatively smaller constituent momenta (small x) and by studying ''hard'' diffractive collisions containing simultaneous signatures of diffraction and hard perturbative processes. The hard processes have included high transverse momentum jet production, deep inelastic lepton scattering, and (most recently) W

  12. Microfabrication of hard x-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik

    This thesis deals with the development of silicon compound refractive lenses (Si-CRLs) for shaping hard x-ray beams. The CRLs are to be fabricated using state of the art microfabrication techniques. The primary goal of the thesis work is to produce Si-CRLs with considerably increased structure...... and characterized with respect to their shape. Their optical performances were tested at the European Synchrotron Radiation Facility (ESRF). Two 1D-focusing Si-CRLs suitable as condensers in hard-XRM were developed utilizing the aforementioned two different strategies. The first Si-condenser showed focusing of a 56...... of space for sample surroundings and ensure low-divergent and wide x-ray beams with narrow waists. Both results are substantial improvements to what was available at the start of this thesis work. The challenge of making x-ray objectives in silicon by interdigitation of lenslets alternately focusing...

  13. Anomalous structural transition of confined hard squares.

    Science.gov (United States)

    Gurin, Péter; Varga, Szabolcs; Odriozola, Gerardo

    2016-11-01

    Structural transitions are examined in quasi-one-dimensional systems of freely rotating hard squares, which are confined between two parallel walls. We find two competing phases: one is a fluid where the squares have two sides parallel to the walls, while the second one is a solidlike structure with a zigzag arrangement of the squares. Using transfer matrix method we show that the configuration space consists of subspaces of fluidlike and solidlike phases, which are connected with low probability microstates of mixed structures. The existence of these connecting states makes the thermodynamic quantities continuous and precludes the possibility of a true phase transition. However, thermodynamic functions indicate strong tendency for the phase transition and our replica exchange Monte Carlo simulation study detects several important markers of the first order phase transition. The distinction of a phase transition from a structural change is practically impossible with simulations and experiments in such systems like the confined hard squares.

  14. Raman microscopic studies of PVD deposited hard ceramic coatings

    International Nuclear Information System (INIS)

    Constable, C.P.

    2000-01-01

    PVD hard ceramic coatings grown via the combined cathodic arc/unbalance magnetron deposition process were studied using Raman microscopy. Characteristic spectra from binary, multicomponent, multilayered and superlattice coatings were acquired to gain knowledge of the solid-state physics associated with Raman scattering from polycrystalline PVD coatings and to compile a comprehensive spectral database. Defect-induced first order scattering mechanisms were observed which gave rise to two pronounced groups of bands related to the acoustical (150- 300cm -1 ) and optical (400-7 50cm -1 ) parts of the phonon spectrum. Evidence was gathered to support the theory that the optic modes were mainly due to the vibrations of the lighter elements and the acoustic modes due to the vibrations of the heavier elements within the lattice. A study into the deformation and disordering on the Raman spectral bands of PVD coatings was performed. TiAIN and TiZrN coatings were intentionally damaged via scratching methods. These scratches were then analysed by Raman mapping, both across and along, and a detailed spectral interpretation performed. Band broadening occurred which was related to 'phonon relaxation mechanisms' as a direct result of the breaking up of coating grains resulting in a larger proportion of grain boundaries per-unit-volume. A direct correlation of the amount of damage with band width was observed. Band shifts were also found to occur which were due to the stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of 'droplets', a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved

  15. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    Science.gov (United States)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  16. Spectral correlations in Anderson insulating wires

    Science.gov (United States)

    Marinho, M.; Micklitz, T.

    2018-01-01

    We calculate the spectral level-level correlation function of Anderson insulating wires for all three Wigner-Dyson classes. A measurement of its Fourier transform, the spectral form factor, is within reach of state-of-the-art cold atom quantum quench experiments, and we find good agreement with recent numerical simulations of the latter. Our derivation builds on a representation of the level-level correlation function in terms of a local generating function which may prove useful in other contexts.

  17. Optical spectral weight anomalies and strong correlation

    International Nuclear Information System (INIS)

    Toschi, A.; Capone, M.; Ortolani, M.; Calvani, P.; Lupi, S.; Castellani, C.

    2007-01-01

    The anomalous behavior observed in the optical spectral weight (W) of the cuprates provides valuable information about the physics of these compounds. Both the doping and the temperature dependences of W are hardly explained through conventional estimates based on the f-sum rule. By computing the optical conductivity of the doped Hubbard model with the Dynamical Mean Field Theory, we point out that the strong correlation plays a key role in determining the basic features of the observed anomalies: the proximity to a Mott insulating phase accounts simultaneously for the strong temperature dependence of W and for its zero temperature value

  18. Ground and excited state behavior of 1,4-dimethoxy-3-methyl-anthracene-9,10-dione in silver nanoparticles: Spectral and computational investigations

    Energy Technology Data Exchange (ETDEWEB)

    Umadevi, M., E-mail: ums10@yahoo.com [Department of Physics, Mother Teresa Women' s University, Kodaikanal 624101, Tamil Nadu (India); Kavitha, S.R. [Department of Physics, Mother Teresa Women' s University, Kodaikanal 624101, Tamil Nadu (India); Vanelle, P.; Terme, T.; Khoumeri, O. [Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05 (France)

    2013-10-15

    Silver nanoparticles (Ag NPs) of various sizes have been successfully synthesized by the simple and convenient Creighton method using sodium borohydride as the reducing agent under microwave irradiation. Optical absorption and fluorescence emission spectroscopic techniques were employed to investigate the effect of silver nanoparticles on the ground and excited state of 1,4-dimethoxy-3-methylanthracene-9,10-dione (DMMAD). The surface plasmon resonance (SPR) peak of the prepared silver colloidal solution was observed at 400 nm. Fluorescence quenching of DMMAD by silver nanoparticles has been found to increase with increase in the size of Ag. The fluorescence quenching has been explained by Forster Resonance Energy Transfer (FRET) theory between DMMAD and silver nanoparticles. The Stern–Volmer quenching constant and Benesi–Hildebrand association constant for the above system were calculated. DFT calculations were also performed to study the charge distribution of DMMAD in Ag both in ground and excited states. -- Highlights: • Silver nanoparticles (Ag NPs) have been synthesized using the Creighton method. • Effect of Ag NPs on the ground state of DMMAD was studied. • Influence of Ag NPs on the excited state of DMMAD was investigated. • Fluorescence quenching has been explained by Forster Resonance Energy Transfer. • Quenching and binding constants were also calculated.

  19. Estimation of spectral kurtosis

    Science.gov (United States)

    Sutawanir

    2017-03-01

    Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to

  20. 17O solid-state NMR spectroscopy of A2B2O7 oxides: quantitative isotopic enrichment and spectral acquisition?

    Science.gov (United States)

    Fernandes, Arantxa; Moran, Robert F; Sneddon, Scott; Dawson, Daniel M; McKay, David; Bignami, Giulia P M; Blanc, Frédéric; Whittle, Karl R; Ashbrook, Sharon E

    2018-02-13

    The potential of 17 O NMR spectroscopy for the investigation of A 2 B 2 O 7 ceramic oxides important in the encapsulation of radioactive waste is demonstrated, with post-synthetic enrichment by exchange with 17 O 2 gas. For Y 2 Sn 2 O 7 , Y 2 Ti 2 O 7 and La 2 Sn 2 O 7 pyrochlores, enrichment of the two distinct O species is clearly non quantitative at lower temperatures (∼700 °C and below) and at shorter times, despite these being used in prior work, with preferential enrichment of OA 2 B 2 favoured over that of OA 4 . At higher temperatures, the 17 O NMR spectra suggest that quantitative enrichment has been achieved, but the integrated signal intensities do not reflect the crystallographic 1 : 6 (O1 : O2) ratio until corrected for differences in T 1 relaxation rates and, more importantly, the contribution of the satellite transitions. 17 O NMR spectra of Y 2 Zr 2 O 7 and Y 2 Hf 2 O 7 defect fluorites showed little difference with any variation in enrichment temperature or time, although an increase in the absolute level of enrichment (up to ∼7.5%) was observed at higher temperature. DFT calculations show that the six distinct resonances observed cannot be assigned unambiguously, as each has contributions from more than one of the five possible next nearest neighbour environments. For La 2 Ti 2 O 7 , which adopts a layered perovskite-like structure, little difference in the spectral intensities is observed with enrichment time or temperature, although the highest absolute levels of enrichment (∼13%) were obtained at higher temperature. This work demonstrates that 17 O NMR has the potential to be a powerful probe of local structure and disorder in oxides, but that considerable care must be taken both in choosing the conditions for 17 O enrichment and the experimental acquisition parameters if the necessary quantitative measurements are to be obtained for more complex systems.

  1. Long term variability of Cygnus X-1. V. State definitions with all sky monitors

    Science.gov (United States)

    Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M. A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G. L.; Hanke, M.; Kühnel, M.; Markoff, S. B.; Pooley, G. G.; Rothschild, R. E.; Tomsick, J. A.; Wilson-Hodge, C. A.; Wilms, J.

    2013-06-01

    We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different monitors, facilitating the determination of the state and its context for any observation of the source, potentially over the lifetimes of different individual monitors. A separation of the hard and the intermediate states, which strongly differ in their spectral shape and short-term timing behavior, is only possible when data in the soft X-rays (probability of Cyg X-1 remaining in a given state for at least one week to be larger than 85% in the hard state and larger than 75% in the soft state. Intermediate states are short lived, with a 50% probability that the source leaves the intermediate state within three days. Reliable detection of these potentially short-lived events is only possible with monitor data that have a time resolution better than 1 d.

  2. Spectrally accurate contour dynamics

    International Nuclear Information System (INIS)

    Van Buskirk, R.D.; Marcus, P.S.

    1994-01-01

    We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use

  3. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  4. State transitions in the 2001/2002 outburst of XTE J1650-500

    International Nuclear Information System (INIS)

    Rossi, S.; Homan, J.; Miller, J.M.; Belloni, T.

    2004-01-01

    We present a study of the X-ray transient and black hole candidate XTE J1650-500 during its 2001/2002 outburst. The source made two state transitions between the hard and soft states, at luminosity levels that differ by a factor of ∼5-10. The first transition, between hard and soft, lasted for ∼30 days and showed two parts; one part in which the spectral properties evolve smoothly away from the hard state and another that we identify as the 'steep power law state'. The two parts showed different behavior of the Fe K emission line and QPO frequencies. The second transition, from soft to hard, lasted only ∼15 days and showed no evidence of the presence of the 'steep power law state'. Comparing observations from the early rise and the decay of the outburst, we conclude that the source can be in the hard state in a range of more than 10 4 in luminosity. We briefly discuss the state transitions in the framework of a two-flow model

  5. On Pythagoras Theorem for Products of Spectral Triples

    OpenAIRE

    D'Andrea, Francesco; Martinetti, Pierre

    2013-01-01

    We discuss a version of Pythagoras theorem in noncommutative geometry. Usual Pythagoras theorem can be formulated in terms of Connes' distance, between pure states, in the product of commutative spectral triples. We investigate the generalization to both non pure states and arbitrary spectral triples. We show that Pythagoras theorem is replaced by some Pythagoras inequalities, that we prove for the product of arbitrary (i.e. non-necessarily commutative) spectral triples, assuming only some un...

  6. The Nuisance of Nuisance Regression: Spectral Misspecification in a Common Approach to Resting-State fMRI Preprocessing Reintroduces Noise and Obscures Functional Connectivity

    OpenAIRE

    Hallquist, Michael N.; Hwang, Kai; Luna, Beatriz

    2013-01-01

    Recent resting-state functional connectivity fMRI (RS-fcMRI) research has demonstrated that head motion during fMRI acquisition systematically influences connectivity estimates despite bandpass filtering and nuisance regression, which are intended to reduce such nuisance variability. We provide evidence that the effects of head motion and other nuisance signals are poorly controlled when the fMRI time series are bandpass-filtered but the regressors are unfiltered, resulting in the inadvertent...

  7. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...

  8. Rectangular spectral collocation

    KAUST Repository

    Driscoll, Tobin A.; Hale, Nicholas

    2015-01-01

    Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon

  9. Vowel Inherent Spectral Change

    CERN Document Server

    Assmann, Peter

    2013-01-01

    It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...

  10. Hard Diffraction - from Blois 1985 to 2005

    Energy Technology Data Exchange (ETDEWEB)

    Gunnar, Ingelman [Uppsala Univ., High Energy Physics (Sweden)

    2005-07-01

    The idea of diffractive processes with a hard scale involved, to resolve the underlying parton dynamics, was presented at the first Blois conference in 1985 and experimentally verified a few years later. Today hard diffraction is an attractive research field with high-quality data and new theoretical models. The trend from Regge-based pomeron models to QCD-based parton level models has given insights on QCD dynamics involving perturbative gluon exchange mechanisms. In the new QCD-based models, the pomeron is not part of the proton wave function, but diffraction is an effect of the scattering process. Models based on interactions with a colour background field provide an interesting approach which avoids conceptual problems of pomeron-based models, such as the pomeron flux, and provide a basis for common theoretical framework for all final states, diffractive gap events as well as non-diffractive events. Finally, the new process of gaps between jets provides strong evidence for the BFKL dynamics as predicted since long by QCD, but so far hard to establish experimentally.

  11. Hard diffraction and deep inelastic scattering

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1994-04-01

    Since the advent of hard-collision physics, the study of diffractive processes - shadow physics - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word diffraction is sometimes used by high-energy physicists in a loose way. The author defines this term to mean: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the open-quotes legoclose quotes phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width Δη does not have a power-law decrease with increasing subenergy s=e Δη , but behaves at most like some power of pseudorapidity Δη∼log(s). The term hard diffraction shall simply refer to those diffractive process which have jets in the final-state phase-space

  12. A New Measurement of the Spectral Lag of Gamma-Ray Bursts and its Implications for Spectral Evolution Behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Lang; Wang, Fu-Ri; Cheng, Ye-Hao; Zhang, Xi; Yu, Bang-Yao; Xi, Bao-Jia; Wang, Xue; Feng, Huan-Xue; Zhang, Meng, E-mail: lshao@hebtu.edu.cn [Department of Space Sciences and Astronomy, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Bin-Bin [Instituto de Astrofísica de Andalucá (IAA-CSIC), P.O. Box 03004, E-18080 Granada (Spain); Wu, Xue-Feng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Xu, Dong [Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-08-01

    We carry out a systematical study of the spectral lag properties of 50 single-pulsed gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor. By dividing the light curves into multiple consecutive energy channels, we provide a new measurement of the spectral lag that is independent of energy channel selections. We perform a detailed statistical study of our new measurements. We find two similar power-law energy dependencies of both the pulse arrival time and pulse width. Our new results on the power-law indices would favor the relativistic geometric effects for the origin of spectral lag. However, a complete theoretical framework that can fully account for the diverse energy dependencies of both arrival time and pulse width revealed in this work is still lacking. We also study the spectral evolution behaviors of the GRB pulses. We find that a GRB pulse with negligible spectral lag would usually have a shorter pulse duration and would appear to have a “hardness-intensity tracking” behavior, and a GRB pulse with a significant spectral lag would usually have a longer pulse duration and would appear to have a “hard-to-soft” behavior.

  13. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  14. Plastic strain and flux jumps in hard and composite superconductors

    International Nuclear Information System (INIS)

    Maksimov, I.L.; Mints, R.G.

    1981-01-01

    A study is made into the effect of the critical current density dependence upon the value of plastic strain on the critical state stability in hard and composite superconductors under conditions of plastic yield of the material. Criteria of the critical state stability relative to the jointly developing magnetic flux jumps and plastic strain jerks, are found. (author)

  15. Connections Between Jet Formation and Multiwavelength Spectral Evolution in Black Hole Transients

    Science.gov (United States)

    Kakemci, Emrah; Chun, Yoon-Young; Dincer, Tolga; Buxton, Michelle; Tomsick, John A.; Corbel, Stephane; Kaaret, Philip

    2011-01-01

    Multiwavelength observations are the key to understand conditions of jet formation in Galactic black hole transient (GBHT) systems. By studying radio and optical-infrared evolution of such systems during outburst decays, the compact jet formation can be traced. Comparing this with X-ray spectral and timing evolution we can obtain physical and geometrical conditions for jet formation, and study the contribution of jets to X-ray emission. In this work, first X-ray evolution - jet relation for XTE J1752-223 will be discussed. This source had very good coverage in X-rays, optical, infrared and radio. A long exposure with INTEGRAL also allowed us to study gamma-ray behavior after the jet turns on. We will also show results from the analysis of data from GX 339-4 in the hard state with SUZAKU at low flux levels. The fits to iron line fluorescence emission show that the inner disk radius increases by a factor of greater than 27 with respect to radii in bright states. This result, along with other disk radius measurements in the hard state will be discussed within the context of conditions for launching and sustaining jets.

  16. Hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Brandt, A.

    1995-09-01

    The field of hard diffraction, which studies events with a rapidity gap and a hard scattering, has expanded dramatically recently. A review of new results from CDF, D OE, H1 and ZEUS will be given. These results include diffractive jet production, deep-inelastic scattering in large rapidity gap events, rapidity gaps between high transverse energy jets, and a search for diffractive W-boson production. The combination of these results gives new insight into the exchanged object, believed to be the pomeron. The results axe consistent with factorization and with a hard pomeron that contains both quarks and gluons. There is also evidence for the exchange of a strongly interacting color singlet in high momentum transfer (36 2 ) events

  17. Initiative hard coal; Initiative Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, J.

    2007-08-02

    In order to decrease the import dependence of hard coal in the European Union, the author has submitted suggestions to the director of conventional sources of energy (directorate general for energy and transport) of the European community, which found a positive resonance. These suggestions are summarized in an elaboration 'Initiative Hard Coal'. After clarifying the starting situation and defining the target the presupposition for a better use of hard coal deposits as raw material in the European Union are pointed out. On that basis concrete suggestions for measures are made. Apart from the conditions of the deposits it concerns thereby also new mining techniques and mining-economical developments, connected with tasks for the mining-machine industry. (orig.)

  18. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity.

    Science.gov (United States)

    Hallquist, Michael N; Hwang, Kai; Luna, Beatriz

    2013-11-15

    Recent resting-state functional connectivity fMRI (RS-fcMRI) research has demonstrated that head motion during fMRI acquisition systematically influences connectivity estimates despite bandpass filtering and nuisance regression, which are intended to reduce such nuisance variability. We provide evidence that the effects of head motion and other nuisance signals are poorly controlled when the fMRI time series are bandpass-filtered but the regressors are unfiltered, resulting in the inadvertent reintroduction of nuisance-related variation into frequencies previously suppressed by the bandpass filter, as well as suboptimal correction for noise signals in the frequencies of interest. This is important because many RS-fcMRI studies, including some focusing on motion-related artifacts, have applied this approach. In two cohorts of individuals (n=117 and 22) who completed resting-state fMRI scans, we found that the bandpass-regress approach consistently overestimated functional connectivity across the brain, typically on the order of r=.10-.35, relative to a simultaneous bandpass filtering and nuisance regression approach. Inflated correlations under the bandpass-regress approach were associated with head motion and cardiac artifacts. Furthermore, distance-related differences in the association of head motion and connectivity estimates were much weaker for the simultaneous filtering approach. We recommend that future RS-fcMRI studies ensure that the frequencies of nuisance regressors and fMRI data match prior to nuisance regression, and we advocate a simultaneous bandpass filtering and nuisance regression strategy that better controls nuisance-related variability. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  20. Evaluation of hard fossil fuel

    International Nuclear Information System (INIS)

    Zivkovic, S.; Nuic, J.

    1999-01-01

    Because of its inexhaustible supplies hard fossil fuel will represent the pillar of the power systems of the 21st century. Only high-calorie fossil fuels have the market value and participate in the world trade. Low-calorie fossil fuels ((brown coal and lignite) are fuels spent on the spot and their value is indirectly expressed through manufactured kWh. For the purpose of determining the real value of a tonne of low-calorie coal, the criteria that help in establishing the value of a tonne of hard coal have to be corrected and thus evaluated and assessed at the market. (author)

  1. Calorimeter triggers for hard collisions

    International Nuclear Information System (INIS)

    Landshoff, P.V.; Polkinghorne, J.C.

    1978-01-01

    We discuss the use of a forward calorimeter to trigger on hard hadron-hadron collisions. We give a derivation in the covariant parton model of the Ochs-Stodolsky scaling law for single-hard-scattering processes, and investigate the conditions when instead a multiple- scattering mechanism might dominate. With a proton beam, this mechanism results in six transverse jets, with a total average multiplicity about twice that seen in ordinary events. We estimate that its cross section is likely to be experimentally accessible at avalues of the beam energy in the region of 100 GeV/c

  2. Correlation between Fe–V–C alloys surface hardness and plasma temperature via LIBS technique

    Energy Technology Data Exchange (ETDEWEB)

    Messaoud Aberkane, S., E-mail: smessaoud@cdta.dz [Centre de Développement des Technologies Avancées, Baba Hassen, Alger (Algeria); Bendib, A. [Université des Sciences et de Technologie Houari Boumediene, Bab-Ezzouar, Alger (Algeria); Yahiaoui, K.; Boudjemai, S.; Abdelli-Messaci, S.; Kerdja, T. [Centre de Développement des Technologies Avancées, Baba Hassen, Alger (Algeria); Amara, S.E. [Université des Sciences et de Technologie Houari Boumediene, Bab-Ezzouar, Alger (Algeria); Harith, M.A. [National Institute of Laser Enhanced Science, Cairo University (Egypt)

    2014-05-01

    Highlights: • New application of LIBS in industry. • Hardness of metallic alloys estimation using LIBS calibration curves. • Linear correlation between the plasma temperature and the hardness of metallic alloys. • The shock wave is fast when the material is hard. - Abstract: Surface hardness is a very important characteristic of metals. Its monitoring plays a key role in industry. In the present paper, using laser induced breakdown spectroscopy (LIBS), Fe–V{sub 18%}–C{sub 1%} alloys with different heat treatments have been used for making the correlation between surface hardness and laser-induced plasma temperatures. All investigated samples were characterized by the same ferrite phase with different Vickers surface hardnesses. The differences in hardness values were attributed to the crystallite size changes. A linear relationship has been obtained between the Vickers surface hardness and the laser induced plasma temperature. For comparison the relation between surface hardness and the ratio of the vanadium ionic to atomic spectral lines intensities (VII/VI) provided good linear results too. However, adopting the proposed approach of using the plasma temperature, instead, is more reliable in view of the difficulties that could be encountered in choosing the proper ionic and atomic spectral lines. To validate this approach we have investigated the shock wave speed induced by laser interaction with the used samples. It was found that harder is the material faster is the shock wave. The determination of the surface hardness via measuring T{sub e} shows the feasibility of using LIBS as an easy and reliable method for in situ industrial application for production control.

  3. Spectral functions from Quantum Monte Carlo

    International Nuclear Information System (INIS)

    Silver, R.N.

    1989-01-01

    In his review, D. Scalapino identified two serious limitations on the application of Quantum Monte Carlo (QMC) methods to the models of interest in High T c Superconductivity (HTS). One is the ''sign problem''. The other is the ''analytic continuation problem'', which is how to extract electron spectral functions from QMC calculations of the imaginary time Green's functions. Through-out this Symposium on HTS, the spectral functions have been the focus for the discussion of normal state properties including the applicability of band theory, Fermi liquid theory, marginal Fermi liquids, and novel non-perturbative states. 5 refs., 1 fig

  4. Chemical hardness and density functional theory

    Indian Academy of Sciences (India)

    Unknown

    RALPH G PEARSON. Chemistry Department, University of California, Santa Barbara, CA 93106, USA. Abstract. The concept of chemical hardness is reviewed from a personal point of view. Keywords. Hardness; softness; hard & soft acids bases (HSAB); principle of maximum hardness. (PMH) density functional theory (DFT) ...

  5. Revisiting the Short-term X-ray Spectral Variability of NGC 4151 with Chandra

    Science.gov (United States)

    Wang, Junfeng; Risaliti, G.; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.

    2010-05-01

    We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ~200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 × 10-11 erg s-1 cm-2 and 10-10 erg s-1 cm-2 (L 2-10 keV ~ 1.3-2.1 × 1042 erg s-1). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ~ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ~ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ~ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA "long look" observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ~ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M_{BH}˜ 4.6× 10^7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r <~ 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.

  6. REVISITING THE SHORT-TERM X-RAY SPECTRAL VARIABILITY OF NGC 4151 WITH CHANDRA

    International Nuclear Information System (INIS)

    Wang Junfeng; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.; Risaliti, G.

    2010-01-01

    We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ∼200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 x 10 -11 erg s -1 cm -2 and 10 -10 erg s -1 cm -2 (L 2-10 k eV ∼ 1.3-2.1 x 10 42 erg s -1 ). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ∼ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ∼ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ∼ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA 'long look' observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ∼ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M BH ∼4.6x10 7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r ∼< 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.

  7. Collision induced broadening of ν1 band and ground state spectral lines of sulfur dioxide perturbed by N2 and O2

    Science.gov (United States)

    Ceselin, Giorgia; Tasinato, Nicola; Puzzarini, Cristina; Charmet, Andrea Pietropolli; Stoppa, Paolo; Giorgianni, Santi

    2017-09-01

    To monitor the constituents and trace pollutants of Earth atmosphere and understand its evolution, accurate spectroscopic parameters are fundamental information. SO2 is produced by both natural and anthropogenic sources and it is one of the principal causes of acid rains as well as an important component of fine aerosol particles, once oxidized to sulfate. The present work aims at determining SO2 broadening parameters using N2 and O2 as atmospherically relevant damping gases. Measurements are carried out in the infrared (IR) and mm-/sub-mm wave regions, around 8.8 μm and in the 104 GHz-1.1 THz interval, respectively. IR ro-vibrational transitions are recorded by using a tunable diode laser spectrometer, whereas the microwave spectra are recorded by using a frequency-modulated millimeter-/submillimeter-wave spectrometer. SO2-N2 and SO2-O2 collisional cross sections are retrieved for several ν1 band ro-vibrational transitions of 32S16O2, for some transitions belonging to either ν1 + ν2 - ν2 of 32S16O2 or ν1 of 34S16O2 as well as for about 20 pure rotational transitions in the vibrational ground state of the main isotopic species. From N2- and O2- broadening coefficients the broadening parameters of SO2 in air are derived. The work is completed with the study of the dependence of foreign broadening coefficients on the rotational quantum numbers.

  8. Seismic signals hard clipping overcoming

    Science.gov (United States)

    Olszowa, Paula; Sokolowski, Jakub

    2018-01-01

    In signal processing the clipping is understand as the phenomenon of limiting the signal beyond certain threshold. It is often related to overloading of a sensor. Two particular types of clipping are being recognized: soft and hard. Beyond the limiting value soft clipping reduces the signal real gain while the hard clipping stiffly sets the signal values at the limit. In both cases certain amount of signal information is lost. Obviously if one possess the model which describes the considered signal and the threshold value (which might be slightly more difficult to obtain in the soft clipping case), the attempt of restoring the signal can be made. Commonly it is assumed that the seismic signals take form of an impulse response of some specific system. This may lead to belief that the sine wave may be the most appropriate to fit in the clipping period. However, this should be tested. In this paper the possibility of overcoming the hard clipping in seismic signals originating from a geoseismic station belonging to an underground mine is considered. A set of raw signals will be hard-clipped manually and then couple different functions will be fitted and compared in terms of least squares. The results will be then analysed.

  9. Hard equality constrained integer knapsacks

    NARCIS (Netherlands)

    Aardal, K.I.; Lenstra, A.K.; Cook, W.J.; Schulz, A.S.

    2002-01-01

    We consider the following integer feasibility problem: "Given positive integer numbers a 0, a 1,..., a n, with gcd(a 1,..., a n) = 1 and a = (a 1,..., a n), does there exist a nonnegative integer vector x satisfying ax = a 0?" Some instances of this type have been found to be extremely hard to solve

  10. Stress in hard metal films

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Kamminga, J.D.

    2004-01-01

    In the absence of thermal stress, tensile stress in hard metal films is caused by grain boundary shrinkage and compressive stress is caused by ion peening. It is shown that the two contributions are additive. Moreover tensile stress generated at the grain boundaries does not relax by ion

  11. New hard X-ray sources at 38/sup 0/ declination

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale)

    1981-01-01

    We report the detection of three new hard X-rays sources emitting in the range 15-150 KeV. Their observation was carried out by means of a balloon borne payload, consisting of two large area high spectral resolution Multiwire Spectroscopic Proportional Counters.

  12. Hard X-ray Spectrum of Mkn 421 during the Active Phase

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    Spectral measurement of Mkn 421 were made in the hard X-ray energy band of ... In the canonical models for blazars, the observed radiation in radio, UV and low ... defined by a slat collimator specially designed with a sandwiched material of.

  13. CRISS power spectral density

    International Nuclear Information System (INIS)

    Vaeth, W.

    1979-04-01

    The correlation of signal components at different frequencies like higher harmonics cannot be detected by a normal power spectral density measurement, since this technique correlates only components at the same frequency. This paper describes a special method for measuring the correlation of two signal components at different frequencies: the CRISS power spectral density. From this new function in frequency analysis, the correlation of two components can be determined quantitatively either they stem from one signal or from two diverse signals. The principle of the method, suitable for the higher harmonics of a signal as well as for any other frequency combinations is shown for the digital frequency analysis technique. Two examples of CRISS power spectral densities demonstrates the operation of the new method. (orig.) [de

  14. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  15. Photovoltaic spectral responsivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  16. Monitoring the Galactic - Search for Hard X-Ray Transients

    Science.gov (United States)

    Marshall, Francis

    Hard X-ray transients with fluxs from ~1 to ~30 mCrab are a common feature of the galactic plane with apparent concentrations in specific regions of the plane. Concentrations in the Scutum and Carina fields probably indicate an enhancement of Be X-ray binaries along the tangent direction of two spiral arms. The frequency of outbursts suggest that at any one time 1 or 2 transients are active in the Scutum field alone. We propose weekly scans of the galactic plane to understand this population of sources. The scans will also monitor about 50 already known sources with better spectral information than available with the ASM.

  17. UV radiation hardness of silicon inversion layer solar cells

    International Nuclear Information System (INIS)

    Hezel, R.

    1990-01-01

    For full utilization of the high spectral response of inversion layer solar cells in the very-short-wavelength range of the solar spectrum sufficient ultraviolet-radiation hardness is required. In addition to the charge-induced passivation achieved by cesium incorporation into the silicon nitride AR coating, in this paper the following means for further drastic reduction of UV light-induced effects in inversion layer solar cells without encapsulation are introduced and interpretations are given: increasing the nitride deposition temperature, silicon surface oxidation at low temperatures, and texture etching and using higher substrate resistivities. High UV radiation tolerance and improvement of the cell efficiency could be obtained simultaneously

  18. Modelling the flaring activity of the high-z, hard X-ray-selected blazar IGR J22517+2217: Flaring activity of IGR J22517+2217

    International Nuclear Information System (INIS)

    Lanzuisi, G.; De Rosa, A.; Ghisellini, G.; Panessa, F.

    2012-01-01

    We present new Suzaku and Fermi data and re-analysed archival hard X-ray data from the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and Swift–Burst Alert Telescope (BAT) surveys to investigate the physical properties of the luminous, high-redshift, hard X-ray-selected blazar IGR J22517+2217, through the modelling of its broad-band spectral energy distribution (SED) in two different activity states. Through analysis of new Suzaku data and flux-selected data from archival hard X-ray observations, we build the source SED in two different states, one for the newly discovered flare that occurred in 2005 and one for the following quiescent period. Both SEDs are strongly dominated by the high-energy hump peaked at 10 20 –10 22 Hz, which is at least two orders of magnitude higher than the low-energy (synchrotron) one at 10 11 –10 14 Hz and varies by a factor of 10 between the two states. In both states the high-energy hump is modelled as inverse Compton emission between relativistic electrons and seed photons produced externally to the jet, while the synchrotron self-Compton component is found to be negligible. In our model the observed variability can be accounted for by a variation of the total number of emitting electrons and by a dissipation region radius changing from inside to outside the broad-line region as the luminosity increases. In its flaring activity, IGR J22517+2217 is revealed as one of the most powerful jets among the population of extreme, hard X-ray-selected, high-redshift blazars observed so far.

  19. Spectral analysis by correlation

    International Nuclear Information System (INIS)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.

    1969-01-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr

  20. Spectral backward radiation profile

    International Nuclear Information System (INIS)

    Kwon, Sung Duck; Lee, Keun Hyun; Kim, Bo Ra; Yoon, Suk Soo

    2004-01-01

    Ultrasonic backward radiation profile is frequency-dependent when incident region has deptional gradient of acoustical properties or multi-layers. Until now, we have measured the profiles of principal frequencies of used transducers so that it was not easy to understand the change of the frequency component and spectrum of backward radiation from the profile. We tried to measure the spectral backward radiation profiles using DFP(digital filer package) Lecroy DSO. The very big changes in the shape and pattern of spectral backward radiation profiles leads to the conclusion that this new try could be very effective tool to evaluate frequency dependent surface area.

  1. Hard X ray lines from neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; La Padula, C.; Ubertini, P.

    1982-01-01

    Experimental evidence is presented and evaluated concerning the features of the hard X-ray spectra detected in a number of cosmic X-ray sources which contain a neutron star. The strong emission line at cyclotron resonance detected in the spectrum of Her XI at an energy of 58 keV is evaluated and the implications of this finding are discussed. Also examined is the presence of spectral features in the energy range 20-80 keV found in the spectra of gamma-ray bursts, which have been interpreted as cyclotron resonance from interstellar-gas-accreting neutron stars. The less understood finding of a variable emission line at approximately 70 keV in the spectrum of the Crab Pulsar is considered. It is determined that several features varying with time are present in the spectra of cosmic X-ray sources associated with neutron stars. If these features are due to cyclotron resonance, it is suggested that they provide a direct measurement of neutron star magnetic fields on the order of 10 to the 11th-10 to the 13th Gauss. However, the physical condition of the emitting region and its geometry are still quite obscure.

  2. Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse

    Directory of Open Access Journals (Sweden)

    J. Szlachetko

    2014-03-01

    Full Text Available Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10−18 s to femtoseconds (10−15 s and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS, we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments.

  3. Modulation of stimulus-induced 20-Hz activity for the tongue and hard palate during tongue movement in humans.

    Science.gov (United States)

    Maezawa, Hitoshi; Onishi, Kaori; Yagyu, Kazuyori; Shiraishi, Hideaki; Hirai, Yoshiyuki; Funahashi, Makoto

    2016-01-01

    Modulation of 20-Hz activity in the primary sensorimotor cortex (SM1) may be important for oral functions. Here, we show that 20-Hz event-related desynchronization/synchronization (20-Hz ERD/ERS) is modulated by sensory input and motor output in the oral region. Magnetic 20-Hz activity was recorded following right-sided tongue stimulation during rest (Rest) and self-paced repetitive tongue movement (Move). To exclude proprioception effects, 20-Hz activity induced by right-sided hard palate stimulation was also recorded. The 20-Hz activity in the two conditions was compared via temporal spectral evolution analyses. 20-Hz ERD/ERS was detected over bilateral temporoparietal areas in the Rest condition for both regions. Moreover, 20-Hz ERS was significantly suppressed in the Move condition for both regions. Detection of 20-Hz ERD/ERS during the Rest condition for both regions suggests that the SM1 functional state may be modulated by oral stimulation, with or without proprioceptive effects. Moreover, the suppression of 20-Hz ERS for the hard palate during the Move condition suggests that the stimulation-induced functional state of SM1 may have been modulated by the movement, even though the movement and stimulation areas were different. Sensorimotor function of the general oral region may be finely coordinated through 20-Hz cortical oscillation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Spectral Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Mandel, Jan; Kasanický, Ivan; Vejmelka, Martin; Fuglík, Viktor; Turčičová, Marie; Eben, Kryštof; Resler, Jaroslav; Juruš, Pavel

    2014-01-01

    Roč. 11, - (2014), EMS2014-446 [EMS Annual Meeting /14./ & European Conference on Applied Climatology (ECAC) /10./. 06.10.2014-10.10.2014, Prague] R&D Projects: GA ČR GA13-34856S Grant - others:NSF DMS-1216481 Institutional support: RVO:67985807 Keywords : data assimilation * spectral filter Subject RIV: DG - Athmosphere Sciences, Meteorology

  5. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Sherwood, D.G.; Wilson, J.F.; Salton, R.B.; Fensterer, H.F.

    1981-01-01

    A mechanical spectral shift reactor comprises apparatus for inserting and withdrawing water displacer elements from the reactor core for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The apparatus includes drivemechanisms for moving the displacer elements relative to the core and guide mechanisms for guiding the displayer rods through the reactor vessel

  6. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Sherwood, D.G.; Wilson, J.F.; Salton, R.B.; Fensterer, H.F.

    1982-01-01

    A mechanical spectral shift reactor comprises apparatus for inserting and withdrawing water displacer elements from the reactor core for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The apparatus includes drive mechanisms for moving the displacer elements relative to the core and guide mechanisms for guiding the displacer rods through the reactor vessel. (author)

  7. Subgroup report on hard x-ray microprobes

    International Nuclear Information System (INIS)

    Ice, G.E.; Barbee, T.; Bionta, R.; Howells, M.; Thompson, A.C.; Yun, W.

    1994-01-01

    The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E≥5 keV) microprobes. New x-ray optics have been demonstrated which show promise for achieving intense submicron hard x-ray probes. These probes will be used for extraordinary elemental detection by x-ray fluorescence/absorption and for microdiffraction to identify phase and strain. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature makes the development of an advanced hard x-ray microprobe an important national goal. In this workshop state-of-the-art hard x-ray microprobe optics were described and future directions were discussed. Gene Ice, Oak Ridge National Laboratory (ORNL), presented an overview of the current status of hard x-ray microprobe optics and described the use of crystal spectrometers to improve minimum detectable limits in fluorescent microprobe experiments. Al Thompson, Lawrence Berkeley Laboratory (LBL), described work at the Center for X-ray Optics to develop a hard x-ray microprobe based on Kirkpatrick-Baez (KB) optics. Al Thompson also showed the results of some experimental measurements with their KB optics. Malcolm Howells presented a method for bending elliptical mirrors and Troy Barbee commented on the use of graded d spacings to achieve highest efficiency in KB multilayer microfocusing. Richard Bionta, Lawrence Livermore National Laboratory (LLNL), described the development of the first hard x-ray zone plates and future promise of so called open-quotes jelly rollclose quotes or sputter slice zone plates. Wenbing Yun, Argonne National Laboratory (ANL), described characterization of jelly roll and lithographically produced zone plates and described the application of zone plates to focus extremely narrow bandwidths by nuclear resonance. This report summarizes the presentations of the workshop subgroup on hard x-ray microprobes

  8. Evaluation of a linear spectral mixture model and vegetation indices (NDVI and EVI) in a study of schistosomiasis mansoni and Biomphalaria glabrata distribution in the state of Minas Gerais, Brazil.

    Science.gov (United States)

    Guimarães, Ricardo J P S; Freitas, Corina C; Dutra, Luciano V; Scholte, Ronaldo G C; Amaral, Ronaldo S; Drummond, Sandra C; Shimabukuro, Yosio E; Oliveira, Guilherme C; Carvalho, Omar S

    2010-07-01

    This paper analyses the associations between Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) on the prevalence of schistosomiasis and the presence of Biomphalaria glabrata in the state of Minas Gerais (MG), Brazil. Additionally, vegetation, soil and shade fraction images were created using a Linear Spectral Mixture Model (LSMM) from the blue, red and infrared channels of the Moderate Resolution Imaging Spectroradiometer spaceborne sensor and the relationship between these images and the prevalence of schistosomiasis and the presence of B. glabrata was analysed. First, we found a high correlation between the vegetation fraction image and EVI and second, a high correlation between soil fraction image and NDVI. The results also indicate that there was a positive correlation between prevalence and the vegetation fraction image (July 2002), a negative correlation between prevalence and the soil fraction image (July 2002) and a positive correlation between B. glabrata and the shade fraction image (July 2002). This paper demonstrates that the LSMM variables can be used as a substitute for the standard vegetation indices (EVI and NDVI) to determine and delimit risk areas for B. glabrata and schistosomiasis in MG, which can be used to improve the allocation of resources for disease control.

  9. Exact sampling hardness of Ising spin models

    Science.gov (United States)

    Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.

    2017-09-01

    We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.

  10. Hard-to-fill vacancies.

    Science.gov (United States)

    Williams, Ruth

    2010-09-29

    Skills for Health has launched a set of resources to help healthcare employers tackle hard-to-fill entry-level vacancies and provide sustainable employment for local unemployed people. The Sector Employability Toolkit aims to reduce recruitment and retention costs for entry-level posts and repare people for employment through pre-job training programmes, and support employers to develop local partnerships to gain access to wider pools of candidates and funding streams.

  11. Pushing hard on the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-09-15

    The quest for new techniques to drive future generations of particle accelerators has been pushed hard in recent years, efforts having been highlighted by workshops in Europe, organized by the European Committee for Future Accelerators, and in the US. The latest ECFA Workshop on New Developments in Particle Acceleration Techniques, held at Orsay from 29 June to 4 July, showed how the initial frantic search for innovation is now maturing.

  12. CMS results on hard diffraction

    CERN Document Server

    INSPIRE-00107098

    2013-01-01

    In these proceedings we present CMS results on hard diffraction. Diffractive dijet production in pp collisions at $\\sqrt{s}$=7 TeV is discussed. The cross section for dijet production is presented as a function of $\\tilde{\\xi}$, representing the fractional momentum loss of the scattered proton in single-diffractive events. The observation of W and Z boson production in events with a large pseudo-rapidity gap is also presented.

  13. Playing Moderately Hard to Get

    Directory of Open Access Journals (Sweden)

    Stephen Reysen

    2013-12-01

    Full Text Available In two studies, we examined the effect of different degrees of attraction reciprocation on ratings of attraction toward a potential romantic partner. Undergraduate college student participants imagined a potential romantic partner who reciprocated a low (reciprocating attraction one day a week, moderate (reciprocating attraction three days a week, high (reciprocating attraction five days a week, or unspecified degree of attraction (no mention of reciprocation. Participants then rated their degree of attraction toward the potential partner. The results of Study 1 provided only partial support for Brehm’s emotion intensity theory. However, after revising the high reciprocation condition vignette in Study 2, supporting Brehm’s emotion intensity theory, results show that a potential partners’ display of reciprocation of attraction acted as a deterrent to participants’ intensity of experienced attraction to the potential partner. The results support the notion that playing moderately hard to get elicits more intense feelings of attraction from potential suitors than playing too easy or too hard to get. Discussion of previous research examining playing hard to get is also re-examined through an emotion intensity theory theoretical lens.

  14. CMOS optimization for radiation hardness

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Fossum, J.G.

    1975-01-01

    Several approaches to the attainment of radiation-hardened MOS circuits have been investigated in the last few years. These have included implanting the SiO 2 gate insulator with aluminum, using chrome-aluminum layered gate metallization, using Al 2 O 3 as the gate insulator, and optimizing the MOS fabrication process. Earlier process optimization studies were restricted primarily to p-channel devices operating with negative gate biases. Since knowledge of the hardness dependence upon processing and design parameters is essential in producing hardened integrated circuits, a comprehensive investigation of the effects of both process and design optimization on radiation-hardened CMOS integrated circuits was undertaken. The goals are to define and establish a radiation-hardened processing sequence for CMOS integrated circuits and to formulate quantitative relationships between process and design parameters and the radiation hardness. Using these equations, the basic CMOS design can then be optimized for radiation hardness and some understanding of the basic physics responsible for the radiation damage can be gained. Results are presented

  15. Spectral investigation of a complex space charge structure in plasma

    International Nuclear Information System (INIS)

    Gurlui, S.; Dimitriu, D. G.; Ionita, C.; Schrittwieser, R. W.

    2009-01-01

    Complex space charge structures bordered by electrical double layers were spectrally investigated in argon plasma in the domain 400-1000 nm, identifying the lines corresponding to the transitions from different excited states of argon. The electron excitation temperature in the argon atoms was estimated from the spectral lines intensity ratio. (authors)

  16. Quantum BCH Codes Based on Spectral Techniques

    International Nuclear Information System (INIS)

    Guo Ying; Zeng Guihua

    2006-01-01

    When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F 2 , which plays an important role in the investigation of quantum signals. By using Fourier transforms, the idea of quantum coding theory can be described in a setting that is much different from that seen that far. Quantum BCH codes can be defined as codes whose quantum states have certain specified consecutive spectral components equal to zero and the error-correcting ability is also described by the number of the consecutive zeros. Moreover, the decoding of quantum codes can be described spectrally with more efficiency.

  17. Novel spectral features of nanoelectromechanical systems

    KAUST Repository

    Tahir, M.

    2014-02-17

    Electron transport through a quantum dot or single molecule coupled to a quantum oscillator is studied by the Keldysh nonequilibrium Green\\'s function formalism to obtain insight into the quantum dynamics of the electronic and oscillator degrees of freedom. We tune the electronic level of the quantum dot by a gate voltage, where the leads are kept at zero temperature. Due to the nonequilibrium distribution of the electrons in the quantum dot, the spectral function becomes a function of the gate voltage. Novel spectral features are identified for the ground and excited states of nanomechanical oscillators that can be used to enhance the measurement sensitivity.

  18. Imaging escape gated MPWC for hard X-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; La Padula, C.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Barbareschi, L.; Perotti, F.; Villa, G.

    1983-11-15

    A scientific forward step in the hard X-ray and soft gamma-ray astronomy will only be possible with the use of a new generation of space borne instruments. Their main characteristics have to be the two-dimensional imaging capability over a large collecting area and the fine spectral resolution in order to discriminate between the weak signal coming from cosmic sources to be detected and the strong background induced by cosmic rays, in the space environment, on the detector. To reach this goal we have developed a new hard X-ray position sensitive proportional counter operating with the escape gate technique in the range 15-150 keV, to be used together with a pseudo-random coded mask in order to obtain sky images. The detector is a high pressure (5 bar) xenon-argon-isobutane filled chamber with a spatial resolution of 30x2 mm and a spectral resolution of 5% at 60 keV on the sensitive area of 3000 cm/sup 2/.

  19. Impact of aging on radiation hardness

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Winokur, P.S.; Fleetwood, D.M.

    1997-01-01

    Burn-in effects are used to demonstrate the potential impact of thermally activated aging effects on functional and parametric radiation hardness. These results have implications on hardness assurance testing. Techniques for characterizing aging effects are proposed

  20. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... Quitting drugs is hard because addiction is a brain disease. Your brain is like a control tower that sends out ... and choices. Addiction changes the signals in your brain and makes it hard to feel OK without ...

  1. Survey of Hard Ticks (Ixodidae) Infesting Camels ( Camelus ...

    African Journals Online (AJOL)

    To determine the prevalence and abundance of hard ticks infesting camels, 414 nomadic one - humped camels in Kano State, northwestern Nigeria were selected by random sampling and examined for the presence of ticks on their bodies between January and December 2007. Three species of ticks, Amblyomma ...

  2. A further problem of the hard problem of consciousness | Gbenga ...

    African Journals Online (AJOL)

    Justifying this assertion is identified as the further problem of the hard problem of consciousness. This shows that assertions about phenomenal properties of mental experiences are wholly epistemological. Hence, the problem of explaining phenomenal properties of a mental state is not a metaphysical problem, and what is ...

  3. Hard X-ray observation of HER X-1

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F.; Vialetto, G. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale); Manchanda, R.K. (Tata Inst. of Fundamental Research, Bombay (India))

    1981-01-01

    A hard X-rays (15-170 KeV) measurement of the spectrum of Her X-1, during a mid turn-on is presented. The presence of an emission line at about 53 KeV during the mid-on state is confirmed by the present measure.

  4. Hard X-ray observation of HER X-1

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F.; Vialetto, G.

    1981-01-01

    A hard X-rays (15-170 KeV) measurement of the spectrum of Her X-1, during a mid turn-on is presented. The presence of an emission line at about 53 KeV during the mid-on state is confirmed by the present measure. (orig.)

  5. Unified Research on Network-Based Hard/Soft Information Fusion

    Science.gov (United States)

    2016-02-02

    3.2.1 Hard +Soft Data Association Data gathered during various Counterinsurgency (or COIN) operations is in different formats . For example, the...characteristic, observation time, and related data. Figure 45: Sample snapshot frame from hard sensor data TML formats were developed and...160 Figure 54: Penn State components of overall hard and soft fusion process Summary of Year 1 Accomplishments • Team formation • Initial

  6. Hybrid spectral CT reconstruction.

    Directory of Open Access Journals (Sweden)

    Darin P Clark

    Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with

  7. Hybrid spectral CT reconstruction

    Science.gov (United States)

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  8. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Wilson, J.F.; Sherwood, D.G.

    1982-01-01

    A mechanical spectral shift reactor comprises a reactive core having fuel assemblies accommodating both water displacer elements and neutron absorbing control rods for selectively changing the volume of water-moderator in the core. The fuel assemblies with displacer and control rods are arranged in alternating fashion so that one displacer element drive mechanism may move displacer elements in more than one fuel assembly without interfering with the movement of control rods of a corresponding control rod drive mechanisms. (author)

  9. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    Carrier nature of speech; modulation spectrum; spectral dynamics ... the relationships between phonetic values of sounds and their short-term spectral envelopes .... the number of free parameters that need to be estimated from training data.

  10. Spectral analysis and filter theory in applied geophysics

    CERN Document Server

    Buttkus, Burkhard

    2000-01-01

    This book is intended to be an introduction to the fundamentals and methods of spectral analysis and filter theory and their appli­ cations in geophysics. The principles and theoretical basis of the various methods are described, their efficiency and effectiveness eval­ uated, and instructions provided for their practical application. Be­ sides the conventional methods, newer methods arediscussed, such as the spectral analysis ofrandom processes by fitting models to the ob­ served data, maximum-entropy spectral analysis and maximum-like­ lihood spectral analysis, the Wiener and Kalman filtering methods, homomorphic deconvolution, and adaptive methods for nonstation­ ary processes. Multidimensional spectral analysis and filtering, as well as multichannel filters, are given extensive treatment. The book provides a survey of the state-of-the-art of spectral analysis and fil­ ter theory. The importance and possibilities ofspectral analysis and filter theory in geophysics for data acquisition, processing an...

  11. BL Lacertae: X-ray spectral evolution and a black-hole mass estimate

    Science.gov (United States)

    Titarchuk, Lev; Seifina, Elena

    2017-06-01

    We present an analysis of the spectral properties observed in X-rays from active galactic nucleus BL Lacertae using RXTE, Suzaku, ASCA, BeppoSAX, and Swift observations. The total time covered by these observations is approximately 20 yr. We show strong observational evidence that this source undergoes X-ray spectral transitions from the low hard state (LHS) through the intermediate state (IS) to the high soft state (HSS) during these observations. During the RXTE observations (1997-2001, 180 ks, for a total 145 datasets), the source was approximately 75%, 20% and only 5% of the time in the IS, LHS, and HSS, respectively. We also used Swift observations (470 datasets, for a total 800 ks), which occurred during 12 yr (2005-2016), the broadband (0.3-200 keV) data of BeppoSAX (1997-2000, 160 ks), and the low X-ray energy (0.3-10 keV) data of ASCA (1995-1999, 160 ks). Two observations of Suzaku (2006, 2013; 50 ks) in combinations with long-term RXTE and Swift data-sets fortunately allow us to describe all spectral states of BL Lac. The spectra of BL Lac are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index saturation level, Γsat = 2.2 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ - Ṁ correlation allows us to estimate the black-hole (BH) mass in BL Lac to be MBH 3 × 107M⊙ for a distance of 300 Mpc. For the BH mass estimate, we use the scaling method taking stellar-mass Galactic BHs 4U 1543-47 and GX 339-4 as reference sources. The Γ - Ṁ correlation revealed in BL Lac is similar to those in a number of stellar-mass Galactic BHs and two recently studied intermediate-mass extragalactic BHs. It clearly shows the correlation along with the very extended Γ saturation at 2.2. This is robust observational evidence for the presence of a BH in BL Lac. We also reveal that the seed (disk) photon temperatures are relatively low, of order of 100 eV, which are consistent

  12. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  13. Towards spectral geometric methods for Euclidean quantum gravity

    Science.gov (United States)

    Panine, Mikhail; Kempf, Achim

    2016-04-01

    The unification of general relativity with quantum theory will also require a coming together of the two quite different mathematical languages of general relativity and quantum theory, i.e., of differential geometry and functional analysis, respectively. Of particular interest in this regard is the field of spectral geometry, which studies to which extent the shape of a Riemannian manifold is describable in terms of the spectra of differential operators defined on the manifold. Spectral geometry is hard because it is highly nonlinear, but linearized spectral geometry, i.e., the task to determine small shape changes from small spectral changes, is much more tractable and may be iterated to approximate the full problem. Here, we generalize this approach, allowing, in particular, nonequal finite numbers of shape and spectral degrees of freedom. This allows us to study how well the shape degrees of freedom are encoded in the eigenvalues. We apply this strategy numerically to a class of planar domains and find that the reconstruction of small shape changes from small spectral changes is possible if enough eigenvalues are used. While isospectral nonisometric shapes are known to exist, we find evidence that generically shaped isospectral nonisometric shapes, if existing, are exceedingly rare.

  14. The hard problem of cooperation.

    Directory of Open Access Journals (Sweden)

    Kimmo Eriksson

    Full Text Available Based on individual variation in cooperative inclinations, we define the "hard problem of cooperation" as that of achieving high levels of cooperation in a group of non-cooperative types. Can the hard problem be solved by institutions with monitoring and sanctions? In a laboratory experiment we find that the answer is affirmative if the institution is imposed on the group but negative if development of the institution is left to the group to vote on. In the experiment, participants were divided into groups of either cooperative types or non-cooperative types depending on their behavior in a public goods game. In these homogeneous groups they repeatedly played a public goods game regulated by an institution that incorporated several of the key properties identified by Ostrom: operational rules, monitoring, rewards, punishments, and (in one condition change of rules. When change of rules was not possible and punishments were set to be high, groups of both types generally abided by operational rules demanding high contributions to the common good, and thereby achieved high levels of payoffs. Under less severe rules, both types of groups did worse but non-cooperative types did worst. Thus, non-cooperative groups profited the most from being governed by an institution demanding high contributions and employing high punishments. Nevertheless, in a condition where change of rules through voting was made possible, development of the institution in this direction was more often voted down in groups of non-cooperative types. We discuss the relevance of the hard problem and fit our results into a bigger picture of institutional and individual determinants of cooperative behavior.

  15. The hard problem of cooperation.

    Science.gov (United States)

    Eriksson, Kimmo; Strimling, Pontus

    2012-01-01

    Based on individual variation in cooperative inclinations, we define the "hard problem of cooperation" as that of achieving high levels of cooperation in a group of non-cooperative types. Can the hard problem be solved by institutions with monitoring and sanctions? In a laboratory experiment we find that the answer is affirmative if the institution is imposed on the group but negative if development of the institution is left to the group to vote on. In the experiment, participants were divided into groups of either cooperative types or non-cooperative types depending on their behavior in a public goods game. In these homogeneous groups they repeatedly played a public goods game regulated by an institution that incorporated several of the key properties identified by Ostrom: operational rules, monitoring, rewards, punishments, and (in one condition) change of rules. When change of rules was not possible and punishments were set to be high, groups of both types generally abided by operational rules demanding high contributions to the common good, and thereby achieved high levels of payoffs. Under less severe rules, both types of groups did worse but non-cooperative types did worst. Thus, non-cooperative groups profited the most from being governed by an institution demanding high contributions and employing high punishments. Nevertheless, in a condition where change of rules through voting was made possible, development of the institution in this direction was more often voted down in groups of non-cooperative types. We discuss the relevance of the hard problem and fit our results into a bigger picture of institutional and individual determinants of cooperative behavior.

  16. Hard electroproduction of hybrid mesons

    International Nuclear Information System (INIS)

    Anikin, I.V.; LPT Universite Paris-Sud, Orsay; Szymanowski, L.; Teryaev, O.V.; ); Wallon, S.

    2005-01-01

    We estimate the sizeable cross section for deep exclusive electroproduction of an exotic J PC = 1 -+ hybrid meson in the Bjorken regime. The production amplitude scales like the one for usual meson electroproduction, i.e. as 1/Q 2 . This is due to the non-vanishing leading twist distribution amplitude for the hybrid meson, which may be normalized thanks to its relation to the energy momentum tensor and to the QCD sum rules technique. The hard amplitude is considered up to next-to-leading order in as and we explore the consequences of fixing the renormalization scale ambiguity through the BLM procedure. (author)

  17. Hard Identity and Soft Identity

    Directory of Open Access Journals (Sweden)

    Hassan Rachik

    2006-04-01

    Full Text Available Often collective identities are classified depending on their contents and rarely depending on their forms. Differentiation between soft identity and hard identity is applied to diverse collective identities: religious, political, national, tribal ones, etc. This classification is made following the principal dimensions of collective identities: type of classification (univocal and exclusive or relative and contextual, the absence or presence of conflictsof loyalty, selective or totalitarian, objective or subjective conception, among others. The different characteristics analysed contribute to outlining an increasingly frequent type of identity: the authoritarian identity.

  18. Optical fiber composition and radiation hardness

    International Nuclear Information System (INIS)

    Wall, J.A.; Loretz, T.J.

    1982-01-01

    Germanium phosphosilicate and germanium borosilicate fibers doped with cerium were fabricated and tested for their responses to steady-state Co-60 radiation at -55 C, +20 C and +125 C. A fiber with germanium, boron and phosphorous in the silicate core and doped with antimony in the core and clad was similarly tested. All of the fibers showed significant improvements in radiation hardness at 20 C compared to undoped fibers of the same base composition. At -55 C, however, all except the cerium doped germanium phosphosilicate were very radiation sensitive and also showed increases in the rate of induced loss at +125 C. The cerium doped germanium phosphosilicate fiber showed virtually no change in radiation sensitivity at the temperature extremes and could prove useful in applications requiring relatively short lengths of fiber

  19. NuSTAR DETECTION OF HARD X-RAY PHASE LAGS FROM THE ACCRETING PULSAR GS 0834–430

    Energy Technology Data Exchange (ETDEWEB)

    Miyasaka, Hiromasa; Harrison, Fiona A.; Fürst, Felix; Bellm, Eric C.; Grefenstette, Brian W.; Madsen, Kristin K.; Walton, Dominic J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bachetti, Matteo; Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France); Boggs, Steven E.; Craig, William W.; Tomsick, John A. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Chakrabarty, Deepto [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Chenevez, Jerome; Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Natalucci, Lorenzo [Istituto di Astrofisica e Planetologia Spaziali, INAF, Via Fosso del Cavaliere 100, Roma I-00133 (Italy); Pottschmidt, Katja [CRESST, UMBC, and NASA GSFC, Code 661, Greenbelt, MD 20771 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wilms, Jörn, E-mail: miyasaka@srl.caltech.edu [Dr. Karl-Remeis-Sternwarte and ECAP, Sternwartstr. 7, D-96049 Bamberg (Germany); and others

    2013-09-20

    The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst—the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV with high statistical significance. We find the phase-averaged spectrum to be consistent with that observed in many other magnetized, accreting pulsars. We fail to detect cyclotron resonance scattering features that would allow us to constrain the pulsar's magnetic field in either phase-averaged or phase-resolved spectra. Timing analysis shows a clearly detected pulse period of ∼12.29 s in all energy bands. The pulse profiles show a strong, energy-dependent hard phase lag of up to 0.3 cycles in phase, or about 4 s. Such dramatic energy-dependent lags in the pulse profile have never before been reported in high-mass X-ray binary pulsars. Previously reported lags have been significantly smaller in phase and restricted to low energies (E < 10 keV). We investigate the possible mechanisms that might produce this energy-dependent pulse phase shift. We find the most likely explanation for this effect is a complex beam geometry.

  20. Tuning hardness in calcite by incorporation of amino acids.

    Science.gov (United States)

    Kim, Yi-Yeoun; Carloni, Joseph D; Demarchi, Beatrice; Sparks, David; Reid, David G; Kunitake, Miki E; Tang, Chiu C; Duer, Melinda J; Freeman, Colin L; Pokroy, Boaz; Penkman, Kirsty; Harding, John H; Estroff, Lara A; Baker, Shefford P; Meldrum, Fiona C

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit-mineral single crystals containing embedded macromolecules-remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

  1. Swift Observations of Mrk 421 in Selected Epochs. II. An Extreme Spectral Flux Variability in 2009–2012

    Science.gov (United States)

    Kapanadze, B.; Vercellone, S.; Romano, P.; Hughes, P.; Aller, M.; Aller, H.; Kharshiladze, O.; Tabagari, L.

    2018-05-01

    We present the results from a detailed spectral and timing study of Mrk 421 based on the rich archival Swift data obtained during 2009–2012. Best fits of the 0.3–10 keV spectra were mostly obtained using the log-parabolic model showing the relatively low spectral curvature that is expected in the case of efficient stochastic acceleration of particles. The position of the synchrotron spectral energy density peak E p of 173 spectra is found at energies higher than 2 keV. The photon index at 1 keV exhibited a very broad range of values a = 1.51–3.02, and very hard spectra with a historical state and that corresponding to a rate higher than 100 cts s‑1. Moreover, 113 instances of intraday variability were revealed, exhibiting shortest flux-doubling/halving times of about 1.2 hr, as well as brightenings by 7%–24% in 180–720 s and declines by 68%–22% in 180–900 s. The X-ray and very high-energy fluxes generally showed a correlated variability, although one incidence of a more complicated variability was also detected, indicating that the multifrequency emission of Mrk 421 could not be generated in a single zone.

  2. Genetics of leaf rust resistance in the hard red winter wheat cultivars Santa Fe and Duster

    Science.gov (United States)

    Leaf rust caused by Puccinia triticina is a common and important disease of hard red winter wheat in the Great Plains of the United States. The hard red winter wheat cultivars 'Santa Fe' and 'Duster' have had effective leaf rust resistance since their release in 2003 and 2006, respectively. Both cul...

  3. On spectral pollution

    International Nuclear Information System (INIS)

    Llobet, X.; Appert, K.; Bondeson, A.; Vaclavik, J.

    1990-01-01

    Finite difference and finite element approximations of eigenvalue problems, under certain circumstances exhibit spectral pollution, i.e. the appearance of eigenvalues that do not converge to the correct value when the mesh density is increased. In the present paper this phenomenon is investigated in a homogeneous case by means of discrete dispersion relations: the polluting modes belong to a branch of the dispersion relation that is strongly distorted by the discretization method employed, or to a new, spurious branch. The analysis is applied to finite difference methods and to finite element methods, and some indications about how to avoiding polluting schemes are given. (author) 5 figs., 10 refs

  4. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Doshi, P.K.; George, R.A.; Dollard, W.J.

    1982-01-01

    A mechanical spectral shift arrangement for controlling a nuclear reactor includes a plurality of reactor coolant displacer members which are inserted into a reactor core at the beginning of the core life to reduce the volume of reactor coolant-moderator in the core at start-up. However, as the reactivity of the core declines with fuel depletion, selected displacer members are withdrawn from the core at selected time intervals to increase core moderation at a time when fuel reactivity is declining. (author)

  5. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  6. Spectral shift reactor

    International Nuclear Information System (INIS)

    Carlson, W.R.; Piplica, E.J.

    1982-01-01

    A spectral shift pressurized water reactor comprising apparatus for inserting and withdrawing water displacer elements having differing neutron absorbing capabilities for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The displacer elements comprise substantially hollow cylindrical low neutron absorbing rods and substantially hollow cylindrical thick walled stainless rods. Since the stainless steel displacer rods have greater neutron absorbing capability, they can effect greater reactivity change per rod. However, by arranging fewer stainless steel displacer rods in a cluster, the reactivity worth of the stainless steel displacer rod cluster can be less than a low neutron absorbing displacer rod cluster. (author)

  7. Revelations of X-ray spectral analysis of the enigmatic black hole binary GRS 1915+105

    Science.gov (United States)

    Peris, Charith; Remillard, Ronald A.; Steiner, James; Vrtilek, Saeqa Dil; Varniere, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-01-01

    Of the black hole binaries discovered thus far, GRS 1915+105 stands out as an exceptional source primarily due to its wild X-ray variability, the diversity of which has not been replicated in any other stellar-mass black hole. Although extreme variability is commonplace in its light-curve, about half of the observations of GRS1915+105 show fairly steady X-ray intensity. We report on the X-ray spectral behavior within these steady observations. Our work is based on a vast RXTE/PCA data set obtained on GRS 1915+105 during the course of its entire mission and 10 years of radio data from the Ryle Telescope, which overlap the X-ray data. We find that the steady observations within the X-ray data set naturally separate into two regions in a color-color diagram, which we refer to as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the Comptonization component within the PCA band pass suggesting significantly heating from a hot disk present in all states. A new Comptonization model 'simplcut' was developed in order to model this curvature to best effect. A majority of the steady-soft observations display a roughly constant inner radius; remarkably reminiscent of canonical soft state black hole binaries. In contrast, the steady-hard observations display a growing disk truncation that is correlated to the mass accretion rate through the disk, which suggests a magnetically truncated disk. A comparison of X-ray model parameters to the canonical state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while the thermal state observations dominate the constant radius branch. A large portion (80%) of the steady-hard observations matches the hard state criteria when the disk fraction constraint is neglected. These results suggest that within the complexity of this source is a simpler underlying basis of states, which map to those observed in canonical black hole binaries. When

  8. On Pythagoras Theorem for Products of Spectral Triples

    Science.gov (United States)

    D'Andrea, Francesco; Martinetti, Pierre

    2013-05-01

    We discuss a version of Pythagoras theorem in noncommutative geometry. Usual Pythagoras theorem can be formulated in terms of Connes' distance, between pure states, in the product of commutative spectral triples. We investigate the generalization to both non-pure states and arbitrary spectral triples. We show that Pythagoras theorem is replaced by some Pythagoras inequalities, that we prove for the product of arbitrary (i.e. non-necessarily commutative) spectral triples, assuming only some unitality condition. We show that these inequalities are optimal, and we provide non-unital counter-examples inspired by K-homology.

  9. Analytical and Empirical Modeling of Wear and Forces of CBN Tool in Hard Turning - A Review

    Science.gov (United States)

    Patel, Vallabh Dahyabhai; Gandhi, Anishkumar Hasmukhlal

    2017-08-01

    Machining of steel material having hardness above 45 HRC (Hardness-Rockwell C) is referred as a hard turning. There are numerous models which should be scrutinized and implemented to gain optimum performance of hard turning. Various models in hard turning by cubic boron nitride tool have been reviewed, in attempt to utilize appropriate empirical and analytical models. Validation of steady state flank and crater wear model, Usui's wear model, forces due to oblique cutting theory, extended Lee and Shaffer's force model, chip formation and progressive flank wear have been depicted in this review paper. Effort has been made to understand the relationship between tool wear and tool force based on the different cutting conditions and tool geometries so that appropriate model can be used according to user requirement in hard turning.

  10. Intensity Conserving Spectral Fitting

    Science.gov (United States)

    Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.

    2015-01-01

    The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.

  11. Enhancement of the spectral selectivity of complex samples by measuring them in a frozen state at low temperatures in order to improve accuracy for quantitative analysis. Part II. Determination of viscosity for lube base oils using Raman spectroscopy.

    Science.gov (United States)

    Kim, Mooeung; Chung, Hoeil

    2013-03-07

    The use of selectivity-enhanced Raman spectra of lube base oil (LBO) samples achieved by the spectral collection under frozen conditions at low temperatures was effective for improving accuracy for the determination of the kinematic viscosity at 40 °C (KV@40). A collection of Raman spectra from samples cooled around -160 °C provided the most accurate measurement of KV@40. Components of the LBO samples were mainly long-chain hydrocarbons with molecular structures that were deformable when these were frozen, and the different structural deformabilities of the components enhanced spectral selectivity among the samples. To study the structural variation of components according to the change of sample temperature from cryogenic to ambient condition, n-heptadecane and pristane (2,6,10,14-tetramethylpentadecane) were selected as representative components of LBO samples, and their temperature-induced spectral features as well as the corresponding spectral loadings were investigated. A two-dimensional (2D) correlation analysis was also employed to explain the origin for the improved accuracy. The asynchronous 2D correlation pattern was simplest at the optimal temperature, indicating the occurrence of distinct and selective spectral variations, which enabled the variation of KV@40 of LBO samples to be more accurately assessed.

  12. Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    Science.gov (United States)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Baloković, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1.̋5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (τ ≃ 1.2, NH ~ 1.5 × 1024 cm-2). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH ≤ 2 × 1023 cm-2 over long (~3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  13. Development of radiation hard scintillators

    International Nuclear Information System (INIS)

    Markley, F.; Woods, D.; Pla-Dalmau, A.; Foster, G.; Blackburn, R.

    1992-05-01

    Substantial improvements have been made in the radiation hardness of plastic scintillators. Cylinders of scintillating materials 2.2 cm in diameter and 1 cm thick have been exposed to 10 Mrads of gamma rays at a dose rate of 1 Mrad/h in a nitrogen atmosphere. One of the formulations tested showed an immediate decrease in pulse height of only 4% and has remained stable for 12 days while annealing in air. By comparison a commercial PVT scintillator showed an immediate decrease of 58% and after 43 days of annealing in air it improved to a 14% loss. The formulated sample consisted of 70 parts by weight of Dow polystyrene, 30 pbw of pentaphenyltrimethyltrisiloxane (Dow Corning DC 705 oil), 2 pbw of p-terphenyl, 0.2 pbw of tetraphenylbutadiene, and 0.5 pbw of UVASIL299LM from Ferro

  14. Elementary principles of spectral distributions

    International Nuclear Information System (INIS)

    French, J.B.

    1980-01-01

    It is a common observation that as we add particles, one by one, to a simple system, things get steadily more and more complicated. For example if the system is describable in shell-model terms, i.e., with a model space in which m particles are distributed over N single-particle states, then as long as m << N, the dimensionality increases rapidly with particle number. On the other hand, for the usual (1 + 2)-body Hamiltonian, the (m greater than or equal to 2)-particle spectrum and wave functions are determined by operators defined in the one-particle space (for the single-particle energies) and the two-particle space (for the interactions). We may say then that the input information becomes more and more fragmented as the particle number increases, the fixed amount of information being distributed over more and more matrix elements. On the other hand there arise also new simplicities whose origin is connected with the operation of statistical laws. There is a macroscopic simplicity corresponding to the fact that the smoothed spectrum takes on a characteristic shape defined by a few parameters (low-order moments) of the spectrum. There is a microscopic simplicity corresponding to a remarkable spectral rigidity which extends over the entire spectrum and guarantees us that the fluctuations from uniformity in the spectrum are small and in many cases carry little information. The purpose of spectral-distribution theory, as applied to these problems, is to deal with the complexities by taking advantage of the simplicities

  15. The background counting rates in a balloon borne hard X-ray telescope

    International Nuclear Information System (INIS)

    Dean, A.J.; Dipper, N.A.; Lewis, R.A.

    1986-01-01

    A detailed Monte Carlo model of a hard (20-300 keV) X-ray astronomical telescope has been developed in order to calculate the energy loss distribution of the unwanted background noise events in the prime detection elements. The spectral distributions of the background rates measured at balloon altitudes over Palestine, Texas are compared to the predictions of the theoretical model. Good agreement has been found in terms of both the overall intensity level as well as the spectral distribution. (orig.)

  16. Coendangered hard-ticks: threatened or threatening?

    Directory of Open Access Journals (Sweden)

    Cozma Vasile

    2011-05-01

    Full Text Available Abstract The overwhelming majority of animal conservation projects are focused on vertebrates, despite most of the species on Earth being invertebrates. Estimates state that about half of all named species of invertebrates are parasitic in at least one stage of their development. The dilemma of viewing parasites as biodiversity or pest has been discussed by several authors. However, ticks were omitted. The latest taxonomic synopses of non-fossil Ixodidae consider valid 700 species. Though, how many of them are still extant is almost impossible to tell, as many of them are known only from type specimens in museums and were never collected since their original description. Moreover, many hosts are endangered and as part of conservation efforts of threatened vertebrates, a common practice is the removal of, and treatment for external parasites, with devastating impact on tick populations. There are several known cases when the host became extinct with subsequent coextinction of their ectoparasites. For our synoptic approach we have used the IUCN status of the host in order to evaluate the status of specifically associated hard-ticks. As a result, we propose a number of 63 coendangered and one extinct hard-tick species. On the other side of the coin, the most important issue regarding tick-host associations is vectorial transmission of microbial pathogens (i.e. viruses, bacteria, protozoans. Tick-borne diseases of threatened vertebrates are sometimes fatal to their hosts. Mortality associated with pathogens acquired from ticks has been documented in several cases, mostly after translocations. Are ticks a real threat to their coendangered host and should they be eliminated? Up to date, there are no reliable proofs that ticks listed by us as coendangered are competent vectors for pathogens of endangered animals.

  17. Rectangular spectral collocation

    KAUST Repository

    Driscoll, Tobin A.

    2015-02-06

    Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.

  18. Spectral evolution of galaxies

    International Nuclear Information System (INIS)

    Rocca-Volmerange, B.

    1989-01-01

    A recent striking event in Observational Cosmology is the discovery of a large population of galaxies at extreme cosmological distances (extended from spectral redshifts ≅ 1 to ≥ 3) corresponding to a lookback time of 80% of the Universe's age. However when galaxies are observed at such remote epochs, their appearances are affected by at least two simultaneous effects which are respectively a cosmological effect and the intrinsic evolution of their stellar populations which appear younger than in our nearby galaxies. The fundamental problem is first to disentangle the respective contributions of these two effects to apparent magnitudes and colors of distant galaxies. Other effects which are likely to modify the appearance of galaxies are amplification by gravitational lensing and interaction with environment will also be considered. (author)

  19. Spectral Line Shapes. Proceedings

    International Nuclear Information System (INIS)

    Zoppi, M.; Ulivi, L.

    1997-01-01

    These proceedings represent papers presented at the 13th International Conference on Spectral Line Shapes which was held in Firenze,Italy from June 16-21, 1996. The topics covered a wide range of subjects emphasizing the physical processes associated with the formation of line profiles: high and low density plasma; atoms and molecules in strong laser fields, Dopple-free and ultra-fine spectroscopy; the line shapes generated by the interaction of neutrals, atoms and molecules, where the relavant quantities are single particle properties, and the interaction-induced spectroscopy. There were 131 papers presented at the conference, out of these, 6 have been abstracted for the Energy Science and Technology database

  20. ATR neutron spectral characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.W.; Anderl, R.A.

    1995-11-01

    The Advanced Test Reactor (ATR) at INEL provides intense neutron fields for irradiation-effects testing of reactor material samples, for production of radionuclides used in industrial and medical applications, and for scientific research. Characterization of the neutron environments in the irradiation locations of the ATR has been done by means of neutronics calculations and by means of neutron dosimetry based on the use of neutron activation monitors that are placed in the various irradiation locations. The primary purpose of this report is to present the results of an extensive characterization of several ATR irradiation locations based on neutron dosimetry measurements and on least-squares-adjustment analyses that utilize both neutron dosimetry measurements and neutronics calculations. This report builds upon the previous publications, especially the reference 4 paper. Section 2 provides a brief description of the ATR and it tabulates neutron spectral information for typical irradiation locations, as derived from the more historical neutron dosimetry measurements. Relevant details that pertain to the multigroup neutron spectral characterization are covered in section 3. This discussion includes a presentation on the dosimeter irradiation and analyses and a development of the least-squares adjustment methodology, along with a summary of the results of these analyses. Spectrum-averaged cross sections for neutron monitoring and for displacement-damage prediction in Fe, Cr, and Ni are given in section 4. In addition, section4 includes estimates of damage generation rates for these materials in selected ATR irradiation locations. In section 5, the authors present a brief discussion of the most significant conclusions of this work and comment on its relevance to the present ATR core configuration. Finally, detailed numerical and graphical results for the spectrum-characterization analyses in each irradiation location are provided in the Appendix.

  1. Using Google Earth Engine To Apply Spectral Mixture Analysis Over Landsat 5TM Imagery To Map Fire Scars In The Alto Teles Pires River Basin, Mato Grosso State, Brazil.

    Science.gov (United States)

    Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.

    2016-12-01

    The two most extensive biomes in Brazil, the Amazon Forest and the Cerrado (the Brazilian savanna), are subject to many fire events every dry season. Both biomes are well-known for their ecological and environmental importance but, due to the intensive human occupation over the last decades, they have been experiencing high deforestation rates with much of their natural landscape being converted to agriculture and pasture uses. The Cerrado, as a savanna, has naturally evolved adapted to fire. According to some researchers, this biome has been exposed to fire for the last 25 million years, forging the diversification of many C4 grass species, for example. The Amazon forest does not have similar characteristics and studies have shown that forest areas that have been already burned become more prone to recurrent burns. Forest patches that are close to open areas have their edges exposed to higher insolation and greater turbulence, drying the understory vegetation and litter, turning those areas more susceptible to fire events. In cases where grass species become established in the understory they can be a renewable source of fuel for recurrent burns. This study aimed to identify and map fire scars present in the region of Alto Teles Pires river basin, State of Mato Grosso - Brazil, during 10 years (2002-2011). This region is located in the transition zone between the two biomes and is known for its high deforestation rates. By taking advantage of the Landsat 5TM imagery collection present in Google Earth Engine platform as well as applying Spectral Mixture Analysis (SMA) techniques over them it was possible to estimate fractions of Green Vegetation (GV), Non-Photosynthetic Vegetation (NPV), and Soil targets, which are the surfaces that compose the vast majority of the landscape in the study region. Iteratively running SMA analysis over the imagery using burned vegetation endmembers allowed us to further identify fire scars present in the region, returning excellent

  2. Soft And Hard Skills of Social Worker

    OpenAIRE

    HANTOVÁ, Libuše

    2011-01-01

    The work deals with soft and hard skills relevant to the profession of social worker. The theoretical part at first evaluates and analyzes important soft and hard skills necessary for people working in the field of social work. Then these skills are compared. The practical part illustrates the use of soft and hard skills in practice by means of model scenes and deals with the preferences in three groups of people ? students of social work, social workers and people outside the sphere, namely ...

  3. Advances in hard nucleus cataract surgery

    Directory of Open Access Journals (Sweden)

    Wei Cui

    2013-11-01

    Full Text Available Security and perfect vision and fewer complications are our goals in cataract surgery, and hard-nucleus cataract surgery is always a difficulty one. Many new studies indicate that micro-incision phacoemulsification in treating hard nucleus cataract is obviously effective. This article reviews the evolution process of hard nuclear cataract surgery, the new progress in the research of artificial intraocular lens for microincision, and analyse advantages and disadvantages of various surgical methods.

  4. A synthetic dataset for evaluating soft and hard fusion algorithms

    Science.gov (United States)

    Graham, Jacob L.; Hall, David L.; Rimland, Jeffrey

    2011-06-01

    There is an emerging demand for the development of data fusion techniques and algorithms that are capable of combining conventional "hard" sensor inputs such as video, radar, and multispectral sensor data with "soft" data including textual situation reports, open-source web information, and "hard/soft" data such as image or video data that includes human-generated annotations. New techniques that assist in sense-making over a wide range of vastly heterogeneous sources are critical to improving tactical situational awareness in counterinsurgency (COIN) and other asymmetric warfare situations. A major challenge in this area is the lack of realistic datasets available for test and evaluation of such algorithms. While "soft" message sets exist, they tend to be of limited use for data fusion applications due to the lack of critical message pedigree and other metadata. They also lack corresponding hard sensor data that presents reasonable "fusion opportunities" to evaluate the ability to make connections and inferences that span the soft and hard data sets. This paper outlines the design methodologies, content, and some potential use cases of a COIN-based synthetic soft and hard dataset created under a United States Multi-disciplinary University Research Initiative (MURI) program funded by the U.S. Army Research Office (ARO). The dataset includes realistic synthetic reports from a variety of sources, corresponding synthetic hard data, and an extensive supporting database that maintains "ground truth" through logical grouping of related data into "vignettes." The supporting database also maintains the pedigree of messages and other critical metadata.

  5. Spectral Theory of Chemical Bonding

    National Research Council Canada - National Science Library

    Langhoff, P. W; Boatz, J. A; Hinde, R. J; Sheehy, J. A

    2004-01-01

    .... Wave function antisymmetry in the aggregate atomic spectral-product basis is enforced by unitary transformation performed subsequent to formation of the Hamiltonian matrix, greatly simplifying its construction...

  6. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  7. 76 FR 44574 - Antidumping Duty Investigation and Countervailing Duty Investigation of Hard Red Spring Wheat...

    Science.gov (United States)

    2011-07-26

    ... Investigation and Countervailing Duty Investigation of Hard Red Spring Wheat From Canada: Notice of Court... of Appeals for the Federal Circuit (``CAFC''), in Canadian Wheat Board v. United States, 2010-1083 (Fed. [[Page 44575

  8. Spectral decomposition of tent maps using symmetry considerations

    International Nuclear Information System (INIS)

    Ordonez, G.E.; Driebe, D.J.

    1996-01-01

    The spectral decompostion of the Frobenius-Perron operator of maps composed of many tents is determined from symmetry considerations. The eigenstates involve Euler as well as Bernoulli polynomials. The authors have introduced some new techniques, based on symmetry considerations, enabling the construction of spectral decompositions in a much simpler way than previous construction algorithms, Here we utilize these techniques to construct the spectral decomposition for one- dimensional maps of the unit interval composed of many tents. The construction uses the knowledge of the spectral decomposition of the r-adic map, which involves Bernoulli polynomials and their duals. It will be seen that the spectral decomposition of the tent maps involves both Bernoulli polynomials and Euler polynomials along with the appropriate dual states

  9. A comparison of calculated and measured background noise rates in hard X-ray telescopes at balloon altitude

    Science.gov (United States)

    Dean, A. J.; Dipper, N. A.; Lewis, R. A.; Perotti, F.

    1985-01-01

    An actively shielded hard X-ray astronomical telescope has been flown on stratospheric balloons. An attempt is made to compare the measured spectral distribution of the background noise counting rates over the energy loss range 20-300 keV with the contributions estimated from a series of Monte Carlo and other computations. The relative contributions of individual particle interactions are assessed.

  10. Recurrent pulse trains in the solar hard X-ray flare of 1980 June 7

    International Nuclear Information System (INIS)

    Kiplinger, A.L.; Dennis, B.R.; Frost, K.J.; Orwig, L.E.

    1983-01-01

    This study presents a detailed examination of the solar hard X-ray and γ-ray flare of 1980 June 7 as seen by the Hard X-Ray Burst Spectrometer on SMM. The hard X-ray profile is most unusual in that it is characterized by an initial pulse train of seven intense hard X-ray spikes. However, the event is unique among the 6300 events observed by HXRBS in that the temporal signature of this pulse train recurs twice during the flare. Such signatures of temporal stability in impulsive solar flares have not been observed before. Examinations of the hard X-ray data in conjunction with radio and γ-ray observations show that the 28--480 keV X-ray emission is simultaneous with the 17 GHz microwave fluxes within 128 ms and that the 3.5--6.5 MeV prompt γ-ray line emission is coincident with secondary maxima of the microwave and X-ray fluxes. Studies of the temporal and spectral properties of the pulses indicate that the pulses are not produced by purely reversible processes, and that if the source is oscillatory, it is not a high quality oscillator. Although the absence of spatially resolved hard X-ray observations leaves other possibilities open, a parameterization of the event as a set of seven sequentially firing loops is presented that offers many satisfying explanations of the observations

  11. STATISTICS OF FLARING LOOPS OBSERVED BY NOBEYAMA RADIOHELIOGRAPH. II. SPECTRAL EVOLUTION

    International Nuclear Information System (INIS)

    Huang Guangli; Nakajima, Hiroshi

    2009-01-01

    The spectral evolution of solar microwave bursts is studied in 10 impulsive events with loop-like structures, which are selected in the flare list of Nobeyama Radioheliograph. Most events have a brighter and harder looptop (LT) with maximum time later than at least one of its two footpoints (FPs), and have a common feature of the spectral evolution in the LT and the two FPs. There are five simple impulsive bursts with a well known pattern of soft-hard-soft or soft-hard-harder (SHH). It is first found that the other five events have multiple subpeaks in their impulsive phase, and mostly have a new feature of hard-soft-hard (HSH) in each subpeak, but, the well known tendency of SHH is still maintained in the total spectral evolution of these events. All of these features in the spectral evolution of the 10 selected events are consistent with the full Sun observations of Nobeyama Radio Polarimeters in these events. The new feature of HSH may be explained by the thermal free-free emission before, during, and after these bursts, together with multiple injections of nonthermal electrons, while the SHH pattern in the total duration may be directly caused by the trapping effect.

  12. Long duration hard X-ray transatlantic payload

    International Nuclear Information System (INIS)

    La Padula, C.D.; Bazzano, A.; Boccaccini, L.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Ubertini, P.

    1981-01-01

    The HXR80M large-area hard X-ray experiment, to be flown aboard a transatlantic balloon, is described. The detectors are two multiwire spectroscopic proportional counters (MWSPC) with a 2700-sq-cm sensitive area each. The two detectors are filled with an extremely pure xenon-isobutane mixture at high pressure (3-6 atm) in order to obtain good spectral resolution and high efficiency. The onboard data handling is performed by microprocessor-controlled electronics. The scientific aim of the experiment is the survey of the sky belt around the 38th parallel and in particular the observation of faint galactic objects and galactic binary systems in the 15-200 keV range

  13. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  14. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  15. Hard disks with SCSI interface

    CERN Document Server

    Denisov, O Yu

    1999-01-01

    The testing of 20 models of hard SCSI-disks is carried out: the Fujitsu MAE3091LP; the IBM DDRS-39130, DGHS-318220, DNES-318350, DRHS-36V and DRVS-18V; the Quantum Atlas VI 18.2; the Viking 11 9.1; the Seagate ST118202LW, ST118273LW, ST118273W, ST318203LW, ST318275LW, ST34520W, ST39140LW and ST39173W; and the Western Digital WDE9100-0007, WDE9100-AV0016, WDE9100-AV0030 and WDE9180-0048. All tests ran under the Windows NT 4.0 workstation operating system with Service Pack 4, under video mode with 1024*768 pixel resolution, 32- bit colour depth and V-frequency equal to 85 Hz. The detailed description and characteristics of SCSI stores are presented. Test results (ZD Winstone 99 and ZD WinBench 99 tests) are given in both table and diagram (disk transfer rate) forms. (0 refs).

  16. Development of a hard microcontroller

    International Nuclear Information System (INIS)

    Measel, P.R.; Sivo, L.L.; Quilitz, W.E.; Davidson, T.K.

    1976-01-01

    The applicability of commercially available microprocessors to certain systems requiring radiation survival was assessed. A microcontroller was designed and built to perform a monitor and control function of military operational ground equipment, and demonstrated to exceed the radiation hardness goal. The preparation of the microcontroller module required hardware and software design, selection of LSI and other piece part types, development of piece part and module electrical and radiation test techniques, and the performance of radiation tests on the LSI piece parts and the completed module. The microcontroller has a 16-bit central processor unit, a 4096 word read only memory, and a 256 word read-write memory. The module has circumvention circuitry, including a PIN diode radiation detector. The processor device used was the MMI 6701 T 2 L Schottky bipolar 4-bit slice. Electrical exerciser circuits were developed for in-situ electrical testing of microprocessors and memories during irradiation. A test program was developed for a Terradyne J283 microcircuit tester for more complete electrical characterization of the MMI 6701 microprocessor. A simple self-test algorithm was used in the microcontroller for performance testing during irradiation. For the operational demonstration of the microcontroller a TI 960A minicomputer was used to provide the required complex inputs to the module and verify the module outputs

  17. Electronic basis of hardness and phase transformations (covalent crystals)

    International Nuclear Information System (INIS)

    Gilman, J J

    2008-01-01

    Several electronic parameters measure the stabilities of covalent crystals, including minimum energy band-gap densities, inverse polarizabilities, plasma frequencies, transverse vibrational frequencies and elastic shear moduli. Convenient is the band-gap density (energy/volume; called the 'bond modulus'). For a given bonding type, the indentation hardness is proportional to the bond modulus. Examples are the group IV elements, III-V compounds; and II-VI compounds. The motion of dislocation kinks requires the excitation of bonding electrons into anti-bonding states. The bond modulus measures this together with the work done by the applied stress when a kink moves. In addition to hardness, the bond modulus measures the compressive strain (pressure) needed to transform an ambient structure into a more dense structure. Activation of such transformations also requires the excitation of bonding electrons into anti-bonding states together with the work done by the compressive stress

  18. Modeling hard clinical end-point data in economic analyses.

    Science.gov (United States)

    Kansal, Anuraag R; Zheng, Ying; Palencia, Roberto; Ruffolo, Antonio; Hass, Bastian; Sorensen, Sonja V

    2013-11-01

    The availability of hard clinical end-point data, such as that on cardiovascular (CV) events among patients with type 2 diabetes mellitus, is increasing, and as a result there is growing interest in using hard end-point data of this type in economic analyses. This study investigated published approaches for modeling hard end-points from clinical trials and evaluated their applicability in health economic models with different disease features. A review of cost-effectiveness models of interventions in clinically significant therapeutic areas (CV diseases, cancer, and chronic lower respiratory diseases) was conducted in PubMed and Embase using a defined search strategy. Only studies integrating hard end-point data from randomized clinical trials were considered. For each study included, clinical input characteristics and modeling approach were summarized and evaluated. A total of 33 articles (23 CV, eight cancer, two respiratory) were accepted for detailed analysis. Decision trees, Markov models, discrete event simulations, and hybrids were used. Event rates were incorporated either as constant rates, time-dependent risks, or risk equations based on patient characteristics. Risks dependent on time and/or patient characteristics were used where major event rates were >1%/year in models with fewer health states (Models of infrequent events or with numerous health states generally preferred constant event rates. The detailed modeling information and terminology varied, sometimes requiring interpretation. Key considerations for cost-effectiveness models incorporating hard end-point data include the frequency and characteristics of the relevant clinical events and how the trial data is reported. When event risk is low, simplification of both the model structure and event rate modeling is recommended. When event risk is common, such as in high risk populations, more detailed modeling approaches, including individual simulations or explicitly time-dependent event rates, are

  19. Non-hard sphere thermodynamic perturbation theory.

    Science.gov (United States)

    Zhou, Shiqi

    2011-08-21

    A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics

  20. Diffractive hard scattering at ep and p antip colliders

    International Nuclear Information System (INIS)

    Bruni, P.; Ingelman, G.; Uppsala Univ.

    1993-12-01

    Models for diffractive scattering based on the exchange of a pomeron with a parton structure are analysed in terms of hard scattering processes and the resulting characteristics of the final state. Diffractive deep inelastic ep scattering is considered in connection with the recently observed rapidity gap events at HERA. Heavy flavour and W, Z production in p anti p interactions are interesting measures of the gluon and quark component, respectively, in the pomeron. (orig.)

  1. Kinematic power corrections in off-forward hard reactions.

    Science.gov (United States)

    Braun, V M; Manashov, A N

    2011-11-11

    We develop a general approach to the calculation of kinematic corrections ∝t/Q(2), m(2)/Q(2) in hard processes which involve momentum transfer from the initial to the final hadron state. As the principal result, the complete expression is derived for the time-ordered product of two electromagnetic currents that includes all kinematic corrections to twist-four accuracy. The results are immediately applicable, e.g., to the studies of deeply virtual Compton scattering.

  2. Electroformed Nanocrystalline Coatings: An Advanced Alternative to Hard Chrome Electroplating

    Science.gov (United States)

    2003-11-21

    100mL/min. The vials were then analyzed for any traces of cobalt, iron, chloride, sulphate, and for two additives. A summary of the emission results...observed that correspond to cobalt- phosphites , indicating that the phosphorus is present in the deposits in a solid solution state (similar to XRD...precipitation of cobalt- phosphites from the supersaturated solid solution at elevated temperatures. Figure 4-2 shows the variation in hardness as a

  3. Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography

    Science.gov (United States)

    Madjarova, Violeta Dimitrova; Yasuno, Yoshiaki; Makita, Shuichi; Hori, Yasuaki; Voeffray, Jean-Baptiste; Itoh, Masahide; Yatagai, Toyohiko; Tamura, Masami; Nanbu, Toshiyuki

    2006-02-01

    Fourier Domain Optical Coherence Tomography (SD-OCT) systems for dental measurements are demonstrated. Two systems have been developed. The first system is fiber based Michelson interferometer with super luminescent diodes at 1310 nm and 100 nm FWHM as a light source. The sensitivity of the system was 106 dB with depth measurement range in air of 2.5 mm. The second systems is a fiber based Mach-Zehnder interferometer with wavelength scanning laser as light source at center wavelength of 1310 nm, wavelength range of 110 nm and scanning rate of 20 KHz. The sensitivity of the system is 112 dB and depth measurement range in air is 6 mm. Both systems can acquire real-time three dimensional (3-D) images in the range of several second. The systems were applied for early caries detection in tooth, for diagnostics of tooth condition after operational tooth treatment, and for diagnostics of the alveolar bone structure. In-vivo measurements were performed on two volunteers. The systems were able to detect discontinuities in tooth and resin filling after tooth treatment. In addition early carries lesion was detected in one of the volunteers. The 3-D profile of the alveolar bone was acquired for first time with non-contact method.

  4. Fast spectral fitting of hard X-ray bremsstrahlung from truncated power-law electron spectra

    Czech Academy of Sciences Publication Activity Database

    Brown, J. C.; Kašparová, Jana; Massone, A.M.; Piana, M.

    2008-01-01

    Roč. 486, č. 3 (2008), s. 1023-1029 ISSN 0004-6361 R&D Projects: GA ČR GP205/06/P135 Institutional research plan: CEZ:AV0Z10030501 Keywords : sun flares * X-rays * gamma rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.153, year: 2008

  5. Spectral Variability in Hard X-rays and the Evidence for a 13.5 Years ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    fit in the X-ray and gamma ray energy bands points to a common origin of these photons and the ... relativistic jets in relation to BL Lac objects in general, and 3C273 in particular has ..... emission must also explain the long term period of ∼ 5000 days in 3C273 as discussed above. .... data available on public archives.

  6. SPECTRAL ANALYSIS OF EXCHANGE RATES

    Directory of Open Access Journals (Sweden)

    ALEŠA LOTRIČ DOLINAR

    2013-06-01

    Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates

  7. The Elusive Soft Emission from Hard X-ray Symbiotic System RT Cru

    Science.gov (United States)

    Karovska, Margarita

    2014-09-01

    RT Cru is a fascinating member of a new class of hard X-ray emitting symbiotic binaries showing X-ray emission extending to over 50keV. While its hard X-ray emission has been studied in detail, the soft component of the spectrum, including flares, remains elusive, since previous observations have focused on the high-energy regime. We propose Chandra HRC-S/LETG observations to determine the spatial, spectral, and temporal characteristics of the source of the soft X-ray emission with a goal to establish the origin of the soft component, and determine whether and how it is tied to the hard component. Determining the origin of the soft emission is a crucial piece of the puzzle to understanding the geometry, energetics, and the environment of WD accretion in this class of symbiotic systems.

  8. DETECTION OF VERY HARD γ -RAY SPECTRUM FROM THE TEV BLAZAR MRK 501

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, A.; Chitnis, V. R.; Acharya, B. S. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Mannheim, K.; Dorner, D. [Institute for Theoretical Physics and Astrophysics, Universität Würzburg, D-97074 Würzburg (Germany); Roy, J. [UM-DAE Center for Excellence in Basic Sciences, Mumbai 400098 (India); Hughes, G.; Biland, A. [ETH Zurich, Institute for Particle Physics, Otto-Stern-Weg 5, 8093 Zurich (Switzerland)

    2016-12-01

    The occasional hardening of the GeV-to-TeV spectrum observed from the blazar Mrk 501 has reopened the debate on the physical origin of radiation and particle acceleration processes in TeV blazars. We have used the ∼7 years of Fermi -LAT data to search for the time intervals with unusually hard spectra from the nearby TeV blazar Mrk 501. We detected hard spectral components above 10 GeV with photon index <1.5 at a significance level of more than 5 sigma on 17 occasions, each with 30 day integration time. The photon index of the hardest component reached a value of 0.89 ± 0.29. We interpret these hard spectra as signatures of intermittent injection of sharply peaked and localized particle distributions from the base of the jet.

  9. Complex technique for materials hardness measurement

    Energy Technology Data Exchange (ETDEWEB)

    Krashchenko, V P; Oksametnaya, O B

    1984-01-01

    A review of existing methods of measurement of material hardness in national and foreign practice has been made. A necessity of improving the technique of material hardness measurement in a wide temperature range and insuring load change with indenting, continuity of imprint application, smooth changing of temperatures along a sample length, and deformation rate control has been noted.

  10. Hard scattering and a diffractive trigger

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-02-01

    Conclusions concerning the properties of hard scattering in diffractively produced systems are summarized. One motivation for studying diffractive hard scattering is to investigate the interface between Regge theory and perturbative QCD. Another is to see whether diffractive triggering can result in an improvement in the signal-to-background ratio of measurements of production of very heavy quarks. 5 refs

  11. ERRATUM: Work smart, wear your hard hat

    CERN Multimedia

    2003-01-01

    An error appeared in the article «Work smart, wear your hard hat» published in Weekly Bulletin 27/2003, page 5. The impact which pierced a hole in the hard hat worn by Gerd Fetchenhauer was the equivalent of a box weighing 5 kg and not 50 kg.

  12. 7 CFR 201.57 - Hard seeds.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS Germination Tests in the Administration of the Act § 201.57 Hard seeds. Seeds which remain hard at the end of the prescribed test because they have not absorbed water, due to an impermeable seed coat... percentage of germination. For flatpea, continue the swollen seed in test for 14 days when germinating at 15...

  13. Thermal spray coatings replace hard chrome

    International Nuclear Information System (INIS)

    Schroeder, M.; Unger, R.

    1997-01-01

    Hard chrome plating provides good wear and erosion resistance, as well as good corrosion protection and fine surface finishes. Until a few years ago, it could also be applied at a reasonable cost. However, because of the many environmental and financial sanctions that have been imposed on the process over the past several years, cost has been on a consistent upward trend, and is projected to continue to escalate. Therefore, it is very important to find a coating or a process that offers the same characteristics as hard chrome plating, but without the consequent risks. This article lists the benefits and limitations of hard chrome plating, and describes the performance of two thermal spray coatings (tungsten carbide and chromium carbide) that compared favorably with hard chrome plating in a series of tests. It also lists three criteria to determine whether plasma spray or hard chrome plating should be selected

  14. Correlating particle hardness with powder compaction performance.

    Science.gov (United States)

    Cao, Xiaoping; Morganti, Mikayla; Hancock, Bruno C; Masterson, Victoria M

    2010-10-01

    Assessing particle mechanical properties of pharmaceutical materials quickly and with little material can be very important to early stages of pharmaceutical research. In this study, a wide range of pharmaceutical materials were studied using atomic force microscopy (AFM) nanoindentation. A significant amount of particle hardness and elastic modulus data were provided. Moreover, powder compact mechanical properties of these materials were investigated in order to build correlation between the particle hardness and powder compaction performance. It was found that the materials with very low or high particle hardness most likely exhibit poor compaction performance while the materials with medium particle hardness usually have good compaction behavior. Additionally, the results from this study enriched Hiestand's special case concept on particle hardness and powder compaction performance. This study suggests that the use of AFM nanoindentation can help to screen mechanical properties of pharmaceutical materials at early development stages of pharmaceutical research.

  15. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  16. Spectrally tunable lighting facility

    Data.gov (United States)

    Federal Laboratory Consortium — Solid-state lighting (SSL) is increasingly being introduced into the market and it is expected that many of the light sources currently used for general illumination...

  17. Detectability of rotation-powered pulsars in future hard X-ray surveys

    International Nuclear Information System (INIS)

    Wang Wei

    2009-01-01

    Recent INTEGRAL/IBIS hard X-ray surveys have detected about 10 young pulsars. We show hard X-ray properties of these 10 young pulsars, which have a luminosity of 10 33 -10 37 erg s -1 and a photon index of 1.6-2.1 in the energy range of 20-100 keV. The correlation between X-ray luminosity and spin-down power of L X ∝ L sd 1.31 suggests that the hard X-ray emission in rotation-powered pulsars is dominated by the pulsar wind nebula (PWN) component. Assuming spectral properties are similar in 20-100 keV and 2-10 keV for both the pulsar and PWN components, the hard X-ray luminosity and flux of 39 known young X-ray pulsars and 8 millisecond pulsars are obtained, and a correlation of L X ∝ L sd 1.5 is derived. About 20 known young X-ray pulsars and 1 millisecond pulsars could be detected with future INTEGRAL and HXMT surveys. We also carry out Monte Carlo simulations of hard X-ray pulsars in the Galaxy and the Gould Belt, assuming values for the pulsar birth rate, initial position, proper motion velocity, period, and magnetic field distribution and evolution based on observational statistics and the L X - L sd relations: L X ∝ L sd 1.31 and L X ∝ L sd 1.5 . More than 40 young pulsars (mostly in the Galactic plane) could be detected after ten years of INTEGRAL surveys and the launch of HXMT. So, the young pulsars would be a significant part of the hard X-ray source population in the sky, and will contribute to unidentified hard X-ray sources in present and future hard X-ray surveys by INTEGRAL and HXMT.

  18. Nonlinear physical systems spectral analysis, stability and bifurcations

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam

  19. On spectral subspaces and their applications to automorphism groups

    International Nuclear Information System (INIS)

    Olesen, Dorte

    1974-03-01

    An attempt is made to give a survey of the theory of spectra and spectral subspaces of group representations in an abstract Banach space setting. The theory is applied to the groups of automorphisms of operator algebras (mostly C*-algebras) and some important results of interest for mathematical physicists are proved (restrictions of the bitransposed action, spectral subspaces for the transposed action on a C*-algebra, and positive states and representations of Rsup(n)) [fr

  20. On Spectral Triples in Quantum Gravity I

    DEFF Research Database (Denmark)

    Aastrup, Johannes; M. Grimstrup, Jesper; Nest, Ryszard

    2009-01-01

    This paper establishes a link between Noncommutative Geometry and canonical quantum gravity. A semi-finite spectral triple over a space of connections is presented. The triple involves an algebra of holonomy loops and a Dirac type operator which resembles a global functional derivation operator....... The interaction between the Dirac operator and the algebra reproduces the Poisson structure of General Relativity. Moreover, the associated Hilbert space corresponds, up to a discrete symmetry group, to the Hilbert space of diffeomorphism invariant states known from Loop Quantum Gravity. Correspondingly......, the square of the Dirac operator has, in terms of canonical quantum gravity, the form of a global area-squared operator. Furthermore, the spectral action resembles a partition function of Quantum Gravity. The construction is background independent and is based on an inductive system of triangulations...

  1. Stochastic Spectral and Conjugate Descent Methods

    KAUST Repository

    Kovalev, Dmitry

    2018-02-11

    The state-of-the-art methods for solving optimization problems in big dimensions are variants of randomized coordinate descent (RCD). In this paper we introduce a fundamentally new type of acceleration strategy for RCD based on the augmentation of the set of coordinate directions by a few spectral or conjugate directions. As we increase the number of extra directions to be sampled from, the rate of the method improves, and interpolates between the linear rate of RCD and a linear rate independent of the condition number. We develop and analyze also inexact variants of these methods where the spectral and conjugate directions are allowed to be approximate only. We motivate the above development by proving several negative results which highlight the limitations of RCD with importance sampling.

  2. Stochastic Spectral and Conjugate Descent Methods

    KAUST Repository

    Kovalev, Dmitry; Gorbunov, Eduard; Gasanov, Elnur; Richtarik, Peter

    2018-01-01

    The state-of-the-art methods for solving optimization problems in big dimensions are variants of randomized coordinate descent (RCD). In this paper we introduce a fundamentally new type of acceleration strategy for RCD based on the augmentation of the set of coordinate directions by a few spectral or conjugate directions. As we increase the number of extra directions to be sampled from, the rate of the method improves, and interpolates between the linear rate of RCD and a linear rate independent of the condition number. We develop and analyze also inexact variants of these methods where the spectral and conjugate directions are allowed to be approximate only. We motivate the above development by proving several negative results which highlight the limitations of RCD with importance sampling.

  3. Computational Modeling Develops Ultra-Hard Steel

    Science.gov (United States)

    2007-01-01

    Glenn Research Center's Mechanical Components Branch developed a spiral bevel or face gear test rig for testing thermal behavior, surface fatigue, strain, vibration, and noise; a full-scale, 500-horsepower helicopter main-rotor transmission testing stand; a gear rig that allows fundamental studies of the dynamic behavior of gear systems and gear noise; and a high-speed helical gear test for analyzing thermal behavior for rotorcraft. The test rig provides accelerated fatigue life testing for standard spur gears at speeds of up to 10,000 rotations per minute. The test rig enables engineers to investigate the effects of materials, heat treat, shot peen, lubricants, and other factors on the gear's performance. QuesTek Innovations LLC, based in Evanston, Illinois, recently developed a carburized, martensitic gear steel with an ultra-hard case using its computational design methodology, but needed to verify surface fatigue, lifecycle performance, and overall reliability. The Battelle Memorial Institute introduced the company to researchers at Glenn's Mechanical Components Branch and facilitated a partnership allowing researchers at the NASA Center to conduct spur gear fatigue testing for the company. Testing revealed that QuesTek's gear steel outperforms the current state-of-the-art alloys used for aviation gears in contact fatigue by almost 300 percent. With the confidence and credibility provided by the NASA testing, QuesTek is commercializing two new steel alloys. Uses for this new class of steel are limitless in areas that demand exceptional strength for high throughput applications.

  4. Hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    2009-01-01

    Except in the very early stage of the development of X-ray photoemission spectroscopy (XPS) by Kai Siegbahn and his coworkers, the excitation sources for XPS studies have predominantly been the Al Kα and Mg Kα emission lines. The advent of synchrotron radiation sources opened up the possibility of tuning the excitation photon energy with much higher throughputs for photoemission spectroscopy, however the excitation energy range was limited to the vacuum ultra violet and soft X-ray regions. Over the past 5-6 years, bulk-sensitive hard X-ray photoemission spectroscopy using high-brilliance high-flux X-rays from third generation synchrotron radiation facilities has been developed. This article reviews the history of HXPES covering the period from Kai Siegbahn and his coworkers' pioneering works to the present, and describes the fundamental aspects, instrumentation, applications to solid state physics, applied physics, materials science, and industrial applications of HXPES. Finally, several challenging new developments which have been conducted at SPring-8 by collaborations among several groups are introduced.

  5. Black Hole Mass Determination In the X-Ray Binary 4U 1630-47: Scaling of Spectral and Variability Characteristics

    Science.gov (United States)

    Seifina, Elena; Titarchuk, Lev; Shaposhnikov, Nikolai

    2014-01-01

    We present the results of a comprehensive investigation on the evolution of spectral and timing properties of the Galactic black hole candidate 4U 1630-47 during its spectral transitions. In particular, we show how a scaling of the correlation of the photon index of the Comptonized spectral component gamma with low-frequency quasi-periodic oscillations (QPOs), ?(sub L), and mass accretion rate, M, can be applied to the black hole mass and the inclination angle estimates.We analyze the transition episodes observed with the Rossi X-Ray Timing Explorer and BeppoSAX satellites.We find that the broadband X-ray energy spectra of 4U 1630-47 during all spectral states can be modeled by a combination of a thermal component, a Comptonized component, and a red-skewed iron-line component. We also establish that gamma monotonically increases during transition from the low-hard state to the high-soft state and then saturates for high mass accretion rates. The index saturation levels vary for different transition episodes. Correlations of gamma versus ?(sub L) also show saturation at gamma (is) approximately 3. Gamma -M and gamma -?(sub L) correlations with their index saturation revealed in 4U 1630-47 are similar to those established in a number of other black hole candidates and can be considered as an observational evidence for the presence of a black hole in these sources. The scaling technique, which relies on XTE J1550-564, GRO 1655-40, and H1743-322 as reference sources, allows us to evaluate a black hole mass in 4U 1630-47 yielding M(sub BH) (is) approximately 10 +/- 0.1 solar masses and to constrain the inclination angle of i (is) approximately less than 70 deg.

  6. Terahertz spectral unmixing based method for identifying gastric cancer

    Science.gov (United States)

    Cao, Yuqi; Huang, Pingjie; Li, Xian; Ge, Weiting; Hou, Dibo; Zhang, Guangxin

    2018-02-01

    At present, many researchers are exploring biological tissue inspection using terahertz time-domain spectroscopy (THz-TDS) techniques. In this study, based on a modified hard modeling factor analysis method, terahertz spectral unmixing was applied to investigate the relationships between the absorption spectra in THz-TDS and certain biomarkers of gastric cancer in order to systematically identify gastric cancer. A probability distribution and box plot were used to extract the distinctive peaks that indicate carcinogenesis, and the corresponding weight distributions were used to discriminate the tissue types. The results of this work indicate that terahertz techniques have the potential to detect different levels of cancer, including benign tumors and polyps.

  7. Hard photons in W pair production at LEP 2

    International Nuclear Information System (INIS)

    Oldenborgh, G.J. van

    1996-01-01

    The properties of hard photon radiation in W pair production at LEP 2 are studied, with emphasis on the energy loss relevant to the W mass measurement. We use a combination of the exact one-photon matrix element and leading logarithmic structure functions. Defining unobservable, observable and initial-state photons in the phase space, it is shown that neither the one-photon matrix element nor the leading logarithmic structure functions alone give an adequate description of the energy loss due to observable or initial-state photons. An event generator based on these calculations is available. (orig.)

  8. The hardness of train rearrangements

    NARCIS (Netherlands)

    Eggermont, C.E.J.; Hurkens, C.A.J.; Modelski, M.S.; Woeginger, G.J.

    2009-01-01

    We derive several results on the computational complexity of train rearrangement problems in railway optimization. Our main result states that arranging a departing train in a depot is NP-complete, even if each track in the depot contains only two cars.

  9. The Chandra Source Catalog 2.0: Spectral Properties

    Science.gov (United States)

    McCollough, Michael L.; Siemiginowska, Aneta; Burke, Douglas; Nowak, Michael A.; Primini, Francis Anthony; Laurino, Omar; Nguyen, Dan T.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula; Chandra Source Catalog Team

    2018-01-01

    The second release of the Chandra Source Catalog (CSC) contains all sources identified from sixteen years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package) using wstat as a fit statistic and Bayesian draws method to determine errors. Three models were fit to each source: an absorbed power-law, blackbody, and Bremsstrahlung emission. The fitted parameter values for the power-law, blackbody, and Bremsstrahlung models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy fluxes computed from the normalizations of predefined absorbed power-law, black-body, Bremsstrahlung, and APEC models needed to match the observed net X-ray counts. For sources that have been observed multiple times we performed a Bayesian Blocks analysis will have been performed (see the Primini et al. poster) and the most significant block will have a joint fit performed for the mentioned spectral models. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard). This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  10. Broadband Spectral Investigations of Magnetar Bursts

    Science.gov (United States)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin

    2017-09-01

    We present our broadband (2-250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550-5418, SGR 1900+14, and SGR 1806-20 detected with the Rossi X-ray Timing Explorer (RXTE) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  11. Broadband Spectral Investigations of Magnetar Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin, E-mail: demetk@sabanciuniv.edu [Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı Tuzla, Istanbul 34956 (Turkey)

    2017-09-01

    We present our broadband (2–250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550−5418, SGR 1900+14, and SGR 1806−20 detected with the Rossi X-ray Timing Explorer ( RXTE ) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  12. Analysis of Hard Thin Film Coating

    Science.gov (United States)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  13. Soft and hard contributions to hard pion photoproduction

    International Nuclear Information System (INIS)

    Afanasev, Andrei; Carlson, Carl E.; Wahlquist, Christian

    2000-01-01

    Pion photoproduction at high transverse momentum supplements what can be learned in the standard probes of deep inelastic scattering and Drell-Yan processes. With polarized initial states there is sensitivity to the polarized gluon distribution, Δg, in leading order. This contrasts to other processes mentioned, which have no leading order gluon contribution. Additionally, in some kinematic regions the process occurs mainly due to pion production at short distances ('direct pion production', resulting in kinematically isolated pions), which gives sensitivity to the high-x valence quark distribution

  14. Hard Break-Up of Two-Nucleons and QCD Dynamics of NN Interaction

    International Nuclear Information System (INIS)

    Sargsian, Misak

    2008-01-01

    We discus recent developments in theory of high energy two-body break-up of few-nucleon systems. The characteristics of these reactions are such that the hard two-body quasielastic subprocess can be clearly separated from the accompanying soft subprocesses. We discuss in details the hard rescattering model (HRM) in which hard photodisintegration develops in two stages. At first, photon knocks-out an energetic quark which rescatters subsequently with a quark of the other nucleon. The latter provides a mechanism of sharing the initial high momentum of the photon between two outgoing nucleons. This final state hard rescattering can be expressed through the hard NN scattering amplitude. Within HRM we discuss hard break-up reactions involving D and 3 He targets and demonstrate how these reactions are sensitive to the dynamics of hard pn and pp interaction. Another development of HRM is the prediction of new helicity selection mechanism for hard two-body reactions, which was apparently confirmed in the recent JLab experiment.

  15. Substitution dynamical systems spectral analysis

    CERN Document Server

    Queffélec, Martine

    2010-01-01

    This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...

  16. Spectral characterization of natural backgrounds

    Science.gov (United States)

    Winkelmann, Max

    2017-10-01

    As the distribution and use of hyperspectral sensors is constantly increasing, the exploitation of spectral features is a threat for camouflaged objects. To improve camouflage materials at first the spectral behavior of backgrounds has to be known to adjust and optimize the spectral reflectance of camouflage materials. In an international effort, the NATO CSO working group SCI-295 "Development of Methods for Measurements and Evaluation of Natural Background EO Signatures" is developing a method how this characterization of backgrounds has to be done. It is obvious that the spectral characterization of a background will be quite an effort. To compare and exchange data internationally the measurements will have to be done in a similar way. To test and further improve this method an international field trial has been performed in Storkow, Germany. In the following we present first impressions and lessons learned from this field campaign and describe the data that has been measured.

  17. Radiation hardness of diamond and silicon sensors compared

    CERN Document Server

    de Boer, Wim; Furgeri, Alexander; Mueller, Steffen; Sander, Christian; Berdermann, Eleni; Pomorski, Michal; Huhtinen, Mika

    2007-01-01

    The radiation hardness of silicon charged particle sensors is compared with single crystal and polycrystalline diamond sensors, both experimentally and theoretically. It is shown that for Si- and C-sensors, the NIEL hypothesis, which states that the signal loss is proportional to the Non-Ionizing Energy Loss, is a good approximation to the present data. At incident proton and neutron energies well above 0.1 GeV the radiation damage is dominated by the inelastic cross section, while at non-relativistic energies the elastic cross section prevails. The smaller inelastic nucleon-Carbon cross section and the light nuclear fragments imply that at high energies diamond is an order of magnitude more radiation hard than silicon, while at energies below 0.1 GeV the difference becomes significantly smaller.

  18. On the Convergence of Iterative Receiver Algorithms Utilizing Hard Decisions

    Directory of Open Access Journals (Sweden)

    Jürgen F. Rößler

    2009-01-01

    Full Text Available The convergence of receivers performing iterative hard decision interference cancellation (IHDIC is analyzed in a general framework for ASK, PSK, and QAM constellations. We first give an overview of IHDIC algorithms known from the literature applied to linear modulation and DS-CDMA-based transmission systems and show the relation to Hopfield neural network theory. It is proven analytically that IHDIC with serial update scheme always converges to a stable state in the estimated values in course of iterations and that IHDIC with parallel update scheme converges to cycles of length 2. Additionally, we visualize the convergence behavior with the aid of convergence charts. Doing so, we give insight into possible errors occurring in IHDIC which turn out to be caused by locked error situations. The derived results can directly be applied to those iterative soft decision interference cancellation (ISDIC receivers whose soft decision functions approach hard decision functions in course of the iterations.

  19. Hard amplitudes in gauge theories

    International Nuclear Information System (INIS)

    Parke, S.J.

    1991-03-01

    In this lecture series 1 presents recent developments in perturbation theory methods for gauge theories for processes with many partons. These techniques and results are useful in the calculation of cross sections for processes with many final state partons which have applications in the study of multi-jet phenomena in high-energy colliders. The results illuminate many important and interesting properties of non-abelian gauge theories. 30 refs., 9 figs

  20. Adiabatic theorem and spectral concentration

    International Nuclear Information System (INIS)

    Nenciu, G.

    1981-01-01

    The spectral concentration of arbitrary order, for the Stark effect is proved to exist for a large class of Hamiltonians appearing in nonrelativistic and relativistic quantum mechanics. The results are consequences of an abstract theorem about the spectral concentration for self-ad oint operators. A general form of the adiabatic theorem of quantum mechanics, generalizing an earlier result of the author as well as some results of Lenard, is also proved [ru

  1. Maximum spectral demands in the near-fault region

    Science.gov (United States)

    Huang, Yin-Nan; Whittaker, Andrew S.; Luco, Nicolas

    2008-01-01

    The Next Generation Attenuation (NGA) relationships for shallow crustal earthquakes in the western United States predict a rotated geometric mean of horizontal spectral demand, termed GMRotI50, and not maximum spectral demand. Differences between strike-normal, strike-parallel, geometric-mean, and maximum spectral demands in the near-fault region are investigated using 147 pairs of records selected from the NGA strong motion database. The selected records are for earthquakes with moment magnitude greater than 6.5 and for closest site-to-fault distance less than 15 km. Ratios of maximum spectral demand to NGA-predicted GMRotI50 for each pair of ground motions are presented. The ratio shows a clear dependence on period and the Somerville directivity parameters. Maximum demands can substantially exceed NGA-predicted GMRotI50 demands in the near-fault region, which has significant implications for seismic design, seismic performance assessment, and the next-generation seismic design maps. Strike-normal spectral demands are a significantly unconservative surrogate for maximum spectral demands for closest distance greater than 3 to 5 km. Scale factors that transform NGA-predicted GMRotI50 to a maximum spectral demand in the near-fault region are proposed.

  2. HARD X-RAY TAIL DISCOVERED IN THE CLOCKED BURSTER GS 1826–238

    Energy Technology Data Exchange (ETDEWEB)

    Rodi, J.; Jourdain, E.; Roques, J. P., E-mail: jrodi@irap.omp.eu [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France)

    2016-02-01

    The low-mass X-ray binary (LMXB) neutron star (NS) GS 1826–238 was discovered by Ginga in 1988 September. Due to the presence of quasi-periodicity in the type I X-ray burst rate, the source has been a frequent target of X-ray observations for almost 30 years. Though the bursts were too soft to be detected by INTEGRAL/SPI, the persistent emission from GS 1826–238 was detected over 150 keV during the ∼10 years of observations. Spectral analysis found a significant high-energy excess above a Comptonization model that is well fit by a power law, indicating an additional spectral component. Most previously reported spectra with hard tails in LMXB NS have had an electron temperature of a few keV and a hard tail dominating above ∼50 keV with an index of Γ ∼ 2–3. GS 1826–238 was found to have a markedly different spectrum with kT{sub e} ∼ 20 keV and a hard tail dominating above ∼150 keV with an index of Γ ∼ 1.8, more similar to black hole X-ray binaries. We report on our search for long-term spectral variability over the 25–370 keV energy range and on a comparison of the GS 1826–238 average spectrum to the spectra of other LMXB NSs with hard tails.

  3. Double hard scattering without double counting

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [VU Univ. Amsterdam (Netherlands). NIKHEF Theory Group; Schoenwald, Kay [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-02-15

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  4. Hard X-ray Photoelectric Polarimeter

    Data.gov (United States)

    National Aeronautics and Space Administration — Our objective is to determine the gas mixtures and pressures that would enable a sensitive, hard X-ray polarimeter using existing flight components with the goal of...

  5. Methane in German hard coal mining

    International Nuclear Information System (INIS)

    Martens, P.N.; Den Drijver, J.

    1995-01-01

    Worldwide, hard coal mining is being carried out at ever increasing depth, and has, therefore, to cope with correspondingly increasing methane emissions are caused by coal mining. Beside carbon dioxide, chloro-fluoro-carbons (CFCs) and nitrogen oxides, methane is one of the most significant 'greenhouse' gases. It is mainly through the release of such trace gases that the greenhouse effect is brought about. Reducing methane emissions is therefore an important problem to be solved by the coal mining industry. This paper begins by highlighting some of the fundamental principles of methane in hard coal mining. The methane problem in German hard coal mining and the industry's efforts to reduce methane emissions are presented. The future development in German hard coal mining is illustrated by an example which shows how large methane volumes can be managed, while still maintaining high outputs at increasing depth. (author). 7 tabs., 10 figs., 20 refs

  6. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... it free Find out why Close Why Are Drugs So Hard to Quit? National Institute on Drug Abuse (NIDA/NIH) Loading... Unsubscribe from National Institute on Drug Abuse (NIDA/NIH)? Cancel Unsubscribe Working... Subscribe Subscribed ...

  7. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... YouTube Red. Working... Not now Try it free Find out why Close Why Are Drugs So Hard ... hotline to help you or a loved one find treatment. For more information, visit http://www.easyread. ...

  8. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... So Hard to Quit? National Institute on Drug Abuse (NIDA/NIH) Loading... Unsubscribe from National Institute on Drug Abuse (NIDA/NIH)? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe ...

  9. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... Feb 7, 2012 Quitting drugs is hard because addiction is a brain disease. Your brain is like ... out signals to direct your actions and choices. Addiction changes the signals in your brain and makes ...

  10. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... Drugs So Hard to Quit? National Institute on Drug Abuse (NIDA/NIH) Loading... Unsubscribe from National Institute on Drug Abuse (NIDA/NIH)? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe ...

  11. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... in your brain and makes it hard to feel OK without the drug. This video from NIDA ... Advertise Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign in to ...

  12. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... has been rented. This feature is not available right now. Please try again later. Published on Feb 7, 2012 Quitting drugs is hard because addiction is a brain disease. Your brain is like a control tower ...

  13. A theoretical overview on single hard diffraction

    International Nuclear Information System (INIS)

    Wuesthoff, M.

    1996-01-01

    The concept of the Pomeron structure function and its application in Single Hard Diffraction at hadron colliders and in diffractive Deep Inelastic Scattering is critically reviewed. Some alternative approaches are briefly surveyed with a focus on QCD inspired models

  14. Double hard scattering without double counting

    International Nuclear Information System (INIS)

    Diehl, Markus; Gaunt, Jonathan R.

    2017-02-01

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  15. Hadronic spectral functions in nuclear matter

    International Nuclear Information System (INIS)

    Post, M.; Leupold, S.; Mosel, U.

    2004-01-01

    We study the in-medium properties of mesons (π,η,ρ) and baryon resonances in cold nuclear matter within a coupled-channel analysis. The meson self energies are generated by particle-hole excitations. Thus multi-peak spectra are obtained for the mesonic spectral functions. In turn this leads to medium-modifications of the baryon resonances. Special care is taken to respect the analyticity of the spectral functions and to take into account effects from short-range correlations both for positive and negative parity states. Our model produces sensible results for pion and Δ dynamics in nuclear matter. We find a strong interplay of the ρ meson and the D 13 (1520), which moves spectral strength of the ρ spectrum to smaller invariant masses and leads to a broadening of the baryon resonance. The optical potential for the η meson resulting from our model is rather attractive whereas the in-medium properties modifications of the S 11 (1535) are found to be quite small

  16. Some threshold spectral problems of Schroedinger operators

    International Nuclear Information System (INIS)

    Jia, X.

    2009-01-01

    This Ph.D. thesis deals with some spectral problems of the Schroedinger operators. We first consider the semi-classical limit of the number of bound states of unique two-cluster N-body Schroedinger operator. Then we use Dirichlet-Neumann bracket to get semi-classical limit of Riesz means of the discrete eigenvalues of N-body Schroedinger operator. The effective potential of N-body Schroedinger operator with Coulomb potential is also considered and we find that the effective potential has critical decay at infinity. Thus, the Schroedinger operator with critical potential is studied in this thesis. We study the coupling constant threshold of Schroedinger operator with critical potential and the asymptotic expansion of resolvent of Schroedinger operator with critical potential. We use that expansion to study low-energy asymptotics of derivative of spectral shift function for perturbation with critical decay. After that, we use this result and the known result for high-energy asymptotic expansion of spectral shift function to obtain the Levinson theorem. (author)

  17. Hard scattering and gauge/string duality

    International Nuclear Information System (INIS)

    Polchinski, Joseph; Strassler, Matthew J.

    2002-01-01

    We consider high-energy fixed-angle scattering of glueballs in confining gauge theories that have supergravity duals. Although the effective description is in terms of the scattering of strings, we find that the amplitudes are hard (power law). This is a consequence of the warped geometry of the dual theory, which has the effect that in an inertial frame the string process is never in the soft regime. At small angle we find hard and Regge behaviors in different kinematic regions

  18. Soft skills, hard skills, and individual innovativeness

    DEFF Research Database (Denmark)

    Hendarman, Achmad Fajar; Cantner, Uwe

    2018-01-01

    of Indonesian firms from different industries are used from an online survey on manager and worker perceptions related to individual innovation performance on the one hand and individual skills on the other hand. The results show that soft skills and hard skills are significantly and positively associated...... with individual level innovativeness. However, no complementarity (positive interaction effect) is found between soft skills and hard skills....

  19. Hard template synthesis of metal nanowires

    OpenAIRE

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production o...

  20. Radiation-Hard Quartz Cerenkov Calorimeters

    International Nuclear Information System (INIS)

    Akgun, U.; Onel, Y.

    2006-01-01

    New generation hadron colliders are going to reach unprecedented energies and radiation levels. Quartz has been identified as a radiation-hard material that can be used for Cerenkov calorimeters of the future experiments. We report from the radiation hardness tests performed on quartz fibers, as well as the characteristics of the quartz fiber and plate Cerenkov calorimeters that have been built, designed, and proposed for the CMS experiment

  1. Radiation hard memory cell and array thereof

    International Nuclear Information System (INIS)

    Gunckel, T.L. II; Rovell, A.; Nielsen, R.L.

    1978-01-01

    A memory cell configuration that is implemented to be relatively hard to the adverse effects of a nuclear event is discussed. The presently disclosed memory cell can be interconnected with other like memory cells to form a high speed radiation hard register file. Information is selectively written into and read out of a memory cell comprising the register file, which memory cell preserves previously stored data without alteration in the event of exposure to high levels of nuclear radiation

  2. Structural and electronic properties of OsB2 : A hard metallic material

    Science.gov (United States)

    Chen, Z. Y.; Xiang, H. J.; Yang, Jinlong; Hou, J. G.; Zhu, Qingshi

    2006-07-01

    We calculate the structural and electronic properties of OsB2 using density functional theory with or without taking into account the spin-orbit (SO) interaction. Our results show that the bulk modulus with and without SO interactions are 364 and 365GPa , respectively, both are in good agreement with experiment (365-395GPa) . The evidence of covalent bonding of Os-B, which plays an important role to form a hard material, is indicated both in charge density, atoms in molecules analysis, and density of states analysis. The good metallicity and hardness of OsB2 might suggest its potential application as hard conductors.

  3. Geotechnical issues and guidelines for storage of compressed air in excavated hard rock caverns

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Doherty, T.J.; Fossum, A.F.

    1982-04-01

    The results of a literature survey on the stability of excavated hard rock caverns are presented. The objective of the study was to develop geotechnical criteria for the design of compressed air energy storage (CAES) caverns in hard rock formations. These criteria involve geologic, hydrological, geochemical, geothermal, and in situ stress state characteristics of generic rock masses. Their relevance to CAES caverns, and the identification of required research areas, are identified throughout the text. This literature survey and analysis strongly suggests that the chief geotechnical issues for the development and operation of CAES caverns in hard rock are impermeability for containment, stability for sound openings, and hydrostatic balance.

  4. Towards NNLL resummation. Hard matching coefficients for squark and gluino hadroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Beenakker, Wim; Janssen, Tim; Lepoeter, Susanne; Niessen, Irene; Daal, Tom van [Nijmegen Univ. (Netherlands). Theoretical High Energy Physics; Kraemer, Michael [RWTH Aachen (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Kulesza, Anna [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Laenen, Eric [Amsterdam Univ. (Netherlands). ITFA; Utrecht Univ. (Netherlands). ITF; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands); Thewes, Silja [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    We present the hard matching coefficients for squark and gluino hadroproduction. The hard matching coefficients follow from the next-to-leading order cross section near threshold and are an important ingredient for performing threshold resummation at next-to-next-to-leading logarithmic accuracy. We discuss the calculation, list the analytical results and study the numerical impact of these corrections. We find that the impact of the hard matching coefficients can be considerable, with the largest effect observed for final states involving gluinos.

  5. Standard test methods for rockwell hardness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These test methods cover the determination of the Rockwell hardness and the Rockwell superficial hardness of metallic materials by the Rockwell indentation hardness principle. This standard provides the requirements for Rockwell hardness machines and the procedures for performing Rockwell hardness tests. 1.2 This standard includes additional requirements in annexes: Verification of Rockwell Hardness Testing Machines Annex A1 Rockwell Hardness Standardizing Machines Annex A2 Standardization of Rockwell Indenters Annex A3 Standardization of Rockwell Hardness Test Blocks Annex A4 Guidelines for Determining the Minimum Thickness of a Test Piece Annex A5 Hardness Value Corrections When Testing on Convex Cylindrical Surfaces Annex A6 1.3 This standard includes nonmandatory information in appendixes which relates to the Rockwell hardness test. List of ASTM Standards Giving Hardness Values Corresponding to Tensile Strength Appendix X1 Examples of Procedures for Determining Rockwell Hardness Uncertainty Appendix X...

  6. Standard test methods for rockwell hardness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover the determination of the Rockwell hardness and the Rockwell superficial hardness of metallic materials by the Rockwell indentation hardness principle. This standard provides the requirements for Rockwell hardness machines and the procedures for performing Rockwell hardness tests. 1.2 This standard includes additional requirements in annexes: Verification of Rockwell Hardness Testing Machines Annex A1 Rockwell Hardness Standardizing Machines Annex A2 Standardization of Rockwell Indenters Annex A3 Standardization of Rockwell Hardness Test Blocks Annex A4 Guidelines for Determining the Minimum Thickness of a Test Piece Annex A5 Hardness Value Corrections When Testing on Convex Cylindrical Surfaces Annex A6 1.3 This standard includes nonmandatory information in appendixes which relates to the Rockwell hardness test. List of ASTM Standards Giving Hardness Values Corresponding to Tensile Strength Appendix X1 Examples of Procedures for Determining Rockwell Hardness Uncertainty Appendix X...

  7. Experimental investigation of smoothing by spectral dispersion

    International Nuclear Information System (INIS)

    Regan, Sean P.; Marozas, John A.; Kelly, John H.; Boehly, Thomas R.; Donaldson, William R.; Jaanimagi, Paul A.; Keck, Robert L.; Kessler, Terrance J.; Meyerhofer, David D.; Seka, Wolf

    2000-01-01

    Measurements of smoothing rates for smoothing by spectral dispersion (SSD) of high-power, solid-state laser beams used for inertial confinement fusion (ICF) research are reported. Smoothing rates were obtained from the intensity distributions of equivalent target plane images for laser pulses of varying duration. Simulations of the experimental data with the known properties of the phase plates and the frequency modulators are in good agreement with the experimental data. These results inspire confidence in extrapolating to higher bandwidths and other SSD configurations that may be suitable for ICF experiments and ultimately for direct-drive laser-fusion ignition. (c) 2000 Optical Society of America

  8. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges

    Science.gov (United States)

    Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2018-01-01

    Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.

  9. REVISITING THE LONG/SOFT-SHORT/HARD CLASSIFICATION OF GAMMA-RAY BURSTS IN THE FERMI ERA

    International Nuclear Information System (INIS)

    Zhang Fuwen; Yan Jingzhi; Wei Daming; Shao Lang

    2012-01-01

    We perform a statistical analysis of the temporal and spectral properties of the latest Fermi gamma-ray bursts (GRBs) to revisit the classification of GRBs. We find that the bimodalities of duration and the energy ratio (E peak /Fluence) and the anti-correlation between spectral hardness (hardness ratio (HR), peak energy, and spectral index) and duration (T 90 ) support the long/soft-short/hard classification scheme for Fermi GRBs. The HR-T 90 anti-correlation strongly depends on the spectral shape of GRBs and energy bands, and the bursts with the curved spectra in the typical BATSE energy bands show a tighter anti-correlation than those with the power-law spectra in the typical BAT energy bands. This might explain why the HR-T 90 correlation is not evident for those GRB samples detected by instruments like Swift with a narrower/softer energy bandpass. We also analyze the intrinsic energy correlation for the GRBs with measured redshifts and well-defined peak energies. The current sample suggests E p,rest = 2455 × (E iso /10 52 ) 0.59 for short GRBs, significantly different from that for long GRBs. However, both the long and short GRBs comply with the same E p,rest -L iso correlation.

  10. Vector meson dominance and pointlike coupling of the photon in soft and hard processes

    International Nuclear Information System (INIS)

    Paul, E.

    1990-05-01

    Recent experimental results on photoproduction of hadrons probe the nature of the interacting photon over a wide kinematical range from soft to hard processes. Single inclusive spectra and energy flows of the final state charged particles are well described by assuming that photon production data are built up by an incoherent superposition of a soft Vector-Meson-Dominance component and a hard pointlike photon component. (orig.)

  11. High-resolution, hard x-ray photoemission investigation of BaFe2As2: Moderate influence of the surface and evidence for a low degree of Fe 3d-As 4p hybridization of electronic states near the Fermi energy

    NARCIS (Netherlands)

    de Jong, S.; Huang, Y.; Huisman, R.; Massee, F.; Thirupathaiah, R.; Gorgoi, M.; Schaefers, F.; Follath, F.; Goedkoop, J.B.; Golden, M.S.

    2009-01-01

    Photoemission data taken with hard x-ray radiation on cleaved single crystals of the barium parent compound of the MFe2As2 pnictide high-temperature superconductor family are presented. Making use of the increased bulk sensitivity upon hard x-ray excitation, and comparing the results to data taken

  12. Pair Formation of Hard Core Bosons in Flat Band Systems

    Science.gov (United States)

    Mielke, Andreas

    2018-05-01

    Hard core bosons in a large class of one or two dimensional flat band systems have an upper critical density, below which the ground states can be described completely. At the critical density, the ground states are Wigner crystals. If one adds a particle to the system at the critical density, the ground state and the low lying multi particle states of the system can be described as a Wigner crystal with an additional pair of particles. The energy band for the pair is separated from the rest of the multi-particle spectrum. The proofs use a Gerschgorin type of argument for block diagonally dominant matrices. In certain one-dimensional or tree-like structures one can show that the pair is localised, for example in the chequerboard chain. For this one-dimensional system with periodic boundary condition the energy band for the pair is flat, the pair is localised.

  13. EVALUATING THE ROLE OF ION COMPOSITION ON THE TOXICITY OF COPPER TO CERIODAPHNIA DUBIA IN VERY HARD WATERS

    Science.gov (United States)

    The mitigating effect of increasing hardness on metal toxicity is reflected in water quality criteria in the United States. - - - Copper toxicity did not consistently vary as a function of hardness, but likely as a function of other water quality characteristics (e.g. alkalinity ...

  14. The Spectral Web of stationary plasma equilibria. II. Internal modes

    Science.gov (United States)

    Goedbloed, J. P.

    2018-03-01

    The new method of the Spectral Web to calculate the spectrum of waves and instabilities of plasma equilibria with sizeable flows, developed in the preceding Paper I [Goedbloed, Phys. Plasmas 25, 032109 (2018)], is applied to a collection of classical magnetohydrodynamic instabilities operating in cylindrical plasmas with shear flow or rotation. After a review of the basic concepts of the complementary energy giving the solution path and the conjugate path, which together constitute the Spectral Web, the cylindrical model is presented and the spectral equations are derived. The first example concerns the internal kink instabilities of a cylindrical force-free magnetic field of constant α subjected to a parabolic shear flow profile. The old stability diagram and the associated growth rate calculations for static equilibria are replaced by a new intricate stability diagram and associated complex growth rates for the stationary model. The power of the Spectral Web method is demonstrated by showing that the two associated paths in the complex ω-plane nearly automatically guide to the new class of global Alfvén instabilities of the force-free configuration that would have been very hard to predict by other methods. The second example concerns the Rayleigh-Taylor instability of a rotating theta-pinch. The old literature is revisited and shown to suffer from inconsistencies that are remedied. The most global n = 1 instability and a cluster sequence of more local but much more unstable n =2 ,3 ,…∞ modes are located on separate solution paths in the hydrodynamic (HD) version of the instability, whereas they merge in the MHD version. The Spectral Web offers visual demonstration of the central position the HD flow continuum and of the MHD Alfvén and slow magneto-sonic continua in the respective spectra by connecting the discrete modes in the complex plane by physically meaningful curves towards the continua. The third example concerns the magneto-rotational instability

  15. Hardness of deriving invertible sequences from finite state machines

    DEFF Research Database (Denmark)

    Hierons, Robert M.; Mousavi, Mohammad Reza; Thomsen, Michael Kirkedal

    2017-01-01

    invertible sequences; these allow one to construct additional UIOs once a UIO has been found. We consider three optimisation problems associated with invertible sequences: deciding whether there is a (proper) invertible sequence of length at least K; deciding whether there is a set of invertible sequences...

  16. Onboard spectral imager data processor

    Science.gov (United States)

    Otten, Leonard J.; Meigs, Andrew D.; Franklin, Abraham J.; Sears, Robert D.; Robison, Mark W.; Rafert, J. Bruce; Fronterhouse, Donald C.; Grotbeck, Ronald L.

    1999-10-01

    Previous papers have described the concept behind the MightySat II.1 program, the satellite's Fourier Transform imaging spectrometer's optical design, the design for the spectral imaging payload, and its initial qualification testing. This paper discusses the on board data processing designed to reduce the amount of downloaded data by an order of magnitude and provide a demonstration of a smart spaceborne spectral imaging sensor. Two custom components, a spectral imager interface 6U VME card that moves data at over 30 MByte/sec, and four TI C-40 processors mounted to a second 6U VME and daughter card, are used to adapt the sensor to the spacecraft and provide the necessary high speed processing. A system architecture that offers both on board real time image processing and high-speed post data collection analysis of the spectral data has been developed. In addition to the on board processing of the raw data into a usable spectral data volume, one feature extraction technique has been incorporated. This algorithm operates on the basic interferometric data. The algorithm is integrated within the data compression process to search for uploadable feature descriptions.

  17. Intersection numbers of spectral curves

    CERN Document Server

    Eynard, B.

    2011-01-01

    We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the Marino-Vafa formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV, Marino-Vafa formula, and Mumford formula.

  18. Spectral filtering for plant production

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.E.; McMahon, M.J.; Rajapakse, N.C.; Becoteau, D.R.

    1994-12-31

    Research to date suggests that spectral filtering can be an effective alternative to chemical growth regulators for altering plant development. If properly implemented, it can be nonchemical and environmentally friendly. The aqueous CuSO{sub 4}, and CuCl{sub 2} solutions in channelled plastic panels have been shown to be effective filters, but they can be highly toxic if the solutions contact plants. Some studies suggest that spectral filtration limited to short EOD intervals can also alter plant development. Future research should be directed toward confirmation of the influence of spectral filters and exposure times on a broader range of plant species and cultivars. Efforts should also be made to identify non-noxious alternatives to aqueous copper solutions and/or to incorporate these chemicals permanently into plastic films and panels that can be used in greenhouse construction. It would also be informative to study the impacts of spectral filters on insect and microbal populations in plant growth facilities. The economic impacts of spectral filtering techniques should be assessed for each delivery methodology.

  19. Spectral Imaging of Portolan Charts

    Science.gov (United States)

    France, Fenella G.; Wilson, Meghan A.; Ghez, Anita

    2018-05-01

    Spectral imaging of Portolan Charts, early nautical charts, provided extensive new information about their construction and creation. The origins of the portolan chart style have been a continual source of perplexity to numerous generations of cartographic historians. The spectral imaging system utilized incorporates a 50 megapixel mono-chrome camera with light emitting diode (LED) illumination panels that cover the range from 365 nm to 1050 nm to capture visible and non-visible information. There is little known about how portolan charts evolved, and what influenced their creation. These early nautical charts began as working navigational tools of medieval mariners, initially made in the 1300s in Italy, Portugal and Spain; however the origin and development of the portolan chart remained shrouded in mystery. Questions about these early navigational charts included whether colorants were commensurate with the time period and geographical location, and if different, did that give insight into trade routes, or possible later additions to the charts? For example; spectral data showed the red pigment on both the 1320 portolan chart and the 1565 Galapagos Islands matched vermillion, an opaque red pigment used since antiquity. The construction of these charts was also of great interest. Spectral imaging with a range of illumination modes revealed the presence of a "hidden circle" often referred to in relation to their construction. This paper will present in-depth analysis of how spectral imaging of the Portolans revealed similarities and differences, new hidden information and shed new light on construction and composition.

  20. Hard copies for digital medical images: an overview

    Science.gov (United States)

    Blume, Hartwig R.; Muka, Edward

    1995-04-01

    This paper is a condensed version of an invited overview on the technology of film hard-copies used in radiology. Because the overview was given to an essentially nonmedical audience, the reliance on film hard-copies in radiology is outlined in greater detail. The overview is concerned with laser image recorders generating monochrome prints on silver-halide films. The basic components of laser image recorders are sketched. The paper concentrates on the physical parameters - characteristic function, dynamic range, digitization resolution, modulation transfer function, and noise power spectrum - which define image quality and information transfer capability of the printed image. A preliminary approach is presented to compare the printed image quality with noise in the acquired image as well as with the noise of state-of- the-art cathode-ray-tube display systems. High-performance laser-image- recorder/silver-halide-film/light-box systems are well capable of reproducing acquired radiologic information. Most recently development was begun toward a display function standard for soft-copy display systems to facilitate similarity of image presentation between different soft-copy displays as well as between soft- and hard-copy displays. The standard display function is based on perceptional linearization. The standard is briefly reviewed to encourage the printer industry to adopt it, too.