WorldWideScience

Sample records for hard spectral state

  1. RAPID SPECTRAL CHANGES OF CYGNUS X-1 IN THE LOW/HARD STATE WITH SUZAKU

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, S.; Makishima, K. [Cosmic Radiation Laboratory, Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198 (Japan); Negoro, H. [Department of Physics, College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Torii, S.; Noda, H. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Mineshige, S. [Department of Astronomy, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2013-04-20

    Rapid spectral changes in the hard X-ray on a timescale down to {approx}0.1 s are studied by applying a ''shot analysis'' technique to the Suzaku observations of the black hole binary Cygnus X-1, performed on 2008 April 18 during the low/hard state. We successfully obtained the shot profiles, covering 10-200 keV with the Suzaku HXD-PIN and HXD-GSO detector. It is notable that the 100-200 keV shot profile is acquired for the first time owing to the HXD-GSO detector. The intensity changes in a time-symmetric way, though the hardness changes in a time-asymmetric way. When the shot-phase-resolved spectra are quantified with the Compton model, the Compton y-parameter and the electron temperature are found to decrease gradually through the rising phase of the shot, while the optical depth appears to increase. All the parameters return to their time-averaged values immediately within 0.1 s past the shot peak. We have not only confirmed this feature previously found in energies below {approx}60 keV, but also found that the spectral change is more prominent in energies above {approx}100 keV, implying the existence of some instant mechanism for direct entropy production. We discuss possible interpretations of the rapid spectral changes in the hard X-ray band.

  2. A NICER Look at the Aql X-1 Hard State

    Science.gov (United States)

    Bult, Peter; Arzoumanian, Zaven; Cackett, Edward M.; Chakrabarty, Deepto; Gendreau, Keith C.; Guillot, Sebastien; Homan, Jeroen; Jaisawal, Gaurava K.; Keek, Laurens; Kenyon, Steve; Lamb, Frederick K.; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig; Miller, Jon M.; Prigozhin, Gregory; Soong, Yang; Strohmayer, Tod E.; Uttley, Phil

    2018-05-01

    We report on a spectral-timing analysis of the neutron star low-mass X-ray binary (LMXB) Aql X-1 with the Neutron Star Interior Composition Explorer (NICER) on the International Space Station (ISS). Aql X-1 was observed with NICER during a dim outburst in 2017 July, collecting approximately 50 ks of good exposure. The spectral and timing properties of the source correspond to that of a (hard) extreme island state in the atoll classification. We find that the fractional amplitude of the low-frequency (soft thermal emission and the power-law emission. Additionally, we measure hard time lags, indicating the thermal emission at 0.5 keV leads the power-law emission at 10 keV on a timescale of ∼100 ms at 0.3 Hz to ∼10 ms at 3 Hz. Our results demonstrate that the thermal emission in the hard state is intrinsically variable, and is driving the modulation of the higher energy power-law. Interpreting the thermal spectrum as disk emission, we find that our results are consistent with the disk propagation model proposed for accretion onto black holes.

  3. Galactic Black Holes in the Hard State: A Multi-Wavelength View of Accretion and Ejection

    Science.gov (United States)

    Kalemci; Tomsick, John A.; Migliari; Corbel; Markoff

    2010-01-01

    The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.

  4. Spectral evolution of the Atoll source 4U 1728-34 with RXTE and INTEGRAL: evidence for hard X-ray tail

    NARCIS (Netherlands)

    Tarana, A.; Belloni, T.; Bazzano, A.; Homan, J.; Méndez, M.; Ubertini, P.; Comastri, A.; Angelini, L.; Cappi, M.

    We report the temporal and spectral results on the INTEGRAL and RXTE 2006-2007 observation campaign of the Atoll source 4U 1728-34 (GX 354-0). The source shows, more than once, spectral evolution as revealed by the hardness intensity diagram. The soft state is well described by a Comptonization with

  5. CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. I. IN TWO FREQUENCY OR ENERGY RANGES

    International Nuclear Information System (INIS)

    Song Qiwu; Huang Guangli; Nakajima, Hiroshi

    2011-01-01

    Solar microwave and hard X-ray spectral evolutions are co-analyzed in the 2000 June 10 and 2002 April 10 flares, and are simultaneously observed by the Owens-Valley Solar Array in the microwave band and by Yohkoh/Hard X-ray Telescope or RHESSI in the hard X-ray band, with multiple subpeaks in their light curves. The microwave and hard X-ray spectra are fitted by a power law in two frequency ranges of the optical thin part and two photon energy ranges, respectively. Similar to an earlier event in Shao and Huang, the well-known soft-hard-soft pattern of the lower energy range changed to the hard-soft-hard (HSH) pattern of the higher energy range during the spectral evolution of each subpeak in both hard X-ray flares. This energy dependence is actually supported by a positive correlation between the overall light curves and spectral evolution in the lower energy range, while it becomes an anti-correlation in the higher energy range. Regarding microwave data, the HSH pattern appears in the spectral evolution of each subpeak in the lower frequency range, which is somewhat similar to Huang and Nakajima. However, it returns back to the well-known pattern of soft-hard-harder for the overall spectral evolution in the higher frequency range of both events. This frequency dependence is confirmed by an anti-correlation between the overall light curves and spectral evolution in the lower frequency range, but it becomes a positive correlation in the higher frequency range. The possible mechanisms are discussed, respectively, for reasons why hard X-ray and microwave spectral evolutions have different patterns in different energy and frequency intervals.

  6. ENERGY-DEPENDENT POWER SPECTRAL STATES AND ORIGIN OF APERIODIC VARIABILITY IN BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Yu Wenfei; Zhang Wenda

    2013-01-01

    We found that the black hole candidate MAXI J1659–152 showed distinct power spectra, i.e., power-law noise (PLN) versus band-limited noise (BLN) plus quasi-periodic oscillations (QPOs) below and above about 2 keV, respectively, in observations with Swift and the Rossi X-ray Timing Explorer during the 2010 outburst, indicating a high energy cutoff of the PLN and a low energy cutoff of the BLN and QPOs around 2 keV. The emergence of the PLN and the fading of the BLN and QPOs initially took place below 2 keV when the source entered the hard intermediate state and settled in the soft state three weeks later. The evolution was accompanied by the emergence of the disk spectral component and decreases in the amplitudes of variability in the soft and hard X-ray bands. Our results indicate that the PLN is associated with an optically thick disk in both hard and intermediate states, and the power spectral state is independent of the X-ray energy spectral state in a broadband view. We suggest that in the hard or intermediate state, the BLN and QPOs emerge from the innermost hot flow subjected to Comptonization, while the PLN originates from the optically thick disk farther out. The energy cutoffs of the PLN and the BLN or QPOs then follow the temperature of the seed photons from the inner edge of the optically thick disk, while the high frequency cutoff of the PLN follows the orbital frequency of the inner edge of the optically thick disk as well.

  7. EVIDENCE OF LIGHT-BENDING EFFECTS AND ITS IMPLICATION FOR SPECTRAL STATE TRANSITIONS

    International Nuclear Information System (INIS)

    Reis, R. C.; Miller, J. M.; Reynolds, M. T.; Fabian, A. C.; Walton, D. J.; Steiner, J. F.; Cackett, E.

    2013-01-01

    It has long been speculated that the nature of the hard X-ray corona may be an important second driver of black hole state transitions, in addition to the mass accretion rate through the disk. However, a clear physical picture of coronal changes has not yet emerged. We present results from a systematic analysis of Rossi X-Ray Timing Explorer observations of the stellar-mass black hole binary XTE J1650-500. All spectra with significant hard X-ray detections were fit using a self-consistent, relativistically blurred disk reflection model suited to high ionization regimes. Importantly, we find evidence that both the spectral and timing properties of black hole states may be partially driven by the height of the X-ray corona above the disk, and related changes in how gravitational light bending affects the corona-disk interaction. Specifically, the evolution of the power-law, thermal disk, and relativistically convolved reflection components in our spectral analysis indicates that: (1) the disk inner radius remains constant at r in =1.65 ± 0.08 GM/c 2 (consistent with values found for the ISCO of XTE J1650-500 in other works) throughout the transition from the brighter phases of the low-hard state to the intermediate states (both the hard-intermediate and soft-intermediate), through to the soft state and back; (2) the ratio between the observed reflected X-ray flux and power-law continuum (the 'reflection fraction', R) increases sharply at the transition between the hard-intermediate and soft-intermediate states ('ballistic' jets are sometimes launched at this transition); (3) both the frequency and coherence of the high-frequency quasi-periodic oscillations observed in XTE J1650-500 increase with R. We discuss our results in terms of black hole states and the nature of black hole accretion flows across the mass scale.

  8. Hard X-ray spectral and timing properties of IGR J17454-2919 consistent with a black hole in the hard state

    DEFF Research Database (Denmark)

    Tendulkar, Shriharsh P.; Bachetti, Matteo; Tomsick, J.

    2014-01-01

    frequencies. The Lorentzian has a width of 2 Hz and a fractional rms of 25+/-3%. The hard power-law index, the high energy of the cutoff, and the level of variability all are consistent with properties expected for an accreting black hole in the hard state. While we cannot completely rule out the possibility...... of a low magnetic field neutron star, a black hole is more likely....

  9. NuSTAR and integral observations of a low/hard state of 1E1740.7-2942

    Energy Technology Data Exchange (ETDEWEB)

    Natalucci, Lorenzo; Bazzano, Angela; Fiocchi, Mariateresa; Ubertini, Pietro [Istituto di Astrofisica e Planetologia Spaziali, INAF, via del Fosso del Cavaliere, I-00133 Roma (Italy); Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Krivonos, Roman [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Smith, David M. [Physics Department and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Bachetti, Matteo; Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fürst, Felix; Grefenstette, Brian W.; Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Kuulkers, Erik [European Space Astronomy Centre (ESA/ESAC), Science Operations Department, E-28691 Villanueva de la Cañada (Madrid) (Spain); Miller, Jon M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Pottschmidt, Katja [CRESST and NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Stern, Daniel, E-mail: lorenzo.natalucci@iaps.inaf.it [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); and others

    2014-01-01

    The microquasar 1E1740.7-2942, also known as the 'Great Annihilator,' was observed by NuSTAR in the summer of 2012. We have analyzed in detail two observations taken ∼2 weeks apart, for which we measure hard and smooth spectra typical of the low/hard state. A few weeks later the source flux declined significantly. Nearly simultaneous coverage by INTEGRAL is available from its Galactic Center monitoring campaign lasting ∼2.5 months. These data probe the hard state spectrum from 1E1740.7-2942 before the flux decline. We find good agreement between the spectra taken with IBIS/ISGRI and NuSTAR, with the measurements being compatible with a change in flux with no spectral variability. We present a detailed analysis of the NuSTAR spectral and timing data and upper limits for reflection of the high energy emission. We show that the high energy spectrum of this X-ray binary is well described by thermal Comptonization.

  10. A NICER Look at the Aql X-1 Hard State

    DEFF Research Database (Denmark)

    Bult, Peter; Arzoumanian, Zaven; Cackett, Edward M.

    2018-01-01

    of good exposure. The spectral and timing properties of the source correspond to that of a (hard) extreme island state in the atoll classification. We find that the fractional amplitude of the low-frequency (limited noise shows a dramatic turnover as a function of energy: it peaks at 0.5 ke......V with nearly 25% rms, drops to 12% rms at 2 keV, and rises to 15% rms at 10 keV. Through the analysis of covariance spectra, we demonstrate that band-limited noise exists in both the soft thermal emission and the power-law emission. Additionally, we measure hard time lags, indicating the thermal emission at 0...

  11. CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. II. IN THREE SOURCES OF A FLARING LOOP

    International Nuclear Information System (INIS)

    Huang Guangli; Li Jianping

    2011-01-01

    Based on the spatially resolvable data of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Nobeyama Radio Heliograph (NoRH), co-analysis of solar hard X-ray and microwave spectral evolution is performed in three separate sources located in one looptop (LT) and two footpoints (FPs) of a huge flaring loop in the 2003 October 24 flare. The RHESSI image spectral evolution in 10-100 keV is always fitted by the well-known soft-hard-soft (SHS) pattern in the three sources. When the total energy is divided into four intervals similar to the Yohkoh/Hard X-ray Telescope, i.e., 12.5-32.5 keV, 32.5-52.5 keV, 52.5-72.5 keV, and 72.5-97.5 keV, the SHS pattern in lower energies is converted gradually to the hard-soft-hard (HSH) pattern in higher energies in all three sources. However, the break energy in the LT and the northeast FP (∼32.5 keV) is evidently smaller than that in the southwest FP (∼72.5 keV). Regarding microwave spectral evolution of the NoRH data, the well-known soft-hard-harder pattern appeared in the southwest FP, while the HSH pattern coexisted in the LT and the northeast FP. The different features of the hard X-ray and microwave spectral evolutions in the three sources may be explained by the loop-loop interaction with another huge loop in the LT and with a compact loop in the northeast FP, where the trapping effect is much stronger than that in the southwest FP. The comparison between the LT and FP spectral indices suggests that the radiation mechanism of X-rays may be quite different in different energy intervals and sources. The calculated electron spectral indices from the predicted mechanisms of X-rays gradually become closer to those from the microwave data with increasing X-ray energies.

  12. X-Ray Spectral Analysis of the Steady States of GRS1915+105

    Science.gov (United States)

    Peris, Charith S.; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa D.; Varnière, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-05-01

    We report on the X-ray spectral behavior within the steady states of GRS1915+105. Our work is based on the full data set of the source obtained using the Proportional Counter Array (PCA) on the Rossi X-ray Timing Explorer (RXTE) and 15 GHz radio data obtained using the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to these regions as steady-soft and steady-hard. GRS1915+105 displays significant curvature in the coronal component in both the soft and hard data within the RXTE/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius ({R}{{in}}), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations, we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes η ˜ 0.68+/- 0.35 and η ˜ 1.12+/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of the model parameters to the state definitions shows that almost all of the steady-soft observations match the criteria of either a thermal or steep power-law state, while a large portion of the steady-hard observations match the hard-state criteria when the disk fraction constraint is neglected.

  13. A HARD X-RAY POWER-LAW SPECTRAL CUTOFF IN CENTAURUS X-4

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Deepto; Nowak, Michael A. [MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Tomsick, John A.; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Grefenstette, Brian W.; Fürst, Felix; Harrison, Fiona A.; Rana, Vikram [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Psaltis, Dimitrios [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Bachetti, Matteo; Barret, Didier [Observatoire Midi-Pyrénées, Université de Toulouse III - Paul Sabatier, F-31400 Toulouse (France); Christensen, Finn E. [Division of Astrophysics, National Space Institute, Technical University of Denmark, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Kaspi, Victoria M. [Department of Physics, McGill University, Montreal, PQ H3A 2T8 (Canada); Miller, Jon M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wik, Daniel R.; Zhang, William W. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wilms, Jörn, E-mail: deepto@mit.edu [Dr. Karl-Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universität Erlangen-Nürnberg, D-96049 Bamberg (Germany)

    2014-12-20

    The low-mass X-ray binary (LMXB) Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1×10{sup 33} D{sub kpc}{sup 2} erg s{sup –1}, with ≅60% in the thermal component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with kT{sub e} = 18 keV, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively inefficient accretion flow. The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen X-4's behavior with PSR J1023+0038, IGR J18245–2452, and XSS J12270–4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.

  14. High spectral resolution measurements of a solar flare hard X-ray burst

    International Nuclear Information System (INIS)

    Lin, R.P.; Schwartz, R.A.; NASA, Goddard Space Flight Center, Greenbelt, MD)

    1987-01-01

    Observations are reported of an intense solar flare hard X-ray burst on June 27, 1980, made with a balloon-borne array of liquid nitrogen-cooled Ge detector which provided unprecedented spectral resolution (no more than 1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 0.1-1 billion K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting about 3-15 sec, which have a hard spectrum and a break energy of 30-65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 kev to at least 100 keV through the event. The double power-law shape indicates that DC electric field acceleration, similar to that occurring in the earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. 39 references

  15. Understanding the Long-Term Spectral Variability of Cygnus X-1 from BATSE and ASM Observations

    Science.gov (United States)

    Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Linqing; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present a spectral analysis of observations of Cygnus X-1 by the RXTE/ASM (1.5-12 keV) and CGRO/BATSE (20-300 keV), including about 1200 days of simultaneous data. We find a number of correlations between intensities and hardnesses in different energy bands from 1.5 keV to 300 keV. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness (as previously reported) but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the flux in the 20-100 keV range. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. The observations show that there has to be another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superimposed on a constant soft blackbody component. These variability patterns are in agreement with the dependence of the rms variability on the photon energy in the two states. We interpret the observed correlations in terms of theoretical Comptonization models. In the hard state, the variability appears to be driven mostly by changing flux in seed photons Comptonized in a hot thermal plasma cloud with an approximately constant power supply. In the soft state, the variability is consistent with flares of hybrid, thermal/nonthermal, plasma with variable power above a stable cold disk. Also, based on broadband pointed observations simultaneous with those of the ASM and BATSE, we find the intrinsic bolometric luminosity increases by a

  16. INTEGRAL SPI Observations of Cygnus X-1 in the Soft State: What about the Jet Contribution in Hard X-Rays?

    Science.gov (United States)

    Jourdain, E.; Roques, J. P.; Chauvin, M.

    2014-07-01

    During the first 7 yr of the INTEGRAL mission (2003-2009), Cyg X-1 has essentially been detected in its hard state (HS), with some incursions in intermediate HSs. This long, spectrally stable period allowed in particular the measurement of the polarization of the high-energy component that has long been observed above 200 keV in this peculiar object. This result strongly suggests that here we see the contribution of the jet, known to emit a strong synchrotron radio emission. In 2010 June, Cyg X-1 underwent a completed transition toward a soft state (SS). It gave us the unique opportunity to study in detail the corona emission in this spectral state, and to investigate in particular the behavior of the jet contribution. Indeed, during the SS, the hard X-ray emission decreases drastically, with its maximum energy shifted toward lower energy and its flux divided by a factor of ~5-10. Interestingly, the radio emission follows a similar drop, supporting the correlation between the jet emission and the hard component, even though the flux is too low to quantify the polarization characteristics. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), the Czech Republic and Poland with the participation of Russia and USA.

  17. Accretion flow diagnostics with X-ray spectral timing: the hard state of SWIFT J1753.5-0127

    NARCIS (Netherlands)

    Cassatella, P.; Uttley, P.; Maccarone, T.

    2012-01-01

    Recent XMM-Newton studies of X-ray variability in the hard states of black hole X-ray binaries (BHXRBs) indicate that the variability is generated in the ‘standard’ optically thick accretion disc that is responsible for the multi-colour blackbody emission. The variability originates in the disc as

  18. Effect of non-stationary accretion on spectral state transitions: An example of a persistent neutron star LMXB 4U1636–536

    Science.gov (United States)

    Zhang, Hui; Yu, Wen-Fei

    2018-03-01

    Observations of black hole and neutron star X-ray binaries show that the luminosity of the hard-to-soft state transition is usually higher than that of the soft-to-hard state transition, indicating additional parameters other than mass accretion rate are required to interpret spectral state transitions. It has been found in some individual black hole or neutron star soft X-ray transients that the luminosity corresponding to the hard-to-soft state transition is positively correlated with the peak luminosity of the following soft state. In this work, we report the discovery of the same correlation in the single persistent neutron star low mass X-ray binary (LMXB) 4U 1636–536 based on data from the All Sky Monitor (ASM) on board RXTE, the Gas Slit Camera (GSC) on board MAXI and the Burst Alert Telescope (BAT) on board Swift. We also found such a positive correlation holds in this persistent neutron star LMXB in a luminosity range spanning about a factor of four. Our results indicate that non-stationary accretion also plays an important role in driving X-ray spectral state transitions in persistent accreting systems with small accretion flares, which is much less dramatic compared with the bright outbursts seen in many Galactic LMXB transients.

  19. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kawate, T. [Kwasan and Hida Observatory, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502 (Japan); Nishizuka, N. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Oi, A. [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Ohyama, M. [Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, Shiga 1-1, Baba Hikone city, Siga 522-8522 (Japan); Nakajima, H., E-mail: kawate@kusastro.kyoto-u.ac.jp [Nobeyama Solar Radio Observatory, NAOJ, Nobeyama, Minamisaku, Nagano 384-1305 (Japan)

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  20. Spectral and Timing States in Black Hole Binaries

    Science.gov (United States)

    Wilms, J.

    Results on the long term variability of galactic black hole candidates are reviewed. I mainly present the results of a > 2 year long campaign with RXTE to monitor the canonical soft state black hole candidates LMC X-1 and LMC X-3 using monthly observations. These observations are presented within the context of the RXTE-ASM long term quasi-periodic variability on timescales of about 150d. For LMC X-3, times of low ASM count rate are correlated with a significant hardening of the X-ray spectrum. The observation with the lowest flux during the whole monitoring campaign can be modeled with a simple γ=1.7 power law -- a hard state spectrum. Since these spectral hardenings occur on the 150 d timescale it is probable that they are associated with periodic changes in the accretion rate. Possible causes for this behavior are discussed, e.g. a wind driven limit-cycle or long-term variability of the donor star.

  1. A Hard X-Ray Power-Law Spectral Cutoff in Centaurus X-4

    DEFF Research Database (Denmark)

    Chakrabarty, Deepto; Tomsick, John A.; Grefenstette, Brian W.

    2015-01-01

    The low-mass X-ray binary Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unkno...... behavior with PSR J1023+0038, IGR J18245-2452, and XSS J12270-4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity....

  2. Spectral representations of neutron-star equations of state

    International Nuclear Information System (INIS)

    Lindblom, Lee

    2010-01-01

    Methods are developed for constructing spectral representations of cold (barotropic) neutron-star equations of state. These representations are faithful in the sense that every physical equation of state has a representation of this type and conversely every such representation satisfies the minimal thermodynamic stability criteria required of any physical equation of state. These spectral representations are also efficient, in the sense that only a few spectral coefficients are generally required to represent neutron-star equations of state quiet accurately. This accuracy and efficiency is illustrated by constructing spectral fits to a large collection of 'realistic' neutron-star equations of state.

  3. Detection of X-ray spectral state transitions in mini-outbursts of black hole transient GRS 1739-278

    Science.gov (United States)

    Yan, Zhen; Yu, Wenfei

    2017-10-01

    We report the detection of the state transitions and hysteresis effect in the two mini-outbursts of the black hole (BH) transient GRS 1739-278 following its 2014 major outburst. The X-ray spectral evolutions in these two mini-outbursts are similar to the major outburst in spite of their peak luminosities and the outburst durations are one order of magnitude lower. We found L_hard{-to-soft} and Lpeak,soft of the mini-outbursts also follow the correlation previously found in other X-ray binaries. L_hard{-to-soft} of the mini-outbursts is still higher than that of the persistent BH binary Cyg X-1, which supports that there is a link between the maximum luminosity a source can reach in the hard state and the corresponding non-stationary accretion represented by substantial rate of change in the mass accretion rate during flares/outbursts. The detected luminosity range of these two mini-outbursts is roughly in 3.5 × 10-5 to 0.015 (D/7.5 kpc)2(M/8M⊙) LEdd. The X-ray spectra of other BH transients at such low luminosities are usually dominated by a power-law component, and an anti-correlation is observed between the photon index and the X-ray luminosity below 1 per cent LEdd. So, the detection of X-ray spectral state transitions indicates that the accretion flow evolution in these two mini-outbursts of GRS 1739-278 are different from other BH systems at such low-luminosity regime.

  4. Reflection Spectra of the Black Hole Binary Candidate MAXI J1535-571 in the Hard State Observed by NuSTAR

    Science.gov (United States)

    Xu, Yanjun; Harrison, Fiona A.; García, Javier A.; Fabian, Andrew C.; Fürst, Felix; Gandhi, Poshak; Grefenstette, Brian W.; Madsen, Kristin K.; Miller, Jon M.; Parker, Michael L.; Tomsick, John A.; Walton, Dominic J.

    2018-01-01

    We report on a Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the recently discovered bright black hole candidate MAXI J1535-571. NuSTAR observed the source on MJD 58003 (five days after the outburst was reported). The spectrum is characteristic of a black hole binary in the hard state. We observe clear disk reflection features, including a broad Fe Kα line and a Compton hump peaking around 30 keV. Detailed spectral modeling reveals a narrow Fe Kα line complex centered around 6.5 keV on top of the strong relativistically broadened Fe Kα line. The narrow component is consistent with distant reflection from moderately ionized material. The spectral continuum is well described by a combination of cool thermal disk photons and a Comptonized plasma with the electron temperature {{kT}}{{e}}=19.7+/- 0.4 keV. An adequate fit can be achieved for the disk reflection features with a self-consistent relativistic reflection model that assumes a lamp-post geometry for the coronal illuminating source. The spectral fitting measures a black hole spin a> 0.84, inner disk radius {R}{in}lamp-post height h={7.2}-2.0+0.8 {r}{{g}} (statistical errors, 90% confidence), indicating no significant disk truncation and a compact corona. Although the distance and mass of this source are not currently known, this suggests the source was likely in the brighter phases of the hard state during this NuSTAR observation.

  5. Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations

    Science.gov (United States)

    Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava

    2018-06-01

    The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.

  6. Spectral stability of shifted states on star graphs

    Science.gov (United States)

    Kairzhan, Adilbek; Pelinovsky, Dmitry E.

    2018-03-01

    We consider the nonlinear Schrödinger (NLS) equation with the subcritical power nonlinearity on a star graph consisting of N edges and a single vertex under generalized Kirchhoff boundary conditions. The stationary NLS equation may admit a family of solitary waves parameterized by a translational parameter, which we call the shifted states. The two main examples include (i) the star graph with even N under the classical Kirchhoff boundary conditions and (ii) the star graph with one incoming edge and N  -  1 outgoing edges under a single constraint on coefficients of the generalized Kirchhoff boundary conditions. We obtain the general counting results on the Morse index of the shifted states and apply them to the two examples. In the case of (i), we prove that the shifted states with even N ≥slant 4 are saddle points of the action functional which are spectrally unstable under the NLS flow. In the case of (ii), we prove that the shifted states with the monotone profiles in the N  -  1 edges are spectrally stable, whereas the shifted states with non-monotone profiles in the N  -  1 edges are spectrally unstable, the two families intersect at the half-soliton states which are spectrally stable but nonlinearly unstable under the NLS flow. Since the NLS equation on a star graph with shifted states can be reduced to the homogeneous NLS equation on an infinite line, the spectral instability of shifted states is due to the perturbations breaking this reduction. We give a simple argument suggesting that the spectrally stable shifted states in the case of (ii) are nonlinearly unstable under the NLS flow due to the perturbations breaking the reduction to the homogeneous NLS equation.

  7. Polarization and spectral features of the hard x-ray continuum from non-thermal plasmas

    International Nuclear Information System (INIS)

    Hesse, M.; Platz, P.

    1989-12-01

    Starting from the cross-sections for the free-free radiation obtained within the relativistic Born-Elwert theory, we calculate the spectral and polarization properties of the hard X-ray continuum (hν > 50 KeV) for plasmas containing fast electrons with an anisotropic velocity distribution. The physical and geometrical quantities of our model are oriented towards the future lower-hybrid current drive (LHCD) experiments on Tore-Supra. Our parameter space covers parallel and perpendicular temperatures, the nuclear charge of the ions (mainly Z = 14 and 28), the cut-off energy of the electrons, the radial current profile and the viewing angle. Extensive calculations open on the optimum conditions for polarization measurements and also give guide-lines for the quantitative interpretation of data under real plasma conditions. A second part of this report will treat with the operational principles and expected performances of hard X-ray polarimeters

  8. Dressed Hard States and Black Hole Soft Hair.

    Science.gov (United States)

    Mirbabayi, Mehrdad; Porrati, Massimo

    2016-11-18

    A recent, intriguing Letter by Hawking, Perry, and Strominger suggests that soft photons and gravitons can be regarded as black hole hair and may be relevant to the black hole information paradox. In this Letter we make use of factorization theorems for infrared divergences of the S matrix to argue that by appropriately dressing in and out hard states, the soft-quanta-dependent part of the S matrix becomes essentially trivial. The information paradox can be fully formulated in terms of dressed hard states, which do not depend on soft quanta.

  9. The hard X-ray spectrum of Cyg X-1 during the transition in November 1975

    International Nuclear Information System (INIS)

    Sommer, M.; Maurus, H.; Urbach, R.

    1976-01-01

    Some observations are reported of the hard X-ray spectrum of Cyg X-1 during a transition to the high state in November 1975, made with a balloon-borne X-ray detector. The range covered was 25 to 150 keV. The data obtained appeared to confirm the characteristic spectral time variation, and suggested a single power law spectrum from 3 to 80 keV, with an increasing spectral index during the upward transition to the high state. A power spectrum is expected if it is assumed that the universe Compton effect is the basic mechanism that produces the hard X-ray tail of Cyg X-1. Spectral time variation may be caused by a varying intensity of an inner soft photon source within a stable hot cloud. (U.K.)

  10. MAXI/GSC detection of a hard-to-soft transition of NS-LMXB GS 1826-238

    Science.gov (United States)

    Nakahira, S.; Mihara, T.; Sugizaki, M.; Serino, M.; Morii, M.; Sugimoto, J.; Takagi, T.; Yoshikawa, A.; Matsuoka, M.; Kawai, N.; Yoshii, T.; Tachibana, Y.; Ueno, S.; Tomida, H.; Kimura, M.; Ishikawa, M.; Nakagawa, Y. E.; Negoro, H.; Nakajima, M.; Fukushima, K.; Onodera, T.; Suzuki, K.; Fujita, M.; Namba, T.; Honda, F.; Yoshida, A.; Sakamoto, T.; Kawakubo, Y.; Ohtsuki, H.; Tsunemi, H.; Uchida, D.; Ueda, Y.; Shidatsu, M.; Kawamuro, T.; Hori, T.; Kawagoe, A.; Tsuboi, Y.; Yamauchi, M.; Morooka, Y.; Yamaoka, K.

    2014-06-01

    We report on a hard-to-soft spectral transition of an X-ray burster GS 1826-238 detected with MAXI/GSC. This source had been consistently observed in the hard state for more than 25 years since the discovery in 1988 (Tanaka 1989, Barret et al. ...

  11. Development of a modular directional and spectral neutron detection system using solid-state detectors

    Energy Technology Data Exchange (ETDEWEB)

    Weltz, A., E-mail: weltza3@gmail.com; Torres, B.; McElwain, L.; Dahal, R.; Huang, J.; Bhat, I.; Lu, J.; Danon, Y.

    2015-08-21

    A detection system using room-temperature, microstructured solid-state thermal neutron detectors with very low leakage current has been developed at Rensselaer Polytechnic Institute (RPI) with the ability to provide positional and spectral information about an unknown neutron source. The Directional and Spectral Neutron Detection System (DSNDS) utilizes a set of small-but-scalable, zero-bias solid-state thermal neutron detectors which have demonstrated high thermal neutron efficiency and adequate gamma insensitivity. The DSNDS can gather spectral information about an unknown neutron source with a relatively small number of detectors, simplifying the detector electronics and minimizing cost; however, the DSNDS is modular in design, providing the capability to increase the detection efficiency and angular resolution. The system used in this paper was comprised of a stack of five high-density polyethylene (HDPE) disks with a thickness of 5 cm and a diameter of 30 cm, the middle disk containing 16 detectors positioned as one internal (moderated) and one external (unmoderated) ring of solid-state neutron detectors. These two detector rings provide the ability to determine the directionality of a neutron source. The system gathers spectral information about a neutron source in two ways: by measuring the relative responses of the internal ring of detectors as well as measuring the ratio of the internal-to-external detector responses. Experiments were performed with variable neutron spectra: a {sup 252}Cf spontaneous fission neutron source which was HDPE moderated, HDPE reflected, lead (Pb) shielded, and bare in order to benchmark the system for spectral sensitivity. Simulations were performed in order to characterize the neutron spectra corresponding to each of the source configurations and showed agreement with experimental measurements. The DSNDS demonstrates the ability to determine the relative angle of the source and the hardness of the neutron spectrum. By using the

  12. Hard X-ray variability of V404 Cygni during the 2015 outburst

    Science.gov (United States)

    Sánchez-Fernández, C.; Kajava, J. J. E.; Motta, S. E.; Kuulkers, E.

    2017-06-01

    Aims: Hard X-ray spectra of black hole binaries (BHB) are produced by Comptonization of soft seed photons by hot electrons near the black hole. The slope of the resulting energy spectra is governed by two main parameters: the electron temperature (Te) and optical depth (τ) of the emitting plasma. Given the extreme brightness of V404 Cyg during the 2015 outburst, we aim to constrain the source spectral properties using an unprecedented time resolution in hard X-rays, and to monitor the evolution of Te and τ over the outburst. Methods: We have extracted and analysed 602 X-ray spectra of V404 Cyg obtained by the IBIS/ISGRI instrument on-board INTEGRAL during the 2015 June outburst, using effective integration times ranging between 8 and 176 000 s. We fitted the resulting spectra in the 20-200 keV energy range. Results: We find that while the light curve and soft X-ray spectra of V404 Cyg are remarkably different from those of other BHBs, the spectral evolution of V404 Cyg in hard X-rays and the relations between the spectral parameters are consistent with those observed in other BHBs. We identify a hard branch in which the Te is anti-correlated with the hard X-ray flux, and a soft flaring branch in which the relation reverses. In addition, we find that during long X-ray plateaus detected at intermediate fluxes, the thermal Comptonization models fail to describe the spectra. However, the statistics improve if we allow NH to vary freely in the fits to these spectra. Conclusions: We conclude that the hard branch in V404 Cyg is analogous to the canonical hard state of BHBs. V404 Cyg never seems to enter the canonical soft state, although the soft flaring branch bears resemblance to the BHB intermediate state and ultra-luminous state. The X-ray plateaus are likely the result of absorption by a Compton-thick outflow (NH ≳ 1024 cm-2) which reduces the observed flux by a factor of about 10. Variable covering of the central source by this Compton-thick material may be the

  13. A magnetic model for low/hard state of black hole binaries

    Science.gov (United States)

    Ye, Yong-Chun; Wang, Ding-Xiong; Huang, Chang-Yin; Cao, Xiao-Feng

    2016-03-01

    A magnetic model for the low/hard state (LHS) of two black hole X-ray binaries (BHXBs), H1743-322 and GX 339-4, is proposed based on transport of the magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with a quasi-steady jet is modeled based on transport of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio/X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model.

  14. Coherent states and covariant semi-spectral measures

    International Nuclear Information System (INIS)

    Scutaru, H.

    1976-01-01

    The close connection between Mackey's theory of imprimitivity systems and the so called generalized coherent states introduced by Perelomov is established. Coherent states give a covariant description of the ''localization'' of a quantum system in the phase space in a similar way as the imprimitivity systems give a covariant description of the localization of a quantum system in the configuration space. The observation that for any system of coherent states one can define a covariant semi-spectral measure made possible a rigurous formulation of this idea. A generalization of the notion of coherent states is given. Covariant semi-spectral measures associated with systems of coherent states are defined and characterized. Necessary and sufficient conditions for a unitary representation of a Lie group to be i) a subrepresentation of an induced one and ii) a representation with coherent states are given (author)

  15. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  16. Rapid spectral and flux time variations in a solar burst observed at various dm-mm wavelengths and at hard x rays

    International Nuclear Information System (INIS)

    Zodivaz, A.M.; Kaufmann, P.; Correia, E.; Costa, J.E.R.; Takakura, T.; Cliver, E.W.; Tapping, K.F.; Air Force Geophysics Lab., Hanscom AFB, MA; National Research Council of Canada, Ottawa, Ontario)

    1986-01-01

    A solar burst was observed with high sensitivity and time resolution at cm-mm wavelengths by two different radio observatories (Itapetinga and Algonquin), with high spectral time resolution at dm-mm wavelengths by patrol instruments (Sagamore Hill), and at hard x rays (HXM Hinotori). At the onset of the major burst time structure there was a rapid rise in the spectral turnover frequency (from 5 to 15 GHz), in about 10s, coincident to a reduction of the spectral index in the optically thin part of the spectrum. The burst maxima were not time coincident at the optically thin radio frequencies and at the different hard x ray energy ranges. The profiles at higher radio frequencies exhibited better time coincidence to the high energy x rays. The hardest x ray spectrum (-3) coincided with peak radio emission at the higher frequency (44 GHz). The event appeared to be built up by a first major injection of softer particles followed by other injections of harder particles. Ultrafast time structures were identified as superimposed on the burst emission at the cm-mm high sensitivity data at x rays, with predominant repetition rates ranging from 2.0 to 3.5 Hz

  17. AstroSat /LAXPC Observation of Cygnus X-1 in the Hard State

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Ranjeev; Pahari, Mayukh [Inter-University Centre for Astronomy and Astrophysics, Pune 411007 (India); Yadav, J S; Chauhan, Jai Verdhan; Antia, H M; Chitnis, V R; Dedhia, Dhiraj; Katoch, Tilak; Madhwani, P.; Shah, Parag [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai (India); Agrawal, P C [UM-DAE Center of Excellence for Basic Sciences, University of Mumbai, Kalina, Mumbai-400098 (India); Manchanda, R K [University of Mumbai, Kalina, Mumbai-400098 (India); Paul, B, E-mail: rmisra@iucaa.in [Dept. of Astronomy and Astrophysics, Raman Research Institute, Bengaluru-560080 (India)

    2017-02-01

    We report the first analysis of data from AstroSat /LAXPC observations of Cygnus X-1 in 2016 January. LAXPC spectra reveals that the source was in the canonical hard state, represented by a prominent thermal Comptonization component having a photon index of ∼1.8 and high temperature of kT{sub e} > 60 keV along with weak reflection and possible disk emission. The power spectrum can be characterized by two broad lorentzian functions centered at ∼0.4 and ∼3 Hz. The rms of the low-frequency component decreases from ∼15% at around 4 keV to ∼10% at around 50 keV, while that of the high-frequency one varies less rapidly from ∼13.5% to ∼11.5% in the same energy range. The time lag between the hard (20–40 keV) and soft (5–10 keV) bands varies in a step-like manner being nearly constant at ∼50 milliseconds from 0.3 to 0.9 Hz, decreasing to ∼8 milliseconds from 2 to 5 Hz and finally dropping to ∼2 milliseconds for higher frequencies. The time lags increase with energy for both the low and high-frequency components. The event mode LAXPC data allows for flux resolved spectral analysis on a timescale of 1 s, which clearly shows that the photon index increased from ∼1.72 to ∼1.80 as the flux increased by nearly a factor of two. We discuss the results in the framework of the fluctuation propagation model.

  18. The evolution of the disc variability along the hard state of the black hole transient GX 339-4

    Science.gov (United States)

    De Marco, B.; Ponti, G.; Muñoz-Darias, T.; Nandra, K.

    2015-12-01

    We report on the analysis of hard-state power spectral density function (PSD) of GX 339-4 down to the soft X-ray band, where the disc significantly contributes to the total emission. At any luminosity probed, the disc in the hard state is intrinsically more variable than in the soft state. However, the fast decrease of disc variability as a function of luminosity, combined with the increase of disc intensity, causes a net drop of fractional variability at high luminosities and low energies, which reminds the well-known behaviour of disc-dominated energy bands in the soft state. The peak frequency of the high-frequency Lorentzian (likely corresponding to the high-frequency break seen in active galactic nuclei, AGN) scales with luminosity, but we do not find evidence for a linear scaling. In addition, we observe that this characteristic frequency is energy dependent. We find that the normalization of the PSD at the peak of the high-frequency Lorentzian decreases with luminosity at all energies, though in the soft band this trend is steeper. Together with the frequency shift, this yields quasi-constant high-frequency (5-20 Hz) fractional rms at high energies, with less than 10 per cent scatter. This reinforces previous claims suggesting that the high-frequency PSD solely scales with black hole mass. On the other hand, this constancy breaks down in the soft band (where the scatter increases to ˜30 per cent). This is a consequence of the additional contribution from the disc component, and resembles the behaviour of optical variability in AGN.

  19. Correction: MAXI J1543-564 in hard intermediate state

    Science.gov (United States)

    Kennea, J. A.; Motta, S.; Curran, P.; Krimm, P. A. Evans. H. A.; Romano, P.; Mangano, V.; Yamaoka, K.; Negoro, H.

    2011-09-01

    A correction to Kennea et al. (ATEL #3662): With a measured photon index of ~2.7, the Swift/XRT spectrum of MAXI J1543-564 is currently consistent with the source being in the hard intermediate state, or under the Remillard and McClintock (2006) definition, the steep power-law state. We apologize for this error, and thank Tomaso Belloni for bringing it to our attention.

  20. Comparison of time/phase lags in the hard state and plateau state of GRS 1915+105

    Energy Technology Data Exchange (ETDEWEB)

    Pahari, Mayukh; Yadav, J. S. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India (MP) (India); Neilsen, Joseph [Boston University, Boston, MA 02215 (United States); Misra, Ranjeev [Inter University Center for Astronomy and Astrophysics, Pune (India); Uttley, Phil, E-mail: mp@tifr.res.in [Astronomical Institute, " Anton Pannekoek," University of Amsterdam, Science Park 904, 1098-XH Amsterdam (Netherlands)

    2013-12-01

    We investigate the complex behavior of energy- and frequency-dependent time/phase lags in the plateau state and the radio-quiet hard (χ) state of GRS 1915+105. In our timing analysis, we find that when the source is faint in the radio, quasi-periodic oscillations (QPOs) are observed above 2 Hz and typically exhibit soft lags (soft photons lag hard photons), whereas QPOs in the radio-bright plateau state are found below 2.2 Hz and consistently show hard lags. The phase lag at the QPO frequency is strongly anti-correlated with that frequency, changing sign at 2.2 Hz. However, the phase lag at the frequency of the first harmonic is positive and nearly independent of that frequency at ∼0.172 rad, regardless of the radio emission. The lag energy dependence at the first harmonic is also independent of radio flux. However, the lags at the QPO frequency are negative at all energies during the radio-quiet state, but lags at the QPO frequency during the plateau state are positive at all energies and show a 'reflection-type' evolution of the lag energy spectra with respect to the radio-quiet state. The lag energy dependence is roughly logarithmic, but there is some evidence for a break around 4-6 keV. Finally, the Fourier-frequency-dependent phase lag spectra are fairly flat during the plateau state, but increase from negative to positive during the radio-quiet state. We discuss the implications of our results in light of some generic models.

  1. Modelling hard and soft states of Cygnus X-1 with propagating mass accretion rate fluctuations

    Science.gov (United States)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2017-12-01

    We present a timing analysis of three Rossi X-ray Timing Explorer observations of the black hole binary Cygnus X-1 with the propagating mass accretion rate fluctuations model PROPFLUC. The model simultaneously predicts power spectra, time lags and coherence of the variability as a function of energy. The observations cover the soft and hard states of the source, and the transition between the two. We find good agreement between model predictions and data in the hard and soft states. Our analysis suggests that in the soft state the fluctuations propagate in an optically thin hot flow extending up to large radii above and below a stable optically thick disc. In the hard state, our results are consistent with a truncated disc geometry, where the hot flow extends radially inside the inner radius of the disc. In the transition from soft to hard state, the characteristics of the rapid variability are too complex to be successfully described with PROPFLUC. The surface density profile of the hot flow predicted by our model and the lack of quasi-periodic oscillations in the soft and hard states suggest that the spin of the black hole is aligned with the inner accretion disc and therefore probably with the rotational axis of the binary system.

  2. STRONGER REFLECTION FROM BLACK HOLE ACCRETION DISKS IN SOFT X-RAY STATES

    International Nuclear Information System (INIS)

    Steiner, James F.; Remillard, Ronald A.; García, Javier A.; McClintock, Jeffrey E.

    2016-01-01

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe–K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe–K line, namely, the Compton power law. We find that reflection is several times more pronounced (∼3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.

  3. STRONGER REFLECTION FROM BLACK HOLE ACCRETION DISKS IN SOFT X-RAY STATES

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, James F.; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, MIT, 70 Vassar Street, Cambridge, MA 02139 (United States); García, Javier A.; McClintock, Jeffrey E., E-mail: jsteiner@mit.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-10-01

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe–K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe–K line, namely, the Compton power law. We find that reflection is several times more pronounced (∼3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.

  4. A complex guided spectral transform Lanczos method for studying quantum resonance states

    International Nuclear Information System (INIS)

    Yu, Hua-Gen

    2014-01-01

    A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the original Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO, and compared to previous calculations

  5. The variable hard x-ray emission of NGC 4945 as observed by NUSTAR

    DEFF Research Database (Denmark)

    Puccetti, Simonetta; Comastri, Andrea; Fiore, Fabrizio

    2014-01-01

    We present a broadband (~0.5-79 keV) spectral and temporal analysis of multiple NuSTAR observations combined with archival Suzaku and Chandra data of NGC 4945, the brightest extragalactic source at 100 keV. We observe hard X-ray (>10 keV) flux and spectral variability, with flux variations of a f...... of a factor of two on timescales of 20 ks. A variable primary continuum dominates the high-energy spectrum (>10 keV) in all states, while the reflected/scattered flux that dominates at E...

  6. ANTI-CORRELATED SOFT LAGS IN THE INTERMEDIATE STATE OF BLACK HOLE SOURCE GX 339-4

    International Nuclear Information System (INIS)

    Sriram, K.; Choi, C. S.; Rao, A. R.

    2010-01-01

    We report the few hundred second anti-correlated soft lags between soft and hard energy bands in the source GX 339-4 using RXTE observations. In one observation, anti-correlated soft lags were observed using the ISGRI/INTEGRAL hard energy band and the PCA/RXTE soft energy band light curves. The lags were observed when the source was in hard and soft intermediate states, i.e., in a steep power-law state. We found that the temporal and spectral properties were changed during the lag timescale. The anti-correlated soft lags are associated with spectral variability during which the geometry of the accretion disk is changed. The observed temporal and spectral variations are explained using the framework of truncated disk geometry. We found that during the lag timescale, the centroid frequency of quasi-periodic oscillation is decreased, the soft flux is decreased along with an increase in the hard flux, and the power-law index steepens together with a decrease in the disk normalization parameter. We argue that these changes could be explained if we assume that the hot corona condenses and forms a disk in the inner region of the accretion disk. The overall spectral and temporal changes support the truncated geometry of the accretion disk in the steep power-law state or in the intermediate state.

  7. Multiwavelength Study of Quiescent States of Mrk 421 with Unprecedented Hard X-Ray Coverage Provided by NuSTAR in 2013

    CERN Document Server

    Baloković, M.; Madejski, G.; Furniss, A.; Chiang, J.; Ajello, M.; Alexander, D.M.; Barret, D.; Blandford, R.; Boggs, S.E.; Christensen, F.E.; Craig, W.W.; Forster, K.; Giommi, P.; Grefenstette, B.W.; Hailey, C.J.; Harrison, F.A.; Hornstrup, A.; Kitaguchi, T.; Koglin, J.E.; Madsen, K.K.; Mao, P.H.; Miyasaka, H.; Mori, K.; Perri, M.; Pivovaroff, M.J.; Puccetti, S.; Rana, V.; Stern, D.; Tagliaferri, G.; Urry, C.M.; Westergaard, N.J.; Zhang, W.W.; Zoglauer, A.; Archambault, S.; Archer, A.A.; Barnacka, A.; Benbow, W.; Bird, R.; Buckley, J.; Bugaev, V.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M.P.; Cui, W.; Dickinson, H.J.; Dumm, J.; Eisch, J.D.; Falcone, A.; Feng, Q.; Finley, J.P.; Fleischhack, H.; Fortson, L.; Griffin, S.; Griffiths, S.T.; Grube, J.; Gyuk, G.; Huetten, M.; Haakansson, N.; Holder, J.; Humensky, T.B.; Johnson, C.A.; Kaaret, P.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krause, M.; Krennrich, F.; Lang, M.J.; Maier, G.; McArthur, S.; Meagher, K.; Moriarty, P.; Nelson, T.; Nieto, D.; Ong, R.A.; Park, N.; Pohl, M.; Popkow, A.; Pueschel, E.; Reynolds, P.T.; Richards, G.T.; Roache, E.; Santander, M.; Sembroski, G.H.; Shahinyan, K.; Smith, A.W.; Staszak, D.; Telezhinsky, I.; Todd, N.W.; Tucci, J.V.; Tyler, J.; Vincent, S.; Weinstein, A.; Wilhelm, A.; Williams, D.A.; Zitzer, B.; Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J.L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; de Angelis, A.; De Lotto, B.; Wilhelmi, E. D. de Oña; Delgado Mendez, C.; Di Pierro, F.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Elsaesser, D.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M.V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; López, R. J. García; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Eisenacher, D.; Godinović, N.; González Muñoz, A.; Guberman, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J.M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas-Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Orito, R.; Overkemping, A.; Paiano, S.; Palacio, S.; Palatiello, M.; Paoletti, R.; Paredes, J.M.; Paredes-Fortuny, X.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Garcia, J. Rodriguez; Saito, T.; Satalecka, K.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S.N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Takalo, L.O.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D.F.; Toyama, T.; Treves, A.; Verguilov, V.; Vovk, I.; Ward, J.E.; Will, M.; Wu, M.H.; Zanin, R.; Perkins, J.; Verrecchia, F.; Leto, C.; Böttcher, M.; Villata, M.; Raiteri, C.M.; Acosta-Pulido, J.A.; Bachev, R.; Berdyugin, A.; Blinov, D.A.; Carnerero, M.I.; Chen, W.P.; Chinchilla, P.; Damljanovic, G.; Eswaraiah, C.; Grishina, T.S.; Ibryamov, S.; Jordan, B.; Jorstad, S.G.; Joshi, M.; Kopatskaya, E.N.; Kurtanidze, O.M.; Kurtanidze, S.O.; Larionova, E.G.; Larionova, L.V.; Larionov, V.M.; Latev, G.; Lin, H.C.; Marscher, A.P.; Mokrushina, A.A.; Morozova, D.A.; Nikolashvili, M.G.; Semkov, E.; Strigachev, A.; Troitskaya, Yu. V.; Troitsky, I.S.; Vince, O.; Barnes, J.; Güver, T.; Moody, J.W.; Sadun, A.C.; Sun, S.; Hovatta, T.; Richards, J.L.; Max-Moerbeck, W.; Readhead, A.C.; Lähteenmäki, A.; Tornikoski, M.; Tammi, J.; Ramakrishnan, V.; Reinthal, R.; Angelakis, E.; Fuhrmann, L.; Myserlis, I.; Karamanavis, V.; Sievers, A.; Ungerechts, H.; Zensus, J.A.

    2016-01-01

    We present coordinated multiwavelength observations of the bright, nearby BL Lac object Mrk 421 taken in 2013 January-March, involving GASP-WEBT, Swift, NuSTAR, Fermi-LAT, MAGIC, VERITAS, and other collaborations and instruments, providing data from radio to very-high-energy (VHE) gamma-ray bands. NuSTAR yielded previously unattainable sensitivity in the 3-79 keV range, revealing that the spectrum softens when the source is dimmer until the X-ray spectral shape saturates into a steep power law with a photon index of approximately 3, with no evidence for an exponential cutoff or additional hard components up to about 80 keV. For the first time, we observed both the synchrotron and the inverse-Compton peaks of the spectral energy distribution (SED) simultaneously shifted to frequencies below the typical quiescent state by an order of magnitude. The fractional variability as a function of photon energy shows a double-bump structure which relates to the two bumps of the broadband SED. In each bump, the variabilit...

  8. Spectral State Evolution of 4U 1820-30: the Stability of the Spectral Index of Comptonization Tail

    Science.gov (United States)

    Titarchuk, Lev G.; Seifina, Elena; Frontera, Filippo

    2013-01-01

    We analyze the X-ray spectra and their timing properties of the compact Xray binary 4U 1820-30. We establish spectral transitions in this source seen with BeppoSAX and the Rossi X-ray Timing Explorer (RXTE). During the RXTE observations (1996 - 2009), the source were approximately approximately 75% of its time in the soft state making the lower banana and upper banana transitions combined with long-term low-high state transitions. We reveal that all of the X-ray spectra of 4U 1820-30 are fit by a composition of a thermal (blackbody) component, a Comptonization component (COMPTB) and a Gaussian-line component. Thus using this spectral analysis we find that the photon power-law index Gamma of the Comptonization component is almost unchangeable (Gamma approximately 2) while the electron temperature kTe changes from 2.9 to 21 keV during these spectral events. We also establish that for these spectral events the normalization of COMPTB component (which is proportional to mass accretion rate ?M) increases by factor 8 when kTe decreases from 21 keV to 2.9 keV. Before this index stability effect was also found analyzing X-ray data for Z-source GX 340+0 and for atolls, 4U 1728-34, GX 3+1. Thus, we can suggest that this spectral stability property is a spectral signature of an accreting neutron star source. On the other hand in a black hole binary G monotonically increases with ?Mand ultimately its value saturates at large ?M.

  9. Effects of excitation spectral width on decay profile of weakly confined excitons

    International Nuclear Information System (INIS)

    Kojima, O.; Isu, T.; Ishi-Hayase, J.; Kanno, A.; Katouf, R.; Sasaki, M.; Tsuchiya, M.

    2008-01-01

    We report the effect due to a simultaneous excitation of several exciton states on the radiative decay profiles on the basis of the nonlocal response of weakly confined excitons in GaAs thin films. In the case of excitation of single exciton state, the transient grating signal has two decay components. The fast decay component comes from nonlocal response, and the long-lived component is attributed to free exciton decay. With an increase of excitation spectral width, the nonlocal component becomes small in comparison with the long-lived component, and disappears under irradiation of a femtosecond-pulse laser with broader spectral width. The transient grating spectra clearly indicates the contribution of the weakly confined excitons to the signal, and the exciton line width hardly changes by excitation spectral width. From these results, we concluded that the change of decay profile is attributed not to the many-body effect but to the effect of simultaneous excitation of several exciton states

  10. Nustar Detection of Hard X-Ray Phase Lags from the Accreting Pulsar GS 0834-430

    DEFF Research Database (Denmark)

    Miyasaka, Hiromasa; Bachetti, Matteo; Harrison, Fiona A.

    2013-01-01

    The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834-430 during its 2012 outburst-the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV w...

  11. Comparison of Time/Phase Lags in the Hard State and Plateau State of GRS 1915+105

    NARCIS (Netherlands)

    Pahari, M.; Neilsen, J.; Yadav, J.S.; Misra, R.; Uttley, P.

    2013-01-01

    We investigate the complex behavior of energy- and frequency-dependent time/phase lags in the plateau state and the radio-quiet hard (χ) state of GRS 1915+105. In our timing analysis, we find that when the source is faint in the radio, quasi-periodic oscillations (QPOs) are observed above 2 Hz and

  12. CORONA, JET, AND RELATIVISTIC LINE MODELS FOR SUZAKU/RXTE/CHANDRA-HETG OBSERVATIONS OF THE CYGNUS X-1 HARD STATE

    International Nuclear Information System (INIS)

    Nowak, Michael A.; Trowbridge, Sarah N.; Davis, John E.; Hanke, Manfred; Wilms, Joern; Markoff, Sera B.; Maitra, Dipankar; Tramper, Frank; Pottschmidt, Katja; Coppi, Paolo

    2011-01-01

    Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard 'low states'. Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the 'focused wind' from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary's focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c 2 . All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus, whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum dependent, none of the broad line fits allow for an inner disk radius that is >40 GM/c 2 .

  13. X-RAY SPECTRAL VARIABILITY IN NGC 3783

    International Nuclear Information System (INIS)

    Reis, R. C.; Miller, J. M.; Fabian, A. C.; Walton, D. J.; Reynolds, C. S.; Trippe, M.; Mushotzky, R. F.; Brenneman, L. W.; Nowak, M. A.

    2012-01-01

    NGC 3783 was observed for approximately 210 ks by Suzaku and in this time showed significant spectral and flux variability at both short (20 ks) and long (100 ks) timescales. The full observation is found to consist of approximately six 'spectral periods' where the behavior of the soft (0.3-1.0 keV) and hard (2-10 keV) bands are somewhat distinct. Using a variety of methods we find that the strong warm absorber present in this source does not change on these timescales, confirming that the broadband variability is intrinsic to the central source. The time-resolved difference-spectra are well modeled with an absorbed power law below 10 keV, but show an additional hard excess at ≈20 keV in the latter stages of the observation. This suggests that, in addition to the variable power law, there is a further variable component that varies with time but not monotonically with flux. We show that a likely interpretation is that this further component is associated with variations in the reflection fraction or possibly ionization state of the accretion disk a few gravitational radii from the black hole.

  14. High spectral efficiency optical CDMA system based on guard-time and optical hard-limiting (OHL)

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, R M; Bennett, C V; Mendez, A J; Hernandez, V J; Lennon, W J

    2003-12-02

    Optical code-division multiple access (OCDMA) is an interesting subject of research because of its potential to support asynchronous, bursty communications. OCDMA has been investigated for local area networks, access networks, and, more recently, as a packet label for emerging networks. Two-dimensional (2-D) OCDMA codes are preferred in current research because of the flexibility of designing the codes and their higher cardinality and spectral efficiency (SE) compared with direct sequence codes based on on-off keying and intensity modulation/direct detection, and because they lend themselves to being implemented with devices developed for wavelength-division-multiplexed (WDM) transmission (the 2-D codes typically combine wavelength and time as the two dimensions of the codes). This paper shows rigorously that 2-D wavelength/time codes have better SE than one-dimensional (1-D) CDMA/WDM combinations (of the same cardinality). Then, the paper describes a specific set of wavelength/time (W/T) codes and their implementation. These 2-D codes are high performance because they simultaneously have high cardinality (/spl Gt/10), per-user high bandwidth (>1 Gb/s), and high SE (>0.10 b/s/Hz). The physical implementation of these W/T codes is described and their performance evaluated by system simulations and measurements on an OCDMA technology demonstrator. This research shows that OCDMA implementation complexity (e.g., incorporating double hard-limiting and interference estimation) can be avoided by using a guard time in the codes and an optical hard limiter in the receiver.

  15. A state space algorithm for the spectral factorization

    NARCIS (Netherlands)

    Kraffer, F.; Kraffer, F.; Kwakernaak, H.

    1997-01-01

    This paper presents an algorithm for the spectral factorization of a para-Hermitian polynomial matrix. The algorithm is based on polynomial matrix to state space and vice versa conversions, and avoids elementary polynomial operations in computations; It relies on well-proven methods of numerical

  16. Comprehensive spectral analysis of Cyg X-1 using RXTE data

    International Nuclear Information System (INIS)

    Shahid, Rizwan; Jaaffrey, S. N. A.; Misra, Ranjeev

    2012-01-01

    We analyze a large number (> 500) of pointed Rossi X-Ray Timing Explorer (RXTE) observations of Cyg X-1 and model the spectrum of each one. A subset of the observations for which there is a simultaneous reliable measure of the hardness ratio by the All Sky Monitor shows that the sample covers nearly all the spectral shapes of Cyg X-1. Each observation is fitted with a generic empirical model consisting of a disk black body spectrum, a Comptonized component whose input photon shape is the same as the disk emission, a Gaussian to represent the iron line and a reflection feature. The relative strength, width of the iron line and the reflection parameter are in general correlated with the high energy photon spectral index Γ. This is broadly consistent with a geometry where for the hard state (low Γ ∼ 1.7) there is a hot inner Comptonizing region surrounded by a truncated cold disk. The inner edge of the disk moves inwards as the source becomes softer till finally in the soft state (high Γ > 2.2) the disk fills the inner region and active regions above the disk produce the Comptonized component. However, the reflection parameter shows non-monotonic behavior near the transition region (Γ ∼ 2), which suggests a more complex geometry or physical state of the reflector. In addition, the inner disk temperature, during the hard state, is on average higher than in the soft one, albeit with large scatter. These inconsistencies could be due to limitations in the data and the empirical model used to fit them. The flux of each spectral component is well correlated with Γ, which shows that unlike some other black hole systems, Cyg X-1 does not show any hysteresis behavior. In the soft state, the flux of the Comptonized component is always similar to the disk one, which confirms that the ultra-soft state (seen in other brighter black hole systems) is not exhibited by Cyg X-1. The rapid variation of the Compton amplification factor with Γ naturally explains the absence of

  17. A New Measurement of the Spectral Lag of Gamma-Ray Bursts and its Implications for Spectral Evolution Behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Lang; Wang, Fu-Ri; Cheng, Ye-Hao; Zhang, Xi; Yu, Bang-Yao; Xi, Bao-Jia; Wang, Xue; Feng, Huan-Xue; Zhang, Meng, E-mail: lshao@hebtu.edu.cn [Department of Space Sciences and Astronomy, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Bin-Bin [Instituto de Astrofísica de Andalucá (IAA-CSIC), P.O. Box 03004, E-18080 Granada (Spain); Wu, Xue-Feng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Xu, Dong [Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-08-01

    We carry out a systematical study of the spectral lag properties of 50 single-pulsed gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor. By dividing the light curves into multiple consecutive energy channels, we provide a new measurement of the spectral lag that is independent of energy channel selections. We perform a detailed statistical study of our new measurements. We find two similar power-law energy dependencies of both the pulse arrival time and pulse width. Our new results on the power-law indices would favor the relativistic geometric effects for the origin of spectral lag. However, a complete theoretical framework that can fully account for the diverse energy dependencies of both arrival time and pulse width revealed in this work is still lacking. We also study the spectral evolution behaviors of the GRB pulses. We find that a GRB pulse with negligible spectral lag would usually have a shorter pulse duration and would appear to have a “hardness-intensity tracking” behavior, and a GRB pulse with a significant spectral lag would usually have a longer pulse duration and would appear to have a “hard-to-soft” behavior.

  18. Long term variability of Cygnus X-1. V. State definitions with all sky monitors

    Science.gov (United States)

    Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M. A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G. L.; Hanke, M.; Kühnel, M.; Markoff, S. B.; Pooley, G. G.; Rothschild, R. E.; Tomsick, J. A.; Wilson-Hodge, C. A.; Wilms, J.

    2013-06-01

    We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different monitors, facilitating the determination of the state and its context for any observation of the source, potentially over the lifetimes of different individual monitors. A separation of the hard and the intermediate states, which strongly differ in their spectral shape and short-term timing behavior, is only possible when data in the soft X-rays (probability of Cyg X-1 remaining in a given state for at least one week to be larger than 85% in the hard state and larger than 75% in the soft state. Intermediate states are short lived, with a 50% probability that the source leaves the intermediate state within three days. Reliable detection of these potentially short-lived events is only possible with monitor data that have a time resolution better than 1 d.

  19. Thermodynamic perturbation theory for fused hard-sphere and hard-disk chain fluids

    International Nuclear Information System (INIS)

    Zhou, Y.; Hall, C.K.; Stell, G.

    1995-01-01

    We find that first-order thermodynamic perturbation theory (TPT1) which incorporates the reference monomer fluid used in the generalized Flory--AB (GF--AB) theory yields an equation of state for fused hard-sphere (FHS) chain fluids that has accuracy comparable to the GF--AB and GF--dimer--AC theories. The new TPT1 equation of state is significantly more accurate than other extensions of the TPT1 theory to FHS chain fluids. The TPT1 is also extended to two-dimensional fused hard-disk chain fluids. For the fused hard-disk dimer fluid, the extended TPT1 equation of state is found to be more accurate than the Boublik hard-disk dimer equation of state. copyright 1995 American Institute of Physics

  20. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    Energy Technology Data Exchange (ETDEWEB)

    Malek, Ali; Balawender, Robert, E-mail: rbalawender@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw (Poland)

    2015-02-07

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor.

  1. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    International Nuclear Information System (INIS)

    Malek, Ali; Balawender, Robert

    2015-01-01

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor

  2. Observation of hard X-rays line emission from Her X-1

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; la Padula, C.; Ubertini, P.; Vialetto, G.; Manchanda, R.K.; Damle, S.V.

    1982-04-01

    We present the results of a hard X-ray measurement of the binary source Her X-1, carried out with a balloon borne X-ray telescope consisting of two Multiwire Proportional Counters, having 900 cm/sup 2/ sensitive area each and spectral resolution of 15% and 24% FWHM respectively at 60 keV. The source was observed during the 'Mid-on' state. Our data confirm the previously reported high energy emission line overimposed on the low energy thermal spectrum.

  3. Changes in phase composition and stress state of surface layers of VK20 hard alloy after ion bombardment

    International Nuclear Information System (INIS)

    Platonov, G.L.; Leonov, E.Yu.; Anikin, V.N.; Anikeev, A.I.

    1988-01-01

    Titanium ion bombardment of the surface of the hard VK20 alloy is studied for its effect on variations in the phase and chemical composition of its surface layers. It is stated that ion treatment results in the appearance of the η-phase of Co 6 W 6 C composition in the surface layer of the VK20 alloy, in the increase of distortions and decrease of coherent scattering blocks of the hard alloy carbide phase. Such a bombardment is found to provoke a transition of the plane-stressed state of the hard alloy surface into the volume-stressed state. It is established that ion treatment does not cause an allotropic transition of the cobalt phase α-modification, formed during grinding of the hard alloy, into the β-modification

  4. Neutron spectrum perturbations due to scattering materials and their effect on the average neutron energy, the spectral index, and the hardness parameter

    International Nuclear Information System (INIS)

    Wright, H.L.; Meason, J.L.; Wolf, M.; Harvey, J.T.

    1976-01-01

    Measurements have been performed on the perturbing effect of a number of scattering materials by the 'free-field' neutron leakage spectrum from a Godiva Type Critical Assembly (White Sands Missile Range Fast Burst Reactor). The results of these measurements are interpreted in relation to some of the general parameters characterizing a neutron environment, namely, the average neutron energy >10 KeV, the spectral index and the hardness parameter. Three neutron spectrum measurements have been performed, each under different experimental configurations of scattering materials. Results from these measurements show the following with relation to the spectral index: (1) The neutron environment on the core surface and at 12-inches from the core surface (free-field) yield a spectral index of 6.8, (2) The neutron environment behind a 4.75-inch Plexiglas plate yield 4.6 for the spectral index and (3) The neutron environment behind a 2-inch aluminum plate yield 6.7 for the spectral index. It is concluded that the core surface and the 12-inch from core surface neutron environment are identical with the 'free-field' neutron environment at 20-inches when considering only those neutrons with energy >10 KeV. On the other hand, it appears that the 4.75 inches of Plexiglas severely perturbs the 'free-field' neutron environment, i.e., a much harder neutron spectrum >10 KeV. In the situation where 2-inches of aluminum is used as the perturbing medium, essentially no change in the neutron spectrum >10 KeV is noted

  5. STATISTICS OF FLARING LOOPS OBSERVED BY NOBEYAMA RADIOHELIOGRAPH. II. SPECTRAL EVOLUTION

    International Nuclear Information System (INIS)

    Huang Guangli; Nakajima, Hiroshi

    2009-01-01

    The spectral evolution of solar microwave bursts is studied in 10 impulsive events with loop-like structures, which are selected in the flare list of Nobeyama Radioheliograph. Most events have a brighter and harder looptop (LT) with maximum time later than at least one of its two footpoints (FPs), and have a common feature of the spectral evolution in the LT and the two FPs. There are five simple impulsive bursts with a well known pattern of soft-hard-soft or soft-hard-harder (SHH). It is first found that the other five events have multiple subpeaks in their impulsive phase, and mostly have a new feature of hard-soft-hard (HSH) in each subpeak, but, the well known tendency of SHH is still maintained in the total spectral evolution of these events. All of these features in the spectral evolution of the 10 selected events are consistent with the full Sun observations of Nobeyama Radio Polarimeters in these events. The new feature of HSH may be explained by the thermal free-free emission before, during, and after these bursts, together with multiple injections of nonthermal electrons, while the SHH pattern in the total duration may be directly caused by the trapping effect.

  6. Anomalous metallic state with strong charge fluctuations in BaxTi8O16 +δ revealed by hard x-ray photoemission spectroscopy

    Science.gov (United States)

    Dash, S.; Kajita, T.; Okawa, M.; Saitoh, T.; Ikenaga, E.; Saini, N. L.; Katsufuji, T.; Mizokawa, T.

    2018-04-01

    We have studied a charge-orbital driven metal-insulator transition (MIT) in hollandite-type BaxTi8O16 +δ by means of hard x-ray photoemission spectroscopy (HAXPES). The Ti 2 p HAXPES indicates strong Ti3 +/Ti4 + charge fluctuation in the metallic phase above the MIT temperature. The metallic phase is characterized by a power-law spectral function near the Fermi level which would be a signature of bad metal with non-Drude polaronic behavior. The power-law spectral shape is associated with the large Seebeck coefficient of the metallic phase in BaxTi8O16 +δ .

  7. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    Science.gov (United States)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  8. Response of hard superconductors to crossed magnetic fields: elliptic critical-state model

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Salazar, C.; Perez-Rodriguez, F

    2004-05-01

    The behavior of hard superconductors subjected to crossed magnetic fields is theoretically investigated by employing an elliptic critical-state model. Here the anisotropy is induced by flux-line cutting. The model reproduces successfully the collapse of the magnetic moment under the action of a sweeping magnetic field, applied perpendicularly to a dc field, for diamagnetic and paramagnetic initial states. Besides, it explains the transition from the diamagnetic state to the paramagnetic one when the magnitudes of the crossed magnetic fields are of the same order.

  9. Anti-correlated Soft Lags in the Intermediate State of Black Hole Source GX 339-4

    OpenAIRE

    Sriram, K.; Rao, A. R.; Choi, C. S.

    2010-01-01

    We report the few hundred second anti-correlated soft lags between soft and hard energy bands in the source GX 339-4 using RXTE observations. In one observation, anti-correlated soft lags were observed using the ISGRI/INTEGRAL hard energy band and the PCA/RXTE soft energy band light curves. The lags were observed when the source was in hard and soft intermediate states, i.e., in a steep power-law state.We found that the temporal and spectral properties were changed during the lag timescale. T...

  10. State transitions in the 2001/2002 outburst of XTE J1650-500

    International Nuclear Information System (INIS)

    Rossi, S.; Homan, J.; Miller, J.M.; Belloni, T.

    2004-01-01

    We present a study of the X-ray transient and black hole candidate XTE J1650-500 during its 2001/2002 outburst. The source made two state transitions between the hard and soft states, at luminosity levels that differ by a factor of ∼5-10. The first transition, between hard and soft, lasted for ∼30 days and showed two parts; one part in which the spectral properties evolve smoothly away from the hard state and another that we identify as the 'steep power law state'. The two parts showed different behavior of the Fe K emission line and QPO frequencies. The second transition, from soft to hard, lasted only ∼15 days and showed no evidence of the presence of the 'steep power law state'. Comparing observations from the early rise and the decay of the outburst, we conclude that the source can be in the hard state in a range of more than 10 4 in luminosity. We briefly discuss the state transitions in the framework of a two-flow model

  11. Standard hardness conversion tables for metals relationship among brinell hardness, vickers hardness, rockwell hardness, superficial hardness, knoop hardness, and scleroscope hardness

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 Conversion Table 1 presents data in the Rockwell C hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.2 Conversion Table 2 presents data in the Rockwell B hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.3 Conversion Table 3 presents data on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, and Knoop hardness of nickel and high-nickel alloys (nickel content o...

  12. Systematic analysis of low/hard state RXTE spectra of GX 339–4 to constrain the geometry of the system

    Science.gov (United States)

    Bagri, Kalyani; Misra, Ranjeev; Rao, Anjali; Singh Yadav, Jagdish; Pandey, Shiv Kumar

    2018-05-01

    One of the popular models for the low/hard state of black hole binaries is that the standard accretion disk is truncated and the hot inner region produces, via Comptonization, hard X-ray flux. This is supported by the value of the high energy photon index, which is often found to be small, ∼ 1.7(2. This would mean that the medium is not photon deficient, reconciling the presence of a broad Fe line in the observed hard state. To test this hypothesis, we have analyzed the RXTE observations of GX 339–4 from the four outbursts during 2002–2011 and identify observations when the system was in the hard state and showed a broad Fe line. We have then attempted to fit these observationswith models,which include smeared reflection, to understandwhether the intrinsic photon index can indeed be large. We find that, while for some observations the inclusion of reflection does increase the photon index, there are hard state observations with a broad Fe line that have photon indices less than 2.

  13. On the Nature of the Variability Power Decay towards Soft Spectral States in X-Ray Binaries. Case Study in Cyg X-1

    Science.gov (United States)

    Titarchuk, Lev; Shaposhinikov, Nikolai

    2007-01-01

    A characteristic feature of the Fourier Power Density Spectrum (PDS) observed from black hole X-ray binaries in low/hard and intermediate spectral states is a broad band-limited noise, characterized by a constant below some frequency (a "break" frequency) and a power law above this frequency. It has been shown that the variability of this type can be produced by the inward diffusion of the local driving perturbations in a bounded configuration (accretion disk or corona). In the framework of this model, the perturbation diffusion time to is related to the phenomenological break frequency, while the PDS power-law slope above the "break" is determined by the viscosity distribution over the configuration. The perturbation diffusion scenario explains the decay of the power of X-ray variability observed in a number of compact sources (containing black hole and neutron star) during an evolution of theses sources from low/hard to high/soft states. We compare the model predictions with the subset of data from Cyg X-1 collected by the Rossi X-ray Time Explorer (RXTE). Our extensive analysis of the Cyg X-1 PDSs demonstrates that the observed integrated power P(sub x), decreases approximately as a square root of the characteristic frequency of the driving oscillations v(sub dr). The RXTE observations of Cyg X-1 allow us to infer P(sub dr), and t(sub o) as a function of v(sub dr). We also apply the basic parameters of observed PDSs, power-law index and low frequency quasiperiodic oscillations. to infer Reynolds (Re) number from the observations using the method developed in our previous paper. Our analysis shows that Re-number increases from values about 10 in low/hard state to that about 70 during the high/soft state. Subject headings: accretion, accretion disks-black hole physics-stars:individual (Cyg X-1) :radiation mechanisms: nonthermal-physical data and processes

  14. Flexible equation of state for a hard sphere and Lennard–Jones fluid ...

    Indian Academy of Sciences (India)

    Equation of state; Lennard–Jones potential; hard-sphere potential; liquid mixture; computer simulation. ... deviation than Barker–Henderson BH2 for LJ fluids, and results are much closer to molecular dynamics (MD) simulations than expectations and reproduce the existing simulation data and present EoS for LJ potential, ...

  15. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    International Nuclear Information System (INIS)

    De Marco, B.; Ponti, G.; Nandra, K.; Muñoz-Darias, T.

    2015-01-01

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4 in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation

  16. NuSTAR and INTEGRAL observations of a low/hard state of 1E1740.7-2942

    DEFF Research Database (Denmark)

    Natalucci, Lorenzo; Tomsick, John A.; Bazzano, Angela

    2014-01-01

    The microquasar 1E1740.7-2942, also known as the "Great Annihilator", was observed by NuSTAR in the Summer of 2012. We have analyzed in detail two observations taken ~2 weeks apart, for which we measure hard and smooth spectra typical of the low/hard state. A few weeks later the source flux decli...

  17. Spectro-Timing Study of GX 339-4 in a Hard Intermediate State

    Science.gov (United States)

    Furst, F.; Grinberg, V.; Tomsick, J. A.; Bachetti, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Ghandi, P.; Zhang, William W.

    2016-01-01

    We present an analysis of Nuclear Spectroscopic Telescope Array observations of a hard intermediate state of the transient black hole GX 339-4 taken in 2015 January. With the source softening significantly over the course of the 1.3 day long observation we split the data into 21 sub-sets and find that the spectrum of all of them can be well described by a power-law continuum with an additional relativistically blurred reflection component. The photon index increases from approx. 1.69 to approx. 1.77 over the course of the observation. The accretion disk is truncated at around nine gravitational radii in all spectra. We also perform timing analysis on the same 21 individual data sets, and find a strong type-C quasi-periodic oscillation (QPO), which increases in frequency from approx. 0.68 to approx. 1.05 Hz with time. The frequency change is well correlated with the softening of the spectrum. We discuss possible scenarios for the production of the QPO and calculate predicted inner radii in the relativistic precession model as well as the global disk mode oscillations model. We find discrepancies with respect to the observed values in both models unless we allow for a black hole mass of approx. 100 Mass compared to the Sun, which is highly unlikely. We discuss possible systematic uncertainties, in particular with the measurement of the inner accretion disk radius in the relativistic reflection model. We conclude that the combination of observed QPO frequencies and inner accretion disk radii, as obtained from spectral fitting, is difficult to reconcile with current models.

  18. Thermodynamics and dynamics of the hard-sphere system: From stable to metastable states

    Energy Technology Data Exchange (ETDEWEB)

    Bomont, Jean-Marc, E-mail: jean-marc.bomont@univ-lorraine.fr; Bretonnet, Jean-Louis

    2014-08-17

    Highlights: • Three different scaling laws, devoted to transport properties of hard-sphere system, are investigated over a wide range of packing fractions. • A new semiempirical relation linking the transport properties to the excess pressure is derived. • The present relation allows to better understand the link between the thermodynamic and the dynamic properties of the hard-sphere system. - Abstract: A set of three different scaling laws is investigated, which are devoted to link the transport properties, i.e. diffusion coefficient, shear viscosity, bulk viscosity and thermal conductivity, to the thermodynamic properties for the athermal hard-sphere system, over the wider range of packing fraction covering the stable and metastable regimes. Except for the thermal conductivity, the Rosenfeld (1999) [15] relation is found to be applicable to the stable states while the Adam and Gibbs (1965) [24] relation holds well for the metastable states. In contrast, the modified Cohen and Turnbull (1959) [25] relation proposed here gives sound support for a universal scaling law connecting the dynamic and thermodynamic properties, over the domain of packing fraction including the stable and metastable states. In particular, it is found that the most relevant control parameter is not the excess entropy, but the logarithm derivative of the excess entropy with respect to the packing fraction. In the same context, the Stokes–Einstein relation between the diffusion coefficient and the shear viscosity is also examined. The possible violation of the Stokes–Einstein relation is investigated over a large domain of packing fractions.

  19. Thermodynamics and dynamics of the hard-sphere system: From stable to metastable states

    International Nuclear Information System (INIS)

    Bomont, Jean-Marc; Bretonnet, Jean-Louis

    2014-01-01

    Highlights: • Three different scaling laws, devoted to transport properties of hard-sphere system, are investigated over a wide range of packing fractions. • A new semiempirical relation linking the transport properties to the excess pressure is derived. • The present relation allows to better understand the link between the thermodynamic and the dynamic properties of the hard-sphere system. - Abstract: A set of three different scaling laws is investigated, which are devoted to link the transport properties, i.e. diffusion coefficient, shear viscosity, bulk viscosity and thermal conductivity, to the thermodynamic properties for the athermal hard-sphere system, over the wider range of packing fraction covering the stable and metastable regimes. Except for the thermal conductivity, the Rosenfeld (1999) [15] relation is found to be applicable to the stable states while the Adam and Gibbs (1965) [24] relation holds well for the metastable states. In contrast, the modified Cohen and Turnbull (1959) [25] relation proposed here gives sound support for a universal scaling law connecting the dynamic and thermodynamic properties, over the domain of packing fraction including the stable and metastable states. In particular, it is found that the most relevant control parameter is not the excess entropy, but the logarithm derivative of the excess entropy with respect to the packing fraction. In the same context, the Stokes–Einstein relation between the diffusion coefficient and the shear viscosity is also examined. The possible violation of the Stokes–Einstein relation is investigated over a large domain of packing fractions

  20. New hard X-ray sources at 380 declination

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F.

    1981-01-01

    We report the detection of three new hard X-rays sources emitting in the range 15-150 KeV. Their observation was carried out by means of a balloon borne payload, consisting of two large area high spectral resolution Multiwire Spectroscopic Proportional Counters. (orig.)

  1. Spectral Energy Distribution of Markarian 501: Quiescent State Versus Extreme Outburst

    Science.gov (United States)

    Acciari, V. A.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Böttcher, M.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Dickherber, R.; Duke, C.; Errando, M.; Falcone, A.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Huang, D.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Madhavan, A. S.; Maier, G.; McArthur, S.; McCann, A.; Moriarty, P.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pichel, A.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Steele, D.; Swordy, S. P.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wood, M.; Zitzer, B.; VERITAS Collaboration; Aleksić, J.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Dazzi, F.; De Angelis, A.; De Cea del Pozo, E.; De Lotto, B.; De Maria, M.; De Sabata, F.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Errando, M.; Ferenc, D.; Fonseca, M. V.; Font, L.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giavitto, G.; Godinović, N.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Kranich, D.; Krause, J.; La Barbera, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Lorenz, E.; Majumdar, P.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Struebig, J. C.; Suric, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Vankov, H.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Paneque, D.; Hayashida, M.

    2011-03-01

    The very high energy (VHE; E > 100 GeV) blazar Markarian 501 (Mrk 501) has a well-studied history of extreme spectral variability and is an excellent laboratory for studying the physical processes within the jets of active galactic nuclei. However, there are few detailed multiwavelength studies of Mrk 501 during its quiescent state, due to its low luminosity. A short-term multiwavelength study of Mrk 501 was coordinated in 2009 March, focusing around a multi-day observation with the Suzaku X-ray satellite and including γ-ray data from VERITAS, MAGIC, and the Fermi Gamma-ray Space Telescope with the goal of providing a well-sampled multiwavelength baseline measurement of Mrk 501 in the quiescent state. The results of these quiescent-state observations are compared to the historically extreme outburst of 1997 April 16, with the goal of examining variability of the spectral energy distribution (SED) between the two states. The derived broadband SED shows the characteristic double-peaked profile. We find that the X-ray peak shifts by over two orders of magnitude in photon energy between the two flux states while the VHE peak varies little. The limited shift in the VHE peak can be explained by the transition to the Klein-Nishina (KN) regime. Synchrotron self-Compton models are matched to the data and the implied KN effects are explored.

  2. SPECTRAL ENERGY DISTRIBUTION OF MARKARIAN 501: QUIESCENT STATE VERSUS EXTREME OUTBURST

    International Nuclear Information System (INIS)

    Acciari, V. A.; Benbow, W.; Arlen, T.; Aune, T.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Boettcher, M.; Boltuch, D.; Bradbury, S. M.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Finley, J. P.; Duke, C.; Errando, M.; Falcone, A.; Finnegan, G.

    2011-01-01

    The very high energy (VHE; E > 100 GeV) blazar Markarian 501 (Mrk 501) has a well-studied history of extreme spectral variability and is an excellent laboratory for studying the physical processes within the jets of active galactic nuclei. However, there are few detailed multiwavelength studies of Mrk 501 during its quiescent state, due to its low luminosity. A short-term multiwavelength study of Mrk 501 was coordinated in 2009 March, focusing around a multi-day observation with the Suzaku X-ray satellite and including γ-ray data from VERITAS, MAGIC, and the Fermi Gamma-ray Space Telescope with the goal of providing a well-sampled multiwavelength baseline measurement of Mrk 501 in the quiescent state. The results of these quiescent-state observations are compared to the historically extreme outburst of 1997 April 16, with the goal of examining variability of the spectral energy distribution (SED) between the two states. The derived broadband SED shows the characteristic double-peaked profile. We find that the X-ray peak shifts by over two orders of magnitude in photon energy between the two flux states while the VHE peak varies little. The limited shift in the VHE peak can be explained by the transition to the Klein-Nishina (KN) regime. Synchrotron self-Compton models are matched to the data and the implied KN effects are explored.

  3. Broadband spectrally dynamic solid state illumination source

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, David B; Asghar, Ali; Gupta, Shalini; Kang, Hun; Pan, Ming [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Strassburg, Martin [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Georgia State University, Department of Physics and Astronomy, Atlanta, GA 30302-4106 (United States); Summers, Chris; Ferguson, Ian T [Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332 (United States)

    2006-06-15

    Solid state lighting has done well recently in niche markets such as signage and displays, however, no available SSL technologies incorporate all the necessary attributes for general illumination. Development of a novel solid state general illumination source is discussed here. Two LEDs emitting at two distinct wavelengths can be monolithically grown and used to excite two or more phosphors with varied excitation spectra. The combined phosphorescence spectrum can then be controlled by adjusting the relative intensities of the two LED emissions. Preliminary phosphor analysis shows such a scheme to be viable for use in a spectrally dynamic broadband general illumination source. A tunnel junction is envisioned as a means of current spreading in a buried layer for three terminal operation. However, tunnel junction properties in GaN based materials are not well understood, and require further optimization to be practical devices. Preliminary results on GaN tunnel junctions are presented here as well. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Analysis of enamel microhardness at various hard tissue states and depth of the microfissures

    Directory of Open Access Journals (Sweden)

    S. P. Yarova

    2013-08-01

    micro-hardness of enamel have been identified in the cervical area: the presence of defects of type I - in intact teeth, defects of II and III types - in the teeth with wedge-shaped defect. The least indices, regardless of the depth of micro-cracks in teeth, were diagnosed in cervical caries. In samples with carious and non-carious pathology the largest micro-hardness of enamel in the cervical area were recorded in deep micro-cracks type III, and the lowest - in the teeth with defects type I. In intact samples, conversely, the strength of enamel was higher in minor defects type I, lower - in the presence of micro-cracks type II. Changes in the mechanical properties of the enamel were due to its chemical composition, which was confirmed by microroentgen-spectral analysis. Thus, the content of calcium and phosphorus in the cervical region was significantly different depending on the pathology of hard tissues (p <0,05. The higher content of macro-elements was determined in the wedge-shaped defects. Some discrepancy of the obtained indices with the depth of micro-cracks indicates that complex of adaptive processes occurs not only in the enamel but in the strength of the enamel, depending on the depth of cracks and pathology of hard tissues and demand further investigation. The revealed features should be used for a substantiation of principles of treatment and prophylaxis of the dental hard tissues defects.

  5. Crab Nebula Variations in Hard X-rays

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2012-01-01

    The Crab Nebula was surprisingly variable from 2001-2010, with less variability before 2001 and since mid-2010. We presented evidence for spectral softening from RXTE, Swift/BAT, and Fermi GBM during the mid-2008-2010 flux decline. We see no clear connections between the hard X-ray variations and the GeV flares

  6. Long term variability of Cygnus X-1. V. State definitions with all sky monitors

    NARCIS (Netherlands)

    Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M.A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G.L.; Hanke, M.; Kühnel, M.; Markoff, S.; Pooley, G.G.; Rothschild, R.E.; Tomsick, J.A.; Wilson-Hodge, C.A.; Wilms, J.

    2013-01-01

    We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different

  7. Correlation between Fe–V–C alloys surface hardness and plasma temperature via LIBS technique

    Energy Technology Data Exchange (ETDEWEB)

    Messaoud Aberkane, S., E-mail: smessaoud@cdta.dz [Centre de Développement des Technologies Avancées, Baba Hassen, Alger (Algeria); Bendib, A. [Université des Sciences et de Technologie Houari Boumediene, Bab-Ezzouar, Alger (Algeria); Yahiaoui, K.; Boudjemai, S.; Abdelli-Messaci, S.; Kerdja, T. [Centre de Développement des Technologies Avancées, Baba Hassen, Alger (Algeria); Amara, S.E. [Université des Sciences et de Technologie Houari Boumediene, Bab-Ezzouar, Alger (Algeria); Harith, M.A. [National Institute of Laser Enhanced Science, Cairo University (Egypt)

    2014-05-01

    Highlights: • New application of LIBS in industry. • Hardness of metallic alloys estimation using LIBS calibration curves. • Linear correlation between the plasma temperature and the hardness of metallic alloys. • The shock wave is fast when the material is hard. - Abstract: Surface hardness is a very important characteristic of metals. Its monitoring plays a key role in industry. In the present paper, using laser induced breakdown spectroscopy (LIBS), Fe–V{sub 18%}–C{sub 1%} alloys with different heat treatments have been used for making the correlation between surface hardness and laser-induced plasma temperatures. All investigated samples were characterized by the same ferrite phase with different Vickers surface hardnesses. The differences in hardness values were attributed to the crystallite size changes. A linear relationship has been obtained between the Vickers surface hardness and the laser induced plasma temperature. For comparison the relation between surface hardness and the ratio of the vanadium ionic to atomic spectral lines intensities (VII/VI) provided good linear results too. However, adopting the proposed approach of using the plasma temperature, instead, is more reliable in view of the difficulties that could be encountered in choosing the proper ionic and atomic spectral lines. To validate this approach we have investigated the shock wave speed induced by laser interaction with the used samples. It was found that harder is the material faster is the shock wave. The determination of the surface hardness via measuring T{sub e} shows the feasibility of using LIBS as an easy and reliable method for in situ industrial application for production control.

  8. On the stability of critical state in hard superconductors with nonhomogeneous temperature profile

    CERN Document Server

    Tajlanov, N A

    2002-01-01

    One studied the problem on thermal and magnetic breaking of critical state in hard superconductors. One assumes that initial distribution of temperature and of electrical field is very nonhomogeneous one. In quasi-stationary approximation one determined the limit of occurrence of thermal and magnetic instability in a superconductor. The derived integral criterion is shown to take account of the effect of each segment of a superconductor on the threshold of occurrence of critical state instability on contrast to similar criterion for homogeneous temperature profile

  9. Connections Between Jet Formation and Multiwavelength Spectral Evolution in Black Hole Transients

    Science.gov (United States)

    Kakemci, Emrah; Chun, Yoon-Young; Dincer, Tolga; Buxton, Michelle; Tomsick, John A.; Corbel, Stephane; Kaaret, Philip

    2011-01-01

    Multiwavelength observations are the key to understand conditions of jet formation in Galactic black hole transient (GBHT) systems. By studying radio and optical-infrared evolution of such systems during outburst decays, the compact jet formation can be traced. Comparing this with X-ray spectral and timing evolution we can obtain physical and geometrical conditions for jet formation, and study the contribution of jets to X-ray emission. In this work, first X-ray evolution - jet relation for XTE J1752-223 will be discussed. This source had very good coverage in X-rays, optical, infrared and radio. A long exposure with INTEGRAL also allowed us to study gamma-ray behavior after the jet turns on. We will also show results from the analysis of data from GX 339-4 in the hard state with SUZAKU at low flux levels. The fits to iron line fluorescence emission show that the inner disk radius increases by a factor of greater than 27 with respect to radii in bright states. This result, along with other disk radius measurements in the hard state will be discussed within the context of conditions for launching and sustaining jets.

  10. X-Ray Timing Analysis of Cyg X-3 Using AstroSat/LAXPC: Detection of Milli-hertz Quasi-periodic Oscillations during the Flaring Hard X-Ray State

    Energy Technology Data Exchange (ETDEWEB)

    Pahari, Mayukh; Misra, Ranjeev [Inter-University Center for Astronomy and Astrophysics, Ganeshkhind, Pune 411007 (India); Antia, H M; Yadav, J S; Chauhan, Jai Verdhan; Chitnis, V R; Dedhia, Dhiraj; Katoch, Tilak; Madhwani, P; Shah, Parag [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Agrawal, P C [UM-DAE Center of Excellence for Basic Sciences, University of Mumbai, Kalina, Mumbai 400098 (India); Manchanda, R K [University of Mumbai, Kalina, Mumbai 400098 (India); Paul, B, E-mail: mayukh@iucaa.in [Department of Astronomy and Astrophysics, Raman Research Institute, Bengaluru 560080 (India)

    2017-11-01

    We present here results from the X-ray timing and spectral analysis of the X-ray binary Cyg X-3 using observations from the Large Area X-ray proportional Counter on board AstroSat . Consecutive light curves observed over a period of one year show the binary orbital period of 17253.56 ± 0.19 s. Another low-amplitude, slow periodicity of the order of 35.8 ± 1.4 days is observed, which may be due to the orbital precession as suggested earlier by Molteni et al. During the rising binary phase, power density spectra from different observations during the flaring hard X-ray state show quasi-periodic oscillations (QPOs) at ∼5–8 mHz, ∼12–14 mHz, and ∼18–24 mHz frequencies at the minimum confidence of 99%. However, during the consecutive binary decay phase, no QPO is detected up to 2 σ significance. Energy-dependent time-lag spectra show soft lag (soft photons lag hard photons) at the mHz QPO frequency and the fractional rms of the QPO increases with the photon energy. During the binary motion, the observation of mHz QPOs during the rising phase of the flaring hard state may be linked to the increase in the supply of the accreting material in the disk and corona via stellar wind from the companion star. During the decay phase, the compact source moves in the outer wind region causing the decrease in supply of material for accretion. This may cause weakening of the mHz QPOs below the detection limit. This is also consistent with the preliminary analysis of the orbital phase-resolved energy spectra presented in this paper.

  11. REVISITING THE LONG/SOFT-SHORT/HARD CLASSIFICATION OF GAMMA-RAY BURSTS IN THE FERMI ERA

    International Nuclear Information System (INIS)

    Zhang Fuwen; Yan Jingzhi; Wei Daming; Shao Lang

    2012-01-01

    We perform a statistical analysis of the temporal and spectral properties of the latest Fermi gamma-ray bursts (GRBs) to revisit the classification of GRBs. We find that the bimodalities of duration and the energy ratio (E peak /Fluence) and the anti-correlation between spectral hardness (hardness ratio (HR), peak energy, and spectral index) and duration (T 90 ) support the long/soft-short/hard classification scheme for Fermi GRBs. The HR-T 90 anti-correlation strongly depends on the spectral shape of GRBs and energy bands, and the bursts with the curved spectra in the typical BATSE energy bands show a tighter anti-correlation than those with the power-law spectra in the typical BAT energy bands. This might explain why the HR-T 90 correlation is not evident for those GRB samples detected by instruments like Swift with a narrower/softer energy bandpass. We also analyze the intrinsic energy correlation for the GRBs with measured redshifts and well-defined peak energies. The current sample suggests E p,rest = 2455 × (E iso /10 52 ) 0.59 for short GRBs, significantly different from that for long GRBs. However, both the long and short GRBs comply with the same E p,rest -L iso correlation.

  12. Hard X-ray measurements of A0535+26 during low state

    International Nuclear Information System (INIS)

    Polcaro, V.F.; Bazzano, A.; La Padula, C.; Ubertini, P.; Vialetto, G.

    1982-01-01

    A number of measurements of the recurrent transient X-ray source A0535+26 have been made during its outburst phase, since its detection in 1975 by Ariel V. The optical counterpart of the source (Be Star 245770) has also been extensively studied both in active and quiescent state in optical I.R. and U.V. bands. These data show a positive correlation with the X-ray flux during on state. The X-ray flux from the source during the outburst increases to about twice the Crab intensity in soft X-ray band and gradually decreases to 100 mCrab during 30 to 50 days. However positive detection of the sources has not been reported until now during the low state. In this paper we present the spectral measurements of the source in the energy band 20-100 KeV made during the low state in 1981. (orig.)

  13. HARD X-RAY TAIL DISCOVERED IN THE CLOCKED BURSTER GS 1826–238

    Energy Technology Data Exchange (ETDEWEB)

    Rodi, J.; Jourdain, E.; Roques, J. P., E-mail: jrodi@irap.omp.eu [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France)

    2016-02-01

    The low-mass X-ray binary (LMXB) neutron star (NS) GS 1826–238 was discovered by Ginga in 1988 September. Due to the presence of quasi-periodicity in the type I X-ray burst rate, the source has been a frequent target of X-ray observations for almost 30 years. Though the bursts were too soft to be detected by INTEGRAL/SPI, the persistent emission from GS 1826–238 was detected over 150 keV during the ∼10 years of observations. Spectral analysis found a significant high-energy excess above a Comptonization model that is well fit by a power law, indicating an additional spectral component. Most previously reported spectra with hard tails in LMXB NS have had an electron temperature of a few keV and a hard tail dominating above ∼50 keV with an index of Γ ∼ 2–3. GS 1826–238 was found to have a markedly different spectrum with kT{sub e} ∼ 20 keV and a hard tail dominating above ∼150 keV with an index of Γ ∼ 1.8, more similar to black hole X-ray binaries. We report on our search for long-term spectral variability over the 25–370 keV energy range and on a comparison of the GS 1826–238 average spectrum to the spectra of other LMXB NSs with hard tails.

  14. NuSTAR HARD X-RAY SURVEY OF THE GALACTIC CENTER REGION. I. HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF THE DIFFUSE EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kaya; Hailey, Charles J.; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Canipe, Alicia M. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Krivonos, Roman; Tomsick, John A.; Barrière, Nicolas; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Hong, Jaesub [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Ponti, Gabriele [Max-Planck-Institut f. extraterrestrische Physik, HEG, Garching (Germany); Bauer, Franz [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Alexander, David M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Baganoff, Frederick K. [Kavli Institute for Astrophysics and Space Research, Massachusets Institute of Technology, Cambridge, MA 02139 (United States); Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Christensen, Finn E. [DTU Space—National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Forster, Karl [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Giommi, Paolo, E-mail: kaya@astro.columbia.edu [ASI Science Data Center, Via del Politecnico snc I-00133, Roma (Italy); and others

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456–2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ∼ 1.3–2.3 up to ∼50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (∼10{sup 23} cm{sup −2}), primary X-ray spectra (power-laws with Γ ∼ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to L{sub X} ≳ 10{sup 38} erg s{sup −1}. Above ∼20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95–0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses M{sub WD} ∼ 0.9 M{sub ⊙}. Spectral energy distribution analysis suggests that G359.95–0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745–290, strongly favoring a leptonic origin of the GC TeV emission.

  15. Imaging escape gated MPWC for hard X-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; La Padula, C.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Barbareschi, L.; Perotti, F.; Villa, G.

    1983-11-15

    A scientific forward step in the hard X-ray and soft gamma-ray astronomy will only be possible with the use of a new generation of space borne instruments. Their main characteristics have to be the two-dimensional imaging capability over a large collecting area and the fine spectral resolution in order to discriminate between the weak signal coming from cosmic sources to be detected and the strong background induced by cosmic rays, in the space environment, on the detector. To reach this goal we have developed a new hard X-ray position sensitive proportional counter operating with the escape gate technique in the range 15-150 keV, to be used together with a pseudo-random coded mask in order to obtain sky images. The detector is a high pressure (5 bar) xenon-argon-isobutane filled chamber with a spatial resolution of 30x2 mm and a spectral resolution of 5% at 60 keV on the sensitive area of 3000 cm/sup 2/.

  16. A Black Hole Spectral Signature

    Science.gov (United States)

    Titarchuk, Lev; Laurent, Philippe

    2000-03-01

    An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole'', an unique observational signature. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we present analytical calculations and Monte-Carlo simulations of the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) into the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Greens) function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index over a wide range of the plasma temperature 0 - 10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200-400 keV which are related to the average energy of electrons mec2 impinging upon the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore we demonstrate that the change of spectral shapes from the soft X-ray state to the hard X-ray state is clearly to be

  17. New hard X-ray sources at 38/sup 0/ declination

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale)

    1981-01-01

    We report the detection of three new hard X-rays sources emitting in the range 15-150 KeV. Their observation was carried out by means of a balloon borne payload, consisting of two large area high spectral resolution Multiwire Spectroscopic Proportional Counters.

  18. NuSTAR hard X-ray observations of the Jovian magnetosphere during Juno perijove and apojove intervals

    Science.gov (United States)

    Dunn, W.; Mori, K.; Hailey, C. J.; Branduardi-Raymont, G.; Grefenstette, B.; Jackman, C. M.; Hord, B. J.; Ray, L. C.

    2017-12-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing hard X-ray telescope operating in the 3-79 keV band with sub-arcminute angular resolution (18" FWHM). For the first time, NuSTAR provides sufficient sensitivity to detect/resolve hard X-ray emission from Jupiter above 10 keV, since the in-situ Ulysses observation failed to detect X-ray emission in the 27-48 keV band [Hurley et al. 1993]. The initial, exploratory NuSTAR observation of Jupiter was performed in February 2015 with 100 ksec exposure. NuSTAR detected hard X-ray emission (E > 10 keV) from the south polar region at a marginally significance of 3 sigma level [Mori et al. 2016, AAS meeting poster]. This hard X-ray emission is likely an extension of the non-thermal bremsstrahlung component detected up to 7 keV by XMM-Newton [Branduardi-Raymont et al. 2007]. The Ulysses non-detection suggests there should be a spectral cutoff between 7 and 27 keV. Most intriguingly, the NuSTAR detection of hard X-ray emission from the south aurora is in contrast to the 2003 XMM-Newton observations where soft X-ray emission below 8 keV was seen from both the north and south poles [Gladstone et al. 2002]. Given the marginal, but tantalizing, hard X-ray detection of the southern Jovian aurora, a series of NuSTAR observations with total exposure of nearly half a million seconds were approved in the NuSTAR GO and DDT program. These NuSTAR observations coincided with one Juno apojove (in June 2017) and three perijoves (in May, July and September 2017), also joining the multi-wavelength campaigns of observing Jupiter coordinating with Chandra and XMM-Newton X-ray telescope (below 10 keV) and HST. We will present NuSTAR imaging, spectral and timing analysis of Jupiter. NuSTAR imaging analysis will map hard X-ray emission in comparison with soft X-ray and UV images. In addition to investigating any distinctions between the soft and hard X-ray morphology of the Jovian aurorae, we will probe whether hard X

  19. Remember Hard but Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions

    Directory of Open Access Journals (Sweden)

    Jiushu Xie

    2016-09-01

    Full Text Available Previous studies have found that bodily stimulation, such as hardness, biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between hard and rigid and between soft and flexible in Chinese, to investigate whether the experience of hardness affected cognitive functions requiring either rigidity (memory or flexibility (creativity. In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition than a cushioned one (the soft condition. In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity and flexibility. They support the embodiment proposition that cognitive functions and representations could be grounded via metaphorical association in bodily states.

  20. Hard X-ray Spectrum of Mkn 421 during the Active Phase

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    Spectral measurement of Mkn 421 were made in the hard X-ray energy band of ... In the canonical models for blazars, the observed radiation in radio, UV and low ... defined by a slat collimator specially designed with a sandwiched material of.

  1. Influence of different geological structures on stress–strain state of hard rock mass

    Science.gov (United States)

    Kuznetzov, NN; Fedotova, YuV

    2018-03-01

    The results of numerical simulation of stress–strain state in a hard rock mass area with the complex geological structures are presented. The variants of the stress value change are considered depending on the boundary conditions and physical properties of the model blocks. Furthermore, the possibility of in-situ stress formation under the influence of energy coming from the deeper Earth’s layers is demonstrated in terms of the Khibiny Massif.

  2. Equation of state and jamming density for equivalent bi- and polydisperse, smooth, hard sphere systems.

    NARCIS (Netherlands)

    Ogarko, V.; Luding, Stefan

    2012-01-01

    We study bi- and polydisperse mixtures of hard sphere fluids with extreme size ratios up to 100. Simulation results are compared with previously found analytical equations of state by looking at the compressibility factor, Z, and agreement is found with much better than 1% deviation in the fluid

  3. An imaging escape gated MPWC for hard X-ray astronomy

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; La Padula, C.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Barbareschi, L.; Perotti, F.; Villa, G.; Butler, R.C.; Di Cocco, G.; Spada, G.; Charalambous, P.; Dean, A.J.; Stephen, J.B.

    1983-01-01

    A scientific forward step in the hard X-ray and soft gamma-ray astronomy will only be possible with the use of a new generation of space borne instruments. Their main characteristics have to be the two-dimensional imaging capability over a large collecting area and the fine spectral resolution in order to discriminate between the weak signal coming from cosmic sources to be detected and the strong background induced by cosmic rays, in the space environment, on the detector. To reach this goal we have developed a new hard X-ray position sensitive proportional counter operating with the escape gate technique in the range 15-150 keV, to be used together with a pseudo-random coded mask in order to obtain sky images. The detector is a high pressure (5 bar) xenon-argon-isobutane filled chamber with a spatial resolution of 30x2 mm and a spectral resolution of 5% at 60 keV on the sensitive area of 3000 cm 2 . (orig.)

  4. Spectral Lag Evolution among γ-Ray Burst Pulses Lan-Wei Jia1 ...

    Indian Academy of Sciences (India)

    pulses with observations by CGRO/BATSE. No universal spectral lag evolution feature and pulse luminosity-lag relation within a GRB is observed. ... Key words. γ-rays: bursts—spectral lag—GRB pulse. 1. Introduction. It is found that soft photons lag behind the hard photons and is usually seen in long. GRBs (e.g., Norris et ...

  5. Utilize the spectral line pair of the same ionized state ion to measure the ion temperature of tokamak plasma

    International Nuclear Information System (INIS)

    Lin Xiaodong

    2000-01-01

    Making use of a Fabry-Perot interferometer driven by a piezoelectric crystal and selecting the suitable separation of plates, the ion temperature is defined by measuring the superimposed profile of the spectral line pair of the same ionized state ions in Tokamak. The advantage of this method is to higher spectral resolution and wider spectral range select

  6. Optimal and robust control of quantum state transfer by shaping the spectral phase of ultrafast laser pulses.

    Science.gov (United States)

    Guo, Yu; Dong, Daoyi; Shu, Chuan-Cun

    2018-04-04

    Achieving fast and efficient quantum state transfer is a fundamental task in physics, chemistry and quantum information science. However, the successful implementation of the perfect quantum state transfer also requires robustness under practically inevitable perturbative defects. Here, we demonstrate how an optimal and robust quantum state transfer can be achieved by shaping the spectral phase of an ultrafast laser pulse in the framework of frequency domain quantum optimal control theory. Our numerical simulations of the single dibenzoterrylene molecule as well as in atomic rubidium show that optimal and robust quantum state transfer via spectral phase modulated laser pulses can be achieved by incorporating a filtering function of the frequency into the optimization algorithm, which in turn has potential applications for ultrafast robust control of photochemical reactions.

  7. The Chandra Source Catalog: Spectral Properties

    Science.gov (United States)

    Doe, Stephen; Siemiginowska, Aneta L.; Refsdal, Brian L.; Evans, Ian N.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Glotfelty, Kenny J.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Primini, Francis A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2009-09-01

    The first release of the Chandra Source Catalog (CSC) contains all sources identified from eight years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard) using the Bayesian algorithm (BEHR, Park et al. 2006). The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package, developed by the Chandra X-ray Center; see Freeman et al. 2001). Two models were fit to each source: an absorbed power law and a blackbody emission. The fitted parameter values for the power-law and blackbody models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy flux computed from the normalizations of predefined power-law and black-body models needed to match the observed net X-ray counts. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. This work is supported by NASA contract NAS8-03060 (CXC).

  8. State of the art in hard-on-hard bearings: how did we get here and what have we achieved?

    Science.gov (United States)

    Zywiel, Michael G; Sayeed, Siraj A; Johnson, Aaron J; Schmalzried, Thomas P; Mont, Michael A

    2011-03-01

    Total hip arthroplasty has shown excellent results in decreasing pain and improving function in patients with degenerative disease of the hip. Improvements in prosthetic materials, designs and implant fixation have now resulted in wear of the bearing surface being the limitation of this technology, and a number of hard-on-hard couples have been introduced to address this concern. The purpose of this article is to review the origins, development, survival rates and potential advantages and disadvantages of the following hard-on-hard bearings for total hip arthroplasty: metal-on-metal standard total hip arthroplasty; metal-on-metal hip resurfacing arthroplasty, ceramic-on-ceramic total hip arthroplasty; and ceramic-on-metal bearings. Improvements in the manufacturing of metal-on-metal bearings over the past 50 years have resulted in implants that provide low wear rates and allow for the use of large femoral heads. However, concerns remain regarding elevated serum metal ion levels, potential teratogenic effects and potentially devastating adverse local tissue reactions, whose incidence and pathogenesis remains unclear. Modern total hip resurfacing has shown excellent outcomes over 10 years in the hands of experienced surgeons. Current ceramic-on-ceramic bearings have demonstrated excellent survival with exceptionally low wear rates and virtually no local adverse effects. Concerns remain for insertional chipping, in vivo fracture and the variable incidence of squeaking. Contemporary ceramic-on-metal interfaces are in the early stages of clinical use, with little data reported to date. Hard-on-hard bearings for total hip arthroplasty have improved dramatically over the past 50 years. As bearing designs continue to improve with new and modified materials and improved manufacturing techniques, it is likely that the use of hard-on-hard bearings will continue to increase, especially in young and active patients.

  9. Cloud-based processing of multi-spectral imaging data

    Science.gov (United States)

    Bernat, Amir S.; Bolton, Frank J.; Weiser, Reuven; Levitz, David

    2017-03-01

    Multispectral imaging holds great promise as a non-contact tool for the assessment of tissue composition. Performing multi - spectral imaging on a hand held mobile device would allow to bring this technology and with it knowledge to low resource settings to provide a state of the art classification of tissue health. This modality however produces considerably larger data sets than white light imaging and requires preliminary image analysis for it to be used. The data then needs to be analyzed and logged, while not requiring too much of the system resource or a long computation time and battery use by the end point device. Cloud environments were designed to allow offloading of those problems by allowing end point devices (smartphones) to offload computationally hard tasks. For this end we present a method where the a hand held device based around a smartphone captures a multi - spectral dataset in a movie file format (mp4) and compare it to other image format in size, noise and correctness. We present the cloud configuration used for segmenting images to frames where they can later be used for further analysis.

  10. Multiwavelength Spectral Variability of Mkn 501 in Outburst

    Science.gov (United States)

    Hempfling, Christina

    2012-10-01

    We propose simultaneous multiwavelength observations of the blazar Mrk501 in flaring state with XMM-Newton, FACT and Swift. Bright TeV gamma-ray flares have been detected repeatedly from Mrk501. Leptonic blazar models predict an simultaneous increase in the gamma-ray and X-ray bands. However, Mrk 501 also showed so-called orphan flares, as well as flares featuring time lags that are hard to explain by current models. Available data lack detailed light curves and hence are not sufficient to make strong statements on the nature of the responsible processes. These observations of a flare of Mrk501 in the gamma-ray and X-ray band with high spectral sensitivity and time resolution will yield a big contribution to the comprehension of blazar emission processes.

  11. A delayed transition to the hard state for 4U 1630-47 at the end of its 2010 outburst

    Energy Technology Data Exchange (ETDEWEB)

    Tomsick, John A. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Yamaoka, Kazutaka [Solar-Terrestrial Environment Laboratory, Department of Particles and Astronomy, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Corbel, Stephane [AIM - Unité Mixte de Recherche CEA - CNRS - Université Paris VII - UMR 7158, CEA-Saclay, Service d' Astrophysique, F-91191 Gif-sur-Yvette Cedex (France); Kalemci, Emrah [Sabanci University, Orhanli-Tuzla, Istanbul 34956 (Turkey); Migliari, Simone [Department d' Astronomia i Meteorologia, Universitat de Barcelona, Marti I Franques 1, E-08028 Barcelona (Spain); Kaaret, Philip, E-mail: jtomsick@ssl.berkeley.edu [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States)

    2014-08-10

    Here we report on Swift and Suzaku observations near the end of an outburst from the black hole transient 4U 1630-47 and Chandra observations when the source was in quiescence. 4U 1630-47 made a transition from a soft state to the hard state ∼50 days after the main outburst ended. During this unusual delay, the flux continued to drop, and one Swift measurement found the source with a soft spectrum at a 2-10 keV luminosity of L = 1.07 × 10{sup 35} erg s{sup –1} for an estimated distance of 10 kpc. While such transients usually make a transition to the hard state at L/L{sub Edd} = 0.3%-3%, where L{sub Edd} is the Eddington luminosity, the 4U 1630-47 spectrum remained soft at L/L{sub Edd} = 0.008 M{sub 10}{sup −1}% (as measured in the 2-10 keV band), where M{sub 10} is the mass of the black hole in units of 10 M{sub ☉}. An estimate of the luminosity in the broader 0.5-200 keV bandpass gives L/L{sub Edd} = 0.03 M{sub 10}{sup −1}%, which is still an order of magnitude lower than typical. We also measured an exponential decay of the X-ray flux in the hard state with an e-folding time of 3.39 ± 0.06 days, which is much less than previous measurements of 12-15 days during decays by 4U 1630-47 in the soft state. With the ∼100 ks Suzaku observation, we do not see evidence for a reflection component, and the 90% confidence limits on the equivalent width of a narrow iron Kα emission line are <40 eV for a narrow line and <100 eV for a line of any width, which is consistent with a change of geometry (either a truncated accretion disk or a change in the location of the hard X-ray source) in the hard state. Finally, we report a 0.5-8 keV luminosity upper limit of <2 × 10{sup 32} erg s{sup –1} in quiescence, which is the lowest value measured for 4U 1630-47 to date.

  12. Work Hard / Play Hard

    OpenAIRE

    Burrows, J.; Johnson, V.; Henckel, D.

    2016-01-01

    Work Hard / Play Hard was a participatory performance/workshop or CPD experience hosted by interdisciplinary arts atelier WeAreCodeX, in association with AntiUniversity.org. As a socially/economically engaged arts practice, Work Hard / Play Hard challenged employees/players to get playful, or go to work. 'The game changes you, you never change the game'. Employee PLAYER A 'The faster the better.' Employer PLAYER B

  13. Study of adsorption states for lubricant molecule using hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Ikenaga, E.; Kobata, M.; Kim, J.J.; Wakabayashi, A.; Nishino, Y.; Tamasaku, K.; Sakane, Y.; Ishikawa, T.; Komiya, S.; Kobayashi, K.

    2007-01-01

    The adsorption states for lubricant molecules have been investigated using hard X-ray (hν = 7.95 keV) photoemission spectroscopy (HX-PES). This method has the advantage for the organic molecules to be able to measure damage few. Being aware of the fact that P atoms exist only in cyclotriphosphazene base, we measured the take-off angle dependence of the P1s spectra. Each spectrum consists from two peaks, that is, substrate NiP peak and cyclotriphosphazene P peak. The cyclotriphosphazene P peak rapidly disappears with increasing take-off angle. We have also measured C1s spectra. Combining these experimental results, we have found that the adsorption state of cyclotriphosphazene end group is undergoing

  14. Surprise in simplicity: an unusual spectral evolution of a single pulse GRB 151006A

    Science.gov (United States)

    Basak, R.; Iyyani, S.; Chand, V.; Chattopadhyay, T.; Bhattacharya, D.; Rao, A. R.; Vadawale, S. V.

    2017-11-01

    We present a detailed analysis of GRB 151006A, the first gamma-ray burst (GRB) detected by AstroSat Cadmium-Zinc-Telluride Imager (CZTI). We study the long-term spectral evolution by exploiting the capabilities of Fermi and Swift satellites at different phases, which is complemented by the polarization measurement with the CZTI. While the light curve of the GRB in different energy bands shows a simple pulse profile, the spectrum shows an unusual evolution. The first phase exhibits a hard-to-soft evolution until ∼16-20 s, followed by a sudden increase in the spectral peak reaching a few MeV. Such a dramatic change in the spectral evolution in the case of a single pulse burst is reported for the first time. This is captured by all models we used namely, Band function, blackbody+Band and two blackbodies+power law. Interestingly, the Fermi Large Area Telescope also detects its first photon (>100 MeV) during this time. This new injection of energy may be associated with either the beginning of afterglow phase, or a second hard pulse of the prompt emission itself that, however, is not seen in the otherwise smooth pulse profile. By constructing Bayesian blocks and studying the hardness evolution we find a good evidence for a second hard pulse. The Swift data at late epochs (>T90 of the GRB) also show a significant spectral evolution consistent with the early second phase. The CZTI data (100-350 keV), though having low significance (1σ), show high values of polarization in the two epochs (77-94 per cent), in agreement with our interpretation.

  15. Efficient Wideband Spectrum Sensing with Maximal Spectral Efficiency for LEO Mobile Satellite Systems

    Directory of Open Access Journals (Sweden)

    Feilong Li

    2017-01-01

    Full Text Available The usable satellite spectrum is becoming scarce due to static spectrum allocation policies. Cognitive radio approaches have already demonstrated their potential towards spectral efficiency for providing more spectrum access opportunities to secondary user (SU with sufficient protection to licensed primary user (PU. Hence, recent scientific literature has been focused on the tradeoff between spectrum reuse and PU protection within narrowband spectrum sensing (SS in terrestrial wireless sensing networks. However, those narrowband SS techniques investigated in the context of terrestrial CR may not be applicable for detecting wideband satellite signals. In this paper, we mainly investigate the problem of joint designing sensing time and hard fusion scheme to maximize SU spectral efficiency in the scenario of low earth orbit (LEO mobile satellite services based on wideband spectrum sensing. Compressed detection model is established to prove that there indeed exists one optimal sensing time achieving maximal spectral efficiency. Moreover, we propose novel wideband cooperative spectrum sensing (CSS framework where each SU reporting duration can be utilized for its following SU sensing. The sensing performance benefits from the novel CSS framework because the equivalent sensing time is extended by making full use of reporting slot. Furthermore, in respect of time-varying channel, the spatiotemporal CSS (ST-CSS is presented to attain space and time diversity gain simultaneously under hard decision fusion rule. Computer simulations show that the optimal sensing settings algorithm of joint optimization of sensing time, hard fusion rule and scheduling strategy achieves significant improvement in spectral efficiency. Additionally, the novel ST-CSS scheme performs much higher spectral efficiency than that of general CSS framework.

  16. The background counting rates in a balloon borne hard X-ray telescope

    International Nuclear Information System (INIS)

    Dean, A.J.; Dipper, N.A.; Lewis, R.A.

    1986-01-01

    A detailed Monte Carlo model of a hard (20-300 keV) X-ray astronomical telescope has been developed in order to calculate the energy loss distribution of the unwanted background noise events in the prime detection elements. The spectral distributions of the background rates measured at balloon altitudes over Palestine, Texas are compared to the predictions of the theoretical model. Good agreement has been found in terms of both the overall intensity level as well as the spectral distribution. (orig.)

  17. PROBING THE TRANSITION BETWEEN THE SYNCHROTRON AND INVERSE-COMPTON SPECTRAL COMPONENTS OF 1ES 1959+650

    International Nuclear Information System (INIS)

    Bottacini, E.; Schady, P.; Rau, A.; Zhang, X.-L.; Greiner, J.; Boettcher, M.; Ajello, M.; Fendt, C.

    2010-01-01

    1ES 1959+650 is one of the most remarkable high-peaked BL Lacertae objects (HBL). In 2002, it exhibited a TeV γ-ray flare without a similar brightening of the synchrotron component at lower energies. This orphan TeV flare remained a mystery. We present the results of a multifrequency campaign, triggered by the INTEGRAL IBIS detection of 1ES 1959+650. Our data range from the optical to hard X-ray energies, thus covering the synchrotron and inverse-Compton components simultaneously. We observed the source with INTEGRAL, the Swift X-Ray Telescope, and the UV-Optical Telescope, and nearly simultaneously with a ground-based optical telescope. The steep spectral component at X-ray energies is most likely due to synchrotron emission, while at soft γ-ray energies the hard spectral index may be interpreted as the onset of the high-energy component of the blazar spectral energy distribution (SED). This is the first clear measurement of a concave X-ray-soft γ-ray spectrum for an HBL. The SED can be well modeled with a leptonic synchrotron self-Compton model. When the SED is fitted this model requires a very hard electron spectral index of q ∼ 1.85, possibly indicating the relevance of second-order Fermi acceleration.

  18. Solid state linear dichroic infrared spectral analysis of benzimidazoles and their N 1-protonated salts

    Science.gov (United States)

    Ivanova, B. B.

    2005-11-01

    A stereo structural characterization of 2,5,6-thrimethylbenzimidazole (MBIZ) and 2-amino-benzimidaziole (2-NH 2-BI) and their N 1 protonation salts was carried out using a polarized solid state linear dichroic infrared spectral (IR-LD) analysis in nematic liquid crystal suspension. All experimental predicted structures were compared with the theoretical ones, obtained by ab initio calculations. The Cs to C2v* symmetry transformation as a result of protonation processes, with a view of its reflection on the infrared spectral characteristics was described.

  19. Remember Hard But Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions

    Science.gov (United States)

    Xie, Jiushu; Lu, Zhi; Wang, Ruiming; Cai, Zhenguang G.

    2016-01-01

    Previous studies have found that bodily stimulation, such as hardness biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between “hard” and “rigid” and between “soft” and “flexible” in Chinese, to investigate whether the experience of hardness affects cognitive functions whose performance depends prospectively on rigidity (memory) and flexibility (creativity). In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition) than a cushioned one (the soft condition). In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity or flexibility. They support the embodiment proposition that cognitive functions and representations can be grounded in bodily states via metaphorical associations. PMID:27672373

  20. Searching remote homology with spectral clustering with symmetry in neighborhood cluster kernels.

    Directory of Open Access Journals (Sweden)

    Ujjwal Maulik

    Full Text Available Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of "recent" paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request.sarkar@labri.fr.

  1. Hard breakup of two nucleons from the 3He nucleus

    International Nuclear Information System (INIS)

    Sargsian, Misak M.; Granados, Carlos

    2009-01-01

    We investigate a large angle photodisintegration of two nucleons from the 3 He nucleus within the framework of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with large relative momentum. Assuming the dominance of the quark-interchange mechanism in a hard nucleon-nucleon scattering, the HRM allows the expression of the amplitude of a two-nucleon breakup reaction through the convolution of photon-quark scattering, NN hard scattering amplitude, and nuclear spectral function, which can be calculated using a nonrelativistic 3 He wave function. The photon-quark scattering amplitude can be explicitly calculated in the high energy regime, whereas for NN scattering one uses the fit of the available experimental data. The HRM predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale as s -11 . Second, the s 11 weighted cross section will have the shape of energy dependence similar to that of s 10 weighted NN elastic scattering cross section. Also one predicts an enhancement of the pp breakup relative to the pn breakup cross section as compared to the results from low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn breakup cross sections. This is due to the fact that the same-helicity pp-component is strongly suppressed in the ground state wave function of 3 He. Because of this suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer NN breakup reactions for circularly polarized photons. For the pp breakup this asymmetry is predicted to be zero while for the pn it is close to (2/3).

  2. Non-Abelian fractional quantum Hall states for hard-core bosons in one dimension

    Science.gov (United States)

    Paredes, Belén

    2012-05-01

    I present a family of one-dimensional bosonic liquids analogous to non-Abelian fractional quantum Hall states. A new quantum number is introduced to characterize these liquids, the chiral momentum, which differs from the usual angular or linear momentum in one dimension. As their two-dimensional counterparts, these liquids minimize a k-body hard-core interaction with the minimum total chiral momentum. They exhibit global order, with a hidden organization of the particles in k identical copies of a one-dimensional Laughlin state. For k=2 the state is a p-wave paired phase corresponding to the Pfaffian quantum Hall state. By imposing conservation of the total chiral momentum, an exact parent Hamiltonian is derived which involves long-range tunneling and interaction processes with an amplitude decaying with the chord distance. This family of non-Abelian liquids is shown to be in formal correspondence with a family of spin-(k)/(2) liquids which are total singlets made out of k indistinguishable resonating valence bond states. The corresponding spin Hamiltonians are obtained.

  3. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  4. Critical state transformation in hard superconductors resulting from thermomagnetic avalanches

    International Nuclear Information System (INIS)

    Chabanenko, V.V.; Kuchuk, E.I.; Rusakov, V.F.; Abaloszewa, I.; Nabialek, A.; Perez-Rodriguez, F.

    2016-01-01

    The results of experimental investigations of magnetic flux dynamics in finite superconductors, obtained using integral and local measurements methods, are presented. Local methods were aimed at clarifying the role of demagnetizing factor in dynamic formation of a complex magnetic structure of the critical state of hard superconductors. To understand the reasons for cardinal restructuring of the induction, we further analyzed the literature data of flux dynamics visualization during avalanches, obtained by magneto-optical methods. New features in the behavior of the magnetic flux during and after the avalanche were discovered. Two stages of the formation of the induction structures in the avalanche area were established, i.e. of homogeneous and heterogeneous filling with the magnetic flux. The mechanism of the inversion of the induction profile was considered. Oscillations in the speed of the front of the magnetic flux were revealed. Transformation of the critical state near the edge of the sample was analyzed. The role of thermal effects and of de-magnetizing factor in the dissipative flux dynamics was shown. Generalized information allowed, in the framework of the Bean concept, to present a model the transformation of the picture of the induction of the critical state and of the superconducting currents of a finite superconductor as a result of flux avalanches for two regimes - of screening and trapping of the magnetic flux.

  5. Induced spherococcoid hard wheat

    International Nuclear Information System (INIS)

    Yanev, Sh.

    1981-01-01

    A mutant has been obtained - a spheroccocoid line -through irradiation of hard wheat seed with fast neutrons. It is distinguished by semispherical glumes and smaller grain; the plants have low stem with erect leaves but with shorter spikes and with lesser number of spikelets than those of the initial cultivar. Good productive tillering and resistance to lodging contributed to 23.5% higher yield. The line was superior to the standard and the initial cultivars by 14.2% as regards protein content, and by up to 22.8% - as to flour gluten. It has been successfully used in hybridization producing high-yielding hard wheat lines resistant to lodging, with good technological and other indicators. The possibility stated is of obtaining a spherococcoid mutant in tetraploid (hard) wheat out of the D-genome as well as its being suited to hard wheat breeding to enhance protein content, resistance to lodging, etc. (author)

  6. Revelations of X-ray spectral analysis of the enigmatic black hole binary GRS 1915+105

    Science.gov (United States)

    Peris, Charith; Remillard, Ronald A.; Steiner, James; Vrtilek, Saeqa Dil; Varniere, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-01-01

    Of the black hole binaries discovered thus far, GRS 1915+105 stands out as an exceptional source primarily due to its wild X-ray variability, the diversity of which has not been replicated in any other stellar-mass black hole. Although extreme variability is commonplace in its light-curve, about half of the observations of GRS1915+105 show fairly steady X-ray intensity. We report on the X-ray spectral behavior within these steady observations. Our work is based on a vast RXTE/PCA data set obtained on GRS 1915+105 during the course of its entire mission and 10 years of radio data from the Ryle Telescope, which overlap the X-ray data. We find that the steady observations within the X-ray data set naturally separate into two regions in a color-color diagram, which we refer to as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the Comptonization component within the PCA band pass suggesting significantly heating from a hot disk present in all states. A new Comptonization model 'simplcut' was developed in order to model this curvature to best effect. A majority of the steady-soft observations display a roughly constant inner radius; remarkably reminiscent of canonical soft state black hole binaries. In contrast, the steady-hard observations display a growing disk truncation that is correlated to the mass accretion rate through the disk, which suggests a magnetically truncated disk. A comparison of X-ray model parameters to the canonical state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while the thermal state observations dominate the constant radius branch. A large portion (80%) of the steady-hard observations matches the hard state criteria when the disk fraction constraint is neglected. These results suggest that within the complexity of this source is a simpler underlying basis of states, which map to those observed in canonical black hole binaries. When

  7. Ground-state and spectral properties of an asymmetric Hubbard ladder

    Science.gov (United States)

    Abdelwahab, Anas; Jeckelmann, Eric; Hohenadler, Martin

    2015-04-01

    We investigate a ladder system with two inequivalent legs, namely, a Hubbard chain and a one-dimensional electron gas. Analytical approximations, the density-matrix renormalization group method, and continuous-time quantum Monte Carlo simulations are used to determine ground-state properties, gaps, and spectral functions of this system at half-filling. Evidence for the existence of four different phases as a function of the Hubbard interaction and the rung hopping is presented. First, a Luttinger liquid exists at very weak interchain hopping. Second, a Kondo-Mott insulator with spin and charge gaps induced by an effective rung exchange coupling is found at moderate interchain hopping or strong Hubbard interaction. Third, a spin-gapped paramagnetic Mott insulator with incommensurate excitations and pairing of doped charges is observed at intermediate values of the rung hopping and the interaction. Fourth, the usual correlated band insulator is recovered for large rung hopping. We show that the wave numbers of the lowest single-particle excitations are different in each insulating phase. In particular, the three gapped phases exhibit markedly different spectral functions. We discuss the relevance of asymmetric two-leg ladder systems as models for atomic wires deposited on a substrate.

  8. Spectral dimension of quantum geometries

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2014-01-01

    The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)

  9. Revisiting the Short-term X-ray Spectral Variability of NGC 4151 with Chandra

    Science.gov (United States)

    Wang, Junfeng; Risaliti, G.; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.

    2010-05-01

    We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ~200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 × 10-11 erg s-1 cm-2 and 10-10 erg s-1 cm-2 (L 2-10 keV ~ 1.3-2.1 × 1042 erg s-1). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ~ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ~ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ~ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA "long look" observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ~ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M_{BH}˜ 4.6× 10^7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r <~ 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.

  10. REVISITING THE SHORT-TERM X-RAY SPECTRAL VARIABILITY OF NGC 4151 WITH CHANDRA

    International Nuclear Information System (INIS)

    Wang Junfeng; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.; Risaliti, G.

    2010-01-01

    We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ∼200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 x 10 -11 erg s -1 cm -2 and 10 -10 erg s -1 cm -2 (L 2-10 k eV ∼ 1.3-2.1 x 10 42 erg s -1 ). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ∼ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ∼ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ∼ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA 'long look' observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ∼ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M BH ∼4.6x10 7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r ∼< 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.

  11. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  12. Spectral flow of trimer states of two heavy impurities and one light condensed boson

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas

    2014-01-01

    The spectral flow of three-body (trimer) states consisting of two heavy (impurity) particles sitting in a condensate of light bosons is considered. Assuming that the condensate is weakly interaction and that an impurity and a boson have a zero-range two-body interaction, we use the Born...

  13. VLBI OBSERVATION OF MICROQUASAR CYG X-3 DURING AN X-RAY STATE TRANSITION FROM SOFT TO HARD IN THE 2007 MAY-JUNE FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong-Sook; Kim, Sang Joon [School of Space Science, Kyunghee University, Seocheon-dong, Giheung-si, Gyeonggi-do 446-701 (Korea, Republic of); Kim, Soon-Wook [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Yuseong, Daejeon 305-348 (Korea, Republic of); Kurayama, Tomoharu [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065 (Japan); Honma, Mareki [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Sasao, Tetsuo, E-mail: evony@kasi.re.kr, E-mail: skim@kasi.re.kr [Yaeyama Star Club, Ookawa, Ishigaki, Okinawa 904-0022 (Japan)

    2013-07-20

    We present a radio observation of microquasar Cyg X-3 during an X-ray state transition from ultrasoft to hard state in the 2007 May-June flare using the VLBI Exploration of Radio Astrometry at 22 GHz. During the transition, a short-lived mini-flare of {approx}< 3 hr was detected prior to the major flare. In such a transition, a jet ejection is believed to occur, but there have been no direct observations to support it. An analysis of Gaussian fits to the observed visibility amplitudes shows a time variation of the source axis, or a structural change, during the mini-flare. Our model fits, together with other multiwavelength observations in the radio, soft, and hard X-rays, and the shock-in-jet models for other flaring activities at GHz wavebands, suggest a high possibility of synchrotron flares during the mini-flare, indicative of a predominant contribution from jet activity. Therefore, the mini-flare with an associated structural change is indicative of a jet ejection event in the state transition from ultrasoft to hard state.

  14. Probabilistic Amplitude Shaping With Hard Decision Decoding and Staircase Codes

    Science.gov (United States)

    Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi; Steiner, Fabian

    2018-05-01

    We consider probabilistic amplitude shaping (PAS) as a means of increasing the spectral efficiency of fiber-optic communication systems. In contrast to previous works in the literature, we consider probabilistic shaping with hard decision decoding (HDD). In particular, we apply the PAS recently introduced by B\\"ocherer \\emph{et al.} to a coded modulation (CM) scheme with bit-wise HDD that uses a staircase code as the forward error correction code. We show that the CM scheme with PAS and staircase codes yields significant gains in spectral efficiency with respect to the baseline scheme using a staircase code and a standard constellation with uniformly distributed signal points. Using a single staircase code, the proposed scheme achieves performance within $0.57$--$1.44$ dB of the corresponding achievable information rate for a wide range of spectral efficiencies.

  15. Spectro-Timing Study of GX 339-4 in a Hard Intermediate State

    DEFF Research Database (Denmark)

    Fürst, F.; Grinberg, V.; Tomsick, J. A.

    2016-01-01

    We present an analysis of Nuclear Spectroscopic Telescope Array observations of a hard intermediate state of the transient black hole GX 339-4 taken in 2015 January. With the source softening significantly over the course of the 1.3 day long observation we split the data into 21 sub-sets and find...... that the spectrum of all of them can be well described by a power-law continuum with an additional relativistically blurred reflection component. The photon index increases from ∼1.69 to ∼1.77 over the course of the observation. The accretion disk is truncated at around nine gravitational radii in all spectra. We...

  16. Hard gap in epitaxial semiconductor-superconductor nanowires

    DEFF Research Database (Denmark)

    Chang, W.; Albrecht, S. M.; Jespersen, T. S.

    2015-01-01

    a continuum of subgap states---a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by proximity effect in a semiconductor, using epitaxial Al-InAs superconductor-semiconductor nanowires. The hard gap, along with favorable material properties and gate...

  17. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1995-06-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). (orig.)

  18. Towards spectral geometric methods for Euclidean quantum gravity

    Science.gov (United States)

    Panine, Mikhail; Kempf, Achim

    2016-04-01

    The unification of general relativity with quantum theory will also require a coming together of the two quite different mathematical languages of general relativity and quantum theory, i.e., of differential geometry and functional analysis, respectively. Of particular interest in this regard is the field of spectral geometry, which studies to which extent the shape of a Riemannian manifold is describable in terms of the spectra of differential operators defined on the manifold. Spectral geometry is hard because it is highly nonlinear, but linearized spectral geometry, i.e., the task to determine small shape changes from small spectral changes, is much more tractable and may be iterated to approximate the full problem. Here, we generalize this approach, allowing, in particular, nonequal finite numbers of shape and spectral degrees of freedom. This allows us to study how well the shape degrees of freedom are encoded in the eigenvalues. We apply this strategy numerically to a class of planar domains and find that the reconstruction of small shape changes from small spectral changes is possible if enough eigenvalues are used. While isospectral nonisometric shapes are known to exist, we find evidence that generically shaped isospectral nonisometric shapes, if existing, are exceedingly rare.

  19. Resolving the hard X-ray emission of GX 5-1 with INTEGRAL

    DEFF Research Database (Denmark)

    Paizis, A.; Ebisawa, K.; Tikkanen, T.

    2005-01-01

    We present the study of one year of INTEGRAL data on the neutron star low mass X-ray binary GX 5-1. Thanks to the excellent angular resolution and sensitivity of INTEGRAL, we are able to obtain a high quality spectrum of GX 5-1 from similar to 5keV to similar to 100 keV, for the first time without...... contamination from the nearby black hole candidate GRS 1758-258 above 20 keV. During our observations, GX 5-1 was mostly found in the horizontal and normal branch of its hardness intensity diagram. A clear hard X-ray emission is observed above similar to 30 keV which exceeds the exponential cut-off spectrum...... expected from lower energies. This spectral flattening may have the same origin of the hard components observed in other Z sources as it shares the property of being characteristic to the horizontal branch. The hard excess is explained by introducing Compton up-scattering of soft photons from the neutron...

  20. The Soft State of Cygnus X-1 Observed With NuSTAR: A Variable Corona and a Stable Inner Disk

    DEFF Research Database (Denmark)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.

    2016-01-01

    We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variabilit...

  1. Are resting state spectral power measures related to executive functions in healthy young adults?

    Science.gov (United States)

    Gordon, Shirley; Todder, Doron; Deutsch, Inbal; Garbi, Dror; Getter, Nir; Meiran, Nachshon

    2018-01-08

    Resting-state electroencephalogram (rsEEG) has been found to be associated with psychopathology, intelligence, problem solving, academic performance and is sometimes used as a supportive physiological indicator of enhancement in cognitive training interventions (e.g. neurofeedback, working memory training). In the current study, we measured rsEEG spectral power measures (relative power, between-band ratios and asymmetry) in one hundred sixty five young adults who were also tested on a battery of executive function (EF). We specifically focused on upper Alpha, Theta and Beta frequency bands given their putative role in EF. Our indices enabled finding correlations since they had decent-to-excellent internal and retest reliability and very little range restriction relative to a nation-wide representative large sample. Nonetheless, Bayesian statistical inference indicated support for the null hypothesis concerning lack of monotonic correlation between EF and rsEEG spectral power measures. Therefore, we conclude that, contrary to the quite common interpretation, these rsEEG spectral power measures do not indicate individual differences in the measured EF abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1996-01-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). copyright 1996 American Institute of Physics

  3. Novel Aspects of Hard Diffraction in QCD

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2005-01-01

    Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, and nuclear shadowing and antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency

  4. Modelling the flaring activity of the high-z, hard X-ray-selected blazar IGR J22517+2217: Flaring activity of IGR J22517+2217

    International Nuclear Information System (INIS)

    Lanzuisi, G.; De Rosa, A.; Ghisellini, G.; Panessa, F.

    2012-01-01

    We present new Suzaku and Fermi data and re-analysed archival hard X-ray data from the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and Swift–Burst Alert Telescope (BAT) surveys to investigate the physical properties of the luminous, high-redshift, hard X-ray-selected blazar IGR J22517+2217, through the modelling of its broad-band spectral energy distribution (SED) in two different activity states. Through analysis of new Suzaku data and flux-selected data from archival hard X-ray observations, we build the source SED in two different states, one for the newly discovered flare that occurred in 2005 and one for the following quiescent period. Both SEDs are strongly dominated by the high-energy hump peaked at 10 20 –10 22 Hz, which is at least two orders of magnitude higher than the low-energy (synchrotron) one at 10 11 –10 14 Hz and varies by a factor of 10 between the two states. In both states the high-energy hump is modelled as inverse Compton emission between relativistic electrons and seed photons produced externally to the jet, while the synchrotron self-Compton component is found to be negligible. In our model the observed variability can be accounted for by a variation of the total number of emitting electrons and by a dissipation region radius changing from inside to outside the broad-line region as the luminosity increases. In its flaring activity, IGR J22517+2217 is revealed as one of the most powerful jets among the population of extreme, hard X-ray-selected, high-redshift blazars observed so far.

  5. The Chandra Source Catalog 2.0: Spectral Properties

    Science.gov (United States)

    McCollough, Michael L.; Siemiginowska, Aneta; Burke, Douglas; Nowak, Michael A.; Primini, Francis Anthony; Laurino, Omar; Nguyen, Dan T.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula; Chandra Source Catalog Team

    2018-01-01

    The second release of the Chandra Source Catalog (CSC) contains all sources identified from sixteen years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package) using wstat as a fit statistic and Bayesian draws method to determine errors. Three models were fit to each source: an absorbed power-law, blackbody, and Bremsstrahlung emission. The fitted parameter values for the power-law, blackbody, and Bremsstrahlung models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy fluxes computed from the normalizations of predefined absorbed power-law, black-body, Bremsstrahlung, and APEC models needed to match the observed net X-ray counts. For sources that have been observed multiple times we performed a Bayesian Blocks analysis will have been performed (see the Primini et al. poster) and the most significant block will have a joint fit performed for the mentioned spectral models. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard). This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  6. GRS 1758–258: RXTE Monitoring of a Rare Persistent Hard State Black Hole

    Directory of Open Access Journals (Sweden)

    M. Obst

    2011-01-01

    Full Text Available GRS 1758–258 is the least studied of the three persistent black hole X-ray binaries in our Galaxy. It is also one of only two known black hole candidates, including all black hole transients, which shows a decrease of its 3-10 keV flux when entering the thermally dominated soft state, rather than an increase.We present the spectral evolution of GRS 1758–258 from RXTE-PCA observations spanning a time of about 11 years from 1996 to 2007. During this time, seven dim soft states are detected. We also consider INTEGRAL monitoring observations of the source and compare the long-term behavior to that of the bright persistent black hole X-ray binary Cygnus X-1. We discuss the observed state transitions in the light of physical scenarios for black hole transitions.

  7. Prediction of the association state of insulin using spectral parameters.

    Science.gov (United States)

    Uversky, Vladimir N; Garriques, Liza Nielsen; Millett, Ian S; Frokjaer, Sven; Brange, Jens; Doniach, Sebastian; Fink, Anthony L

    2003-04-01

    Human insulin exists in different association states, from monomer to hexamer, depending on the conditions. In the presence of zinc the "normal" state is a hexamer. The structural properties of 20 variants of human insulin were studied by near-UV circular dichroism, fluorescence spectroscopy, and small-angle X-ray scattering (SAXS). The mutants showed different degrees of association (monomer, dimers, tetramers, and hexamers) at neutral pH. A correlation was shown between the accessibility of tyrosines to acrylamide quenching and the degree of association of the insulin mutants. The near-UV CD spectra of the insulins were affected by protein association and by mutation-induced structural perturbations. However, the shape and intensity of difference CD spectra, obtained by subtraction of the spectra measured in 20% acetic acid (where all insulin species were monomeric) from the corresponding spectra measured at neutral pH, correlate well with the degree of insulin association. In fact, the near-UV CD difference spectra for monomeric, dimeric, tetrameric, and hexameric insulin are very distinctive, both in terms of intensity and shape. The results show that the spectral properties of the insulins reflect their state of association, and can be used to predict their oligomeric state. Copyright 2003 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 92:847-858, 2003

  8. The Elusive Soft Emission from Hard X-ray Symbiotic System RT Cru

    Science.gov (United States)

    Karovska, Margarita

    2014-09-01

    RT Cru is a fascinating member of a new class of hard X-ray emitting symbiotic binaries showing X-ray emission extending to over 50keV. While its hard X-ray emission has been studied in detail, the soft component of the spectrum, including flares, remains elusive, since previous observations have focused on the high-energy regime. We propose Chandra HRC-S/LETG observations to determine the spatial, spectral, and temporal characteristics of the source of the soft X-ray emission with a goal to establish the origin of the soft component, and determine whether and how it is tied to the hard component. Determining the origin of the soft emission is a crucial piece of the puzzle to understanding the geometry, energetics, and the environment of WD accretion in this class of symbiotic systems.

  9. Hard processes in hadronic interactions

    International Nuclear Information System (INIS)

    Satz, H.; Wang, X.N.

    1995-01-01

    Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks' duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley

  10. State of the Art of Hard and Soft Ionization Mass Spectrometry

    International Nuclear Information System (INIS)

    Helal, A.I.

    2008-01-01

    The principles of hard and soft ionization sources, providing some details on the practical aspects of their uses as well as ionization mechanisms are discussed. The conditions and uses of hard ionization methods such as electron impact, thermal ionization and inductively coupled plasma techniques are discussed. Moreover, new generation of soft ionization methods such as matrix-assisted laser desorption/ionization, electro spray ionization and direct analysis in real time are illustrated

  11. Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms

    Directory of Open Access Journals (Sweden)

    Taito Osaka

    2017-11-01

    Full Text Available Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL pulses by capturing single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. This is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.

  12. Two-photon spectral amplitude of entangled states resolved in separable Schmidt modes

    International Nuclear Information System (INIS)

    Avella, A; Brida, G; Gramegna, M; Shurupov, A; Genovese, M; Chekhova, M

    2015-01-01

    The ability to access high dimensionality in Hilbert spaces represents a demanding key-stone for state-of-the-art quantum information. The manipulation of entangled states in continuous variables, wavevector as well frequency, represents a powerful resource in this sense. The number of dimensions of the Hilbert space that can be used in practical information protocols can be determined by the number of Schmidt modes that it is possible to address one by one. In the case of wavevector variables, the Schmidt modes can be losslessly selected using single-mode fibre and a spatial light modulator, but no similar procedure exists for the frequency space. The aim of this work is to present a technique to engineer the spectral properties of biphoton light, emitted via ultrafast spontaneous parametric down conversion, in such a way that the two-photon spectral amplitude (TPSA) contains several non-overlapping Schmidt modes, each of which can be filtered losslessly in frequency variables. Such TPSA manipulation is operated by a fine balancing of parameters like the pump frequency, the shaping of pump pulse spectrum, the dispersion dependence of spontaneous parametric down-conversion crystals as well as their length. Measurements have been performed exploiting the group velocity dispersion induced by the passage of optical fields through dispersive media, operating a frequency-to-time two-dimensional Fourier transform of the TPSA. Exploiting this kind of measurement we experimentally demonstrate the ability to control the Schmidt modes structure in TPSA through the pump spectrum manipulation. (paper)

  13. Deconvolving X-ray spectral variability components in the Seyfert 1.5 NGC 3227

    International Nuclear Information System (INIS)

    Arévalo, P.; Markowitz, A.

    2014-01-01

    We present the variability analysis of a 100 ks XMM-Newton observation of the Seyfert 1.5 active galaxy, NGC 3227. The observation found NGC 3227 in a period where its hard power-law component displayed remarkably little long-term variability. This lucky event allows us to clearly observe a soft spectral component undergoing a large-amplitude but slow flux variation. Using combined spectral and timing analysis, we isolate two independent variable continuum components and characterize their behavior as a function of timescale. Rapid and coherent variations throughout the 0.2-10 keV band reveal a spectrally hard (photon index Γ ∼ 1.7-1.8) power law, dominating the observed variability on timescales of 30 ks and shorter. Another component produces coherent fluctuations in the 0.2-2 keV range and is much softer (Γ ∼ 3); it dominates the observed variability on timescales greater than 30 ks. Both components are viewed through the same absorbers identified in the time-averaged spectrum. The combined spectral and timing analysis breaks the degeneracy between models for the soft excess: it is consistent with a power-law or thermal Comptonized component but not with a blackbody or an ionized reflection component. We demonstrate that the rapid variability in NGC 3227 is intrinsic to continuum-emitting components and is not an effect of variable absorption.

  14. Perturbation and variational approach for the equation of state for hard-sphere and Lennard—Jones fluids

    International Nuclear Information System (INIS)

    Khasare, S.B.

    2012-01-01

    The present work uses the concept of a scaled particle along with the perturbation and variation approach, to develop an equation of state (EOS) for a mixture of hard sphere (HS), Lennard—Jones (LJ) fluids. A suitable flexible functional form for the radial distribution function G(R) is assumed for the mixture, with R as a variable. The function G(R) has an arbitrary parameter m and a different equation of state can be obtained with a suitable choice of m. For m = 0.75 and m = 0.83 results are close to molecular dynamics (MD) result for pure HS and LJ fluid respectively. (physics of gases, plasmas, and electric discharges)

  15. Spectral properties of minimal-basis-set orbitals: Implications for molecular electronic continuum states

    Science.gov (United States)

    Langhoff, P. W.; Winstead, C. L.

    Early studies of the electronically excited states of molecules by John A. Pople and coworkers employing ab initio single-excitation configuration interaction (SECI) calculations helped to simulate related applications of these methods to the partial-channel photoionization cross sections of polyatomic molecules. The Gaussian representations of molecular orbitals adopted by Pople and coworkers can describe SECI continuum states when sufficiently large basis sets are employed. Minimal-basis virtual Fock orbitals stabilized in the continuous portions of such SECI spectra are generally associated with strong photoionization resonances. The spectral attributes of these resonance orbitals are illustrated here by revisiting previously reported experimental and theoretical studies of molecular formaldehyde (H2CO) in combination with recently calculated continuum orbital amplitudes.

  16. Monte Carlo simulation and equation of state for flexible charged hard-sphere chain fluids: Polyampholyte and polyelectrolyte solutions

    International Nuclear Information System (INIS)

    Jiang, Hao; Adidharma, Hertanto

    2014-01-01

    The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must therefore be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions

  17. State Transition and Flaring Activity of IGR J17464-3213/H1743-322 with INTEGRAL SPI

    Science.gov (United States)

    Joinet, A.; Jourdain, E.; Malzac, J.; Roques, J. P.; Schönfelder, V.; Ubertini, P.; Capitanio, F.

    2005-08-01

    IGR J17464-3213, already known as the HEAO 1 transient source H1743-322, has been detected during a state transition by INTEGRAL SPI. We describe the spectral evolution and flaring activity of IGR J17464-3213/H1743-322 from 2003 March 21 to 2003 April 22. During the first part, the source followed a continuous spectral softening, with the peak of the spectral energy distribution shifting from 100 keV down to ~a few keV. However, the thermal disk and the hard X-ray components had a similar intensity, indicating that the source was in an intermediate state throughout our observations and evolving toward the soft state. In the second part of our observations, the RXTE ASM and INTEGRAL SPI light curves showed a strong flaring activity. Two flare events lasting about 1 day each have been detected with SPI and are probably due to instabilities in the accretion disk associated with the state transition. During these flares, the low (1.5-12 keV) and high (20-200 keV) energy fluxes monitored with the RXTE ASM and INTEGRAL SPI are correlated, and the spectral shape (above 20 keV) remains unchanged while the luminosity increases by a factor greater than 2.

  18. Unified Research on Network-Based Hard/Soft Information Fusion

    Science.gov (United States)

    2016-02-02

    3.2.1 Hard +Soft Data Association Data gathered during various Counterinsurgency (or COIN) operations is in different formats . For example, the...characteristic, observation time, and related data. Figure 45: Sample snapshot frame from hard sensor data TML formats were developed and...160 Figure 54: Penn State components of overall hard and soft fusion process Summary of Year 1 Accomplishments • Team formation • Initial

  19. Spectral state transitions of the Ultraluminous X-ray Source IC 342 X-1

    Science.gov (United States)

    Marlowe, H.; Kaaret, P.; Lang, C.; Feng, H.; Grisé, F.; Miller, N.; Cseh, D.; Corbel, S.; Mushotzky, R. F.

    2014-10-01

    We observed the Ultraluminous X-ray Source (ULX) IC 342 X-1 simultaneously in X-ray and radio with Chandra and the JVLA to investigate previously reported unresolved radio emission coincident with the ULX. The Chandra data reveal a spectrum that is much softer than observed previously and is well modelled by a thermal accretion disc spectrum. No significant radio emission above the rms noise level was observed within the region of the ULX, consistent with the interpretation as a thermal state though other states cannot be entirely ruled out with the current data. We estimate the mass of the black hole using the modelled inner disc temperature to be 30 M_{⊙} ≲ M√{cosi}≲ 200 M_{⊙} based on a Shakura-Sunyaev disc model. Through a study of the hardness and high-energy curvature of available X-ray observations, we find that the accretion state of X-1 is not determined by luminosity alone.

  20. Great microwave bursts and hard X-rays from solar flares

    International Nuclear Information System (INIS)

    Wiehl, H.J.; Batchelor, D.A.; Crannell, C.J.; Dennis, B.R.; Price, P.N.

    1983-06-01

    The microwave and hard X-ray charateristics of 13 solar flares that produced microwave fluxes greater than 500 Solar Flux Units were analyzed. These Great Microwave Bursts were observed in the frequency range from 3 to 35 GHz at Berne, and simultaneous hard X-ray observations were made in the energy range from 30 to 500 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission spacecraft. The principal aim of this analysis is to determine whether or not the same distribution of energetic electrons can explain both emissions. Correlations were found between respective temporal characteristics and, for the first time, between microwave and hard X-ray spectral characteristics. A single-temperature and a multi-temperature model from the literature were tested for consistency with the coincident X-ray and microwave spectra at microwave burst maximum. Four events are inconsistent with both of the models tested, and neither of the models attempts to explain the high-frequency part of the microwave spectrum. A model in which the emissions above and below the peak frequency originate in two different parts of a diverging magnetic loop is proposed. With this model the entire microwave spectrum of all but one of the events is explained

  1. Study of Cu-Al-Zn alloys hardness temperature dependence

    International Nuclear Information System (INIS)

    Kurmanova, D.T.; Skakov, M.K.; Melikhov, V.D.

    2001-01-01

    In the paper the results of studies for the Cu-Al-Zn ternary alloys hardness temperature dependence are presented. The method of 'hot hardness' has been used during study of the solid state phase transformations and under determination of the hot stability boundaries. Due to the samples brittleness a hardness temperature dependence definition is possible only from 350-400 deg. C. Sensitivity of the 'hot hardness' method is decreasing within high plasticity range, so the measurements have been carried out only up to 700-800 deg. C. It is shown, that the alloys hardness dependence character from temperature is close to exponential one within the certain structure modification existence domain

  2. DETECTION OF VERY HARD γ -RAY SPECTRUM FROM THE TEV BLAZAR MRK 501

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, A.; Chitnis, V. R.; Acharya, B. S. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Mannheim, K.; Dorner, D. [Institute for Theoretical Physics and Astrophysics, Universität Würzburg, D-97074 Würzburg (Germany); Roy, J. [UM-DAE Center for Excellence in Basic Sciences, Mumbai 400098 (India); Hughes, G.; Biland, A. [ETH Zurich, Institute for Particle Physics, Otto-Stern-Weg 5, 8093 Zurich (Switzerland)

    2016-12-01

    The occasional hardening of the GeV-to-TeV spectrum observed from the blazar Mrk 501 has reopened the debate on the physical origin of radiation and particle acceleration processes in TeV blazars. We have used the ∼7 years of Fermi -LAT data to search for the time intervals with unusually hard spectra from the nearby TeV blazar Mrk 501. We detected hard spectral components above 10 GeV with photon index <1.5 at a significance level of more than 5 sigma on 17 occasions, each with 30 day integration time. The photon index of the hardest component reached a value of 0.89 ± 0.29. We interpret these hard spectra as signatures of intermittent injection of sharply peaked and localized particle distributions from the base of the jet.

  3. On Pythagoras Theorem for Products of Spectral Triples

    OpenAIRE

    D'Andrea, Francesco; Martinetti, Pierre

    2013-01-01

    We discuss a version of Pythagoras theorem in noncommutative geometry. Usual Pythagoras theorem can be formulated in terms of Connes' distance, between pure states, in the product of commutative spectral triples. We investigate the generalization to both non pure states and arbitrary spectral triples. We show that Pythagoras theorem is replaced by some Pythagoras inequalities, that we prove for the product of arbitrary (i.e. non-necessarily commutative) spectral triples, assuming only some un...

  4. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  5. The underlying event in hard scattering processes

    International Nuclear Information System (INIS)

    Field, R.

    2002-01-01

    The authors study the behavior of the underlying event in hard scattering proton-antiproton collisions at 1.8 TeV and compare with the QCD Monte-Carlo models. The underlying event is everything except the two outgoing hard scattered jets and receives contributions from the beam-beam remnants plus initial and final-state radiation. The data indicate that neither ISAJET or HERWIG produce enough charged particles (with p T > 0.5 GeV/c) from the beam-beam remnant component and that ISAJET produces too many charged particles from initial-state radiation. PYTHIA which uses multiple parton scattering to enhance the underlying event does the best job describing the data

  6. Detectability of rotation-powered pulsars in future hard X-ray surveys

    International Nuclear Information System (INIS)

    Wang Wei

    2009-01-01

    Recent INTEGRAL/IBIS hard X-ray surveys have detected about 10 young pulsars. We show hard X-ray properties of these 10 young pulsars, which have a luminosity of 10 33 -10 37 erg s -1 and a photon index of 1.6-2.1 in the energy range of 20-100 keV. The correlation between X-ray luminosity and spin-down power of L X ∝ L sd 1.31 suggests that the hard X-ray emission in rotation-powered pulsars is dominated by the pulsar wind nebula (PWN) component. Assuming spectral properties are similar in 20-100 keV and 2-10 keV for both the pulsar and PWN components, the hard X-ray luminosity and flux of 39 known young X-ray pulsars and 8 millisecond pulsars are obtained, and a correlation of L X ∝ L sd 1.5 is derived. About 20 known young X-ray pulsars and 1 millisecond pulsars could be detected with future INTEGRAL and HXMT surveys. We also carry out Monte Carlo simulations of hard X-ray pulsars in the Galaxy and the Gould Belt, assuming values for the pulsar birth rate, initial position, proper motion velocity, period, and magnetic field distribution and evolution based on observational statistics and the L X - L sd relations: L X ∝ L sd 1.31 and L X ∝ L sd 1.5 . More than 40 young pulsars (mostly in the Galactic plane) could be detected after ten years of INTEGRAL surveys and the launch of HXMT. So, the young pulsars would be a significant part of the hard X-ray source population in the sky, and will contribute to unidentified hard X-ray sources in present and future hard X-ray surveys by INTEGRAL and HXMT.

  7. Revisiting the definition of local hardness and hardness kernel.

    Science.gov (United States)

    Polanco-Ramírez, Carlos A; Franco-Pérez, Marco; Carmona-Espíndola, Javier; Gázquez, José L; Ayers, Paul W

    2017-05-17

    An analysis of the hardness kernel and local hardness is performed to propose new definitions for these quantities that follow a similar pattern to the one that characterizes the quantities associated with softness, that is, we have derived new definitions for which the integral of the hardness kernel over the whole space of one of the variables leads to local hardness, and the integral of local hardness over the whole space leads to global hardness. A basic aspect of the present approach is that global hardness keeps its identity as the second derivative of energy with respect to the number of electrons. Local hardness thus obtained depends on the first and second derivatives of energy and electron density with respect to the number of electrons. When these derivatives are approximated by a smooth quadratic interpolation of energy, the expression for local hardness reduces to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba. However, when one combines the first directional derivatives with smooth second derivatives one finds additional terms that allow one to differentiate local hardness for electrophilic attack from the one for nucleophilic attack. Numerical results related to electrophilic attacks on substituted pyridines, substituted benzenes and substituted ethenes are presented to show the overall performance of the new definition.

  8. Hardness and excitation energy

    Indian Academy of Sciences (India)

    It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the ...

  9. Black Hole Mass Determination In the X-Ray Binary 4U 1630-47: Scaling of Spectral and Variability Characteristics

    Science.gov (United States)

    Seifina, Elena; Titarchuk, Lev; Shaposhnikov, Nikolai

    2014-01-01

    We present the results of a comprehensive investigation on the evolution of spectral and timing properties of the Galactic black hole candidate 4U 1630-47 during its spectral transitions. In particular, we show how a scaling of the correlation of the photon index of the Comptonized spectral component gamma with low-frequency quasi-periodic oscillations (QPOs), ?(sub L), and mass accretion rate, M, can be applied to the black hole mass and the inclination angle estimates.We analyze the transition episodes observed with the Rossi X-Ray Timing Explorer and BeppoSAX satellites.We find that the broadband X-ray energy spectra of 4U 1630-47 during all spectral states can be modeled by a combination of a thermal component, a Comptonized component, and a red-skewed iron-line component. We also establish that gamma monotonically increases during transition from the low-hard state to the high-soft state and then saturates for high mass accretion rates. The index saturation levels vary for different transition episodes. Correlations of gamma versus ?(sub L) also show saturation at gamma (is) approximately 3. Gamma -M and gamma -?(sub L) correlations with their index saturation revealed in 4U 1630-47 are similar to those established in a number of other black hole candidates and can be considered as an observational evidence for the presence of a black hole in these sources. The scaling technique, which relies on XTE J1550-564, GRO 1655-40, and H1743-322 as reference sources, allows us to evaluate a black hole mass in 4U 1630-47 yielding M(sub BH) (is) approximately 10 +/- 0.1 solar masses and to constrain the inclination angle of i (is) approximately less than 70 deg.

  10. Radiation hardness of LuAG:Ce and LuAG:Pr scintillator crystals

    CERN Document Server

    Derdzyan, M V; Belsky, A; Dujardin, C; Lecoq, P; Lucchini, M; Ovanesyan, K L; Pauwels, K; Pedrini, C; Petrosyan, A G

    2012-01-01

    Single crystals of LuAG:Ce, LuAG:Pr and un-doped LuAG were grown by the vertical Bridgman method and studied for radiation hardness under gamma-rays with doses in the range 10-10(5) Gy (Co-60). A wide absorption band peaking at around 600 nm springs up in all three types of crystals after the irradiations. The second band peaking at around 375 nm appears in both LuAG:Pr and un-doped LuAG. Compositional variations have been done to reveal the spectral behavior of induced color centers in more detail and to understand their origin. Similarities in behavior of Yb2+ centers in as-grown garnets are found, indicating that radiation induced color centers can be associated with residual trace amounts of Yb present in the raw materials. Un-doped LuAG and LuAG:Ce demonstrate moderate radiation hardness (the induced absorption coefficients being equal to 0.05-0.08 cm(-1) for accumulated doses of 10(3)-10(4) Gy), while LuAG:Pr is less radiation hard. The ways to improve the radiation hardness are discussed.

  11. BL Lacertae: X-ray spectral evolution and a black-hole mass estimate

    Science.gov (United States)

    Titarchuk, Lev; Seifina, Elena

    2017-06-01

    We present an analysis of the spectral properties observed in X-rays from active galactic nucleus BL Lacertae using RXTE, Suzaku, ASCA, BeppoSAX, and Swift observations. The total time covered by these observations is approximately 20 yr. We show strong observational evidence that this source undergoes X-ray spectral transitions from the low hard state (LHS) through the intermediate state (IS) to the high soft state (HSS) during these observations. During the RXTE observations (1997-2001, 180 ks, for a total 145 datasets), the source was approximately 75%, 20% and only 5% of the time in the IS, LHS, and HSS, respectively. We also used Swift observations (470 datasets, for a total 800 ks), which occurred during 12 yr (2005-2016), the broadband (0.3-200 keV) data of BeppoSAX (1997-2000, 160 ks), and the low X-ray energy (0.3-10 keV) data of ASCA (1995-1999, 160 ks). Two observations of Suzaku (2006, 2013; 50 ks) in combinations with long-term RXTE and Swift data-sets fortunately allow us to describe all spectral states of BL Lac. The spectra of BL Lac are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index saturation level, Γsat = 2.2 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ - Ṁ correlation allows us to estimate the black-hole (BH) mass in BL Lac to be MBH 3 × 107M⊙ for a distance of 300 Mpc. For the BH mass estimate, we use the scaling method taking stellar-mass Galactic BHs 4U 1543-47 and GX 339-4 as reference sources. The Γ - Ṁ correlation revealed in BL Lac is similar to those in a number of stellar-mass Galactic BHs and two recently studied intermediate-mass extragalactic BHs. It clearly shows the correlation along with the very extended Γ saturation at 2.2. This is robust observational evidence for the presence of a BH in BL Lac. We also reveal that the seed (disk) photon temperatures are relatively low, of order of 100 eV, which are consistent

  12. Analysis spectral shapes from California and central United States ground motion

    International Nuclear Information System (INIS)

    1994-01-01

    The objective of this study is to analyze the spectral shapes from earthquake records with magnitudes and distances comparable to those that dominate seismic hazard at Oak Ridge, in order to provide guidance for the selection of site-specific design-spectrum shapes for use in Oak Ridge. The authors rely heavily on California records because the number of relevant records from the central and eastern United States (CEUS) is not large enough for drawing statistically significant conclusions. They focus on the 0.5 to 10-Hz frequency range for two reasons: (1) this is the frequency range of most engineering interest, and (2) they avoid the effect of well-known differences in the high-frequency energy content between California and CEUS ground motions

  13. Solar flare hard and soft x ray relationship determined from SMM HXRBS and BCS data

    Science.gov (United States)

    Toot, G. David

    1989-01-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  14. The Roles of Ideological State Apparatus in Maintaining Hegemony in Charles Dicken's Hard Times

    OpenAIRE

    Prasetya, Farid Adi

    2013-01-01

    One of literary works, a novel, may be reflects social phenomenon. The correlation between literary works and social phenomenon includes an analysis towards a novel entitled Hard Times by Charles Dickens, which covers a social phenomenon. The overall image of Hard Times is a society of industrial city namely Coketown, which has unequal economic condition. Through characters that appear in the novel, it can be analyzed, Hard Times reflects social clashes that are triggered by economic conditio...

  15. [State Recognition of Solid Fermentation Process Based on Near Infrared Spectroscopy with Adaboost and Spectral Regression Discriminant Analysis].

    Science.gov (United States)

    Yu, Shuang; Liu, Guo-hai; Xia, Rong-sheng; Jiang, Hui

    2016-01-01

    In order to achieve the rapid monitoring of process state of solid state fermentation (SSF), this study attempted to qualitative identification of process state of SSF of feed protein by use of Fourier transform near infrared (FT-NIR) spectroscopy analysis technique. Even more specifically, the FT-NIR spectroscopy combined with Adaboost-SRDA-NN integrated learning algorithm as an ideal analysis tool was used to accurately and rapidly monitor chemical and physical changes in SSF of feed protein without the need for chemical analysis. Firstly, the raw spectra of all the 140 fermentation samples obtained were collected by use of Fourier transform near infrared spectrometer (Antaris II), and the raw spectra obtained were preprocessed by use of standard normal variate transformation (SNV) spectral preprocessing algorithm. Thereafter, the characteristic information of the preprocessed spectra was extracted by use of spectral regression discriminant analysis (SRDA). Finally, nearest neighbors (NN) algorithm as a basic classifier was selected and building state recognition model to identify different fermentation samples in the validation set. Experimental results showed as follows: the SRDA-NN model revealed its superior performance by compared with other two different NN models, which were developed by use of the feature information form principal component analysis (PCA) and linear discriminant analysis (LDA), and the correct recognition rate of SRDA-NN model achieved 94.28% in the validation set. In this work, in order to further improve the recognition accuracy of the final model, Adaboost-SRDA-NN ensemble learning algorithm was proposed by integrated the Adaboost and SRDA-NN methods, and the presented algorithm was used to construct the online monitoring model of process state of SSF of feed protein. Experimental results showed as follows: the prediction performance of SRDA-NN model has been further enhanced by use of Adaboost lifting algorithm, and the correct

  16. Development and application of cryogenic radiometry with hard X-rays

    International Nuclear Information System (INIS)

    Gerlach, Martin

    2008-01-01

    To establish cryogenic radiometry with hard X-ray radiation for photon energies of up to 60 keV, a novel type of cavity absorber had to be developed for the cryogenic radiometer SYRES I, which is deployed by the Physikalisch-Technische Bundesanstalt (PTB) as primary standard detector at the electron storage ring BESSY II. This new type of cavity absorber allows for the complete absorption of hard X-ray radiation in combination with an appropriate sensitivity and an adequate time constant for the measurement of synchrotron radiation at BESSY II. As the process of fabrication of different types of absorbers is very time-consuming, the interaction of hard X-ray radiation with different absorber materials and geometries was studied intensively by using the Monte Carlo simulation code Geant4. The accuracy of the simulations was verified comparing them to scattering experiments performed at a wavelength shifter beamline at BESSY II with a calibrated energy dispersive detector. It was shown that Geant4 describes the photo-effect, including fluorescence as well as Compton- and Rayleigh scattering, with high accuracy. The simulations and experiments resulted in a cavity absorber with a gold base 550 μm in thickness and a cylindrical shell made of copper 90 μm in thickness to reduce losses caused by fluorescence and scattered radiation. Monochromatized synchrotron radiation of high spectral purity was then used to calibrate semiconductor photodiodes, which can be used as compact and inexpensive secondary standard detectors, against a cryogenic radiometer, covering the entire photon energy range of three beamlines from 50 eV to 60 keV with relative uncertainties of less than 0.5 %. Furthermore the spatial homogeneity of the spectral responsivity, the transmittance and the linearity of the photodiodes was investigated. Through a direct comparison of the free-air ionization chamber PK100, a primary detector standard of PTB used in dosimetry, and the cryogenic radiometer SYRES

  17. Aespoe hard rock laboratory Sweden

    International Nuclear Information System (INIS)

    1992-01-01

    The aim of the new Aespoe hard rock laboratory is to demonstrate state of the art of technology and evaluation methods before the start of actual construction work on the planned deep repository for spent nuclear fuel. The nine country OECD/NEA project in the Stripa mine in Sweden has been an excellent example of high quality international research co-operation. In Sweden the new Aespoe hard rock laboratory will gradually take over and finalize this work. SKB very much appreciates the continued international participation in Aespoe which is of great value for the quality efficiency, and confidence in this kind of work. We have invited a number of leading experts to this first international seminar to summarize the current state of a number of key questions. The contributions show the great progress that has taken place during the years. The results show that there is a solid scientific basis for using this knowledge on site specific preparation and work on actual repositories. (au)

  18. NuSTAR AND SUZAKU OBSERVATIONS OF THE HARD STATE IN CYGNUS X-1: LOCATING THE INNER ACCRETION DISK

    International Nuclear Information System (INIS)

    Parker, M. L.; Lohfink, A.; Fabian, A. C.; Alston, W. N.; Kara, E.; Tomsick, J. A.; Boggs, S. E.; Craig, W. W.; Miller, J. M.; Yamaoka, K.; Nowak, M.; Grinberg, V.; Christensen, F. E.; Fürst, F.; Grefenstette, B. W.; Harrison, F. A.; Gandhi, P.; Hailey, C. J.; King, A. L.; Stern, D.

    2015-01-01

    We present simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR ) and Suzaku observations of the X-ray binary Cygnus X-1 in the hard state. This is the first time this state has been observed in Cyg X-1 with NuSTAR, which enables us to study the reflection and broadband spectra in unprecedented detail. We confirm that the iron line cannot be fit with a combination of narrow lines and absorption features, instead requiring a relativistically blurred profile in combination with a narrow line and absorption from the companion wind. We use the reflection models of García et al. to simultaneously measure the black hole spin, disk inner radius, and coronal height in a self-consistent manner. Detailed fits to the iron line profile indicate a high level of relativistic blurring, indicative of reflection from the inner accretion disk. We find a high spin, a small inner disk radius, and a low source height and rule out truncation to greater than three gravitational radii at the 3σ confidence level. In addition, we find that the line profile has not changed greatly in the switch from soft to hard states, and that the differences are consistent with changes in the underlying reflection spectrum rather than the relativistic blurring. We find that the blurring parameters are consistent when fitting either just the iron line or the entire broadband spectrum, which is well modeled with a Comptonized continuum plus reflection model

  19. Distributed seeding for narrow-line width hard x-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anisimov, Petr Mikhaylovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, IV, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Marksteiner, Quinn R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-09

    We describe a new FEL line-narrowing technique called distributed seeding (DS), using Si(111) Bragg crystal monochromators to enhance the spectral brightness of the MaRIE hard X-ray freeelectron laser. DS differs from self-seeding in three important aspects. First, DS relies on spectral filtering of the radiation at multiple locations along the undulator, with a monochromator located every few power gain lengths. Second, DS performs filtering early in the exponential gain region before SASE spikes start to appear in the radiation longitudinal profile. Third, DS provides the option to select a wavelength longer than the peak of the SASE gain curve, which leads to improved spectral contrast of the seeded FEL over the SASE background. Timedependent Genesis simulations show the power-vs-z growth curves for DS exhibit behaviors of a seeded FEL amplifier, such as exponential growth region immediately after the filters. Of the seeding approaches considered, the two-stage DS spectra produce the highest contrast of seeded FEL over the SASE background and that the three-stage DS provides the narrowest linewidth with a relative spectral FWHM of 8 X 10-5 .

  20. On Pythagoras Theorem for Products of Spectral Triples

    Science.gov (United States)

    D'Andrea, Francesco; Martinetti, Pierre

    2013-05-01

    We discuss a version of Pythagoras theorem in noncommutative geometry. Usual Pythagoras theorem can be formulated in terms of Connes' distance, between pure states, in the product of commutative spectral triples. We investigate the generalization to both non-pure states and arbitrary spectral triples. We show that Pythagoras theorem is replaced by some Pythagoras inequalities, that we prove for the product of arbitrary (i.e. non-necessarily commutative) spectral triples, assuming only some unitality condition. We show that these inequalities are optimal, and we provide non-unital counter-examples inspired by K-homology.

  1. Long duration hard X-ray transatlantic payload

    International Nuclear Information System (INIS)

    La Padula, C.D.; Bazzano, A.; Boccaccini, L.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Ubertini, P.

    1981-01-01

    The HXR80M large-area hard X-ray experiment, to be flown aboard a transatlantic balloon, is described. The detectors are two multiwire spectroscopic proportional counters (MWSPC) with a 2700-sq-cm sensitive area each. The two detectors are filled with an extremely pure xenon-isobutane mixture at high pressure (3-6 atm) in order to obtain good spectral resolution and high efficiency. The onboard data handling is performed by microprocessor-controlled electronics. The scientific aim of the experiment is the survey of the sky belt around the 38th parallel and in particular the observation of faint galactic objects and galactic binary systems in the 15-200 keV range

  2. Reflections on hard X-ray photon-in/photon-out spectroscopy for electronic structure studies

    Energy Technology Data Exchange (ETDEWEB)

    Glatzel, Pieter, E-mail: glatzel@esrf.fr [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Weng, Tsu-Chien; Kvashnina, Kristina; Swarbrick, Janine; Sikora, Marcin [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Gallo, Erik [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Department of Inorganic, Physical and Materials Chemistry, INSTM Reference Center and NIS Centre of Excellence, Università di Torino, Via P. Giuria 7, I-10125 Torino (Italy); Smolentsev, Nikolay [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Research Center for Nanoscale Structure of Matter, Southern Federal University, str. Zorge 5, 344090 Rostov-on-Don (Russian Federation); Mori, Roberto Alonso [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France)

    2013-06-15

    Highlights: ► Overview of some recent developments in hard X-ray RXES/RIXS. ► Evaluation of spectral line broadening in RXES/RIXS. ► Modelling of RXES/RIXS by ground state DFT calculations. ► Discussion on when HERFD provides a good approximation to XAS. -- Abstract: An increasing community of researchers in various fields of natural sciences is combining X-ray absorption with X-ray emission spectroscopy (XAS–XES) to study electronic structure. With the applications becoming more diverse, the objectives and the requirements in photon-in/photon-out spectroscopy are becoming broader. It is desirable to find simple experimental protocols, robust data reduction and theoretical tools that help the experimentalist to understand their data and learn about the electronic structure. This article presents a collection of considerations on non-resonant and resonant XES with the aim to guide the experimentalist to make good use of this technique.

  3. Development and characterization of a laser-based hard x-ray source

    International Nuclear Information System (INIS)

    Tillman, C.

    1996-11-01

    A laser-produced plasma was generated by focusing 100 fs laser pulses, with an energy of 150 mJ, onto metal targets. The laser intensity was expected to reach 10 17 W/cm -2 . Radiation was emitted from the created plasma, with photon energies up to the MeV region. The laser-based X-ray source was optimized, with the purpose of making it a realistic source of hard X-rays (>10 keV). Dedicated equipment was developed for efficient generation and utilization of the hard X-rays. The X-ray source was characterized with respect to its spatial extent and the X-ray yield. Measurements were made of the spectral distribution, by the use of single-photon-counting detectors in different geometries, crystal spectrometers and dose measurements in combination with absorption filters. Ablation of the target material in the laser produced plasma was investigated. Imaging applications have been demonstrated, including ultrafast (picosecond) X-ray imaging, magnification imaging of up to x80, differential imaging in the spectral domain, and imaging of various biological and technical objects. The biological response of ultra-intense X-ray pulses was assessed in cell-culture exposures. The results indicate that the biological response from ultra-intense X-ray exposures is similar to the response with conventional X-ray tubes. 82 refs., 14 figs

  4. Development and characterization of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, C.

    1996-11-01

    A laser-produced plasma was generated by focusing 100 fs laser pulses, with an energy of 150 mJ, onto metal targets. The laser intensity was expected to reach 10{sup 17} W/cm{sup -2}. Radiation was emitted from the created plasma, with photon energies up to the MeV region. The laser-based X-ray source was optimized, with the purpose of making it a realistic source of hard X-rays (>10 keV). Dedicated equipment was developed for efficient generation and utilization of the hard X-rays. The X-ray source was characterized with respect to its spatial extent and the X-ray yield. Measurements were made of the spectral distribution, by the use of single-photon-counting detectors in different geometries, crystal spectrometers and dose measurements in combination with absorption filters. Ablation of the target material in the laser produced plasma was investigated. Imaging applications have been demonstrated, including ultrafast (picosecond) X-ray imaging, magnification imaging of up to x80, differential imaging in the spectral domain, and imaging of various biological and technical objects. The biological response of ultra-intense X-ray pulses was assessed in cell-culture exposures. The results indicate that the biological response from ultra-intense X-ray exposures is similar to the response with conventional X-ray tubes. 82 refs., 14 figs.

  5. Hardness of the subchondral bone of the patella in the normal state, in chondromalacia, and in osteoarthrosis.

    Science.gov (United States)

    Björkström, S; Goldie, I F

    1982-06-01

    The hardness of bone is its property of withstanding the impact of a penetrating agent. It has been found that articular degenerative changes in, for example, the tibia (knee) are combined with a decrease in the hardness of the subchondral bone. In this investigation the hardness of subchondral bone in chondromalacia and osteoarthrosis of the patella has been analysed and compared with normal subchondral bone. Using an indentation method originally described by Brinell the hardness of the subchondral bone was evaluated in 7 normal patellae, in 20 with chondromalacia and in 33 with osteoarthrosis. A microscopic and microradiographic study of the subchondral bone was carried out simultaneously. Hardness was lowest in the normal material. The mean hardness value beneath the degenerated cartilage differed only slightly from that of the normal material, but the variation of values was increased. The hardness in bone in the chondromalacia area was lower than the hardness in bone covered by surrounding normal cartilage. The mean hardness value in bone beneath normal parts of cartilage in specimens with chondromalacia was higher than the mean hardness value of the normal material. In the microscopic and microradiographic examination it became evident that there was a relationship between trabecular structure and subchondral bone hardness; high values: coarse and solid structure; low values: slender and less regular structure.

  6. The slightly-enriched spectral shift control reactor

    International Nuclear Information System (INIS)

    Martin, W.R.; Lee, J.C.; Edlund, M.C.

    1990-06-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in larger neutron captures in fertile 238 U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 show that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies have been carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, effort will focus on performing the final design calculations and continuing the research to develop improved methods for tight lattice analysis

  7. Effect of intravitreal bevacizumab on diabetic macular edema with hard exudates

    Science.gov (United States)

    Jeon, Sohee; Lee, Won Ki

    2014-01-01

    Background We evaluated the efficacy of intravitreal bevacizumab on diabetic macular edema with subfoveal and perifoveal hard exudates. Materials and methods Eleven eyes (11 patients) exhibiting diabetic macular edema with subfoveal and perifoveal hard exudates were included in this prospective, nonrandomized interventional pilot study. All patients were treated with monthly scheduled intravitreal bevacizumab injections for 6 months. Changes in the Early Treatment Diabetic Retinopathy Study best corrected visual acuity, amount of hard exudates on fundus photography, and macular edema detected by central subfield thickness on spectral domain optical coherence tomography after six serial injections, were assessed. The amount of hard exudates at each visit was evaluated as pixels in fundus photography, using an Adobe Photoshop program. Results Ten of 11 patients completed follow-up. The mean Early Treatment Diabetic Retinopathy Study best corrected visual acuity was 59.9±5.7 letters (Snellen equivalent, 20/63) at baseline evaluation. The best corrected visual acuity exhibited no significant difference at month 6 compared with at baseline (57.9±6.0 letters or 20/70 at month 6; P=0.085). At month 6, mean central subfield thickness decreased from 370.4±56.5 to 334.6±65.0 μm (P=0.009). The mean amount of hard exudates increased from 4467.1±2736.1 to 6592.4±2498.3 pixels at month 6 (P=0.022). No serious adverse events occurred. Conclusion Continuous intravitreal bevacizumab was found to have no benefit in visual acuity and amount of hard exudates, despite the improvement of macular edema at 6 months. PMID:25143708

  8. Hard diffraction and small-x

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In the United States, phrases such as ''small-x evolution'', ''the BFKL Pomeron'', ''deep-inelastic rapiditygap events'' and ''hard-diffraction'' do not generate the same intensity of discussion amongst high-energy physicists that they do in Europe. However, for three days in the fall such discussion filled the air at Fermilab. The ''2nd Workshop on Small-x and Diffractive Physics at the Tevatron'' was a review of the rapid theoretical and experimental progress taking place in this field. Although Quantum Chromo-dynamics (QCD) has been established as the theory of strong interactions for twenty years, as yet neither perturbative high-energy calculations nor low-energy non-perturbative techniques have been successfully extended to the mixture of high energy and low transverse momenta which characterize traditional ''soft'' diffractive processes. The simplest soft diffractive process is elastic scattering. In this case it is easiest to accept that there is an exchanged ''pomeron'', which can be pictured as a virtual entity with no electric charge or strong charge (colour), perhaps like an excitation of the vacuum. The same pomeron is expected to appear in all diffractive processes. Understanding the pomeron in QCD is a fundamental theoretical and experimental challenge. In the last two or three years the ''frontier'' in this challenging area of QCD has been pushed back significantly in both theory and experiment. Progress has been achieved by studying the evolution of hard collisions to relatively smaller constituent momenta (small x) and by studying ''hard'' diffractive collisions containing simultaneous signatures of diffraction and hard perturbative processes. The hard processes have included high transverse momentum jet production, deep inelastic lepton scattering, and (most recently) W

  9. Recurrent pulse trains in the solar hard X-ray flare of 1980 June 7

    International Nuclear Information System (INIS)

    Kiplinger, A.L.; Dennis, B.R.; Frost, K.J.; Orwig, L.E.

    1983-01-01

    This study presents a detailed examination of the solar hard X-ray and γ-ray flare of 1980 June 7 as seen by the Hard X-Ray Burst Spectrometer on SMM. The hard X-ray profile is most unusual in that it is characterized by an initial pulse train of seven intense hard X-ray spikes. However, the event is unique among the 6300 events observed by HXRBS in that the temporal signature of this pulse train recurs twice during the flare. Such signatures of temporal stability in impulsive solar flares have not been observed before. Examinations of the hard X-ray data in conjunction with radio and γ-ray observations show that the 28--480 keV X-ray emission is simultaneous with the 17 GHz microwave fluxes within 128 ms and that the 3.5--6.5 MeV prompt γ-ray line emission is coincident with secondary maxima of the microwave and X-ray fluxes. Studies of the temporal and spectral properties of the pulses indicate that the pulses are not produced by purely reversible processes, and that if the source is oscillatory, it is not a high quality oscillator. Although the absence of spatially resolved hard X-ray observations leaves other possibilities open, a parameterization of the event as a set of seven sequentially firing loops is presented that offers many satisfying explanations of the observations

  10. Ground-state properties of a dilute homogeneous Bose gas of hard disks in two dimensions

    International Nuclear Information System (INIS)

    Mazzanti, F.; Polls, A.; Fabrocini, A.

    2005-01-01

    The energy and structure of a dilute hard-disks Bose gas are studied in the framework of a variational many-body approach based on a Jastrow correlated ground-state wave function. The asymptotic behaviors of the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation obtained by a free minimization of the hypernetted chain energy functional. Our results show important deviations from those of the available low density expansions, already at gas parameter values x∼0.001. The condensate fraction in 2D is also computed and found generally lower than the 3D one at the same x

  11. Design parameters of transmission curved crystal spectrometer for hard X-ray diagnoses

    International Nuclear Information System (INIS)

    Qian Feng; Cao Leifeng; Zhou Weimin; Zhao Zongqing; Gu Yuqiu; Yan Yonghong; Wei Lai; Xiao Shali

    2013-01-01

    The high resolving measurement of hard X-ray spectra generated in laser-produced plasma is usually performed using a cylindrically curved crystal spectrometer. In this paper, theoretical analysis and numerical simulation are performed to investigate the dependence of the energy range and resolving power on various design parameters, including crystal bending radius, source to crystal standoff distance, source size, location of the detector, etc. The investigation provides a means to design and develop cylindrically transmission curved crystal spectrometer which is used in hard X-ray diagnostics. The results show that crystal bending radius has a great influence on energy range of spectra and resolving power, and the separation between the spectral lines increases with the distance behind the focal circle faster than the line width, resulting in increased resolving power with distance. (authors)

  12. Determination of the Spectral Index in the Fission Spectrum Energy Regime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Amy Sarah [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-16

    Neutron reaction cross sections play a vital role in tracking the production and destruction of isotopes exposed to neutron fluence. They are central to the process of reconciling the initial and final atom inventories. Measurements of irradiated samples by radiochemical methods in tangent with an algorithm are used to evaluate the fluence a sample is exposed to over the course of the irradiation. This algorithm is the Isotope Production Code (IPC) created and used by the radiochemistry data assessment team at Los Alamos National Laboratory (LANL). An integral result is calculated by varying the total neutron fluence seen by a sample. A sample, irradiated in a critical assembly, will be exposed to a unique neutron flux defined by the neutron source and distance of the sample from the source. Neutron cross sections utilized are a function of the hardness of the neutron spectrum at the location of irradiation. A spectral index is used an indicator of the hardness of the neutron spectrum. Cross sections fit forms applied in IPC are collapsed from a LANL 30-group energy structure. Several decades of research and development have been performed to formalize the current IPC cross section library. Basis of the current fission spectrum neutron reaction cross section library is rooted in critical assembly experiments performed from the 1950’s through the early 1970’s at LANL. The focus of this report is development of the spectral index used an indicator of the hardness of the neutron spectrum in the fission spectrum energy regime.

  13. Swift Observations of Mrk 421 in Selected Epochs. II. An Extreme Spectral Flux Variability in 2009–2012

    Science.gov (United States)

    Kapanadze, B.; Vercellone, S.; Romano, P.; Hughes, P.; Aller, M.; Aller, H.; Kharshiladze, O.; Tabagari, L.

    2018-05-01

    We present the results from a detailed spectral and timing study of Mrk 421 based on the rich archival Swift data obtained during 2009–2012. Best fits of the 0.3–10 keV spectra were mostly obtained using the log-parabolic model showing the relatively low spectral curvature that is expected in the case of efficient stochastic acceleration of particles. The position of the synchrotron spectral energy density peak E p of 173 spectra is found at energies higher than 2 keV. The photon index at 1 keV exhibited a very broad range of values a = 1.51–3.02, and very hard spectra with a historical state and that corresponding to a rate higher than 100 cts s‑1. Moreover, 113 instances of intraday variability were revealed, exhibiting shortest flux-doubling/halving times of about 1.2 hr, as well as brightenings by 7%–24% in 180–720 s and declines by 68%–22% in 180–900 s. The X-ray and very high-energy fluxes generally showed a correlated variability, although one incidence of a more complicated variability was also detected, indicating that the multifrequency emission of Mrk 421 could not be generated in a single zone.

  14. Quantum spectral curve for arbitrary state/operator in AdS{sub 5}/CFT{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Nikolay [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); St.Petersburg INP,Gatchina, 188 300, St.Petersburg (Russian Federation); Kazakov, Vladimir [LPT, École Normale Superieure,24, rue Lhomond 75005 Paris (France); Université Paris-VI,Place Jussieu, 75005 Paris (France); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ08540 (United States); Leurent, Sébastien [Institut de Mathématiques de Bourgogne, UMR 5584 du CNRS,Université de Bourgogne, 9 avenue Alain Savary, 21000 DIJON (France); Volin, Dmytro [Nordita KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); School of Mathematics, Trinity College Dublin,College Green, Dublin 2 (Ireland)

    2015-09-28

    We give a derivation of quantum spectral curve (QSC) — a finite set of Riemann-Hilbert equations for exact spectrum of planar N=4 SYM theory proposed in our recent paper Phys. Rev. Lett. 112 (2014). We also generalize this construction to all local single trace operators of the theory, in contrast to the TBA-like approaches worked out only for a limited class of states. We reveal a rich algebraic and analytic structure of the QSC in terms of a so called Q-system — a finite set of Baxter-like Q-functions. This new point of view on the finite size spectral problem is shown to be completely compatible, though in a far from trivial way, with already known exact equations (analytic Y-system/TBA, or FiNLIE). We use the knowledge of this underlying Q-system to demonstrate how the classical finite gap solutions and the asymptotic Bethe ansatz emerge from our formalism in appropriate limits.

  15. Optical spectral weight anomalies and strong correlation

    International Nuclear Information System (INIS)

    Toschi, A.; Capone, M.; Ortolani, M.; Calvani, P.; Lupi, S.; Castellani, C.

    2007-01-01

    The anomalous behavior observed in the optical spectral weight (W) of the cuprates provides valuable information about the physics of these compounds. Both the doping and the temperature dependences of W are hardly explained through conventional estimates based on the f-sum rule. By computing the optical conductivity of the doped Hubbard model with the Dynamical Mean Field Theory, we point out that the strong correlation plays a key role in determining the basic features of the observed anomalies: the proximity to a Mott insulating phase accounts simultaneously for the strong temperature dependence of W and for its zero temperature value

  16. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states

    International Nuclear Information System (INIS)

    Gamba, Irene M.; Tharkabhushanam, Sri Harsha

    2009-01-01

    We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann transport equation (BTE) in d-dimensions for variable hard sphere (VHS) collision kernels with conservative or non-conservative binary interactions. The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computation is reduced to a separate integral over the unit sphere S d-1 . The conservation of moments is enforced by Lagrangian constraints. The resulting scheme, implemented in free space, is very versatile and adjusts in a very simple manner to several cases that involve energy dissipation due to local micro-reversibility (inelastic interactions) or elastic models of slowing down process. Our simulations are benchmarked with available exact self-similar solutions, exact moment equations and analytical estimates for the homogeneous Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmarking of the simulations involves the selection of a time self-similar rescaling of the numerical distribution function which is performed using the continuous spectrum of the equation for Maxwell molecules as studied first in Bobylev et al. [A.V. Bobylev, C. Cercignani, G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, Journal of Statistical Physics 111 (2003) 403-417] and generalized to a wide range of related models in Bobylev et al. [A.V. Bobylev, C. Cercignani, I.M. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Communication in Mathematical Physics, in press. URL: ( )]. The method also produces accurate results in the case of inelastic diffusive Boltzmann equations for hard spheres (inelastic collisions under thermal bath), where overpopulated non-Gaussian exponential tails have been conjectured in computations by stochastic methods [T.V. Noije, M. Ernst, Velocity distributions in homogeneously

  17. The detection of 'virtual' objects using echoes by humans: Spectral cues.

    Science.gov (United States)

    Rowan, Daniel; Papadopoulos, Timos; Archer, Lauren; Goodhew, Amanda; Cozens, Hayley; Lopez, Ricardo Guzman; Edwards, David; Holmes, Hannah; Allen, Robert

    2017-07-01

    Some blind people use echoes to detect discrete, silent objects to support their spatial orientation/navigation, independence, safety and wellbeing. The acoustical features that people use for this are not well understood. Listening to changes in spectral shape due to the presence of an object could be important for object detection and avoidance, especially at short range, although it is currently not known whether it is possible with echolocation-related sounds. Bands of noise were convolved with recordings of binaural impulse responses of objects in an anechoic chamber to create 'virtual objects', which were analysed and played to sighted and blind listeners inexperienced in echolocation. The sounds were also manipulated to remove cues unrelated to spectral shape. Most listeners could accurately detect hard flat objects using changes in spectral shape. The useful spectral changes for object detection occurred above approximately 3 kHz, as with object localisation. However, energy in the sounds below 3 kHz was required to exploit changes in spectral shape for object detection, whereas energy below 3 kHz impaired object localisation. Further recordings showed that the spectral changes were diminished by room reverberation. While good high-frequency hearing is generally important for echolocation, the optimal echo-generating stimulus will probably depend on the task. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Accretion States of the Galactic Micro Quasar GRS 1758-258

    Science.gov (United States)

    Soria, Roberto; Mehdipour, Missagh; Broderick, Jess W.; Hao, JingFang; Hannikainen, Diana C.; Pottschmidt, Katja; Zhang, Shuang-Nan

    2011-01-01

    We present the results of a radio and X-ray study of the Galactic micro quasar GRS 1758-258, using unpublished archival data and new observations. We focus in particular on the 2000-2002 state transitions, and on its more quiet behaviour in 2008-2009. Our spectral and timing analysis of the XMM-Newton data shows that the source was in the canonical intermediate, soft and hard states in 2000 September 19,2001 March 22 and 2002 September 28, respectively. We estimate the disk size, luminosity and temperature, which are consistent with a black hole mass approx.10 Solar Mass, There is much overlap between the range of total X-ray luminosities (on average approx. 0.02L(sub Edd)) in the hard and soft states, and probably between the corresponding mass accretion rates; in fact, the hard state is often more luminous. The extended radio lobes seen in 1992 and 1997 are still present in 2008-2009. The 5-GHz radio core flux density has shown variability between approx. 0.1-0.5 mJy over the last two decades. This firmly places GRS 1758-258 in the radio-quiet sequence of Galactic black holes, in the radio/X-ray plane. We note that this dichotomy is similar to the dichotomy between the radio/X-ray sequences of Seyfert and radio galaxies. We propose that the different radio efficiency of the two sequences is due to relativistic electron/positron jets in radio-loud black holes, and sub-relativistic, thermally dominated outflows in radio-quiet sources.

  19. Soft drink effects on sensorimotor rhythm brain computer interface performance and resting-state spectral power.

    Science.gov (United States)

    Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He

    2016-08-01

    Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.

  20. Discovery and Evolution of the New Black Hole Candidate Swift J1539.2-6227 During Its 2008 Outburst

    Science.gov (United States)

    Krimm, H. A.; Tomsick, J. A.; Markwardt, C. B.; Brocksopp, C.; Grise, F.; Kaaret, P.; Romano, P.

    2010-01-01

    We report on the discovery by the Swift Gamma-Ray Burst Explorer of the black hole candidate Swift J1539.2-6227 and the subsequent course of an outburst beginning in November 2008 and lasting at least seven months. The source was discovered during normal observations with the Swift Burst Alert Telescope (BAT) on 2008 November 25. An extended observing campaign with the Rossi X-Ray Timing Explorer (RXTE) and Swift provided near-daily coverage over 176 days, giving us a rare opportunity to track the evolution of spectral and timing parameters with fine temporal resolution through a series of spectral states. The source was first detected in a hard state during which strong low-frequency quasiperiodic oscillations (QPOs) were detected. The QPOs persisted for about 35 days and a signature of the transition from the hard to soft intermediate states was seen in the timing data. The source entered a short-lived thermal state about 40 days after the start of the outburst. There were variations in spectral hardness as the source flux declined and returned to a hard state at the end of the outburst. The progression of spectral states and the nature of the timing features provide strong evidence that Swift J1539.2-6227 is a candidate black hole in a low-mass X-ray binary system.

  1. Multimodal imaging of small hard retinal drusen in young healthy adults

    DEFF Research Database (Denmark)

    Pedersen, Hilde R; Gilson, Stuart J; Dubra, Alfredo

    2018-01-01

    BACKGROUND: Small hard macular drusen can be observed in the retina of adults as young as 18 years of age. Here, we seek to describe the in vivo topography and geometry of these drusen. METHODS: Retinal images were acquired in young, healthy adults using colour fundus photography, spectral domain...... the foveal centre were characterised. RESULTS: Small hard drusen were seen on colour photographs in 21 out of 97 participants and 26 drusen in 12 eyes in 11 participants were imaged using the full protocol. Drusen were easily identifiable in all modalities, except a few very small ones, which were...... not visible on SD-OCT. On AOSLO images, these drusen appeared as round, oval or lobular areas (up to three lobules) of diameter 22-61 µm where cone photoreceptor reflectivity and density was decreased (p=0.049). This was usually associated with discrete thickening of the retinal pigment epithelium (RPE...

  2. [The elemental composition of teeth hard tissues depending on the state of the environment].

    Science.gov (United States)

    Suladze, N; Shishniashvili, T; Margvelashvili, V; Kobakhidze, K

    2014-01-01

    At present, great attention is paid to the origin of man-made micro elemental anomalies. To monitor the state of the environment and its effects on the human body, of great importance is the determination of the amount and distribution of various chemical elements in the dentin and enamel of the teeth. To determine the essential (Ca, Zn, Mn, Ni), conditionally essential (Rb, Ni, Sr) and toxic (Pb, Hg) trace elements in the mineralized tissues of the teeth and to identify the relationship between the elemental composition of the tooth structure and the state of the general and dental health depending on the state of the environment, we have examined 29 children aged 3-4 years who have carried out analysis of hard tissue of teeth (teeth used for remote medical reasons) for the maintenance of nine chemical elements. Children living in a relatively environmentally favorable conditions essential value and conditionally essential elements in the mineralized tissues of the teeth were within normal limits, and toxic elements slightly increased limits that differ from those of children living in environmentally disadvantaged areas. In particular, these essential elements were significantly reduced (except for zinc), as indicators of toxic elements - mercury and lead, increased by 12.5% and 44.5%, respectively, which is clearly reflected on the state of dental health because noted decompensated form of tooth decay. Thus, deviations in a state of general and dental health of children associated with an imbalance of macro-and microelements in the mineralized tissues of the teeth.

  3. A Skew-t space-varying regression model for the spectral analysis of resting state brain activity.

    Science.gov (United States)

    Ismail, Salimah; Sun, Wenqi; Nathoo, Farouk S; Babul, Arif; Moiseev, Alexader; Beg, Mirza Faisal; Virji-Babul, Naznin

    2013-08-01

    It is known that in many neurological disorders such as Down syndrome, main brain rhythms shift their frequencies slightly, and characterizing the spatial distribution of these shifts is of interest. This article reports on the development of a Skew-t mixed model for the spatial analysis of resting state brain activity in healthy controls and individuals with Down syndrome. Time series of oscillatory brain activity are recorded using magnetoencephalography, and spectral summaries are examined at multiple sensor locations across the scalp. We focus on the mean frequency of the power spectral density, and use space-varying regression to examine associations with age, gender and Down syndrome across several scalp regions. Spatial smoothing priors are incorporated based on a multivariate Markov random field, and the markedly non-Gaussian nature of the spectral response variable is accommodated by the use of a Skew-t distribution. A range of models representing different assumptions on the association structure and response distribution are examined, and we conduct model selection using the deviance information criterion. (1) Our analysis suggests region-specific differences between healthy controls and individuals with Down syndrome, particularly in the left and right temporal regions, and produces smoothed maps indicating the scalp topography of the estimated differences.

  4. Imaging the equilibrium state and magnetization dynamics of partially built hard disk write heads

    Energy Technology Data Exchange (ETDEWEB)

    Valkass, R. A. J., E-mail: rajv202@ex.ac.uk; Yu, W.; Shelford, L. R.; Keatley, P. S.; Loughran, T. H. J.; Hicken, R. J. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Cavill, S. A. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Laan, G. van der; Dhesi, S. S. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Bashir, M. A.; Gubbins, M. A. [Research and Development, Seagate Technology, 1 Disc Drive, Springtown Industrial Estate, Derry BT48 0BF (United Kingdom); Czoschke, P. J.; Lopusnik, R. [Recording Heads Operation, Seagate Technology, 7801 Computer Avenue South, Bloomington, Minnesota 55435 (United States)

    2015-06-08

    Four different designs of partially built hard disk write heads with a yoke comprising four repeats of NiFe (1 nm)/CoFe (50 nm) were studied by both x-ray photoemission electron microscopy (XPEEM) and time-resolved scanning Kerr microscopy (TRSKM). These techniques were used to investigate the static equilibrium domain configuration and the magnetodynamic response across the entire structure, respectively. Simulations and previous TRSKM studies have made proposals for the equilibrium domain configuration of similar structures, but no direct observation of the equilibrium state of the writers has yet been made. In this study, static XPEEM images of the equilibrium state of writer structures were acquired using x-ray magnetic circular dichroism as the contrast mechanism. These images suggest that the crystalline anisotropy dominates the equilibrium state domain configuration, but competition with shape anisotropy ultimately determines the stability of the equilibrium state. Dynamic TRSKM images were acquired from nominally identical devices. These images suggest that a longer confluence region may hinder flux conduction from the yoke into the pole tip: the shorter confluence region exhibits clear flux beaming along the symmetry axis, whereas the longer confluence region causes flux to conduct along one edge of the writer. The observed variations in dynamic response agree well with the differences in the equilibrium magnetization configuration visible in the XPEEM images, confirming that minor variations in the geometric design of the writer structure can have significant effects on the process of flux beaming.

  5. Spectral functions from Quantum Monte Carlo

    International Nuclear Information System (INIS)

    Silver, R.N.

    1989-01-01

    In his review, D. Scalapino identified two serious limitations on the application of Quantum Monte Carlo (QMC) methods to the models of interest in High T c Superconductivity (HTS). One is the ''sign problem''. The other is the ''analytic continuation problem'', which is how to extract electron spectral functions from QMC calculations of the imaginary time Green's functions. Through-out this Symposium on HTS, the spectral functions have been the focus for the discussion of normal state properties including the applicability of band theory, Fermi liquid theory, marginal Fermi liquids, and novel non-perturbative states. 5 refs., 1 fig

  6. Modulation of stimulus-induced 20-Hz activity for the tongue and hard palate during tongue movement in humans.

    Science.gov (United States)

    Maezawa, Hitoshi; Onishi, Kaori; Yagyu, Kazuyori; Shiraishi, Hideaki; Hirai, Yoshiyuki; Funahashi, Makoto

    2016-01-01

    Modulation of 20-Hz activity in the primary sensorimotor cortex (SM1) may be important for oral functions. Here, we show that 20-Hz event-related desynchronization/synchronization (20-Hz ERD/ERS) is modulated by sensory input and motor output in the oral region. Magnetic 20-Hz activity was recorded following right-sided tongue stimulation during rest (Rest) and self-paced repetitive tongue movement (Move). To exclude proprioception effects, 20-Hz activity induced by right-sided hard palate stimulation was also recorded. The 20-Hz activity in the two conditions was compared via temporal spectral evolution analyses. 20-Hz ERD/ERS was detected over bilateral temporoparietal areas in the Rest condition for both regions. Moreover, 20-Hz ERS was significantly suppressed in the Move condition for both regions. Detection of 20-Hz ERD/ERS during the Rest condition for both regions suggests that the SM1 functional state may be modulated by oral stimulation, with or without proprioceptive effects. Moreover, the suppression of 20-Hz ERS for the hard palate during the Move condition suggests that the stimulation-induced functional state of SM1 may have been modulated by the movement, even though the movement and stimulation areas were different. Sensorimotor function of the general oral region may be finely coordinated through 20-Hz cortical oscillation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Spectral entropy and haemodynamic response to surgery during ...

    African Journals Online (AJOL)

    Adele

    Spectral entropy and haemodynamic response to surgery during sevoflurane anaesthesia. Introduction. Apart from somatic responses, surgery also evokes autonomic responses, including haemodynamic responses. Spectral entropy has been validated as a means to monitor the hypnotic state during sevoflurane ...

  8. The peculiarities of spectral manifestations of high-voltage electric discharge in different phase states of ion systems.

    Science.gov (United States)

    Gafurov, M M; Aliev, A R; Ataev, M B; Rabadanov, K Sh

    2013-10-01

    The effects of high-voltage pulsed discharge (HVPD activation) on vibrational spectra of ion salt systems have been studied. The peculiarities of spectral display of HVPD in ion melts and aqueous solutions of electrolytes, in ion-conducting phases of crystalline and glassy salt systems have been investigated. After HVPD a salt system is in non-equilibrium activated state. In the activated state of a salt system, the relaxation time of the vibrational excited states of molecular ions is shorter than in the equilibrium state if the vibrational relaxation rate increases with temperature in the system. For those systems for which the relaxation rate decreases at elevated temperatures, the relaxation time of the vibrational excited states of molecular ions is longer than in the equilibrium state. HVPD activation of a salt system can change the configuration of the electron shell of molecular ions. Therefore, the lifetime values of activated state of salt systems are abnormally large. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. NuSTAR DETECTION OF HARD X-RAY PHASE LAGS FROM THE ACCRETING PULSAR GS 0834–430

    Energy Technology Data Exchange (ETDEWEB)

    Miyasaka, Hiromasa; Harrison, Fiona A.; Fürst, Felix; Bellm, Eric C.; Grefenstette, Brian W.; Madsen, Kristin K.; Walton, Dominic J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bachetti, Matteo; Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France); Boggs, Steven E.; Craig, William W.; Tomsick, John A. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Chakrabarty, Deepto [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Chenevez, Jerome; Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Natalucci, Lorenzo [Istituto di Astrofisica e Planetologia Spaziali, INAF, Via Fosso del Cavaliere 100, Roma I-00133 (Italy); Pottschmidt, Katja [CRESST, UMBC, and NASA GSFC, Code 661, Greenbelt, MD 20771 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wilms, Jörn, E-mail: miyasaka@srl.caltech.edu [Dr. Karl-Remeis-Sternwarte and ECAP, Sternwartstr. 7, D-96049 Bamberg (Germany); and others

    2013-09-20

    The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst—the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV with high statistical significance. We find the phase-averaged spectrum to be consistent with that observed in many other magnetized, accreting pulsars. We fail to detect cyclotron resonance scattering features that would allow us to constrain the pulsar's magnetic field in either phase-averaged or phase-resolved spectra. Timing analysis shows a clearly detected pulse period of ∼12.29 s in all energy bands. The pulse profiles show a strong, energy-dependent hard phase lag of up to 0.3 cycles in phase, or about 4 s. Such dramatic energy-dependent lags in the pulse profile have never before been reported in high-mass X-ray binary pulsars. Previously reported lags have been significantly smaller in phase and restricted to low energies (E < 10 keV). We investigate the possible mechanisms that might produce this energy-dependent pulse phase shift. We find the most likely explanation for this effect is a complex beam geometry.

  10. A reconstruction algorithm for three-dimensional object-space data using spatial-spectral multiplexing

    Science.gov (United States)

    Wu, Zhejun; Kudenov, Michael W.

    2017-05-01

    This paper presents a reconstruction algorithm for the Spatial-Spectral Multiplexing (SSM) optical system. The goal of this algorithm is to recover the three-dimensional spatial and spectral information of a scene, given that a one-dimensional spectrometer array is used to sample the pupil of the spatial-spectral modulator. The challenge of the reconstruction is that the non-parametric representation of the three-dimensional spatial and spectral object requires a large number of variables, thus leading to an underdetermined linear system that is hard to uniquely recover. We propose to reparameterize the spectrum using B-spline functions to reduce the number of unknown variables. Our reconstruction algorithm then solves the improved linear system via a least- square optimization of such B-spline coefficients with additional spatial smoothness regularization. The ground truth object and the optical model for the measurement matrix are simulated with both spatial and spectral assumptions according to a realistic field of view. In order to test the robustness of the algorithm, we add Poisson noise to the measurement and test on both two-dimensional and three-dimensional spatial and spectral scenes. Our analysis shows that the root mean square error of the recovered results can be achieved within 5.15%.

  11. UV radiation hardness of silicon inversion layer solar cells

    International Nuclear Information System (INIS)

    Hezel, R.

    1990-01-01

    For full utilization of the high spectral response of inversion layer solar cells in the very-short-wavelength range of the solar spectrum sufficient ultraviolet-radiation hardness is required. In addition to the charge-induced passivation achieved by cesium incorporation into the silicon nitride AR coating, in this paper the following means for further drastic reduction of UV light-induced effects in inversion layer solar cells without encapsulation are introduced and interpretations are given: increasing the nitride deposition temperature, silicon surface oxidation at low temperatures, and texture etching and using higher substrate resistivities. High UV radiation tolerance and improvement of the cell efficiency could be obtained simultaneously

  12. Monitoring the Galactic - Search for Hard X-Ray Transients

    Science.gov (United States)

    Marshall, Francis

    Hard X-ray transients with fluxs from ~1 to ~30 mCrab are a common feature of the galactic plane with apparent concentrations in specific regions of the plane. Concentrations in the Scutum and Carina fields probably indicate an enhancement of Be X-ray binaries along the tangent direction of two spiral arms. The frequency of outbursts suggest that at any one time 1 or 2 transients are active in the Scutum field alone. We propose weekly scans of the galactic plane to understand this population of sources. The scans will also monitor about 50 already known sources with better spectral information than available with the ASM.

  13. Study on spectral entropy of two-phase flow density wave instability

    International Nuclear Information System (INIS)

    Zhang Zuoyi

    1992-05-01

    By using mathematic proof, spectral entropy calculations for simple examples and a practical two-phase flow system, it has been proved that under the same stochastic input, the output spectral entropy of a stable linear system is in maximum, while for an unstable linear system, its entropy is in relative lower level. Because the spectral entropy describes the output uncertainty of a system and the second law of thermodynamics rules the direction of natural tendency, the spontaneous process can develop only toward the direction of uncertainty increasing, and the opposite is impossible. It seems that the physical mechanism of the stability of a system can be explained as following: Any deviation from its original state of a stable system will reduce the spectral entropy and violate the natural tendency so that the system will return to original state. On the contrary, the deviation from its original state of an unstable system will increase the spectral entropy that will enhance the deviation and the system will be further away from its original state

  14. Subgroup report on hard x-ray microprobes

    International Nuclear Information System (INIS)

    Ice, G.E.; Barbee, T.; Bionta, R.; Howells, M.; Thompson, A.C.; Yun, W.

    1994-01-01

    The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E≥5 keV) microprobes. New x-ray optics have been demonstrated which show promise for achieving intense submicron hard x-ray probes. These probes will be used for extraordinary elemental detection by x-ray fluorescence/absorption and for microdiffraction to identify phase and strain. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature makes the development of an advanced hard x-ray microprobe an important national goal. In this workshop state-of-the-art hard x-ray microprobe optics were described and future directions were discussed. Gene Ice, Oak Ridge National Laboratory (ORNL), presented an overview of the current status of hard x-ray microprobe optics and described the use of crystal spectrometers to improve minimum detectable limits in fluorescent microprobe experiments. Al Thompson, Lawrence Berkeley Laboratory (LBL), described work at the Center for X-ray Optics to develop a hard x-ray microprobe based on Kirkpatrick-Baez (KB) optics. Al Thompson also showed the results of some experimental measurements with their KB optics. Malcolm Howells presented a method for bending elliptical mirrors and Troy Barbee commented on the use of graded d spacings to achieve highest efficiency in KB multilayer microfocusing. Richard Bionta, Lawrence Livermore National Laboratory (LLNL), described the development of the first hard x-ray zone plates and future promise of so called open-quotes jelly rollclose quotes or sputter slice zone plates. Wenbing Yun, Argonne National Laboratory (ANL), described characterization of jelly roll and lithographically produced zone plates and described the application of zone plates to focus extremely narrow bandwidths by nuclear resonance. This report summarizes the presentations of the workshop subgroup on hard x-ray microprobes

  15. Effective spectral function for quasielastic scattering on nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bodek, A.; Coopersmith, B. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Christy, M.E. [Hampton University, Hampton, VA (United States)

    2014-10-15

    Spectral functions that are used in neutrino event, generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν dependence of predictions of these spectral functions for the QE differential cross sections (d{sup 2}σ/dQ{sup 2}dν) are in disagreement with the prediction of the ψ' superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ' superscaling formalism can be well described with a modified effective spectral function (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data. (orig.)

  16. Effective spectral function for quasielastic scattering on nuclei

    International Nuclear Information System (INIS)

    Bodek, A.; Coopersmith, B.; Christy, M.E.

    2014-01-01

    Spectral functions that are used in neutrino event, generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν dependence of predictions of these spectral functions for the QE differential cross sections (d 2 σ/dQ 2 dν) are in disagreement with the prediction of the ψ' superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ' superscaling formalism can be well described with a modified effective spectral function (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data. (orig.)

  17. The Wertheim integral equation theory with the ideal chain approximation and a dimer equation of state: Generalization to mixtures of hard-sphere chain fluids

    International Nuclear Information System (INIS)

    Chang, J.; Sandler, S.I.

    1995-01-01

    We have extended the Wertheim integral equation theory to mixtures of hard spheres with two attraction sites in order to model homonuclear hard-sphere chain fluids, and then solved these equations with the polymer-Percus--Yevick closure and the ideal chain approximation to obtain the average intermolecular and overall radial distribution functions. We obtain explicit expressions for the contact values of these distribution functions and a set of one-dimensional integral equations from which the distribution functions can be calculated without iteration or numerical Fourier transformation. We compare the resulting predictions for the distribution functions with Monte Carlo simulation results we report here for five selected binary mixtures. It is found that the accuracy of the prediction of the structure is the best for dimer mixtures and declines with increasing chain length and chain-length asymmetry. For the equation of state, we have extended the dimer version of the thermodynamic perturbation theory to the hard-sphere chain mixture by introducing the dimer mixture as an intermediate reference system. The Helmholtz free energy of chain fluids is then expressed in terms of the free energy of the hard-sphere mixture and the contact values of the correlation functions of monomer and dimer mixtures. We compared with the simulation results, the resulting equation of state is found to be the most accurate among existing theories with a relative average error of 1.79% for 4-mer/8-mer mixtures, which is the worst case studied in this work. copyright 1995 American Institute of Physics

  18. Spectral synchronicity in brain signals

    KAUST Repository

    de Jesus Euan Campos, Carolina; Ombao, Hernando; Ortega, Joaquí n

    2018-01-01

    This paper addresses the problem of identifying brain regions with similar oscillatory patterns detected from electroencephalograms. We introduce the hierarchical spectral merger (HSM) clustering method where the feature of interest is the spectral curve and the similarity metric used is the total variance distance. The HSM method is compared with clustering using features derived from independent-component analysis. Moreover, the HSM method is applied to 2 different electroencephalogram datasets. The first was recorded at resting state where the participant was not engaged in any cognitive task; the second was recorded during a spontaneous epileptic seizure. The results of the analyses using the HSM method demonstrate that clustering could evolve over the duration of the resting state and during epileptic seizure.

  19. Spectral synchronicity in brain signals

    KAUST Repository

    de Jesus Euan Campos, Carolina

    2018-05-04

    This paper addresses the problem of identifying brain regions with similar oscillatory patterns detected from electroencephalograms. We introduce the hierarchical spectral merger (HSM) clustering method where the feature of interest is the spectral curve and the similarity metric used is the total variance distance. The HSM method is compared with clustering using features derived from independent-component analysis. Moreover, the HSM method is applied to 2 different electroencephalogram datasets. The first was recorded at resting state where the participant was not engaged in any cognitive task; the second was recorded during a spontaneous epileptic seizure. The results of the analyses using the HSM method demonstrate that clustering could evolve over the duration of the resting state and during epileptic seizure.

  20. The Spectral Properties of Gamma-ray Bursts: a Review of Recent Development

    Science.gov (United States)

    Teegarden, B. J.

    1983-01-01

    Developments in the spectroscopy of gamma ray bursts (GRB) are reviewed. The general question of the validity of the spectral results, particularly with regard to features in the spectrum, is discussed. Confirmations of these spectral features are summarized. Results from the KONUS experiments on Venera 13 and 14 are reviewed. The status of models of the continuum spectrum is summarized. A number of different radiation mechanisms appear capable of fitting the data. These include thermal bremsstrahlung, thermal synchrotron and inverse Compton. Rapid variability of the spectra shape on time scales 76] 0.25 sec. was reported. The characteristic energy of the spectrum was observed to vary over nearly an order of magnitude during individual events. A strong correlation between spectral hardness and luminosity was found. Low-energy (50 keV) absorption features and high-energy (400 keV) emission features continue to appear in GRB spectra. Understanding the origin of these lines in the context of the existing continuum models remains a difficult problem.

  1. Towards NNLL resummation. Hard matching coefficients for squark and gluino hadroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Beenakker, Wim; Janssen, Tim; Lepoeter, Susanne; Niessen, Irene; Daal, Tom van [Nijmegen Univ. (Netherlands). Theoretical High Energy Physics; Kraemer, Michael [RWTH Aachen (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Kulesza, Anna [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Laenen, Eric [Amsterdam Univ. (Netherlands). ITFA; Utrecht Univ. (Netherlands). ITF; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands); Thewes, Silja [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    We present the hard matching coefficients for squark and gluino hadroproduction. The hard matching coefficients follow from the next-to-leading order cross section near threshold and are an important ingredient for performing threshold resummation at next-to-next-to-leading logarithmic accuracy. We discuss the calculation, list the analytical results and study the numerical impact of these corrections. We find that the impact of the hard matching coefficients can be considerable, with the largest effect observed for final states involving gluinos.

  2. Black hole and neutron star soft X-ray transients: a hard X-ray view of their outbursts

    International Nuclear Information System (INIS)

    Yu, W.

    2004-01-01

    The RXTE public observations of the outbursts of black hole soft X-ray transients XTE J1550-564, XTE J1859+226, 4U 1630-47, XTE J1118+480, XTE J1650-500, and the neutron star soft X-ray transients 4U 1608-52, Aquila X-1, including a variable 'persistent' neutron star low mass X-ray binary 4U 1705-44, are summarized in this paper. The hard X-ray view of those outbursts, which is quite different from that of the soft X-ray band, suggests that there are several types of outbursts which result in different hard X-ray outburst profile - the outburst profiles are energy dependent. One type is the low/hard state outbursts, the other type is the outburst showing transitions from the low/hard state to the high/soft state, or to the intermediate or to the very high state. The later has an initial low/hard state, introducing the phenomena that the hard X-ray precedes the soft X-ray in the outburst rise. Such outbursts in XTE J1550-564, Aql X-1 and 4U 1705-44 support a two-accretion-flow model which involves one Keplerian disk flow and one sub-Keplerian flow for the initial outburst rise

  3. Hard Break-Up of Two-Nucleons and QCD Dynamics of NN Interaction

    International Nuclear Information System (INIS)

    Sargsian, Misak

    2008-01-01

    We discus recent developments in theory of high energy two-body break-up of few-nucleon systems. The characteristics of these reactions are such that the hard two-body quasielastic subprocess can be clearly separated from the accompanying soft subprocesses. We discuss in details the hard rescattering model (HRM) in which hard photodisintegration develops in two stages. At first, photon knocks-out an energetic quark which rescatters subsequently with a quark of the other nucleon. The latter provides a mechanism of sharing the initial high momentum of the photon between two outgoing nucleons. This final state hard rescattering can be expressed through the hard NN scattering amplitude. Within HRM we discuss hard break-up reactions involving D and 3 He targets and demonstrate how these reactions are sensitive to the dynamics of hard pn and pp interaction. Another development of HRM is the prediction of new helicity selection mechanism for hard two-body reactions, which was apparently confirmed in the recent JLab experiment.

  4. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  5. Discovery and Monitoring of a New Black Hole Candidate XTE J1752-223 with RXTE: RMS Spectrum Evolution, BH Mass and the Source Distance

    Science.gov (United States)

    Shaposhinikov, Nikolai; Markwardt, Craig; Swank, Jean; Krimm, Hans

    2010-01-01

    We report on the discovery and monitoring observations of a new galactic black hole candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on October 21 2009 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/highsoft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass black hole binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a black body spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (RMS) variability in the RXTE/PCA energy band with the source spectral state and conclude that broad band variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hardto- soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source about 3.5 kiloparsec.

  6. In situ chemical state analysis of buried polymer/metal adhesive interface by hard X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ozawa, Kenichi; Kakubo, Takashi; Shimizu, Katsunori; Amino, Naoya; Mase, Kazuhiko; Ikenaga, Eiji; Nakamura, Tetsuya; Kinoshita, Toyohiko; Oji, Hiroshi

    2014-01-01

    Highlights: • Chemical state analysis of the buried rubber/brass interface is conducted by HAXPES. • Ultrathin rubber films are prepared on the brass surface by two methods. • A high density of Cu 2 S is found on the rubber side of the buried adhesive layer. • The chemical states of the buried and exposed interfaces are compared. - Abstract: Chemical state analysis of adhesive interfaces is important to understand an adhesion mechanism between two different materials. Although photoelectron spectroscopy (PES) is an ideal tool for such an analysis, the adhesive interfaces must be exposed to the surface because PES is essentially a surface sensitive technique. However, an in situ observation is possible by hard X-ray PES (HAXPES) owing to its large probing depth. In the present study, HAXPES is applied to investigate the adhesive interface between rubber and brass without exposing the interface. It is demonstrated that copper sulfides formed at the buried rubber/brass interface are distinguished from S-containing species in the rubber overlayer. The chemical state of the buried interface is compared with that of the “exposed” interface prepared by so-called a filter-paper method

  7. Spectral functions from hadronic τ decays

    International Nuclear Information System (INIS)

    Davier, Michel

    2002-01-01

    Hadronic decays of the τ lepton provide a clean environment to study hadron dynamics in an energy regime dominated by romances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonpertubative contributions. the τ vector spectral functions for the 2π and 4π final states are used together with e p+ e p- data in order to compute vacuum polarization integrals occurring in the calculations of the anomalous magnetic moment of the muon and the running of the electromagnetic coupling

  8. A comparison of calculated and measured background noise rates in hard X-ray telescopes at balloon altitude

    Science.gov (United States)

    Dean, A. J.; Dipper, N. A.; Lewis, R. A.; Perotti, F.

    1985-01-01

    An actively shielded hard X-ray astronomical telescope has been flown on stratospheric balloons. An attempt is made to compare the measured spectral distribution of the background noise counting rates over the energy loss range 20-300 keV with the contributions estimated from a series of Monte Carlo and other computations. The relative contributions of individual particle interactions are assessed.

  9. Hard Distraction and Deep Inelastic Scattering

    International Nuclear Information System (INIS)

    BJORKEN, J.D.

    1994-01-01

    Since the advent of hard-collision physics, the study of diffractive processes- 'shadow physics' - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word 'diffraction' is sometimes used by high-energy physicists in a loose way. So I here begin by defining what I mean by the term: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the 'lego' phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width Δη does not have a power-law decrease with increasing sub energy Δη, but behaves at most like some power of pseudorapidity Δη∼ logs. The term 'hard diffraction' shall simply refer to those diffractive processes which have jets in the final-state phase-space. We may also distinguish, if desired, two subclasses, as suggested by Ingelman i) Diffractive hard processes have jets on only one side of the rapidity gap. ii) Hard diffractive processes have jets on both sides of the rapidity gap

  10. Hard Copy Market Overview

    Science.gov (United States)

    Testan, Peter R.

    1987-04-01

    during 1987. The color hard copy market continues to be in a state of constant change, typical of any immature market. However, much of the change is positive. During 1985, the color hard copy market generated 1.2 billion. By 1990, total market revenue is expected to exceed 5.5 billion. The business graphics CHC application area is expected to grow at a compound annual growth rate greater than 40 percent to 1990.

  11. Towards Operational Definition of Postictal Stage: Spectral Entropy as a Marker of Seizure Ending

    Directory of Open Access Journals (Sweden)

    Ancor Sanz-García

    2017-02-01

    Full Text Available The postictal period is characterized by several neurological alterations, but its exact limits are clinically or even electroencephalographically hard to determine in most cases. We aim to provide quantitative functions or conditions with a clearly distinguishable behavior during the ictal-postictal transition. Spectral methods were used to analyze foramen ovale electrodes (FOE recordings during the ictal/postictal transition in 31 seizures of 15 patients with strictly unilateral drug resistant temporal lobe epilepsy. In particular, density of links, spectral entropy, and relative spectral power were analyzed. Partial simple seizures are accompanied by an ipsilateral increase in the relative Delta power and a decrease in synchronization in a 66% and 91% of the cases, respectively, after seizures offset. Complex partial seizures showed a decrease in the spectral entropy in 94% of cases, both ipsilateral and contralateral sides (100% and 73%, respectively mainly due to an increase of relative Delta activity. Seizure offset is defined as the moment at which the “seizure termination mechanisms” actually end, which is quantified in the spectral entropy value. We propose as a definition for the postictal start the time when the ipsilateral SE reaches the first global minimum.

  12. Spectral Learning for Supervised Topic Models.

    Science.gov (United States)

    Ren, Yong; Wang, Yining; Zhu, Jun

    2018-03-01

    Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.

  13. Statistical Analysis of Spectral Properties and Prosodic Parameters of Emotional Speech

    Science.gov (United States)

    Přibil, J.; Přibilová, A.

    2009-01-01

    The paper addresses reflection of microintonation and spectral properties in male and female acted emotional speech. Microintonation component of speech melody is analyzed regarding its spectral and statistical parameters. According to psychological research of emotional speech, different emotions are accompanied by different spectral noise. We control its amount by spectral flatness according to which the high frequency noise is mixed in voiced frames during cepstral speech synthesis. Our experiments are aimed at statistical analysis of cepstral coefficient values and ranges of spectral flatness in three emotions (joy, sadness, anger), and a neutral state for comparison. Calculated histograms of spectral flatness distribution are visually compared and modelled by Gamma probability distribution. Histograms of cepstral coefficient distribution are evaluated and compared using skewness and kurtosis. Achieved statistical results show good correlation comparing male and female voices for all emotional states portrayed by several Czech and Slovak professional actors.

  14. Spectral functions of hadrons in lattice QCD

    International Nuclear Information System (INIS)

    Nakahara, Y.; Asakawa, M.; Hatsuda, T.

    2000-01-01

    Using the maximum entropy method, spectral functions of the pseudo-scalar and vector mesons are extracted from lattice Monte Carlo data of the imaginary time Green's functions. The resonance and continuum structures as well as the ground state peaks are successfully obtained. Error analysis of the resultant spectral functions is also given on the basis of the Bayes probability theory. (author)

  15. Multiwavelength study of quiescent states of MRK 421 with unprecedented hard x-ray coverage provided by NuSTAR in 2013

    DEFF Research Database (Denmark)

    Baloković, M.; Paneque, D.; Madejski, G.

    2016-01-01

    V. For the first time, we observed both the synchrotron and the inverse-Compton peaks of the spectral energy distribution (SED) simultaneously shifted to frequencies below the typical quiescent state by an order of magnitude. The fractional variability as a function of photon energy shows a double-bump structure...

  16. The NuSTAR view on Hard-TeV BL Lacs

    Science.gov (United States)

    Costamante, L.; Bonnoli, G.; Tavecchio, F.; Ghisellini, G.; Tagliaferri, G.; Khangulyan, D.

    2018-05-01

    Hard-TeV BL Lacs are a new type of blazars characterized by a hard intrinsic TeV spectrum, locating the peak of their gamma-ray emission in the spectral energy distribution (SED) above 2-10 TeV. Such high energies are problematic for the Compton emission, using a standard one-zone leptonic model. We study six examples of this new type of BL Lacs in the hard X-ray band with NuSTAR. Together with simultaneous observations with the Neil Gehrels Swift Observatory, we fully constrain the peak of the synchrotron emission in their SED, and test the leptonic synchrotron self-Compton (SSC) model. We confirm the extreme nature of 5 objects also in the synchrotron emission. We do not find evidence of additional emission components in the hard X-ray band. We find that a one-zone SSC model can in principle reproduce the extreme properties of both peaks in the SED, from X-ray up to TeV energies, but at the cost of i) extreme electron energies with very low radiative efficiency, ii) conditions heavily out of equipartition (by 3 to 5 orders of magnitude), and iii) not accounting for the simultaneous UV data, which then should belong to a different emission component, possibly the same as the far-IR (WISE) data. We find evidence of this separation of the UV and X-ray emission in at least two objects. In any case, the TeV electrons must not "see" the UV or lower-energy photons, even if coming from different zones/populations, or the increased radiative cooling would steepen the VHE spectrum.

  17. Spectral Characterization of the Wave Energy Resource for Puerto Rico (PR) and the United States Virgin Islands (USVI)

    Science.gov (United States)

    Garcia, C. G.; Canals, M.; Irizarry, A. A.

    2016-02-01

    Nowadays a significant amount of wave energy assessments have taken place due to the development of the ocean energy markets worldwide. Energy contained in surface gravity waves is scattered along frequency components that can be described using wave spectra. Correspondingly, characterization and quantification of harvestable wave energy is inherently dictated by the nature of the two-dimensional wave spectrum. The present study uses spectral wave data from the operational SWAN-based CariCOOS Nearshore Wave Model to evaluate the capture efficiency of multiple wave energy converters (WEC). This study revolves around accurately estimating available wave energy as a function of varying spectral distributions, effectively providing a detailed insight concerning local wave conditions for PR and USVI and the resulting available-energy to generated-power ratio. Results in particular, provide a comprehensive characterization of three years' worth of SWAN-based datasets by outlining where higher concentrations of wave energy are localized in the spectrum. Subsequently, the aforementioned datasets were processed to quantify the amount of energy incident on two proposed sites located in PR and USVI. Results were largely influenced by local trade wind activity, which drive predominant sea states, and the amount of North-Atlantic swells that propagate towards the region. Each wave event was numerically analyzed in the frequency domain to evaluate the capacity of a WEC to perform under different spectral distribution scenarios, allowing for a correlation between electrical power output and spectral energy distribution to be established.

  18. CO2 laser milling of hard tissue

    Science.gov (United States)

    Werner, Martin; Ivanenko, Mikhail; Harbecke, Daniela; Klasing, Manfred; Steigerwald, Hendrik; Hering, Peter

    2007-02-01

    Drilling of bone and tooth tissue belongs to recurrent medical procedures (screw- and pin-bores, bores for implant inserting, trepanation etc.). Small round bores can be in general quickly produced with mechanical drills. Problems arise however by angled drilling, by the necessity to fulfill the drilling without damaging of sensitive soft tissue beneath the bone, or by the attempt to mill precisely noncircular small cavities. We present investigations on laser hard tissue "milling", which can be advantageous for solving these problems. The "milling" is done with a CO2 laser (10.6 μm) with pulse duration of 50 - 100 μs, combined with a PC-controlled galvanic beam scanner and with a fine water-spray, which helps to avoid thermal side-effects. The damaging of underlying soft tissue can be prevented through control of the optical or acoustical ablation signal. The ablation of hard tissue is accompanied with a strong glowing, which is absent during the laser beam action on soft tissue. The acoustic signals from the diverse tissue types exhibit distinct differences in the spectral composition. Also computer image analysis could be a useful tool to control the operation. Laser "milling" of noncircular cavities with 1 - 4 mm width and about 10 mm depth is particularly interesting for dental implantology. In ex-vivo investigations we found conditions for fast laser "milling" of the cavities without thermal damage and with minimal tapering. It included exploration of different filling patterns (concentric rings, crosshatch, parallel lines and their combinations), definition of maximal pulse duration, repetition rate and laser power, optimal position of the spray. The optimized results give evidences for the applicability of the CO2 laser for biologically tolerable "milling" of deep cavities in the hard tissue.

  19. Spectral decomposition of tent maps using symmetry considerations

    International Nuclear Information System (INIS)

    Ordonez, G.E.; Driebe, D.J.

    1996-01-01

    The spectral decompostion of the Frobenius-Perron operator of maps composed of many tents is determined from symmetry considerations. The eigenstates involve Euler as well as Bernoulli polynomials. The authors have introduced some new techniques, based on symmetry considerations, enabling the construction of spectral decompositions in a much simpler way than previous construction algorithms, Here we utilize these techniques to construct the spectral decomposition for one- dimensional maps of the unit interval composed of many tents. The construction uses the knowledge of the spectral decomposition of the r-adic map, which involves Bernoulli polynomials and their duals. It will be seen that the spectral decomposition of the tent maps involves both Bernoulli polynomials and Euler polynomials along with the appropriate dual states

  20. Spectral correlations in Anderson insulating wires

    Science.gov (United States)

    Marinho, M.; Micklitz, T.

    2018-01-01

    We calculate the spectral level-level correlation function of Anderson insulating wires for all three Wigner-Dyson classes. A measurement of its Fourier transform, the spectral form factor, is within reach of state-of-the-art cold atom quantum quench experiments, and we find good agreement with recent numerical simulations of the latter. Our derivation builds on a representation of the level-level correlation function in terms of a local generating function which may prove useful in other contexts.

  1. Bond-orientational analysis of hard-disk and hard-sphere structures.

    Science.gov (United States)

    Senthil Kumar, V; Kumaran, V

    2006-05-28

    We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.

  2. Selection of side-chain carbons in a high-molecular-weight, hydrophobic peptide using solid-state spectral editing methods

    International Nuclear Information System (INIS)

    Kumashiro, Kristin K.; Niemczura, Walter P.; Kim, Minna S.; Sandberg, Lawrence B.

    2000-01-01

    Solid-state spectral editing techniques have been used by others to simplify 13 C CPMAS spectra of small organic molecules, synthetic organic polymers, and coals. One approach utilizes experiments such as cross-polarization-with-polarization-inversion and cross-polarization-with-depolarization to generate subspectra. This work shows that this particular methodology is also applicable to natural-abundance 13 C CPMAS NMR studies of high-molecular-weight biopolymers. The editing experiments are demonstrated first with model peptides and then with α-elastin, a high-molecular-weight peptidyl preparation obtained from the elastic fibers in mammalian tissue. The latter has a predominance of small, nonpolar residues, which is evident in the crowded aliphatic region of typical 13 C CPMAS spectra. Spectral editing is particularly useful for simplifying the aliphatic region of the NMR spectrum of this elastin preparation

  3. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  4. Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse

    Directory of Open Access Journals (Sweden)

    J. Szlachetko

    2014-03-01

    Full Text Available Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10−18 s to femtoseconds (10−15 s and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS, we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments.

  5. Homogeneous Free Cooling State in Binary Granular Fluids of Inelastic Rough Hard Spheres

    Science.gov (United States)

    Santos, Andrés

    2011-05-01

    In a recent paper [A. Santos, G. M. Kremer, and V. Garzó, Prog. Theor. Phys. Suppl. 184, 31-48 (2010)] the collisional energy production rates associated with the translational and rotational granular temperatures in a granular fluid mixture of inelastic rough hard spheres have been derived. In the present paper the energy production rates are explicitly decomposed into equipartition rates (tending to make all the temperatures equal) plus genuine cooling rates (reflecting the collisional dissipation of energy). Next the homogeneous free cooling state of a binary mixture is analyzed, with special emphasis on the quasi-smooth limit. A previously reported singular behavior (according to which a vanishingly small amount of roughness has a finite effect, with respect to the perfectly smooth case, on the asymptotic long-time translational/translational temperature ratio) is further elaborated. Moreover, the study of the time evolution of the temperature ratios shows that this dramatic influence of roughness already appears in the transient regime for times comparable to the relaxation time of perfectly smooth spheres.

  6. Fluids of Pseudo-Hard Bodies: From Simulations to Equations of State

    Czech Academy of Sciences Publication Activity Database

    Rouha, M.; Nezbeda, Ivo

    2009-01-01

    Roč. 278, 1-2 (2009), s. 15-19 ISSN 0378-3812 R&D Projects: GA AV ČR IAA400720710; GA AV ČR IAA400720802 Institutional research plan: CEZ:AV0Z40720504 Keywords : pseudo-hard bodies * virial coefficients * perturbed virial expansion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.857, year: 2009

  7. OsB 2 and RuB 2, ultra-incompressible, hard materials: First-principles electronic structure calculations

    Science.gov (United States)

    Chiodo, S.; Gotsis, H. J.; Russo, N.; Sicilia, E.

    2006-07-01

    Recently it has been reported that osmium diboride has an unusually large bulk modulus combined with high hardness, and consequently is a most interesting candidate as an ultra-incompressible and hard material. The electronic and structural properties of the transition metal diborides OsB 2 and RuB 2 have been calculated within the local density approximation (LDA). It is shown that the high hardness is the result of covalent bonding between transition metal d states and boron p states in the orthorhombic structure.

  8. Calibration of the hard x-ray detectors for the FOXSI solar sounding rocket

    Science.gov (United States)

    Athiray, P. S.; Buitrago-Casas, Juan Camilo; Bergstedt, Kendra; Vievering, Juliana; Musset, Sophie; Ishikawa, Shin-nosuke; Glesener, Lindsay; Takahashi, Tadayuki; Watanabe, Shin; Courtade, Sasha; Christe, Steven; Krucker, Säm.; Goetz, Keith; Monson, Steven

    2017-08-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment conducts direct imaging and spectral observation of the Sun in hard X-rays, in the energy range 4 to 20 keV. These high-sensitivity observations are used to study particle acceleration and coronal heating. FOXSI is designed with seven grazing incidence optics modules that focus X-rays onto seven focal plane detectors kept at a 2m distance. FOXSI-1 was flown with seven Double-sided Si Strip Detectors (DSSD), and two of them were replaced with CdTe detectors for FOXSI-2. The upcoming FOXSI-3 flight will carry DSSD and CdTe detectors with upgraded optics for enhanced sensitivity. The detectors are calibrated using various radioactive sources. The detector's spectral response matrix was constructed with diagonal elements using a Gaussian approximation with a spread (sigma) that accounts for the energy resolution of the detector. Spectroscopic studies of past FOXSI flight data suggest that the inclusion of lower energy X-rays could better constrain the spectral modeling to yield a more precise temperature estimation of the hot plasma. This motivates us to carry out an improved calibration to better understand the finer-order effects on the spectral response, especially at lower energies. Here we report our improved calibration of FOXSI detectors using experiments and Monte-Carlo simulations.

  9. Hard scattering in γp interactions

    International Nuclear Information System (INIS)

    Ahmed, T.; Andreev, V.; Andrieu, B.

    1992-10-01

    We report on the investigation of the final state in interactions of quasi-real photons with protons. The data were taken with the H1 detector at the HERA ep collider. Evidence for hard interactions is seen in both single particle spectra and jet formation. The data can best be described by inclusion of resolved photon processes as predicted by QCD. (orig.)

  10. X-ray spectral study of the Th6p,5f electron states in ThO2 and ThF4

    International Nuclear Information System (INIS)

    Teterin, Y.A.; Nikitin, A.S.; Teterin, A.Y.; Ivanov, K.E.; Utkin, I.O.; Nerehov, V.A.; Ryzhkov, M.V.; Vukchevich, I.J.

    2002-01-01

    The study of the Th6p,5f electron states in Th, ThO 2 and ThF was carried out on the basis of the X-ray photoelectron fine spectral structure parameters in the binding energy range of 0-∼ 1000 eV, X-ray O 4,5 (Th) emission spectra of the shallow (0-∼50 eV) electrons and results of theoretical calculations. As a result, despite the absence of the Th5f electrons in thorium atoms, the Th5f atomic orbitals were established to participate in the formation of molecular orbitals in thorium dioxide and tetrafluoride. In the MO LCAO approximation this allowed to suggest the possible existence of filled Th5f electronic states in thorium compounds. On the basis of the X-ray O 4,5 (Th) emission spectral structure parameters the effective formation of the inner valence molecular orbitals in the studied compounds was confirmed. (authors)

  11. SENSITIVITY OF STACKED IMAGING DETECTORS TO HARD X-RAY POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Muleri, Fabio; Campana, Riccardo, E-mail: fabio.muleri@iaps.inaf.it [INAF-IAPS, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2012-06-01

    The development of multi-layer optics which allow to focus photons up to 100 keV and more promises an enormous jump in sensitivity in the hard X-ray energy band. This technology is already planned to be exploited by future missions dedicated to spectroscopy and imaging at energies >10 keV, e.g., Astro-H and NuSTAR. Nevertheless, our understanding of the hard X-ray sky would greatly benefit from carrying out contemporaneous polarimetric measurements, because the study of hard spectral tails and of polarized emission are often two complementary diagnostics of the same non-thermal and acceleration processes. At energies above a few tens of keV, the preferred technique to detect polarization involves the determination of photon directions after a Compton scattering. Many authors have asserted that stacked detectors with imaging capabilities can be exploited for this purpose. If it is possible to discriminate those events which initially interact in the first detector by Compton scattering and are subsequently absorbed by the second layer, then the direction of scattering is singled out from the hit pixels in the two detectors. In this paper, we give the first detailed discussion of the sensitivity of such a generic design to the X-ray polarization. The efficiency and the modulation factor are calculated analytically from the geometry of the instruments and then compared with the performance as derived by means of Geant4 Monte Carlo simulations.

  12. Amended Results for Hard X-Ray Emission by Non-thermal Thick Target Recombination in Solar Flares

    Science.gov (United States)

    Reep, J. W.; Brown, J. C.

    2016-06-01

    Brown & Mallik and the corresponding corrigendum Brown et al. presented expressions for non-thermal recombination (NTR) in the collisionally thin- and thick-target regimes, claiming that the process could account for a substantial part of the hard X-ray continuum in solar flares usually attributed entirely to thermal and non-thermal bremsstrahlung (NTB). However, we have found the thick-target expression to become unphysical for low cut-offs in the injected electron energy spectrum. We trace this to an error in the derivation, derive a corrected version that is real-valued and continuous for all photon energies and cut-offs, and show that, for thick targets, Brown et al. overestimated NTR emission at small photon energies. The regime of small cut-offs and large spectral indices involve large (reducing) correction factors but in some other thick-target parameter regimes NTR/NTB can still be of the order of unity. We comment on the importance of these results to flare and microflare modeling and spectral fitting. An empirical fit to our results shows that the peak NTR contribution comprises over half of the hard X-ray signal if δ ≳ 6{≤ft(\\tfrac{{E}0c}{4{keV}}\\right)}0.4.

  13. The slightly-enriched spectral shift control reactor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.R.; Lee, J.C.; Larsen, E.W. (Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering); Edlund, M.C. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical and Nuclear Engineering)

    1991-11-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile {sup 238}U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC.

  14. The slightly-enriched spectral shift control reactor

    International Nuclear Information System (INIS)

    Martin, W.R.; Lee, J.C.; Larsen, E.W.; Edlund, M.C.

    1991-11-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile 238 U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC

  15. Comprehensive hard materials

    CERN Document Server

    2014-01-01

    Comprehensive Hard Materials deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued res...

  16. A wavelet and least square filter based spatial-spectral denoising approach of hyperspectral imagery

    Science.gov (United States)

    Li, Ting; Chen, Xiao-Mei; Chen, Gang; Xue, Bo; Ni, Guo-Qiang

    2009-11-01

    Noise reduction is a crucial step in hyperspectral imagery pre-processing. Based on sensor characteristics, the noise of hyperspectral imagery represents in both spatial and spectral domain. However, most prevailing denosing techniques process the imagery in only one specific domain, which have not utilized multi-domain nature of hyperspectral imagery. In this paper, a new spatial-spectral noise reduction algorithm is proposed, which is based on wavelet analysis and least squares filtering techniques. First, in the spatial domain, a new stationary wavelet shrinking algorithm with improved threshold function is utilized to adjust the noise level band-by-band. This new algorithm uses BayesShrink for threshold estimation, and amends the traditional soft-threshold function by adding shape tuning parameters. Comparing with soft or hard threshold function, the improved one, which is first-order derivable and has a smooth transitional region between noise and signal, could save more details of image edge and weaken Pseudo-Gibbs. Then, in the spectral domain, cubic Savitzky-Golay filter based on least squares method is used to remove spectral noise and artificial noise that may have been introduced in during the spatial denoising. Appropriately selecting the filter window width according to prior knowledge, this algorithm has effective performance in smoothing the spectral curve. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in 2007. The result shows that the new spatial-spectral denoising algorithm provides more significant signal-to-noise-ratio improvement than traditional spatial or spectral method, while saves the local spectral absorption features better.

  17. Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    Science.gov (United States)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Baloković, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1.̋5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (τ ≃ 1.2, NH ~ 1.5 × 1024 cm-2). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH ≤ 2 × 1023 cm-2 over long (~3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  18. Measurement of the Strange Spectral Function in Hadronic $\\tau$ Decays

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Menke, S.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    Tau Lepton decays with open strangeness in the final state are measured with the OPAL detector at LEP to determine the strange hadronic spectral function of the tau lepton. The decays tau- -> (Kpi)-nu tau, (Kpipi)-nu tau and (Kpipipi)-nu tau with final states consisting of neutral and charged kaons and pions have been studied. The invariant mass distributions of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including eta mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the tau lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(tau- -> K-pi0nu tau) = (0.471+-0.059stat+-0.023sys)% and B(tau- -> K-pi+pi-nu tau) = (0.415+-0.053stat+-0.040sys)% ha...

  19. Spectral analysis and filter theory in applied geophysics

    CERN Document Server

    Buttkus, Burkhard

    2000-01-01

    This book is intended to be an introduction to the fundamentals and methods of spectral analysis and filter theory and their appli­ cations in geophysics. The principles and theoretical basis of the various methods are described, their efficiency and effectiveness eval­ uated, and instructions provided for their practical application. Be­ sides the conventional methods, newer methods arediscussed, such as the spectral analysis ofrandom processes by fitting models to the ob­ served data, maximum-entropy spectral analysis and maximum-like­ lihood spectral analysis, the Wiener and Kalman filtering methods, homomorphic deconvolution, and adaptive methods for nonstation­ ary processes. Multidimensional spectral analysis and filtering, as well as multichannel filters, are given extensive treatment. The book provides a survey of the state-of-the-art of spectral analysis and fil­ ter theory. The importance and possibilities ofspectral analysis and filter theory in geophysics for data acquisition, processing an...

  20. A Long Decay of X-Ray Flux and Spectral Evolution in the Supersoft Active Galactic Nucleus GSN 069

    Science.gov (United States)

    Shu, X. W.; Wang, S. S.; Dou, L. M.; Jiang, N.; Wang, J. X.; Wang, T. G.

    2018-04-01

    GSN 069 is an optically identified very low-mass active galactic nuclei (AGN) that shows supersoft X-ray emission. The source is known to exhibit a huge X-ray outburst, with flux increased by more than a factor of ∼240 compared to the quiescence state. We report its long-term evolution in the X-ray flux and spectral variations over a timescale of ∼decade, using both new and archival X-ray observations from the XMM-Newton and Swift. The new Swift observations detected the source in its lowest level of X-ray activity since the outburst, a factor of ∼4 lower in the 0.2–2 keV flux than that obtained with the XMM-Newton observations nearly eight years ago. Combining with the historical X-ray measurements, we find that the X-ray flux is decreasing slowly. There seemed to be spectral softening associated with the drop of X-ray flux. In addition, we find evidence for the presence of a weak, variable, hard X-ray component, in addition to the dominant thermal blackbody emission reported before. The long decay of X-ray flux and spectral evolution, as well as the supersoft X-ray spectra, suggest that the source could be a tidal disruption event (TDE), though a highly variable AGN cannot be fully ruled out. Further continued X-ray monitoring would be required to test the TDE interpretation, by better determining the flux evolution in the decay phase.

  1. Hard X-ray observation of HER X-1

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F.; Vialetto, G. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale); Manchanda, R.K. (Tata Inst. of Fundamental Research, Bombay (India))

    1981-01-01

    A hard X-rays (15-170 KeV) measurement of the spectrum of Her X-1, during a mid turn-on is presented. The presence of an emission line at about 53 KeV during the mid-on state is confirmed by the present measure.

  2. Modeling hard clinical end-point data in economic analyses.

    Science.gov (United States)

    Kansal, Anuraag R; Zheng, Ying; Palencia, Roberto; Ruffolo, Antonio; Hass, Bastian; Sorensen, Sonja V

    2013-11-01

    The availability of hard clinical end-point data, such as that on cardiovascular (CV) events among patients with type 2 diabetes mellitus, is increasing, and as a result there is growing interest in using hard end-point data of this type in economic analyses. This study investigated published approaches for modeling hard end-points from clinical trials and evaluated their applicability in health economic models with different disease features. A review of cost-effectiveness models of interventions in clinically significant therapeutic areas (CV diseases, cancer, and chronic lower respiratory diseases) was conducted in PubMed and Embase using a defined search strategy. Only studies integrating hard end-point data from randomized clinical trials were considered. For each study included, clinical input characteristics and modeling approach were summarized and evaluated. A total of 33 articles (23 CV, eight cancer, two respiratory) were accepted for detailed analysis. Decision trees, Markov models, discrete event simulations, and hybrids were used. Event rates were incorporated either as constant rates, time-dependent risks, or risk equations based on patient characteristics. Risks dependent on time and/or patient characteristics were used where major event rates were >1%/year in models with fewer health states (Models of infrequent events or with numerous health states generally preferred constant event rates. The detailed modeling information and terminology varied, sometimes requiring interpretation. Key considerations for cost-effectiveness models incorporating hard end-point data include the frequency and characteristics of the relevant clinical events and how the trial data is reported. When event risk is low, simplification of both the model structure and event rate modeling is recommended. When event risk is common, such as in high risk populations, more detailed modeling approaches, including individual simulations or explicitly time-dependent event rates, are

  3. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  4. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-03-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  5. USA Observation of Spectral and Timing Evolution During the 2000 Outburst of XTE J1550--564

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Kaice T

    2002-12-06

    We report on timing and spectral observations of the 2000 outburst of XTE J1550--564 made by the Unconventional Stellar Aspect (USA) Experiment on board the Advanced Research and Global Observation Satellite (ARGOS). We observe a low-frequency quasi-periodic oscillation (LFQPO) with a centroid frequency that tends to increase with increasing flux and a fractional rms amplitude which is correlated with the hardness ratio. Several high-frequency quasi-periodic oscillations (HFQPO) were detected by RXTE, during periods where the LFQPO is seen to be weakening or not detectable at all. The evolution of the hardness ratio (4-16 keV/1-4 keV) with time and source flux is examined. The hardness-intensity diagram (HID) shows a cyclical movement in the counterclockwise direction and possibly indicates the presence of two independent accretion flows: a thin disk and a hot sub-Keplerian flow.

  6. Hard Diffraction - from Blois 1985 to 2005

    Energy Technology Data Exchange (ETDEWEB)

    Gunnar, Ingelman [Uppsala Univ., High Energy Physics (Sweden)

    2005-07-01

    The idea of diffractive processes with a hard scale involved, to resolve the underlying parton dynamics, was presented at the first Blois conference in 1985 and experimentally verified a few years later. Today hard diffraction is an attractive research field with high-quality data and new theoretical models. The trend from Regge-based pomeron models to QCD-based parton level models has given insights on QCD dynamics involving perturbative gluon exchange mechanisms. In the new QCD-based models, the pomeron is not part of the proton wave function, but diffraction is an effect of the scattering process. Models based on interactions with a colour background field provide an interesting approach which avoids conceptual problems of pomeron-based models, such as the pomeron flux, and provide a basis for common theoretical framework for all final states, diffractive gap events as well as non-diffractive events. Finally, the new process of gaps between jets provides strong evidence for the BFKL dynamics as predicted since long by QCD, but so far hard to establish experimentally.

  7. Passive microrheology of soft materials with atomic force microscopy: A wavelet-based spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Torres, C.; Streppa, L. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); Arneodo, A.; Argoul, F. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); CNRS, UMR5798, Laboratoire Ondes et Matière d' Aquitaine, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Argoul, P. [Université Paris-Est, Ecole des Ponts ParisTech, SDOA, MAST, IFSTTAR, 14-20 Bd Newton, Cité Descartes, 77420 Champs sur Marne (France)

    2016-01-18

    Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale method to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.

  8. Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection.

    Science.gov (United States)

    Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin

    2014-10-10

    Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.

  9. Principle component analysis (PCA) and second-order global hard-modelling for the complete resolution of transition metal ions complex formation with 1,10-phenantroline

    International Nuclear Information System (INIS)

    Shariati-Rad, Masoud; Hasani, Masoumeh

    2009-01-01

    Second-order global hard-modelling was applied to resolve the complex formation between Co 2+ , Ni 2+ , and Cd 2+ cations and 1,10-phenantroline. The highly correlated spectral and concentration profiles of the species in these systems and low concentration of some species in the individual collected data matrices prevent the well-resolution of the profiles. Therefore, a collection of six equilibrium data matrices including series of absorption spectra taken with pH changes at different reactant ratios were analyzed. Firstly, a precise principle component analysis (PCA) of different augmented arrangements of the individual data matrices was used to distinguish the number of species involved in the equilibria. Based on the results of PCA, the equilibria included in the data were specified and second-order global hard-modelling of the appropriate arrangement of six collected equilibrium data matrices resulted in well-resolved profiles and equilibrium constants. The protonation constant of the ligand (1,10-phenantroline) and spectral profiles of its protonated and unprotonated forms are the additional information obtained by global analysis. For comparison, multivariate curve resolution-alternating least squares (MCR-ALS) was applied to the same data. The results showed that second-order global hard-modelling is more convenient compared with MCR-ALS especially for systems with completely known model. It can completely resolve the system and the concentration profiles which are closer to correct ones. Moreover, parameters showing the goodness of fit are better with second-order global hard-modelling.

  10. Principle component analysis (PCA) and second-order global hard-modelling for the complete resolution of transition metal ions complex formation with 1,10-phenantroline

    Energy Technology Data Exchange (ETDEWEB)

    Shariati-Rad, Masoud [Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65174 (Iran, Islamic Republic of); Hasani, Masoumeh, E-mail: hasani@basu.ac.ir [Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65174 (Iran, Islamic Republic of)

    2009-08-19

    Second-order global hard-modelling was applied to resolve the complex formation between Co{sup 2+}, Ni{sup 2+}, and Cd{sup 2+} cations and 1,10-phenantroline. The highly correlated spectral and concentration profiles of the species in these systems and low concentration of some species in the individual collected data matrices prevent the well-resolution of the profiles. Therefore, a collection of six equilibrium data matrices including series of absorption spectra taken with pH changes at different reactant ratios were analyzed. Firstly, a precise principle component analysis (PCA) of different augmented arrangements of the individual data matrices was used to distinguish the number of species involved in the equilibria. Based on the results of PCA, the equilibria included in the data were specified and second-order global hard-modelling of the appropriate arrangement of six collected equilibrium data matrices resulted in well-resolved profiles and equilibrium constants. The protonation constant of the ligand (1,10-phenantroline) and spectral profiles of its protonated and unprotonated forms are the additional information obtained by global analysis. For comparison, multivariate curve resolution-alternating least squares (MCR-ALS) was applied to the same data. The results showed that second-order global hard-modelling is more convenient compared with MCR-ALS especially for systems with completely known model. It can completely resolve the system and the concentration profiles which are closer to correct ones. Moreover, parameters showing the goodness of fit are better with second-order global hard-modelling.

  11. Spectral flow, and the spectrum of multicenter solutions

    International Nuclear Information System (INIS)

    Bena, Iosif; Bobev, Nikolay; Warner, Nicholas P.

    2008-01-01

    We discuss 'spectral-flow' coordinate transformations that take asymptotically four-dimensional solutions into other asymptotically four-dimensional solutions. We find that spectral flow can relate smooth three-charge solutions with a multicenter Taub-NUT base to solutions where one or several Taub-NUT centers are replaced by two-charge supertubes, and vice versa. We further show that multiparameter spectral flows can map such Taub-NUT centers to more singular centers that are either D2-D0 or pure D0-brane sources. Since supertubes can depend on arbitrary functions, we establish that the moduli space of smooth horizonless black-hole microstate solutions is classically of infinite dimension. We also use the physics of supertubes to argue that some multicenter solutions that appear to be bound states from a four-dimensional perspective are in fact not bound states when considered from a five- or six-dimensional perspective

  12. Survey of Hard Ticks (Ixodidae) Infesting Camels ( Camelus ...

    African Journals Online (AJOL)

    To determine the prevalence and abundance of hard ticks infesting camels, 414 nomadic one - humped camels in Kano State, northwestern Nigeria were selected by random sampling and examined for the presence of ticks on their bodies between January and December 2007. Three species of ticks, Amblyomma ...

  13. Hard X-ray observation of HER X-1

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F.; Vialetto, G.

    1981-01-01

    A hard X-rays (15-170 KeV) measurement of the spectrum of Her X-1, during a mid turn-on is presented. The presence of an emission line at about 53 KeV during the mid-on state is confirmed by the present measure. (orig.)

  14. Computational search for rare-earth free hard-magnetic materials

    Science.gov (United States)

    Flores Livas, José A.; Sharma, Sangeeta; Dewhurst, John Kay; Gross, Eberhard; MagMat Team

    2015-03-01

    It is difficult to over state the importance of hard magnets for human life in modern times; they enter every walk of our life from medical equipments (NMR) to transport (trains, planes, cars, etc) to electronic appliances (for house hold use to computers). All the known hard magnets in use today contain rare-earth elements, extraction of which is expensive and environmentally harmful. Rare-earths are also instrumental in tipping the balance of world economy as most of them are mined in limited specific parts of the world. Hence it would be ideal to have similar characteristics as a hard magnet but without or at least with reduced amount of rare-earths. This is the main goal of our work: search for rare-earth-free magnets. To do so we employ a combination of density functional theory and crystal prediction methods. The quantities which define a hard magnet are magnetic anisotropy energy (MAE) and saturation magnetization (Ms), which are the quantities we maximize in search for an ideal magnet. In my talk I will present details of the computation search algorithm together with some potential newly discovered rare-earth free hard magnet. J.A.F.L. acknowledge financial support from EU's 7th Framework Marie-Curie scholarship program within the ``ExMaMa'' Project (329386).

  15. Increased power spectral density in resting-state pain-related brain networks in fibromyalgia.

    Science.gov (United States)

    Kim, Ji-Young; Kim, Seong-Ho; Seo, Jeehye; Kim, Sang-Hyon; Han, Seung Woo; Nam, Eon Jeong; Kim, Seong-Kyu; Lee, Hui Joong; Lee, Seung-Jae; Kim, Yang-Tae; Chang, Yongmin

    2013-09-01

    Fibromyalgia (FM), characterized by chronic widespread pain, is known to be associated with heightened responses to painful stimuli and atypical resting-state functional connectivity among pain-related regions of the brain. Previous studies of FM using resting-state functional magnetic resonance imaging (rs-fMRI) have focused on intrinsic functional connectivity, which maps the spatial distribution of temporal correlations among spontaneous low-frequency fluctuation in functional MRI (fMRI) resting-state data. In the current study, using rs-fMRI data in the frequency domain, we investigated the possible alteration of power spectral density (PSD) of low-frequency fluctuation in brain regions associated with central pain processing in patients with FM. rsfMRI data were obtained from 19 patients with FM and 20 age-matched healthy female control subjects. For each subject, the PSDs for each brain region identified from functional connectivity maps were computed for the frequency band of 0.01 to 0.25 Hz. For each group, the average PSD was determined for each brain region and a 2-sample t test was performed to determine the difference in power between the 2 groups. According to the results, patients with FM exhibited significantly increased frequency power in the primary somatosensory cortex (S1), supplementary motor area (SMA), dorsolateral prefrontal cortex, and amygdala. In patients with FM, the increase in PSD did not show an association with depression or anxiety. Therefore, our findings of atypical increased frequency power during the resting state in pain-related brain regions may implicate the enhanced resting-state baseline neural activity in several brain regions associated with pain processing in FM. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  16. Terahertz spectral unmixing based method for identifying gastric cancer

    Science.gov (United States)

    Cao, Yuqi; Huang, Pingjie; Li, Xian; Ge, Weiting; Hou, Dibo; Zhang, Guangxin

    2018-02-01

    At present, many researchers are exploring biological tissue inspection using terahertz time-domain spectroscopy (THz-TDS) techniques. In this study, based on a modified hard modeling factor analysis method, terahertz spectral unmixing was applied to investigate the relationships between the absorption spectra in THz-TDS and certain biomarkers of gastric cancer in order to systematically identify gastric cancer. A probability distribution and box plot were used to extract the distinctive peaks that indicate carcinogenesis, and the corresponding weight distributions were used to discriminate the tissue types. The results of this work indicate that terahertz techniques have the potential to detect different levels of cancer, including benign tumors and polyps.

  17. Plasma satellites of X-ray spectral lines of ions in a plasma of solid-state targets, heated by a picosecond laser pulse

    International Nuclear Information System (INIS)

    Belyaev, V.S.; Vinogradov, V.I.; Kurilov, A.S.; Matafonov, A.P.; Lisitsa, V.S.; Gavrilenko, V.P.; Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Magunov, A.I.; Pikuz, S.A.

    2003-01-01

    The results of measuring the ions X-ray spectral lines by the interaction of the picosecond laser pulses with the solid-state target are presented. The spectra of the X-ray radiation were observed on the fluorine ion line. The spectral lines satellites, testifying to the availability, are identified. The position of the satellites and the distance between them make it possible to connect them with the intensive electrostatic oscillations with the amplitude, exceeding 10 8 V/cm, and the frequency close to 7 x 10 14 s -1 , substantially lower than the laser wave frequency. The experimental results are compared with the calculated data on the multicharge ions spectra [ru

  18. Efficient basis formulation for 1+1 dimensional SU(2) lattice gauge theory. Spectral calculations with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-07-20

    We propose an explicit formulation of the physical subspace for a 1+1 dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  19. Efficient Basis Formulation for (1+1-Dimensional SU(2 Lattice Gauge Theory: Spectral Calculations with Matrix Product States

    Directory of Open Access Journals (Sweden)

    Mari Carmen Bañuls

    2017-11-01

    Full Text Available We propose an explicit formulation of the physical subspace for a (1+1-dimensional SU(2 lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  20. Efficient Basis Formulation for (1 +1 )-Dimensional SU(2) Lattice Gauge Theory: Spectral Calculations with Matrix Product States

    Science.gov (United States)

    Bañuls, Mari Carmen; Cichy, Krzysztof; Cirac, J. Ignacio; Jansen, Karl; Kühn, Stefan

    2017-10-01

    We propose an explicit formulation of the physical subspace for a (1 +1 )-dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  1. Efficient basis formulation for 1+1 dimensional SU(2) lattice gauge theory. Spectral calculations with matrix product states

    International Nuclear Information System (INIS)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan; Cichy, Krzysztof; Adam Mickiewicz Univ., Poznan; Jansen, Karl

    2017-01-01

    We propose an explicit formulation of the physical subspace for a 1+1 dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  2. Tuning hardness in calcite by incorporation of amino acids.

    Science.gov (United States)

    Kim, Yi-Yeoun; Carloni, Joseph D; Demarchi, Beatrice; Sparks, David; Reid, David G; Kunitake, Miki E; Tang, Chiu C; Duer, Melinda J; Freeman, Colin L; Pokroy, Boaz; Penkman, Kirsty; Harding, John H; Estroff, Lara A; Baker, Shefford P; Meldrum, Fiona C

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit-mineral single crystals containing embedded macromolecules-remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

  3. FERMI OBSERVATIONS OF GRB 090510: A SHORT-HARD GAMMA-RAY BURST WITH AN ADDITIONAL, HARD POWER-LAW COMPONENT FROM 10 keV TO GeV ENERGIES

    International Nuclear Information System (INIS)

    Ackermann, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bhat, P. N.; Bissaldi, E.; Bonamente, E.

    2010-01-01

    We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with E peak = 3.9 ± 0.3 MeV, which is the highest yet measured, and a hard power-law component with photon index -1.62 ± 0.03 that dominates the emission below ∼20 keV and above ∼100 MeV. The onset of the high-energy spectral component appears to be delayed by ∼0.1 s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5 s before the main pulse. During the prompt phase, the LAT detected a photon with energy 30.5 +5.8 -2.6 GeV, the highest ever measured from a short GRB. Observation of this photon sets a minimum bulk outflow Lorentz factor, Γ∼> 1200, using simple γγ opacity arguments for this GRB at redshift z = 0.903 and a variability timescale on the order of tens of ms for the ∼100 keV-few MeV flux. Stricter high confidence estimates imply Γ ∼> 1000 and still require that the outflows powering short GRBs are at least as highly relativistic as those of long-duration GRBs. Implications of the temporal behavior and power-law shape of the additional component on synchrotron/synchrotron self-Compton, external-shock synchrotron, and hadronic models are considered.

  4. Maximum spectral demands in the near-fault region

    Science.gov (United States)

    Huang, Yin-Nan; Whittaker, Andrew S.; Luco, Nicolas

    2008-01-01

    The Next Generation Attenuation (NGA) relationships for shallow crustal earthquakes in the western United States predict a rotated geometric mean of horizontal spectral demand, termed GMRotI50, and not maximum spectral demand. Differences between strike-normal, strike-parallel, geometric-mean, and maximum spectral demands in the near-fault region are investigated using 147 pairs of records selected from the NGA strong motion database. The selected records are for earthquakes with moment magnitude greater than 6.5 and for closest site-to-fault distance less than 15 km. Ratios of maximum spectral demand to NGA-predicted GMRotI50 for each pair of ground motions are presented. The ratio shows a clear dependence on period and the Somerville directivity parameters. Maximum demands can substantially exceed NGA-predicted GMRotI50 demands in the near-fault region, which has significant implications for seismic design, seismic performance assessment, and the next-generation seismic design maps. Strike-normal spectral demands are a significantly unconservative surrogate for maximum spectral demands for closest distance greater than 3 to 5 km. Scale factors that transform NGA-predicted GMRotI50 to a maximum spectral demand in the near-fault region are proposed.

  5. Hard diffraction and deep inelastic scattering

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1994-04-01

    Since the advent of hard-collision physics, the study of diffractive processes - shadow physics - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word diffraction is sometimes used by high-energy physicists in a loose way. The author defines this term to mean: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the open-quotes legoclose quotes phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width Δη does not have a power-law decrease with increasing subenergy s=e Δη , but behaves at most like some power of pseudorapidity Δη∼log(s). The term hard diffraction shall simply refer to those diffractive process which have jets in the final-state phase-space

  6. Achievable Information Rates for Coded Modulation With Hard Decision Decoding for Coherent Fiber-Optic Systems

    Science.gov (United States)

    Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi

    2017-12-01

    We analyze the achievable information rates (AIRs) for coded modulation schemes with QAM constellations with both bit-wise and symbol-wise decoders, corresponding to the case where a binary code is used in combination with a higher-order modulation using the bit-interleaved coded modulation (BICM) paradigm and to the case where a nonbinary code over a field matched to the constellation size is used, respectively. In particular, we consider hard decision decoding, which is the preferable option for fiber-optic communication systems where decoding complexity is a concern. Recently, Liga \\emph{et al.} analyzed the AIRs for bit-wise and symbol-wise decoders considering what the authors called \\emph{hard decision decoder} which, however, exploits \\emph{soft information} of the transition probabilities of discrete-input discrete-output channel resulting from the hard detection. As such, the complexity of the decoder is essentially the same as the complexity of a soft decision decoder. In this paper, we analyze instead the AIRs for the standard hard decision decoder, commonly used in practice, where the decoding is based on the Hamming distance metric. We show that if standard hard decision decoding is used, bit-wise decoders yield significantly higher AIRs than symbol-wise decoders. As a result, contrary to the conclusion by Liga \\emph{et al.}, binary decoders together with the BICM paradigm are preferable for spectrally-efficient fiber-optic systems. We also design binary and nonbinary staircase codes and show that, in agreement with the AIRs, binary codes yield better performance.

  7. Plastic strain and flux jumps in hard and composite superconductors

    International Nuclear Information System (INIS)

    Maksimov, I.L.; Mints, R.G.

    1981-01-01

    A study is made into the effect of the critical current density dependence upon the value of plastic strain on the critical state stability in hard and composite superconductors under conditions of plastic yield of the material. Criteria of the critical state stability relative to the jointly developing magnetic flux jumps and plastic strain jerks, are found. (author)

  8. Raman microscopic studies of PVD deposited hard ceramic coatings

    International Nuclear Information System (INIS)

    Constable, C.P.

    2000-01-01

    PVD hard ceramic coatings grown via the combined cathodic arc/unbalance magnetron deposition process were studied using Raman microscopy. Characteristic spectra from binary, multicomponent, multilayered and superlattice coatings were acquired to gain knowledge of the solid-state physics associated with Raman scattering from polycrystalline PVD coatings and to compile a comprehensive spectral database. Defect-induced first order scattering mechanisms were observed which gave rise to two pronounced groups of bands related to the acoustical (150- 300cm -1 ) and optical (400-7 50cm -1 ) parts of the phonon spectrum. Evidence was gathered to support the theory that the optic modes were mainly due to the vibrations of the lighter elements and the acoustic modes due to the vibrations of the heavier elements within the lattice. A study into the deformation and disordering on the Raman spectral bands of PVD coatings was performed. TiAIN and TiZrN coatings were intentionally damaged via scratching methods. These scratches were then analysed by Raman mapping, both across and along, and a detailed spectral interpretation performed. Band broadening occurred which was related to 'phonon relaxation mechanisms' as a direct result of the breaking up of coating grains resulting in a larger proportion of grain boundaries per-unit-volume. A direct correlation of the amount of damage with band width was observed. Band shifts were also found to occur which were due to the stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of 'droplets', a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved

  9. A Simple Spectral Observer

    Directory of Open Access Journals (Sweden)

    Lizeth Torres

    2018-05-01

    Full Text Available The principal aim of a spectral observer is twofold: the reconstruction of a signal of time via state estimation and the decomposition of such a signal into the frequencies that make it up. A spectral observer can be catalogued as an online algorithm for time-frequency analysis because is a method that can compute on the fly the Fourier transform (FT of a signal, without having the entire signal available from the start. In this regard, this paper presents a novel spectral observer with an adjustable constant gain for reconstructing a given signal by means of the recursive identification of the coefficients of a Fourier series. The reconstruction or estimation of a signal in the context of this work means to find the coefficients of a linear combination of sines a cosines that fits a signal such that it can be reproduced. The design procedure of the spectral observer is presented along with the following applications: (1 the reconstruction of a simple periodical signal, (2 the approximation of both a square and a triangular signal, (3 the edge detection in signals by using the Fourier coefficients, (4 the fitting of the historical Bitcoin market data from 1 December 2014 to 8 January 2018 and (5 the estimation of a input force acting upon a Duffing oscillator. To round out this paper, we present a detailed discussion about the results of the applications as well as a comparative analysis of the proposed spectral observer vis-à-vis the Short Time Fourier Transform (STFT, which is a well-known method for time-frequency analysis.

  10. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  11. The Spatial Assessment of the Current Seismic Hazard State for Hard Rock Underground Mines

    Science.gov (United States)

    Wesseloo, Johan

    2018-06-01

    Mining-induced seismic hazard assessment is an important component in the management of safety and financial risk in mines. As the seismic hazard is a response to the mining activity, it is non-stationary and variable both in space and time. This paper presents an approach for implementing a probabilistic seismic hazard assessment to assess the current hazard state of a mine. Each of the components of the probabilistic seismic hazard assessment is considered within the context of hard rock underground mines. The focus of this paper is the assessment of the in-mine hazard distribution and does not consider the hazard to nearby public or structures. A rating system and methodologies to present hazard maps, for the purpose of communicating to different stakeholders in the mine, i.e. mine managers, technical personnel and the work force, are developed. The approach allows one to update the assessment with relative ease and within short time periods as new data become available, enabling the monitoring of the spatial and temporal change in the seismic hazard.

  12. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  13. Microfabrication of hard x-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik

    This thesis deals with the development of silicon compound refractive lenses (Si-CRLs) for shaping hard x-ray beams. The CRLs are to be fabricated using state of the art microfabrication techniques. The primary goal of the thesis work is to produce Si-CRLs with considerably increased structure...... and characterized with respect to their shape. Their optical performances were tested at the European Synchrotron Radiation Facility (ESRF). Two 1D-focusing Si-CRLs suitable as condensers in hard-XRM were developed utilizing the aforementioned two different strategies. The first Si-condenser showed focusing of a 56...... of space for sample surroundings and ensure low-divergent and wide x-ray beams with narrow waists. Both results are substantial improvements to what was available at the start of this thesis work. The challenge of making x-ray objectives in silicon by interdigitation of lenslets alternately focusing...

  14. Integration of Radiation-Hard Magnetic Random Access Memory with CMOS ICs

    CERN Document Server

    Cerjan, C J

    2000-01-01

    The research undertaken in this LDRD-funded project addressed the joint development of magnetic material-based nonvolatile, radiation-hard memory cells with Sandia National Laboratory. Specifically, the goal of this project was to demonstrate the intrinsic radiation-hardness of Giant Magneto-Resistive (GMR) materials by depositing representative alloy combinations upon radiation-hardened silicon-based integrated circuits. All of the stated goals of the project were achieved successfully. The necessary films were successfully deposited upon typical integrated circuits; the materials retained their magnetic field response at the highest radiation doses; and a patterning approach was developed that did not degrade the as-fabricated properties of the underlying circuitry. These results establish the feasibility of building radiation-hard magnetic memory cells.

  15. AN OSCILLATOR CONFIGURATION FOR FULL REALIZATION OF HARD X-RAY FREE ELECTRON LASER*

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.-J.; Kolodziej, T.; Lindberg, R. R.; Shu, D.; Shvyd' ko, Y.; Stoupin, S.; Maxwell, T.J.; Ding, Y.; Fawley, W. M.; Hastings, J.; Huang, Z; Krzywinski, J.; Marcus, G.; Qin, Weilun; Medvedev, N.; Zemella, J.; Blank, V.; Terentyev, S.

    2017-06-01

    An x-ray free electron laser oscillator (XFELO) is feasible by employing an X-ray cavity with Bragg mirrors such as diamond crystals. An XFELO at the 5th harmonic frequency may be implemented at the LCLS II using its 4 GeV superconducting linac, producing stable, fully coherent, high-spectral-purity hard x-rays. In addition, its output can be a coherent seed to the LCLS amplifier for stable, high-power, femto-second x-ray pulses. We summarize the recent progress in various R&D efforts addressing critical issues for realizing an XFELO at LCLS II.

  16. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  17. Electronic basis of hardness and phase transformations (covalent crystals)

    International Nuclear Information System (INIS)

    Gilman, J J

    2008-01-01

    Several electronic parameters measure the stabilities of covalent crystals, including minimum energy band-gap densities, inverse polarizabilities, plasma frequencies, transverse vibrational frequencies and elastic shear moduli. Convenient is the band-gap density (energy/volume; called the 'bond modulus'). For a given bonding type, the indentation hardness is proportional to the bond modulus. Examples are the group IV elements, III-V compounds; and II-VI compounds. The motion of dislocation kinks requires the excitation of bonding electrons into anti-bonding states. The bond modulus measures this together with the work done by the applied stress when a kink moves. In addition to hardness, the bond modulus measures the compressive strain (pressure) needed to transform an ambient structure into a more dense structure. Activation of such transformations also requires the excitation of bonding electrons into anti-bonding states together with the work done by the compressive stress

  18. A distributed microcomputer-controlled system for data acquisition and power spectral analysis of EEG.

    Science.gov (United States)

    Vo, T D; Dwyer, G; Szeto, H H

    1986-04-01

    A relatively powerful and inexpensive microcomputer-based system for the spectral analysis of the EEG is presented. High resolution and speed is achieved with the use of recently available large-scale integrated circuit technology with enhanced functionality (INTEL Math co-processors 8087) which can perform transcendental functions rapidly. The versatility of the system is achieved with a hardware organization that has distributed data acquisition capability performed by the use of a microprocessor-based analog to digital converter with large resident memory (Cyborg ISAAC-2000). Compiled BASIC programs and assembly language subroutines perform on-line or off-line the fast Fourier transform and spectral analysis of the EEG which is stored as soft as well as hard copy. Some results obtained from test application of the entire system in animal studies are presented.

  19. First hard X-ray detection of the non-thermal emission around the Arches cluster: morphology and spectral studies with NuSTAR

    DEFF Research Database (Denmark)

    Krivonos, Roman A.; Tomsick, John A.; Bauer, Franz E.

    2014-01-01

    The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe Ku line emission at 6.4 keV from material that is n......The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe Ku line emission at 6.4 keV from material...... and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity...... of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agreement with the low-energy cosmic-ray proton excitation scenario....

  20. SPECTRAL LAGS AND THE LAG-LUMINOSITY RELATION: AN INVESTIGATION WITH SWIFT BAT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Ukwatta, T. N.; Dhuga, K. S.; Eskandarian, A.; Maximon, L. C.; Parke, W. C.; Stamatikos, M.; Sakamoto, T.; Barthelmy, S. D.; Gehrels, N.; Norris, J. P.

    2010-01-01

    Spectral lag, the time difference between the arrival of high-energy and low-energy photons, is a common feature in gamma-ray bursts (GRBs). Norris et al. reported a correlation between the spectral lag and the isotropic peak luminosity of GRBs based on a limited sample. More recently, a number of authors have provided further support for this correlation using arbitrary energy bands of various instruments. In this paper, we report on a systematic extraction of spectral lags based on the largest Swift sample to date of 31 GRBs with measured redshifts. We extracted the spectral lags for all combinations of the standard Swift hard X-ray energy bands: 15-25 keV, 25-50 keV, 50-100 keV, and 100-200 keV and plotted the time dilation corrected lag as a function of isotropic peak luminosity. The mean value of the correlation coefficient for various channel combinations is -0.68 with a chance probability of ∼0.7 x 10 -3 . In addition, the mean value of the power-law index is 1.4 ± 0.3. Hence, our study lends support to the existence of a lag-luminosity correlation, albeit with large scatter.

  1. Swift captures the spectrally evolving prompt emission of GRB070616

    Science.gov (United States)

    Starling, R. L. C.; O'Brien, P. T.; Willingale, R.; Page, K. L.; Osborne, J. P.; de Pasquale, M.; Nakagawa, Y. E.; Kuin, N. P. M.; Onda, K.; Norris, J. P.; Ukwatta, T. N.; Kodaka, N.; Burrows, D. N.; Kennea, J. A.; Page, M. J.; Perri, M.; Markwardt, C. B.

    2008-02-01

    The origins of gamma-ray burst (GRB) prompt emission are currently not well understood and in this context long, well-observed events are particularly important to study. We present the case of GRB070616, analysing the exceptionally long-duration multipeaked prompt emission, and later afterglow, captured by all the instruments on-board Swift and by Suzaku Wide-Band All-Sky Monitor (WAM). The high-energy light curve remained generally flat for several hundred seconds before going into a steep decline. Spectral evolution from hard to soft is clearly taking place throughout the prompt emission, beginning at 285s after the trigger and extending to 1200s. We track the movement of the spectral peak energy, whilst observing a softening of the low-energy spectral slope. The steep decline in flux may be caused by a combination of this strong spectral evolution and the curvature effect. We investigate origins for the spectral evolution, ruling out a superposition of two power laws and considering instead an additional component dominant during the late prompt emission. We also discuss origins for the early optical emission and the physics of the afterglow. The case of GRB070616 clearly demonstrates that both broad-band coverage and good time resolution are crucial to pin down the origins of the complex prompt emission in GRBs. This paper is dedicated to the memory of Dr Francesca Tamburelli who died during its production. Francesca played a fundamental role within the team which is in charge of the development of the Swift X-Ray Telescope (XRT) data analysis software at the Italian Space Agency's Science Data Centre in Frascati. She is sadly missed. E-mail: rlcs1@star.le.ac.uk

  2. Spectral investigation of a complex space charge structure in plasma

    International Nuclear Information System (INIS)

    Gurlui, S.; Dimitriu, D. G.; Ionita, C.; Schrittwieser, R. W.

    2009-01-01

    Complex space charge structures bordered by electrical double layers were spectrally investigated in argon plasma in the domain 400-1000 nm, identifying the lines corresponding to the transitions from different excited states of argon. The electron excitation temperature in the argon atoms was estimated from the spectral lines intensity ratio. (authors)

  3. Structural and electronic properties of OsB2 : A hard metallic material

    Science.gov (United States)

    Chen, Z. Y.; Xiang, H. J.; Yang, Jinlong; Hou, J. G.; Zhu, Qingshi

    2006-07-01

    We calculate the structural and electronic properties of OsB2 using density functional theory with or without taking into account the spin-orbit (SO) interaction. Our results show that the bulk modulus with and without SO interactions are 364 and 365GPa , respectively, both are in good agreement with experiment (365-395GPa) . The evidence of covalent bonding of Os-B, which plays an important role to form a hard material, is indicated both in charge density, atoms in molecules analysis, and density of states analysis. The good metallicity and hardness of OsB2 might suggest its potential application as hard conductors.

  4. Application of soft- and hard-modelling approaches to resolution of kinetics of electron donor-acceptor complex formation of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone with imipramine in different solutions

    International Nuclear Information System (INIS)

    Hasani, Masoumeh; Shariati-Rad, Masoud; Abdollahi, Hamid

    2009-01-01

    Kinetics of electron donor-acceptor (EDA) complex formation of imipramine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) was investigated spectrophotometrically in acetonitrile, 1,2-dichloroethane, and chloroform solutions using soft- and hard-modelling approaches. From the results of exploratory analysis of kinetic data and the spectral changes by soft-modelling approaches, evolving factor analysis (EFA) and orthogonal projection approach (OPA), a consecutive two-steps reaction with two intermediates was proposed for the process in acetonitrile and 1,2-dichloroethane media and one with a single intermediate in chloroform solution. Secondly, by applying, multivariate nonlinear least squares hard-modelling approach on the collected experimental kinetic data matrix, the nonlinear parameters (rate constants) as well as the linear parameters (spectral profiles) were obtained by fitting the collected experimental kinetic data matrix to the proposed model. Small values of standard deviation in the resulting parameters and sum of squares of the residuals (ssq) obtained showed the proper selection of the model. Furthermore, the values of lack of fit and percent of explained variance confirmed the correct identified models. Identification of the model with the aid of soft-modelling approaches followed by application of the hard-modelling approaches decreases significantly the rotational ambiguity associated with the obtained concentration and spectral profiles. Variations in the kinetic constants were in complete agreement with the model proposed and the solvent polarities

  5. Application of soft- and hard-modelling approaches to resolution of kinetics of electron donor-acceptor complex formation of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone with imipramine in different solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hasani, Masoumeh [Faculty of Chemistry, Bu-Ali Sina University, Mahdieh, Hamedan, 65174 (Iran, Islamic Republic of)], E-mail: hasani@basu.ac.ir; Shariati-Rad, Masoud [Faculty of Chemistry, Bu-Ali Sina University, Mahdieh, Hamedan, 65174 (Iran, Islamic Republic of); Abdollahi, Hamid [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of)

    2009-03-23

    Kinetics of electron donor-acceptor (EDA) complex formation of imipramine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) was investigated spectrophotometrically in acetonitrile, 1,2-dichloroethane, and chloroform solutions using soft- and hard-modelling approaches. From the results of exploratory analysis of kinetic data and the spectral changes by soft-modelling approaches, evolving factor analysis (EFA) and orthogonal projection approach (OPA), a consecutive two-steps reaction with two intermediates was proposed for the process in acetonitrile and 1,2-dichloroethane media and one with a single intermediate in chloroform solution. Secondly, by applying, multivariate nonlinear least squares hard-modelling approach on the collected experimental kinetic data matrix, the nonlinear parameters (rate constants) as well as the linear parameters (spectral profiles) were obtained by fitting the collected experimental kinetic data matrix to the proposed model. Small values of standard deviation in the resulting parameters and sum of squares of the residuals (ssq) obtained showed the proper selection of the model. Furthermore, the values of lack of fit and percent of explained variance confirmed the correct identified models. Identification of the model with the aid of soft-modelling approaches followed by application of the hard-modelling approaches decreases significantly the rotational ambiguity associated with the obtained concentration and spectral profiles. Variations in the kinetic constants were in complete agreement with the model proposed and the solvent polarities.

  6. On the Nature of the mHz X-ray Quasi-Periodic Oscillations from Ultraluminous X-ray source M82 X-1: Search for Timing-Spectral Correlations

    Science.gov (United States)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    Using all the archival XMM-Newton X-ray (3-10 keV) observations of the ultraluminous X-ray source (ULX) M82 X-1, we searched for a correlation between its variable mHz quasi-periodic oscillation (QPO) frequency and its hardness ratio (5-10 keV/3-5 keV), an indicator of the energy spectral power-law index. When stellar-mass black holes (StMBHs) exhibit type-C low-frequency QPOs (0.2-15 Hz), the centroid frequency of the QPO is known to correlate with the energy spectral index. The detection of such a correlation would strengthen the identification of M82 X-1's mHz QPOs as type-C and enable a more reliable mass estimate by scaling its QPO frequencies to those of type-C QPOs in StMBHs of known mass.We resolved the count rates and the hardness ratios of M82 X-1 and a nearby bright ULX (source 5/X42.3+59) through surface brightness modeling.We detected QPOs in the frequency range of 36-210 mHz during which M82 X-1's hardness ratio varied from 0.42 to 0.47. Our primary results are (1) that we do not detect any correlation between the mHz QPO frequency and the hardness ratio (a substitute for the energy spectral power-law index) and (2) similar to some accreting X-ray binaries, we find that M82 X-1's mHz QPO frequency increases with its X-ray count rate (Pearson's correlation coefficient = +0.97). The apparent lack of a correlation between the QPO centroid frequency and the hardness ratio poses a challenge to the earlier claims that the mHz QPOs of M82 X-1 are the analogs of the type-C low-frequency QPOs of StMBHs. On the other hand, it is possible that the observed relation between the hardness ratio and the QPO frequency represents the saturated portion of the correlation seen in type-C QPOs of StMBHs-in which case M82 X-1's mHz QPOs can still be analogous to type-C QPOs.

  7. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  8. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  9. Hard X-ray Vela supernova observation on rocket experiment WRX-R

    Science.gov (United States)

    Stehlikova, V.; Urban, M.; Nentvich, O.; Daniel, V.; Sieger, L.; Tutt, J.

    2017-07-01

    This paper presents a hard X-ray telescope for the Vela nebula observation during a sounding rocket flight. The Water Recovery X-ray Rocket (WRX-R) experiment is organised by the Pennsylvania State University (PSU), USA with a primary payload of a soft X-ray spectroscope. The Czech team developed a hard X-ray Lobster-eye telescope as a secondary payload. The Czech experiment’s astrophysical object of study is the Vela pulsar in the centre of the Vela nebula.

  10. Hard X-Ray PHA System on the HT-7 Tokamak

    International Nuclear Information System (INIS)

    Lin Shiyao; Shi Yuejiang; Wan Baonian; Chen Zhongyong; Hu Liqun

    2006-01-01

    A new hard X-ray pulse-height analysis (PHA) system has been established on HT-7 tokamak for long pulse steady-state operation. This PHA system consists of hard X-ray diagnostics and multi-channel analysers (MCA). The hard X-ray diagnostics consists of a vertical X-ray detector array (CdTe) and a horizontal X-ray detector array (NaI). The hard X-ray diagnostics can provide the profile of power deposition and the distribution function of fast electron during radio frequency (RF) current drive. The MCA system is the electronic part of the PHA system, which has been modularized and linked to PC through LAN. Each module of MCA can connect with 8 X-ray detectors. The embedded Ethernet adapter in the MCA module makes the data communication between PC and MCA very convenient. A computer can control several modules of MCA through certain software and a hub. The RAM in MCA can store 1024 or more spectra for each detector and therefore the PHA system can be applied in the long pulse discharge of several minutes

  11. Extreme Radiation Hardness and Space Qualification of AlGaN Optoelectronic Devices

    International Nuclear Information System (INIS)

    Sun, Ke-Xun; MacNeil, Lawrence; Balakrishnan, Kathik; Hultgren, Eric; Goebel, John; Bilenko, Yuri; Yang, Jinwei; Sun, Wenhong; Shatalov, Max; Hu, Xuhong; Gaska, Remis

    2010-01-01

    Unprecedented radiation hardness and environment robustness are required in the new generation of high energy density physics (HEDP) experiments and deep space exploration. National Ignition Facility (NIF) break-even shots will have a neutron yield of 10 15 or higher. The Europa Jupiter System Mission (EJSM) mission instruments will be irradiated with a total fluence of 10 12 protons/cm 2 during the space journey. In addition, large temperature variations and mechanical shocks are expected in these applications under extreme conditions. Hefty radiation and thermal shields are required for Si and GaAs based electronics and optoelectronics devices. However, for direct illumination and imaging applications, shielding is not a viable option. It is an urgent task to search for new semiconductor technologies and to develop radiation hard and environmentally robust optoelectronic devices. We will report on our latest systematic experimental studies on radiation hardness and space qualifications of AlGaN optoelectronic devices: Deep UV Light Emitting Diodes (DUV LEDs) and solarblind UV Photodiodes (PDs). For custom designed AlGaN DUV LEDs with a central emission wavelength of 255 nm, we have demonstrated its extreme radiation hardness up to 2 x 10 12 protons/cm 2 with 63.9 MeV proton beams. We have demonstrated an operation lifetime of over 26,000 hours in a nitrogen rich environment, and 23,000 hours of operation in vacuum without significant power drop and spectral shift. The DUV LEDs with multiple packaging styles have passed stringent space qualifications with 14 g random vibrations, and 21 cycles of 100K temperature cycles. The driving voltage, current, emission spectra and optical power (V-I-P) operation characteristics exhibited no significant changes after the space environmental tests. The DUV LEDs will be used for photoelectric charge management in space flights. For custom designed AlGaN UV photodiodes with a central response wavelength of 255 nm, we have

  12. Meaningful timescales from Monte Carlo simulations of particle systems with hard-core interactions

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Liborio I., E-mail: liborio78@gmail.com

    2016-12-01

    A new Markov Chain Monte Carlo method for simulating the dynamics of particle systems characterized by hard-core interactions is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.

  13. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    International Nuclear Information System (INIS)

    Qian Lu-Lu; Lü Qun-Bo; Huang Min; Xiang Li-Bin

    2015-01-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. (paper)

  14. The Open Spectral Database: an open platform for sharing and searching spectral data.

    Science.gov (United States)

    Chalk, Stuart J

    2016-01-01

    A number of websites make available spectral data for download (typically as JCAMP-DX text files) and one (ChemSpider) that also allows users to contribute spectral files. As a result, searching and retrieving such spectral data can be time consuming, and difficult to reuse if the data is compressed in the JCAMP-DX file. What is needed is a single resource that allows submission of JCAMP-DX files, export of the raw data in multiple formats, searching based on multiple chemical identifiers, and is open in terms of license and access. To address these issues a new online resource called the Open Spectral Database (OSDB) http://osdb.info/ has been developed and is now available. Built using open source tools, using open code (hosted on GitHub), providing open data, and open to community input about design and functionality, the OSDB is available for anyone to submit spectral data, making it searchable and available to the scientific community. This paper details the concept and coding, internal architecture, export formats, Representational State Transfer (REST) Application Programming Interface and options for submission of data. The OSDB website went live in November 2015. Concurrently, the GitHub repository was made available at https://github.com/stuchalk/OSDB/, and is open for collaborators to join the project, submit issues, and contribute code. The combination of a scripting environment (PHPStorm), a PHP Framework (CakePHP), a relational database (MySQL) and a code repository (GitHub) provides all the capabilities to easily develop REST based websites for ingestion, curation and exposure of open chemical data to the community at all levels. It is hoped this software stack (or equivalent ones in other scripting languages) will be leveraged to make more chemical data available for both humans and computers.

  15. Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function

    NARCIS (Netherlands)

    Ten Kate, O.M.; De Jong, M.; Hintzen, H.T.; Van der Kolk, E.

    2013-01-01

    Solar cells of which the efficiency is not limited by the Shockley-Queisser limit can be obtained by integrating a luminescent spectral conversion layer into the cell structure. We have calculated the maximum efficiency of state-of-the-art c-Si, pc-Si, a-Si, CdTe, GaAs, CIS, CIGS, CGS, GaSb, and Ge

  16. Design and performance of a one square meter proportional counter system for hard X-ray astronomy

    International Nuclear Information System (INIS)

    Bazzano, A.; Boccaccini, L.; La Padula, C.D.; Mastropietro, M.; Patriarca, R.; Polcaro, F.; Ubertini, P.

    1983-01-01

    A versatile balloon borne hard X-ray experiment with a very large area (approx.= 1.1 m 2 ) and high spectral resolution has been developed for the study of the hard X-ray sources in the energy range 20-180 keV. The telescope consists of four multiwire proportional chambers (MWPC) that have a geometrical sensitive area of 2700 cm 2 each. The detector system has a sensitivity of approx.= 10 -5 photons cm -2 s -1 keV -1 during a typical balloon observation. A background rate of approx.= 3 x 10 -4 counts cm -2 s -1 keV -1 was observed in the operative energy range at 2.4 gm/cm 2 ceiling altitude and geographic latitude of 38 0 N. The design details, fabrication and flight performance of the instrument are briefly discussed with reference to the effectiveness of background reduction and other test parameters. (orig.)

  17. Is spectral reflectance of the face a reliable biometric?

    Science.gov (United States)

    Uzair, Muhammad; Mahmood, Arif; Shafait, Faisal; Nansen, Christian; Mian, Ajmal

    2015-06-15

    Over a decade ago, Pan et al. [IEEE TPAMI 25, 1552 (2003)] performed face recognition using only the spectral reflectance of the face at six points and reported around 95% recognition rate. Since their database is private, no one has been able to replicate these results. Moreover, due to the unavailability of public datasets, there has been no detailed study in the literature on the viability of facial spectral reflectance for person identification. In this study, we introduce a new public database of facial spectral reflectance profiles measured with a high precision spectrometer. For each of the 40 subjects, spectral reflectance was measured at the same six points as Pan et al. [IEEE TPAMI 25, 1552 (2003)] in multiple sessions and with time lapse. Furthermore, we sample the facial spectral reflectance from two public hyperspectral face image datasets and analyzed the data using state of the art face classification techniques. The best performing classifier achieved the maximum rank-1 identification rate of 53.8%. We conclude that facial spectral reflectance alone is not a reliable biometric for unconstrained face recognition.

  18. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  19. Novel spectral features of nanoelectromechanical systems

    KAUST Repository

    Tahir, M.

    2014-02-17

    Electron transport through a quantum dot or single molecule coupled to a quantum oscillator is studied by the Keldysh nonequilibrium Green\\'s function formalism to obtain insight into the quantum dynamics of the electronic and oscillator degrees of freedom. We tune the electronic level of the quantum dot by a gate voltage, where the leads are kept at zero temperature. Due to the nonequilibrium distribution of the electrons in the quantum dot, the spectral function becomes a function of the gate voltage. Novel spectral features are identified for the ground and excited states of nanomechanical oscillators that can be used to enhance the measurement sensitivity.

  20. The hard ellipsoid-of-revolution fluid II. The y-expansion equation of state

    NARCIS (Netherlands)

    Mulder, B.M.; Frenkel, D.

    1985-01-01

    The γ-expansion as introduced by Barboy and Gelbart is applied to a system of hard ellipsoids-of-revolution. The expansion is truncated after the third order term yielding an approximate theory requiring the second- and third-virial coefficients as inputs. As the third virial coefficient is not

  1. Conserving relativistic many-body approach: Equation of state, spectral function, and occupation probabilities of nuclear matter

    International Nuclear Information System (INIS)

    de Jong, F.; Malfliet, R.

    1991-01-01

    Starting from a relativistic Lagrangian we derive a ''conserving'' approximation for the description of nuclear matter. We show this to be a nontrivial extension over the relativistic Dirac-Brueckner scheme. The saturation point of the equation of state calculated agrees very well with the empirical saturation point. The conserving character of the approach is tested by means of the Hugenholtz--van Hove theorem. We find the theorem fulfilled very well around saturation. A new value for compression modulus is derived, K=310 MeV. Also we calculate the occupation probabilities at normal nuclear matter densities by means of the spectral function. The average depletion κ of the Fermi sea is found to be κ∼0.11

  2. Microbiological quality of soft, semi-hard and hard cheeses during the shelf-life

    Directory of Open Access Journals (Sweden)

    Josip Vrdoljak

    2016-03-01

    Full Text Available Cheeses as ready-to-eat food should be considered as a potential source of foodborne pathogens, primarily Listeria monocytogenes. The aim of present study was to determine the microbiological quality of soft, semi-hard and hard cheeses during the shelf-life, with particular reference to L. monocytogenes. Five types of cheeses were sampled at different timepoints during the cold storage and analyzed for presence of Salmonella and L. monocytogenes, as well as lactic acid bacteria, Escherichia coli, coagulase-positive staphylococci, yeasts, molds, sulfite-reducing clostridia and L. monocytogenes counts. Water activity, pH and NaCl content were monitored in order to evaluate the possibility of L. monocytogenes growth. Challenge test for L. monocytogenes was performed in soft whey cheese, to determine the growth potential of pathogen during the shelf-life of product. All analyzed cheeses were compliant with microbiological criteria during the shelf-life. In soft cheeses, lactic acid bacteria increased in the course of the shelf-life period (1.2-2.6 log increase, while in semi-hard and hard cheeses it decreased (1.6 and 5.2 log decrease, respectively. Soft cheeses support the growth of L. monocytogenes according to determined pH values (5.8-6.5, water activity (0.99-0.94, and NaCl content (0.3-1.2%. Challenge test showed that L. monocytogenes growth potential in selected soft cheese was 0.43 log10 cfu/g during 8 days at 4°C. Water activity in semi-hard and hard cheeses was a limiting factor for Listeria growth during the shelf-life. Soft, semi-hard and hard cheeses were microbiologically stable during their defined shelf-life. Good manufacturing and hygienic practices must be strictly followed in the production of soft cheeses as Listeria-supporting food and be focused on preventing (recontamination.

  3. Analytical and Empirical Modeling of Wear and Forces of CBN Tool in Hard Turning - A Review

    Science.gov (United States)

    Patel, Vallabh Dahyabhai; Gandhi, Anishkumar Hasmukhlal

    2017-08-01

    Machining of steel material having hardness above 45 HRC (Hardness-Rockwell C) is referred as a hard turning. There are numerous models which should be scrutinized and implemented to gain optimum performance of hard turning. Various models in hard turning by cubic boron nitride tool have been reviewed, in attempt to utilize appropriate empirical and analytical models. Validation of steady state flank and crater wear model, Usui's wear model, forces due to oblique cutting theory, extended Lee and Shaffer's force model, chip formation and progressive flank wear have been depicted in this review paper. Effort has been made to understand the relationship between tool wear and tool force based on the different cutting conditions and tool geometries so that appropriate model can be used according to user requirement in hard turning.

  4. Analytical Modeling of Hard-Coating Cantilever Composite Plate considering the Material Nonlinearity of Hard Coating

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the expression of equivalent strain of composite plate was derived. Then, the analytical model of hard-coating composite plate was created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphson method to solve the vibration response and resonant frequencies of composite plate and a specific calculation procedure was also proposed. Finally, a cantilever plate coated with MgO + Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies of composite plate were calculated using the proposed method. The calculation results were compared with the experiment and general linear calculation, and the correctness of the created model was verified. The study shows the proposed method can still maintain an acceptable precision when the material nonlinearity of hard coating is stronger.

  5. Spectral statistics in chiral-orthogonal disordered systems

    International Nuclear Information System (INIS)

    Evangelou, S N; Katsanos, D E

    2003-01-01

    We describe the singularities in the averaged density of states and the corresponding statistics of the energy levels in two- (2D) and three-dimensional (3D) chiral symmetric and time-reversal invariant disordered systems, realized in bipartite lattices with real off-diagonal disorder. For off-diagonal disorder of zero mean, we obtain a singular density of states in 2D which becomes much less pronounced in 3D, while the level-statistics can be described by a semi-Poisson distribution with mostly critical fractal states in 2D and Wigner surmise with mostly delocalized states in 3D. For logarithmic off-diagonal disorder of large strength, we find behaviour indistinguishable from ordinary disorder with strong localization in any dimension but in addition one-dimensional 1/ vertical bar E vertical bar Dyson-like asymptotic spectral singularities. The off-diagonal disorder is also shown to enhance the propagation of two interacting particles similarly to systems with diagonal disorder. Although disordered models with chiral symmetry differ from non-chiral ones due to the presence of spectral singularities, both share the same qualitative localization properties except at the chiral symmetry point E=0 which is critical

  6. SUZAKU BROADBAND SPECTROSCOPY OF SWIFT J1753.5-0127 IN THE LOW-HARD STATE

    International Nuclear Information System (INIS)

    Reynolds, Mark T.; Miller, Jon M.; Homan, Jeroen; Miniutti, Giovanni

    2010-01-01

    We present Suzaku observations of the Galactic black hole candidate Swift J1753.5-0127 in the low-hard state (LHS). The broadband coverage of Suzaku enables us to detect the source over the energy range 0.6-250 keV. The broadband spectrum (2-250 keV) is found to be consistent with a simple power-law (Γ ∼ 1.63). In agreement with previous observations of this system, a significant excess of soft X-ray flux is detected consistent with the presence of a cool accretion disk. Estimates of the disk inner radius infer a value consistent with the innermost stable circular orbit (ISCO; R in ∼ g , for certain values of, e.g., N H , i), although we cannot conclusively rule out the presence of an accretion disk truncated at larger radii (R in ∼ 10-50R g ). A weak, relativistically broadened iron line is also detected, in addition to disk reflection at higher energy. However, the iron-K line profile favors an inner radius larger than the ISCO (R in ∼ 10-20R g ). The implications of these observations for models of the accretion flow in the LHS are discussed.

  7. Hadronic spectral functions in nuclear matter

    International Nuclear Information System (INIS)

    Post, M.; Leupold, S.; Mosel, U.

    2004-01-01

    We study the in-medium properties of mesons (π,η,ρ) and baryon resonances in cold nuclear matter within a coupled-channel analysis. The meson self energies are generated by particle-hole excitations. Thus multi-peak spectra are obtained for the mesonic spectral functions. In turn this leads to medium-modifications of the baryon resonances. Special care is taken to respect the analyticity of the spectral functions and to take into account effects from short-range correlations both for positive and negative parity states. Our model produces sensible results for pion and Δ dynamics in nuclear matter. We find a strong interplay of the ρ meson and the D 13 (1520), which moves spectral strength of the ρ spectrum to smaller invariant masses and leads to a broadening of the baryon resonance. The optical potential for the η meson resulting from our model is rather attractive whereas the in-medium properties modifications of the S 11 (1535) are found to be quite small

  8. Nonlinear physical systems spectral analysis, stability and bifurcations

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam

  9. Chemical hardness and density functional theory

    Indian Academy of Sciences (India)

    Unknown

    RALPH G PEARSON. Chemistry Department, University of California, Santa Barbara, CA 93106, USA. Abstract. The concept of chemical hardness is reviewed from a personal point of view. Keywords. Hardness; softness; hard & soft acids bases (HSAB); principle of maximum hardness. (PMH) density functional theory (DFT) ...

  10. Hardness variability in commercial technologies

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Winokur, P.S.; Meisenheimer, T.L.; Sexton, F.W.; Roeske, S.B.; Knoll, M.G.

    1994-01-01

    The radiation hardness of commercial Floating Gate 256K E 2 PROMs from a single diffusion lot was observed to vary between 5 to 25 krad(Si) when irradiated at a low dose rate of 64 mrad(Si)/s. Additional variations in E 2 PROM hardness were found to depend on bias condition and failure mode (i.e., inability to read or write the memory), as well as the foundry at which the part was manufactured. This variability is related to system requirements, and it is shown that hardness level and variability affect the allowable mode of operation for E 2 PROMs in space applications. The radiation hardness of commercial 1-Mbit CMOS SRAMs from Micron, Hitachi, and Sony irradiated at 147 rad(Si)/s was approximately 12, 13, and 19 krad(Si), respectively. These failure levels appear to be related to increases in leakage current during irradiation. Hardness of SRAMs from each manufacturer varied by less than 20%, but differences between manufacturers are significant. The Qualified Manufacturer's List approach to radiation hardness assurance is suggested as a way to reduce variability and to improve the hardness level of commercial technologies

  11. Statistical mechanics of fluids under internal constraints: Rigorous results for the one-dimensional hard rod fluid

    International Nuclear Information System (INIS)

    Corti, D.S.; Debenedetti, P.G.

    1998-01-01

    The rigorous statistical mechanics of metastability requires the imposition of internal constraints that prevent access to regions of phase space corresponding to inhomogeneous states. We derive exactly the Helmholtz energy and equation of state of the one-dimensional hard rod fluid under the influence of an internal constraint that places an upper bound on the distance between nearest-neighbor rods. This type of constraint is relevant to the suppression of boiling in a superheated liquid. We determine the effects of this constraint upon the thermophysical properties and internal structure of the hard rod fluid. By adding an infinitely weak and infinitely long-ranged attractive potential to the hard core, the fluid exhibits a first-order vapor-liquid transition. We determine exactly the equation of state of the one-dimensional superheated liquid and show that it exhibits metastable phase equilibrium. We also derive statistical mechanical relations for the equation of state of a fluid under the action of arbitrary constraints, and show the connection between the statistical mechanics of constrained and unconstrained ensembles. copyright 1998 The American Physical Society

  12. Emerging quasi-0D states at vanishing total entropy of the 1D hard sphere system: A coarse-grained similarity to the car parking problem

    Science.gov (United States)

    Frusawa, Hiroshi

    2014-05-01

    A coarse-grained system of one-dimensional (1D) hard spheres (HSs) is created using the Delaunay tessellation, which enables one to define the quasi-0D state. It is found from comparing the quasi-0D and 1D free energy densities that a frozen state due to the emergence of quasi-0D HSs is thermodynamically more favorable than fluidity with a large-scale heterogeneity above crossover volume fraction of ϕc=e/(1+e)=0.731⋯ , at which the total entropy of the 1D state vanishes. The Delaunay-based lattice mapping further provides a similarity between the dense HS system above ϕc and the jamming limit in the car parking problem.

  13. Emerging quasi-0D states at vanishing total entropy of the 1D hard sphere system: A coarse-grained similarity to the car parking problem

    International Nuclear Information System (INIS)

    Frusawa, Hiroshi

    2014-01-01

    A coarse-grained system of one-dimensional (1D) hard spheres (HSs) is created using the Delaunay tessellation, which enables one to define the quasi-0D state. It is found from comparing the quasi-0D and 1D free energy densities that a frozen state due to the emergence of quasi-0D HSs is thermodynamically more favorable than fluidity with a large-scale heterogeneity above crossover volume fraction of ϕ c =e/(1+e)=0.731⋯ , at which the total entropy of the 1D state vanishes. The Delaunay-based lattice mapping further provides a similarity between the dense HS system above ϕ c and the jamming limit in the car parking problem.

  14. Noncommutativity from spectral flow

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas; Ilderton, Anton [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2007-07-27

    We investigate the transition from second- to first-order systems. Quantum mechanically, this transforms configuration space into phase space and hence introduces noncommutativity in the former. This transition may be described in terms of spectral flow. Gaps in the energy or mass spectrum may become large which effectively truncates the available state space. Using both operator and path integral languages we explicitly discuss examples in quantum mechanics (light-front) quantum field theory and string theory.

  15. A synthetic dataset for evaluating soft and hard fusion algorithms

    Science.gov (United States)

    Graham, Jacob L.; Hall, David L.; Rimland, Jeffrey

    2011-06-01

    There is an emerging demand for the development of data fusion techniques and algorithms that are capable of combining conventional "hard" sensor inputs such as video, radar, and multispectral sensor data with "soft" data including textual situation reports, open-source web information, and "hard/soft" data such as image or video data that includes human-generated annotations. New techniques that assist in sense-making over a wide range of vastly heterogeneous sources are critical to improving tactical situational awareness in counterinsurgency (COIN) and other asymmetric warfare situations. A major challenge in this area is the lack of realistic datasets available for test and evaluation of such algorithms. While "soft" message sets exist, they tend to be of limited use for data fusion applications due to the lack of critical message pedigree and other metadata. They also lack corresponding hard sensor data that presents reasonable "fusion opportunities" to evaluate the ability to make connections and inferences that span the soft and hard data sets. This paper outlines the design methodologies, content, and some potential use cases of a COIN-based synthetic soft and hard dataset created under a United States Multi-disciplinary University Research Initiative (MURI) program funded by the U.S. Army Research Office (ARO). The dataset includes realistic synthetic reports from a variety of sources, corresponding synthetic hard data, and an extensive supporting database that maintains "ground truth" through logical grouping of related data into "vignettes." The supporting database also maintains the pedigree of messages and other critical metadata.

  16. Radiation hardness of diamond and silicon sensors compared

    CERN Document Server

    de Boer, Wim; Furgeri, Alexander; Mueller, Steffen; Sander, Christian; Berdermann, Eleni; Pomorski, Michal; Huhtinen, Mika

    2007-01-01

    The radiation hardness of silicon charged particle sensors is compared with single crystal and polycrystalline diamond sensors, both experimentally and theoretically. It is shown that for Si- and C-sensors, the NIEL hypothesis, which states that the signal loss is proportional to the Non-Ionizing Energy Loss, is a good approximation to the present data. At incident proton and neutron energies well above 0.1 GeV the radiation damage is dominated by the inelastic cross section, while at non-relativistic energies the elastic cross section prevails. The smaller inelastic nucleon-Carbon cross section and the light nuclear fragments imply that at high energies diamond is an order of magnitude more radiation hard than silicon, while at energies below 0.1 GeV the difference becomes significantly smaller.

  17. OPTICAL POLARIZATION AND SPECTRAL VARIABILITY IN THE M87 JET

    International Nuclear Information System (INIS)

    Perlman, Eric S.; Cara, Mihai; Bourque, Matthew; Simons, Raymond C.; Adams, Steven C.; Harris, D. E.; Madrid, Juan P.; Clausen-Brown, Eric; Cheung, C. C.; Stawarz, Lukasz; Georganopoulos, Markos; Sparks, William B.; Biretta, John A.

    2011-01-01

    During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability has also been seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST-1 shows a highly significant correlation between flux and polarization, with P increasing from ∼20% at minimum to >40% at maximum, while the orientation of its electric vector stayed constant. HST-1's optical-UV spectrum is very hard (α UV-O ∼ 0.5, F ν ∝ν –α ), and displays 'hard lags' during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2σ upper limits of 0.5δ pc and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet position angle (P.A.) makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I, P) plane. The nucleus has a much steeper spectrum (α UV-O ∼ 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.

  18. OPTICAL POLARIZATION AND SPECTRAL VARIABILITY IN THE M87 JET

    Energy Technology Data Exchange (ETDEWEB)

    Perlman, Eric S.; Cara, Mihai; Bourque, Matthew; Simons, Raymond C. [Department of Physics and Space Sciences, 150 W. University Blvd., Florida Institute of Technology, Melbourne, FL 32901 (United States); Adams, Steven C. [Department of Physics and Astronomy, University of Georgia, Athens, GA 30605 (United States); Harris, D. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Madrid, Juan P. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia); Clausen-Brown, Eric [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Cheung, C. C. [National Academy of Sciences, Washington, DC 20001 (United States); Stawarz, Lukasz [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Georganopoulos, Markos [Department of Physics, University of Maryland-Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Sparks, William B.; Biretta, John A., E-mail: eperlman@fit.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2011-12-20

    During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability has also been seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST-1 shows a highly significant correlation between flux and polarization, with P increasing from {approx}20% at minimum to >40% at maximum, while the orientation of its electric vector stayed constant. HST-1's optical-UV spectrum is very hard ({alpha}{sub UV-O} {approx} 0.5, F{sub {nu}}{proportional_to}{nu}{sup -{alpha}}), and displays 'hard lags' during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2{sigma} upper limits of 0.5{delta} pc and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet position angle (P.A.) makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I, P) plane. The nucleus has a much steeper spectrum ({alpha}{sub UV-O} {approx} 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.

  19. On spectral subspaces and their applications to automorphism groups

    International Nuclear Information System (INIS)

    Olesen, Dorte

    1974-03-01

    An attempt is made to give a survey of the theory of spectra and spectral subspaces of group representations in an abstract Banach space setting. The theory is applied to the groups of automorphisms of operator algebras (mostly C*-algebras) and some important results of interest for mathematical physicists are proved (restrictions of the bitransposed action, spectral subspaces for the transposed action on a C*-algebra, and positive states and representations of Rsup(n)) [fr

  20. Spectral refractometry of the ferroics of triglycine sulfate group, rochelle salt and potassium sulfate crystals

    International Nuclear Information System (INIS)

    Romanyuk, M.O.

    2006-01-01

    The methods for measuring of refractive indices, optical anisotropy, temperature (4.2-1000 K) and spectral (230-800 nm) dependencies of the electronic polarization of the dielectric ferroics are described. optical bire-frigence sign-inversion (Δn=0), radiation-induced refraction indices changing sign inversion, anomalies of piezooptic coefficients at phase transitions are detected. The parameters of effective oscillators are computed. The crystal optic method for creating the temperature reference points, for measuring temperature and doses of hard radiation is presented

  1. Vector meson dominance and pointlike coupling of the photon in soft and hard processes

    International Nuclear Information System (INIS)

    Paul, E.

    1990-05-01

    Recent experimental results on photoproduction of hadrons probe the nature of the interacting photon over a wide kinematical range from soft to hard processes. Single inclusive spectra and energy flows of the final state charged particles are well described by assuming that photon production data are built up by an incoherent superposition of a soft Vector-Meson-Dominance component and a hard pointlike photon component. (orig.)

  2. Surface hardness of hybrid ionomer cement after immersion in antiseptic solution

    Directory of Open Access Journals (Sweden)

    Anita Yuliati

    2006-06-01

    Full Text Available Hybrid ionomer cement or resin modified glass ionomer cement is a developed form of conventional glass ionomer cement. This hybrid ionomer cement can be eroded if in direct contact with acid solution which will affect surface hardness. The aim of this study is to learn surface hardness of hybrid ionomer cement after immersion in methyl salicylate 0.06% (pH 3.6 and povidon iodine 1% (pH 2.9 solution. Sample of hybrid ionomer cement with 5 mm diameter and 3 mm thickness was immersed in sterile aquadest solution (control, methyl salicylate pH 3.6, povidon iodine pH 2.9 for 1 minute, 7 and 14 minutes. Surface hardness was measured with Micro Vickers Hardness Tester. The obtained data was analyzed statistically with ANOVA followed by LSD test. The result of hybrid ionomer cement after immersion in sterile aquadest, methyl salicylate 0.06% pH 3.6 and povidon iodine 1% pH 2.9 for one minute, showed no significant difference; while immersion for 7 and 14 minutes showed a significant difference. The conclusion states that hybrid ionomer cement after 14 minutes immersion in povidon iodine 1% pH 2.9 has the lowest surface hardness.

  3. Exponential critical-state model for magnetization of hard superconductors

    International Nuclear Information System (INIS)

    Chen, D.; Sanchez, A.; Munoz, J.S.

    1990-01-01

    We have calculated the initial magnetization curves and hysteresis loops for hard type-II superconductors based on the exponential-law model, J c (H i ) =k exp(-|H i |/H 0 ), where k and H 0 are constants. After discussing the general behavior of penetrated supercurrents in an infinitely long column specimen, we define a general cross-sectional shape based on two equal circles of radius a, which can be rendered into a circle, a rectangle, or many other shapes. With increasing parameter p (=ka/H 0 ), the computed M-H curves show obvious differences with those computed from Kim's model and approach the results of a simple infinitely narrow square pulse J c (H i ). For high-T c superconductors, our results can be applied to the study of the magnetic properties and the critical-current density of single crystals, as well as to the determination of the intergranular critical-current density from magnetic measurements

  4. Genetics of leaf rust resistance in the hard red winter wheat cultivars Santa Fe and Duster

    Science.gov (United States)

    Leaf rust caused by Puccinia triticina is a common and important disease of hard red winter wheat in the Great Plains of the United States. The hard red winter wheat cultivars 'Santa Fe' and 'Duster' have had effective leaf rust resistance since their release in 2003 and 2006, respectively. Both cul...

  5. Generation of doublet spectral lines at self-seeded X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Braggtransmission geometry for self-seeding in the hard X-ray range. The obvious and technically possible extension is to use such kind of monochromator setup with two -or more- crystals arranged in a series to spectrally filter the SASE radiation at two -or more- closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet- or multiplet-spectral lines. Applications exist over a broad range of hard X-ray wavelengths involving any process where there is a large change in cross section over a narrow wavelength range, as in multiple wavelength anomalous diffraction techniques (MAD). In this paper we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, and we show that this method can produce fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band, i.e. within 10 eV. An interesting aspect of the proposed scheme is a way of modulating the electron bunch at optical frequencies without a seed quantum laser. In fact, the XFEL output intensity contains an oscillating ''mode-beat'' component whose frequency is related to the frequency difference between the pair of longitudinal modes considered. Thus, at saturation one obtains FEL-induced modulations of energy loss and energy spread in the electron bunch at optical frequency. These modulations can be converted into density modulation at the same optical frequency with the help of a weak chicane installed behind the baseline undulator. Powerful coherent radiation can then be generated with the help of an optical transition radiation (OTR) station,which have important applications. In this paper we briefly

  6. Generation of doublet spectral lines at self-seeded X-ray FELs

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-11-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Braggtransmission geometry for self-seeding in the hard X-ray range. The obvious and technically possible extension is to use such kind of monochromator setup with two -or more- crystals arranged in a series to spectrally filter the SASE radiation at two -or more- closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet- or multiplet-spectral lines. Applications exist over a broad range of hard X-ray wavelengths involving any process where there is a large change in cross section over a narrow wavelength range, as in multiple wavelength anomalous diffraction techniques (MAD). In this paper we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, and we show that this method can produce fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band, i.e. within 10 eV. An interesting aspect of the proposed scheme is a way of modulating the electron bunch at optical frequencies without a seed quantum laser. In fact, the XFEL output intensity contains an oscillating ''mode-beat'' component whose frequency is related to the frequency difference between the pair of longitudinal modes considered. Thus, at saturation one obtains FEL-induced modulations of energy loss and energy spread in the electron bunch at optical frequency. These modulations can be converted into density modulation at the same optical frequency with the help of a weak chicane installed behind the baseline undulator. Powerful coherent radiation can then be generated with the help of an optical transition radiation (OTR) station,which have important applications. In this paper we briefly

  7. Design and performance of a one square meter proportional counter system for hard X-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Bazzano, A.; Boccaccini, L.; La Padula, C.D.; Mastropietro, M.; Patriarca, R.; Polcaro, F.; Ubertini, P. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale); Manchanda, R.K. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale; Tata Inst. of Fundamental Research, Bombay (India))

    1983-09-01

    A versatile balloon borne hard X-ray experiment with a very large area (approx.= 1.1 m/sup 2/) and high spectral resolution has been developed for the study of the hard X-ray sources in the energy range 20-180 keV. The telescope consists of four multiwire proportional chambers (MWPC) that have a geometrical sensitive area of 2700 cm/sup 2/ each. The detector system has a sensitivity of approx.= 10/sup -5/ photons cm/sup -2/ s/sup -1/ keV/sup -1/ during a typical balloon observation. A background rate of approx.= 3 x 10/sup -4/ counts cm/sup -2/ s/sup -1/ keV/sup -1/ was observed in the operative energy range at 2.4 gm/cm/sup 2/ ceiling altitude and geographic latitude of 38/sup 0/N. The design details, fabrication and flight performance of the instrument are briefly discussed with reference to the effectiveness of background reduction and other test parameters.

  8. Structural properties of hard disks in a narrow tube

    International Nuclear Information System (INIS)

    Varga, S; Gurin, P; Balló, G

    2011-01-01

    Positional ordering of a two-dimensional fluid of hard disks is examined in tubes so narrow that only nearest neighbor interactions take place. Using the exact transfer-matrix method the transverse and longitudinal pressure components and the correlation function are determined numerically. Fluid–solid phase transition does not occur even in the widest tube, where the method just loses its exactness, but the appearance of a dramatic change in the equation of state and the longitudinal correlation function shows that the system undergoes a structural change from a fluid to a solid-like order. The pressure components show that the collisions are dominantly longitudinal at low densities, while they are transverse in the vicinity of the close packing density. The transverse correlation function shows that the size of solid-like domains grows exponentially with increasing pressure and the correlation length diverges at close packing. It is possible to find an analytically solvable model by expanding the contact distance up to first order. The approximate model, which corresponds to a system of hard parallel rhombuses, behaves very similarly to the system of hard disks

  9. Reply to "Comment on 'Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit' ".

    Science.gov (United States)

    Gebremedhin, Daniel H; Weatherford, Charles A

    2015-02-01

    This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrödinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a δ(x), and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein.

  10. Resummations in QCD hard-scattering at large and small x

    CERN Document Server

    Kidonakis, Nikolaos; Stephens, Philip

    2008-01-01

    We discuss different resummations of large logarithms that arise in hard-scattering cross sections of quarks and gluons in regions of large and small x. The large-x logarithms are typically dominant near threshold for the production of a specified final state. These soft and collinear gluon corrections produce large enhancements of the cross section for many processes, notably top quark and Higgs production, and typically the higher-order corrections reduce the factorization and renormalization scale dependence of the cross section. The small-x logarithms are dominant in the regime where the momentum transfer of the hard sub-process is much smaller than the total collision energy. These logarithms are important to describe multijet final states in deep inelastic scattering and hadron colliders, and in the study of parton distribution functions. The resummations at small and large x are linked by the eikonal approximation and are dominated by soft gluon anomalous dimensions. We will review their role in both c...

  11. Studying Hardness Meter Spring Strength to Understand Hardness Distribution on Body Surfaces.

    Science.gov (United States)

    Arima, Yoshitaka

    2017-10-01

    For developing a hardness multipoint measurement system for understanding hardness distribution on biological body surfaces, we investigated the spring strength of the contact portion main axis of a biological tissue hardness meter (product name: PEK). We measured the hardness of three-layered sheets of six types of gel sheets (90 mm × 60 mm × 6 mm) constituting the acupuncture practice pads, with PEK measurements of 1.96 N, 2.94 N, 3.92 N, 4.90 N, 5.88 N, 6.86 N, 7.84 N, 8.82 N, and 9.81 N of the main axis spring strength. We obtained measurements 10 times for the gel sheets and simultaneously measured the load using a digital scale. We measured the hardness distribution of induration embedded and breast cancer palpation models, with a main axis with 1.96 N, 4.90 N, and 9.81 N spring strengths, to create a two-dimensional Contour Fill Chart. Using 4.90 N spring strength, we could obtain measurement loads of ≤3.0 N, and the mean hardness was 5.14 mm. This was close to the median of the total measurement range 0.0-10.0 mm, making the measurement range the largest for this spring strength. We could image the induration of the induration-embedded model regardless of the spring strength. Overall, 4.90 N spring strength was best suited for imaging cancer in the breast cancer palpation model. Copyright © 2017. Published by Elsevier B.V.

  12. REMOTE DIAGNOSTICS OF TURNOUTS STATE ON TIMING AND SPECTRAL COMPOSITION IN CURRENT CURVE

    Directory of Open Access Journals (Sweden)

    S. Yu. Buryak

    2015-03-01

    Full Text Available Purpose. Development and implementation the points system diagnostics that would allow determining remotely the current state of turnout with all possible faults, gradual and sudden failures, damages, and in real time to report about their appearance. Methodology. State diagnostics on the values analysis of turnout main parameters is proposed to carry out with the help of a computer and analog-to-digital converter (ADC. Connecting measurements performance is advisable to produce to a shunt ammeter, installed in the working circuit of the point feed panel. ADC converts the analog signal of lost volts at the shunt into digital form and transmits it to a computer which stores the received data on its own recording medium for their further processing and storage. There is special software that is capable to reconnect signal and construct its temporal characteristic as well as decompose it on the spectral components. Using it one can analyze the obtained data, which allows diagnosing state of points upon change the nature, values and composition of the current curve. Findings. The computer diagnosis method was confirmed in practice for possible indications of problems that are associated with both the mechanical part of the turnout and the electrical part of it, while controlling parameters such as the amount of current normal transition, when working on frictions, the duration of the transition, properly adjusted headset and attachment points, the state of the motor. Originality. The use of computer technology in the diagnosis of the state of turnouts during their operation to monitor the current values of technical indicators, analysis and storage for all types of electric switches with different types of engines both DC and AC occurs through digitization and recording signal from measuring shunt of point feeder panel. Practical value. The proposed method enables timely, still in the early stages of defect parts, damages or failures of nodes

  13. Electrodeposition of Nanocrystalline Co-P Coatings as a Hard Chrome Alternative (Briefing Charts)

    Science.gov (United States)

    2011-02-10

    chrome plating utilizes chromium in the hexavalent state (Cr6+) Cr6+ is a known carcinogen and poses a health risk to operators OSHA lowered the Cr6+ PEL...from 52 µg/m3 to 5 µg/m3 8 Apr 09, Memorandum, DoD Directive Hexavalent Chromium Management Policy NAVAIR Cr6+ Authorization Process Hard Chrome ...Aerospace & Defense February 10, 2011 Electrodeposition of Nanocrystalline Co-P Coatings as a Hard Chrome Alternative Jack Benfer Co-PI NAVAIR

  14. Anomalous structural transition of confined hard squares.

    Science.gov (United States)

    Gurin, Péter; Varga, Szabolcs; Odriozola, Gerardo

    2016-11-01

    Structural transitions are examined in quasi-one-dimensional systems of freely rotating hard squares, which are confined between two parallel walls. We find two competing phases: one is a fluid where the squares have two sides parallel to the walls, while the second one is a solidlike structure with a zigzag arrangement of the squares. Using transfer matrix method we show that the configuration space consists of subspaces of fluidlike and solidlike phases, which are connected with low probability microstates of mixed structures. The existence of these connecting states makes the thermodynamic quantities continuous and precludes the possibility of a true phase transition. However, thermodynamic functions indicate strong tendency for the phase transition and our replica exchange Monte Carlo simulation study detects several important markers of the first order phase transition. The distinction of a phase transition from a structural change is practically impossible with simulations and experiments in such systems like the confined hard squares.

  15. Imaging the proton via hard exclusive production in diffractive pp scattering

    International Nuclear Information System (INIS)

    Charles Hyde; Leonid Frankfurt; Mark Strikman; Christian Weiss

    2007-01-01

    We discuss the prospects for probing Generalized Parton Distributions (GPDs) via exclusive production of a high-mass system (H = heavy quarkonium, di-photon, di-jet, Higgs boson) in diffractive pp scattering, pp -> p + H + p. In such processes the interplay of hard and soft interactions gives rise to a diffraction pattern in the final-state proton transverse momenta, which is sensitive to the transverse spatial distribution of partons in the colliding protons. We comment on the plans for diffractive pp measurements at RHIC and LHC. Such studies could complement future measurements of GPDs in hard exclusive ep scattering (JLab, COMPASS, EIC)

  16. Spectral shift rod for the boiling water reactor

    International Nuclear Information System (INIS)

    Yokomizo, O.; Kashiwai, S.; Nishida, K.; Orii, A.; Yamashita, J.; Mochida, T.

    1993-01-01

    A Boiling Water Reactor core concept has been proposed using a new fuel component called spectral shift rod (SSR). The SSR is a new type of water rod in which a water level is formed during core operation. The water level can be controlled by the core recirculation flow rate. By using SSRs, the reactor can be operated with all control rods withdrawn through the operation cycle as well as that a much larger natural uranium saving is possible due to spectral shift operation than in current BWRs. The steady state and transient characteristics of the SSRs have been examined by experiments and analyses to certify the feasibility. In a reference design, a four times larger spectral shift width as for the current BWR has been obtained. (orig.)

  17. A further problem of the hard problem of consciousness | Gbenga ...

    African Journals Online (AJOL)

    Justifying this assertion is identified as the further problem of the hard problem of consciousness. This shows that assertions about phenomenal properties of mental experiences are wholly epistemological. Hence, the problem of explaining phenomenal properties of a mental state is not a metaphysical problem, and what is ...

  18. From spectral holeburning memory to spatial-spectral microwave signal processing

    International Nuclear Information System (INIS)

    Babbitt, Wm Randall; Barber, Zeb W; Harrington, Calvin; Mohan, R Krishna; Sharpe, Tia; Bekker, Scott H; Chase, Michael D; Merkel, Kristian D; Stiffler, Colton R; Traxinger, Aaron S; Woidtke, Alex J

    2014-01-01

    Many storage and processing systems based on spectral holeburning have been proposed that access the broad bandwidth and high dynamic range of spatial-spectral materials, but only recently have practical systems been developed that exceed the performance and functional capabilities of electronic devices. This paper reviews the history of the proposed applications of spectral holeburning and spatial-spectral materials, from frequency domain optical memory to microwave photonic signal processing systems. The recent results of a 20 GHz bandwidth high performance spectrum monitoring system with the additional capability of broadband direction finding demonstrates the potential for spatial-spectral systems to be the practical choice for solving demanding signal processing problems in the near future. (paper)

  19. EVALUATING THE ROLE OF ION COMPOSITION ON THE TOXICITY OF COPPER TO CERIODAPHNIA DUBIA IN VERY HARD WATERS

    Science.gov (United States)

    The mitigating effect of increasing hardness on metal toxicity is reflected in water quality criteria in the United States. - - - Copper toxicity did not consistently vary as a function of hardness, but likely as a function of other water quality characteristics (e.g. alkalinity ...

  20. Thermal hydraulic test of advanced fuel bundle with spectral shift rod (SSR) for BWR. Effect of thermal hydraulic parameters on steady state characteristics

    International Nuclear Information System (INIS)

    Kondo, Takao; Kitou, Kazuaki; Chaki, Masao; Ohga, Yukiharu; Makigami, Takeshi

    2011-01-01

    Japanese national project of next generation light water reactor (LWR) development started in 2008. Under this project, spectral shift rod (SSR) is being developed. SSR, which replaces conventional water rod (WR) of boiling water reactor (BWR) fuel bundle, was invented to enhance the BWR's merit, spectral shift effect for uranium saving. In SSR, water boils by neutron and gamma-ray direct heating and water level is formed as a boundary of the upper steam region and the lower water region. This SSR water level can be controlled by core flow rate, which amplifies the change of average core void fraction, resulting in the amplified spectral shift effect. This paper presents the steady state test results of the base geometry case in SSR thermal hydraulic test, which was conducted under the national project of next generation LWR. In the test, thermal hydraulic parameters, such as flow rate, pressure, inlet subcooling and heater rod power are changed to evaluate these effects on SSR water level and other SSR characteristics. In the test results, SSR water level rose as flow rate rose, which showed controllability of SSR water level by flow rate. The sensitivities of other thermal hydraulic parameters on SSR water level were also evaluated. The obtained data of parameter's sensitivities is various enough for the further analytical evaluation. The fluctuation of SSR water level was also measured to be small enough. As a result, it was confirmed that SSR's steady state performance was as planned and that SSR design concept is feasible. (author)

  1. Demixing and nematic behaviour of oblate hard spherocylinders and hard spheres mixtures: Monte Carlo simulation and Parsons-Lee theory

    Science.gov (United States)

    Gámez, Francisco; Acemel, Rafael D.; Cuetos, Alejandro

    2013-10-01

    Parsons-Lee approach is formulated for the isotropic-nematic transition in a binary mixture of oblate hard spherocylinders and hard spheres. Results for the phase coexistence and for the equation of state in both phases for fluids with different relative size and composition ranges are presented. The predicted behaviour is in agreement with Monte Carlo simulations in a qualitative fashion. The study serves to provide a rational view of how to control key aspects of the behaviour of these binary nematogenic colloidal systems. This behaviour can be tuned with an appropriate choice of the relative size and molar fractions of the depleting particles. In general, the mixture of discotic and spherical particles is stable against demixing up to very high packing fractions. We explore in detail the narrow geometrical range where demixing is predicted to be possible in the isotropic phase. The influence of molecular crowding effects on the stability of the mixture when spherical molecules are added to a system of discotic colloids is also studied.

  2. Geotechnical issues and guidelines for storage of compressed air in excavated hard rock caverns

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Doherty, T.J.; Fossum, A.F.

    1982-04-01

    The results of a literature survey on the stability of excavated hard rock caverns are presented. The objective of the study was to develop geotechnical criteria for the design of compressed air energy storage (CAES) caverns in hard rock formations. These criteria involve geologic, hydrological, geochemical, geothermal, and in situ stress state characteristics of generic rock masses. Their relevance to CAES caverns, and the identification of required research areas, are identified throughout the text. This literature survey and analysis strongly suggests that the chief geotechnical issues for the development and operation of CAES caverns in hard rock are impermeability for containment, stability for sound openings, and hydrostatic balance.

  3. Development and application of cryogenic radiometry with hard X-rays; Entwicklung und Anwendung der Kryoradiometrie mit harter Roentgenstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Martin

    2008-06-06

    To establish cryogenic radiometry with hard X-ray radiation for photon energies of up to 60 keV, a novel type of cavity absorber had to be developed for the cryogenic radiometer SYRES I, which is deployed by the Physikalisch-Technische Bundesanstalt (PTB) as primary standard detector at the electron storage ring BESSY II. This new type of cavity absorber allows for the complete absorption of hard X-ray radiation in combination with an appropriate sensitivity and an adequate time constant for the measurement of synchrotron radiation at BESSY II. As the process of fabrication of different types of absorbers is very time-consuming, the interaction of hard X-ray radiation with different absorber materials and geometries was studied intensively by using the Monte Carlo simulation code Geant4. The accuracy of the simulations was verified comparing them to scattering experiments performed at a wavelength shifter beamline at BESSY II with a calibrated energy dispersive detector. It was shown that Geant4 describes the photo-effect, including fluorescence as well as Compton- and Rayleigh scattering, with high accuracy. The simulations and experiments resulted in a cavity absorber with a gold base 550 {mu}m in thickness and a cylindrical shell made of copper 90 {mu}m in thickness to reduce losses caused by fluorescence and scattered radiation. Monochromatized synchrotron radiation of high spectral purity was then used to calibrate semiconductor photodiodes, which can be used as compact and inexpensive secondary standard detectors, against a cryogenic radiometer, covering the entire photon energy range of three beamlines from 50 eV to 60 keV with relative uncertainties of less than 0.5 %. Furthermore the spatial homogeneity of the spectral responsivity, the transmittance and the linearity of the photodiodes was investigated. Through a direct comparison of the free-air ionization chamber PK100, a primary detector standard of PTB used in dosimetry, and the cryogenic radiometer

  4. 2TB hard disk drive

    CERN Multimedia

    This particular object was used up until 2012 in the Data Centre. It slots into one of the Disk Server trays. Hard disks were invented in the 1950s. They started as large disks up to 20 inches in diameter holding just a few megabytes (link is external). They were originally called "fixed disks" or "Winchesters" (a code name used for a popular IBM product). They later became known as "hard disks" to distinguish them from "floppy disks (link is external)." Hard disks have a hard platter that holds the magnetic medium, as opposed to the flexible plastic film found in tapes and floppies.

  5. The Spectral Web of stationary plasma equilibria. II. Internal modes

    Science.gov (United States)

    Goedbloed, J. P.

    2018-03-01

    The new method of the Spectral Web to calculate the spectrum of waves and instabilities of plasma equilibria with sizeable flows, developed in the preceding Paper I [Goedbloed, Phys. Plasmas 25, 032109 (2018)], is applied to a collection of classical magnetohydrodynamic instabilities operating in cylindrical plasmas with shear flow or rotation. After a review of the basic concepts of the complementary energy giving the solution path and the conjugate path, which together constitute the Spectral Web, the cylindrical model is presented and the spectral equations are derived. The first example concerns the internal kink instabilities of a cylindrical force-free magnetic field of constant α subjected to a parabolic shear flow profile. The old stability diagram and the associated growth rate calculations for static equilibria are replaced by a new intricate stability diagram and associated complex growth rates for the stationary model. The power of the Spectral Web method is demonstrated by showing that the two associated paths in the complex ω-plane nearly automatically guide to the new class of global Alfvén instabilities of the force-free configuration that would have been very hard to predict by other methods. The second example concerns the Rayleigh-Taylor instability of a rotating theta-pinch. The old literature is revisited and shown to suffer from inconsistencies that are remedied. The most global n = 1 instability and a cluster sequence of more local but much more unstable n =2 ,3 ,…∞ modes are located on separate solution paths in the hydrodynamic (HD) version of the instability, whereas they merge in the MHD version. The Spectral Web offers visual demonstration of the central position the HD flow continuum and of the MHD Alfvén and slow magneto-sonic continua in the respective spectra by connecting the discrete modes in the complex plane by physically meaningful curves towards the continua. The third example concerns the magneto-rotational instability

  6. Magnetic hard disks for audio-visual use; AV yo jiki disk baitai

    Energy Technology Data Exchange (ETDEWEB)

    Tei, Y.; Sakaguchi, S.; Uwazumi, H. [Fuji Electric Co. Ltd., Tokyo (Japan)

    1999-11-10

    Computers, consumer, and communications are converging and fusing. The key device in homes in the near future will be an audiovisual hard disk drive (AV-HDD). The reason is that there is no other AV cash memory with high capacity, high speed, and a low price than the HDD. Fuji Electric has early started developing an AV magnetic hard disk, a core-functional element of the AV-HDD, to take the initiative in the market. This paper describes the state of plastic medium development, which is regarded as a next-generation strategic commodity. (author)

  7. Janka hardness using nonstandard specimens

    Science.gov (United States)

    David W. Green; Marshall Begel; William Nelson

    2006-01-01

    Janka hardness determined on 1.5- by 3.5-in. specimens (2×4s) was found to be equivalent to that determined using the 2- by 2-in. specimen specified in ASTM D 143. Data are presented on the relationship between Janka hardness and the strength of clear wood. Analysis of historical data determined using standard specimens indicated no difference between side hardness...

  8. Polydispersity effect on solid-fluid transition in hard sphere systems

    KAUST Repository

    Nogawa, T.

    2010-02-01

    The solid-fluid transition of the hard elastic particle system with size polydispersity is studied by molecular dynamics simulations. Using nonequilibrium relaxation from the mixed initial condition we determines the melting point where the first order transition between the solid, fcc crystal, and fluid states occurs. It is found that the density gap between the bistable states decreases with increasing the strength of the polydispersity and continuously approaches to zero at the critical point. © 2010.

  9. Quantum BCH Codes Based on Spectral Techniques

    International Nuclear Information System (INIS)

    Guo Ying; Zeng Guihua

    2006-01-01

    When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F 2 , which plays an important role in the investigation of quantum signals. By using Fourier transforms, the idea of quantum coding theory can be described in a setting that is much different from that seen that far. Quantum BCH codes can be defined as codes whose quantum states have certain specified consecutive spectral components equal to zero and the error-correcting ability is also described by the number of the consecutive zeros. Moreover, the decoding of quantum codes can be described spectrally with more efficiency.

  10. Koopmans-Compliant Spectral Functionals for Extended Systems

    Directory of Open Access Journals (Sweden)

    Ngoc Linh Nguyen

    2018-05-01

    Full Text Available Koopmans-compliant functionals have been shown to provide accurate spectral properties for molecular systems; this accuracy is driven by the generalized linearization condition imposed on each charged excitation, i.e., on changing the occupation of any orbital in the system, while accounting for screening and relaxation from all other electrons. In this work, we discuss the theoretical formulation and the practical implementation of this formalism to the case of extended systems, where a third condition, the localization of Koopmans’s orbitals, proves crucial to reach seamlessly the thermodynamic limit. We illustrate the formalism by first studying one-dimensional molecular systems of increasing length. Then, we consider the band gaps of 30 paradigmatic solid-state test cases, for which accurate experimental and computational results are available. The results are found to be comparable with the state of the art in many-body perturbation theory, notably using just a functional formulation for spectral properties and the generalized-gradient approximation for the exchange and correlation functional.

  11. Koopmans-Compliant Spectral Functionals for Extended Systems

    Science.gov (United States)

    Nguyen, Ngoc Linh; Colonna, Nicola; Ferretti, Andrea; Marzari, Nicola

    2018-04-01

    Koopmans-compliant functionals have been shown to provide accurate spectral properties for molecular systems; this accuracy is driven by the generalized linearization condition imposed on each charged excitation, i.e., on changing the occupation of any orbital in the system, while accounting for screening and relaxation from all other electrons. In this work, we discuss the theoretical formulation and the practical implementation of this formalism to the case of extended systems, where a third condition, the localization of Koopmans's orbitals, proves crucial to reach seamlessly the thermodynamic limit. We illustrate the formalism by first studying one-dimensional molecular systems of increasing length. Then, we consider the band gaps of 30 paradigmatic solid-state test cases, for which accurate experimental and computational results are available. The results are found to be comparable with the state of the art in many-body perturbation theory, notably using just a functional formulation for spectral properties and the generalized-gradient approximation for the exchange and correlation functional.

  12. Exact complexity: The spectral decomposition of intrinsic computation

    International Nuclear Information System (INIS)

    Crutchfield, James P.; Ellison, Christopher J.; Riechers, Paul M.

    2016-01-01

    We give exact formulae for a wide family of complexity measures that capture the organization of hidden nonlinear processes. The spectral decomposition of operator-valued functions leads to closed-form expressions involving the full eigenvalue spectrum of the mixed-state presentation of a process's ϵ-machine causal-state dynamic. Measures include correlation functions, power spectra, past-future mutual information, transient and synchronization informations, and many others. As a result, a direct and complete analysis of intrinsic computation is now available for the temporal organization of finitary hidden Markov models and nonlinear dynamical systems with generating partitions and for the spatial organization in one-dimensional systems, including spin systems, cellular automata, and complex materials via chaotic crystallography. - Highlights: • We provide exact, closed-form expressions for a hidden stationary process' intrinsic computation. • These include information measures such as the excess entropy, transient information, and synchronization information and the entropy-rate finite-length approximations. • The method uses an epsilon-machine's mixed-state presentation. • The spectral decomposition of the mixed-state presentation relies on the recent development of meromorphic functional calculus for nondiagonalizable operators.

  13. Investigation of the near-surface structures of polar InN films by chemical-state-discriminated hard X-ray photoelectron diffraction

    International Nuclear Information System (INIS)

    Yang, A. L.; Yamashita, Y.; Kobata, M.; Yoshikawa, H.; Sakata, O.; Kobayashi, K.; Matsushita, T.; Píš, I.; Imura, M.; Yamaguchi, T.; Nanishi, Y.

    2013-01-01

    Near-surface structures of polar InN films were investigated by laboratory-based hard X-ray photoelectron diffraction (HXPD) with chemical-state-discrimination. HXPD patterns from In 3d 5/2 and N 1s core levels of the In-polar and N-polar InN films were different from each other and compared with the simulation results using a multiple-scattering cluster model. It was found that the near-surface structure of the In-polar InN film was close to the ideal wurtzite structure. On the other hand, on the N-polar InN film, defects-rich surface was formed. In addition, the existence of the In-polar domains was observed in the HXPD patterns.

  14. Determining the Effect of Material Hardness During the Hard Turning of AISI4340 Steel

    Science.gov (United States)

    Kambagowni, Venkatasubbaiah; Chitla, Raju; Challa, Suresh

    2018-05-01

    In the present manufacturing industries hardened steels are most widely used in the applications like tool design and mould design. It enhances the application range of hard turning of hardened steels in manufacturing industries. This study discusses the impact of workpiece hardness, feed and depth of cut on Arithmetic mean roughness (Ra), root mean square roughness (Rq), mean depth of roughness (Rz) and total roughness (Rt) during the hard turning. Experiments have been planned according to the Box-Behnken design and conducted on hardened AISI4340 steel at 45, 50 and 55 HRC with wiper ceramic cutting inserts. Cutting speed is kept constant during this study. The analysis of variance was used to determine the effects of the machining parameters. 3-D response surface plots drawn based on RSM were utilized to set up the input-output relationships. The results indicated that the feed rate has the most significant parameter for Ra, Rq and Rz and hardness has the most critical parameter for the Rt. Further, hardness shows its influence over all the surface roughness characteristics.

  15. Measured Polarized Spectral Responsivity of JPSS J1 VIIRS Using the NIST T-SIRCUS

    Science.gov (United States)

    McIntire, Jeff; Young, James B.; Moyer, David; Waluschka, Eugene; Xiong, Xiaoxiong

    2015-01-01

    Recent pre-launch measurements performed on the Joint Polar Satellite System (JPSS) J1 Visible Infrared Imaging Radiometer Suite (VIIRS) using the National Institute of Standards and Technology (NIST) Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources (T-SIRCUS) monochromatic source have provided wavelength dependent polarization sensitivity for select spectral bands and viewing conditions. Measurements were made at a number of input linear polarization states (twelve in total) and initially at thirteen wavelengths across the bandpass (later expanded to seventeen for some cases). Using the source radiance information collected by an external monitor, a spectral responsivity function was constructed for each input linear polarization state. Additionally, an unpolarized spectral responsivity function was derived from these polarized measurements. An investigation of how the centroid, bandwidth, and detector responsivity vary with polarization state was weighted by two model input spectra to simulate both ground measurements as well as expected on-orbit conditions. These measurements will enhance our understanding of VIIRS polarization sensitivity, improve the design for future flight models, and provide valuable data to enhance product quality in the post-launch phase.

  16. Stochastic Spectral and Conjugate Descent Methods

    KAUST Repository

    Kovalev, Dmitry

    2018-02-11

    The state-of-the-art methods for solving optimization problems in big dimensions are variants of randomized coordinate descent (RCD). In this paper we introduce a fundamentally new type of acceleration strategy for RCD based on the augmentation of the set of coordinate directions by a few spectral or conjugate directions. As we increase the number of extra directions to be sampled from, the rate of the method improves, and interpolates between the linear rate of RCD and a linear rate independent of the condition number. We develop and analyze also inexact variants of these methods where the spectral and conjugate directions are allowed to be approximate only. We motivate the above development by proving several negative results which highlight the limitations of RCD with importance sampling.

  17. Stochastic Spectral and Conjugate Descent Methods

    KAUST Repository

    Kovalev, Dmitry; Gorbunov, Eduard; Gasanov, Elnur; Richtarik, Peter

    2018-01-01

    The state-of-the-art methods for solving optimization problems in big dimensions are variants of randomized coordinate descent (RCD). In this paper we introduce a fundamentally new type of acceleration strategy for RCD based on the augmentation of the set of coordinate directions by a few spectral or conjugate directions. As we increase the number of extra directions to be sampled from, the rate of the method improves, and interpolates between the linear rate of RCD and a linear rate independent of the condition number. We develop and analyze also inexact variants of these methods where the spectral and conjugate directions are allowed to be approximate only. We motivate the above development by proving several negative results which highlight the limitations of RCD with importance sampling.

  18. Long time scale hard X-ray variability in Seyfert 1 galaxies

    Science.gov (United States)

    Markowitz, Alex Gary

    This dissertation examines the relationship between long-term X-ray variability characteristics, black hole mass, and luminosity of Seyfert 1 Active Galactic Nuclei. High dynamic range power spectral density functions (PSDs) have been constructed for six Seyfert 1 galaxies. These PSDs show "breaks" or characteristic time scales, typically on the order of a few days. There is resemblance to PSDs of lower-mass Galactic X-ray binaries (XRBs), with the ratios of putative black hole masses and variability time scales approximately the same (106--7) between the two classes of objects. The data are consistent with a linear correlation between Seyfert PSD break time scale and black hole mass estimate; the relation extrapolates reasonably well over 6--7 orders of magnitude to XRBs. All of this strengthens the case for a physical similarity between Seyfert galaxies and XRBs. The first six years of RXTE monitoring of Seyfert 1s have been systematically analyzed to probe hard X-ray variability on multiple time scales in a total of 19 Seyfert is in an expansion of the survey of Markowitz & Edelson (2001). Correlations between variability amplitude, luminosity, and black hole mass are explored, the data support the model of PSD movement with black hole mass suggested by the PSD survey. All of the continuum variability results are consistent with relatively more massive black holes hosting larger X-ray emission regions, resulting in 'slower' observed variability. Nearly all sources in the sample exhibit stronger variability towards softer energies, consistent with softening as they brighten. Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert is to study long-term spectral variability and Fe Kalpha variability characteristics. The Fe Kalpha line displays a wide range of behavior but varies less strongly than the broadband continuum. Overall, however, there is no strong evidence for correlated variability between the line and

  19. A study of the temporal and spectral characteristics of gamma ray bursts

    International Nuclear Information System (INIS)

    Norris, J.

    1983-05-01

    Gamma-ray burst data obtained from the ISEE-3 Gamma Ray Burst Spectrometer and the Solar Maximum Mission's Hard X-ray Burst Spectrometer (HXRBS) were analyzed to yield information on burst temporal and spectral characteristics. A Monte Carlo approach was used to simulate the HXRBS response to candidate spectral models. At energies above about 100 keV, the spectra are well fit by exponential forms. At lower energies, 30 keV to 60 keV, depressions below the model continua are apparent in some bursts. The depressions are not instrumental or data-reduction artifacts. The event selection criterion of the ISEE-3 experiment is based on the time to accumulate a present number of photons rather than the photon count per unit time and is consequently independent of event duration for a given burst intensity, unlike most conventional systems. As a result, a significantly greater percentage of fast, narrow events have been detected. The ratio of count rates from two ISEE-3 detectors indicates that bursts with durations or aprox. one second have much softer spectra than longer bursts

  20. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  1. Some threshold spectral problems of Schroedinger operators

    International Nuclear Information System (INIS)

    Jia, X.

    2009-01-01

    This Ph.D. thesis deals with some spectral problems of the Schroedinger operators. We first consider the semi-classical limit of the number of bound states of unique two-cluster N-body Schroedinger operator. Then we use Dirichlet-Neumann bracket to get semi-classical limit of Riesz means of the discrete eigenvalues of N-body Schroedinger operator. The effective potential of N-body Schroedinger operator with Coulomb potential is also considered and we find that the effective potential has critical decay at infinity. Thus, the Schroedinger operator with critical potential is studied in this thesis. We study the coupling constant threshold of Schroedinger operator with critical potential and the asymptotic expansion of resolvent of Schroedinger operator with critical potential. We use that expansion to study low-energy asymptotics of derivative of spectral shift function for perturbation with critical decay. After that, we use this result and the known result for high-energy asymptotic expansion of spectral shift function to obtain the Levinson theorem. (author)

  2. Hard copies for digital medical images: an overview

    Science.gov (United States)

    Blume, Hartwig R.; Muka, Edward

    1995-04-01

    This paper is a condensed version of an invited overview on the technology of film hard-copies used in radiology. Because the overview was given to an essentially nonmedical audience, the reliance on film hard-copies in radiology is outlined in greater detail. The overview is concerned with laser image recorders generating monochrome prints on silver-halide films. The basic components of laser image recorders are sketched. The paper concentrates on the physical parameters - characteristic function, dynamic range, digitization resolution, modulation transfer function, and noise power spectrum - which define image quality and information transfer capability of the printed image. A preliminary approach is presented to compare the printed image quality with noise in the acquired image as well as with the noise of state-of- the-art cathode-ray-tube display systems. High-performance laser-image- recorder/silver-halide-film/light-box systems are well capable of reproducing acquired radiologic information. Most recently development was begun toward a display function standard for soft-copy display systems to facilitate similarity of image presentation between different soft-copy displays as well as between soft- and hard-copy displays. The standard display function is based on perceptional linearization. The standard is briefly reviewed to encourage the printer industry to adopt it, too.

  3. Impact of a Vertically Polarized Undulator on LCLS Hard X-ray Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-11-14

    The LCLS-II project will install two variable gap, horizontally polarized undulators into the LCLS undulator hall. One undulator is designed to produce soft x-rays spanning an energy range of 200-1250 eV (SXU) while the other is designed for the hard spectral range of 1-25 keV (HXU). The hard x-ray LCLS instruments (X-ray Pump- Probe [XPP], X-ray correlation Spectroscopy [XCS], Coherent X-ray Imaging [CXI], Matter in Extreme Conditions [MEC]) will be repurposed to operate on the HXU line while two new soft x-ray beamlines will be created for the SXU line. An alternate HXU undulator design is being considered that could provide advantages over the present design choice. In particular, the project team is collaborating with Argonne National Laboratory to develop a vertically polarized undulator (VPU). A 1-m prototype VPU device was successfully constructed this year and a full size prototype is in process. A decision to alter the project baseline, which is the construction of a horizontally polarized device, must be made in the coming weeks to not impact the present project schedule. Please note that a change to the soft x-ray undulator is not under discussion at the moment.

  4. Quantitative study of the f-occupation in CeMIn{sub 5} and other cerium compounds with hard X-ray core level photo emission

    Energy Technology Data Exchange (ETDEWEB)

    Sundermann, Martin; Strigari, Fabio; Willers, Thomas; Severing, Andrea [University of Cologne, Cologne (Germany); Weinen, Jonas; Tjeng, Liu Hao [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Liao, Yen-Fa; Tsuei, Ku-Ding [National Synchrotron Radiation Research Center, Hsinchu (China); Bauer, Eric D.; Sarrao, John L.; Thompson, Joe D. [Los Alamos National Laboratory, Los Alamos (United States); Lejay, Pascal [Institut NEEL, CNRS, Grenoble (France); Tanaka, Arata [Hiroshima University, Higashi-Hiroshima (Japan)

    2016-07-01

    Bulk-sensitive hard X-ray photoelectron spectroscopy (HAXPES) data of the Ce3d core levels of the CeMIn{sub 5} family with M = Co, Rh, and Ir will be presented. The data analysis combines a full multiplet and configuration interaction model so that the strong plasmons intensities can be corrected for. This way spectral f{sup n} weights can be extracted and the configuration interaction model yields quantitative values for the initial state f-occupation of the CeMIn{sub 5}. The results are compared with HAXPES data of other heavy Ce compounds of very different hybridization strength. A systematic decrease of the hybridization strength V{sub eff} from CePd{sub 3} to CeRh{sub 3}B{sub 2} to CeRu{sub 2}Si{sub 2} is observed, and it is smallest for the three CeMIn{sub 5} compounds. The f-occupation increases in the same sequence and is close to one for the CeMIn{sub 5} family.

  5. Correlating non-linear properties with spectral states of RXTE data: possible observational evidences for four different accretion modes around compact objects

    Science.gov (United States)

    Adegoke, Oluwashina; Dhang, Prasun; Mukhopadhyay, Banibrata; Ramadevi, M. C.; Bhattacharya, Debbijoy

    2018-05-01

    By analysing the time series of RXTE/PCA data, the non-linear variabilities of compact sources have been repeatedly established. Depending on the variation in temporal classes, compact sources exhibit different non-linear features. Sometimes they show low correlation/fractal dimension, but in other classes or intervals of time they exhibit stochastic nature. This could be because the accretion flow around a compact object is a non-linear general relativistic system involving magnetohydrodynamics. However, the more conventional way of addressing a compact source is the analysis of its spectral state. Therefore, the question arises: What is the connection of non-linearity to the underlying spectral properties of the flow when the non-linear properties are related to the associated transport mechanisms describing the geometry of the flow? This work is aimed at addressing this question. Based on the connection between observed spectral and non-linear (time series) properties of two X-ray binaries: GRS 1915+105 and Sco X-1, we attempt to diagnose the underlying accretion modes of the sources in terms of known accretion classes, namely, Keplerian disc, slim disc, advection dominated accretion flow and general advective accretion flow. We explore the possible transition of the sources from one accretion mode to others with time. We further argue that the accretion rate must play an important role in transition between these modes.

  6. A comparative tribological study of chromium coatings with different specific hardness

    International Nuclear Information System (INIS)

    Darbeida, A.; Von Stebut, J.; Barthole, M.; Belliard, P.; Lelait, L.

    1995-06-01

    The wear resistance in dry friction of two electrolytic and two pVD hard chromium coatings deposited on construction steel substrates is studied by means of standard pin on disc multi-pass, unidirectional operation. For both of these friction modes low cycle high load operation with cemented carbide pins leads to essentially coatings hardness controlled, abrasive wear. For these well adhering commercial coatings (both for through thickness cracking and for spalling failure) assessed by standard testing, are inadequate for quality ranking with respect to wear resistance. Steady state friction corresponds to a stabilised third body essentially composed of chromium oxide. (authors). 13 refs., 7 figs., 1 tab

  7. Deficits of magnetoencephalography regional power in patients with major depressive disorder:an individual spectral analysis

    Institute of Scientific and Technical Information of China (English)

    汤浩

    2014-01-01

    Objective To explore the discrepancies of individualized frequency and band power between major depressive disorder(MDD)and controls in resting state,and the association of abnormal spectral power with clinical severity of MDD.Methods Whole-head MEG recordings were collected in 19 patients with MDD and 19 non-depressed controls in eye-closed resting state.Individual spectral power of each subject was calculated based on

  8. Spectral Signature of Radiative Forcing by East Asian Dust-Soot Mixture

    Science.gov (United States)

    Zhu, A.; Ramanathan, V.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) provides the first detailed sampling of dust-soot mixtures from the western Pacific to the eastern Pacific Ocean. The data includes down and up spectral irradiance, mixing state of dust and soot, and other aerosol properties. This study attempts to simulate the radiative forcing by dust-soot mixtures during the experimental period. The MODTRAN band model was employed to investigate the spectral signatures of solar irradiance change induced by aerosols at moderate spectral resolutions. For the short wave band (300-1100nm) used in this study, the reduction of downward irradiance at surface by aerosols greatly enhances with increasing wavelength in the UV band (300-400nm), reaches a maximum in the blue band, then gradually decreases toward the red band. In the near-IR band (700-1100nm), irradiance reduction by aerosols shows great fluctuations in the band with center wavelength at around 940nm, 820nm, 720nm, 760nm, 690nm, where the aerosol effect is overwhelmed by the water vapor and O2 absorptions. The spectral pattern of irradiance reduction varies for different aerosol species. The maximum reduction lies at around 450nm for soot, and shifting to about 490nm for East Asian mineral dust. It's worth noting that although soot aerosols reduce more irradiance than East Asian dust in the UV and blue band, the impact of dust to the irradiance exceeds that by soot at the longer wavelength band (i.e. around 550nm). The reduction of irradiance by East Asian dust (soot) in the UV band, visible band, and near-IR accounts for about 6% (10%), 56% (64%), and 38% (26%) of total irradiance reduction. As large amount of soot aerosols are involved during the long range transport of East Asian dust, the optical properties of dust aerosols are modified with different mixing state with soot, the spectral pattern of the irradiance reduction will be changed. The study of aerosol forcing at moderate spectral resolutions has the potential application for

  9. Hard photons a probe of the heavy ion collision dynamics

    International Nuclear Information System (INIS)

    Schutz, Y.

    1994-01-01

    Heavy-ion collisions have proven to be a unique tool to study the nucleus in extreme states, with values of energy, spin and isospin far away from those encountered in the nucleus in its ground state. Heavy-ion collisions provide also the only mean to form and study in the laboratory nuclear matter under conditions of density and temperature which could otherwise only be found in stellar objects like neutron stars and super-novae. the goal of such studies is to establish the equation of state of nuclear matter and the method consist in searching the collective behaviour in which heavy-ion collisions differ from a superposition of many nucleon-nucleon collisions. Among the various probes of collective effects, like flow, multifragmentation, or subthreshold particles, we have selected hard photons because they provide, together with dileptons, the only unperturbed probe of a phase of the collision well localized in space and time. The origin of hard photons, defined as the photons building up the spectrum beyond the energy of the giant dipole resonance (E γ > 30∼MeV), is attributed predominantly to the bremsstrahlung radiation emitted incoherently in individual neutron-proton collisions. Their energy reflects the combination of the beam momentum and the momenta induced by the Fermi motion of the nucleons within the collision zone. Therefore, at intermediate energies, hard photons probe the dynamical phase space distribution of participant nucleons and they convey information on the densities reached in heavy-ion collisions, the size and life time of the dense photon source and the compressibility of nuclear matter. The techniques we have developed include intensity interferometry and exclusive measurements scanning with high resolution the whole range of impact parameters. The interpretation of our data is guided by dynamical phase space calculations of the BUU type

  10. Assessment of state- and territorial-level preparedness capacity for serving deaf and hard-of-hearing populations in disasters.

    Science.gov (United States)

    Ivey, Susan L; Tseng, Winston; Dahrouge, Donna; Engelman, Alina; Neuhauser, Linda; Huang, Debbie; Gurung, Sidhanta

    2014-01-01

    Substantial evidence exists that emergency preparedness and response efforts are not effectively reaching populations with functional and access needs, especially barriers related to literacy, language, culture, or disabilities. More than 36 million Americans are Deaf or hard of hearing (Deaf/HH). These groups experienced higher risks of injury, death, and property loss in recent disasters than the general public. We conducted a participatory research study to examine national recommendations on preparedness communication for the Deaf/HH. We assessed whether previous recommendations regarding the Deaf/HH have been incorporated into state- and territorial-level emergency operations plans (EOPs), interviewed state- and territorial-level preparedness directors about capacity to serve the Deaf/HH, and proposed strategies to benefit Deaf/HH populations during emergencies. We analyzed 55 EOPs and 50 key informant (KI) interviews with state directors. Fifty-five percent of EOPs mentioned vulnerable populations; however, only 31% specifically mentioned Deaf/HH populations in their plan. Study findings indicated significant relationships among the following factors: a state-level KI's familiarity with communication issues for the Deaf/HH, making relay calls (i.e., calls to services to relay communication between Deaf and hearing people), and whether the KI's department provides trainings about serving Deaf/HH populations in emergencies. We found significant associations between a state's percentage of Deaf/HH individuals and a KI's familiarity with Deaf/HH communication issues and provision by government of any disability services to Deaf/HH populations in emergencies. Further, we found significant relationships between KIs attending training on serving the Deaf/HH and familiarity with Deaf/HH communication issues, including how to make relay calls. This study provides new knowledge that can help emergency agencies improve their preparedness training, planning, and capacity

  11. Machine learning from hard x-ray surveys: applications to magnetic cataclysmic variable studies

    Science.gov (United States)

    Scaringi, Simone

    2009-11-01

    between Pspin/Porb = 0.3 and Pspin/Porb = 1 and the apparent peak of the Pspin/Porb distribution at about 0.1. The observational features of the Pspin - Porb plane are discussed in the context of mCV evolution scenarios. Also presented is evidence for correlations between hard X-ray spectral hardness and Pspin, Porb and Pspin/Porb. An attempt to explain the observed correlations is made in th context of mCV evolution and accretion footpring geometrirs on the whit dwarf surface.

  12. LIFTING THE VEIL ON OBSCURED ACCRETION: ACTIVE GALACTIC NUCLEI NUMBER COUNTS AND SURVEY STRATEGIES FOR IMAGING HARD X-RAY MISSIONS

    International Nuclear Information System (INIS)

    Ballantyne, D. R.; Draper, A. R.; Madsen, K. K.; Rigby, J. R.; Treister, E.

    2011-01-01

    Finding and characterizing the population of active galactic nuclei (AGNs) that produces the X-ray background (XRB) is necessary to connect the history of accretion to observations of galaxy evolution at longer wavelengths. The year 2012 will see the deployment of the first hard X-ray imaging telescope which, through deep extragalactic surveys, will be able to measure the AGN population at the energies where the XRB peaks (∼20-30 keV). Here, we present predictions of AGN number counts in three hard X-ray bandpasses: 6-10 keV, 10-30 keV, and 30-60 keV. Separate predictions are presented for the number counts of Compton thick AGNs, the most heavily obscured active galaxies. The number counts are calculated for five different models of the XRB that differ in the assumed hard X-ray luminosity function, the evolution of the Compton thick AGNs, and the underlying AGN spectral model. The majority of the hard X-ray number counts will be Compton thin AGNs, but there is a greater than tenfold increase in the Compton thick number counts from the 6-10 keV to the 10-30 keV band. The Compton thick population shows enough variation that a hard X-ray number counts measurement will constrain the models. The computed number counts are used to consider various survey strategies for the NuSTAR mission, assuming a total exposure time of 6.2 Ms. We find that multiple surveys will allow a measurement of Compton thick evolution. The predictions presented here should be useful for all future imaging hard X-ray missions.

  13. Application of microtremor horizontal-to-vertical spectral ratio (MHVSR) analysis for site characterization: State of the art

    Science.gov (United States)

    Molnar, S.; Cassidy, J. F.; Castellaro, S.; Cornou, C.; Crow, H.; Hunter, J. A.; Matsushima, S.; Sanchez-Sesma, F. J.; Yong, Alan

    2018-01-01

    Nakamura (Q Rep Railway Tech Res Inst 30:25–33, 1989) popularized the application of the horizontal-to-vertical spectral ratio (HVSR) analysis of microtremor (seismic noise or ambient vibration) recordings to estimate the predominant frequency and amplification factor of earthquake shaking. During the following quarter century, popularity in the microtremor HVSR (MHVSR) method grew; studies have verified the stability of a site’s MHVSR response over time and validated the MHVSR response with that of earthquake HVSR response. Today, MHVSR analysis is a popular reconnaissance tool used worldwide for seismic microzonation and earthquake site characterization in numerous regions, specifically, in the mapping of site period or fundamental frequency and inverted for shear-wave velocity depth profiles, respectively. However, the ubiquity of MHVSR analysis is predominantly a consequence of its ease in application rather than our full understanding of its theory. We present the state of the art in MHVSR analyses in terms of the development of its theoretical basis, current state of practice, and we comment on its future for applications in earthquake site characterization.

  14. Application of Microtremor Horizontal-to-Vertical Spectral Ratio (MHVSR) Analysis for Site Characterization: State of the Art

    Science.gov (United States)

    Molnar, S.; Cassidy, J. F.; Castellaro, S.; Cornou, C.; Crow, H.; Hunter, J. A.; Matsushima, S.; Sánchez-Sesma, F. J.; Yong, A.

    2018-03-01

    Nakamura (Q Rep Railway Tech Res Inst 30:25-33, 1989) popularized the application of the horizontal-to-vertical spectral ratio (HVSR) analysis of microtremor (seismic noise or ambient vibration) recordings to estimate the predominant frequency and amplification factor of earthquake shaking. During the following quarter century, popularity in the microtremor HVSR (MHVSR) method grew; studies have verified the stability of a site's MHVSR response over time and validated the MHVSR response with that of earthquake HVSR response. Today, MHVSR analysis is a popular reconnaissance tool used worldwide for seismic microzonation and earthquake site characterization in numerous regions, specifically, in the mapping of site period or fundamental frequency and inverted for shear-wave velocity depth profiles, respectively. However, the ubiquity of MHVSR analysis is predominantly a consequence of its ease in application rather than our full understanding of its theory. We present the state of the art in MHVSR analyses in terms of the development of its theoretical basis, current state of practice, and we comment on its future for applications in earthquake site characterization.

  15. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  16. Optical decoherence and persistent spectral hole burning in Er3+:LiNbO3

    International Nuclear Information System (INIS)

    Thiel, C.W.; Macfarlane, R.M.; Boettger, T.; Sun, Y.; Cone, R.L.; Babbitt, W.R.

    2010-01-01

    Developing new resonant optical materials for spatial-spectral holography and quantum information applications requires detailed knowledge of the decoherence and population relaxation dynamics for the quantum states involved in the optical transitions, motivating the need for fundamental material studies. We report recent progress in studying these properties in erbium-doped lithium niobate at liquid helium temperatures. The influence of temperature, applied magnetic fields, measurement timescale, and dopant concentration were probed using photon echo spectroscopy and time-resolved spectral hole burning on the 1532 nm transition of Er 3+ :LiNbO 3 . Effects of spectral diffusion due to interactions between Er 3+ ions and between the Er 3+ ion and 7 Li and 93 Nb nuclear spins in the host lattice were observed. In addition, long-lived persistent spectral storage of seconds to minutes was observed due to non-equilibrium population redistribution among superhyperfine states.

  17. Selective removal of esthetic composite restorations with spectral guided laser ablation

    Science.gov (United States)

    Yi, Ivana; Chan, Kenneth H.; Tsuji, Grant H.; Staninec, Michal; Darling, Cynthia L.; Fried, Daniel

    2016-02-01

    Dental composites are used for a wide range of applications such as fillings for cavities, adhesives for orthodontic brackets, and closure of gaps (diastemas) between teeth by esthetic bonding. Anterior restorations are used to replace missing, diseased and unsightly tooth structure for both appearance and function. When these restorations must be replaced, they are difficult to remove mechanically without causing excessive removal or damage to enamel because dental composites are color matched to teeth. Previous studies have shown that CO2 lasers have high ablation selectivity and are well suited for removal of composite on occlusal surfaces while minimizing healthy tissue loss. A spectral feedback guidance system may be used to discriminate between dental composite and dental hard tissue for selective ablation of composite material. The removal of composite restorations filling diastemas is more challenging due to the esthetic concern for anterior teeth. The objective of this study is to determine if composite spanning a diastema between anterior teeth can be removed by spectral guided laser ablation at clinically relevant rates with minimal damage to peripheral healthy tissue and with higher selectivity than a high speed dental handpiece.

  18. Spectral simplicity of apparent complexity. II. Exact complexities and complexity spectra

    Science.gov (United States)

    Riechers, Paul M.; Crutchfield, James P.

    2018-03-01

    The meromorphic functional calculus developed in Part I overcomes the nondiagonalizability of linear operators that arises often in the temporal evolution of complex systems and is generic to the metadynamics of predicting their behavior. Using the resulting spectral decomposition, we derive closed-form expressions for correlation functions, finite-length Shannon entropy-rate approximates, asymptotic entropy rate, excess entropy, transient information, transient and asymptotic state uncertainties, and synchronization information of stochastic processes generated by finite-state hidden Markov models. This introduces analytical tractability to investigating information processing in discrete-event stochastic processes, symbolic dynamics, and chaotic dynamical systems. Comparisons reveal mathematical similarities between complexity measures originally thought to capture distinct informational and computational properties. We also introduce a new kind of spectral analysis via coronal spectrograms and the frequency-dependent spectra of past-future mutual information. We analyze a number of examples to illustrate the methods, emphasizing processes with multivariate dependencies beyond pairwise correlation. This includes spectral decomposition calculations for one representative example in full detail.

  19. Real-time detection of natural objects using AM-coded spectral matching imager

    Science.gov (United States)

    Kimachi, Akira

    2005-01-01

    This paper describes application of the amplitude-modulation (AM)-coded spectral matching imager (SMI) to real-time detection of natural objects such as human beings, animals, vegetables, or geological objects or phenomena, which are much more liable to change with time than artificial products while often exhibiting characteristic spectral functions associated with some specific activity states. The AM-SMI produces correlation between spectral functions of the object and a reference at each pixel of the correlation image sensor (CIS) in every frame, based on orthogonal amplitude modulation (AM) of each spectral channel and simultaneous demodulation of all channels on the CIS. This principle makes the SMI suitable to monitoring dynamic behavior of natural objects in real-time by looking at a particular spectral reflectance or transmittance function. A twelve-channel multispectral light source was developed with improved spatial uniformity of spectral irradiance compared to a previous one. Experimental results of spectral matching imaging of human skin and vegetable leaves are demonstrated, as well as a preliminary feasibility test of imaging a reflective object using a test color chart.

  20. Using spectral decomposition of the signals from laurdan-derived probes to evaluate the physical state of membranes in live cells [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Serge Mazeres

    2017-08-01

    Full Text Available Background: We wanted to investigate the physical state of biological membranes in live cells under the most physiological conditions possible. Methods: For this we have been using laurdan, C-laurdan or M-laurdan to label a variety of cells, and a biphoton microscope equipped with both a thermostatic chamber and a spectral analyser. We also used a flow cytometer to quantify the 450/530 nm ratio of fluorescence emissions by whole cells. Results: We find that using all the information provided by spectral analysis to perform spectral decomposition dramatically improves the imaging resolution compared to using just two channels, as commonly used to calculate generalized polarisation (GP. Coupled to a new plugin called Fraction Mapper, developed to represent the fraction of light intensity in the first component in a stack of two images, we obtain very clear pictures of both the intra-cellular distribution of the probes, and the polarity of the cellular environments where the lipid probes are localised. Our results lead us to conclude that, in live cells kept at 37°C, laurdan, and M-laurdan to a lesser extent, have a strong tendency to accumulate in the very apolar environment of intra-cytoplasmic lipid droplets, but label the plasma membrane (PM of mammalian cells ineffectively. On the other hand, C-laurdan labels the PM very quickly and effectively, and does not detectably accumulate in lipid droplets. Conclusions: From using these probes on a variety of mammalian cell lines, as well as on cells from Drosophila and Dictyostelium discoideum, we conclude that, apart from the lipid droplets, which are very apolar, probes in intracellular membranes reveal a relatively polar and hydrated environment, suggesting a very marked dominance of liquid disordered states. PMs, on the other hand, are much more apolar, suggesting a strong dominance of liquid ordered state, which fits with their high sterol contents.

  1. On scale dependence of hardness

    International Nuclear Information System (INIS)

    Shorshorov, M.Kh.; Alekhin, V.P.; Bulychev, S.I.

    1977-01-01

    The concept of hardness as a structure-sensitive characteristic of a material is considered. It is shown that in conditions of a decreasing stress field under the inventor the hardness function is determined by the average distance, Lsub(a), between the stops (fixed and sessile dislocations, segregation particles, etc.). In the general case, Lsub(a) depends on the size of the impression and explains the great diversity of hardness functions. The concept of average true deformation rate on depression is introduced

  2. Hard X ray lines from neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; La Padula, C.; Ubertini, P.

    1982-01-01

    Experimental evidence is presented and evaluated concerning the features of the hard X-ray spectra detected in a number of cosmic X-ray sources which contain a neutron star. The strong emission line at cyclotron resonance detected in the spectrum of Her XI at an energy of 58 keV is evaluated and the implications of this finding are discussed. Also examined is the presence of spectral features in the energy range 20-80 keV found in the spectra of gamma-ray bursts, which have been interpreted as cyclotron resonance from interstellar-gas-accreting neutron stars. The less understood finding of a variable emission line at approximately 70 keV in the spectrum of the Crab Pulsar is considered. It is determined that several features varying with time are present in the spectra of cosmic X-ray sources associated with neutron stars. If these features are due to cyclotron resonance, it is suggested that they provide a direct measurement of neutron star magnetic fields on the order of 10 to the 11th-10 to the 13th Gauss. However, the physical condition of the emitting region and its geometry are still quite obscure.

  3. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    Science.gov (United States)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral

  4. Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States

    Science.gov (United States)

    Nelson, James R.; Guarda, Sonia

    1995-05-01

    Visible absorption spectra of particulate and dissolved materials were characterized on the continental shelf off the southeastern United States (the South Atlantic Bight), emphasizing cross-shelf and seasonal variability. A coastal front separates turbid coastal waters from clearer midshelf waters. Spatial and seasonal patterns were evident in absorption coefficients for phytoplankton, detritus, and colored dissolved organic matter (CDOM); spectral shape parameters for CDOM and detritus; and phytoplankton chlorophyll-specific absorption. The magnitude of CDOM absorption reflected seasonal differences in freshwater discharge and the salinity of the midshelf waters. In the spring of 1993 (high discharge), CDOM absorption at 443 nm was >10 times that of total particulate absorption between 12 and 50 km offshore (0.28-0.69 m-1 versus 0.027-0.062 m-1) and up to 10 times the CDOM absorption measured in the previous summer (low discharge). Phytoplankton chlorophyll-specific absorption in the blue increased with distance from shore (from shift in phytoplankton species composition (from predominantly diatoms inshore to a cyanobacteria-dominated assemblage midshelf in summer), pigment packaging, and higher carotenoid:chlorophyll with distance from shore.

  5. Hard sphere-like glass transition in eye lens α-crystallin solutions.

    Science.gov (United States)

    Foffi, Giuseppe; Savin, Gabriela; Bucciarelli, Saskia; Dorsaz, Nicolas; Thurston, George M; Stradner, Anna; Schurtenberger, Peter

    2014-11-25

    We study the equilibrium liquid structure and dynamics of dilute and concentrated bovine eye lens α-crystallin solutions, using small-angle X-ray scattering, static and dynamic light scattering, viscometry, molecular dynamics simulations, and mode-coupling theory. We find that a polydisperse Percus-Yevick hard-sphere liquid-structure model accurately reproduces both static light scattering data and small-angle X-ray scattering liquid structure data from α-crystallin solutions over an extended range of protein concentrations up to 290 mg/mL or 49% vol fraction and up to ca. 330 mg/mL for static light scattering. The measured dynamic light scattering and viscosity properties are also consistent with those of hard-sphere colloids and show power laws characteristic of an approach toward a glass transition at α-crystallin volume fractions near 58%. Dynamic light scattering at a volume fraction beyond the glass transition indicates formation of an arrested state. We further perform event-driven molecular dynamics simulations of polydisperse hard-sphere systems and use mode-coupling theory to compare the measured dynamic power laws with those of hard-sphere models. The static and dynamic data, simulations, and analysis show that aqueous eye lens α-crystallin solutions exhibit a glass transition at high concentrations that is similar to those found in hard-sphere colloidal systems. The α-crystallin glass transition could have implications for the molecular basis of presbyopia and the kinetics of molecular change during cataractogenesis.

  6. Micro-hardness of non-irradiated uranium dioxide

    International Nuclear Information System (INIS)

    Kim, Sung-Sik; Takagi, Osamu; Obata, Naomi; Kirihara, Tomoo.

    1983-01-01

    In order to obtain the optimum conditions for micro-hardness measurements of sintered UO 2 , two kinds of hardness tests (Vickers and Knoop) were examined with non-irradiated UO 2 of 2.5 and 5 μm in grain size. The hardness values were obtained as a function of the applied load in the load range of 25 -- 1,000 g. In the Vickers test, cracks were generated around the periphery of an indentation even at lower load of 50 g, which means the Vickers hardness is not suitable for UO 2 specimens. In the Knoop test, three stages of load dependence were observed for sintered pellet as well as for a single crystal by Bates. Load dependence of Knoop hardness and crack formation were discussed. In the range of applied load around 70 -- 100 g there were plateau region where hardness values were nearly unchanged and did not contain any cracks in the indentation. The plateau region represents a hardness of a specimen. From a comparison between the hardness values of 2.5 μm and those of 5 μm UO 2 , it was approved that the degree of sintering controls the hardness in the plateau region. (author)

  7. Hard photons in W pair production at LEP 2

    International Nuclear Information System (INIS)

    Oldenborgh, G.J. van

    1996-01-01

    The properties of hard photon radiation in W pair production at LEP 2 are studied, with emphasis on the energy loss relevant to the W mass measurement. We use a combination of the exact one-photon matrix element and leading logarithmic structure functions. Defining unobservable, observable and initial-state photons in the phase space, it is shown that neither the one-photon matrix element nor the leading logarithmic structure functions alone give an adequate description of the energy loss due to observable or initial-state photons. An event generator based on these calculations is available. (orig.)

  8. Hard-hat day

    CERN Multimedia

    2003-01-01

    CERN will be organizing a special information day on Friday, 27th June, designed to promote the wearing of hard hats and ensure that they are worn correctly. A new prevention campaign will also be launched.The event will take place in the hall of the Main Building from 11.30 a.m. to 2.00 p.m., when you will be able to come and try on various models of hard hat, including some of the very latest innovative designs, ask questions and pass on any comments and suggestions.

  9. Regularized image denoising based on spectral gradient optimization

    International Nuclear Information System (INIS)

    Lukić, Tibor; Lindblad, Joakim; Sladoje, Nataša

    2011-01-01

    Image restoration methods, such as denoising, deblurring, inpainting, etc, are often based on the minimization of an appropriately defined energy function. We consider energy functions for image denoising which combine a quadratic data-fidelity term and a regularization term, where the properties of the latter are determined by a used potential function. Many potential functions are suggested for different purposes in the literature. We compare the denoising performance achieved by ten different potential functions. Several methods for efficient minimization of regularized energy functions exist. Most are only applicable to particular choices of potential functions, however. To enable a comparison of all the observed potential functions, we propose to minimize the objective function using a spectral gradient approach; spectral gradient methods put very weak restrictions on the used potential function. We present and evaluate the performance of one spectral conjugate gradient and one cyclic spectral gradient algorithm, and conclude from experiments that both are well suited for the task. We compare the performance with three total variation-based state-of-the-art methods for image denoising. From the empirical evaluation, we conclude that denoising using the Huber potential (for images degraded by higher levels of noise; signal-to-noise ratio below 10 dB) and the Geman and McClure potential (for less noisy images), in combination with the spectral conjugate gradient minimization algorithm, shows the overall best performance

  10. Broadband Spectral Investigations of Magnetar Bursts

    Science.gov (United States)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin

    2017-09-01

    We present our broadband (2-250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550-5418, SGR 1900+14, and SGR 1806-20 detected with the Rossi X-ray Timing Explorer (RXTE) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  11. Broadband Spectral Investigations of Magnetar Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin, E-mail: demetk@sabanciuniv.edu [Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı Tuzla, Istanbul 34956 (Turkey)

    2017-09-01

    We present our broadband (2–250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550−5418, SGR 1900+14, and SGR 1806−20 detected with the Rossi X-ray Timing Explorer ( RXTE ) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  12. Quantum spectral curve for the η-deformed AdS5 × S5 superstring

    Science.gov (United States)

    Klabbers, Rob; van Tongeren, Stijn J.

    2017-12-01

    The spectral problem for the AdS5 ×S5 superstring and its dual planar maximally supersymmetric Yang-Mills theory can be efficiently solved through a set of functional equations known as the quantum spectral curve. We discuss how the same concepts apply to the η-deformed AdS5 ×S5 superstring, an integrable deformation of the AdS5 ×S5 superstring with quantum group symmetry. This model can be viewed as a trigonometric version of the AdS5 ×S5 superstring, like the relation between the XXZ and XXX spin chains, or the sausage and the S2 sigma models for instance. We derive the quantum spectral curve for the η-deformed string by reformulating the corresponding ground-state thermodynamic Bethe ansatz equations as an analytic Y system, and map this to an analytic T system which upon suitable gauge fixing leads to a Pμ system - the quantum spectral curve. We then discuss constraints on the asymptotics of this system to single out particular excited states. At the spectral level the η-deformed string and its quantum spectral curve interpolate between the AdS5 ×S5 superstring and a superstring on "mirror" AdS5 ×S5, reflecting a more general relationship between the spectral and thermodynamic data of the η-deformed string. In particular, the spectral problem of the mirror AdS5 ×S5 string, and the thermodynamics of the undeformed AdS5 ×S5 string, are described by a second rational limit of our trigonometric quantum spectral curve, distinct from the regular undeformed limit.

  13. X-Ray Spectral Characteristics of Ginga Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Strohmayer, T.E.; Fenimore, E.E.; Murakami, T.; Yoshida, A.

    1998-01-01

    is 24%. We also investigated spectral evolution in two bursts. In these events we find strong evidence for spectral softening as well as a correlation between photon intensity and spectral hardness. We also find that the X-ray signal below 30 keV itself softens in both of these events. There is one example of a strong X-ray excess at low energy. In addition to providing further constraints on gamma-ray burst models, the description provided here of burst spectra down to 2 keV should prove useful to future planned efforts to detect bursts at X-ray energies. copyright copyright 1998. The American Astronomical Society

  14. Kinematic power corrections in off-forward hard reactions.

    Science.gov (United States)

    Braun, V M; Manashov, A N

    2011-11-11

    We develop a general approach to the calculation of kinematic corrections ∝t/Q(2), m(2)/Q(2) in hard processes which involve momentum transfer from the initial to the final hadron state. As the principal result, the complete expression is derived for the time-ordered product of two electromagnetic currents that includes all kinematic corrections to twist-four accuracy. The results are immediately applicable, e.g., to the studies of deeply virtual Compton scattering.

  15. Mechanism by Which Magnesium Oxide Suppresses Tablet Hardness Reduction during Storage.

    Science.gov (United States)

    Sakamoto, Takatoshi; Kachi, Shigeto; Nakamura, Shohei; Miki, Shinsuke; Kitajima, Hideaki; Yuasa, Hiroshi

    2016-01-01

    This study investigated how the inclusion of magnesium oxide (MgO) maintained tablet hardness during storage in an unpackaged state. Tablets were prepared with a range of MgO levels and stored at 40°C with 75% relative humidity for up to 14 d. The hardness of tablets prepared without MgO decreased over time. The amount of added MgO was positively associated with tablet hardness and mass from an early stage during storage. Investigation of the water sorption properties of the tablet components showed that carmellose water sorption correlated positively with the relative humidity, while MgO absorbed and retained moisture, even when the relative humidity was reduced. In tablets prepared using only MgO, a petal- or plate-like material was observed during storage. Fourier transform infrared spectrophotometry showed that this material was hydromagnesite, produced when MgO reacts with water and CO2. The estimated level of hydromagnesite at each time-point showed a significant negative correlation with tablet porosity. These results suggested that MgO suppressed storage-associated softening by absorbing moisture from the environment. The conversion of MgO to hydromagnesite results in solid bridge formation between the powder particles comprising the tablets, suppressing the storage-related increase in volume and increasing tablet hardness.

  16. Fermionic spectral functions in backreacting p-wave superconductors at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, G.L.; Grandi, N.E.; Lugo, A.R. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina)

    2017-04-14

    We investigate the spectral function of fermions in a p-wave superconducting state, at finite both temperature and gravitational coupling, using the AdS/CFT correspondence and extending previous research. We found that, for any coupling below a critical value, the system behaves as its zero temperature limit. By increasing the coupling, the “peak-dip-hump” structure that characterizes the spectral function at fixed momenta disappears. In the region where the normal/superconductor phase transition is first order, the presence of a non-zero order parameter is reflected in the absence of rotational symmetry in the fermionic spectral function at the critical temperature.

  17. Plasma spraying of refractory metals and refractory hard materials. State of the art

    International Nuclear Information System (INIS)

    Eschnauer, H.; Lugscheider, E.; Jaeger, D.

    1989-01-01

    Suitable spraying processes for manufacturing refractory metals, refractory hard materials as well as spray materials with refractory components are the VPS- and IPS-spraying techniques. The advantages of these special spraying process variations are described. The reactive spraying materials are systematically organized. The characteristical properties used in purpose of improving the substrate surfaces are explained. Finally some examples of the latest results of research concerning plasma spraying of reactive materials are shown. 16 refs., 10 figs. (Author)

  18. Technologies for Elastic Optical Networking Systems in Spatial, Temporal and Spectral Domains

    Science.gov (United States)

    Qin, Chuan

    As the demand for more data capacity keeps increasing, the need for the more efficient use of the data channel becomes more imperative. The fixed wavelength grid which has been in use for more than ten years in conventional wavelength division multiplexing (WDM) is a bottleneck that prevents the capacity from upgrading towards 400 Gb/s and above. A new elastic optical networking scheme where both transceivers and interconnects become flexible break the boundary of wavelength grids and allow a more efficient use of the limited optical bands for communication. This dissertation focuses on a few enabling technologies for elastic optical networking systems. Optical arbitrary waveform generation (OAWG) uses Fourier synthesis and generates user-defined broad-band scalable optical waveforms with high-fidelity through line-by-line full field control of a coherent optical frequency comb. OAWG finds its niche in elastic optical networking since it provides no grids, and scales to user-defined bandwidth. When elastic optical networking builds various connections to use an arbitrary number of subcarriers depending on the users' bandwidth needs, the flexibility also creates non-contiguous spectral fragmentation, much like a computer hard disk generating fragments. Spectral defragmentation aims to re-optimize and re-assign the optical spectrum to achieve more efficient use of the spectrum. One of the technologies is "hop tuning" defragmentation method with a fast auto-tracking local oscillator (LO). In the demonstrated defragmentation experiment, I used a field-programmable gate array (FPGA) to monitor the wavelength change in the signal laser and tune the front and rear current that controls the wavelength of the local oscillator laser. However, the control of the front and rear current needs a complete and accurate calibration of the LO laser and may not apply to a larger number of coherent communication links. A single-tone optical frequency shifter can shift the LO laser

  19. GOSAT-2014 methane spectral line list

    International Nuclear Information System (INIS)

    Nikitin, A.V.; Lyulin, O.M.; Mikhailenko, S.N.; Perevalov, V.I.; Filippov, N.N.; Grigoriev, I.M.; Morino, I.; Yoshida, Y.; Matsunaga, T.

    2015-01-01

    The updated methane spectral line list GOSAT-2014 for the 5550–6240 cm −1 region with the intensity cutoff of 5×10 –25 cm/molecule at 296 K is presented. The line list is based on the extensive measurements of the methane spectral line parameters performed at different temperatures and pressures of methane without and with buffer gases N 2 , O 2 and air. It contains the following spectral line parameters of about 12150 transitions: line position, line intensity, energy of lower state, air-induced and self-pressure-induced broadening and shift coefficients and temperature exponent of air-broadening coefficient. The accuracy of the line positions and intensities are considerably improved in comparison with the previous version GOSAT-2009. The improvement of the line list is done mainly due to the involving to the line position and intensity retrieval of six new spectra recorded with short path way (8.75 cm). The air-broadening and air-shift coefficients for the J-manifolds of the 2ν 3 (F 2 ) band are refitted using the new more precise values of the line positions and intensities. The line assignment is considerably extended. The lower state J-value was assigned to 6397 lines representing 94.4% of integrated intensity of the considering wavenumber region. The complete assignment was done for 2750 lines. - Highlights: • The upgrade of the GOSAT methane line list in the 5550–6240 cm −1 region is done. • 12,146 experimental methane line positions and intensities are retrieved. • 6376 lower energy levels for methane lines are determined

  20. Standard test methods for rockwell hardness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover the determination of the Rockwell hardness and the Rockwell superficial hardness of metallic materials by the Rockwell indentation hardness principle. This standard provides the requirements for Rockwell hardness machines and the procedures for performing Rockwell hardness tests. 1.2 This standard includes additional requirements in annexes: Verification of Rockwell Hardness Testing Machines Annex A1 Rockwell Hardness Standardizing Machines Annex A2 Standardization of Rockwell Indenters Annex A3 Standardization of Rockwell Hardness Test Blocks Annex A4 Guidelines for Determining the Minimum Thickness of a Test Piece Annex A5 Hardness Value Corrections When Testing on Convex Cylindrical Surfaces Annex A6 1.3 This standard includes nonmandatory information in appendixes which relates to the Rockwell hardness test. List of ASTM Standards Giving Hardness Values Corresponding to Tensile Strength Appendix X1 Examples of Procedures for Determining Rockwell Hardness Uncertainty Appendix X...

  1. Standard test methods for rockwell hardness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These test methods cover the determination of the Rockwell hardness and the Rockwell superficial hardness of metallic materials by the Rockwell indentation hardness principle. This standard provides the requirements for Rockwell hardness machines and the procedures for performing Rockwell hardness tests. 1.2 This standard includes additional requirements in annexes: Verification of Rockwell Hardness Testing Machines Annex A1 Rockwell Hardness Standardizing Machines Annex A2 Standardization of Rockwell Indenters Annex A3 Standardization of Rockwell Hardness Test Blocks Annex A4 Guidelines for Determining the Minimum Thickness of a Test Piece Annex A5 Hardness Value Corrections When Testing on Convex Cylindrical Surfaces Annex A6 1.3 This standard includes nonmandatory information in appendixes which relates to the Rockwell hardness test. List of ASTM Standards Giving Hardness Values Corresponding to Tensile Strength Appendix X1 Examples of Procedures for Determining Rockwell Hardness Uncertainty Appendix X...

  2. Multiwavelength Observations of the 2002 Outburst of GX 339-4: Two Patterns of X-Ray-Optical/Near-Infrared Behavior

    Science.gov (United States)

    Homan, Jeroen; Buxton, Michelle; Markoff, Sera; Bailyn, Charles D.; Nespoli, Elisa; Belloni, Tomaso

    2005-05-01

    We report on quasi-simultaneous Rossi X-Ray Timing Explorer and optical/near-infrared (NIR) observations of the black hole candidate X-ray transient GX 339-4. Our observations were made over a time span of more than 8 months in 2002 and cover the initial rise and transition from a hard to a soft spectral state in X-rays. Two distinct patterns of correlated X-ray-optical/NIR behavior were found. During the hard state, the optical/NIR and X-ray fluxes correlated well, with a NIR versus X-ray flux power-law slope similar to that of the correlation found between X-ray and radio fluxes in previous studies of GX 339-4 and other black hole binaries. As the source went through an intermediate state, the optical/NIR fluxes decreased rapidly, and once it had entered the spectrally soft state, the optical/NIR spectrum of GX 339-4 was much bluer, and the ratio of X-ray to NIR flux was higher by a factor of more than 10 compared to the hard state. In the spectrally soft state, changes in the NIR preceded those in the soft X-rays by more than 2 weeks, indicating a disk origin of the NIR emission and providing a measure of the viscous timescale. A sudden onset of NIR flaring of ~0.5 mag on a timescale of 1 day was also observed during this period. We present spectral energy distributions, including radio data, and discuss possible sources for the optical/NIR emission. We conclude that, in the hard state, this emission probably originates in the optically thin part of a jet and that in none of the X-ray states is X-ray reprocessing the dominant source of optical/NIR emission. Finally, comparing the light curves from the all-sky monitor (ASM) and Proportional Counter Array (PCA) instruments, we find that the X-ray/NIR delay depends critically on the sensitivity of the X-ray detector, with the delay inferred from the PCA (if present at all) being a factor of 3-6 times shorter than the delay inferred from the ASM; this may be important in interpreting previously reported X

  3. Design and realization of a hard X-ray prototype imager with spectral selection for the Laser MegaJoule

    International Nuclear Information System (INIS)

    Dennetiere, David

    2012-01-01

    In the Laser MegaJoule (LMJ) project context, measurements need to be done by diagnostics in order to achieve ignition. Amongst these diagnostics, some of the X-ray imagers will have to observe hydrodynamics instabilities on the micron balloon surface. X-ray radiography or self-emission imaging are the techniques used to obtain such imaging. None of the existing X-ray imagers designed for LMJ is currently able to record this kind of image. The X-ray imager designed during this thesis will have to achieve a high resolution image at high energy and will have to meet all the requirements subsequent to its use on a large facility like LMJ. We have studied and optimized an already existing diagnostic: EHRXI. We have extended its covered spectral range up to 12 keV. We measured its resolution that is under 5 μm in a 1 mm diameter field of view. This diagnostic has been successfully used on laser experiments in ELFIE 100 TW and OMEGA. After analyzing the performances and weaknesses of EHRXI, we were able to design a LMJ diagnostic prototype: Merssix. This microscope will achieve a resolution under 5 μm in a 500 μm diameter field of view with a covered spectral range up to 22 keV. Merssix has been specifically designed for LMJ and adapted to fit its experimental framework. Its design allows it in particular to be used for radiography in a complex X-ray producing environment. (author) [fr

  4. The Giant Flares of the Microquasar Cygnus X-3: X-Rays States and Jets

    Directory of Open Access Journals (Sweden)

    Sergei Trushkin

    2017-11-01

    Full Text Available We report on two giant radio flares of the X-ray binary microquasar Cyg X-3, consisting of a Wolf–Rayet star and probably a black hole. The first flare occurred on 13 September 2016, 2000 days after a previous giant flare in February 2011, as the RATAN-600 radio telescope daily monitoring showed. After 200 days on 1 April 2017, we detected a second giant flare. Both flares are characterized by the increase of the fluxes by almost 2000-times (from 5–10 to 17,000 mJy at 4–11 GHz during 2–7 days, indicating relativistic bulk motions from the central region of the accretion disk around a black hole. The flaring light curves and spectral evolution of the synchrotron radiation indicate the formation of two relativistic collimated jets from the binaries. Both flares occurred when the source went from hypersoft X-ray states to soft ones, i.e. hard fluxes (Swift/BAT 15–50 keV data dropped to zero, the soft X-ray fluxes (MAXI 2–10 keV data staying high, and then later, the binary came back to a hard state. Both similar giant flares indicated the unchanged mechanism of the jets’ formation in Cyg X-3, probably in conditions of strong stellar wind and powerful accretion onto a black hole.

  5. Reanalysis of the RXTE observations of the black-hole candidate XTE J1650-500 in the 2001/2002 outburst

    International Nuclear Information System (INIS)

    Yan Lihong; Wang Jiancheng

    2012-01-01

    We present the results of the spectral fits made to 59 Rossi X-ray Timing Explorer (RXTE) observations of the Galactic X-Ray Black-Hole Candidate XTE J1650-500 covering the first 30d of its 2001/2002 outburst when the source was in a transition from the hard state to the soft state. The photon spectra can be well fitted with a phenomenological model of a power-law/cutoff power-law and a physical model of bulk-motion Comptonization. The spectral properties smoothly evolve away from the hard state and then stay in the soft state. The fitting results of the physical model reveal the peak of the burst had a flux of 2.90 × 10 −8 erg cm −2 s −1 in the 2–100 keV energy range and was observed on 2001 Sep. 9; it transitioned to the hard state. The total flux decays by a factor of ∼3 as it evolves into the soft state. The photon index Γ increases from ∼1.5 in the hard state and stays at ∼2.5 in the soft state. We found that the effective area of the high-energy X-ray emission region (the Compton cloud) decreases, i.e. the area of the Compton cloud decreases by a factor of ∼23 during the transition from the hard state to the soft state. Combining the new radio and quasi-periodic oscillation studies, the model of total flux in the 2–100 keV energy range, the jet emission and the timing analysis during the state transition, we suggest a possible geometry and evolution for the (jet+corona+disk) system, like that proposed by Kalemci et al. based on enhanced lags and peak frequency shift during the transition.

  6. Hard X-ray photoemission spectroscopy of transition-metal oxide thin films and interfaces

    International Nuclear Information System (INIS)

    Wadati, H.; Fujimori, A.

    2013-01-01

    Highlights: •Photoemission spectroscopy is a powerful technique to study the electronic structures of transition-metal oxides. •Hard X-ray photoemission spectroscopy (HXPES) is a new type of photoemission spectroscopy which can probe bulk states. •HXPES is very suitable for studying oxide thin films such as the composition dependence and the film thickness dependence. -- Abstract: Photoemission spectroscopy is a powerful experimental technique to study the electronic structures of solids, especially of transition-metal oxides. Recently, hard X-ray photoemission spectroscopy (HXPES) has emerged as a more relevant experimental technique to obtain clear information about bulk states. Here, we describe how HXPES can be conveniently applied to study the interesting subjects on oxide thin films such as the composition dependence and the film thickness dependence of the electronic structures and the interfacial electronic structure of multilayers

  7. SPECTRAL INDEX AS A FUNCTION OF MASS ACCRETION RATE IN BLACK HOLE SOURCES: MONTE CARLO SIMULATIONS AND AN ANALYTICAL DESCRIPTION

    International Nuclear Information System (INIS)

    Laurent, Philippe; Titarchuk, Lev

    2011-01-01

    We present herein a theoretical study of correlations between spectral indexes of X-ray emergent spectra and mass accretion rate ( m-dot ) in black hole (BH) sources, which provide a definitive signature for BHs. It has been firmly established, using the Rossi X-ray Timing Explorer (RXTE) in numerous BH observations during hard-soft state spectral evolution, that the photon index of X-ray spectra increases when m-dot increases and, moreover, the index saturates at high values of m-dot . In this paper, we present theoretical arguments that the observationally established index saturation effect versus mass accretion rate is a signature of the bulk (converging) flow onto the BH. Also, we demonstrate that the index saturation value depends on the plasma temperature of converging flow. We self-consistently calculate the Compton cloud (CC) plasma temperature as a function of mass accretion rate using the energy balance between energy dissipation and Compton cooling. We explain the observable phenomenon, index- m-dot correlations using a Monte Carlo simulation of radiative processes in the innermost part (CC) of a BH source and we account for the Comptonization processes in the presence of thermal and bulk motions, as basic types of plasma motion. We show that, when m-dot increases, BH sources evolve to high and very soft states (HSS and VSS, respectively), in which the strong blackbody(BB)-like and steep power-law components are formed in the resulting X-ray spectrum. The simultaneous detections of these two components strongly depends on sensitivity of high-energy instruments, given that the relative contribution of the hard power-law tail in the resulting VSS spectrum can be very low, which is why, to date RXTE observations of the VSS X-ray spectrum have been characterized by the presence of the strong BB-like component only. We also predict specific patterns for high-energy e-fold (cutoff) energy (E fold ) evolution with m-dot for thermal and dynamical (bulk

  8. HARD X-RAY ASYMMETRY LIMITS IN SOLAR FLARE CONJUGATE FOOTPOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Daou, Antoun G.; Alexander, David, E-mail: agdaou@rice.edu, E-mail: dalex@rice.edu [Department of Physics and Astronomy, Rice University, 6100 Main Street, MS 108, Houston, TX, 77005 (United States)

    2016-11-20

    The transport of energetic electrons in a solar flare is modeled using a time-dependent one-dimensional Fokker–Planck code that incorporates asymmetric magnetic convergence. We derive the temporal and spectral evolution of the resulting hard X-ray (HXR) emission in the conjugate chromospheric footpoints, assuming thick target photon production, and characterize the time evolution of the numerically simulated footpoint asymmetry and its relationship to the photospheric magnetic configuration. The thick target HXR asymmetry in the conjugate footpoints is found to increase with magnetic field ratio as expected. However, we find that the footpoint HXR asymmetry saturates for conjugate footpoint magnetic field ratios ≥4. This result is borne out in a direct comparison with observations of 44 double-footpoint flares. The presence of such a limit has not been reported before, and may serve as both a theoretical and observational benchmark for testing a range of particle transport and flare morphology constraints, particularly as a means to differentiate between isotropic and anisotropic particle injection.

  9. Bounding spectral gaps of Markov chains: a novel exact multi-decomposition technique

    International Nuclear Information System (INIS)

    Destainville, N

    2003-01-01

    We propose an exact technique to calculate lower bounds of spectral gaps of discrete time reversible Markov chains on finite state sets. Spectral gaps are a common tool for evaluating convergence rates of Markov chains. As an illustration, we successfully use this technique to evaluate the 'absorption time' of the 'Backgammon model', a paradigmatic model for glassy dynamics. We also discuss the application of this technique to the 'contingency table problem', a notoriously difficult problem from probability theory. The interest of this technique is that it connects spectral gaps, which are quantities related to dynamics, with static quantities, calculated at equilibrium

  10. Spectral and temporal properties of the X-ray pulsar SMC X-1 at hard X-rays

    Science.gov (United States)

    Kunz, M.; Gruber, D. E.; Kendziorra, E .; Kretschmar, P.; Maisack, M.; Mony, B.; Staubert, R.; Doebereiner, S.; Englhauser, J.; Pietsch, W.

    1993-01-01

    The binary X-ray pulsar SMC X- 1 has been observed at hard X-rays with the High Energy X-Ray Experiment (HEXE) on nine occasions between Nov. 1987 and March 1989. A thin thermal bremsstrahlung fit to the phase averaged spectrum yields a plasma temperature (14.4 +/- 1.3) keV and a luminosity above (1.1 +/- 0.1) x 10 exp 38 erg/s in the 20-80 keV band. Pulse period values have been established for three observations, confirming the remarkably stable spin-up trend of SMC X-1. In one of the three observations the pulse profile was seen to deviate from a dominant double pulsation, while at the same time the pulsed fraction was unusually large. For one observation we determined for the first time the pulsed fraction in narrow energy bands. It increases with photon energy from about 20 percent up to over 60 percent in the energy range from 20 to 80 keV.

  11. Thermal spray coatings replace hard chrome

    International Nuclear Information System (INIS)

    Schroeder, M.; Unger, R.

    1997-01-01

    Hard chrome plating provides good wear and erosion resistance, as well as good corrosion protection and fine surface finishes. Until a few years ago, it could also be applied at a reasonable cost. However, because of the many environmental and financial sanctions that have been imposed on the process over the past several years, cost has been on a consistent upward trend, and is projected to continue to escalate. Therefore, it is very important to find a coating or a process that offers the same characteristics as hard chrome plating, but without the consequent risks. This article lists the benefits and limitations of hard chrome plating, and describes the performance of two thermal spray coatings (tungsten carbide and chromium carbide) that compared favorably with hard chrome plating in a series of tests. It also lists three criteria to determine whether plasma spray or hard chrome plating should be selected

  12. Prevalence of developmental dental hard-tissue anomalies and association with caries and oral hygiene status of children in Southwestern, Nigeria.

    Science.gov (United States)

    Popoola, Bamidele O; Onyejaka, Nneka; Folayan, Morenike O

    2016-07-07

    Developmental dental hard tissue anomalies are often associated with oral health problems. This study determined the clinical prevalence of developmental dental hard tissue anomalies in the permanent dentition of children resident in southwestern Nigeria and its association with dental caries and poor oral hygiene status. This was a cross-sectional study recruiting 1565 school children, 12 to 15 year old attending schools in Ibadan, Oyo State and Ile-Ife, Osun State. All eligible study participants had oral examinations conducted to determine presence of developmental hard dental tissue anomalies, caries and oral hygiene status. The prevalence of developmental dental hard tissue anomalies was determined. Logistic Poisson regression was used to determine the association of between developmental dental hard tissue anomalies, caries and oral hygiene status. Only 65 (4.2 %) children had clinically diagnosed developmental dental hard tissue anomalies. The most prevalent anomaly was enamel hypoplasia (2.2 %). More females (p = 0.003) and more children with middle socioeconomic class (p = 0.001) had enamel hypoplasia. The probability of having poor oral hygiene was significantly increased for children with developmental dental anomalies (APR: 0.07; 95 % CI: 0.03 - 0.12; p = 0.002). The probability of having caries was insignificantly increased for children with developmental dental hard tissue anomalies (APR: 0.005; 95 % CI: -0.03 - 0.04; p = 0.08). The most prevalence clinically detectable developmental dental hard tissue anomalies for the study population was enamel hypoplasia. The presence of developmental dental hard tissue anomalies significantly increased the chances of having poor oral hygiene but not caries. Further studies are required to understand if poor oral hygiene is associated with dental caries in children with developmental dental hard tissue anomalies.

  13. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.

    Science.gov (United States)

    Urban, Philipp; Rosen, Mitchell R; Berns, Roy S

    2009-08-01

    Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.

  14. Structure, production and properties of high-melting compounds and systems (hard materials and hard metals)

    International Nuclear Information System (INIS)

    Holleck, H.; Thuemmler, F.

    1979-07-01

    The report contains contributions by various authors to the research project on the production, structure, and physical properties of high-melting compounds and systems (hard metals and hard materials), in particular WC-, TaC-, and MoC-base materials. (GSCH) [de

  15. Anomalous Low States and Long Term Variability in the Black Hole Binary LMC X-3

    Science.gov (United States)

    Smale, Alan P.; Boyd, Patricia T.

    2012-01-01

    Rossi X-my Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration (approx 3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of approx hours-weeks, and the X-ray spectrum implies an upper limit of 1.2 x 10(exp 35) erg/s, Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the approx 188 day duration. These episodes share some characteristics with the "anomalous low states" in the neutron star binary Her X-I. The average period and amplitude of the Variability of LMC X-3 have different values between these episodes. We characterize the long-term variability of LMC X-3 before and after the two events using conventional and nonlinear time series analysis methods, and show that, as is the case in Her X-I, the characteristic amplitude of the variability is related to its characteristic timescale. Furthermore, the relation is in the same direction in both systems. This suggests that a similar mechanism gives rise to the long-term variability, which in the case of Her X-I is reliably modeled with a tilted, warped precessing accretion disk.

  16. Diagnostic efficacy of radiological examinations in clefts of the hard palate

    International Nuclear Information System (INIS)

    Cieslinska-Wilk, G.

    1992-01-01

    The aim of the work has been: 1) evaluating the efficiency of individual radiological methods in visualizing the bone structure of the hard palate; 2) elaboration of a method for skull examination, by means of which the hard palate region in patients would be best visible; 3) presentation of radiological symptomatology of hard palate clefts; 4) establishing algorithms of diagnostic procedure and determining the type of radiological examination most helpful in planning the treatment of this anomaly. Selected problems from normal anatomy of the hard palate are presented, and the technique of radiological examination in the form of occlusal radiograms, pantomography and computerized tomography (CT) are discussed. Clinical material encompassed the total of 312 patients. A total of 470 radiograms were performed, 150 occlusal ones of hard palate, 200 pantomograms (jointly with the control group) as well as 120 scannings during CT examination. It has been stated the greatest efficiency and effectiveness in planning the treatment are ascribed to computerized tomography, the second place goes to pantomography, on the third position are occlusal radiograms targeted at the region of the cleft. Algorithms have been provided for roentgen-diagnostic procedure in cases of the hard palate clefts, with an emphasis that the very first examination of a child should include the occlusal radiograms targeted at the cleft region and pantomogram; in the course of conservative treatment only pantomogram is proposed to be made, and in case of planned operative procedure - CT examination. For evaluating the calcification of the cleft, the best and with the least irradiation are the intraoral occlusal radiograms, targeted at the region of the cleft, performed 12 months after the operation. (author). 100 refs, 21 figs, 12 tabs

  17. Semiclassical corrections to the interaction energy of a hard-sphere Boltzmann gas

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, R K [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 (Canada); Dijk, W van [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 (Canada); Srivastava, M K [Institute Instrumentation Center, IIT, Roorkee 247 667 (India)

    2006-11-01

    Quantum effects in statistical mechanics are important when the thermal wavelength is of the order of, or greater than, the mean interatomic spacing. This is examined in depth taking the example of a hard-sphere Boltzmann gas. Using the virial expansion for the equation of state, it is shown that the interaction energy of a classical hard-sphere gas is exactly zero. When the (second) virial coefficient of such a gas is obtained quantum mechanically, however, the quantum contribution to the interaction energy is shown to be substantial. The importance of the semiclassical corrections to the interaction energy shows up dramatically in such a system.

  18. Semiclassical corrections to the interaction energy of a hard-sphere Boltzmann gas

    International Nuclear Information System (INIS)

    Bhaduri, R K; Dijk, W van; Srivastava, M K

    2006-01-01

    Quantum effects in statistical mechanics are important when the thermal wavelength is of the order of, or greater than, the mean interatomic spacing. This is examined in depth taking the example of a hard-sphere Boltzmann gas. Using the virial expansion for the equation of state, it is shown that the interaction energy of a classical hard-sphere gas is exactly zero. When the (second) virial coefficient of such a gas is obtained quantum mechanically, however, the quantum contribution to the interaction energy is shown to be substantial. The importance of the semiclassical corrections to the interaction energy shows up dramatically in such a system

  19. State-of-the art comparability of corrected emission spectra. 2. Field laboratory assessment of calibration performance using spectral fluorescence standards.

    Science.gov (United States)

    Resch-Genger, Ute; Bremser, Wolfram; Pfeifer, Dietmar; Spieles, Monika; Hoffmann, Angelika; DeRose, Paul C; Zwinkels, Joanne C; Gauthier, François; Ebert, Bernd; Taubert, R Dieter; Voigt, Jan; Hollandt, Jörg; Macdonald, Rainer

    2012-05-01

    In the second part of this two-part series on the state-of-the-art comparability of corrected emission spectra, we have extended this assessment to the broader community of fluorescence spectroscopists by involving 12 field laboratories that were randomly selected on the basis of their fluorescence measuring equipment. These laboratories performed a reference material (RM)-based fluorometer calibration with commercially available spectral fluorescence standards following a standard operating procedure that involved routine measurement conditions and the data evaluation software LINKCORR developed and provided by the Federal Institute for Materials Research and Testing (BAM). This instrument-specific emission correction curve was subsequently used for the determination of the corrected emission spectra of three test dyes, X, QS, and Y, revealing an average accuracy of 6.8% for the corrected emission spectra. This compares well with the relative standard uncertainties of 4.2% for physical standard-based spectral corrections demonstrated in the first part of this study (previous paper in this issue) involving an international group of four expert laboratories. The excellent comparability of the measurements of the field laboratories also demonstrates the effectiveness of RM-based correction procedures.

  20. Exact sampling hardness of Ising spin models

    Science.gov (United States)

    Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.

    2017-09-01

    We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.

  1. CdTe Based Hard X-ray Imager Technology For Space Borne Missions

    Science.gov (United States)

    Limousin, Olivier; Delagnes, E.; Laurent, P.; Lugiez, F.; Gevin, O.; Meuris, A.

    2009-01-01

    CEA Saclay has recently developed an innovative technology for CdTe based Pixelated Hard X-Ray Imagers with high spectral performance and high timing resolution for efficient background rejection when the camera is coupled to an active veto shield. This development has been done in a R&D program supported by CNES (French National Space Agency) and has been optimized towards the Simbol-X mission requirements. In the latter telescope, the hard X-Ray imager is 64 cm² and is equipped with 625µm pitch pixels (16384 independent channels) operating at -40°C in the range of 4 to 80 keV. The camera we demonstrate in this paper consists of a mosaic of 64 independent cameras, divided in 8 independent sectors. Each elementary detection unit, called Caliste, is the hybridization of a 256-pixel Cadmium Telluride (CdTe) detector with full custom front-end electronics into a unique 1 cm² component, juxtaposable on its four sides. Recently, promising results have been obtained from the first micro-camera prototypes called Caliste 64 and will be presented to illustrate the capabilities of the device as well as the expected performance of an instrument based on it. The modular design of Caliste enables to consider extended developments toward IXO type mission, according to its specific scientific requirements.

  2. Spectral coherent-state quantum cryptography.

    Science.gov (United States)

    Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi

    2008-11-01

    A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.

  3. Effect of localization states on the electroluminescence spectral width of blue–green light emitting InGaN/GaN multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China and School of Electronic and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Zhao, De Gang, E-mail: dgzhao@red.semi.ac.cn; Jiang, De Sheng; Chen, Ping; Liu, Zong Shun; Zhu, Jian Jun; Li, Xiang; Shi, Ming; Zhao, Dan Mei [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Liu, Jian Ping; Zhang, Shu Ming; Wang, Hui; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2015-11-15

    The electroluminescence (EL) spectra of blue–green light emitting InGaN/GaN multiple quantum well (MQW) structures grown via metal-organic chemical vapor deposition are investigated. With increasing In content in InGaN well layers, the peak energy redshifts, the emission intensity reduces and the inhomogeneous broadening of the luminescence band increases. In addition, it is found that the EL spectra shrink with increasing injection current at low excitation condition, which may be ascribed to both Coulomb screening of polarization field and carrier transferring from shallower localization states to the deeper ones, while at high currents the state-filling effect in all localization states may become significant and lead to a broadening of EL spectra. However, surprisingly, for the MQW sample with much higher In content, the EL spectral bandwidth can be almost unchanged with increasing current at the high current range, since a large number of carriers may be captured by the nonradiative recombination centers distributed outside the localized potential traps and the state-filling effect in the localization states is suppressed.

  4. Effect of localization states on the electroluminescence spectral width of blue–green light emitting InGaN/GaN multiple quantum wells

    International Nuclear Information System (INIS)

    Liu, Wei; Zhao, De Gang; Jiang, De Sheng; Chen, Ping; Liu, Zong Shun; Zhu, Jian Jun; Li, Xiang; Shi, Ming; Zhao, Dan Mei; Liu, Jian Ping; Zhang, Shu Ming; Wang, Hui; Yang, Hui

    2015-01-01

    The electroluminescence (EL) spectra of blue–green light emitting InGaN/GaN multiple quantum well (MQW) structures grown via metal-organic chemical vapor deposition are investigated. With increasing In content in InGaN well layers, the peak energy redshifts, the emission intensity reduces and the inhomogeneous broadening of the luminescence band increases. In addition, it is found that the EL spectra shrink with increasing injection current at low excitation condition, which may be ascribed to both Coulomb screening of polarization field and carrier transferring from shallower localization states to the deeper ones, while at high currents the state-filling effect in all localization states may become significant and lead to a broadening of EL spectra. However, surprisingly, for the MQW sample with much higher In content, the EL spectral bandwidth can be almost unchanged with increasing current at the high current range, since a large number of carriers may be captured by the nonradiative recombination centers distributed outside the localized potential traps and the state-filling effect in the localization states is suppressed

  5. Hard x-ray photoemission study of the temperature-induced valence transition system EuNi2(Si1-xGex) 2

    Science.gov (United States)

    Ichiki, Katsuya; Mimura, Kojiro; Anzai, Hiroaki; Uozumi, Takayuki; Sato, Hitoshi; Utsumi, Yuki; Ueda, Shigenori; Mitsuda, Akihiro; Wada, Hirofumi; Taguchi, Yukihiro; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki

    2017-07-01

    We investigated the bulk-derived electronic structure of the temperature-induced valence transition system EuNi2(Si1 -xGex )2 (x =0.70 , 0.79, and 0.82) by means of hard x-ray photoemission spectroscopy (HAXPES). The HAXPES spectra clearly show distinct temperature dependencies in the spectral intensities of the Eu2 + and Eu3 +3 d components. For x =0.70 , the changes in the Eu2 + and Eu3 +3 d spectral components with temperature reflect a continuous valence transition, whereas the sudden changes for x =0.79 and 0.82 reflect first-order valence transitions. The Eu 3 d spectral shapes for all x and particularly the drastic changes in the Eu3 +3 d feature with temperature are validated by a theoretical calculation based on the single-impurity Anderson model (SIAM). SIAM analysis reveals that the valence transition for each x is controlled by the c -f hybridization strength and the charge-transfer energy. Furthermore, the c -f hybridization strength governs the valence transition of this system, which is either first order or continuous, consistent with Kondo volume collapse.

  6. Hard-hard coupling assisted anomalous magnetoresistance effect in amine-ended single-molecule magnetic junction

    Science.gov (United States)

    Tang, Y.-H.; Lin, C.-J.; Chiang, K.-R.

    2017-06-01

    We proposed a single-molecule magnetic junction (SMMJ), composed of a dissociated amine-ended benzene sandwiched between two Co tip-like nanowires. To better simulate the break junction technique for real SMMJs, the first-principles calculation associated with the hard-hard coupling between a amine-linker and Co tip-atom is carried out for SMMJs with mechanical strain and under an external bias. We predict an anomalous magnetoresistance (MR) effect, including strain-induced sign reversal and bias-induced enhancement of the MR value, which is in sharp contrast to the normal MR effect in conventional magnetic tunnel junctions. The underlying mechanism is the interplay between four spin-polarized currents in parallel and anti-parallel magnetic configurations, originated from the pronounced spin-up transmission feature in the parallel case and spiky transmission peaks in other three spin-polarized channels. These intriguing findings may open a new arena in which magnetotransport and hard-hard coupling are closely coupled in SMMJs and can be dually controlled either via mechanical strain or by an external bias.

  7. Online Reading Practices of Students Who Are Deaf/Hard of Hearing

    Science.gov (United States)

    Donne, Vicki; Rugg, Natalie

    2015-01-01

    This study sought to investigate reading perceptions, computer use perceptions, and online reading comprehension strategy use of 26 students who are deaf/hard of hearing in grades 4 through 8 attending public school districts in a tri-state area of the U.S. Students completed an online questionnaire and descriptive analysis indicated that students…

  8. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  9. Scaling function, spectral function and nucleon momentum distribution in nuclei

    International Nuclear Information System (INIS)

    Antonov, A.N.; Ivanov, M.V.; Caballero, J.A.; Barbaro, M.B.; Udias, J.M.; Moya de Guerra, E.; Donnelly, T.W.

    2010-01-01

    The aim of the study is to find a good simultaneous description of the spectral function and the momentum distribution in relation to the realistic scaling function obtained from inclusive electron-nuclei scattering experiments. We start with a modified Hartree-Fock spectral function in which the energy dependent part (δ-function) is replaced by the Gaussian distributions with hole state widths as free parameters. We calculate the scaling function and the nucleon momentum distribution on the basis of the spectral function constructed in this way, trying to find a good description of the experimental data. The obtained scaling function has a weak asymmetry and the momentum distribution has not got a high-momentum tail in the case when harmonic-oscillator single-particle wave functions are used. So, to improve the behavior of the momentum distribution we used the basis of natural orbitals (NO) in which short-range correlations are partly incorporated. The results for the scaling function show again a weak asymmetry, but in this case the momentum distribution has a high-momentum tail. As a next step we include final-state interactions (FSI) in the calculations to reproduce the experimentally observed asymmetry of the scaling function. (author)

  10. The High Aspect Ratio Design (HARD): A candidate ITER concept with improved technology phase performance

    International Nuclear Information System (INIS)

    Nevins, W.M.; Perkins, L.J.; Wesley, J.C.

    1992-10-01

    The High Aspect Ratio Design (HARD) International Thermonuclear Experimental Reactor (ITER) concept developed by the US ITER team is an alternate to the low-aspect-ratio ITER design developed by the ITER participants during the Conceptual Design Activity (CDA). The CDA design, referred to hereafter as ITER CDA, has an aspect ratio, A, of 2.79, a toroidal magnetic field, B T , of 4.85 T, and a plasma current, I p , of 22 MA for operation with an ignited plasma. In contrast, HARD employs higher aspect ratio, A = 4.0, higher toroidal field, B T = 7.11 T, and lower plasma current, I p = 14.8 MA for ignition operation. The cross sections of the two designs are compared in. The parameters and performance of HARD and ITER CDA for inductively driven ignition operation are compared in. The HARD parameters provide the same ignition performance (ignition margin evaluated against ITER-89P confinement scaling) as ITER CDA in a device with comparable size and cost. However, the reason for advancing HARD rather than ITER CDA as the ITER design concept is not inductively driven ignition performance but HARD's significantly enhanced potential to achieve the technology testing and steady-state operation goals of the ITER objectives with non-inductive current drive

  11. Diffractive hard scattering at ep and p antip colliders

    International Nuclear Information System (INIS)

    Bruni, P.; Ingelman, G.; Uppsala Univ.

    1993-12-01

    Models for diffractive scattering based on the exchange of a pomeron with a parton structure are analysed in terms of hard scattering processes and the resulting characteristics of the final state. Diffractive deep inelastic ep scattering is considered in connection with the recently observed rapidity gap events at HERA. Heavy flavour and W, Z production in p anti p interactions are interesting measures of the gluon and quark component, respectively, in the pomeron. (orig.)

  12. THE LONGEST TIMESCALE X-RAY VARIABILITY REVEALS EVIDENCE FOR ACTIVE GALACTIC NUCLEI IN THE HIGH ACCRETION STATE

    International Nuclear Information System (INIS)

    Zhang Youhong

    2011-01-01

    The All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer has continuously monitored a number of active galactic nuclei (AGNs) with similar sampling rates for 14 years, from 1996 January to 2009 December. Utilizing the archival ASM data of 27 AGNs, we calculate the normalized excess variances of the 300-day binned X-ray light curves on the longest timescale (between 300 days and 14 years) explored so far. The observed variance appears to be independent of AGN black-hole mass and bolometric luminosity. According to the scaling relation of black-hole mass (and bolometric luminosity) from galactic black hole X-ray binaries (GBHs) to AGNs, the break timescales that correspond to the break frequencies detected in the power spectral density (PSD) of our AGNs are larger than the binsize (300 days) of the ASM light curves. As a result, the singly broken power-law (soft-state) PSD predicts the variance to be independent of mass and luminosity. Nevertheless, the doubly broken power-law (hard-state) PSD predicts, with the widely accepted ratio of the two break frequencies, that the variance increases with increasing mass and decreases with increasing luminosity. Therefore, the independence of the observed variance on mass and luminosity suggests that AGNs should have soft-state PSDs. Taking into account the scaling of the break timescale with mass and luminosity synchronously, the observed variances are also more consistent with the soft-state than the hard-state PSD predictions. With the averaged variance of AGNs and the soft-state PSD assumption, we obtain a universal PSD amplitude of 0.030 ± 0.022. By analogy with the GBH PSDs in the high/soft state, the longest timescale variability supports the standpoint that AGNs are scaled-up GBHs in the high accretion state, as already implied by the direct PSD analysis.

  13. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  14. Growth, spectral and optical characterization of a novel nonlinear optical organic material: D-Alanine DL-Mandelic acid single crystal

    Science.gov (United States)

    Jayaprakash, P.; Mohamed, M. Peer; Caroline, M. Lydia

    2017-04-01

    An organic nonlinear optical single crystal, D-alanine DL-mandelic acid was synthesized and successfully grown by slow evaporation solution growth technique at ambient temperature using solvent of aqueous solution. The unit cell parameters were assessed from single crystal X-ray diffraction analysis. The presence of diverse functional groups and vibrational modes were identified using Fourier Transform Infra Red and Fourier Transform Raman spectral analyses. The chemical structure of grown crystal has been identified by Nuclear Magnetic Resonance spectroscopic study. Ultraviolet-visible spectral analysis reveal that the crystal has lower cut-off wavelength down to 259 nm, is a key factor to exhibit second harmonic generation signal. The electronic optical band gap and Urbach energy is calculated as 5.31 eV and 0.2425 eV respectively from the UV absorption profile. The diverse optical properties such as, extinction coefficient, reflectance, linear refractive index, optical conductivity was calculated using UV-visible data. The relative second harmonic efficiency of the compound is found to be 0.81 times greater than that of KH2PO4 (KDP). The thermal stability of the grown crystal was studied by thermogravimetric analysis and differential thermal analysis techniques. The luminescence spectrum exhibited two peaks (520 nm, 564 nm) due to the donation of protons from carboxylic acid to amino group. The Vickers microhardness test was carried out employing one of the as-grown hard crystal and there by hardness number (Hv), Meyer's index (n), yield strength (σy), elastic stiffness constant (C11) and Knoop hardness number (HK) were assessed. The dielectric behaviour of the as-grown crystal was analyzed for different temperatures (313 K, 333 K, 353 K, and 373 K) at different frequencies.

  15. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  16. Advances in hard nucleus cataract surgery

    Directory of Open Access Journals (Sweden)

    Wei Cui

    2013-11-01

    Full Text Available Security and perfect vision and fewer complications are our goals in cataract surgery, and hard-nucleus cataract surgery is always a difficulty one. Many new studies indicate that micro-incision phacoemulsification in treating hard nucleus cataract is obviously effective. This article reviews the evolution process of hard nuclear cataract surgery, the new progress in the research of artificial intraocular lens for microincision, and analyse advantages and disadvantages of various surgical methods.

  17. Automated classification and visualization of healthy and pathological dental tissues based on near-infrared hyper-spectral imaging

    Science.gov (United States)

    Usenik, Peter; Bürmen, Miran; Vrtovec, Tomaž; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2011-03-01

    Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots which are difficult to diagnose. If detected early enough, such demineralization can be arrested and reversed by non-surgical means through well established dental treatments (fluoride therapy, anti-bacterial therapy, low intensity laser irradiation). Near-infrared (NIR) hyper-spectral imaging is a new promising technique for early detection of demineralization based on distinct spectral features of healthy and pathological dental tissues. In this study, we apply NIR hyper-spectral imaging to classify and visualize healthy and pathological dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized areas. For this purpose, a standardized teeth database was constructed consisting of 12 extracted human teeth with different degrees of natural dental lesions imaged by NIR hyper-spectral system, X-ray and digital color camera. The color and X-ray images of teeth were presented to a clinical expert for localization and classification of the dental tissues, thereby obtaining the gold standard. Principal component analysis was used for multivariate local modeling of healthy and pathological dental tissues. Finally, the dental tissues were classified by employing multiple discriminant analysis. High agreement was observed between the resulting classification and the gold standard with the classification sensitivity and specificity exceeding 85 % and 97 %, respectively. This study demonstrates that NIR hyper-spectral imaging has considerable diagnostic potential for imaging hard dental tissues.

  18. Spectral representation of the particle production out of equilibrium—Schwinger mechanism in pulsed electric fields

    International Nuclear Information System (INIS)

    Fukushima, Kenji

    2014-01-01

    We develop a formalism to describe the particle production out of equilibrium in terms of dynamical spectral functions, i.e. Wigner transformed Pauli–Jordan's and Hadamard's functions. We take an explicit example of a spatially homogeneous scalar theory under pulsed electric fields and investigate the time evolution of the spectral functions. In the out-state we find an oscillatory peak in Hadamard's function as a result of the mixing between positive- and negative-energy waves. The strength of this peak is of the linear order of the Bogoliubov mixing coefficient, whereas the peak corresponding to the Schwinger mechanism is of the quadratic order. Between the in- and the out-states we observe a continuous flow of the spectral peaks together with two transient oscillatory peaks. We also discuss the medium effect at finite temperature and density. We emphasize that the entire structure of the spectral functions conveys rich information on real-time dynamics including the particle production. (paper)

  19. The influence of spectral nudging on typhoon formation in regional climate models

    Science.gov (United States)

    Feser, Frauke; Barcikowska, Monika

    2012-03-01

    Regional climate models can successfully simulate tropical cyclones and typhoons. This has been shown and was evaluated for hindcast studies of the past few decades. But often global and regional weather phenomena are not simulated at the observed location, or occur too often or seldom even though the regional model is driven by global reanalysis data which constitute a near-realistic state of the global atmosphere. Therefore, several techniques have been developed in order to make the regional model follow the global state more closely. One is spectral nudging, which is applied for horizontal wind components with increasing strength for higher model levels in this study. The aim of this study is to show the influence that this method has on the formation of tropical cyclones (TC) in regional climate models. Two ensemble simulations (each with five simulations) were computed for Southeast Asia and the Northwestern Pacific for the typhoon season 2004, one with spectral nudging and one without. First of all, spectral nudging reduced the overall TC number by about a factor of 2. But the number of tracks which are similar to observed best track data (BTD) was greatly increased. Also, spatial track density patterns were found to be more similar when using spectral nudging. The tracks merge after a short time for the spectral nudging simulations and then follow the BTD closely; for the no nudge cases the similarity is greatly reduced. A comparison of seasonal precipitation, geopotential height, and temperature fields at several height levels with observations and reanalysis data showed overall a smaller ensemble spread, higher pattern correlations and reduced root mean square errors and biases for the spectral nudged simulations. Vertical temperature profiles for selected TCs indicate that spectral nudging is not inhibiting TC development at higher levels. Both the Madden-Julian Oscillation and monsoonal precipitation are reproduced realistically by the regional model

  20. The influence of spectral nudging on typhoon formation in regional climate models

    International Nuclear Information System (INIS)

    Feser, Frauke; Barcikowska, Monika

    2012-01-01

    Regional climate models can successfully simulate tropical cyclones and typhoons. This has been shown and was evaluated for hindcast studies of the past few decades. But often global and regional weather phenomena are not simulated at the observed location, or occur too often or seldom even though the regional model is driven by global reanalysis data which constitute a near-realistic state of the global atmosphere. Therefore, several techniques have been developed in order to make the regional model follow the global state more closely. One is spectral nudging, which is applied for horizontal wind components with increasing strength for higher model levels in this study. The aim of this study is to show the influence that this method has on the formation of tropical cyclones (TC) in regional climate models. Two ensemble simulations (each with five simulations) were computed for Southeast Asia and the Northwestern Pacific for the typhoon season 2004, one with spectral nudging and one without. First of all, spectral nudging reduced the overall TC number by about a factor of 2. But the number of tracks which are similar to observed best track data (BTD) was greatly increased. Also, spatial track density patterns were found to be more similar when using spectral nudging. The tracks merge after a short time for the spectral nudging simulations and then follow the BTD closely; for the no nudge cases the similarity is greatly reduced. A comparison of seasonal precipitation, geopotential height, and temperature fields at several height levels with observations and reanalysis data showed overall a smaller ensemble spread, higher pattern correlations and reduced root mean square errors and biases for the spectral nudged simulations. Vertical temperature profiles for selected TCs indicate that spectral nudging is not inhibiting TC development at higher levels. Both the Madden–Julian Oscillation and monsoonal precipitation are reproduced realistically by the regional model

  1. Stability of the nonequilibrium states of a superconductor with a finite difference between the populations of the electron- and hole-like spectral branches

    International Nuclear Information System (INIS)

    Gal'perin, Y.M.; Kozub, V.I.; Spivak, B.Z.

    1981-01-01

    The stability of the nonequilibrium states of a superconductor with a finite difference between the populations of the electron- and hole-like spectral branches is investigated. It is shown that an instability similar to the Cooper instability of a normal metal arises at a sufficiently large value of the imbalance. This eliminates the imbalance within quantum-mechanical (nonkinetic) time periods. The consistency of the allowance for the imbalance in the nonequilibrium Ginzburg-Landau equations is discussed

  2. Empirical links between XRB and AGN accretion using the complete z < 0.4 spectroscopic CSC/SDSS catalog

    Energy Technology Data Exchange (ETDEWEB)

    Trichas, Markos [EADS Astrium, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2AS (United Kingdom); Green, Paul J.; Aldcroft, Tom; Sobolewska, Malgosia; Kim, Dong-Woo [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Constantin, Anca [Department of Physics and Astronomy, James Madison University, PHCH, Harrisonburg, VA 22807 (United States); Kalfountzou, Eleni [Center for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Hyde, Ashley K. [Astrophysics Group, Imperial College London, London SW7 2AZ (United Kingdom); Zhou, Hongyan [Center for Astrophysics, University of Science and Technology of China, Hefei 230026 (China); Haggard, Daryl [Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Kelly, Brandon C., E-mail: markos.trichas@astrium.eads.net [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93107 (United States)

    2013-12-01

    Striking similarities have been seen between accretion signatures of Galactic X-ray binary (XRB) systems and active galactic nuclei (AGNs). XRB spectral states show a V-shaped correlation between X-ray spectral hardness and Eddington ratio as they vary, and some AGN samples reveal a similar trend, implying analogous processes at vastly larger masses and timescales. To further investigate the analogies, we have matched 617 sources from the Chandra Source Catalog to Sloan Digital Sky Survey spectroscopy, and uniformly measured both X-ray and optical spectral characteristics across a broad range of AGN and galaxy types. We provide useful tabulations of X-ray spectral slope for broad- and narrow-line AGNs, star-forming and passive galaxies, and composite systems, also updating relationships between optical (Hα and [O III]) line emission and X-ray luminosity. We further fit broadband spectral energy distributions with a variety of templates to estimate bolometric luminosity. Our results confirm a significant trend in AGNs between X-ray spectral hardness and Eddington ratio expressed in X-ray luminosity, albeit with significant dispersion. The trend is not significant when expressed in the full bolometric or template-estimated AGN luminosity. We also confirm a relationship between the X-ray/optical spectral slope α{sub ox} and Eddington ratio, but it may not follow the trend predicted by analogy with XRB accretion states.

  3. Influence of spectral history on PWR full core calculation results

    International Nuclear Information System (INIS)

    Bilodid, Y.; Mittag, S.

    2011-01-01

    The few-group cross section libraries, used by reactor dynamics codes, are affected by the spectral history effect-a dependence of fuel cross sections not only on burnup, but also on local spectral conditions during burnup. A cross section correction method based on Pu-239 concentration was implemented in the reactor dynamic code DYN3D. This paper describes the influence of a cross section correction on full-core calculation results. Steady-state and burnup characteristics of a PWR equilibrium cycle, calculated by DYN3D with and without cross section corrections, are compared. A study has shown a significant influence of spectral history on axial power and burnup distributions as well as on calculated cycle length. An impact of the correction on transient calculations is studied for a control rod ejection example. (Authors)

  4. On Spectral Triples in Quantum Gravity I

    DEFF Research Database (Denmark)

    Aastrup, Johannes; M. Grimstrup, Jesper; Nest, Ryszard

    2009-01-01

    This paper establishes a link between Noncommutative Geometry and canonical quantum gravity. A semi-finite spectral triple over a space of connections is presented. The triple involves an algebra of holonomy loops and a Dirac type operator which resembles a global functional derivation operator....... The interaction between the Dirac operator and the algebra reproduces the Poisson structure of General Relativity. Moreover, the associated Hilbert space corresponds, up to a discrete symmetry group, to the Hilbert space of diffeomorphism invariant states known from Loop Quantum Gravity. Correspondingly......, the square of the Dirac operator has, in terms of canonical quantum gravity, the form of a global area-squared operator. Furthermore, the spectral action resembles a partition function of Quantum Gravity. The construction is background independent and is based on an inductive system of triangulations...

  5. NuSTAR OBSERVATIONS AND BROADBAND SPECTRAL ENERGY DISTRIBUTION MODELING OF THE MILLISECOND PULSAR BINARY PSR J1023+0038

    Energy Technology Data Exchange (ETDEWEB)

    Li, K. L.; Kong, A. K. H.; Tam, P. H. T.; Jin, Ruolan [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Takata, J.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Hui, C. Y., E-mail: lilirayhk@gmail.com, E-mail: akong@phys.nthu.edu.tw, E-mail: takata@hku.hk [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2014-12-20

    We report the first hard X-ray (3-79 keV) observations of the millisecond pulsar (MSP) binary PSR J1023+0038 using NuSTAR. This system has been shown transiting between a low-mass X-ray binary (LMXB) state and a rotation-powered MSP state. The NuSTAR observations were taken in both LMXB state and rotation-powered state. The source is clearly seen in both states up to ∼79 keV. During the LMXB state, the 3-79 keV flux is about a factor of 10 higher than in the rotation-powered state. The hard X-rays show clear orbital modulation during the X-ray faint rotation-powered state but the X-ray orbital period is not detected in the X-ray bright LMXB state. In addition, the X-ray spectrum changes from a flat power-law spectrum during the rotation-powered state to a steeper power-law spectrum in the LMXB state. We suggest that the hard X-rays are due to the intrabinary shock from the interaction between the pulsar wind and the injected material from the low-mass companion star. During the rotation-powered MSP state, the X-ray orbital modulation is due to Doppler boosting of the shocked pulsar wind. At the LMXB state, the evaporating matter of the accretion disk due to the gamma-ray irradiation from the pulsar stops almost all the pulsar wind, resulting in the disappearance of the X-ray orbital modulation.

  6. Bounding spectral gaps of Markov chains: a novel exact multi-decomposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Destainville, N [Laboratoire de Physique Theorique - IRSAMC, CNRS/Universite Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 04 (France)

    2003-04-04

    We propose an exact technique to calculate lower bounds of spectral gaps of discrete time reversible Markov chains on finite state sets. Spectral gaps are a common tool for evaluating convergence rates of Markov chains. As an illustration, we successfully use this technique to evaluate the 'absorption time' of the 'Backgammon model', a paradigmatic model for glassy dynamics. We also discuss the application of this technique to the 'contingency table problem', a notoriously difficult problem from probability theory. The interest of this technique is that it connects spectral gaps, which are quantities related to dynamics, with static quantities, calculated at equilibrium.

  7. Magnetic characterization of soft and hard magnetic materials

    International Nuclear Information System (INIS)

    Groessinger, R.; Mehmood, N.; Sato Turtelli, R.; Keplinger, F.

    2008-01-01

    Full text: For industrial applications many materials are used which are magnetic such as various kind of steels, but also soft respectively hard magnetic materials are applied in order to solve a certain technical problem. For this purpose the magnetic properties of these materials have to be known or even optimized. In solid state physics the magnetic characterization is often performed at low temperatures, which means from 4.2 K up to room temperature. Contrary, for industrial application the range of environmental temperatures (-20 o C - 120 o C) where such systems are used is of interest. Additionally ranges the shape and size between few mm up to several cm. It is the purpose of this paper to summarize measuring systems which are mainly suited for an industrial characterizations. The most important hysteresis measurement methods which are applicable for industrial purpose are summarized. Special emphasis is laid on the difference between soft or hard magnetic materials. Practical examples for each method are given. Additionally a strain gauge method which is useful for magnetostriction measurement is shown. (author)

  8. Optical decoherence and persistent spectral hole burning in Er{sup 3+}:LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, C.W., E-mail: thiel@physics.montana.ed [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Macfarlane, R.M. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); IBM Almaden Research Center, San Jose, CA 95120 (United States); Boettger, T. [Department of Physics, University of San Francisco, San Francisco, CA 94117 (United States); Sun, Y. [Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Cone, R.L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2010-09-15

    Developing new resonant optical materials for spatial-spectral holography and quantum information applications requires detailed knowledge of the decoherence and population relaxation dynamics for the quantum states involved in the optical transitions, motivating the need for fundamental material studies. We report recent progress in studying these properties in erbium-doped lithium niobate at liquid helium temperatures. The influence of temperature, applied magnetic fields, measurement timescale, and dopant concentration were probed using photon echo spectroscopy and time-resolved spectral hole burning on the 1532 nm transition of Er{sup 3+}:LiNbO{sub 3}. Effects of spectral diffusion due to interactions between Er{sup 3+} ions and between the Er{sup 3+} ion and {sup 7}Li and {sup 93}Nb nuclear spins in the host lattice were observed. In addition, long-lived persistent spectral storage of seconds to minutes was observed due to non-equilibrium population redistribution among superhyperfine states.

  9. Nonconforming h-p spectral element methods for elliptic problems

    Indian Academy of Sciences (India)

    In [6,7,13,14] h-p spectral element methods for solving elliptic boundary value problems on polygonal ... Let M denote the number of corner layers and W denote the number of degrees of .... β is given by Theorem 2.2 of [3] which can be stated.

  10. Initiative hard coal; Initiative Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, J.

    2007-08-02

    In order to decrease the import dependence of hard coal in the European Union, the author has submitted suggestions to the director of conventional sources of energy (directorate general for energy and transport) of the European community, which found a positive resonance. These suggestions are summarized in an elaboration 'Initiative Hard Coal'. After clarifying the starting situation and defining the target the presupposition for a better use of hard coal deposits as raw material in the European Union are pointed out. On that basis concrete suggestions for measures are made. Apart from the conditions of the deposits it concerns thereby also new mining techniques and mining-economical developments, connected with tasks for the mining-machine industry. (orig.)

  11. Hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Brandt, A.

    1995-09-01

    The field of hard diffraction, which studies events with a rapidity gap and a hard scattering, has expanded dramatically recently. A review of new results from CDF, D OE, H1 and ZEUS will be given. These results include diffractive jet production, deep-inelastic scattering in large rapidity gap events, rapidity gaps between high transverse energy jets, and a search for diffractive W-boson production. The combination of these results gives new insight into the exchanged object, believed to be the pomeron. The results axe consistent with factorization and with a hard pomeron that contains both quarks and gluons. There is also evidence for the exchange of a strongly interacting color singlet in high momentum transfer (36 2 ) events

  12. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark J.; Bonizzi, Pietro; Karel, Joël; De Weerd, Peter

    2016-01-01

    Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information

  13. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches.

    Directory of Open Access Journals (Sweden)

    Eric Lowet

    Full Text Available Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT preceded by Singular Spectrum Decomposition (SSD of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization

  14. Spectral properties of excitons in the bilayer graphene

    Science.gov (United States)

    Apinyan, V.; Kopeć, T. K.

    2018-01-01

    In this paper, we consider the spectral properties of the bilayer graphene with the local excitonic pairing interaction between the electrons and holes. We consider the generalized Hubbard model, which includes both intralayer and interlayer Coulomb interaction parameters. The solution of the excitonic gap parameter is used to calculate the electronic band structure, single-particle spectral functions, the hybridization gap, and the excitonic coherence length in the bilayer graphene. We show that the local interlayer Coulomb interaction is responsible for the semimetal-semiconductor transition in the double layer system, and we calculate the hybridization gap in the band structure above the critical interaction value. The formation of the excitonic band gap is reported as the threshold process and the momentum distribution functions have been calculated numerically. We show that in the weak coupling limit the system is governed by the Bardeen-Cooper-Schrieffer (BCS)-like pairing state. Contrary, in the strong coupling limit the excitonic condensate states appear in the semiconducting phase, by forming the Dirac's pockets in the reciprocal space.

  15. Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population

    Science.gov (United States)

    Grain hardness is a very important trait in determining wheat market class and also influences milling and baking traits. At the grain Hardness (Ha) locus on chromosome 5DS, there are two primary mutations responsible for conveying a harder kernel texture among U.S. hard red spring wheats: (1) the P...

  16. 76 FR 44574 - Antidumping Duty Investigation and Countervailing Duty Investigation of Hard Red Spring Wheat...

    Science.gov (United States)

    2011-07-26

    ... Investigation and Countervailing Duty Investigation of Hard Red Spring Wheat From Canada: Notice of Court... of Appeals for the Federal Circuit (``CAFC''), in Canadian Wheat Board v. United States, 2010-1083 (Fed. [[Page 44575

  17. Spectral multitude and spectral dynamics reflect changing conjugation length in single molecules of oligophenylenevinylenes

    KAUST Repository

    Kobayashi, Hiroyuki; Tsuchiya, Kousuke; Ogino, Kenji; Vacha, Martin

    2012-01-01

    Single-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers. © 2012 The Owner Societies.

  18. Electronic properties of Nd2−xCexCuO4+δ: A hard X-ray photoemission investigation

    International Nuclear Information System (INIS)

    Guarino, A.; Panaccione, G.; Offi, F.; Monaco, G.; Fondacaro, A.; Torelli, P.; Fittipaldi, R.; Vecchione, A.; Pace, S.; Nigro, A.

    2016-01-01

    Highlights: • We grow and characterize Nd 2−x Ce x CuO 4+δ samples as thin film and single crystal. • We study the Cu 2p levels of our samples by hard X-ray photoemission spectroscopy. • We investigate bulk features of the Nd 2−x Ce x CuO 4+δ samples. • Signature of the bulk response is correlated with the crystallinity of the samples. - Abstract: Cu 2p core levels spectra measured by X-ray photoemission spectroscopy of selected as-grown Nd 2−x Ce x CuO 4+δ samples are presented and discussed. The presence of a satellite peak in the 2p core level of Nd 2−x Ce x CuO 4+δ single crystal by hard X-ray photoemission is confirmed in all non-superconducting samples, films and single crystals investigated in this work. The comparison of the spectral features of the different samples suggests that the presence and the intensity of this satellite peak is not related to the electric transport properties, but to the texture characteristics.

  19. THE DISK-WIND-JET CONNECTION IN THE BLACK HOLE H 1743-322

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. M.; King, A. L. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Raymond, J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Fabian, A. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Reynolds, C. S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Kallman, T. R. [Laboratory for High Energy Astrophysics, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Cackett, E. M. [Department of Physics and Astronomy, Wayne State University, 666 West Hancock Street, Detroit, MI 48201 (United States); Van der Klis, M. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098-XH, Amsterdam (Netherlands); Steeghs, D. T. H., E-mail: jonmm@umich.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2012-11-01

    X-ray disk winds are detected in spectrally soft, disk-dominated phases of stellar-mass black hole outbursts. In contrast, compact, steady, relativistic jets are detected in spectrally hard states that are dominated by non-thermal X-ray emission. Although these distinctive outflows appear to be almost mutually exclusive, it is possible that a disk wind persists in hard states but cannot be detected via X-ray absorption lines owing to very high ionization. Here, we present an analysis of a deep, 60 ks Chandra/HETGS observation of the black hole candidate H 1743-322 in the low/hard state. The spectrum shows no evidence of a disk wind, with tight limits, and within the range of ionizing flux levels that were measured in prior Chandra observations wherein a wind was clearly detected. In H 1743-322, at least, disk winds are actually diminished in the low/hard state, and disk winds and jets are likely state dependent and anti-correlated. These results suggest that although the launching radii of winds and jets may differ by orders of magnitude, they may both be tied to a fundamental property of the inner accretion flow, such as the mass accretion rate and/or the magnetic field topology of the disk. We discuss these results in the context of disk winds and jets in other stellar-mass black holes, and possible launching mechanisms for black hole outflows.

  20. THE DISK-WIND-JET CONNECTION IN THE BLACK HOLE H 1743–322

    International Nuclear Information System (INIS)

    Miller, J. M.; King, A. L.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; Kallman, T. R.; Cackett, E. M.; Van der Klis, M.; Steeghs, D. T. H.

    2012-01-01

    X-ray disk winds are detected in spectrally soft, disk-dominated phases of stellar-mass black hole outbursts. In contrast, compact, steady, relativistic jets are detected in spectrally hard states that are dominated by non-thermal X-ray emission. Although these distinctive outflows appear to be almost mutually exclusive, it is possible that a disk wind persists in hard states but cannot be detected via X-ray absorption lines owing to very high ionization. Here, we present an analysis of a deep, 60 ks Chandra/HETGS observation of the black hole candidate H 1743–322 in the low/hard state. The spectrum shows no evidence of a disk wind, with tight limits, and within the range of ionizing flux levels that were measured in prior Chandra observations wherein a wind was clearly detected. In H 1743–322, at least, disk winds are actually diminished in the low/hard state, and disk winds and jets are likely state dependent and anti-correlated. These results suggest that although the launching radii of winds and jets may differ by orders of magnitude, they may both be tied to a fundamental property of the inner accretion flow, such as the mass accretion rate and/or the magnetic field topology of the disk. We discuss these results in the context of disk winds and jets in other stellar-mass black holes, and possible launching mechanisms for black hole outflows.

  1. Impact of aging on radiation hardness

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Winokur, P.S.; Fleetwood, D.M.

    1997-01-01

    Burn-in effects are used to demonstrate the potential impact of thermally activated aging effects on functional and parametric radiation hardness. These results have implications on hardness assurance testing. Techniques for characterizing aging effects are proposed

  2. Phase Transitions in Planning Problems: Design and Analysis of Parameterized Families of Hard Planning Problems

    Science.gov (United States)

    Hen, Itay; Rieffel, Eleanor G.; Do, Minh; Venturelli, Davide

    2014-01-01

    There are two common ways to evaluate algorithms: performance on benchmark problems derived from real applications and analysis of performance on parametrized families of problems. The two approaches complement each other, each having its advantages and disadvantages. The planning community has concentrated on the first approach, with few ways of generating parametrized families of hard problems known prior to this work. Our group's main interest is in comparing approaches to solving planning problems using a novel type of computational device - a quantum annealer - to existing state-of-the-art planning algorithms. Because only small-scale quantum annealers are available, we must compare on small problem sizes. Small problems are primarily useful for comparison only if they are instances of parametrized families of problems for which scaling analysis can be done. In this technical report, we discuss our approach to the generation of hard planning problems from classes of well-studied NP-complete problems that map naturally to planning problems or to aspects of planning problems that many practical planning problems share. These problem classes exhibit a phase transition between easy-to-solve and easy-to-show-unsolvable planning problems. The parametrized families of hard planning problems lie at the phase transition. The exponential scaling of hardness with problem size is apparent in these families even at very small problem sizes, thus enabling us to characterize even very small problems as hard. The families we developed will prove generally useful to the planning community in analyzing the performance of planning algorithms, providing a complementary approach to existing evaluation methods. We illustrate the hardness of these problems and their scaling with results on four state-of-the-art planners, observing significant differences between these planners on these problem families. Finally, we describe two general, and quite different, mappings of planning

  3. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  4. Photoinduced electron transfer and persistent spectral hole-burning in natural emerald.

    Science.gov (United States)

    Riesen, Hans

    2011-06-02

    Wavelength-selective excited-state lifetime measurements and absorption, luminescence, and hole-burning spectra of a natural African emerald crystal are reported. The (2)E excited-state lifetime displays an extreme wavelength dependence, varying from 190 to 37 μs within 1.8 nm of the R(1)-line. Overall, the excited state is strongly quenched, in comparison to laboratory-created emerald (τ=1.3 ms), with an average quenching rate of ∼6 × 10(3) s(-1) at 2.5 K. This quenching is attributed to photoinduced electron transfer caused by a relatively high concentration of Fe(2+) ions. The forward electron-transfer rate, k(f), from the nearest possible Fe(2+) sites at around 5 Å is estimated to be ∼20 × 10(3) s(-1) at 2.5 K. The photoreductive quenching of the excited Cr(3+) ions by Fe(2+) is followed by rapid electron back-transfer in the ground state upon deactivation. The exchange interaction based quenching can be modeled by assuming a random quencher distribution within the possible Fe(2+) sites with the forward electron-transfer rate, k(f), given as a function of acceptor-donor separation R by exp[(R(f)-R)/a(f)]; R(f) and a(f) values of 13.5 and 2.7 Å are obtained at 2.5 K. The electron transfer/back-transfer reorganizes the local crystal lattice, occasionally leading to a minor variation of the short-range structure around the Cr(3+) ions. This provides a mechanism for spectral hole-burning for which a moderately high quantum efficiency of about ∼0.005% is observed. Spectral holes are subject to spontaneous hole-filling and spectral diffusion, and both effects can be quantified within the standard two-level systems for non-photochemical hole-burning. Importantly, the absorbance increases on both sides of broad spectral holes, and isosbestic points are observed, in accord with the expected distribution of the "photoproduct" in a non-photochemical hole-burning process. © 2011 American Chemical Society

  5. Isotropic-nematic transition in a mixture of hard spheres and hard spherocylinders: scaled particle theory description

    Directory of Open Access Journals (Sweden)

    M.F. Holovko

    2017-12-01

    Full Text Available The scaled particle theory is developed for the description of thermodynamical properties of a mixture of hard spheres and hard spherocylinders. Analytical expressions for free energy, pressure and chemical potentials are derived. From the minimization of free energy, a nonlinear integral equation for the orientational singlet distribution function is formulated. An isotropic-nematic phase transition in this mixture is investigated from the bifurcation analysis of this equation. It is shown that with an increase of concentration of hard spheres, the total packing fraction of a mixture on phase boundaries slightly increases. The obtained results are compared with computer simulations data.

  6. Verification of spectral burn-up codes on 2D fuel assemblies of the GFR demonstrator ALLEGRO reactor

    International Nuclear Information System (INIS)

    Čerba, Štefan; Vrban, Branislav; Lüley, Jakub; Dařílek, Petr; Zajac, Radoslav; Nečas, Vladimír; Haščik, Ján

    2014-01-01

    Highlights: • Verification of the MCNPX, HELIOS and SCALE codes. • MOX and ceramic fuel assembly. • Gas-cooled fast reactor. • Burnup calculation. - Abstract: The gas-cooled fast reactor, which is one of the six GEN IV reactor concepts, is characterized by high operational temperatures and a hard neutron spectrum. The utilization of commonly used spectral codes, developed mainly for LWR reactors operated in the thermal/epithermal neutron spectrum, may be connected with systematic deviations since the main development effort of these codes has been focused on the thermal part of the neutron spectrum. To be able to carry out proper calculations for fast systems the used codes have to account for neutron resonances including the self-shielding effect. The presented study aims at verifying the spectral HELIOS, MCNPX and SCALE codes on the basis of depletion calculations of 2D MOX and ceramic fuel assemblies of the ALLEGRO gas-cooled fast reactor demonstrator in infinite lattice

  7. Spectral properties of doped bilayer cuprates at finite temperatures

    Indian Academy of Sciences (India)

    teresting results. For the overdoped samples, these results show a splitting of electronic states near ... self-consistent perturbation approach is used to calculate the electronic spectral function for differ- ent values of hole .... Council for Scientific and Industrial Research (CSIR), Government of India, for financial support via ...

  8. The spectral changes of deforestation in the Brazilian tropical savanna.

    Science.gov (United States)

    Trancoso, Ralph; Sano, Edson E; Meneses, Paulo R

    2015-01-01

    The Cerrado is a biome in Brazil that is experiencing the most rapid loss in natural vegetation. The objective of this study was to analyze the changes in the spectral response in the red, near infrared (NIR), middle infrared (MIR), and normalized difference vegetation index (NDVI) when native vegetation in the Cerrado is deforested. The test sites were regions of the Cerrado located in the states of Bahia, Minas Gerais, and Mato Grosso. For each region, a pair of Landsat Thematic Mapper (TM) scenes from 2008 (before deforestation) and 2009 (after deforestation) was compared. A set of 1,380 samples of deforested polygons and an equal number of samples of native vegetation have their spectral properties statistically analyzed. The accuracy of deforestation detections was also evaluated using high spatial resolution imagery. Results showed that the spectral data of deforested areas and their corresponding native vegetation were statistically different. The red band showed the highest difference between the reflectance data from deforested areas and native vegetation, while the NIR band showed the lowest difference. A consistent pattern of spectral change when native vegetation in the Cerrado is deforested was identified regardless of the location in the biome. The overall accuracy of deforestation detections was 97.75%. Considering both the marked pattern of spectral changes and the high deforestation detection accuracy, this study suggests that deforestation in Cerrado can be accurately monitored, but a strong seasonal and spatial variability of spectral changes might be expected.

  9. Hard and soft acids and bases: atoms and atomic ions.

    Science.gov (United States)

    Reed, James L

    2008-07-07

    The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.

  10. Development of method for evaluating cell hardness and correlation between bacterial spore hardness and durability

    Directory of Open Access Journals (Sweden)

    Nakanishi Koichi

    2012-06-01

    Full Text Available Abstract Background Despite the availability of conventional devices for making single-cell manipulations, determining the hardness of a single cell remains difficult. Here, we consider the cell to be a linear elastic body and apply Young’s modulus (modulus of elasticity, which is defined as the ratio of the repulsive force (stress in response to the applied strain. In this new method, a scanning probe microscope (SPM is operated with a cantilever in the “contact-and-push” mode, and the cantilever is applied to the cell surface over a set distance (applied strain. Results We determined the hardness of the following bacterial cells: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and five Bacillus spp. In log phase, these strains had a similar Young’s modulus, but Bacillus spp. spores were significantly harder than the corresponding vegetative cells. There was a positive, linear correlation between the hardness of bacterial spores and heat or ultraviolet (UV resistance. Conclusions Using this technique, the hardness of a single vegetative bacterial cell or spore could be determined based on Young’s modulus. As an application of this technique, we demonstrated that the hardness of individual bacterial spores was directly proportional to heat and UV resistance, which are the conventional measures of physical durability. This technique allows the rapid and direct determination of spore durability and provides a valuable and innovative method for the evaluation of physical properties in the field of microbiology.

  11. Nonlocal Coulomb correlations in pure and electron-doped Sr2IrO4 : Spectral functions, Fermi surface, and pseudo-gap-like spectral weight distributions from oriented cluster dynamical mean-field theory

    Science.gov (United States)

    Martins, Cyril; Lenz, Benjamin; Perfetti, Luca; Brouet, Veronique; Bertran, François; Biermann, Silke

    2018-03-01

    We address the role of nonlocal Coulomb correlations and short-range magnetic fluctuations in the high-temperature phase of Sr2IrO4 within state-of-the-art spectroscopic and first-principles theoretical methods. Introducing an "oriented-cluster dynamical mean-field scheme", we compute momentum-resolved spectral functions, which we find to be in excellent agreement with angle-resolved photoemission spectra. We show that while short-range antiferromagnetic fluctuations are crucial to accounting for the electronic properties of Sr2IrO4 even in the high-temperature paramagnetic phase, long-range magnetic order is not a necessary ingredient of the insulating state. Upon doping, an exotic metallic state is generated, exhibiting cuprate-like pseudo-gap spectral properties, for which we propose a surprisingly simple theoretical mechanism.

  12. Single-particle spectroscopy of I-III-VI semiconductor nanocrystals: spectral diffusion and suppression of blinking by two-color excitation.

    Science.gov (United States)

    Sharma, Dharmendar Kumar; Hirata, Shuzo; Bujak, Lukasz; Biju, Vasudevanpillai; Kameyama, Tatsuya; Kishi, Marino; Torimoto, Tsukasa; Vacha, Martin

    2016-07-14

    Ternary I-III-VI semiconductor nanocrystals have been explored as non-toxic alternatives to II-VI semiconductors for optoelectronic and sensing applications, but large photoluminescence spectral width and moderate brightness restrict their practical use. Here, using single-particle photoluminescence spectroscopy on nanocrystals of (AgIn)xZn2(1-x)S2 we show that the photoluminescence band is inhomogeneously broadened and that size distribution is the dominant factor in the broadening. The residual homogeneous linewidth of individual nanocrystals reaches up to 75% of the ensemble spectral width. Single nanocrystals undergo spectral diffusion which also contributes to the inhomogeneous band. Excitation with two lasers with energies above and below the bandgap reveals coexistence of two emitting donor states within one particle. Spectral diffusion in such particles is due to temporal activation and deactivation of one such state. Filling of a trap state with a lower-energy laser enables optical modulation of photoluminescence intermittency (blinking) and leads to an almost two-fold increase in brightness.

  13. Hard coatings

    International Nuclear Information System (INIS)

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  14. Spectral singularities, biorthonormal systems and a two-parameter family of complex point interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mostafazadeh, Ali [Department of Mathematics, Koc University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul (Turkey); Mehri-Dehnavi, Hossein [Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan 45195-1159 (Iran, Islamic Republic of)], E-mail: amostafazadeh@ku.edu.tr, E-mail: mehrideh@iasbs.ac.ir

    2009-03-27

    A curious feature of complex scattering potentials v(x) is the appearance of spectral singularities. We offer a quantitative description of spectral singularities that identifies them with an obstruction to the existence of a complete biorthonormal system consisting of the eigenfunctions of the Hamiltonian operator and its adjoint. We establish the equivalence of this description with the mathematicians' definition of spectral singularities for the potential v(x) = z{sub -}{delta}(x + a) + z{sub +}{delta}(x - a), where z{sub {+-}} and a are respectively complex and real parameters and {delta}(x) is the Dirac delta function. We offer a through analysis of the spectral properties of this potential and determine the regions in the space of the coupling constants z{sub {+-}} where it admits bound states and spectral singularities. In particular, we find an explicit bound on the size of certain regions in which the Hamiltonian is quasi-Hermitian and examine the consequences of imposing PT-symmetry.

  15. Spectral singularities, biorthonormal systems and a two-parameter family of complex point interactions

    International Nuclear Information System (INIS)

    Mostafazadeh, Ali; Mehri-Dehnavi, Hossein

    2009-01-01

    A curious feature of complex scattering potentials v(x) is the appearance of spectral singularities. We offer a quantitative description of spectral singularities that identifies them with an obstruction to the existence of a complete biorthonormal system consisting of the eigenfunctions of the Hamiltonian operator and its adjoint. We establish the equivalence of this description with the mathematicians' definition of spectral singularities for the potential v(x) = z - δ(x + a) + z + δ(x - a), where z ± and a are respectively complex and real parameters and δ(x) is the Dirac delta function. We offer a through analysis of the spectral properties of this potential and determine the regions in the space of the coupling constants z ± where it admits bound states and spectral singularities. In particular, we find an explicit bound on the size of certain regions in which the Hamiltonian is quasi-Hermitian and examine the consequences of imposing PT-symmetry

  16. Suzaku View of the Swift/BAT Active Galactic Nuclei (I): Spectral Analysis of Six AGNs and Evidence for Two Types of Obscured Population

    Science.gov (United States)

    Eguchi, Satoshi; Ueda, Yoshihiro; Terashima, Yuichi; Mushotzky, Richard F.; Tueller, Jack

    2009-01-01

    We present a systematic spectral analysis with Suzaku of six AGNs detected in the Swift/BAT hard X-ray (15-200 keV) survey, Swift J0138.6-4001, J0255.2-0011, J0350.1-5019, J0505.7-2348, J0601.9-8636, and J1628.1-5145. This is considered to be a representative sample of new AGNs without X-ray spectral information before the BAT survey. We find that the 0.5-200 keV spectra of these sources can be uniformly fit with a base model consisting of heavily absorbed (log NH >23.5/sq cm) transmitted components, scattered lights, a reflection component, and an iron-K emission line. There are two distinct groups, three "new type" AGNs (including the two sources reported by Ueda et al. 2007) with an extremely small scattered fraction (f(sub scat) or equal to 0.8 where omega is the solid angle of the reflector), and three "classical type" ones with f(sub scat > 0.5% and R or approx. 30deg. We infer that a significant number of new type AGNs with an edge-on view is missing in the current all-sky hard X-ray surveys. Subject headings: galaxies: active . gamma rays: observations . X-rays: galaxies . X-rays: general

  17. Non-thermal recombination - a neglected source of flare hard X-rays and fast electron diagnostics (Corrigendum)

    Science.gov (United States)

    Brown, J. C.; Mallik, P. C. V.; Badnell, N. R.

    2010-06-01

    Brown and Mallik (BM) recently claimed that non-thermal recombination (NTR) can be a dominant source of flare hard X-rays (HXRs) from hot coronal and chromospheric sources. However, major discrepancies between the thermal continua predicted by BM and by the Chianti database as well as RHESSI flare data, led us to discover substantial errors in the heuristic expression used by BM to extend the Kramers expressions beyond the hydrogenic case. Here we present the relevant corrected expressions and show the key modified results. We conclude that, in most cases, NTR emission was overestimated by a factor of 1-8 by BM but is typically still large enough (as much as 20-30% of the total emission) to be very important for electron spectral inference and detection of electron spectral features such as low energy cut-offs since the recombination spectra contain sharp edges. For extreme temperature regimes and/or if the Fe abundance were as high as some values claimed, NTR could even be the dominant source of flare HXRs, reducing the electron number and energy budget, problems such as in the extreme coronal HXR source cases reported by e.g. Krucker et al.

  18. Technology for detecting spectral radiance by a snapshot multi-imaging spectroradiometer

    Science.gov (United States)

    Zuber, Ralf; Stührmann, Ansgar; Gugg-Helminger, Anton; Seckmeyer, Gunther

    2017-12-01

    Technologies to determine spectral sky radiance distributions have evolved in recent years and have enabled new applications in remote sensing, for sky radiance measurements, in biological/diagnostic applications and luminance measurements. Most classical spectral imaging radiance technologies are based on mechanical and/or spectral scans. However, these methods require scanning time in which the spectral radiance distribution might change. To overcome this limitation, different so-called snapshot spectral imaging technologies have been developed that enable spectral and spatial non-scanning measurements. We present a new setup based on a facet mirror that is already used in imaging slicing spectrometers. By duplicating the input image instead of slicing it and using a specially designed entrance slit, we are able to select nearly 200 (14 × 14) channels within the field of view (FOV) for detecting spectral radiance in different directions. In addition, a megapixel image of the FOV is captured by an additional RGB camera. This image can be mapped onto the snapshot spectral image. In this paper, the mechanical setup, technical design considerations and first measurement results of a prototype are presented. For a proof of concept, the device is radiometrically calibrated and a 10 mm × 10 mm test pattern measured within a spectral range of 380 nm-800 nm with an optical bandwidth of 10 nm (full width at half maximum or FWHM). To show its potential in the UV spectral region, zenith sky radiance measurements in the UV of a clear sky were performed. Hence, the prototype was equipped with an entrance optic with a FOV of 0.5° and modified to obtain a radiometrically calibrated spectral range of 280 nm-470 nm with a FWHM of 3 nm. The measurement results have been compared to modeled data processed by UVSPEC, which showed deviations of less than 30%. This is far from being ideal, but an acceptable result with respect to available state

  19. Hard and soft acids and bases: structure and process.

    Science.gov (United States)

    Reed, James L

    2012-07-05

    Under investigation is the structure and process that gives rise to hard-soft behavior in simple anionic atomic bases. That for simple atomic bases the chemical hardness is expected to be the only extrinsic component of acid-base strength, has been substantiated in the current study. A thermochemically based operational scale of chemical hardness was used to identify the structure within anionic atomic bases that is responsible for chemical hardness. The base's responding electrons have been identified as the structure, and the relaxation that occurs during charge transfer has been identified as the process giving rise to hard-soft behavior. This is in contrast the commonly accepted explanations that attribute hard-soft behavior to varying degrees of electrostatic and covalent contributions to the acid-base interaction. The ability of the atomic ion's responding electrons to cause hard-soft behavior has been assessed by examining the correlation of the estimated relaxation energies of the responding electrons with the operational chemical hardness. It has been demonstrated that the responding electrons are able to give rise to hard-soft behavior in simple anionic bases.

  20. SpectralNET – an application for spectral graph analysis and visualization

    Directory of Open Access Journals (Sweden)

    Schreiber Stuart L

    2005-10-01

    Full Text Available Abstract Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices and interactions (edges that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors. Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is