WorldWideScience

Sample records for hard rock laboratory

  1. Aespoe hard rock laboratory Sweden

    International Nuclear Information System (INIS)

    1992-01-01

    The aim of the new Aespoe hard rock laboratory is to demonstrate state of the art of technology and evaluation methods before the start of actual construction work on the planned deep repository for spent nuclear fuel. The nine country OECD/NEA project in the Stripa mine in Sweden has been an excellent example of high quality international research co-operation. In Sweden the new Aespoe hard rock laboratory will gradually take over and finalize this work. SKB very much appreciates the continued international participation in Aespoe which is of great value for the quality efficiency, and confidence in this kind of work. We have invited a number of leading experts to this first international seminar to summarize the current state of a number of key questions. The contributions show the great progress that has taken place during the years. The results show that there is a solid scientific basis for using this knowledge on site specific preparation and work on actual repositories. (au)

  2. Aespoe Hard Rock Laboratory. Annual Report 1993

    International Nuclear Information System (INIS)

    1994-06-01

    The Aespoe Hard Rock Laboratory is being constructed in preparation for the deep geological repository of spent fuel in Sweden. This Annual Report 1993 for the Aespoe Hard Rock Laboratory contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of the detailed investigation methodology. Construction of the facility and investigation of the bedrock are carried out in parallel. As of December 1993, 2760 m of the tunnel had been excavated to a depth of 370 m below the surface. An important and integral part of the work is further refinement of conceptual and numerical models for groundwater flow and radionuclide migration. Detailed plans have been prepared for several experiments to be conducted after the end of the construction work. Eight organizations from seven countries are now participating in the work at the Aespoe Hard Rock Laboratory and are contributing in different ways to the results being achieved

  3. Aespoe hard rock laboratory. Annual report 1992

    International Nuclear Information System (INIS)

    1993-04-01

    The Aespoe hard rock laboratory is being constructed in preparation for the deep geological repository of spent fuel in Sweden. This Annual report 1992 for the Aespoe hard rock laboratory contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of the detailed investigation methodology. Construction of the facility and investigation of the bedrock are being carried out in parallel. December 1992 1925 m of the tunnel has been excavated to a depth of 255 m below surface. An important and integrated part of the work is further refinement of conceptual and numerical models for groundwater flow and radionuclide migration. This work is carried out in cooperation with seven organizations from six countries that participate in the project. (25 refs.)

  4. Aespoe Hard Rock Laboratory. Annual Report 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2011 is given below.

  5. Aespoe hard rock laboratory. Annual report 2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2010 is given below

  6. Aespoe Hard Rock Laboratory. Annual Report 2011

    International Nuclear Information System (INIS)

    2012-03-01

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2011 is given below

  7. Aespoe hard rock laboratory. Annual report 2010

    International Nuclear Information System (INIS)

    2011-02-01

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2010 is given below

  8. Aespoe hard rock laboratory. Annual report 2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2010 is given below

  9. Aespoe Hard Rock Laboratory Annual Report 1999

    International Nuclear Information System (INIS)

    2000-08-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. The TRUE -1 experiment including tests with sorbing radioactive tracers in a single fracture over a distance of about 5 m has been completed. Diffusion and sorption in the rock matrix is the dominant retention mechanism over the time scales of the experiments. The main objective of the TRUE Block Scale Experiment is to increase understanding and our ability to predict tracer transport in a fracture network over spatial scales of 10 to 50 m. In total six boreholes have been drilled into the experimental volume located at the 450 m level. The Long-Term Diffusion Experiment is intended as a complement to the dynamic in-situ experiments and the laboratory experiments performed in the TRUE Programme. Diffusion from a fracture into the rock matrix will be studied in situ. The REX project focuses on the reduction of oxygen in a repository after closure due to reactions with rock minerals and microbial activity. Results show that oxygen is consumed within a few days both for the field and laboratory experiments. A new site for the CHEMLAB experiments was selected and prepared during 1999. All future experiment will be conducted in the J niche at 450 m depth. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full-scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and instrumented. Characterisation of the rock mass in the area of the Prototype repository is completed and the six deposition holes have been drilled. The Backfill and

  10. Aespoe Hard Rock Laboratory Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. The TRUE -1 experiment including tests with sorbing radioactive tracers in a single fracture over a distance of about 5 m has been completed. Diffusion and sorption in the rock matrix is the dominant retention mechanism over the time scales of the experiments. The main objective of the TRUE Block Scale Experiment is to increase understanding and our ability to predict tracer transport in a fracture network over spatial scales of 10 to 50 m. In total six boreholes have been drilled into the experimental volume located at the 450 m level. The Long-Term Diffusion Experiment is intended as a complement to the dynamic in-situ experiments and the laboratory experiments performed in the TRUE Programme. Diffusion from a fracture into the rock matrix will be studied in situ. The REX project focuses on the reduction of oxygen in a repository after closure due to reactions with rock minerals and microbial activity. Results show that oxygen is consumed within a few days both for the field and laboratory experiments. A new site for the CHEMLAB experiments was selected and prepared during 1999. All future experiment will be conducted in the J niche at 450 m depth. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full-scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and instrumented. Characterisation of the rock mass in the area of the Prototype repository is completed and the six deposition holes have been drilled. The Backfill and

  11. Aespoe Hard Rock Laboratory. Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. The work performed at Aespoe HRL during 2006 is in this report described in six chapters: Geo-science - experiments, analysis and modelling to increase the knowledge of the surrounding rock; Natural barriers - experiments, analysis and modelling to increase the knowledge of the repository barriers under natural conditions; Engineered barriers - demonstration of technology for and function of important engineered parts of the repository barrier system; Aespoe facility - operation, maintenance, data management, monitoring, public relations etc; Environmental research; and finally, International co-operation.

  12. Aespoe Hard Rock Laboratory. Annual Report 2006

    International Nuclear Information System (INIS)

    2006-06-01

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. The work performed at Aespoe HRL during 2006 is in this report described in six chapters: Geo-science - experiments, analysis and modelling to increase the knowledge of the surrounding rock; Natural barriers - experiments, analysis and modelling to increase the knowledge of the repository barriers under natural conditions; Engineered barriers - demonstration of technology for and function of important engineered parts of the repository barrier system; Aespoe facility - operation, maintenance, data management, monitoring, public relations etc; Environmental research; and finally, International co-operation

  13. Aespoe Hard Rock Laboratory Annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a deep geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site for a deep repository. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create an opportunity for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. Aespoe HRL has been in operation since 1995 and the associated research, development, and demonstration tasks, have so far attracted considerable interest. A summary of work performed at Aespoe HRL during 2003 is given below. Seven organisations from six countries participated in the co-operation at Aespoe HRL during 2003 in addition to SKB. Most of the organisations are interested in groundwater flow, radionuclide transport and rock characterisation. Several of the organisations are participating in the experimental work as well as in the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes. SKB is through Repository Technology co-ordinating three EC contracts and takes part in several EC projects of which the representation in five projects is channelled through Repository Technology. SKB takes also part in work within the IAEA framework.

  14. Aespoe Hard Rock Laboratory Annual report 2003

    International Nuclear Information System (INIS)

    2004-09-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a deep geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site for a deep repository. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create an opportunity for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. Aespoe HRL has been in operation since 1995 and the associated research, development, and demonstration tasks, have so far attracted considerable interest. A summary of work performed at Aespoe HRL during 2003 is given below. Seven organisations from six countries participated in the co-operation at Aespoe HRL during 2003 in addition to SKB. Most of the organisations are interested in groundwater flow, radionuclide transport and rock characterisation. Several of the organisations are participating in the experimental work as well as in the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes. SKB is through Repository Technology co-ordinating three EC contracts and takes part in several EC projects of which the representation in five projects is channelled through Repository Technology. SKB takes also part in work within the IAEA framework

  15. Aespoe Hard Rock Laboratory. Annual report 1997

    International Nuclear Information System (INIS)

    1998-05-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The surface and borehole investigations and the research work performed in parallel with construction have provided a thorough test of methods for investigation and evaluation of bedrock conditions for construction of a deep repository. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. The experimental results of the first tracer test with sorbing radioactive tracers have been obtained. These tests have been subject to blind predictions by the Aespoe Task Force on groundwater flow and transports of solutes. The manufacturing of the CHEMLAB probe was completed during 1996, and the first experiments were started early in 1997. During 1997 three experiments on diffusion in bentonite using 57 Co, 114 Cs, 85 Sr, 99 Tc, and 131 I were conducted. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and instrumented. The characterization of the rock mass in the area of the prototype repository is in progress. The objectives of the Demonstration of Repository Technology are to develop, test, and demonstrate methodology and equipment for encapsulation and deposition of spent nuclear fuel. The demonstration of handling and deposition will be made in a new drift. The Backfill and Plug Test includes tests of backfill materials and emplacement methods and a test of a full scale plug. The backfill and rock will be instrumented with about 230 transducers for measuring the thermo-hydro-mechanical processes. The Retrieval Test is

  16. Aespoe Hard Rock Laboratory. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The surface and borehole investigations and the research work performed in parallel with construction have provided a thorough test of methods for investigation and evaluation of bedrock conditions for construction of a deep repository. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. The experimental results of the first tracer test with sorbing radioactive tracers have been obtained. These tests have been subject to blind predictions by the Aespoe Task Force on groundwater flow and transports of solutes. The manufacturing of the CHEMLAB probe was completed during 1996, and the first experiments were started early in 1997. During 1997 three experiments on diffusion in bentonite using {sup 57}Co, {sup 114}Cs,{sup 85}Sr, {sup 99}Tc, and {sup 131}I were conducted. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and instrumented. The characterization of the rock mass in the area of the prototype repository is in progress. The objectives of the Demonstration of Repository Technology are to develop, test, and demonstrate methodology and equipment for encapsulation and deposition of spent nuclear fuel. The demonstration of handling and deposition will be made in a new drift. The Backfill and Plug Test includes tests of backfill materials and emplacement methods and a test of a full scale plug. The backfill and rock will be instrumented with about 230 transducers for measuring the thermo-hydro-mechanical processes. The

  17. Aespoe Hard Rock Laboratory. Annual report 1998

    International Nuclear Information System (INIS)

    1999-05-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. Experiments with sorbing radioactive tracers have been completed in a single fracture over a distance of about 5 m. These tests have been subject to blind predictions by the Aespoe Task Force on groundwater flow and transports of solutes. Breakthrough of sorbing tracers in the TRUE-I tests is retarded more strongly than would be expected based on laboratory data alone. Results are consistent for all tracers and tracer tests. The main objective of the TRUE Block Scale Experiment is to increase understanding and our ability to predict tracer transport in a fracture network over spatial scales of 10 to 50 m. The total duration of the project is approximately 4.5 years with a scheduled finish at the end of the year 2000. The REX project focuses on the reduction of oxygen in a repository after closure due to reactions with rock minerals and microbial activity. Results show that oxygen is consumed within a few days both for the field and laboratory experiments. The project Degassing of groundwater and two phase flow was initiated to improve our understanding of observations of hydraulic conditions made in drifts and interpretation of experiments performed close to drifts. The analysis performed so far shows that the experimentally observed flow reductions indeed are consistent with the degassing hypothesis. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full-scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and

  18. Aespoe Hard Rock Laboratory. Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. Experiments with sorbing radioactive tracers have been completed in a single fracture over a distance of about 5 m. These tests have been subject to blind predictions by the Aespoe Task Force on groundwater flow and transports of solutes. Breakthrough of sorbing tracers in the TRUE-I tests is retarded more strongly than would be expected based on laboratory data alone. Results are consistent for all tracers and tracer tests. The main objective of the TRUE Block Scale Experiment is to increase understanding and our ability to predict tracer transport in a fracture network over spatial scales of 10 to 50 m. The total duration of the project is approximately 4.5 years with a scheduled finish at the end of the year 2000. The REX project focuses on the reduction of oxygen in a repository after closure due to reactions with rock minerals and microbial activity. Results show that oxygen is consumed within a few days both for the field and laboratory experiments. The project Degassing of groundwater and two phase flow was initiated to improve our understanding of observations of hydraulic conditions made in drifts and interpretation of experiments performed close to drifts. The analysis performed so far shows that the experimentally observed flow reductions indeed are consistent with the degassing hypothesis. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full-scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and

  19. Experiments at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    2004-12-01

    A dress rehearsal is being held in preparation for the construction of a deep repository for spent nuclear fuel at SKB's underground Hard Rock Laboratory (HRL) on Aespoe, outside Oskarshamn. Here we can test different technical solutions on a full scale and in a realistic environment. The Aespoe HRL is also used for field research. We are conducting a number of experiments here in collaboration with Swedish and international experts. In the Zedex experiment we have compared how the rock is affected around a drill-and-blast tunnel versus a bored tunnel. In a new experiment we will investigate how much the rock can take. A narrow pillar between two boreholes will be loaded to the point that the rock's ultimate strength is exceeded (Aespoe Pillar Stability Experiment). In the Demo Test we are demonstrating emplacement of the copper canisters and the surrounding bentonite in the deposition holes. In the Prototype Repository we study what long-term changes occur in the barriers under the conditions prevailing in a deep repository. Horizontal deposition: Is it possible to deposit the canisters horizontally without compromising safety? Backfill and Plug Test: The tunnels in the future deep repository for spent nuclear fuel will be filled with clay and crushed rock and then plugged. Canister Retrieval Test: If the deep repository should not perform satisfactorily for some reason, we want to be able to retrieve the spent fuel. The Lot test is intended to show how the bentonite behaves in an environment similar to that in the future deep repository. The purpose of the TBT test is to determine how the bentonite clay in the buffer is affected by high temperatures. Two-phase flow means that liberated gas in the groundwater flows separately in the fractures in the rock. This reduces the capacity of the rock to conduct water. Lasgit: By pressurizing a canister with helium, we can measure how the gas moves through the surrounding buffer. Colloid Project: Can very small particles

  20. Aespoe Hard Rock Laboratory Annual Report 1994

    International Nuclear Information System (INIS)

    1995-04-01

    The Aespoe Hard Rock Laboratory is being constructed as part of the preparations for the deep geological repository of spent nuclear fuel in Sweden. The annual report 1994 contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of detailed investigation methodology which is applied during tunnel construction. Construction of the facility and detailed characterization of the bedrock are performed in parallel. Excavation of the main access tunnel was completed during 1994 and at the end of the year only minor excavation work remained. The last 400 m of the main tunnel, which has a total length of 3600 m, was excavated by a 5 m diameter boring machine. The tunnel reaches a depth of 450 m below ground. Preparations for the operating phase have started and detailed plans have been prepared for several experiments. Nine organizations, including SKB, from eight countries are now participating in the work at the laboratory. 50 refs, 28 figs

  1. Aespoe Hard Rock Laboratory Annual Report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Aespoe Hard Rock Laboratory is being constructed as part of the preparations for the deep geological repository of spent nuclear fuel in Sweden. The annual report 1994 contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of detailed investigation methodology which is applied during tunnel construction. Construction of the facility and detailed characterization of the bedrock are performed in parallel. Excavation of the main access tunnel was completed during 1994 and at the end of the year only minor excavation work remained. The last 400 m of the main tunnel, which has a total length of 3600 m, was excavated by a 5 m diameter boring machine. The tunnel reaches a depth of 450 m below ground. Preparations for the operating phase have started and detailed plans have been prepared for several experiments. Nine organizations, including SKB, from eight countries are now participating in the work at the laboratory. 50 refs, 28 figs.

  2. Aespoe Hard Rock Laboratory. Annual Report 2009

    International Nuclear Information System (INIS)

    2010-12-01

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2009 is given below. Geoscience Geoscientific research is a basic activity at Aespoe HRL. The aim of the current studies is to develop geoscientific models of the Aespoe HRL and increase the understanding of the rock mass properties as well as knowledge of applicable methods of measurement. A main task within the geoscientific field is the development of the Aespoe Site Descriptive Model (SDM) integrating information from the different fields. The main activities in the geoscientific fields have been: (1) Geology evaluation of geological mapping techniques leading to the decision to develop a SKB mapping system and finalization of the mapping of rock surfaces in the new tunnel, (2) Hydrogeology monitoring and storage of data in the computerised Hydro Monitoring System, (3) Geochemistry sampling of groundwater in the yearly campaign and for specific experiments and (4) Rock Mechanics finalised the field tests on thermally-induced spalling in deposition holes and evaluated the effect of counterforce in the deposition holes. Natural barriers At Aespoe HRL, experiments are

  3. Aespoe Hard Rock Laboratory. Annual Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2009 is given below. Geoscience Geoscientific research is a basic activity at Aespoe HRL. The aim of the current studies is to develop geoscientific models of the Aespoe HRL and increase the understanding of the rock mass properties as well as knowledge of applicable methods of measurement. A main task within the geoscientific field is the development of the Aespoe Site Descriptive Model (SDM) integrating information from the different fields. The main activities in the geoscientific fields have been: (1) Geology evaluation of geological mapping techniques leading to the decision to develop a SKB mapping system and finalization of the mapping of rock surfaces in the new tunnel, (2) Hydrogeology monitoring and storage of data in the computerised Hydro Monitoring System, (3) Geochemistry sampling of groundwater in the yearly campaign and for specific experiments and (4) Rock Mechanics finalised the field tests on thermally-induced spalling in deposition holes and evaluated the effect of counterforce in the deposition holes. Natural barriers At Aespoe HRL

  4. Aespoe hard rock laboratory. Annual report 2000

    International Nuclear Information System (INIS)

    2001-06-01

    The Aespoe Hard Rock Laboratory constitutes an important component of SKB's work to design, construct, and implement a deep geological repository for spent nuclear fuel and to develop and test methods for characterisation of selected repository sites. The retention effect of the rock has been studied by tracer tests in the Tracer Retention Understanding Experiments (TRUE) and the TRUE Block Scale (TRUE BS). These tests are supplemented by the new Long Term Diffusion Experiment (LTDE). During year 2000 the field experiments of TRUE BS (50 m scale) were completed and preparations made for the LTDE (migration through a fracture wall and into the rock), including boring of approximately 10 m deep hole with 300 mm diameter. Laboratory investigations have difficulties in simulating natural conditions and need supplementary field studies to support validation exercises. A special borehole probe, CHEMLAB, has therefore been designed for different kinds of validation experiments where data can be obtained representative for the in-situ properties of groundwater at repository depth. During 2000 migration experiments were made with actinides (Am, Np and Pu) in CHEMLAB 2, the simplified supplement to CHEMLAB 1. Colloids of nuclides as well as of bentonite might affect the migration of released radionuclides and a separate project was planned during 2000 to assess the existence, stability and mobility of colloids. The development of numerical modelling tools continues with the general objective to improve the numerical models in terms of flow and transport and to update the site-scale and laboratory scale models for the Aespoe HRL. The Matrix Fluid Chemistry project aims at determining the origin and age of matrix fluids and the experiment has been designed to sample matrix fluids from predetermined, isolated borehole sections by specialised equipment. The Aespoe HRL also has the task to demonstrate and perform full scale tests of the function of different components of the

  5. Aespoe Hard Rock Laboratory. Annual Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    The Aespoe Hard Rock Laboratory (HRL), in the Simpevarp area in the municipality of Oskarshamn constitutes an important part of SKB's work with the design and construction of a deep geological repository for final disposal of spent nuclear fuel. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create an opportunity for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its associated research, as well as in the development and demonstration tasks. Most of the research is focused on processes of importance for the long-term safety of a final repository for spent nuclear fuel. Demonstration addresses the performance of the engineered barriers and practical means of constructing and operating a repository for spent fuel. To meet the overall time schedule for SKB's RD and D work, the following stage goals were initially defined for the work at the Aespoe HRL: 1. Verify pre-investigation methods. Demonstrate that investigations on the ground surface and in boreholes provide sufficient data on essential safety-related properties of the rock at repository level. 2. Finalise detailed investigation methodology. Refine and verify the methods and the technology needed for characterisation of the rock in the detailed site investigations. 3. Test models for description of the barrier functions at natural conditions. Further develop, and at repository depth, test methods and models for description of groundwater flow, radionuclide migration and chemical conditions during operation of a repository and after closure. 4. Demonstrate technology for and function of important

  6. Aespoe Hard Rock Laboratory. Annual Report 2005

    International Nuclear Information System (INIS)

    2006-06-01

    The Aespoe Hard Rock Laboratory (HRL), in the Simpevarp area in the municipality of Oskarshamn constitutes an important part of SKB's work with the design and construction of a deep geological repository for final disposal of spent nuclear fuel. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create an opportunity for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its associated research, as well as in the development and demonstration tasks. Most of the research is focused on processes of importance for the long-term safety of a final repository for spent nuclear fuel. Demonstration addresses the performance of the engineered barriers and practical means of constructing and operating a repository for spent fuel. To meet the overall time schedule for SKB's RD and D work, the following stage goals were initially defined for the work at the Aespoe HRL: 1. Verify pre-investigation methods. Demonstrate that investigations on the ground surface and in boreholes provide sufficient data on essential safety-related properties of the rock at repository level. 2. Finalise detailed investigation methodology. Refine and verify the methods and the technology needed for characterisation of the rock in the detailed site investigations. 3. Test models for description of the barrier functions at natural conditions. Further develop, and at repository depth, test methods and models for description of groundwater flow, radionuclide migration and chemical conditions during operation of a repository and after closure. 4. Demonstrate technology for and function of important parts of the

  7. Aespoe hard rock laboratory. Annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    The Aespoe Hard Rock Laboratory constitutes an important component of SKB's work to design, construct, and implement a deep geological repository for spent nuclear fuel and to develop and test methods for characterisation of selected repository sites. The retention effect of the rock has been studied by tracer tests in the Tracer Retention Understanding Experiments (TRUE) and the TRUE Block Scale (TRUE BS). These tests are supplemented by the new Long Term Diffusion Experiment (LTDE). During year 2000 the field experiments of TRUE BS (50 m scale) were completed and preparations made for the LTDE (migration through a fracture wall and into the rock), including boring of approximately 10 m deep hole with 300 mm diameter. Laboratory investigations have difficulties in simulating natural conditions and need supplementary field studies to support validation exercises. A special borehole probe, CHEMLAB, has therefore been designed for different kinds of validation experiments where data can be obtained representative for the in-situ properties of groundwater at repository depth. During 2000 migration experiments were made with actinides (Am, Np and Pu) in CHEMLAB 2, the simplified supplement to CHEMLAB 1. Colloids of nuclides as well as of bentonite might affect the migration of released radionuclides and a separate project was planned during 2000 to assess the existence, stability and mobility of colloids. The development of numerical modelling tools continues with the general objective to improve the numerical models in terms of flow and transport and to update the site-scale and laboratory scale models for the Aespoe HRL. The Matrix Fluid Chemistry project aims at determining the origin and age of matrix fluids and the experiment has been designed to sample matrix fluids from predetermined, isolated borehole sections by specialised equipment. The Aespoe HRL also has the task to demonstrate and perform full scale tests of the function of different components of

  8. Aespoe Hard Rock Laboratory. Annual Report 2008

    International Nuclear Information System (INIS)

    2009-07-01

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. The main activities in the geoscientific fields have been: (1) Geology - completion of the feasibility study concerning geological mapping techniques and mapping of rock surfaces in the new tunnel, (2) Hydrogeology - monitoring and storage of data in the computerised Hydro Monitoring System, (3) Geochemistry - sampling of groundwater in the yearly campaign and for specific experiments and (4) Rock Mechanics - field tests to evaluate the counterforce needed to prevent thermally-induced spalling in deposition holes. At Aespoe HRL, experiments are performed under the conditions that are expected to prevail at repository depth. The aim is to provide information about the long-term function of natural and repository barriers. Experiments are performed to develop and test methods and models for the description of groundwater flow, radionuclide migration, and chemical conditions at repository depth. The programme includes projects which aim to determine parameter values that are required as input to the conceptual and numerical models. A number of large-scale field experiments and supporting activities concerning Engineered barriers are carried out at Aespoe HRL. The experiments focus on different aspects of engineering technology and performance testing: The Prototype Repository is a demonstration of the integrated function of the repository and provides a full-scale reference for tests of predictive models concerning individual components as well as the complete repository system; The Long Term Test of Buffer Material (Lot-experiment) aims at validating models and hypotheses concerning physical properties in a bentonite buffer material and of related processes regarding microbiology, radionuclide transport, copper corrosion and gas transport; The objective of the project Alternative Buffer

  9. Aespoe Hard Rock Laboratory. Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. The main activities in the geoscientific fields have been: (1) Geology - completion of the feasibility study concerning geological mapping techniques and mapping of rock surfaces in the new tunnel, (2) Hydrogeology - monitoring and storage of data in the computerised Hydro Monitoring System, (3) Geochemistry - sampling of groundwater in the yearly campaign and for specific experiments and (4) Rock Mechanics - field tests to evaluate the counterforce needed to prevent thermally-induced spalling in deposition holes. At Aespoe HRL, experiments are performed under the conditions that are expected to prevail at repository depth. The aim is to provide information about the long-term function of natural and repository barriers. Experiments are performed to develop and test methods and models for the description of groundwater flow, radionuclide migration, and chemical conditions at repository depth. The programme includes projects which aim to determine parameter values that are required as input to the conceptual and numerical models. A number of large-scale field experiments and supporting activities concerning Engineered barriers are carried out at Aespoe HRL. The experiments focus on different aspects of engineering technology and performance testing: The Prototype Repository is a demonstration of the integrated function of the repository and provides a full-scale reference for tests of predictive models concerning individual components as well as the complete repository system; The Long Term Test of Buffer Material (Lot-experiment) aims at validating models and hypotheses concerning physical properties in a bentonite buffer material and of related processes regarding microbiology, radionuclide transport, copper corrosion and gas transport; The objective of the project Alternative

  10. Aespoe Hard Rock Laboratory. Annual Report 2001

    International Nuclear Information System (INIS)

    2002-09-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a deep geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site for a deep repository. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create an opportunity for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The bedrock with available fractures and fracture zones, its properties and on-going physical, chemical and biological processes which affect the integrity of the engineered barriers and the transport of radionuclides are denoted the natural barriers of a deep repository. Experiments are performed at Aespoe HRL at conditions that are expected to prevail at repository depth, with the aim to increase the knowledge of the long term function of the repository barriers. Another aim with the Aespoe HRL is testing of models for groundwater flow, radionuclide migration, chemical and biological processes. The programme for the testing of models includes evaluation of the usefulness and reliability of different models and the development and testing of methods for determination of parameters required as input to conceptual and numerical models. Ongoing projects are Tracer Retention Understanding Experiments, Long Term Diffusion Experiment, Radionuclide Retention Experiment, Microbial Project, Colloid Project, and Matrix Water Chemistry Experiments. The activities at Aespoe HRL include the evaluation of the usefulness and reliability of different calculation models and the development and testing of methods for determination of parameters required as input to the models. An important part of this work is performed in the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes, an international co-operation project. The work within the Tasks 4 and 5 were reported during 2001

  11. Aespoe Hard Rock Laboratory. Annual Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-09-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a deep geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site for a deep repository. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create an opportunity for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The bedrock with available fractures and fracture zones, its properties and on-going physical, chemical and biological processes which affect the integrity of the engineered barriers and the transport of radionuclides are denoted the natural barriers of a deep repository. Experiments are performed at Aespoe HRL at conditions that are expected to prevail at repository depth, with the aim to increase the knowledge of the long term function of the repository barriers. Another aim with the Aespoe HRL is testing of models for groundwater flow, radionuclide migration, chemical and biological processes. The programme for the testing of models includes evaluation of the usefulness and reliability of different models and the development and testing of methods for determination of parameters required as input to conceptual and numerical models. Ongoing projects are Tracer Retention Understanding Experiments, Long Term Diffusion Experiment, Radionuclide Retention Experiment, Microbial Project, Colloid Project, and Matrix Water Chemistry Experiments. The activities at Aespoe HRL include the evaluation of the usefulness and reliability of different calculation models and the development and testing of methods for determination of parameters required as input to the models. An important part of this work is performed in the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes, an international co-operation project. The work within the Tasks 4 and 5 were reported

  12. Aespoe Hard Rock Laboratory. Annual Report 2002

    International Nuclear Information System (INIS)

    2003-06-01

    The Aespoe HRL was opened in 1994 as a research centre and underground laboratory. The experiments performed in Aespoe HRL are related to the rock, its properties, and in situ environmental conditions. Tests of models for groundwater flow, radionuclide migration and chemical/biological processes are some of the main purposes of the Aespoe HRL. The programme includes projects with the aim to evaluate the usefulness and reliability of different models and to develop and test methods for determination of parameters required as input to conceptual and numerical models. The retardation in rock is studied at different experiment scales in a programme called Tracer Retention Understanding Experiments (TRUE). The Long Term Diffusion Experiment constitutes a complement to performed diffusion and sorption laboratory experiments, and is a natural extension of the experiments conducted as part of the TRUE experiments. Radionuclide retention experiments are carried out with the aim to confirm result from laboratory experiments in situ, where conditions representative for the properties of groundwater at repository depth prevail. In CHEMLAB 1 two kinds of experiments to study the influence of radiolysis on the mobility of technetium in bentonite were started in the end of 2002. Experiments to study migration of actinides in natural fractures in drill cores are being carried out in CHELMAB 2. The findings of potential transport of solutes by colloids and access to more sensitive instruments for colloid measurements motivated a Colloid Project at Aespoe HRL. There are presently four specific microbial process areas identified that are of importance for proper repository functions and that are studied in the Microbe Project. The process areas are; biomobilisation of radionuclides, bioimmobilisation of radionuclides, microbial effects on the chemical stability, and microbial corrosion of copper. The main objectives of the Matrix Fluid Chemistry experiment are to understand the

  13. Aespoe Hard Rock Laboratory. Annual Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The Aespoe HRL was opened in 1994 as a research centre and underground laboratory. The experiments performed in Aespoe HRL are related to the rock, its properties, and in situ environmental conditions. Tests of models for groundwater flow, radionuclide migration and chemical/biological processes are some of the main purposes of the Aespoe HRL. The programme includes projects with the aim to evaluate the usefulness and reliability of different models and to develop and test methods for determination of parameters required as input to conceptual and numerical models. The retardation in rock is studied at different experiment scales in a programme called Tracer Retention Understanding Experiments (TRUE). The Long Term Diffusion Experiment constitutes a complement to performed diffusion and sorption laboratory experiments, and is a natural extension of the experiments conducted as part of the TRUE experiments. Radionuclide retention experiments are carried out with the aim to confirm result from laboratory experiments in situ, where conditions representative for the properties of groundwater at repository depth prevail. In CHEMLAB 1 two kinds of experiments to study the influence of radiolysis on the mobility of technetium in bentonite were started in the end of 2002. Experiments to study migration of actinides in natural fractures in drill cores are being carried out in CHELMAB 2. The findings of potential transport of solutes by colloids and access to more sensitive instruments for colloid measurements motivated a Colloid Project at Aespoe HRL. There are presently four specific microbial process areas identified that are of importance for proper repository functions and that are studied in the Microbe Project. The process areas are; biomobilisation of radionuclides, bioimmobilisation of radionuclides, microbial effects on the chemical stability, and microbial corrosion of copper. The main objectives of the Matrix Fluid Chemistry experiment are to understand the

  14. Aespoe Hard Rock Laboratory. Annual Report 2007

    International Nuclear Information System (INIS)

    2008-04-01

    The main activities in the geoscientific fields have been: (1) Geology - besides mapping of rock surfaces and drill cores a feasibility study concerning geological mapping techniques is performed, (2) Hydrogeology - completion of the modelling work for the detailed hydro-structural model for the -450 m level and monitoring/storage of data in the computerised Hydro Monitoring System, (3) Geochemistry - sampling of groundwater in the yearly campaign and for specific experiments and (4) Rock Mechanics - field work to determine the stress levels at which core disking occur followed by numerical modelling. Experiments are performed to develop and test methods and models for the description of groundwater flow, radionuclide migration, and chemical conditions at repository depth. The programme includes projects which aim to determine parameter values that are required as input to the conceptual and numerical models. At Aespoe HRL, experiments are performed under the conditions that are expected to prevail at repository depth. The experiments are related to the rock, its properties and in situ environmental conditions. The aim is to provide information about the long-term function of natural and repository barriers. Experiments are performed to develop and test methods and models for the description of groundwater flow, radionuclide migration, and chemical conditions at repository depth. The programme includes projects which aim to determine parameter values that are required as input to the conceptual and numerical models. An important goal is to demonstrate technology for and the function of important parts of the repository system. This implies translation of current scientific knowledge and state-of- the-art technology into engineering practice applicable in a real repository. It is important that development, testing and demonstration of methods and procedures are conducted under realistic conditions and at an appropriate scale. A number of large-scale field

  15. Aespoe Hard Rock Laboratory. Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    2007-04-15

    The main activities in the geoscientific fields have been: (1) Geology - besides mapping of rock surfaces and drill cores a feasibility study concerning geological mapping techniques is performed, (2) Hydrogeology - completion of the modelling work for the detailed hydro-structural model for the -450 m level and monitoring/storage of data in the computerised Hydro Monitoring System, (3) Geochemistry - sampling of groundwater in the yearly campaign and for specific experiments and (4) Rock Mechanics - field work to determine the stress levels at which core disking occur followed by numerical modelling. Experiments are performed to develop and test methods and models for the description of groundwater flow, radionuclide migration, and chemical conditions at repository depth. The programme includes projects which aim to determine parameter values that are required as input to the conceptual and numerical models. At Aespoe HRL, experiments are performed under the conditions that are expected to prevail at repository depth. The experiments are related to the rock, its properties and in situ environmental conditions. The aim is to provide information about the long-term function of natural and repository barriers. Experiments are performed to develop and test methods and models for the description of groundwater flow, radionuclide migration, and chemical conditions at repository depth. The programme includes projects which aim to determine parameter values that are required as input to the conceptual and numerical models. An important goal is to demonstrate technology for and the function of important parts of the repository system. This implies translation of current scientific knowledge and state-of- the-art technology into engineering practice applicable in a real repository. It is important that development, testing and demonstration of methods and procedures are conducted under realistic conditions and at an appropriate scale. A number of large-scale field

  16. Aespoe Hard Rock Laboratory Annual Report 2004

    International Nuclear Information System (INIS)

    2005-08-01

    At Aespoe HRL, methods for characterising a suitable site for a deep repository are being developed and tested. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995. Most of the research is focused on processes of importance for the long-term safety of a future deep repository. To meet the overall time schedule for SKB's RDandD work, the following stage goals were initially defined for the work at the Aespoe HRL. 1. Verify pre-investigation methods. Demonstrate that investigations on the ground surface and in boreholes provide sufficient data on essential safety-related properties of the rock at repository level. 2. Finalise detailed investigation methodology. Refine and verify the methods and the technology needed for characterisation of the rock in the detailed site investigations. 3. Test models for description of the barrier functions at natural conditions. Further develop and at repository depth test methods and models for description of groundwater flow, radionuclide migration, and chemical conditions during operation of a repository and after closure. 4. Demonstrate technology for and function of important parts of the repository system. Test, investigate and demonstrate on full-scale different components of importance for the long-term safety of a deep repository and to show that high quality can be achieved in design, construction, and operation of repository components. Stage goals 1 and 2 have been concluded at Aespoe HRL and the tasks have been transferred to the Site Investigation Department of SKB which performs site investigations at two sites, Simpevarp/Laxemar in the municipality of Oskarshamn and Forsmark in the municipality of Oesthammar. In order to reach present goals the following important tasks are performed at the Aespoe HRL: Develop, test, evaluate and demonstrate

  17. Aespoe Hard Rock Laboratory Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-08-01

    At Aespoe HRL, methods for characterising a suitable site for a deep repository are being developed and tested. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995. Most of the research is focused on processes of importance for the long-term safety of a future deep repository. To meet the overall time schedule for SKB's RDandD work, the following stage goals were initially defined for the work at the Aespoe HRL. 1. Verify pre-investigation methods. Demonstrate that investigations on the ground surface and in boreholes provide sufficient data on essential safety-related properties of the rock at repository level. 2. Finalise detailed investigation methodology. Refine and verify the methods and the technology needed for characterisation of the rock in the detailed site investigations. 3. Test models for description of the barrier functions at natural conditions. Further develop and at repository depth test methods and models for description of groundwater flow, radionuclide migration, and chemical conditions during operation of a repository and after closure. 4. Demonstrate technology for and function of important parts of the repository system. Test, investigate and demonstrate on full-scale different components of importance for the long-term safety of a deep repository and to show that high quality can be achieved in design, construction, and operation of repository components. Stage goals 1 and 2 have been concluded at Aespoe HRL and the tasks have been transferred to the Site Investigation Department of SKB which performs site investigations at two sites, Simpevarp/Laxemar in the municipality of Oskarshamn and Forsmark in the municipality of Oesthammar. In order to reach present goals the following important tasks are performed at the Aespoe HRL: Develop, test, evaluate and

  18. Aespoe Hard Rock Laboratory. Annual report 1996

    International Nuclear Information System (INIS)

    1997-04-01

    The Aespoe HRL has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. Geoscientific investigations on Aespoe and nearby islands began 1986. Since then, bedrock conditions have been investigated by several deep boreholes. The Aespoe research village has been built and extensive underground construction work has been undertaken in parallel with comprehensive research. This has resulted in a thorough test of methods for investigation and evaluation of bedrock conditions for construction of a deep repository. The objective of the ZEDEX project is to compare the mechanical disturbance to the rock for excavation by tunnel boring and blasting. The results indicate that the role of the EDZ as a preferential pathway to radionuclide transport is limited to the damaged zone. The tracer retention understanding experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models. During 1996 a series of tracer experiments in radially converging and dipole flow configuration have been performed. A special borehole probe has been designed for different kinds of retention experiments where data can be obtained representative for the in situ properties of groundwater at repository depth. The prototype repository test is focused on testing and demonstrating repository system function, and includes backfill and plug tests and demonstration of methods for deposition and retrieval of canisters in a new tunnel at the 420 m level. The long term tests of buffer material aim to validate models of buffer performance and at quantifying clay buffer alteration processes at adverse conditions. 80 refs, 53 figs, 16 tabs

  19. Aespoe Hard Rock Laboratory. Annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Aespoe HRL has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. Geoscientific investigations on Aespoe and nearby islands began 1986. Since then, bedrock conditions have been investigated by several deep boreholes. The Aespoe research village has been built and extensive underground construction work has been undertaken in parallel with comprehensive research. This has resulted in a thorough test of methods for investigation and evaluation of bedrock conditions for construction of a deep repository. The objective of the ZEDEX project is to compare the mechanical disturbance to the rock for excavation by tunnel boring and blasting. The results indicate that the role of the EDZ as a preferential pathway to radionuclide transport is limited to the damaged zone. The tracer retention understanding experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models. During 1996 a series of tracer experiments in radially converging and dipole flow configuration have been performed. A special borehole probe has been designed for different kinds of retention experiments where data can be obtained representative for the in situ properties of groundwater at repository depth. The prototype repository test is focused on testing and demonstrating repository system function, and includes backfill and plug tests and demonstration of methods for deposition and retrieval of canisters in a new tunnel at the 420 m level. The long term tests of buffer material aim to validate models of buffer performance and at quantifying clay buffer alteration processes at adverse conditions. 80 refs, 53 figs, 16 tabs.

  20. Aespoe Hard Rock Laboratory. Annual Report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The construction of the laboratory was completed during 1995 and the operating phase has now begun. During the construction data has been collected from the tunnel and boreholes drilled from the tunnel. Results from these investigations have been reported and a comprehensive evaluation is in progress. The results will be used to design the site characterization program for the deep repository. Ten organizations from nine countries participate in the work at the laboratory. An important part of the cooperative work is performed within the framework of the task force on groundwater flow and transport of solutes. An evaluation has been made of the long term pumping test which was performed at Aespoe some years ago. It showed that the modelling tools that exist today have the ability to give a three-dimensional description of groundwater flow at a site like Aespoe. The task force will perform predictive modelling of the tracer experiments performed within the TRUE project. Characterization of the experimental site for TRUE and preparations for the tracer tests were completed during 1995. Tests of the engineering barriers have been started with the test of technology for backfilling of deposition tunnels. 55 refs, 36 figs, 7 tabs.

  1. Aespoe Hard Rock Laboratory. Annual Report 1995

    International Nuclear Information System (INIS)

    1996-04-01

    The construction of the laboratory was completed during 1995 and the operating phase has now begun. During the construction data has been collected from the tunnel and boreholes drilled from the tunnel. Results from these investigations have been reported and a comprehensive evaluation is in progress. The results will be used to design the site characterization program for the deep repository. Ten organizations from nine countries participate in the work at the laboratory. An important part of the cooperative work is performed within the framework of the task force on groundwater flow and transport of solutes. An evaluation has been made of the long term pumping test which was performed at Aespoe some years ago. It showed that the modelling tools that exist today have the ability to give a three-dimensional description of groundwater flow at a site like Aespoe. The task force will perform predictive modelling of the tracer experiments performed within the TRUE project. Characterization of the experimental site for TRUE and preparations for the tracer tests were completed during 1995. Tests of the engineering barriers have been started with the test of technology for backfilling of deposition tunnels. 55 refs, 36 figs, 7 tabs

  2. Aespoe Hard Rock Laboratory. Planning Report for 2011

    International Nuclear Information System (INIS)

    2011-02-01

    This report presents the planned activities for the year 2011. The report is revised annually and details the programme carried out in the Aespoe Hard Rock Laboratory as described in SKB's Research, Development and Demonstration Programme 2010, and serves as a basis for the management of the laboratory. The role of the Planning Report is to present the plans and scope of work for each project. Background information on the projects is given in the Annual Report as well as findings and results

  3. Handling and final disposal of nuclear waste. Hard Rock Laboratory

    International Nuclear Information System (INIS)

    1989-09-01

    The purpose of the Hard Rock Laboratory is to provide an opportunity for research and development in a realistic and undisturbed underground rock environment down to the depth planned for the future repository. The R and D work in the underground laboratory has the following main goals: To test the quality and appropriateness of different methods for characterizing the bedrock with respect to conditions of importance for a final repository. To refine and demonstrate methods for how to adapt a repository to the local properties of the rock in connection with planning and construction. And, finally, to collect material and data of importance for the safety of the future repository and for confidence in the quality of the safety assessments 13 figs, 3 tabs

  4. Aespoe Hard Rock Laboratory. Planning Report for 2009

    International Nuclear Information System (INIS)

    2009-02-01

    This report presents the planned activities for the year 2009. The report is revised annually and details the programme carried out in the Aespoe Hard Rock Laboratory as described in SKB's Research, Development and Demonstration Programme 2007, and serves as a basis for the management of the laboratory. The role of the Planning Report is to present the plans and scope of work for each project. Thereby the Status Reports may concentrate on work in progress and refers to this Planning Report for scope of work over the year. Background information on the projects is given in the Annual Report as well as findings and results

  5. Aespoe Hard Rock Laboratory. Planning Report for 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-02-15

    This report presents the planned activities for the year 2009. The report is revised annually and details the programme carried out in the Aespoe Hard Rock Laboratory as described in SKB's Research, Development and Demonstration Programme 2007, and serves as a basis for the management of the laboratory. The role of the Planning Report is to present the plans and scope of work for each project. Thereby the Status Reports may concentrate on work in progress and refers to this Planning Report for scope of work over the year. Background information on the projects is given in the Annual Report as well as findings and results.

  6. Aespoe Hard Rock Laboratory. Planning Report for 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-05-15

    This report presents the planned activities for the year 2010. The report is revised annually and details the programme carried out in the Aespoe Hard Rock Laboratory as described in SKB's Research, Development and Demonstration Programme 2007, and serves as a basis for the management of the laboratory. The role of the Planning Report is to present the plans and scope of work for each project. Thereby the Status Reports may concentrate on work in progress and refers to this Planning Report for scope of work over the year. Background information on the projects is given in the Annual Report as well as findings and results

  7. Aespoe Hard Rock Laboratory. Planning Report for 2011

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-15

    This report presents the planned activities for the year 2011. The report is revised annually and details the programme carried out in the Aespoe Hard Rock Laboratory as described in SKB's Research, Development and Demonstration Programme 2010, and serves as a basis for the management of the laboratory. The role of the Planning Report is to present the plans and scope of work for each project. Background information on the projects is given in the Annual Report as well as findings and results.

  8. Aespoe Hard Rock Laboratory. Planning Report for 2010

    International Nuclear Information System (INIS)

    2010-05-01

    This report presents the planned activities for the year 2010. The report is revised annually and details the programme carried out in the Aespoe Hard Rock Laboratory as described in SKB's Research, Development and Demonstration Programme 2007, and serves as a basis for the management of the laboratory. The role of the Planning Report is to present the plans and scope of work for each project. Thereby the Status Reports may concentrate on work in progress and refers to this Planning Report for scope of work over the year. Background information on the projects is given in the Annual Report as well as findings and results

  9. Aespoe Hard Rock Laboratory. Status Report May - August 2009

    International Nuclear Information System (INIS)

    2009-11-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period May to August 2009

  10. Aespoe Hard Rock Laboratory. Status Report. July - September 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2008/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the third quarter of 2008

  11. Aespoe Hard Rock Laboratory. Status Report. April - June 2007

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2005- 2010 are presented in SKB's RDandD-Programme 2004 /SKB 2004/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2007/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the second quarter 2007

  12. Aespoe Hard Rock Laboratory. Status Report. April - June 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2005- 2010 are presented in SKB's RDandD-Programme 2004 /SKB 2004/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2007/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the second quarter 2007

  13. Aespoe Hard Rock Laboratory. Status Report. April - June 2007

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2005- 2010 are presented in SKB's RDandD-Programme 2004 /SKB 2004/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2007/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the second quarter 2007

  14. Aespoe Hard Rock Laboratory. Status Report. January - April 2010

    International Nuclear Information System (INIS)

    2010-10-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period January to April 2010

  15. Aespoe Hard Rock Laboratory. Status Report May - August 2010

    International Nuclear Information System (INIS)

    2011-02-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RD and D-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2010/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period May to August 2010

  16. Aespoe Hard Rock Laboratory. Status Report October - December 2008

    International Nuclear Information System (INIS)

    2009-03-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2008/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the fourth quarter of 2008

  17. Aespoe Hard Rock Laboratory. Status Report January - April 2009

    International Nuclear Information System (INIS)

    2009-09-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period January to April 2009

  18. Aespoe Hard Rock Laboratory. Status Report. September - December 2009

    International Nuclear Information System (INIS)

    2010-05-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period September to December 2009

  19. Aespoe hard rock laboratory. Current research projects 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a `dress rehearsal` for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book `Aespoe Hard Rock Laboratory - 10 years of Research` published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  20. Aespoe hard rock laboratory. Current research projects 1998

    International Nuclear Information System (INIS)

    1998-01-01

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a 'dress rehearsal' for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book 'Aespoe Hard Rock Laboratory - 10 years of Research' published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  1. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    International Nuclear Information System (INIS)

    Gustafsson, Jaana; Gustafsson, Christer

    2010-01-01

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  2. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jaana; Gustafsson, Christer (Malaa Geoscience AB (Sweden))

    2010-01-15

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  3. Aespoe Hard Rock Laboratory. Status Report October - December 2008

    Energy Technology Data Exchange (ETDEWEB)

    2009-03-15

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2008/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the fourth quarter of 2008.

  4. Aespoe Hard Rock Laboratory. Status Report January - April 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-09-15

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period January to April 2009.

  5. Aespoe Hard Rock Laboratory. Status Report. July - September 2008

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2008/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the third quarter of 2008.

  6. Aespoe Hard Rock Laboratory. Status Report. September - December 2010

    International Nuclear Information System (INIS)

    2011-04-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. In September 2010, the plans for SKB's research and development of technique during the period 2011-2016 were presented in SKB's RDandD-Programme 2010 /SKB 2010a/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report and the information valid for 2010 is given in /SKB 2010b/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period September to December 2010

  7. Aespoe Hard Rock Laboratory. Status Report. September - December 2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-15

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. In September 2010, the plans for SKB's research and development of technique during the period 2011-2016 were presented in SKB's RDandD-Programme 2010 /SKB 2010a/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report and the information valid for 2010 is given in /SKB 2010b/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period September to December 2010

  8. Aespoe Hard Rock Laboratory. Status Report. September - December 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-05-15

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period September to December 2009

  9. Aespoe Hard Rock Laboratory. Status Report. January - April 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-15

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period January to April 2010

  10. Aespoe Hard Rock Laboratory. Status Report May - August 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-11-15

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period May to August 2009.

  11. Aespoe Hard Rock Laboratory. Status Report May - August 2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-15

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RD and D-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2010/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period May to August 2010.

  12. Direct fault dating trials at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Maddock, R.H.; Hailwood, E.A.

    1993-10-01

    Over seventy rock samples were collected from fault and fracture zones in the Aespoe Hard Rock Laboratory tunnel for a study of direct fault dating techniques. Following microstructural and mineralogical analysis, isotopic, palaeomagnetic and electron spin resonance (ESR) methods were employed in an attempt to determine the age of the most recent movements on the sampled faults. The larger fracture zones contain faultrock assemblages and microstructures which are consistent with a prolonged and polyphase movement history, although the cumulative displacements involved formation of fault gouge cemented by authigenic 'illite'. Dating studies were targeted particularly at the gouge but also at older fault rock and vein phases. ESR dating of quartz graines, separated from gouge from fracture zones NE-4 and NE-3, strongly indicates that the ESR signals have not been reset by fault movements for a minimum time period of several hundred thousand to one million years. Palaeomagnetic dating of gouge from fracture zone NE-4 shows that a stable component of magnetisation overlaps both Precambrian and Permo-Triassic parts of the apparent polar wander curve. The younger age of magnetisation is preferred on geological grounds and by comparison with the isotopic dating results. The magnetisation may correspond to a diagenetic event following fault movement. Palaeomagnetic ages determined on countryrock and epidote vein samples are largely consistent with independent age constraints. K-Ar dating of clay fractions (<2 to <0.05μm) separated from gouge from four faults, including fracture zones NE-4 and NE-3, gave model ages in the range 706-301Ma. Accounting for the effects of contamination by potassium-bearing porphyroclasts, it is likely that authigenic 'illite' was formed at least 250 million years ago, after the most recent significant fault movements. 100 refs., 60 figs., 26 tabs

  13. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    Energy Technology Data Exchange (ETDEWEB)

    Hardenby, Carljohan (Vattenfall Power Consultant AB (Sweden)); Sigurdsson, Oskar (HAskGeokonsult AB (Sweden))

    2010-12-15

    The project entitled 'Sealing of tunnel at great depth' (Fintaetning av tunnel paa stort djup) needed a new tunnel in an area as undisturbed as possible and with cross-cutting water-bearing structures. The new tunnel, which was given the name TASS, was excavated on the -450 m level of SKB's Aespoe Hard Rock Laboratory (Aespoe HRL). The length of the tunnel is approximately 80 m and the theoretical tunnel area 19 m2. As is the case with all the other tunnels of the Aespoe HRL, the new tunnel has been geologically mapped. In addition, laser scanning combined with digital photography has been carried out. The tunnel was also used to test various types of explosives, borehole layouts and drilling techniques. The geological mapping of tunnel floor, walls and roof took place on four major occasions when a halt was made in tunnel excavation to allow for various tests. Before the mapping started on these occasions, laser scanning took place. The tunnel faces were mapped after each round (drilling, blasting and unloading). The present report describes the geological features of the tunnel and briefly how the laser scanning was performed. Water-bearing structures have been compared to similar structures in the neighbouring tunnels. The rock type names used here follow the old established Aespoe HRL nomenclature. Narrow (<0.1 m wide) dykes are normally mapped as fracture fillings. The dominating rock type is Aespoe diorite, which constitutes some 90 % of the rock mass. It is mostly mapped as fresh rock. . Minor constituents of the rock mass are fine-grained granite, hybrid rock, pegmatite, quartz veins/lenses and undifferentiated mafic rock. The mapping of fractures and deformation zones considers a number of parameters such as number of fractures, open/healed, width, length, description of fracture surfaces (roughness, planarity, etc), fracture filling, alteration and water. The deformation zones are discriminated into two main categories (&apos

  14. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    International Nuclear Information System (INIS)

    Hardenby, Carljohan; Sigurdsson, Oskar

    2010-12-01

    The project entitled 'Sealing of tunnel at great depth' (Fintaetning av tunnel paa stort djup) needed a new tunnel in an area as undisturbed as possible and with cross-cutting water-bearing structures. The new tunnel, which was given the name TASS, was excavated on the -450 m level of SKB's Aespoe Hard Rock Laboratory (Aespoe HRL). The length of the tunnel is approximately 80 m and the theoretical tunnel area 19 m 2 . As is the case with all the other tunnels of the Aespoe HRL, the new tunnel has been geologically mapped. In addition, laser scanning combined with digital photography has been carried out. The tunnel was also used to test various types of explosives, borehole layouts and drilling techniques. The geological mapping of tunnel floor, walls and roof took place on four major occasions when a halt was made in tunnel excavation to allow for various tests. Before the mapping started on these occasions, laser scanning took place. The tunnel faces were mapped after each round (drilling, blasting and unloading). The present report describes the geological features of the tunnel and briefly how the laser scanning was performed. Water-bearing structures have been compared to similar structures in the neighbouring tunnels. The rock type names used here follow the old established Aespoe HRL nomenclature. Narrow (<0.1 m wide) dykes are normally mapped as fracture fillings. The dominating rock type is Aespoe diorite, which constitutes some 90 % of the rock mass. It is mostly mapped as fresh rock. . Minor constituents of the rock mass are fine-grained granite, hybrid rock, pegmatite, quartz veins/lenses and undifferentiated mafic rock. The mapping of fractures and deformation zones considers a number of parameters such as number of fractures, open/healed, width, length, description of fracture surfaces (roughness, planarity, etc), fracture filling, alteration and water. The deformation zones are discriminated into two main categories ('increased fracturing' and

  15. Aespoe Hard Rock Laboratory. Hydro Monitoring Program. Report for 2008

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Eva; Nyberg, Goeran (GEOSIGMA, Uppsala (Sweden))

    2009-08-15

    The Aespoe island is situated close to the nuclear power plant of Simpevarp in southeastern Sweden. As part of the pre-investigations preceding excavation of the Aespoe Hard Rock Laboratory, registrations of the groundwater levels and electrical conductivity in packed-off borehole sections and levels in open boreholes started in 1987. The investigations are still ongoing and are planned to continue for a long period of time. As the tunnel excavation went on from the autumn 1990 and onwards, new boreholes were drilled in the tunnel and instrumented to enable groundwater pressure monitoring in packed-off sections. In addition, other hydro-related measurements such as water flow in the tunnel, electrical conductivity of tunnel water and inflow and outflow of water through tunnel pipes have been performed. This report is a summary of the monitoring during 2008. In order to allow for comparison with factors that may influence the groundwater level/pressure and flow, meteorological data are also presented in the report. From the end of 1991, the disturbance from the tunnel is the dominating factor influencing groundwater levels in the area. In one chapter, activities that may have an influence on the ground water situation are listed and briefly discussed.

  16. Aespoe Hard Rock Laboratory. Hydro Monitoring Program. Report for 2009

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Eva; Nyberg, Goeran (GEOSIGMA, Uppsala (Sweden))

    2010-05-15

    The Aespoe island is situated close to the nuclear power plant of Simpevarp in southeastern Sweden. As part of the pre-investigations preceding excavation of the Aespoe Hard Rock Laboratory, registrations of the groundwater levels and electrical conductivity in packed-off borehole sections and levels in open boreholes started in 1987. The investigations are still ongoing and are planned to continue for a long period of time. As the tunnel excavation went on from the autumn 1990 and onwards, new boreholes were drilled in the tunnel and instrumented to enable groundwater pressure monitoring in packed-off sections. In addition, other hydro-related measurements such as water flow in the tunnel, electrical conductivity of tunnel water and inflow and outflow of water through tunnel pipes have been performed. This report is a summary of the monitoring during 2009. In order to allow for comparison with factors that may influence the groundwater level/pressure and flow, meteorological data are also presented in the report. From the end of 1991, the disturbance from the tunnel is the dominating factor influencing groundwater levels in the area. In one chapter, activities that may have an influence on the ground water situation are listed and briefly discussed

  17. Aespoe Hard Rock Laboratory. Hydro Monitoring Program. Report for 2008

    International Nuclear Information System (INIS)

    Wass, Eva; Nyberg, Goeran

    2009-08-01

    The Aespoe island is situated close to the nuclear power plant of Simpevarp in southeastern Sweden. As part of the pre-investigations preceding excavation of the Aespoe Hard Rock Laboratory, registrations of the groundwater levels and electrical conductivity in packed-off borehole sections and levels in open boreholes started in 1987. The investigations are still ongoing and are planned to continue for a long period of time. As the tunnel excavation went on from the autumn 1990 and onwards, new boreholes were drilled in the tunnel and instrumented to enable groundwater pressure monitoring in packed-off sections. In addition, other hydro-related measurements such as water flow in the tunnel, electrical conductivity of tunnel water and inflow and outflow of water through tunnel pipes have been performed. This report is a summary of the monitoring during 2008. In order to allow for comparison with factors that may influence the groundwater level/pressure and flow, meteorological data are also presented in the report. From the end of 1991, the disturbance from the tunnel is the dominating factor influencing groundwater levels in the area. In one chapter, activities that may have an influence on the ground water situation are listed and briefly discussed

  18. Aespoe Hard Rock Laboratory. Hydro Monitoring Program. Report for 2009

    International Nuclear Information System (INIS)

    Wass, Eva; Nyberg, Goeran

    2010-05-01

    The Aespoe island is situated close to the nuclear power plant of Simpevarp in southeastern Sweden. As part of the pre-investigations preceding excavation of the Aespoe Hard Rock Laboratory, registrations of the groundwater levels and electrical conductivity in packed-off borehole sections and levels in open boreholes started in 1987. The investigations are still ongoing and are planned to continue for a long period of time. As the tunnel excavation went on from the autumn 1990 and onwards, new boreholes were drilled in the tunnel and instrumented to enable groundwater pressure monitoring in packed-off sections. In addition, other hydro-related measurements such as water flow in the tunnel, electrical conductivity of tunnel water and inflow and outflow of water through tunnel pipes have been performed. This report is a summary of the monitoring during 2009. In order to allow for comparison with factors that may influence the groundwater level/pressure and flow, meteorological data are also presented in the report. From the end of 1991, the disturbance from the tunnel is the dominating factor influencing groundwater levels in the area. In one chapter, activities that may have an influence on the ground water situation are listed and briefly discussed

  19. Aespoe Hard Rock Laboratory. Sensor Data Report No 23

    International Nuclear Information System (INIS)

    Goudarzi, Reza; Johannesson, Lars-Erik

    2010-11-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 20010917-20100601. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements. Section 1. The following measurements are made in the bentonite in each of the two instrumented deposition holes in Section 1 (1 and 3): Temperature is measured in 32 points, total pressure in 27 points, pore water pressure in 14 points and relative humidity in 37 points. Temperature is also measured by all relative humidity gauges. Every measuring point is related to a local coordinate system in the deposition hole. The following measurements are made in the backfill in Section 1. Temperature is measured in 20 points, total pressure in 18 points, pore water pressure in 23 points and relative humidity in 45 points. Temperature is also measured by all relative humidity gauges. Furthermore, water content is measured by an electric chain in one section. Every measuring point is related to a local coordinate system in the tunnel. The following measurements are made on the surface of the canisters in Section 1: Temperature is measured every meter along two fiber optic cables. Furthermore, displacements of the canister in hole 3 are measured with 6 gauges. The following measurements are made in the rock in Section 1: Temperature is measured in 37 points in boreholes in the floor. Water

  20. Aespoe Hard Rock Laboratory. Sensor Data Report No 23

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza; Johannesson, Lars-Erik (Clay Technology AB (Sweden))

    2010-11-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 20010917-20100601. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements. Section 1. The following measurements are made in the bentonite in each of the two instrumented deposition holes in Section 1 (1 and 3): Temperature is measured in 32 points, total pressure in 27 points, pore water pressure in 14 points and relative humidity in 37 points. Temperature is also measured by all relative humidity gauges. Every measuring point is related to a local coordinate system in the deposition hole. The following measurements are made in the backfill in Section 1. Temperature is measured in 20 points, total pressure in 18 points, pore water pressure in 23 points and relative humidity in 45 points. Temperature is also measured by all relative humidity gauges. Furthermore, water content is measured by an electric chain in one section. Every measuring point is related to a local coordinate system in the tunnel. The following measurements are made on the surface of the canisters in Section 1: Temperature is measured every meter along two fiber optic cables. Furthermore, displacements of the canister in hole 3 are measured with 6 gauges. The following measurements are made in the rock in Section 1: Temperature is measured in 37 points in boreholes in the floor. Water

  1. Aespoe Hard Rock Laboratory. Overview of the investigations 1986-1990

    International Nuclear Information System (INIS)

    Stanfors, R.; Erlstroem, M.; Markstroem, I.

    1991-06-01

    In order to prepare for the siting and licensing of a spent fuel repository SKB has decided to construct a new underground research laboratory. The pre-investigations for the Aespoe Hard Rock Laboratory started in late 1986. This report gives a comprehensive compilation of the different investigations performed during the pre-investigation phase (1986-1990). The information is mainly compiled in CAD-generated maps and illustrations in which the reader can gather information concerning the scope of work as well as references to more detailed reports for further study. (au)

  2. Swedish Hard Rock Laboratory first evaluation of preinvestigations 1986-87 and target area characterization

    International Nuclear Information System (INIS)

    Gustafson, G.; Stanfors, R.; Wikberg, P.

    1988-06-01

    SKB plans to site an underground research laboratory in the Simpevarp area. A regional survey started in 1986 and an extensive programme for geology, geohydrology and hydrochemistry was carried through. This report gives an evaluation of all available data gathered from the start of the project up to the drilling of core boreholes in some target areas in the autumn of 1987. A descriptive geological-tectonic model on a regional scale is presented that is intended to constitute a basis for the hydrogeological modelling work. Preliminary rock mass descriptions are also presented on a more detailed scale for some minor parts of the area. It is recommended that the island Aespoe is the principal target area for the continued work on the Swedish Hard Rock Laboratory. (orig.)

  3. Treatment and final disposal of nuclear waste. Aespoe hard rock laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The scientific investigations within SBK's research programme are a part of the work of designing a deep repository and identifying and investigating a suitable site. A balanced appraisal of the facts, requirements and assessments presented in connection with the preparation of R and D-programme 86 led to the proposal to construct an underground research laboratory. This proposal was presented in the aforementioned research programme and was very positively recived by the reviewing bodies. In the autumn of 1986, SKB initiated the field work for the siting of an underground laboratory, the Aespoe hard rock laboratory, in the Simpevarp area in the municipality of Oskarshamn. At the end of 1988, SKB arrived at a decision in principle to site the facility on southern Aespoe about 2 km north of the Oskarshamn nuclear power station. After regulatory review, SKB ordered the excavation of the access tunnel to the Aespoe hard rock laboratory to commence in the autumn of 1990. In conjunction with the tunneling work, which has now (September 1992) reached a depth of more than 200 m, a large number of investigations have been carried out. This background report to SKB's RD and D-programme 92 is based on the previous and 89 /2/. The report provides a general background and presents goals, projects results obtained to date and future work. Compared to the previous background reports, more space is devoted here to experiment planning and the future demonstration programme. (au)

  4. Experience gained from the site characterisation strategy used at the Aespoe hard rock laboratory

    International Nuclear Information System (INIS)

    Baeckblom, G.

    1998-01-01

    The Aespoe Hard Rock Laboratory is a 'dress-rehearsal' facility to test, develop and demonstrate technology and models prior to applications at the actual deep repository site in Sweden. Site characterisation methodology has for more than a decade been a main issue at the Aespoe Hard Rock Laboratory (HRL). At the start of site investigations in 1987 the following strategy was adopted: Comprehensive surface and surface-based investigations; Multi-disciplinary data collection in batches; Staged integrated evaluations on selected key issues closely tied to existing knowledge of the geology of the site; Iterative modelling on several geometrical scales based on existing (scarce) data; 'Predictive approach' to model updating. During the construction phase of the Aespoe HRL (1990 - 1995), a multitude of data was collected to test and to increase the details of the models made prior to construction. Several things have been learned regarding the appropriateness of the adopted approach to site characterisation. These findings concern e.g. data collection methods from surface and underground, construction/test-integration, choice of useful and feasible model concepts, data flow and document management. The acquired understanding, knowledge, skill and know-how are very valuable for planning useful and feasible site characterisation for the deep repository in Sweden

  5. Experience gained from the site characterisation strategy used at the Aespoe hard rock laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Baeckblom, G. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1998-09-01

    The Aespoe Hard Rock Laboratory is a `dress-rehearsal` facility to test, develop and demonstrate technology and models prior to applications at the actual deep repository site in Sweden. Site characterisation methodology has for more than a decade been a main issue at the Aespoe Hard Rock Laboratory (HRL). At the start of site investigations in 1987 the following strategy was adopted: Comprehensive surface and surface-based investigations; Multi-disciplinary data collection in batches; Staged integrated evaluations on selected key issues closely tied to existing knowledge of the geology of the site; Iterative modelling on several geometrical scales based on existing (scarce) data; `Predictive approach` to model updating. During the construction phase of the Aespoe HRL (1990 - 1995), a multitude of data was collected to test and to increase the details of the models made prior to construction. Several things have been learned regarding the appropriateness of the adopted approach to site characterisation. These findings concern e.g. data collection methods from surface and underground, construction/test-integration, choice of useful and feasible model concepts, data flow and document management. The acquired understanding, knowledge, skill and know-how are very valuable for planning useful and feasible site characterisation for the deep repository in Sweden

  6. Measurements of copper corrosion in the LOT Project at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Rosborg, B.; Karnland, O.; Quirk, G.; Werme, L.

    2003-01-01

    Real-time monitoring, of corrosion by means of electrochemical noise and other electrochemical techniques may offer interesting possibilities to estimate the kind and degree of corrosion in a sample or component, and further visualize the corrosion resistance of pure copper in repository environments. As a pilot effort, three cylindrical copper electrodes for such measurements, each of about 100 cm 2 surface area, have been installed in a test parcel in the Aespoe Hard Rock Laboratory and electrochemical measurements using InterCorr's SmartCET system were initiated in May 2001. The first results from real-time monitoring of copper corrosion in the Aespoe HRL under actual repository environment conditions by means of linear polarisation resistance, harmonic distortion analysis and electrochemical noise techniques are presented, and compared with the results obtained from one of the retrieved test parcels. (authors)

  7. Large scale gas injection test (Lasgit) performed at the Aespoe Hard Rock Laboratory. Summary report 2008

    International Nuclear Information System (INIS)

    Cuss, R.J.; Harrington, J.F.; Noy, D.J.

    2010-02-01

    This report describes the set-up, operation and observations from the first 1,385 days (3.8 years) of the large scale gas injection test (Lasgit) experiment conducted at the Aespoe Hard Rock Laboratory. During this time the bentonite buffer has been artificially hydrated and has given new insight into the evolution of the buffer. After 2 years (849 days) of artificial hydration a canister filter was identified to perform a series of hydraulic and gas tests, a period that lasted 268 days. The results from the gas test showed that the full-scale bentonite buffer behaved in a similar way to previous laboratory experiments. This confirms the up-scaling of laboratory observations with the addition of considerable information on the stress responses throughout the deposition hole. During the gas testing stage, the buffer was continued to artificially hydrate. Hydraulic results, from controlled and uncontrolled events, show that the buffer continues to mature and has yet to reach full maturation. Lasgit has yielded high quality data relating to the hydration of the bentonite and the evolution in hydrogeological properties adjacent to the deposition hole. The initial hydraulic and gas injection tests confirm the correct working of all control and data acquisition systems. Lasgit has been in successful operation for in excess of 1,385 days

  8. Large scale gas injection test (Lasgit) performed at the Aespoe Hard Rock Laboratory. Summary report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cuss, R.J.; Harrington, J.F.; Noy, D.J. (British Geological Survey (United Kingdom))

    2010-02-15

    This report describes the set-up, operation and observations from the first 1,385 days (3.8 years) of the large scale gas injection test (Lasgit) experiment conducted at the Aespoe Hard Rock Laboratory. During this time the bentonite buffer has been artificially hydrated and has given new insight into the evolution of the buffer. After 2 years (849 days) of artificial hydration a canister filter was identified to perform a series of hydraulic and gas tests, a period that lasted 268 days. The results from the gas test showed that the full-scale bentonite buffer behaved in a similar way to previous laboratory experiments. This confirms the up-scaling of laboratory observations with the addition of considerable information on the stress responses throughout the deposition hole. During the gas testing stage, the buffer was continued to artificially hydrate. Hydraulic results, from controlled and uncontrolled events, show that the buffer continues to mature and has yet to reach full maturation. Lasgit has yielded high quality data relating to the hydration of the bentonite and the evolution in hydrogeological properties adjacent to the deposition hole. The initial hydraulic and gas injection tests confirm the correct working of all control and data acquisition systems. Lasgit has been in successful operation for in excess of 1,385 days

  9. The colloid investigations conducted at the Aespoe Hard Rock Laboratory during 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [Geopoint AB, Stockholm (Sweden); Wold, Susanna [Royal Inst. of Tech., Stockholm (Sweden). School of Chemical Science and Engineering, Nuclear Chemistry] (eds.)

    2005-12-15

    In 2000, SKB decided to initiate an international colloid project at the Aespoe Hard Rock Laboratory in Sweden. The objectives of the colloid project are to: (i) study the role of bentonite as a colloid source, (ii) verify the background colloid concentration at Aespoe HRL and, (iii) investigate the potential for colloid formation/transport in natural groundwater concentrations. The experimental concepts for the colloid project are: laboratory experiments with bentonite, background field measurements of natural colloids, borehole specific bentonite colloid stability experiments and a fracture specific transport experiment. The activities concerning the laboratory experiments and background field measurements are described in this work; the other activities are ongoing or planned. The following conclusions were made: The bentonite colloid stability is strongly dependent on the groundwater ionic strength. Natural colloids are organic degradation products such as humic and fulvic acids, inorganic colloids (clay, calcite, iron hydroxide) and microbes. Microbes form few but large particles and their concentration increase with increasing organic carbon concentrations. The small organic colloids are present in very low concentrations in deep granitic groundwater. The concentrations can be rather high in shallow waters. The colloid concentration decreases with depth and salinity, since colloids are less stable in saline waters. The colloid content at Aespoe is less than 300 ppb. The colloid content at repository level is less than 50 ppb. The groundwater variability obtained in the boreholes reflects well the natural groundwater variability along the whole HRL tunnel.

  10. The colloid investigations conducted at the Aespoe Hard Rock Laboratory during 2000-2004

    International Nuclear Information System (INIS)

    Laaksoharju, Marcus; Wold, Susanna

    2005-12-01

    In 2000, SKB decided to initiate an international colloid project at the Aespoe Hard Rock Laboratory in Sweden. The objectives of the colloid project are to: (i) study the role of bentonite as a colloid source, (ii) verify the background colloid concentration at Aespoe HRL and, (iii) investigate the potential for colloid formation/transport in natural groundwater concentrations. The experimental concepts for the colloid project are: laboratory experiments with bentonite, background field measurements of natural colloids, borehole specific bentonite colloid stability experiments and a fracture specific transport experiment. The activities concerning the laboratory experiments and background field measurements are described in this work; the other activities are ongoing or planned. The following conclusions were made: The bentonite colloid stability is strongly dependent on the groundwater ionic strength. Natural colloids are organic degradation products such as humic and fulvic acids, inorganic colloids (clay, calcite, iron hydroxide) and microbes. Microbes form few but large particles and their concentration increase with increasing organic carbon concentrations. The small organic colloids are present in very low concentrations in deep granitic groundwater. The concentrations can be rather high in shallow waters. The colloid concentration decreases with depth and salinity, since colloids are less stable in saline waters. The colloid content at Aespoe is less than 300 ppb. The colloid content at repository level is less than 50 ppb. The groundwater variability obtained in the boreholes reflects well the natural groundwater variability along the whole HRL tunnel

  11. Measurements of cutter forces and cutter temperature of boring machine in Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.X.; Kou, S.Q.; Lindqvist, P.-A. [Luleaa Univ. of Technology (Sweden)

    2001-04-01

    This report presents both the testing methods used and the testing results obtained for cutter forces and cutter temperature during field boring in Aespoe Hard Rock Laboratory. In order to estimate the strains induced by cutter forces in the cutter shaft and choose proper transducers, first a numerical simulation was performed. The simulation results indicated that the cutter forces should be measurable by ordinary strain gauges. Furthermore, an independent three-direction loading system for laboratory calibration was set up to solve force-coupling problems appearing in field measurements. By means of the established measuring system, which was proved successfully in the laboratory, the normal forces, tangential forces, and side forces of two button cutters in the boring machine were measured in the field. In addition, the temperature in the shaft of the front cutter was measured. After the measurements of the cutter forces and cutter temperature, rock core samples were taken from the bottom and the wall of the testing borehole. Then the samples were cut, polished, and examined by means of the Scanning Electron Microscope (SEM). After that, the lengths of major cracks induced by the cutters in the rock samples were measured, and an approximate relationship between the length of the medium cracks and the relevant cutter forces was obtained. This relationship was compared with the theoretical relationship established before. Finally, according to the measured results, the cracked zones around the borehole were described. The results show that: (1) there are two kinds of cracked zones: one in the borehole wall and the other in the bottom of the borehole. The depth of the cracked zone in the borehole bottom is much larger than that in the borehole wall because the maximum normal force of the front cutter is always much larger than that of the gauge cutter. (2) Each cracked zone includes a densely cracked zone and all the longest medium cracks caused by mechanical

  12. Experiments at the Aespoe Hard Rock Laboratory[Information for the general public

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-12-01

    A dress rehearsal is being held in preparation for the construction of a deep repository for spent nuclear fuel at SKB's underground Hard Rock Laboratory (HRL) on Aespoe, outside Oskarshamn. Here we can test different technical solutions on a full scale and in a realistic environment. The Aespoe HRL is also used for field research. We are conducting a number of experiments here in collaboration with Swedish and international experts. In the Zedex experiment we have compared how the rock is affected around a drill-and-blast tunnel versus a bored tunnel. In a new experiment we will investigate how much the rock can take. A narrow pillar between two boreholes will be loaded to the point that the rock's ultimate strength is exceeded (Aespoe Pillar Stability Experiment). In the Demo Test we are demonstrating emplacement of the copper canisters and the surrounding bentonite in the deposition holes. In the Prototype Repository we study what long-term changes occur in the barriers under the conditions prevailing in a deep repository. Horizontal deposition: Is it possible to deposit the canisters horizontally without compromising safety? Backfill and Plug Test: The tunnels in the future deep repository for spent nuclear fuel will be filled with clay and crushed rock and then plugged. Canister Retrieval Test: If the deep repository should not perform satisfactorily for some reason, we want to be able to retrieve the spent fuel. The Lot test is intended to show how the bentonite behaves in an environment similar to that in the future deep repository. The purpose of the TBT test is to determine how the bentonite clay in the buffer is affected by high temperatures. Two-phase flow means that liberated gas in the groundwater flows separately in the fractures in the rock. This reduces the capacity of the rock to conduct water. Lasgit: By pressurizing a canister with helium, we can measure how the gas moves through the surrounding buffer. Colloid Project: Can very small

  13. Swedish-German actinide migration experiment at ÄSPÖ hard rock laboratory

    Science.gov (United States)

    Kienzler, B.; Vejmelka, P.; Römer, J.; Fanghänel, E.; Jansson, M.; Eriksen, T. E.; Wikberg, P.

    2003-03-01

    Within the scope of a bilateral cooperation between Svensk Kärnbränslehantering (SKB) and Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung (FZK-INE), an actinide migration experiment is currently being performed at the Äspö Hard Rock Laboratory (HRL) in Sweden. This paper covers laboratory and in situ investigations on actinide migration in single-fractured granite core samples. For the in situ experiment, the CHEMLAB 2 probe developed by SKB was used. The experimental setup as well as the breakthrough of inert tracers and of the actinides Am, Np and Pu are presented. The breakthrough curves of inert tracers were analyzed to determine hydraulic properties of the fractured samples. Postmortem analyses of the solid samples were performed to characterize the flow path and the sorbed actinides. After cutting the cores, the abraded material was analyzed with respect to sorbed actinides. The slices were scanned optically to visualize the flow path. Effective volumes and inner surface areas were measured. In the experiments, only breakthrough of Np(V) was observed. In each experiment, the recovery of Np(V) was ≤40%. Breakthrough of Am(III) and Pu(IV) as well as of Np(IV) was not observed.

  14. Structural and neural network analyses of fracture systems at the Aespoe Hard Rock Laboratory, SE Sweden

    International Nuclear Information System (INIS)

    Sirat, M.

    1999-01-01

    The > 10,000 fractures documented in the 450 m deep Aespoe Hard Rock Laboratory (HRL) provide a unique opportunity to study brittle deformation of a Swedish bedrock mass. The fracture population consists of six major sets, one sub-horizontal and five sub-vertical. A classical structural analysis explored the interrelations between geometry and frequency of both dry and wet fractures with respect to depth and in-situ stresses. Three main findings are: In-situ stresses govern frequency distributions of dilated, hence water-bearing fractures. About 68.5% of sub-horizontal fractures are dilated in the thrust regime above a depth of ca. 230 m while 53% of sub-vertical fractures are dilated in the underlying wrench regime. Fractures curve both horizontally and vertically, a finding confirmed by the application of artificial neural networks that included Back-Propagation and Self-Organizing (Kohonen) networks. The asymmetry of the total fracture population and tilts of the sub-Cambrian peneplain demonstrates that multiple reactivations of fractures have tilted the Aespoe rock mass 6 deg to the west. The potential space problem raised by this tilt is negated by systematic curvature of steep fractures, some of which sole out to gently dipping fracture zones. Fractures probably developed their curvature when they formed deep in crystalline crust in Precambrian times but have since reactivated at shallow depths. These findings add significantly to the conceptual model of Aespoe and should be taken into account in future studies regarding the isolation of Sweden's high-grade radioactive waste in crystalline bedrock

  15. Aespoe Hard Rock Laboratory. Final report of the first stage of the tracer retention understanding experiments

    Energy Technology Data Exchange (ETDEWEB)

    Winberg, A. [Conterra AB, Uppsala (Sweden); Andersson, Peter [Geosigma AB, Uppsala (Sweden); Hermanson, Jan [Golder Grundteknik, Solna (Sweden); Byegaard, Johan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry; Cvetkovic, V. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Water Resources Engineering; Birgersson, Lars [Kemakta Konsult AB, Stockholm (Sweden)

    2000-03-15

    The first stage of the Tracer Retention Understanding Experiments (TRUE) was performed as a SKB funded project. The overall objectives of TRUE are to develop the understanding of radionuclide migration and retention in fractured rock, to evaluate the realism in applied model concepts, and to assess whether the necessary input data to the models can be collected from site characterisation. Further, to evaluate the usefulness and feasibility of different model approaches, and finally to provide in situ data on radionuclide migration and retention. The strive for address with multiple approaches is facilitated through a close collaboration with the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes. The TRUE programme is a staged programme which addresses various scales from laboratory (< 0.5 m), detailed scale (< 10 m) and block scale (10-50 m). The First TRUE Stage was performed in the detailed scale with the specific objectives of providing data and conceptualising the investigated feature using conservative and sorbing tracers. Further, to improve methodologies for performing tracer tests, and to develop and test a methodology for obtaining pore volume/aperture data from epoxy resin injection, excavation and subsequent analyses. The experimental site is located at approximately 400 m depth in the northeastern part of the Aespoe Hard Rock Laboratory. The identification of conductive fractures and the target feature has benefited from the use of BIPS borehole TV imaging combined with detailed flow logging. The assessment of the conductive geometry has been further sustained by cross-hole pressure interference data. The investigated target feature (Feature A) is a reactivated mylonite which has later undergone brittle deformation. The feature is oriented northwest, along the principal horizontal stress orientation, and is a typical conductor for Aespoe conditions. Hydraulic characterisation shows that the feature is relatively well isolated

  16. Aespoe Hard Rock Laboratory. Evaluation of scaling records for TASA access tunnel

    International Nuclear Information System (INIS)

    Ittner, Henrik

    2009-01-01

    This report presents the result of a project accomplished during the summer 2009. It introduces a method to estimate the magnitude, mass distribution and cause of scaled blocks by tunnel mapping and evaluation of scaling data records. These issues are important for understanding the impact of the excavation method on the surrounding rock mass during excavation of the planned underground repository for spent nuclear fuel. The project includes mapping of the 3120 m drill and blast excavated part of the TASA access tunnel in the Aespoe Hard Rock Laboratory (HRL). In addition it includes development of a method for evaluation of the collected material together with scaling data records from the Site Characterization Database (SICADA). An interview has also been held with Erik Gabrielsson, who has been in charge of tunnel maintenance at Aespoe for many years. The mapping focused on to identify size and cause of areas with significant overbreaks in the tunnel roof. By distributing documented scaled volume in a tunnel section on several mapped overbreak areas in the same section it is possible to reconstruct the size of scaled blocks. The observed overbreak areas have been categorized in five different area types, depending on the cause of scaling: two geologically induced, one blast induced, one induced from a combination of geology and blasting and one unable to place in any category. For the calculated mass distribution the number of observations is declining with increasing block mass. 11% of the total blocks exceeding 400 Kg and 75% of the scaled blocks weights under 200 Kg. Most of the blocks are however lighter with 34% weighting 50 Kg or less. There is a relation between the mapped area type and the size distribution among the mapped overbreak areas. For example the areas caused by the end of blasting rounds are more frequently appearing then the other types but most of them are small in relation to the others The impression achieved from the tunnel mapping is

  17. Aespoe Hard Rock Laboratory. Evaluation of scaling records for TASA access tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ittner, Henrik (Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-07-01

    This report presents the result of a project accomplished during the summer 2009. It introduces a method to estimate the magnitude, mass distribution and cause of scaled blocks by tunnel mapping and evaluation of scaling data records. These issues are important for understanding the impact of the excavation method on the surrounding rock mass during excavation of the planned underground repository for spent nuclear fuel. The project includes mapping of the 3120 m drill and blast excavated part of the TASA access tunnel in the Aespoe Hard Rock Laboratory (HRL). In addition it includes development of a method for evaluation of the collected material together with scaling data records from the Site Characterization Database (SICADA). An interview has also been held with Erik Gabrielsson, who has been in charge of tunnel maintenance at Aespoe for many years. The mapping focused on to identify size and cause of areas with significant overbreaks in the tunnel roof. By distributing documented scaled volume in a tunnel section on several mapped overbreak areas in the same section it is possible to reconstruct the size of scaled blocks. The observed overbreak areas have been categorized in five different area types, depending on the cause of scaling: two geologically induced, one blast induced, one induced from a combination of geology and blasting and one unable to place in any category. For the calculated mass distribution the number of observations is declining with increasing block mass. 11% of the total blocks exceeding 400 Kg and 75% of the scaled blocks weights under 200 Kg. Most of the blocks are however lighter with 34% weighting 50 Kg or less. There is a relation between the mapped area type and the size distribution among the mapped overbreak areas. For example the areas caused by the end of blasting rounds are more frequently appearing then the other types but most of them are small in relation to the others The impression achieved from the tunnel mapping is

  18. Rock-hard coatings

    OpenAIRE

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  19. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  20. 3D laser scanning techniques applying to tunnel documentation and geological mapping at Aespoe hard rock laboratory, Sweden

    International Nuclear Information System (INIS)

    Feng, Q.; Wang, G.; Roeshoff, K.

    2008-01-01

    3D terrestrial laser scanning is nowadays one of the most attractive methods to applying for 3D mapping and documentation of rock faces and tunnels, and shows the most potential to improve the data quality and provide some good solutions in rock engineering projects. In this paper, the state-of-the-art methods are described for different possibility to tunnel documentation and geological mapping based on 3D laser scanning data. Some results are presented from the case study performed at the Hard Rock Laboratory, Aespoe run by SKB, Swedish Nuclear Fuel and Waste Management Co. Comparing to traditional methods, 3D laser scanning techniques can not only provide us with a rapid and 3D digital way for tunnel documentation, but also create a potential chance to achieve high quality data, which might be beneficial to different rock engineering project procedures, including field data acquisition, data processing, data retrieving and management, and also modeling and design. (authors)

  1. Aespoe hard rock laboratory. Field investigation methodology and instruments used in the preinvestigation phase, 1986-1990

    International Nuclear Information System (INIS)

    Almen, K.E.; Zellman, O.

    1991-12-01

    The Aespoe hard rock laboratory project started in 1986. The pre-investigation phase, 1986-1990, involved extensive field measurements from the surface as well as from boreholes, aimed at characterizing the rock formation with regard to geology, geohydrology, hydrochemistry and rock mechanics. The field investigation methodology used in the project was based on experience from and developments during the previous SKB study site investigation programme. However, in some respects the techniques were changed or modified. Major changes have been possible due to a new drilling technique, telescope-type drilling. This report describes the logistics of the investigation programme, characterized to a large extent by multi-purpose planning and performance of the activities in order to optimize the use of available resources; time, personnel and equipment. Preliminary hydraulic testing and groundwater sampling were conducted during the drilling of each borehole. When the drilling was completed an extensive set of singlehole investigations were carried out: geophysical logging, borehole radar, hydraulic tests of different kinds, water sampling and rock stress measurements. Multipackers were installed in the boreholes as soon as possible after the borehole investigations. The system enables monitoring of groundwater pressure, water sampling and groundwater flow measurements to be performed by means of dilution tests and tracer injection. Boreholes with such equipment were used as observation holes during interference pumping tests and long term hydraulic and tracer tests. The monitoring programme will continue during the subsequent phases of construction and operation of the Aespoe hard rock laboratory. (83 refs., 94 figs.) (au)

  2. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Glynn, P.D.; Voss, C.I.

    1999-09-01

    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO 3 composition at shallow depth to a CaCl 2 -rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E H values are generally near -300 mV, and on average are only about 50 mV lower than E H values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m 2 per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the possible range of values

  3. Aespoe Hard Rock Laboratory. Interpretation of conductive features at the -450 m level, Aespoe

    International Nuclear Information System (INIS)

    Markstroem, Ingemar; Bockgaard, Niklas; Hardenby, Carljohan; Hultgren, Peter

    2010-05-01

    The interpretation of conductive features at the -450 m described in this report concerns a part of the tunnel system of the Aespoe Hard Rock Laboratory (Aespoe HRL). The result of the modelling work is presented as an RVS-model (Rock Visualization System). When drilling some bore holes for the Mini-Can Project in the NASA3384A niche at Aespoe HRL some highly transmissive structures were penetrated. This gave a pressure drop response particularly in the Micobe experiment area (the end of TASJ-tunnel) but also in some adjacent areas at the same level. To better understand the complex hydraulic conditions of this part of the tunnel system it was understood that a new interpretation of conductive features was needed. The length axis of the model volume runs along the TASA-tunnel from section 3/260-3/600 m (end of tunnel in the Prototype repository). Laterally the model volume reaches 80 m perpendicular to the length axis in both directions and vertically it reaches to the 350 m and 500 m level respectively. All major water-bearing structures recorded by previously performed geological mapping of the tunnels and drifts (TASF, TASI, TASJ, TASG, TASQ and TASA) at this level of the Aespoe HRL were considered and formed the base for the modelling work. Also some potentially water-bearing open fractures in the tunnels were taken into account. Structures considered as large are those that can be traced over most of a tunnel periphery. No particular concern has been taken about deformation zones unless they were water bearing or acted as hydraulic barriers. A total of 212 cored boreholes penetrated or were identified close to the model volume. 39 of these were intersected by the modelled structures. Various features such as open fractures, fractures identified by bore hole radar, RQD, water inflow etc. were used in the modelling work. A number of earlier RVS-models such as the Geomod, the APSE, the Prototype, the TRUE BS model etc. that have been created within or close to

  4. Aespoe Hard Rock Laboratory. Interpretation of conductive features at the -450 m level, Aespoe

    Energy Technology Data Exchange (ETDEWEB)

    Markstroem, Ingemar; Bockgaard, Niklas (Golder Associates (Sweden)); Hardenby, Carljohan (Vattenfall Power Consultant, Stockholm (Sweden)); Hultgren, Peter (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2010-05-15

    The interpretation of conductive features at the -450 m described in this report concerns a part of the tunnel system of the Aespoe Hard Rock Laboratory (Aespoe HRL). The result of the modelling work is presented as an RVS-model (Rock Visualization System). When drilling some bore holes for the Mini-Can Project in the NASA3384A niche at Aespoe HRL some highly transmissive structures were penetrated. This gave a pressure drop response particularly in the Micobe experiment area (the end of TASJ-tunnel) but also in some adjacent areas at the same level. To better understand the complex hydraulic conditions of this part of the tunnel system it was understood that a new interpretation of conductive features was needed. The length axis of the model volume runs along the TASA-tunnel from section 3/260-3/600 m (end of tunnel in the Prototype repository). Laterally the model volume reaches 80 m perpendicular to the length axis in both directions and vertically it reaches to the 350 m and 500 m level respectively. All major water-bearing structures recorded by previously performed geological mapping of the tunnels and drifts (TASF, TASI, TASJ, TASG, TASQ and TASA) at this level of the Aespoe HRL were considered and formed the base for the modelling work. Also some potentially water-bearing open fractures in the tunnels were taken into account. Structures considered as large are those that can be traced over most of a tunnel periphery. No particular concern has been taken about deformation zones unless they were water bearing or acted as hydraulic barriers. A total of 212 cored boreholes penetrated or were identified close to the model volume. 39 of these were intersected by the modelled structures. Various features such as open fractures, fractures identified by bore hole radar, RQD, water inflow etc. were used in the modelling work. A number of earlier RVS-models such as the Geomod, the APSE, the Prototype, the TRUE BS model etc. that have been created within or close to

  5. Joint ANDRA/Nirex/SKB zone of excavation disturbance experiment (ZEDEX) at the Aspo hard rock laboratory

    International Nuclear Information System (INIS)

    Hooper, A.J.; Olsson, O.

    1995-01-01

    The excavation of access shafts and tunnels and of the disposal areas of a waste repository will cause a disturbance in the surrounding rock mass with possible alterations to rock mass stability and hydraulic properties. For a number of disposal concepts this disturbance may be important for the operational and/or post-closure safety of the repository. Furthermore the disturbance may extend over time as a consequence of processes such as stress relaxation. The sponsors of ZEDEX, namely ANDRA, Nirex and SKB, are interested in developing the ability to produce reliable models of the disturbed zone that will develop around large cross-section excavations in fractured hard rock masses that are initially water saturated. Various models have been developed to calculate the important characteristics of the disturbed zone in such rock masses as a function of parameters related to the rock mass quality and the geometric description of the excavation. ZEDEX was initiated in the Aspo Hard Rock Laboratory in April 1994 with drilling and instrumentation of boreholes running alongside the planned extension of the spiral access ramp and a planned parallel experimental tunnel. ZEDEX has been designed to generate information for alternative methods of excavation. The extension to the spiral ramp is to be made by tunnel boring whereas the parallel experimental tunnel will be excavated in part by ''normal'' basting and in part by smooth blasting. The objective is to build confidence in the modelling of the disturbed zone to support the selection of excavation methods for repository construction. (authors). 3 figs

  6. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, P D; Voss, C I [US Geological Survey, Reston, VA (United States)

    1999-09-01

    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO{sub 3} composition at shallow depth to a CaCl{sub 2}-rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E{sub H} values are generally near -300 mV, and on average are only about 50 mV lower than E{sub H} values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m{sup 2} per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the

  7. Aespoe Hard Rock Laboratory. Final report of the first stage of the tracer retention understanding experiments

    International Nuclear Information System (INIS)

    Winberg, A.; Andersson, Peter; Hermanson, Jan; Byegaard, Johan

    2000-03-01

    The first stage of the Tracer Retention Understanding Experiments (TRUE) was performed as a SKB funded project. The overall objectives of TRUE are to develop the understanding of radionuclide migration and retention in fractured rock, to evaluate the realism in applied model concepts, and to assess whether the necessary input data to the models can be collected from site characterisation. Further, to evaluate the usefulness and feasibility of different model approaches, and finally to provide in situ data on radionuclide migration and retention. The strive for address with multiple approaches is facilitated through a close collaboration with the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes. The TRUE programme is a staged programme which addresses various scales from laboratory ( 22 Na + 47 Ca 2+ ≅ 85 Sr 2+ 86 Rb + ≅ 133 Ba 2+ The field tracer tests, using essentially the same cocktail of sorbing tracers as in the laboratory, were found to show the same relative sorbtivity as seen in the laboratory. A test using 137 Cs showed that after termination of the test, some 63% of the injected activity remained sorbed in the rock. The interpretation of the in situ tests with sorbing tracers was performed using the LaSAR approach, developed as a part of the TRUE project. In this approach the studied flow path is viewed as a part of an open fracture. Key processes are spatially variable advection and mass transfer. The evaluation shows that laboratory diffusion data are not representative for in situ conditions, and that a close fit between field and modelled breakthrough is obtained only when a parameter group which includes diffusion is enhanced with a factor varying between 32-50 for all tracers and experiments (except for Cs) and 137 for Cs. Our interpretation is that the enhancement is mainly due to higher diffusivity/porosity and higher sorption in the part of the altered rim zone of the feature which is accessible over the time scales

  8. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-091201) Report No: 22

    International Nuclear Information System (INIS)

    Goudarzi, Reza; Johannesson, Lars-Erik

    2009-12-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-091201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements

  9. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-090601) Report No: 21

    International Nuclear Information System (INIS)

    Goudarzi, Reza; Johannesson, Lars-Erik

    2009-07-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-090601. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements

  10. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-081201) Report No: 20

    International Nuclear Information System (INIS)

    Goudarzi, Reza; Johannesson, Lars-Erik

    2009-03-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-081201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements

  11. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-090601) Report No: 21

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2009-07-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-090601. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements.

  12. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-081201) Report No: 20

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2009-03-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-081201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements.

  13. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-091201) Report No: 22

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2009-12-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-091201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements.

  14. SITE-94. Natural elemental mass movement in the vicinity of the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Miller, W.M.; Smith, G.M.; Towler, P.A.; Savage, D.

    1997-05-01

    The primary objective of this study is to quantify natural elemental fluxes at a location exhibiting typical characteristics of a site for a spent fuel repository in Sweden. The relevant pathways are considered to be: Groundwater transport; Glacial erosion; Non-glacial weathering; River transport. Calculations are made of elemental mass fluxes from a volume of rock equivalent to that which would hold a KBS-3 style repository. In addition, the radioactive flux associated with the natural series radionuclide mass fluxes from the repository are also calculated. These can be compared directly to performance assessment predictions of the releases from a repository. 88 refs, 13 figs, 24 tabs

  15. SITE-94. Natural elemental mass movement in the vicinity of the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.M.; Smith, G.M.; Towler, P.A.; Savage, D. [QuantiSci, Melton Mowbray (United Kingdom)

    1997-05-01

    The primary objective of this study is to quantify natural elemental fluxes at a location exhibiting typical characteristics of a site for a spent fuel repository in Sweden. The relevant pathways are considered to be: Groundwater transport; Glacial erosion; Non-glacial weathering; River transport. Calculations are made of elemental mass fluxes from a volume of rock equivalent to that which would hold a KBS-3 style repository. In addition, the radioactive flux associated with the natural series radionuclide mass fluxes from the repository are also calculated. These can be compared directly to performance assessment predictions of the releases from a repository. 88 refs, 13 figs, 24 tabs.

  16. Investigation of the THM behaviour of the buffer and rock-buffer interaction during the canister retrieval test performed in the ASPÖ Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Millard, A.; Barnichon, J.D.

    2014-01-01

    In the framework of the THERESA European project, numerical modelling of coupled thermo-hydro-mechanical (THM) and thermo-hydro-mechanical-chemical (THMC) behaviour of buffer (bentonite) and buffer-rock interfaces for deep underground nuclear waste repositories has been undertaken, with focus on the performance assessments. A major step of the project was the analysis of a large scale test, called the Canister Retrieval test, which has been performed in Aspö Hard Rock Laboratory. It consists in a full scale test of the emplacement of a canister with the surrounding buffer material. A deposition hole was first bored, and then the canister with heaters was installed together with bentonite blocks. The gap between the rock and the bentonite blocks was filled with bentonite pellets. The whole set was artificially wetted from its external boundary in order to accelerate the expected natural rehydration by the surrounding rock. The evolution of the THM processes was recorded over 5 years. Before analysing the whole CRT experiment, a preliminary simpler problem has been defined, which consisted in modelling a disc of buffer at canister mid-height. Thanks to the available experimental recorded measurements, it has been possible to numerically investigate the respective influence of the various THM parameters involved in the modelling of the physical processes. The theoretical model is based on one hand on the Richard's approximation for the flow calculation, and on the other hand on a Biot's type model for the hydro-mechanical behaviour. It has revealed the large influence of the liquid relative permeability, which is unfortunately in general not directly available from experiments and must be determined through inverse analysis techniques. Then, in a second stage, the whole CRT experiment has been analysed. For simplicity reasons, an axisymetrical model has been adopted, although the presence of a neighbouring experiment did influence the CRT results. The comparisons of

  17. SITE 94. Modelling of groundwater chemistry at Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Emren, A.T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    1999-02-01

    In this report a model is described, which has been able to give agreement between observed and modelled values for more than ten element concentrations (including pH and pE values). The model makes use of a number of steady state waters which are mixed naturally after which the mixtures react with minerals in the fractures. The end member waters are supposed to have been present in the fracture system during a time interval which is long enough for the rock groundwater system to have reached a steady state. Some elements, e.g. chlorine, is modelled as conservative (inert with respect to the rock). Most element concentrations cannot be explained from mixing alone. Rather reactions with the fracture walls have to be taken into account. The situation is complicated by the fact that a system comprised of groundwater and a number of fracture minerals may violate Gibb`s phase rule. In such a system, no global equilibrium state exists, and thus the water can never reach equilibrium with respect to all the fracture minerals. The end member waters eventually formed can be expected to be in a steady state condition rather than equilibrium with respect to the fracture minerals. It should be noted that such a steady state is not an equilibrium state. Rather, the water chemistry has to fluctuate as a result of spatial variability in the local mineral set. In most cases when an end member water is sampled, a large number of local waters are mixed causing the fluctuations to cancel out. The CRACKER is a program which has been developed to handle this complicated chemical situation. It couples chemistry and transport, using elaborate chemical modelling in combination with a simplified transport model. The program simulates chemical reactions of groundwater flowing through a plane fracture. The simulation results show that although the end member waters are far from equilibrium with respect to most of the minerals, they are in a steady state with respect to the rock. The chemistry

  18. Aespoe Hard Rock Laboratory. Characterisation methods and instruments. Experiences from the construction phase

    International Nuclear Information System (INIS)

    Almen, Karl-Erik; Stenberg, Leif

    2005-12-01

    This report describes the different investigation methods used during the Aespoe HRL construction phase which commenced 1990 and ended 1995. The investigation methods are described with respect to performance, errors, uncertainty and usefulness in determined, analysed and/or calculated parameter values or other kind of geoscientific information. Moreover, other comments of the different methods, like those related to the practical performance of the measurements or tests are given. The practical performance is a major task as most of the investigations were conducted in parallel with the construction work. Much of the wide range of investigations carried out during the tunnelling work required special efforts of the personnel involved. Experiences and comments on these operations are presented in the report. The pre-investigation methods have been evaluated by comparing predictions based on pre-investigation models with data and results from the construction phase and updated geoscientific models. In 1997 a package of reports describe the general results of the pre-investigations. The investigation methods are in this report evaluated with respect to usefulness for underground characterisation of a rock volume, concerning geological, geohydrological, hydrochemical and rock mechanical properties. The report describes out opinion of the methods after the construction phase, i.e. the same platform of knowledge as for the package of reports of 1997. The evaluation of usefulness of the underground investigation methods are structured according to the key issues used for the preinvestigation modelling and predictions, i.e. Geological-structural model, Groundwater flow (hydrogeology), Groundwater chemistry (hydrochemistry), Transport of solutes and Mechanical stability models (or rock mechanics). The investigation methods selected for the different subjects for which the predictions were made are presented. Some of the subjects were slightly modified or adjusted during

  19. SITE 94. Modelling of groundwater chemistry at Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Emren, A.T.

    1999-02-01

    In this report a model is described, which has been able to give agreement between observed and modelled values for more than ten element concentrations (including pH and pE values). The model makes use of a number of steady state waters which are mixed naturally after which the mixtures react with minerals in the fractures. The end member waters are supposed to have been present in the fracture system during a time interval which is long enough for the rock groundwater system to have reached a steady state. Some elements, e.g. chlorine, is modelled as conservative (inert with respect to the rock). Most element concentrations cannot be explained from mixing alone. Rather reactions with the fracture walls have to be taken into account. The situation is complicated by the fact that a system comprised of groundwater and a number of fracture minerals may violate Gibb's phase rule. In such a system, no global equilibrium state exists, and thus the water can never reach equilibrium with respect to all the fracture minerals. The end member waters eventually formed can be expected to be in a steady state condition rather than equilibrium with respect to the fracture minerals. It should be noted that such a steady state is not an equilibrium state. Rather, the water chemistry has to fluctuate as a result of spatial variability in the local mineral set. In most cases when an end member water is sampled, a large number of local waters are mixed causing the fluctuations to cancel out. The CRACKER is a program which has been developed to handle this complicated chemical situation. It couples chemistry and transport, using elaborate chemical modelling in combination with a simplified transport model. The program simulates chemical reactions of groundwater flowing through a plane fracture. The simulation results show that although the end member waters are far from equilibrium with respect to most of the minerals, they are in a steady state with respect to the rock. The chemistry

  20. Aespoe Hard Rock Laboratory. Characterisation methods and instruments. Experiences from the construction phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    This report describes the different investigation methods used during the Aespoe HRL construction phase which commenced 1990 and ended 1995. The investigation methods are described with respect to performance, errors, uncertainty and usefulness in determined, analysed and/or calculated parameter values or other kind of geoscientific information. Moreover, other comments of the different methods, like those related to the practical performance of the measurements or tests are given. The practical performance is a major task as most of the investigations were conducted in parallel with the construction work. Much of the wide range of investigations carried out during the tunnelling work required special efforts of the personnel involved. Experiences and comments on these operations are presented in the report. The pre-investigation methods have been evaluated by comparing predictions based on pre-investigation models with data and results from the construction phase and updated geoscientific models. In 1997 a package of reports describe the general results of the pre-investigations. The investigation methods are in this report evaluated with respect to usefulness for underground characterisation of a rock volume, concerning geological, geohydrological, hydrochemical and rock mechanical properties. The report describes out opinion of the methods after the construction phase, i.e. the same platform of knowledge as for the package of reports of 1997. The evaluation of usefulness of the underground investigation methods are structured according to the key issues used for the preinvestigation modelling and predictions, i.e. Geological-structural model, Groundwater flow (hydrogeology), Groundwater chemistry (hydrochemistry), Transport of solutes and Mechanical stability models (or rock mechanics). The investigation methods selected for the different subjects for which the predictions were made are presented. Some of the subjects were slightly modified or adjusted during

  1. Insight into subdecimeter fracturing processes during hydraulic fracture experiment in Äspö hard rock laboratory, Sweden

    Science.gov (United States)

    Kwiatek, Grzegorz; Martínez-Garzón, Patricia; Plenkers, Katrin; Leonhardt, Maria; Zang, Arno; Dresen, Georg; Bohnhoff, Marco

    2017-04-01

    We analyze the nano- and picoseismicity recorded during a hydraulic fracturing in-situ experiment performed in Äspö Hard Rock Laboratory, Sweden. The fracturing experiment included six fracture stages driven by three different water injection schemes (continuous, progressive and pulse pressurization) and was performed inside a 28 m long, horizontal borehole located at 410 m depth. The fracturing process was monitored with two different seismic networks covering a wide frequency band between 0.01 Hz and 100000 Hz and included broadband seismometers, geophones, high-frequency accelerometers and acoustic emission sensors. The combined seismic network allowed for detection and detailed analysis of seismicity with moment magnitudes MW<-4 (source sizes approx. on cm scale) that occurred solely during the hydraulic fracturing and refracturing stages. We relocated the seismicity catalog using the double-difference technique and calculated the source parameters (seismic moment, source size, stress drop, focal mechanism and seismic moment tensors). The physical characteristics of induced seismicity are compared to the stimulation parameters and to the formation parameters of the site. The seismic activity varies significantly depending on stimulation strategy with conventional, continuous stimulation being the most seismogenic. We find a systematic spatio-temporal migration of microseismic events (propagation away and towards wellbore injection interval) and temporal transitions in source mechanisms (opening - shearing - collapse) both being controlled by changes in fluid injection pressure. The derived focal mechanism parameters are in accordance with the local stress field orientation, and signify the reactivation of pre-existing rock flaws. The seismicity follows statistical and source scaling relations observed at different scales elsewhere, however, at an extremely low level of seismic efficiency.

  2. Biogeochemical Reactive Transport Model of the Redox Zone Experiment of the sp Hard Rock Laboratory in Sweden

    International Nuclear Information System (INIS)

    Molinero-Huguet, Jorge; Samper-Calvete, F. Javier; Zhang, Guoxiang; Yang, Changbing

    2004-01-01

    Underground facilities are being operated by several countries around the world for performing research and demonstration of the safety of deep radioactive waste repositories. The ''sp'' Hard Rock Laboratory is one such facility launched and operated by the Swedish Nuclear Fuel and Waste Management Company where various in situ experiments have been performed in fractured granites. One such experiment is the redox zone experiment, which aimed at evaluating the effects of the construction of an access tunnel on the hydrochemical conditions of a fracture zone. Dilution of the initially saline groundwater by fresh recharge water is the dominant process controlling the hydrochemical evolution of most chemical species, except for bicarbonate and sulfate, which unexpectedly increase with time. We present a numerical model of water flow, reactive transport, and microbial processes for the redox zone experiment. This model provides a plausible quantitatively based explanation for the unexpected evolution of bicarbonate and sulfate, reproduces the breakthrough curves of other reactive species, and is consistent with previous hydrogeological and solute transport models

  3. State-of-the-Art Report for the Deep URL Facility Development : Aspo Hard Rock Laboratory, Grimsel Test Site

    International Nuclear Information System (INIS)

    Kim, Kyung Su; Bae, Dae Seok; Kim, Geon Young

    2012-01-01

    This report analysed the development status on the SKB's Hard Rock Laboratory and Nagra's Grimsel Test Site facilities to investigate their facility overview, operation system, site condition, project history and procedure, and current experiment programmes of underground research laboratory. SKB and Nagra had launched high level radioactive waste disposal project around 1970's. Actual site investigation activities were initiated since 1990's and the time schedule for siting programmes to determine the final disposal site were taken fifteen to thirty years. Furthermore, ten to twenty years will be needed to site characterization, facility design, construction, and operation commissioning. Nagra had constructed Grimsel Test Site facility in southern Switzerland Apls with the collaboration of KWO electrical company in early 1980's. This facility is characterized of a centre of excellence for underground Research and Development (R and D) to support projects for the disposal of radioactive and chemo-toxic waste and not a potential repository site. The SKB's Aspo HRL constructed in outside Oskarshamn is a unique PBG-URL facility. SKB is conducting full-scale research and development here in preparation for the construction of a final repository for spent nuclear fuel. The research programmes for the development of disposal technologies is performed over thirty to fifty years prior to repository operation. In 2000's, research on long-term phenomena, i.e., optimization of disposal concept, understanding of coupling process, validation of mathematical model, test and development of safety assessment models, characterization of deep geochemical environment, and long-term demonstration experiments have been leading the issues of research and development

  4. Electric resistivity and seismic refraction tomography: a challenging joint underwater survey at Äspö Hard Rock Laboratory

    Directory of Open Access Journals (Sweden)

    M. Ronczka

    2017-06-01

    Full Text Available Tunnelling below water passages is a challenging task in terms of planning, pre-investigation and construction. Fracture zones in the underlying bedrock lead to low rock quality and thus reduced stability. For natural reasons, they tend to be more frequent at water passages. Ground investigations that provide information on the subsurface are necessary prior to the construction phase, but these can be logistically difficult. Geophysics can help close the gaps between local point information by producing subsurface images. An approach that combines seismic refraction tomography and electrical resistivity tomography has been tested at the Äspö Hard Rock Laboratory (HRL. The aim was to detect fracture zones in a well-known but logistically challenging area from a measuring perspective. The presented surveys cover a water passage along part of a tunnel that connects surface facilities with an underground test laboratory. The tunnel is approximately 100 m below and 20 m east of the survey line and gives evidence for one major and several minor fracture zones. The geological and general test site conditions, e.g. with strong power line noise from the nearby nuclear power plant, are challenging for geophysical measurements. Co-located positions for seismic and ERT sensors and source positions are used on the 450 m underwater section of the 700 m profile. Because of a large transition zone that appeared in the ERT result and the missing coverage of the seismic data, fracture zones at the southern and northern parts of the underwater passage cannot be detected by separated inversion. Synthetic studies show that significant three-dimensional (3-D artefacts occur in the ERT model that even exceed the positioning errors of underwater electrodes. The model coverage is closely connected to the resolution and can be used to display the model uncertainty by introducing thresholds to fade-out regions of medium and low resolution. A structural

  5. Electric resistivity and seismic refraction tomography: a challenging joint underwater survey at Äspö Hard Rock Laboratory

    Science.gov (United States)

    Ronczka, Mathias; Hellman, Kristofer; Günther, Thomas; Wisén, Roger; Dahlin, Torleif

    2017-06-01

    Tunnelling below water passages is a challenging task in terms of planning, pre-investigation and construction. Fracture zones in the underlying bedrock lead to low rock quality and thus reduced stability. For natural reasons, they tend to be more frequent at water passages. Ground investigations that provide information on the subsurface are necessary prior to the construction phase, but these can be logistically difficult. Geophysics can help close the gaps between local point information by producing subsurface images. An approach that combines seismic refraction tomography and electrical resistivity tomography has been tested at the Äspö Hard Rock Laboratory (HRL). The aim was to detect fracture zones in a well-known but logistically challenging area from a measuring perspective. The presented surveys cover a water passage along part of a tunnel that connects surface facilities with an underground test laboratory. The tunnel is approximately 100 m below and 20 m east of the survey line and gives evidence for one major and several minor fracture zones. The geological and general test site conditions, e.g. with strong power line noise from the nearby nuclear power plant, are challenging for geophysical measurements. Co-located positions for seismic and ERT sensors and source positions are used on the 450 m underwater section of the 700 m profile. Because of a large transition zone that appeared in the ERT result and the missing coverage of the seismic data, fracture zones at the southern and northern parts of the underwater passage cannot be detected by separated inversion. Synthetic studies show that significant three-dimensional (3-D) artefacts occur in the ERT model that even exceed the positioning errors of underwater electrodes. The model coverage is closely connected to the resolution and can be used to display the model uncertainty by introducing thresholds to fade-out regions of medium and low resolution. A structural coupling cooperative inversion

  6. New developments of the Integrated Stress Determination Method and application to the Aespoe Hard Rock Laboratory, Sweden

    International Nuclear Information System (INIS)

    Ask, Daniel

    2004-04-01

    This thesis presents new developments of the Integrated Stress Determination Method (ISDM) with application to the Aespoe Hard Rock Laboratory (HRL), Oskarshamn, Sweden. The new developments involve a 12-parameter representation of the regional stress field in the rock mass. The method is applicable to data from hydraulic fracturing, hydraulic tests on pre-existing fractures (HTPF), and overcoring data from CSIR- and CSIRO-type of devices. When hydraulic fracturing/HTPF data are combined with overcoring data, the former may be used to constrain the elastic parameters, i.e. the problem involves 14 model parameters. The Swedish Nuclear Fuel and Waste Management Co. (SKB), have conducted a vast amount of rock stress measurements at the Aespoe HRL since the late 1980s. However, despite the large number of stress measurement data collected in this limited rock volume, variability in the stress field exists. Not only does the result vary depending on measuring technique, e.g. overcoring data indicated larger stress magnitudes compared to hydraulic fracturing data; the results are also affected by existing discontinuities, indicated by non-linear stress magnitudes and orientations versus depth. The objectives for this study are therefore threefold: (1) find explanations to the observed differences between existing hydraulic and overcoring stress data at the Aspo HRL; (2) explain the non-linear stress distribution indicated by existing stress data; and (3) apply the ISDM, including the new developments, based on the results obtained in step 1 and 2. To evaluate the observed differences between existing hydraulic and overcoring stress data, a detailed re-interpretation was conducted. Several measurement-related uncertainties were identified and corrected for when possible, which effectively reduced the discrepancies between the hydraulic and overcoring measuring results. Modeling studies managed by SKB have shown that the redistribution of the stresses at Aespoe HRL to a

  7. Aespoe Hard Rock Laboratory. Studies of factors that affect and controls the Excavation Damaged/Disturbed Zone

    International Nuclear Information System (INIS)

    Jonsson, Martin; Baeckstroem, Ann; Quanhong Feng; Berglund, Johan; Johansson, Malin; Mas Ivars, Diego; Olsson, Mats

    2009-05-01

    A tunnel was developed at the Aespoe Hard Rock Laboratory (HRL) in 2003 purposely for a large in-situ rock mechanics experiment, the Aespoe Pillar Stability Experiment (APSE). The tunnel had a large height/width ratio with a circular floor, primarily to control the stress situation around the tunnel and concentrate the stresses under the floor. An extensive set of data for understanding the Excavation Damaged Zone (EDZ) was collected within section 47 of the tunnel. It consist of the blast design, blast sequences, convergence measurements during excavation, geological mapping of tunnel and cores, 3D-laser scanning of the tunnel geometry etc. Furthermore, in 2006, ultrasonic measurements along eight boreholes were carried out in order to estimate the extent of the EDZ in the tunnel. The collection of all these different information provides an opportunity to evaluate the mechanical damages caused by the excavation work. The overall aim with this project is to give feed-back to future planning of tunnelling on issues of importance for requirements with respect to minimising the EDZ in crystalline rock from the drill and blast method. A combination of the mapped geological features (tunnel and cores) and the geometry of the blasted tunnel obtained from the 3D-laser scanning were used to build a 3D model of the geology with emphasis on the geometry of the natural fractures. The rock mechanic response to the tunnelling was evaluated in a numerical model including the as-built geometry in combination with the 3D model of the geology. The modelling of the rock mechanical processes of importance for the EDZ could be calibrated against actual measurements. From observed changes in the ultrasonic wave velocity along the boreholes it was found that the locations of the velocity changes corresponded well with the location of the mapped fractures in the drill cores. This indicates that EDZ can be detected using the ultrasonic method with high accuracy. Furthermore, the

  8. Aespoe Hard Rock Laboratory. Studies of factors that affect and controls the Excavation Damaged/Disturbed Zone

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Martin; Baeckstroem, Ann; Quanhong Feng (AaF - Berg och Maetteknik, Stockholm (Sweden)); Berglund, Johan (Vattenfall Power Consultant, Stockholm (Sweden)); Johansson, Malin; Mas Ivars, Diego (Itasca Geomekanik AB, Solna (Sweden)); Olsson, Mats (SweBefo, Stockholm (Sweden))

    2009-07-15

    A tunnel was developed at the Aespoe Hard Rock Laboratory (HRL) in 2003 purposely for a large in-situ rock mechanics experiment, the Aespoe Pillar Stability Experiment (APSE). The tunnel had a large height/width ratio with a circular floor, primarily to control the stress situation around the tunnel and concentrate the stresses under the floor. An extensive set of data for understanding the Excavation Damaged Zone (EDZ) was collected within section 47 of the tunnel. It consist of the blast design, blast sequences, convergence measurements during excavation, geological mapping of tunnel and cores, 3D-laser scanning of the tunnel geometry etc. Furthermore, in 2006, ultrasonic measurements along eight boreholes were carried out in order to estimate the extent of the EDZ in the tunnel. The collection of all these different information provides an opportunity to evaluate the mechanical damages caused by the excavation work. The overall aim with this project is to give feed-back to future planning of tunnelling on issues of importance for requirements with respect to minimising the EDZ in crystalline rock from the drill and blast method. A combination of the mapped geological features (tunnel and cores) and the geometry of the blasted tunnel obtained from the 3D-laser scanning were used to build a 3D model of the geology with emphasis on the geometry of the natural fractures. The rock mechanic response to the tunnelling was evaluated in a numerical model including the as-built geometry in combination with the 3D model of the geology. The modelling of the rock mechanical processes of importance for the EDZ could be calibrated against actual measurements. From observed changes in the ultrasonic wave velocity along the boreholes it was found that the locations of the velocity changes corresponded well with the location of the mapped fractures in the drill cores. This indicates that EDZ can be detected using the ultrasonic method with high accuracy. Furthermore, the

  9. Investigation of the THM behaviour of the buffer and rock-buffer interaction during the canister retrieval test performed in the ASPÖ Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Millard, A., E-mail: alain.millard@cea.fr [CEA, DEN, DANS, DM2S, SEMT, LM2S, F91191 Gif sur Yvette (France); Barnichon, J.D. [IRSN/DEI/SARG/LR2S, F-92260 Fontenay-aux-Roses (France)

    2014-04-01

    In the framework of the THERESA European project, numerical modelling of coupled thermo-hydro-mechanical (THM) and thermo-hydro-mechanical-chemical (THMC) behaviour of buffer (bentonite) and buffer-rock interfaces for deep underground nuclear waste repositories has been undertaken, with focus on the performance assessments. A major step of the project was the analysis of a large scale test, called the Canister Retrieval test, which has been performed in Aspö Hard Rock Laboratory. It consists in a full scale test of the emplacement of a canister with the surrounding buffer material. A deposition hole was first bored, and then the canister with heaters was installed together with bentonite blocks. The gap between the rock and the bentonite blocks was filled with bentonite pellets. The whole set was artificially wetted from its external boundary in order to accelerate the expected natural rehydration by the surrounding rock. The evolution of the THM processes was recorded over 5 years. Before analysing the whole CRT experiment, a preliminary simpler problem has been defined, which consisted in modelling a disc of buffer at canister mid-height. Thanks to the available experimental recorded measurements, it has been possible to numerically investigate the respective influence of the various THM parameters involved in the modelling of the physical processes. The theoretical model is based on one hand on the Richard's approximation for the flow calculation, and on the other hand on a Biot's type model for the hydro-mechanical behaviour. It has revealed the large influence of the liquid relative permeability, which is unfortunately in general not directly available from experiments and must be determined through inverse analysis techniques. Then, in a second stage, the whole CRT experiment has been analysed. For simplicity reasons, an axisymetrical model has been adopted, although the presence of a neighbouring experiment did influence the CRT results. The

  10. Aespoe Hard Rock Laboratory Canister Retrieval Test. Microorganisms in buffer from the Canister Retrieval Test - numbers and metabolic diversity

    Energy Technology Data Exchange (ETDEWEB)

    Lydmark, Sara; Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden))

    2011-03-15

    'Canister Retrieval Test' (CRT) is an experiment that started at Aespoe Hard Rock Laboratory (HRL) 2000. CRT is a part of the investigations which evaluate a possible KBS-3 storage of nuclear waste. The primary aim was to see whether it is possible or not to retrieve a copper canister after storage under authentic KBS-3 conditions. However, CRT also provided a unique opportunity to investigate if bacteria survived in the bentonite buffer during storage. Therefore, in connection to the retrieval of the canister microbiological samples were extracted from the bentonite buffer and the bacterial composition was studied. In this report, microbiological analyses of a total of 66 samples at the C2, R10, R9 and R6 levels in the bentonite from CRT are presented and discussed. By culturing bacteria from the bentonite in specific media the following bacterial parameters were investigated: The total amount of culturable heterotrophic aerobic bacteria, sulphate-reducing bacteria, and bacteria that produce the organic compound acetate (acetogens). The biovolume in the bentonite was determined by detection of the ATP content. In addition, bacteria from the bentonite were cultured in different sulphate-reducing media. In these cultures, the presence of the biotic compounds sulphide and acetate was investigated, since these have potentially negative effect on the copper canister in a KBS-3 repository. The results were to some extent compared to density, water content, and temperature data provided by Clay Technology AB. The results showed that 100-102 viable sulphate-reducing and acetogenic bacteria and 102-104 heterotrophic aerobic bacteria g-1 bentonite were present after five years of storage in the rock. Bacteria with several morphologies could be found in the cultures with bentonite. The most bacteria were detected in the bentonite buffer close to the rock but in a few samples also in bentonite close to the copper canister. When the presence of bacteria in the

  11. Aespoe Hard Rock Laboratory Canister Retrieval Test. Microorganisms in buffer from the Canister Retrieval Test - numbers and metabolic diversity

    International Nuclear Information System (INIS)

    Lydmark, Sara; Pedersen, Karsten

    2011-03-01

    'Canister Retrieval Test' (CRT) is an experiment that started at Aespoe Hard Rock Laboratory (HRL) 2000. CRT is a part of the investigations which evaluate a possible KBS-3 storage of nuclear waste. The primary aim was to see whether it is possible or not to retrieve a copper canister after storage under authentic KBS-3 conditions. However, CRT also provided a unique opportunity to investigate if bacteria survived in the bentonite buffer during storage. Therefore, in connection to the retrieval of the canister microbiological samples were extracted from the bentonite buffer and the bacterial composition was studied. In this report, microbiological analyses of a total of 66 samples at the C2, R10, R9 and R6 levels in the bentonite from CRT are presented and discussed. By culturing bacteria from the bentonite in specific media the following bacterial parameters were investigated: The total amount of culturable heterotrophic aerobic bacteria, sulphate-reducing bacteria, and bacteria that produce the organic compound acetate (acetogens). The biovolume in the bentonite was determined by detection of the ATP content. In addition, bacteria from the bentonite were cultured in different sulphate-reducing media. In these cultures, the presence of the biotic compounds sulphide and acetate was investigated, since these have potentially negative effect on the copper canister in a KBS-3 repository. The results were to some extent compared to density, water content, and temperature data provided by Clay Technology AB. The results showed that 10 0 -10 2 viable sulphate-reducing and acetogenic bacteria and 10 2 -10 4 heterotrophic aerobic bacteria g -1 bentonite were present after five years of storage in the rock. Bacteria with several morphologies could be found in the cultures with bentonite. The most bacteria were detected in the bentonite buffer close to the rock but in a few samples also in bentonite close to the copper canister. When the presence of bacteria in the bentonite

  12. Aespoe Hard Rock Laboratory. Prototype Repository. Analyses of microorganisms, gases and water chemistry in buffer and backfill, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Lydmark, Sara (Microbial Analytics Sweden AB (Sweden))

    2010-09-15

    The Prototype repository is an international project to build and study a full-scale model of the planned Swedish final repository for spent nuclear fuel. The Prototype repository differs from a real storage in that it is drained. For example, this makes the swelling pressure lower in the Prototype repository compared with a real storage. The project is being conducted at the Aespoe Hard Rock Laboratory (HRL) in crystalline rock at a depth of approximately 450 m. A monitoring programme is investigating the evolution of the water chemistry, gas, and microbial activity at the site, and one of the specific aims is to monitor the microbial consumption of oxygen in situ in the Prototype repository. This document describes the results of the analyses of microbes, gases, and chemistry inside and outside the Prototype in 2009. Hydrogen, helium, nitrogen, oxygen, carbon monoxide, carbon dioxide, methane, ethane, and ethene were analysed in the following sampling points in the Prototype repository: KBU10001, KBU10002, KBU10004, KBU10006, KBU10008, KFA01 and KFA04. Where the sampling points in the Prototype delivered pore water, the water was analysed for amount of ATP (i.e., the biovolume), cultivable heterotrophic aerobic bacteria (CHAB), sulphate-reducing bacteria (SRB), methane-oxidizing bacteria (MOB), autotrophic acetogens (AA) and in some cases iron-reducing bacteria (IRB). Cultivation methods were also compared with qPCR molecular techniques to evaluate these before next year's decommission of the Prototype repository. The collected pore water from the Prototype repository was subject to chemistry analysis (as many analyses were conducted as the amount of water allowed). In addition, groundwater from two borehole sections in the rock surrounding the Prototype was analysed regarding its gas composition, microbiology and redox. Chemistry data from a previous investigation of the groundwater outside the Prototype repository were compared with the pore water

  13. Aespoe Hard Rock Laboratory. Prototype Repository. Analyses of microorganisms, gases and water chemistry in buffer and backfill, 2009

    International Nuclear Information System (INIS)

    Lydmark, Sara

    2010-09-01

    The Prototype repository is an international project to build and study a full-scale model of the planned Swedish final repository for spent nuclear fuel. The Prototype repository differs from a real storage in that it is drained. For example, this makes the swelling pressure lower in the Prototype repository compared with a real storage. The project is being conducted at the Aespoe Hard Rock Laboratory (HRL) in crystalline rock at a depth of approximately 450 m. A monitoring programme is investigating the evolution of the water chemistry, gas, and microbial activity at the site, and one of the specific aims is to monitor the microbial consumption of oxygen in situ in the Prototype repository. This document describes the results of the analyses of microbes, gases, and chemistry inside and outside the Prototype in 2009. Hydrogen, helium, nitrogen, oxygen, carbon monoxide, carbon dioxide, methane, ethane, and ethene were analysed in the following sampling points in the Prototype repository: KBU10001, KBU10002, KBU10004, KBU10006, KBU10008, KFA01 and KFA04. Where the sampling points in the Prototype delivered pore water, the water was analysed for amount of ATP (i.e., the biovolume), cultivable heterotrophic aerobic bacteria (CHAB), sulphate-reducing bacteria (SRB), methane-oxidizing bacteria (MOB), autotrophic acetogens (AA) and in some cases iron-reducing bacteria (IRB). Cultivation methods were also compared with qPCR molecular techniques to evaluate these before next year's decommission of the Prototype repository. The collected pore water from the Prototype repository was subject to chemistry analysis (as many analyses were conducted as the amount of water allowed). In addition, groundwater from two borehole sections in the rock surrounding the Prototype was analysed regarding its gas composition, microbiology and redox. Chemistry data from a previous investigation of the groundwater outside the Prototype repository were compared with the pore water chemistry

  14. Rock stresses (Grimsel rock laboratory)

    International Nuclear Information System (INIS)

    Pahl, A.; Heusermann, S.; Braeuer, V.; Gloeggler, W.

    1989-01-01

    On the research and development project 'Rock Stress Measurements' the BGR has developed and tested several test devices and methods at GTS for use in boreholes at a depth of 200 m and has carried out rock mechanical and engineering geological investigations for the evaluation and interpretation of the stress measurements. The first time a computer for data processing was installed in the borehole together with the BGR-probe. Laboratory tests on hollow cylinders were made to study the stress-deformation behavior. To validate and to interprete the measurement results some test methods were modelled using the finite-element method. The dilatometer-tests yielded high values of Young's modulus, whereas laboratory tests showed lower values with a distinct deformation anisotropy. Stress measurements with the BGR-probe yielded horizontal stresses being higher than the theoretical overburden pressure and vertical stresses which agree well with the theoretical overburden pressure. These results are comparable to the results of the hydraulic fracturing tests, whereas stresses obtained with CSIR-triaxial cells are generally lower. The detailed geological mapping of the borehole indicated relationships between stress and geology. With regard to borehole depth different zones of rock structure joint frequency, joint orientation, and orientation of microfissures as well as stress magnitude, stress direction, and degree of deformation anisotropy could be distinguished. (orig./HP) [de

  15. P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model

    Directory of Open Access Journals (Sweden)

    D. Draebing

    2012-10-01

    Full Text Available P-wave refraction seismics is a key method in permafrost research but its applicability to low-porosity rocks, which constitute alpine rock walls, has been denied in prior studies. These studies explain p-wave velocity changes in freezing rocks exclusively due to changing velocities of pore infill, i.e. water, air and ice. In existing models, no significant velocity increase is expected for low-porosity bedrock. We postulate, that mixing laws apply for high-porosity rocks, but freezing in confined space in low-porosity bedrock also alters physical rock matrix properties. In the laboratory, we measured p-wave velocities of 22 decimetre-large low-porosity (< 10% metamorphic, magmatic and sedimentary rock samples from permafrost sites with a natural texture (> 100 micro-fissures from 25 °C to −15 °C in 0.3 °C increments close to the freezing point. When freezing, p-wave velocity increases by 11–166% perpendicular to cleavage/bedding and equivalent to a matrix velocity increase from 11–200% coincident to an anisotropy decrease in most samples. The expansion of rigid bedrock upon freezing is restricted and ice pressure will increase matrix velocity and decrease anisotropy while changing velocities of the pore infill are insignificant. Here, we present a modified Timur's two-phase-equation implementing changes in matrix velocity dependent on lithology and demonstrate the general applicability of refraction seismics to differentiate frozen and unfrozen low-porosity bedrock.

  16. Aespoe Hard Rock Laboratory. Prototype repository. Analyses of microorganisms, gases, and water chemistry in buffer and backfill, 2010

    International Nuclear Information System (INIS)

    Lydmark, Sara

    2011-06-01

    The prototype repository (hereafter, 'Prototype') is an international project to build and study a fullscale model of the planned Swedish final repository for spent nuclear fuel. However, the Prototype differs from a real storage in that it is drained, which makes the swelling pressure lower in the Prototype than in a real storage facility. The heat from the radioactive decay is simulated by electrical heaters. The project is being conducted at the Aespoe Hard Rock Laboratory (HRL) in crystalline rock at a depth of approximately 450 m. A monitoring programme is investigating the evolution of the water chemistry, gas, and microbial activity at the site, and a specific aim is to monitor the microbial consumption of oxygen in situ in the Prototype. This document describes the results of the analyses of microbes, gases, and chemistry inside the Prototype in 2010. Hydrogen, helium, nitrogen, oxygen, carbon monoxide, carbon dioxide, methane, ethane, and ethene were analysed at the following sampling points in the Prototype: KBU10001, KBU10002, KBU10004, KBU10008, and KFA04. Where the sampling points in the Prototype delivered pore water, the water was analysed for amount of ATP (i.e. the biovolume), culturable heterotrophic aerobic bacteria (CHAB), sulphate-reducing bacteria (SRB), methane-oxidizing bacteria (MOB), and iron-reducing bacteria (IRB). The pore water collected from the Prototype was subject to as many chemical analyses as the amount of water allowed. Chemical analyses were also performed on pore water from two additional sampling points, KBU10005 and KBU10006. Chemical data from a previous investigation of the groundwater outside the Prototype were compared with the pore water chemistry. The improved sampling and analysis protocols introduced in 2007 worked very well. The International Progress Report (IPR) 08-01 (Eriksson 2008) revealed that many of the hydrochemical sampling points differ greatly from each other. The 16 sampling points were therefore

  17. Aespoe Hard Rock Laboratory. Prototype repository. Analyses of microorganisms, gases, and water chemistry in buffer and backfill, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Lydmark, Sara [Microbial Analytics Sweden AB, Moelnlycke (Sweden)

    2011-06-15

    The prototype repository (hereafter, 'Prototype') is an international project to build and study a fullscale model of the planned Swedish final repository for spent nuclear fuel. However, the Prototype differs from a real storage in that it is drained, which makes the swelling pressure lower in the Prototype than in a real storage facility. The heat from the radioactive decay is simulated by electrical heaters. The project is being conducted at the Aespoe Hard Rock Laboratory (HRL) in crystalline rock at a depth of approximately 450 m. A monitoring programme is investigating the evolution of the water chemistry, gas, and microbial activity at the site, and a specific aim is to monitor the microbial consumption of oxygen in situ in the Prototype. This document describes the results of the analyses of microbes, gases, and chemistry inside the Prototype in 2010. Hydrogen, helium, nitrogen, oxygen, carbon monoxide, carbon dioxide, methane, ethane, and ethene were analysed at the following sampling points in the Prototype: KBU10001, KBU10002, KBU10004, KBU10008, and KFA04. Where the sampling points in the Prototype delivered pore water, the water was analysed for amount of ATP (i.e. the biovolume), culturable heterotrophic aerobic bacteria (CHAB), sulphate-reducing bacteria (SRB), methane-oxidizing bacteria (MOB), and iron-reducing bacteria (IRB). The pore water collected from the Prototype was subject to as many chemical analyses as the amount of water allowed. Chemical analyses were also performed on pore water from two additional sampling points, KBU10005 and KBU10006. Chemical data from a previous investigation of the groundwater outside the Prototype were compared with the pore water chemistry. The improved sampling and analysis protocols introduced in 2007 worked very well. The International Progress Report (IPR) 08-01 (Eriksson 2008) revealed that many of the hydrochemical sampling points differ greatly from each other. The 16 sampling points were

  18. Evaluation of Rock Bolt Support for Polish Hard Rock Mines

    Science.gov (United States)

    Skrzypkowski, Krzysztof

    2018-03-01

    The article presents different types of rock bolt support used in Polish ore mining. Individual point resin and expansion rock bolt support were characterized. The roof classes for zinc and lead and copper ore mines were presented. Furthermore, in the article laboratory tests of point resin rock bolt support in a geometric scale of 1:1 with minimal fixing length of 0.6 m were made. Static testing of point resin rock bolt support were carried out on a laboratory test facility of Department of Underground Mining which simulate mine conditions for Polish ore and hard coal mining. Laboratory tests of point resin bolts were carried out, especially for the ZGH Bolesław, zinc and lead "Olkusz - Pomorzany" mine. The primary aim of the research was to check whether at the anchoring point length of 0.6 m by means of one and a half resin cartridge, the type bolt "Olkusz - 20A" is able to overcome the load.The second purpose of the study was to obtain load - displacement characteristic with determination of the elastic and plastic range of the bolt. For the best simulation of mine conditions the station steel cylinders with an external diameter of 0.1 m and a length of 0.6 m with a core of rock from the roof of the underground excavations were used.

  19. Comparison of disposal concepts for rock salt and hard rock

    International Nuclear Information System (INIS)

    Papp, R.

    1998-01-01

    The study was carried out in the period 1994-1996. The goals were to prepare a draft on spent fuel disposal in hard rock and additionally a comparison with existing disposal concepts for rock salt. A cask for direct disposal of spent fuel and a repository for hard rock including a safeguards concept were conceptually designed. The results of the study confirm, that the early German decision to employ rock salt was reasonable. (orig.)

  20. Soil/Rock Properties Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Soil/Rock Properties LaboratoryLocation: Spokane SiteThe Soil/Rock Properties Laboratory is contained in the soils bay, a 4,700 sq. ft. facility that provides space...

  1. Effects of explosions in hard rocks

    International Nuclear Information System (INIS)

    Heuze, F.E.; Walton, O.R.; Maddix, D.M.; Shaffer, R.J.; Butkovich, T.R.

    1993-01-01

    This work relates to explosions in hard rocks (ex: basalt, granite, limestone...). Hard rock masses typically have a blocky structure created by the existence of geologic discontinuities such as bedding contacts, faults, and joints. At very high pressure - hundreds of kilobars and above - these discontinuities do not act separately, and the rock appears to be an equivalent continuous medium. At stress of a few tens of kilobars and below, the geologic discontinuities control the kinematics of the rock masses. Hence, the simulation of rock dynamics, anywhere but in the very-near source region, should account for those kinematics

  2. The Aespoe Hard Rock Laboratory: Final evaluation of the hydrogeochemical pre-investigations in relation to existing geologic and hydraulic conditions

    International Nuclear Information System (INIS)

    Smellie, J.; Laaksoharju, M.

    1992-11-01

    The Swedish Nuclear Fuel and Management Company (SKB) is currently excavating the access tunnel to an underground experimental laboratory, the Aespoe Hard Rock Laboratory, planned to be located some 500 m below the island of Aespoe which is located in the Simpevarp area, southeast Sweden. The construction of an underground laboratory forms part of the overall SKB strategy to test, not only the construction techniques for deep excavation, but also the various methods and protocols required to obtain a three-dimensional model of the geology and groundwater flow and chemistry, within a fractured crystalline bedrock similar to that envisaged for the final disposal of spent fuel. Aespoe was chosen because it geologically represents a variety of typical crystalline bedrock environments. The hydrogeochemical activities described and interpreted in this report form part of the initial pre-investigation phase (from the surface to around 1000 metres depth) aimed at siting the laboratory, describing the natural hydrogeological and hydrogeochemical conditions in the bedrock and predicting the changes that will occur during excavation and construction of the laboratory. Hydrogeochemical interpretation has therefore been closely integrated with the hydrogeological investigations and other disciplines of major influence, in particular, bedrock geology and geochemistry and fracture mineralogy and chemistry. A large section of this report has been devoted to the detailed investigation of each individual zone hydraulically selected, tested and sampled for hydrogeochemical characterization. The data have been used to describe the chemistry and origin of the Aespoe groundwaters, models have been developed to illustrate groundwater mixing and standard geochemical modelling approaches have been employed to understand rock/water interaction processes. An attempt has been made to integrate the hydrogeochemical information with known geological and hydrogeological parameters to construct a

  3. Aespoe Hard Rock Laboratory. Backfill and Plug test. Hydraulic testing of core drilled boreholes in the ZEDEX drift

    Energy Technology Data Exchange (ETDEWEB)

    Ludvigson, Jan-Erik; Nordqvist, Rune; Ekman, Lennart; Hansson, Kent (GEOSIGMA AB, Uppsala (Sweden))

    2009-07-01

    The present report documents the performance and results of hydraulic testing in selected core boreholes in the Zedex drift. The holes will be used as rock instrumentation boreholes during the Backfill and Plug Test at Aespoe HRL. The testing involves both 1 m long boreholes with 56 mm diameter as well as longer boreholes c. 5 m, 8 m and 25 m long with 56 mm or 76 mm diameter. Only single-hole tests were performed. The tests were carried out as short-time constant head injection tests since all boreholes tested (except one) were non-flowing before tests. The injection phase was followed by a pressure recovery phase. Furthermore, the tests were carried out as single-packer tests. A specially designed test system was used for the tests. The main evaluation of the tests was performed on data from the recovery phase by a new approach based on a non-linear regression technique combined with a flow simulation model (SUTRA). The tests in the 1 m-holes (testing the interval c. 0.3-0.7 m in the rock perpendicular to the tunnel face) show that the hydraulic conductivity of the superficial rock around the Zedex drift in general is low. However, during testing in some boreholes, visible leakage in the rock occurred through superficial fractures into the tunnel. These fractures were mainly located in the floor of the Zedex drift and are probably blast-induced. These fractures have a high hydraulic conductivity. The tests in the longer boreholes show that the hydraulic conductivity further into the rock in general is below c. 1x10-10 m/s. Increased hydraulic conductivity (c.1.5x10-8 m/s) was only observed in the flowing borehole KXZSD8HL.

  4. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Geotechnical Inst. Ltd., Bern (Switzerland); Hermanson, Jan [Golder Associates, Stockholm (Sweden); Mazurek, M. [Univ. of Bern (Switzerland)

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features.

  5. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    International Nuclear Information System (INIS)

    Bossart, P.; Hermanson, Jan; Mazurek, M.

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features

  6. Rock mechanics for hard rock nuclear waste repositories

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff

  7. Aespoe Hard Rock Laboratory - feasibility and usefulness of site investigation methods. Experiences from the pre-investigation phase

    Energy Technology Data Exchange (ETDEWEB)

    Almen, K E [ed.; KEA GEO-Konsult (Sweden); Olsson, Paer [SKANSKA, (Sweden); Rhen, I [VBB VIAK AB, Malmoe (Sweden); Stanfors, R [RS Consulting, (Sweden); Wikberg, P [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1994-08-01

    One of the main goals set up by SKB for the Aespoe HRL project is to `test the quality and appropriateness of different methods for characterizing the bedrock with respect to conditions of importance for a final repository`. An extensive investigation programme was carried out during the projects pre-investigation phase that in part was based in experience from SKBs previous site investigations and in part entailed the testing of new or other unestablished methods. Previous technical reports have described the methods that have been used and the results, models and predictions that have been produced. All the methods used are discussed in the present report in terms of how they have contributed in different analysis stages to the total geoscientific characterization of the rock at Aespoe. The usefulness of each method for modelling and prediction in different scales is evaluated, and aspects of the practical execution of the methods under different conditions are discussed. The report sheds light on the importance of dividing large investigation programmes such as this one into suitable stages to get an opportunity to evaluate the results obtained and plan in detail the investigations in the next stage. Furthermore, the way in which the characterization/modelling work in different geometric scales has been done for the different investigation stages is discussed, along with whether this has been found to be a suitable approach. The importance of pursuing an interdisciplinary strategy throughout the pre-investigation process cannot be overemphasized. For the planning, execution, analysis and reporting of the results of the pre-investigations, this has been guaranteed by an organization in which an interdisciplinary group has been in charge of the investigations, together with the project manager. 52 refs, numerous tabs and figs.

  8. Aespoe Hard Rock Laboratory. Temperature Buffer Test. Sensors data report (Period 030326-080701) Report No:12

    International Nuclear Information System (INIS)

    Goudarzi, Reza; Aakesson, Mattias; Hoekmark, Harald

    2008-01-01

    TBT (Temperature Buffer Test) is a joint project between SKB/ANDRA and supported by ENRESA (modeling) and DBE (instrumentation), which aims at understanding and modeling the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test is carried out in Aespoe HRL in a 8 meters deep and 1.75 m diameter deposition hole, with two heaters (3 m long, 0.6 m diameter), surrounded by a MX 80 bentonite buffer and a confining plug on top anchored with 9 rods. It was installed during spring 2003. Two buffer arrangements are being investigated: - The lower heater is surrounded by bentonite in the usual way, allowing the temperature of the bentonite to exceed 100 deg C locally. - The higher heater is surrounded by a ring of sand acting as thermal protection for the bentonite, the temperature of which is kept below 100 deg C. The canisters were heated with 1500 W power from day 15 to day 1171, when the power was raised to 1600 W. Around day 1700, the power was by steps raised in the lower heater to 2000 W and reduced in the upper heater to 1000 W. This report presents data from the measurements in the Temperature Buffer Test from 030326 to 080701 (26 March 2003 to 01 July 2008). The following measurements are made in the bentonite: Temperature is measured in 92 points, total pressure in 29 points, pore water pressure in 8 points and relative humidity in 35 points. Temperature is also measured by all gauges as an auxiliary measurement used for compensation. The following additional measurements are done: temperature is measured in 40 points in the rock, in 11 points on the surface of each canister and in 6 points inside each canister. The force on the confining plug is measured in 3 of the 9 rods and its vertical displacement is measured in three points. The water inflow and water pressure in the outer sand filter is also measured. Temperature and total pressure measurements

  9. Aespoe Hard Rock Laboratory. Temperature Buffer Test. Sensors data report (Period 030326-080701) Report No:12

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza; Aakesson, Mattias; Hoekmark, Harald (Clay Technology AB, Lund (Sweden))

    2008-07-01

    TBT (Temperature Buffer Test) is a joint project between SKB/ANDRA and supported by ENRESA (modeling) and DBE (instrumentation), which aims at understanding and modeling the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test is carried out in Aespoe HRL in a 8 meters deep and 1.75 m diameter deposition hole, with two heaters (3 m long, 0.6 m diameter), surrounded by a MX 80 bentonite buffer and a confining plug on top anchored with 9 rods. It was installed during spring 2003. Two buffer arrangements are being investigated: - The lower heater is surrounded by bentonite in the usual way, allowing the temperature of the bentonite to exceed 100 deg C locally. - The higher heater is surrounded by a ring of sand acting as thermal protection for the bentonite, the temperature of which is kept below 100 deg C. The canisters were heated with 1500 W power from day 15 to day 1171, when the power was raised to 1600 W. Around day 1700, the power was by steps raised in the lower heater to 2000 W and reduced in the upper heater to 1000 W. This report presents data from the measurements in the Temperature Buffer Test from 030326 to 080701 (26 March 2003 to 01 July 2008). The following measurements are made in the bentonite: Temperature is measured in 92 points, total pressure in 29 points, pore water pressure in 8 points and relative humidity in 35 points. Temperature is also measured by all gauges as an auxiliary measurement used for compensation. The following additional measurements are done: temperature is measured in 40 points in the rock, in 11 points on the surface of each canister and in 6 points inside each canister. The force on the confining plug is measured in 3 of the 9 rods and its vertical displacement is measured in three points. The water inflow and water pressure in the outer sand filter is also measured. Temperature and total pressure measurements

  10. Sorption of radionuclides on hard rocks

    International Nuclear Information System (INIS)

    Berry, J.A.; Bourke, P.J.; Green, A.; Littleboy, A.K.

    1987-09-01

    Methods for measuring sorption on hard rocks, particularly of strontium, caesium, neptunium and americium on Darley Dale sandstone and Welsh slate have been investigated. The methods tried included batch tests with crushed rock and tests of simultaneous diffusion and convection with sorption on intact rock. High pressures (800m H 2 O) were used in the convective tests to pump water quickly through the rock samples and to measure high sorptivities in times shorter than those needed in the diffusive methods with intact samples. (author)

  11. Boring of full scale deposition holes at the Aespoe Hard Rock Laboratory. Operational experiences including boring performance and a work time analysis

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Johansson, Aasa [SWECO, Stockholm (Sweden)

    2002-12-01

    Thirteen experimental deposition holes similar to those in the present KBS-3 design have been bored at the Aespoe Hard Rock Laboratory, Oskarshamn, Sweden. The objective with the boring program was to test and demonstrate the current technique for boring of large vertical holes in granitic rock. Conclusions and results from this project is used in the planning process for the deposition holes that will be bored in the real repository for spent nuclear fuel. The boreholes are also important for three major projects. The Prototype Repository, the Canister Retrieval Test and the Demonstration project will all need full-scale deposition holes for their commissioning. The holes are bored in full scale and have a radius of 1.75 m and a depth of 8.5 m. To bore the holes an existing TBM design was modified to produce a novel type Shaft Boring Machine (SBM) suitable for boring 1.75 m diameter holes from a relatively small tunnel. The cutter head was equipped with two types of roller cutters: two row carbide button cutters and disc cutters. Removal of the cuttings was made with a vacuum suction system. The boring was monitored and boring parameters recorded by a computerised system for the evaluation of the boring performance. During boring of four of the holes temperature, stress and strain measurements were performed. Acoustic emission measurements were also performed during boring of these four holes. The results of these activities will not be discussed in this report since they are reported separately. Criteria regarding nominal borehole diameter, deviation of start and end centre point, surface roughness and performance of the machine were set up according to the KBS-3 design and were fulfilled with a fair margin. The average total time for boring one deposition hole during this project was 105 hours.

  12. Boring of full scale deposition holes at the Aespoe Hard Rock Laboratory. Operational experiences including boring performance and a work time analysis

    International Nuclear Information System (INIS)

    Andersson, Christer; Johansson, Aasa

    2002-12-01

    Thirteen experimental deposition holes similar to those in the present KBS-3 design have been bored at the Aespoe Hard Rock Laboratory, Oskarshamn, Sweden. The objective with the boring program was to test and demonstrate the current technique for boring of large vertical holes in granitic rock. Conclusions and results from this project is used in the planning process for the deposition holes that will be bored in the real repository for spent nuclear fuel. The boreholes are also important for three major projects. The Prototype Repository, the Canister Retrieval Test and the Demonstration project will all need full-scale deposition holes for their commissioning. The holes are bored in full scale and have a radius of 1.75 m and a depth of 8.5 m. To bore the holes an existing TBM design was modified to produce a novel type Shaft Boring Machine (SBM) suitable for boring 1.75 m diameter holes from a relatively small tunnel. The cutter head was equipped with two types of roller cutters: two row carbide button cutters and disc cutters. Removal of the cuttings was made with a vacuum suction system. The boring was monitored and boring parameters recorded by a computerised system for the evaluation of the boring performance. During boring of four of the holes temperature, stress and strain measurements were performed. Acoustic emission measurements were also performed during boring of these four holes. The results of these activities will not be discussed in this report since they are reported separately. Criteria regarding nominal borehole diameter, deviation of start and end centre point, surface roughness and performance of the machine were set up according to the KBS-3 design and were fulfilled with a fair margin. The average total time for boring one deposition hole during this project was 105 hours

  13. Aespoe hard rock laboratory. Evaluation and conceptual modelling based on the pre-investigations 1986-1990

    International Nuclear Information System (INIS)

    Wikberg, P.; Gustafson, G.; Rhen, I.; Stanfors, R.

    1991-06-01

    The investigations have been grouped to several geometric scales under the disciplines of geology, geohydrology and groundwater chemistry, transport of solutes and mechanical stability. Geological mapping and geophysical measurements have been made both on a regional and on a site scale. On the site scale additional surface measurements, drilling of 35 percussion boreholes and 19 cored boreholes was made. The results of the geological investigations show that the Aespoe bedrock is a complex mixture between Smaaland granite, Aespoe diorite and fine grained granite. Hydraulic and chemical data was collected from existing well records within the Kalmar County. Hydraulic conductivity measurement and interference pumping tests were made in the core drilled holes and to some extent in the percussion holes. The hydraulic conductors are basically the fracture zones, but one of the most important is a NNW striking system of single fractures which is difficult to distinguish geologically. The chemical conditions of the groundwater and the fracture minerals form water bearing sections of the core drilled holes have been examined. Water samples were collected from percussion boreholes. The groundwater can be divided into three categories. Fresh water down to approximately 50 m depth. Mixed fresh and seawater 50-100 m, present and/or relict seawater 100-500 m and old (relict) seawater below a depth of 500 m. An important task in the evaluations is to set up 'conceptual models'. These models are the basis for calculation of the ambient groundwater situation and the way in which the hydrological regime will change during the excavation of the laboratory. In order to allow for different levels of detail the conceptual models are established on different scales. The geometrical scales chosen are 500 m, 50 m and 5 m. (au)

  14. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2007 and March 2008

    International Nuclear Information System (INIS)

    Duckworth, D.; Haycox, J.; Pettitt, W.S.

    2008-12-01

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The experiment has been designed to simulate a disposal tunnel in a real deep repository environment for storage of high-level radioactive waste. The test consists of a 90 m long, 5 m diameter subhorizontal tunnel excavated in dioritic granite. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing

  15. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2007 and March 2008

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, D.; Haycox, J.; Pettitt, W.S. (Applied Seismology Consultants, Shrewsbury (United Kingdom))

    2008-12-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The experiment has been designed to simulate a disposal tunnel in a real deep repository environment for storage of high-level radioactive waste. The test consists of a 90 m long, 5 m diameter subhorizontal tunnel excavated in dioritic granite. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing.

  16. Long term test of buffer material at the Aespoe Hard Rock Laboratory, LOT project. Final report on the A2 test parcel

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, Ola; Olsson, Siv; Dueck, Ann; Birgersson, Martin; Nilsson, Ulf; Hernan-Haakansson, Tania (Clay Technology AB, Lund (Sweden)); Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden); Goeteborg Univ., Dept. of Cell and Molecular Biology, Goeteborg (Sweden)); Nilsson, Sara; Eriksen, Trygve E. (School of Chemical Science and Engineering, Nuclear chemistry, Royal Inst. of Tech., Stockholm (Sweden)); Rosborg, Bo (Rosborg Consulting, Nykoeping (Sweden))

    2009-11-15

    In the Swedish repository concept for nuclear waste (KBS-3 concept), the spent nuclear fuel will be stored in copper canisters surrounded by compacted bentonite. The decaying power of the fuel will increase the temperature in the repository which, in combination with the uptake of ground-water, are expected to result in minor mineralogical changes in the bentonite. The ongoing LOT test series at the Aespoe Hard Rock Laboratory (HRL) are focused on identifying and quantifying such mineralogical alterations in the bentonite exposed to typical repository-like conditions. Further, buffer-related processes concerning copper corrosion, cation transport, and bacterial survival/activity are studied. In total, the LOT project includes seven test parcels, which contain a central Cu-tube surrounded by cylindrical bentonite blocks with a diameter of 30 cm, and gauges for temperature, total pressure, water pressure and humidity. Electrical heaters placed inside the copper tube are used to simulate the power from the decaying spent fuel. Three parcels are exposed to standard KBS-3 conditions (maximum temperature below 100 deg C) and four parcels to adverse conditions (maximum temperature below approx140 deg C). Both the standard and the adverse test series include short term tests (1 to 2 years), medium term tests (>5 years) and long term tests (>10 years). The present report concerns the A2 test parcel, which was a medium term test exposed to adverse conditions. Cu-coupons, 60Co tracers, bacteria and specific chemical substances were placed in the bentonite at defined positions. After field exposure, the entire test parcel was released from the rock by overlapping percussion drilling and wire sawing. The parcel was lifted and divided at test site and the bentonite material was sampled for specified analyses performed by nine different laboratories in five countries. The main aspects of the various tests and analyses may be summarized in the following items: - physical

  17. KBS-3H - Excavation of two horizontal drifts at the Aespoe Hard Rock Laboratory during year 2004-2005. Work description, summary of results and experience

    International Nuclear Information System (INIS)

    Baeckblom, Goeran; Lindgren, Erik

    2005-10-01

    SKB and Posiva Oy in Finland jointly study the possibility to develop a variant of the KBS-3 method for final disposal of spent nuclear fuel. The idea is to make serial deposition of canisters in long horizontal drifts instead of vertical deposition of single canisters in the deposition hole. The studies concerning the horizontal deposition alternative are conducted within the framework of a KBS-3H project, where certain demonstration activities are implemented. A key issue of the running project is to test the ability to excavate the horizontal deposition drifts. The objectives for this work are as follows: To show the feasibility of meeting the geometrical and other requirements; To construct two deposition drifts needed for the later project stages. One drift is needed to demonstrate that heavy load can be transported into the drift. One drift is needed to demonstrate that a plug (bulkhead) can be constructed by low-pH shotcrete; To evaluate the applicability of selected excavation methodologies for realistic repository conditions, and based on the experience in the project define need for technical developments/improvements. To meet the objectives, two deposition drifts were excavated at the Aespoe Hard Rock Laboratory during the period October 2004 to February 2005. One horizontal drift was 15 m in length and one 95 m in length. Both drifts were excavated to the diameter 1.85 m using horizontal push-reaming technology by adapting conventional raise-drilling equipment. The drifts were excavated in good rock conditions where no rock support or grouting was needed for feasible excavation or are needed to operate the drifts. SKB and Posiva have stringent geometrical requirements for the excavated drifts and the conclusions concerning compliance with the requirements are: Length: The project met this target. Two drifts were excavated, 15 m and 95 m respectively in accordance with the initial plan. Diameter: Actually it was not easy to measure the diameters of the

  18. KBS-3H - Excavation of two horizontal drifts at the Aespoe Hard Rock Laboratory during year 2004-2005. Work description, summary of results and experience

    Energy Technology Data Exchange (ETDEWEB)

    Baeckblom, Goeran [Conrox AB, Stockholm (Sweden); Lindgren, Erik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2005-10-15

    SKB and Posiva Oy in Finland jointly study the possibility to develop a variant of the KBS-3 method for final disposal of spent nuclear fuel. The idea is to make serial deposition of canisters in long horizontal drifts instead of vertical deposition of single canisters in the deposition hole. The studies concerning the horizontal deposition alternative are conducted within the framework of a KBS-3H project, where certain demonstration activities are implemented. A key issue of the running project is to test the ability to excavate the horizontal deposition drifts. The objectives for this work are as follows: To show the feasibility of meeting the geometrical and other requirements; To construct two deposition drifts needed for the later project stages. One drift is needed to demonstrate that heavy load can be transported into the drift. One drift is needed to demonstrate that a plug (bulkhead) can be constructed by low-pH shotcrete; To evaluate the applicability of selected excavation methodologies for realistic repository conditions, and based on the experience in the project define need for technical developments/improvements. To meet the objectives, two deposition drifts were excavated at the Aespoe Hard Rock Laboratory during the period October 2004 to February 2005. One horizontal drift was 15 m in length and one 95 m in length. Both drifts were excavated to the diameter 1.85 m using horizontal push-reaming technology by adapting conventional raise-drilling equipment. The drifts were excavated in good rock conditions where no rock support or grouting was needed for feasible excavation or are needed to operate the drifts. SKB and Posiva have stringent geometrical requirements for the excavated drifts and the conclusions concerning compliance with the requirements are: Length: The project met this target. Two drifts were excavated, 15 m and 95 m respectively in accordance with the initial plan. Diameter: Actually it was not easy to measure the diameters of the

  19. Mining technology development for hard rock excavation

    International Nuclear Information System (INIS)

    Hustrulid, W.; Cudnick, R.; Trent, R.; Holmberg, R.

    1980-01-01

    A research facility has been established in the granitic gneiss of the CSM Experimental Mine at Idaho Springs, Colorado, for the purpose of evaluating/developing mining, geologic and geotechnical procedures appropriate for use in establishing nuclear waste repositories in hard rock. An experimental room has been excavated using careful blasting procedures. The extent and magnitude of blast damage is being evaluated. Structural geology is being mapped to assess continuity

  20. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between April 2008 and September 2008

    International Nuclear Information System (INIS)

    Duckworth, D.; Haycox, J.; Pettitt, W.S.

    2009-03-01

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation [Pettitt et al., 1999], and during stages of canister heating and tunnel pressurisation [Haycox et al., 2005a and 2005b; Haycox et al., 2006a and 2006b; Zolezzi et al., 2007 and Duckworth et al., 2008]. Further information on this monitoring can be found in Appendix I. This report covers the period between 1st April 2008 and 30th September 2008 and is the seventh instalment of the 6-monthly processing and interpretation of the results from the experiment

  1. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between April 2008 and September 2008

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, D.; Haycox, J.; Pettitt, W.S. (Applied Seismology Consultants, Shrewsbury (United Kingdom))

    2009-03-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation [Pettitt et al., 1999], and during stages of canister heating and tunnel pressurisation [Haycox et al., 2005a and 2005b; Haycox et al., 2006a and 2006b; Zolezzi et al., 2007 and Duckworth et al., 2008]. Further information on this monitoring can be found in Appendix I. This report covers the period between 1st April 2008 and 30th September 2008 and is the seventh instalment of the 6-monthly processing and interpretation of the results from the experiment.

  2. Excavation Technology for Hard Rock - Problems and Prospects

    International Nuclear Information System (INIS)

    Gillani, S.T.A.; Butt, N.

    2009-01-01

    Civil engineering projects have greatly benefited from the mechanical excavation of hard rock technology. Mining industry, on the other hand, is still searching for major breakthroughs to mechanize and then automate the winning of ore and drivage of access tunnels in its metalliferous sector. The aim of this study is to extend the scope of drag bits for road headers in hard rock cutting. Various factors that can impose limitations on the potential applications of drag bits in hard rock mining are investigated and discussed along with alternative technology options. (author)

  3. Laboratory characterization of rock joints

    International Nuclear Information System (INIS)

    Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A.

    1994-05-01

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed

  4. In Situ Observation of Hard Surrounding Rock Displacement at 2400-m-Deep Tunnels

    Science.gov (United States)

    Feng, Xia-Ting; Yao, Zhi-Bin; Li, Shao-Jun; Wu, Shi-Yong; Yang, Cheng-Xiang; Guo, Hao-Sen; Zhong, Shan

    2018-03-01

    This paper presents the results of in situ investigation of the internal displacement of hard surrounding rock masses within deep tunnels at China's Jinping Underground Laboratory Phase II. The displacement evolution of the surrounding rock during the entire excavation processes was monitored continuously using pre-installed continuous-recording multi-point extensometers. The evolution of excavation-damaged zones and fractures in rock masses were also observed using acoustic velocity testing and digital borehole cameras, respectively. The results show four kinds of displacement behaviours of the hard surrounding rock masses during the excavation process. The displacement in the inner region of the surrounding rock was found to be greater than that of the rock masses near the tunnel's side walls in some excavation stages. This leads to a multi-modal distribution characteristic of internal displacement for hard surrounding rock masses within deep tunnels. A further analysis of the evolution information on the damages and fractures inside the surrounding rock masses reveals the effects of excavation disturbances and local geological conditions. This recognition can be used as the reference for excavation and supporting design and stability evaluations of hard-rock tunnels under high-stress conditions.

  5. Towards a new generation of flow and transport models for the Aespoe Hard Rock Laboratory. Main results from the project Aespoe models 2005

    International Nuclear Information System (INIS)

    Svensson, Urban; Vidstrand, Patrik; Neretnieks, Ivars; Wallin, Bill

    2008-05-01

    This report constitutes the outcome of a project called 'Aespoe models 2005'. The main objective of the project has been to provide a first step towards a new generation of numerical models of flow and transport, for the Aespoe HRL. In order to achieve this goal, work has been carried out along three parallel lines; discussion of basic concepts, compilation and analysis of data and model applications. A number of sub tasks are reported as appendices in the report. In fact, these appendices represent the main achievements of the project: an analysis of fracture properties, compilation of isotope and chemical data, dispersion and mixing in fractured rocks and model results. The conclusion of the project is that significant contributions to a new generation of Aespoe models have been obtained. It has further been demonstrated that working numerical simulations are up and running. Recommendations are provided for the continued work

  6. Towards a new generation of flow and transport models for the Aespoe Hard Rock Laboratory. Main results from the project Aespoe models 2005

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban (ed.) (Computer-aided Fluid Engineering AB (CFE AB), SE-602 10 Norrkoeping (Sweden)); Vidstrand, Patrik (Bergab AB, Goeteborg (Sweden)); Neretnieks, Ivars (Dept. of Chemical Engineering and Technology, Royal Inst. of Technology, Stockholm (Sweden)); Wallin, Bill (Geokema, Lidingoe (Sweden))

    2008-05-15

    This report constitutes the outcome of a project called 'Aespoe models 2005'. The main objective of the project has been to provide a first step towards a new generation of numerical models of flow and transport, for the Aespoe HRL. In order to achieve this goal, work has been carried out along three parallel lines; discussion of basic concepts, compilation and analysis of data and model applications. A number of sub tasks are reported as appendices in the report. In fact, these appendices represent the main achievements of the project: an analysis of fracture properties, compilation of isotope and chemical data, dispersion and mixing in fractured rocks and model results. The conclusion of the project is that significant contributions to a new generation of Aespoe models have been obtained. It has further been demonstrated that working numerical simulations are up and running. Recommendations are provided for the continued work

  7. Hard rock tunneling using pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Brekke, T.L.; Finnie, I.

    1974-01-01

    Intense submicrosecond bursts of energetic electrons cause significant pulverization and surface spalling of a variety of rock types, the spall debris generally consisting of sand, dust, and small flakes. If carried out at rapid repetition rate this can lead to a promising technique for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a Pulsed Electron Tunnel Excavator capable of tunneling approximately ten times faster than conventional drill/blast methods were studied. (auth)

  8. Modelling of nuclear explosions in hard rock sites

    International Nuclear Information System (INIS)

    Brunish, W.M.; App, F.N.

    1993-01-01

    This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock

  9. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    Science.gov (United States)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  10. Preliminary rock mechanics laboratory: Investigation plan

    International Nuclear Information System (INIS)

    Oschman, K.P.; Hummeldorf, R.G.; Hume, H.R.; Karakouzian, M.; Vakili, J.E.

    1987-01-01

    This document presents the rationale for rock mechanics laboratory testing (including the supporting analysis and numerical modeling) planned for the site characterization of a nuclear waste repository in salt. This plan first identifies what information is required for regulatory and design purposes, and then presents the rationale for the testing that satisfies the required information needs. A preliminary estimate of the minimum sampling requirements for rock laboratory testing during site characterization is also presented. Periodic revision of this document is planned

  11. Electron accelerator for tunneling through hard rock

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.

    1975-10-01

    Earlier work demonstrated that intense sub-microsecond bursts of energetic electrons cause significant pulverization and spalling of a variety of rock types. The spall debris generally consists of sand, dust, and small flakes. If carried out at rapid repetition rate, this can lead to a promising technique for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a Pulsed Electron Tunnel Excavator capable of tunneling approximately ten times faster than conventional drill/blast methods are presented, with primary emphasis on the electron accelerator and only a brief description of the tunneling aspects. Of several candidate types of accelerators, a linear induction accelerator producing electron pulses (5 MV, 5 kA, 1.0 μs = 25 kJ) at a 360 Hz rate was selected for the conceptual example. This provides the required average electron beam power output of 9 MW. The feasibility of such an accelerator is discussed

  12. Electron accelerator for tunneling through hard rock

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.

    1975-01-01

    Earlier work demonstrated that intense sub-microsecond bursts of energetic electrons cause significant pulverization and spalling of a variety of rock types. The spall debris generally consists of sand, dust, and small flakes. If carried out at rapid repetition rate, this can lead to a promising technique for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a Pulsed Electron Tunnel Excavator capable of tunneling approximately ten times faster than conventional drill/blast methods are presented with primary emphasis on the electron accelerator and only a brief description of the tunneling aspects. Of several candidate types of accelerators, a linear induction accelerator producing electron pulses (5 MV, 5 kA, 1.0 μs = 25 kJ) at a 360 Hz rate was selected for the conceptual example. This provides the required average electron beam power output of 9 MW. The feasibility of such an accelerator is discussed

  13. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2017-08-01

    Full Text Available Rock failure phenomena, such as rockburst, slabbing (or spalling and zonal disintegration, related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining. Currently, the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward. In this study, new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced. Two types of coupled loading modes, i.e. “critical static stress + slight disturbance” and “elastic static stress + impact disturbance”, are proposed, and associated test devices are developed. Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory, and the rockburst mechanism and related criteria are demonstrated. The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold, and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion. Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density. In addition, we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass, which can efficiently and accurately locate the rock failure in hard rock mines. Also, a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.

  14. The use of the durometer to measure rock hardness in geomorphology. Advantages and limitations.

    Science.gov (United States)

    Feal-Pérez, Alejandra; Blanco-Chao, Ramón; Valcarcel-Díaz, Marcos; Combes, Martín. A.

    2010-05-01

    The durometer is a hardness tester developed to measure hardness of metallic materials that has been recently introduced to measure rock hardness in weathering studies. Aoki & Matsukura (2007) highlight some advantages of the durometer compared with the Schmidt Rock Test Hammer: the smaller plunge allows measurements in small surfaces such as taffoni or rock carvings, the wider measurement range and the lower impact energy. This last makes it a non destructive method that can be used on relatively soft rocks. In this work the durometer Equotip (©) has been tested in different environments in the field and in the laboratory to explore its applicability and limitations. We applied the device on small rock samples of granite and limestone and a T-test showed that smaller sample size gave smaller hardness values (p values obtained inside and outside the grooves of the carvings using two different support rings, one flat and one concave. The flat ring was not able to reach the bottom of the groove, meanwhile the concave ring adjusts fairly well given its semi spherical section. A t-test confirmed the difference (p values obtained in the grooves using the flat ring and the higher and less scattered values obtained when the concave ring is used. As a very sensitive device, there are some problems in the use related with rock roughness and rock grain size. In weathered medium to coarse grained rocks, with very irregular surfaces, is not easy to get a good contact between the plunge and the rock surface. A poor contact caused by surface roughness causes the scattering and lowering of rebound values. On the contrary, in homogeneous fine grained rocks and in uniform rock surfaces the device gave very good results. The data obtained in glacial, nival and rock coastal environments showed the potential of the device in the identification of changes in rock hardness. We were able to asses the changes in the weathering degree of glacial striations and marked differences in the

  15. Developing a Virtual Rock Deformation Laboratory

    Science.gov (United States)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  16. Laboratory measurements of rock thermal properties

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Balling, N.; Nielsen, S.B.

    The thermal properties of rocks are key elements in understanding and modelling the temperature field of the subsurface. Thermal conductivity and thermal diffusivity can be measured in the laboratory if rock samples can be provided. We have introduced improvements to the divided bar and needle...... probe methods to be able to measure both thermal conductivity and thermal diffusivity. The improvements we implement include, for both methods, a combination of fast numerical finite element forward modelling and a Markov Chain Monte Carlo inversion scheme for estimating rock thermal parameters...

  17. Evaluation of dynamic characteristics of hard rock based on numerical simulations of in situ rock tests

    International Nuclear Information System (INIS)

    Yamagami, Yuya; Ikusada, Koji; Jiang, Yujing

    2009-01-01

    In situ rock tests of hard rock of conglomerate in which discontinuities in high angle are dominant were conducted. In this study, in order to confirm the validity of the test results and the test condition, and in order to elucidate the deformation behaviour and the mechanism of shear strength of the rock mass, the numerical simulations of the in situ rock tests by using distinct element method were performed. As a result, it was clarified that the behaviour of the rock mass strongly depends on both geometrical distribution of discontinuities and those mechanical properties. It is thought that a series of evaluation processes showed in this study contribute to improve the reliability of the dynamic characteristic evaluation of the rock mass. (author)

  18. Aespoe Hard Rock Laboratory. Aespoe Task Force on Engineered Barrier System. Modelling of THM-coupled processes for benchmark 2.2 with the code GeoSys/RockFlow

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Thomas; Kunz, Herbert (Federal Inst. for Geosciences and Natural Resources, Hannover (Germany))

    2010-02-15

    In 2004 the Swedish Nuclear Fuel and Waste Management Co. (SKB) initiated the project 'Task Force on Engineered Barrier Systems'. This project has the objective to verify the feasibility of modelling THM-coupled processes (task 1) and gas migration processes (task 2) in clay-rich buffer materials. The tasks are performed on the basis of appropriate benchmarks. This report documents the modelling results of the THM-benchmark 2.2 - the Canister Retrieval Test - using the code GeoSys/RockFlow. The Temperature Buffer Test which was performed in the immediate vicinity of the Canister Retrieval Test is included in the model. Especially the heat transport requires the handling of the problem in 3-D. Due to limitations imposed by post-processing different spatial discretisations of the model had to be used during the processing of the benchmark. The calculated temperatures agree well with measured data. Concerning hydraulic parameters the values of permeability and tortuosity were varied in the calculations. The time necessary to saturate the buffer is very sensitive to both of these values. In comparison to thermal and hydraulic processes the model only has limited capacity to predict the measured evolution of total pressure

  19. Aespoe Hard Rock Laboratory. Aespoe Task Force on Engineered Barrier System. Modelling of THM-coupled processes for benchmark 2.2 with the code GeoSys/RockFlow

    International Nuclear Information System (INIS)

    Nowak, Thomas; Kunz, Herbert

    2010-02-01

    In 2004 the Swedish Nuclear Fuel and Waste Management Co. (SKB) initiated the project 'Task Force on Engineered Barrier Systems'. This project has the objective to verify the feasibility of modelling THM-coupled processes (task 1) and gas migration processes (task 2) in clay-rich buffer materials. The tasks are performed on the basis of appropriate benchmarks. This report documents the modelling results of the THM-benchmark 2.2 - the Canister Retrieval Test - using the code GeoSys/RockFlow. The Temperature Buffer Test which was performed in the immediate vicinity of the Canister Retrieval Test is included in the model. Especially the heat transport requires the handling of the problem in 3-D. Due to limitations imposed by post-processing different spatial discretisations of the model had to be used during the processing of the benchmark. The calculated temperatures agree well with measured data. Concerning hydraulic parameters the values of permeability and tortuosity were varied in the calculations. The time necessary to saturate the buffer is very sensitive to both of these values. In comparison to thermal and hydraulic processes the model only has limited capacity to predict the measured evolution of total pressure

  20. Thermal aspects of radioactive waste disposal in hard rock

    International Nuclear Information System (INIS)

    Beale, H.; Bourke, P.J.; Hodgkinson, D.P.

    1980-01-01

    Buried heat emitting radioactive waste will appreciably raise the temperature of the surrounding rock over distances of several hundred metres for many centuries. This paper describes continuing research at Harwell aimed at understanding how this heating affects the design of hard rock depositories for the waste. It also considers how water-borne leakage of radionuclides from a depository to the surface might be increased by thermal convection currents through the rock mass and by thermally induced changes in its permeability and porosity. A conceptual design for a three-dimensional depository with an array of vitrified waste blocks placed in vertical boreholes is described. The maximum permissible power outputs of individual blocks and the minimum permissible separations between blocks to limit the local and bulk average rock temperatures will be determined by heat transfer through the rock and are reviewed. Interim results of a field heating experiment to study transient heat transfer through granite are discussed subsequently. Field experiments are now being started to measure the fracture permeability and porosity over large distances in virgin granite and to investigate their variation on heating and cooling the rock. Theoretical estimates of the temperatures, thermal stresses and thermal convection currents around a depository are next presented. The implications for water-borne leakage are that the induced stresses could change the fracture permeability and porosity, and thermal convection could cause substantial water movement vertically towards the surface. Finally some conclusions from the work are presented. (author)

  1. Strategy for future laboratory rock mechanics programs

    International Nuclear Information System (INIS)

    Butcher, B.M.; Jones, A.K.

    1985-01-01

    A strategy for future experimental rock mechanics laboratory programs at Sandia National Laboratories is described. This strategy is motivated by the need for long range planning of rock mechanics programs addressing the stability of complex underground structures, changes in in situ stress states during resource recovery and underground explosion technology. It is based on: (1) recent advances in underground structure stability analysis which make three-dimensional calculations feasible, and (2) new developments in load path control of laboratory stress-strain tests which permit duplication of stress and strain histories in critical parts of a structure, as determined by numerical analysis. The major constraint in the strategy is the assumption that there are no in situ joint features or sample size effects which might prevent simulation of in situ response in the laboratory. 3 refs., 5 figs

  2. Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines

    Science.gov (United States)

    Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.

    2014-12-01

    A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.

  3. Joint inversion of lake-floor electrical resistivity tomography and boat-towed radio-magnetotelluric data illustrated on synthetic data and an application from the Äspö Hard Rock Laboratory site, Sweden

    Science.gov (United States)

    Wang, Shunguo; Kalscheuer, Thomas; Bastani, Mehrdad; Malehmir, Alireza; Pedersen, Laust B.; Dahlin, Torleif; Meqbel, Naser

    2018-04-01

    The electrical resistivity tomography (ERT) method provides moderately good constraints for both conductive and resistive structures, while the radio-magnetotelluric (RMT) method is well suited to constrain conductive structures. Additionally, RMT and ERT data may have different target coverage and are differently affected by various types of noise. Hence, joint inversion of RMT and ERT data sets may provide a better constrained model as compared to individual inversions. In this study, joint inversion of boat-towed RMT and lake-floor ERT data has for the first time been formulated and implemented. The implementation was tested on both synthetic and field data sets incorporating RMT transverse electrical mode and ERT data. Results from synthetic data demonstrate that the joint inversion yields models with better resolution compared with individual inversions. A case study from an area adjacent to the Äspö Hard Rock Laboratory (HRL) in southeastern Sweden was used to demonstrate the implementation of the method. A 790-m-long profile comprising lake-floor ERT and boat-towed RMT data combined with partial land data was used for this purpose. Joint inversions with and without weighting (applied to different data sets, vertical and horizontal model smoothness) as well as constrained joint inversions incorporating bathymetry data and water resistivity measurements were performed. The resulting models delineate subsurface structures such as a major northeasterly directed fracture system, which is observed in the HRL facility underground and confirmed by boreholes. A previously uncertain weakness zone, likely a fracture system in the northern part of the profile, is inferred in this study. The fractures are highly saturated with saline water, which make them good targets of resistivity-based geophysical methods. Nevertheless, conductive sediments overlain by the lake water add further difficulty to resolve these deep fracture zones. Therefore, the joint inversion of RMT

  4. Importance of creep failure of hard rock in the near field of a nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Blacic, J D [Los Alamos National Laboratory, NM, (USA)

    1982-12-31

    Potential damage resulting from slow creep deformation intuitively seems unlikely for a high-level nuclear waste repository excavated in hard rock. However, recent experimental and modeling results indicate that the processes of time-dependent microcracking and water-induced stress corrosion can lead to significant reductions in strength and alteration of other key rock properties in the near-field region of a repository. We review the small data base supporting these conclusions and stress the need for an extensive laboratory program to obtain the new data that will be required for design of a repository.

  5. Cataclastic effects in rock salt laboratory and in situ measurements

    International Nuclear Information System (INIS)

    Gramberg, J.; Roest, J.P.A.

    1984-01-01

    The aim of the research is the determination of eventual cataclastic effects in environmental rock salt of a heated part of a vertical deep test bore hole, a model for HLW disposal. Known cataclastic systems from hard rock mining and rock salt mines will form the starting point for the explanation of convergence of underground cavity walls. In rock salt, however, different elements seem to prevail: crystal plasticity and micro-cataclasis. The environmental measurements at the deep bore hole have to be carried out from a distance. To this end the acoustic micro-seismic method will be a suitable one. The appropriate equipment for micro-seismic cross hole measurement is designed, constructed and tested in the laboratory as well as underground. Acoustic velocity data form a crucial point. A micro-seismic acoustic P-wave model, adapted to the process of structural changes, is developed. P-wave velocity measurements in rock salt cubes in the laboratory are described. An underground cross hole measurement in the wall of a gallery with semi-circular section is treated and analysed. A conclusion was that, in this case, no macro-cataclasis (systematic large fractures) will be involved in the process of gallery convergence, but that the mechanism proved to be a combination of crystal plasticity and micro-cataclasis. The same mechanism might be expected to be present in the environmental rock salt of the HLW-disposal deep bore hole. As a result this environmental rock salt might be expected to be impermeable. A plan for the application of the developed equipment during the heating test on the ECN-deep-bore-hole is shown. A theory on ''disking'' or ''rim cracks'' is presented in an annex

  6. Modelling of nuclear explosions in hard rock sites

    International Nuclear Information System (INIS)

    Brunish, W.M.; App, F.N.

    1993-01-01

    This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock. In order to learn more about the response of hard rock to underground nuclear explosions, we have attempted to model the PILEDRIVER event. PILEDRIVER was fired on June 2, 1966 in the granite stock of Area 15 at the Nevada Test Site. The working point was at a depth of 462.7 m and the yield was determined to be 61 kt. Numerous surface, sub-surface and free-field measurements were made and analyzed by SRI. An attempt was made to determine the contribution of spall to the teleseismic signal, but proved unsuccessful because most of the data from below-shot-level gauges was lost. Nonetheless, there is quite a bit of good quality data from a variety of locations. We have been able to obtain relatively good agreement with the experimental PILEDRIVER waveforms. In order to do so, we had to model the granodiorite as being considerably weaker than ''good quality'' granite, and it had to undergo considerable weakening due to shock damage as well. In addition, the near-surface layers had to be modeled as being weak and compressible and as have a much lower sound speed than the material at depth. The is consistent with a fractured and jointed material at depth, and a weathered material near the surface

  7. Laboratory rock mechanics testing manual. Public draft

    Energy Technology Data Exchange (ETDEWEB)

    Shuri, F S; Cooper, J D; Hamill, M L

    1981-10-01

    Standardized laboratory rock mechanics testing procedures have been prepared for use in the National Terminal Waste Storage Program. The procedures emphasize equipment performance specifications, documentation and reporting, and Quality Assurance acceptance criteria. Sufficient theoretical background is included to allow the user to perform the necessary data reduction. These procedures incorporate existing standards when possible, otherwise they represent the current state-of-the-art. Maximum flexibility in equipment design has been incorporated to allow use of this manual by existing groups and to encourage future improvements.

  8. The Leeb Hardness Test for Rock: An Updated Methodology and UCS Correlation

    Science.gov (United States)

    Corkum, A. G.; Asiri, Y.; El Naggar, H.; Kinakin, D.

    2018-03-01

    The Leeb hardness test (LHT with test value of L D ) is a rebound hardness test, originally developed for metals, that has been correlated with the Unconfined Compressive Strength (test value of σ c ) of rock by several authors. The tests can be carried out rapidly, conveniently and nondestructively on core and block samples or on rock outcrops. This makes the relatively small LHT device convenient for field tests. The present study compiles test data from literature sources and presents new laboratory testing carried out by the authors to develop a substantially expanded database with wide-ranging rock types. In addition, the number of impacts that should be averaged to comprise a "test result" was revisited along with the issue of test specimen size. Correlation for L D and σ c for various rock types is provided along with recommended testing methodology. The accuracy of correlated σ c estimates was assessed and reasonable correlations were observed between L D and σ c . The study findings show that LHT can be useful particularly for field estimation of σ c and offers a significant improvement over the conventional field estimation methods outlined by the ISRM (e.g., hammer blows). This test is rapid and simple, with relatively low equipment costs, and provides a reasonably accurate estimate of σ c .

  9. MANAGEMENT AND TREATMENT OF WATER FROM HARD-ROCK MINES {ENGINEERING ISSUE}

    Science.gov (United States)

    This Engineering Issue document on treatment of mining waters is a practical guide to understanding and selecting technologies for the environmental management of waste materials and effluents at hard-rock mines. For the purposes of this discussion, hard-rock mining primarily ref...

  10. Geomechanics in hard rock mining-Lessons from two case histories

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1982-01-01

    This paper summarizes the geomechanics programs conducted in two hard rock underground mining operations in the Western United States, between 1966 and 1981. The two projects were directed towards understanding the behavior of the rock masses, at the scale of the caverns. To this end, the emphasis was put on large scale field measurements, complemented by limited laboratory testing. The results of these observations were used to build realistic finite element models of the underground chambers. In the marble mine, at Crestmore, California, the models were applied to the structural optimization of the room-and-pillar pattern. In the granite mining, at Climax, Nevada Test Site, the models explained some unusual stress changes observed during excavation. Based on the large number of geomechanical techniques employed, specific conclusions and recommendations are offered regarding the quality, applicability, and usefulness of the various methods. The two case histories clearly indicate that numerical models are extremely useful for a detailed understanding of the structural behavior of mine openings. To be realistic, these models must be based first and foremost on large scale field observations. The lessons learned on these two projects also are directly applicable to the design and analysis of nuclear waste repositories in hard rocks such as basalt, granite, and welded tuff

  11. Geotechnical issues and guidelines for storage of compressed air in excavated hard rock caverns

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Doherty, T.J.; Fossum, A.F.

    1982-04-01

    The results of a literature survey on the stability of excavated hard rock caverns are presented. The objective of the study was to develop geotechnical criteria for the design of compressed air energy storage (CAES) caverns in hard rock formations. These criteria involve geologic, hydrological, geochemical, geothermal, and in situ stress state characteristics of generic rock masses. Their relevance to CAES caverns, and the identification of required research areas, are identified throughout the text. This literature survey and analysis strongly suggests that the chief geotechnical issues for the development and operation of CAES caverns in hard rock are impermeability for containment, stability for sound openings, and hydrostatic balance.

  12. Experimental Investigation of the Influence of Confining Stress on Hard Rock Fragmentation Using a Conical Pick

    Science.gov (United States)

    Li, Xibing; Wang, Shaofeng; Wang, Shanyong

    2018-01-01

    High geostress is a prominent condition in deep excavations and affects the cuttability of deep hard rock. This study aims to determine the influence of confining stress on hard rock fragmentation as applied by a conical pick. Using a true triaxial test apparatus, static and coupled static and dynamic loadings from pick forces were applied to end faces of cubic rock specimens to break them under biaxial, uniaxial and stress-free confining stress conditions. The cuttability indices (peak pick force, insertion depth and disturbance duration), failure patterns and fragment sizes were measured and compared to estimate the effects of confining stress. The results show that the rock cuttabilities decreased in order from rock breakages under stress-free conditions to uniaxial confining stress and then to biaxial confining stress. Under biaxial confining stress, only flake-shaped fragments were stripped from the rock surfaces under the requirements of large pick forces or disturbance durations. As the level of uniaxial confining stress increased, the peak pick force and the insertion depth initially increased and then decreased, and the failure patterns varied from splitting to partial splitting and then to rock bursts with decreasing average fragment sizes. Rock bursts will occur under elastic compression via ultra-high uniaxial confining stresses. There are two critical uniaxial confining stress levels, namely stress values at which peak pick forces begin to decrease and improve rock cuttability, and those at which rock bursts initially occur and cutting safety decreases. In particular, hard rock is easiest to split safely and efficiently under stress-free conditions. Moreover, coupled static preloading and dynamic disturbance can increase the efficiency of rock fragmentation with increasing preloading levels and disturbance amplitudes. The concluding remarks confirm hard rock cuttability using conical pick, which can improve the applicability of mechanical excavation in

  13. IMPACT OF ROCK HARDNESS ON FRAGMENTATION BY HYDRAULIC HAMMER AND CRUSHING IN JAW CRUSHER

    Directory of Open Access Journals (Sweden)

    Trpimir Kujundžić

    2008-12-01

    Full Text Available The physical and mechanical characteristics of intact rocks depend on the way of their formation, sustained deformations and the process of wearing a specific rock has been exposed to. These characteristics have a rather high influence on the technological process of extraction and dressing of mineral raw materials. However, the mechanical characteristics of rocks due to use of explosives for their extraction in the open pit have a more significant impact. The rock blocks extracted by blasting which are larger than the opening of the primary crusher are usually fragmented by hydraulic hammer. The paper presents the results of the testing of impact of rock hardness on fragmentation of rocks by means of hydraulic hammer and during crushing in jaw crusher. The testing was carried out on the rock samples from five quarries. According to the obtained results the hardness has a considerably larger impact on the fragmentation energy by hydraulic hammer than on the crushing energy in jaw crusher.

  14. Importance of creep failure of hard rock in the near field of a nuclear-waste repository

    International Nuclear Information System (INIS)

    Blacic, J.D.

    1981-01-01

    Potential damage resulting from slow creep deformation intuitively seems unlikely for a high-level nuclear waste repository excavated in hard rock. However, recent experimental and modeling results indicate that the processes of time-dependent microcracking and water-induced stress corrosion can lead to significant reductions in strength and alteration of other key rock properties in the near-field region of a repository. We review the small data base supporting these conclusions and stress the need for an extensive laboratory program to obtain the new data that will be required for design of a repository

  15. A hard X-ray laboratory for monochromator characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, B [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Since their installation at ILL during the 1970`s the ILL {gamma}-ray diffractometers have been intensively used in the development of neutron monochromators. However, the ageing of the sources and new developments in hard X-ray diffractometry lead to a decision at the end of 1995 to replace the existing {gamma}-ray laboratory with a hard X-ray laboratory, based on a 420 keV generator, making available in the long term several beam-lines for rapid characterisation of monochromator crystals. The facility is now installed and its characteristics and advantages are outlined. (author). 2 refs.

  16. Retractable Robotic Anchor for Hard Rock and Granular Soils, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations proposes to research, develop, and validate an innovative retractable robotic anchoring mechanism that works both in hard rock and granular soils...

  17. Retractable Robotic Anchor for Hard Rock and Granular Soils, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC, is developing an innovative retractable robotic anchor that works in hard rock and granular soils permitting anchoring and subsequent...

  18. Applications of NTNU/SINTEF Drillability Indices in Hard Rock Tunneling

    Science.gov (United States)

    Zare, S.; Bruland, A.

    2013-01-01

    Drillability indices, i.e., the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), Cutter Life Index™ (CLI), and Vickers Hardness Number Rock (VHNR), are indirect measures of rock drillability. These indices are recognized as providing practical characterization of rock properties used in the Norwegian University of Science and Technology (NTNU) time and cost prediction models available for hard rock tunneling and surface excavation. The tests form the foundation of various hard rock equipment capacity and performance prediction methods. In this paper, application of the tests for tunnel boring machine (TBM) and drill and blast (D&B) tunneling is investigated and the impact of the indices on excavation time and costs is presented.

  19. Centennial- to millennial-scale hard rock erosion rates deduced from luminescence-depth profiles

    DEFF Research Database (Denmark)

    Sohbati, Reza; Liu, Jinfeng; Jain, Mayank

    2018-01-01

    to quantify hard rock erosion rates at centennial to millennial timescales. Here we propose a novel technique, based on the solar bleaching of luminescence signals with depth into rock surfaces, to bridge this analytical gap. We apply our technique to glacial and landslide boulders in the Eastern Pamirs...

  20. Fracturing of hard rocks by microwave treatment and potential applications in mechanised tunnelling

    OpenAIRE

    YANLONG ZHENG

    2018-01-01

    Extremely hard and abrasive rocks have posed great challenges to mechanical excavators such as tunnel boring machines and roadheaders by increasing the cutter wear and decreasing the penetration rates. Microwave treatment prior to mechanical rock breakage has been recognised as a promising technology. This PhD project measures/derives the dielectric properties of commonly encountered rocks and minerals and investigates the effect of microwave treatment on the physical and mechanical propertie...

  1. Dynamic design method for deep hard rock tunnels and its application

    Directory of Open Access Journals (Sweden)

    Xia-Ting Feng

    2016-08-01

    Full Text Available Numerous deep underground projects have been designed and constructed in China, which are beyond the current specifications in terms of scale and construction difficulty. The severe failure problems induced by high in situ stress, such as rockburst, spalling, damage of deep surrounding rocks, and time-dependent damage, were observed during construction of these projects. To address these problems, the dynamic design method for deep hard rock tunnels is proposed based on the disintegration process of surrounding rocks using associated dynamic control theories and technologies. Seven steps are basically employed: (i determination of design objective, (ii characteristics of site, rock mass and project, and identification of constraint conditions, (iii selection or development of global design strategy, (iv determination of modeling method and software, (v preliminary design, (vi comprehensive integrated method and dynamic feedback analysis, and (vii final design. This dynamic method was applied to the construction of the headrace tunnels at Jinping II hydropower station. The key technical issues encountered during the construction of deep hard rock tunnels, such as in situ stress distribution along the tunnels, mechanical properties and constitutive model of deep hard rocks, determination of mechanical parameters of surrounding rocks, stability evaluation of surrounding rocks, and optimization design of rock support and lining, have been adequately addressed. The proposed method and its application can provide guidance for deep underground projects characterized with similar geological conditions.

  2. On thermal properties of hard rocks as a host environment of an underground thermal energy storage

    Science.gov (United States)

    Novakova, L.; Hladky, R.; Broz, M.; Novak, P.; Lachman, V.; Sosna, K.; Zaruba, J.; Metelkova, Z.; Najser, J.

    2013-12-01

    With increasing focus on environmentally friendly technologies waste heat recycling became an important issue. Under certain circumstances subsurface environment could be utilized to accommodate relatively large quantity of heat. Industrial waste heat produced during warm months can be stored in an underground thermal energy storage (UTES) and used when needed. It is however a complex task to set up a sustainable UTES for industrial scale. Number of parameters has to be studied and evaluated by means of thermohydromechanical and chemical coupling (THMC) before any UTES construction. Thermal characteristics of various rocks and its stability under thermal loading are amongst the most essential. In the Czech Republic study two complementary projects THMC processes during an UTES operation. The RESEN project (www.resen.cz) employs laboratory tests and experiments to characterise thermal properties of hard rocks in the Bohemian Massif. Aim of the project is to point out the most suitable rock environment in the Bohemian Massif for moderate to ultra-high temperature UTES construction (Sanyal, 2005). The VITA project (www.geology.cz/mokrsko) studies THM coupling in non-electrical temperature UTES using long term in-situ experiment. In both projects thermal properties of rocks were studied. Thermal conductivity and capacity were measured on rock samples. In addition an influence of increasing temperature and moisture content was considered. Ten hard rocks were investigated. The set included two sandstones, two ignibrites, a melaphyr, a syenite, two granites, a gneiss and a serpentinite. For each rock there were measured thermal conductivity and capacity of at least 54 dried samples. Subsequently, the samples were heated up to 380°C in 8 hours and left to cool down. Thermal characteristics were measured during the heating period and after the sample reached room temperature. Heating and cooling cycle was repeated 7 to 10 times to evaluate possible UTES-like degradation of

  3. Neutrons from rock radioactivity in the new Canfranc underground laboratory

    International Nuclear Information System (INIS)

    Amare, J; Bauluz, B; Beltran, B; Carmona, J M; Cebrian, S; GarcIa, E; Gomez, H; Irastorza, I G; Luzon, G; MartInez, M; Morales, J; Solorzano, A Ortiz de; Pobes, C; Jpuimedon; RodrIguez, A; Ruz, J; Sarsa, M L; Torres, L; Villar, J A

    2006-01-01

    Measurements of radioactivity and composition of rock from the main hall of the new Canfranc underground laboratory are reported. Estimates of neutron production by spontaneous fission and (α, n) reactions are given

  4. Incoherent SSI Analysis of Reactor Building using 2007 Hard-Rock Coherency Model

    International Nuclear Information System (INIS)

    Kang, Joo-Hyung; Lee, Sang-Hoon

    2008-01-01

    Many strong earthquake recordings show the response motions at building foundations to be less intense than the corresponding free-field motions. To account for these phenomena, the concept of spatial variation, or wave incoherence was introduced. Several approaches for its application to practical analysis and design as part of soil-structure interaction (SSI) effect have been developed. However, conventional wave incoherency models didn't reflect the characteristics of earthquake data from hard-rock site, and their application to the practical nuclear structures on the hard-rock sites was not justified sufficiently. This paper is focused on the response impact of hard-rock coherency model proposed in 2007 on the incoherent SSI analysis results of nuclear power plant (NPP) structure. A typical reactor building of pressurized water reactor (PWR) type NPP is modeled classified into surface and embedded foundations. The model is also assumed to be located on medium-hard rock and hard-rock sites. The SSI analysis results are obtained and compared in case of coherent and incoherent input motions. The structural responses considering rocking and torsion effects are also investigated

  5. Simulating Hydraulic Fracturing: Failure in soft versus hard rocks

    Science.gov (United States)

    Aleksans, J.; Koehn, D.; Toussaint, R.

    2017-12-01

    In this contribution we discuss the dynamic development of hydraulic fractures, their evolution and the resulting seismicity during fluid injection in a coupled numerical model. The model describes coupling between a solid that can fracture dynamically and a compressible fluid that can push back at the rock and open fractures. With a series of numerical simulations we show how the fracture pattern and seismicity change depending on changes in depth, injection rate, Young's Modulus and breaking strength. Our simulations indicate that the Young's Modulus has the largest influence on the fracture dynamics and also the related seismicity. Simulations of rocks with a Young's modulus smaller than 10 GPa show dominant mode I failure and a growth of fracture aperture with a decrease in Young's modulus. Simulations of rocks with a higher Young's modulus than 10 GPa show fractures with a constant aperture and fracture growth that is mainly governed by a growth in crack length and an increasing amount of mode II failure. We propose that two distinct failure regimes are observed in the simulations, above 10 GPa rocks break with a constant critical stress intensity factor whereas below 10 GPa they break reaching a critical cohesion, i.e. a critical tensile strength. These results are very important for the prediction of fracture dynamics and seismicity during fluid injection, especially since we see a transition from one failure regime to another at around 10 GPa, a Young's modulus that lies in the middle of possible values for natural shale rocks.

  6. Experimental Study of Bilinear Initiating System Based on Hard Rock Pile Blasting

    Directory of Open Access Journals (Sweden)

    Yusong Miao

    2017-01-01

    Full Text Available It is difficult to use industrial explosives to excavate hard rock and achieve suitable blasting effect due to the low energy utilization rate resulting in large rocks and short blasting footage. Thus, improving the utilization ratio of the explosive energy is important. In this study, a novel bilinear initiation system based on hard rock blasting was proposed to improve the blasting effects. Furthermore, on the basis of the detonation wave collision theory, frontal collision, oblique reflection, and Mach reflection during detonation wave propagation were studied. The results show that the maximum detonation pressure at the Mach reflection point where the incident angle is 46.9° is three times larger than the value of the explosive complete detonation. Then, in order to analyze the crack propagation in different initiation forms, a rock fracture test slot was designed, and the results show that bilinear initiating system can change the energy distribution of explosives. Finally, field experiment was implemented at the hard rock pile blasting engineering, and experimental results show that the present system possesses high explosive energy utilization ratio and low rock fragments size. The results of this study can be used to improve the efficiency in hard rock blasting.

  7. Thermal effects in disposal of radioactive waste in hard rock

    International Nuclear Information System (INIS)

    Bourke, P.J.; Hodgkinson, D.P.; Batchelor, A.S.

    1978-01-01

    The first objective of the UKAEA programme of field heating experiments is to study any variations in thermal conductivity of granite over long (10 - 100m) distances heated to high (100's 0 C) temperatures for about a year. A description is given of the first tests with an 18 kW heater at 50 m depth and 72 thermocouples in the surrounding 25m radius sphere of rock. The reasons for choice of this scale of experiment are presented and the problems encountered and initial results are described. The further objectives of these experiments are to investigate thermal stresses and any cracking of the granite so that thermally induced movement of water through rock with both its natural and any increased permeability can be quantified. Measurements to be made of the mechanical and permeable properties as the rock heats are described

  8. Underground Research Laboratories for Crystalline Rock and Sedimentary Rock in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, N.; Takeda, S.; Matsui, H.; Yamasaki, S.

    2003-02-27

    The Japan Nuclear Cycle Development Institute (JNC) has started two off-site (generic) underground research laboratory (URL) projects, one for crystalline rock as a fractured media and the other for sedimentary rock as a porous media. This paper introduces an overview and current status of these projects.

  9. Hydrofracturing water boreholes in hard rock aquifers in Scotland

    CSIR Research Space (South Africa)

    Cobbing, J

    2007-01-01

    Full Text Available rural areas of the UK, low-productivity aquifers are an important resource for small public water supplies. Where a borehole in low-productivity crystalline rocks proves too low yielding for its designed purpose, hydrofracturing is a cost-effective means...

  10. Disc cutter wear and rock texture in hard rock TBM tunneling

    International Nuclear Information System (INIS)

    Koizumi, Yu; Tsusaka, Kimikazu; Tanimoto, Chikaosa; Nakagawa, Shigeo; Fujita, Naoya

    2008-01-01

    Disc cutter wear in TBM tunneling is caused by initial fragmentation of a solid rock face (the primary fragmentation) and fragmentation of residual rock pieces between a cutterhead and the face (the secondary fragmentation). In two projects through sedimentary and granitic rocks, the authors investigated the relationships between the rate of cutter wear caused by the primary fragmentation, point load index and the grain size and contents of abrasive minerals. As a result, it was found that the tensile strength and the mineral contents of rocks significantly influenced the cutter wear in both projects and thus it is necessary to take into account of rock type. (author)

  11. Research on definition of hard rock shear wave velocity of site for nuclear power plant

    International Nuclear Information System (INIS)

    Ding Zhenkun; Xia Zufeng

    2013-01-01

    Background: The definition of hard rock shear wave velocity is one of the most critical issues in the work of site selection. Purpose: To make a definition of hard rock site on which the model can be assumed as fixed-base condition, a series of research had been done. Several possible hard rock site soil models were developed. Methods: Shear wave velocity of hard rock had been assumed from 1100 m/s to 3200 m/s. For each case, free field analysis and soil structure analysis had been performed. And responses in soil and key nodes of structure were compared. Results: In free field analysis, responses of models that shear wave velocity below 2400 m/s decreased a lot. In SSI analysis, structure responses didn't change much when shear wave velocity was above 2400 m/s. Conclusions: 2400 m/s was the lowest shear wave velocity for hard rock site for fixed-base assumption. (authors)

  12. The Fracture Influence on the Energy Loss of Compressed Air Energy Storage in Hard Rock

    Directory of Open Access Journals (Sweden)

    Hehua Zhu

    2015-01-01

    Full Text Available A coupled nonisothermal gas flow and geomechanical numerical modeling is conducted to study the influence of fractures (joints on the complex thermohydromechanical (THM performance of underground compressed air energy storage (CAES in hard rock caverns. The air-filled chamber is modeled as porous media with high porosity, high permeability, and high thermal conductivity. The present analysis focuses on the CAES in hard rock caverns at relatively shallow depth, that is, ≤100 m, and the pressure in carven is significantly higher than ambient pore pressure. The influence of one discrete crack and multiple crackson energy loss analysis of cavern in hard rock media are carried out. Two conditions are considered during each storage and release cycle, namely, gas injection and production mass being equal and additional gas injection supplemented after each cycle. The influence of the crack location, the crack length, and the crack open width on the energy loss is studied.

  13. Hard-rock tunneling using pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1975-01-01

    Intense sub-microsecond bursts of energetic electrons cause significant pulverization and surface spalling of a variety of rock types. The spall debris generally consists of sand, dust, and small flakes. If carried out at rapid repetition rate, this technique appears promising for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a pulsed electron tunnel excavator, capable of tunneling approximately ten times faster than conventional drill/blast methods, is presented. (auth)

  14. Apparatus and method for large tunnel excavation in hard rock

    International Nuclear Information System (INIS)

    Altseimer, J.H.; Hanold, R.J.

    1975-01-01

    A tunneling machine is described for producing large tunnels in rock by progressive detachment of the tunnel core by thermal melting a boundary kerf into the tunnel face and simultaneously forming an initial tunnel wall support by deflecting the molten materials against the tunnel walls to provide, when solidified, a continuous liner; and fragmenting the tunnel core circumscribed by the kerf by thermal stress fracturing and in which the heat required for such operations is supplied by a compact nuclear reactor. (U.S.)

  15. Initial assessment of the thermal stresses around a radioactive waste depository in hard rock

    International Nuclear Information System (INIS)

    Hodgkinson, D.P.; Bourke, P.J.

    1980-01-01

    The disposal of heat emitting radioactive waste into hard rock should result in temperature rises and thermal gradients over distances of several hundred metres for several centuries. The consequent constrained thermal expansion of the rock would induce stresses which have important implications for possible water-borne leakage of radionuclides and for depository design. These problems are assessed by considering a simplified mathematical model for which analytic solutions to the temperature and stress fields are derived. (author)

  16. Assessment of site-scale hydrogeological modelling possibilities in crystalline hard rock for safety appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J. [Cleanwater Hardrock Consulting, Corvallis, OR (United States); Luukkonen, A.

    2012-09-15

    This review describes the state-of-the-art in hydrogeological modelling for safety-case studies related to spent-fuel repositories in crystalline hard rock, focusing on issues of relevance for the KBS-3 disposal concept in Nordic environments. The review includes a survey of model capabilities and assumptions regarding groundwater flow processes, geological and excavation-related features, and boundary conditions for temperate, periglacial, and glacial climates. Modelling approaches are compared for research sites including the Stripa mine (Sweden), the Grimsel Test Site (Switzerland), the Whiteshell Underground Research Laboratory (Canada), the Aspo Hard Rock Laboratory and Simpevarp-Laxemar site (Sweden), the Forsmark site (Sweden), the Waste Isolation Pilot Plant site (USA), and Olkiluoto (Finland). Current hydrogeological models allow realistic representations, but are limited by availability of data to constrain their properties. Examples of calibrations of stochastic representations of heterogeneity are still scarce. Integrated models that couple flow and non-reactive transport are now well established, particularly those based on continuum representations. Models that include reactive transport are still mainly in the realm of research tools. Thus far, no single software tool allows fully coupled treatment of all relevant thermal, hydraulic, mechanical, and chemical transport processes in the bedrock, together with climate-related physical processes at the ground surface, and with explicit treatment of bedrock heterogeneity. Hence practical applications require combinations of models based on different simplifications. Key improvements can be expected in treatment of the unsaturated zone, simulation of heterogeneous infiltration at the surface, and hydromechanical coupling. Significant advances have already been made in the amounts and types of data that can be used in site-scale models, including large datasets to define topography and other surface

  17. Laboratory testing of a long expansion rock bolt support for energy-absorbing applications

    Directory of Open Access Journals (Sweden)

    Skrzypkowski Krzysztof

    2018-01-01

    Full Text Available The main purpose of rock support and reinforcement in underground mining is to maintain excavations safe and open for their intended lifespan. The basic type of rock mass reinforcement method both in ore and hard coal mining is rock bolt support. Very often, existing bolt support systems are not always capable of providing a reliable controlled performance. Therefore, in recent years energy-absorbing bolts which are exposed to dynamic loading, for example from rock burst caused by high rock stresses, earthquakes, or blasting have appeared. In this article particular attention was paid to short and long expansion bolts. Quasi-static tests of expansion bolts were carried out at the laboratory test facility in simulated mining conditions, especially for the KGHM Polska Miedź S.A. mines. In the underground mines of the Legnica-Głogów Copper District (LGOM the main way to protect the room excavation is rock bolt support with a length from 1.2 m to 2.6 m. Rock bolt support longer than 2.6 m is considered as additional support of excavations and is increasingly being used to reinforce the roofs. The comparisons of energy-absorbing short and long expansion bolts with a length of 1.8m, 3.6m and 5.2m were presented. In addition, for elastic and plastic range of each bolts were determined.

  18. Laboratory testing of a long expansion rock bolt support for energy-absorbing applications

    Science.gov (United States)

    Skrzypkowski, Krzysztof

    2018-01-01

    The main purpose of rock support and reinforcement in underground mining is to maintain excavations safe and open for their intended lifespan. The basic type of rock mass reinforcement method both in ore and hard coal mining is rock bolt support. Very often, existing bolt support systems are not always capable of providing a reliable controlled performance. Therefore, in recent years energy-absorbing bolts which are exposed to dynamic loading, for example from rock burst caused by high rock stresses, earthquakes, or blasting have appeared. In this article particular attention was paid to short and long expansion bolts. Quasi-static tests of expansion bolts were carried out at the laboratory test facility in simulated mining conditions, especially for the KGHM Polska Miedź S.A. mines. In the underground mines of the Legnica-Głogów Copper District (LGOM) the main way to protect the room excavation is rock bolt support with a length from 1.2 m to 2.6 m. Rock bolt support longer than 2.6 m is considered as additional support of excavations and is increasingly being used to reinforce the roofs. The comparisons of energy-absorbing short and long expansion bolts with a length of 1.8m, 3.6m and 5.2m were presented. In addition, for elastic and plastic range of each bolts were determined.

  19. Groundwater-quality data in the Santa Cruz, San Gabriel, and Peninsular Ranges Hard Rock Aquifers study unit, 2011-2012: results from the California GAMA program

    Science.gov (United States)

    Davis, Tracy A.; Shelton, Jennifer L.

    2014-01-01

    Groundwater quality in the 2,400-square-mile Santa Cruz, San Gabriel, and Peninsular Ranges Hard Rock Aquifers (Hard Rock) study unit was investigated by the U.S. Geological Survey (USGS) from March 2011 through March 2012, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The Hard Rock study unit was the 35th study unit to be sampled as part of the GAMA-PBP.

  20. Application of Confined Blasting in Water-Filled Deep Holes to Control Strong Rock Pressure in Hard Rock Mines

    Directory of Open Access Journals (Sweden)

    Jingxuan Yang

    2017-11-01

    Full Text Available In extra-thick coal seams, mining operations can lead to large-scale disturbances, complex overburden structures, and frequent and strong strata behavior in the stope, which are serious threats to mine safety. This study analyzed the overburden structure and strata behavior and proposed the technique of confined blasting in water-filled deep holes as a measure to prevent strong rock pressure. It found that there are two primary reasons for the high effectiveness of the proposed technique in presplitting hard coal and rock. First, the fracture water enables much more efficient transfer of dynamic load due to its incompressibility. Second, the subsequent expansion of water can further split the rock by compression. A mechanical model was used to reveal how the process of confined blasting in water-filled deep holes presplit roof. Moreover, practical implementation of this technique was found to improve the structure of hard, thick roof and prevent strong rock pressure, demonstrating its effectiveness in roof control.

  1. On the Dynamics of Rocking Motion of the Hard-Disk Drive Spindle Motor System

    Science.gov (United States)

    Wang, Joseph

    Excessive rocking motion of the spindle motor system can cause track misregistration resulting in poor throughput or even drive failure. The chance of excessive disk stack rocking increases as a result of decreasing torsional stiffness of spindle motor bearing system due to the market demand for low profile hard drives. As the track density increases and the vibration specification becomes increasingly stringent, rocking motion of a spindle motor system deserves even more attention and has become a primary challenge for a spindle motor system designer. Lack of understanding of the rocking phenomenon combined with misleading paradox has presented a great difficulty in the effort of avoiding the rocking motion in the hard-disk drive industry. This paper aims to provide fundamental understanding of the rocking phenomenon of a rotating spindle motor system, to clarify the paradox in disk-drive industry and to provide a design guide to an optimized spindle system. This paper, theoretically and experimentally, covers a few important areas of industrial interest including the prediction of rocking natural frequencies and mode shape of a rotating spindle, free vibration, and frequency response under common forcing functions such as rotating and fixed-plane forcing functions. The theory presented here meets with agreeable experimental observation.

  2. Rock stress measurements in the Grimsel Underground Rock Laboratory and their geological interpretation

    International Nuclear Information System (INIS)

    Braeuer, V.; Heusermann, S.; Pahl, A.

    1989-01-01

    Rock stress is being studied as part of the Swiss-German cooperation between the National Cooperative for the Storage of Radioactive Waste (NAGRA), the Research Centre for Environmental Sciences (GSF), and the Federal Institute for Geosciences and Natural Resources (BGR) in the Grimsel Rock Laboratory in Switzerland. Several methods and various equipment for measuring rock stress have been developed and tested in an approximately 200-m borehole drilled from a gallery at a depth of 450 m. The measurements were made continually during overcoring; the data were recorded and processed in a computer located downhole or outside the borehole. The results of the overcoring tests and of frac tests indicate a principle horizontal stress of 25-40 MPa, directed mainly NW-SE. Detailed geological mapping shows relationships between stress and rock structure. A zone of nearly unfractured rock exhibits an increase in stress and a change in stress direction. (orig.)

  3. Radioactive waste repositories in hard rock aquifers--hydrodynamic aspects

    International Nuclear Information System (INIS)

    Thunvik, R.; Braester, C.

    1984-01-01

    A mathematical model for mass and heat flow and a computer program have been developed to demonstrate the effect of heat released from a hypothetical radioactive waste repository on the groundwater flow regime. The model, based on the continuum approach, conceptualizes the fracture pattern and the solid blocks as two overlapping continua and consists of a set of coupled nonlinear partial differential equations. The general form of the model is three-dimensional and can treat the fluid and rock either as two separate media with a quasi-steady exchange of heat between them or as a single equivalent medium with instantaneous thermal equilibrium. Numerical solutions have been obtained by the Galerkin finite element method. Examples have been presented for topographically different locations of the repository: below a horizontal ground surface, below a hill crest, below a hillside, and close to major fractures. The effects of constant permeability and porosity or downward decreasing with depth as well as the effect of anisotropic permeability have been investigated. Solutions include the velocity field, path lines, and traveling times of water particles passing the repository and the temperature distribution. The examples have been worked out for a two-dimensional flow domain, assuming that instantaneous thermal equilibrium takes place. This assumption was found to be justified by the relatively low flow velocities that occurred in the examples. Except for the location close to a major draining fracture, heat released from the radioactive waste repository may have a significant influence on the flow regime around the repository

  4. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    Science.gov (United States)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  5. Laboratory investigations into fracture propagation characteristics of rock material

    Science.gov (United States)

    Prasad, B. N. V. Siva; Murthy, V. M. S. R.

    2018-04-01

    After Industrial Revolution, demand of materials for building up structures have increased enormously. Unfortunately, failures of such structures resulted in loss of life and property. Rock is anisotropic and discontinuous in nature with inherent flaws or so-called discontinuities in it. Rock is apparently used for construction in mining, civil, tunnelling, hydropower, geothermal and nuclear sectors [1]. Therefore, the strength of the structure built up considering rockmass as the construction material needs proper technical evaluation during designing stage itself to prevent and predict the scenarios of catastrophic failures due to these inherent fractures [2]. In this study, samples collected from nine different drilling sites have been investigated in laboratory for understanding the fracture propagation characteristics in rock. Rock material properties, ultrasonic velocities through pulse transmission technique and Mode I Fracture Toughness Testing of different variants of Dolomites and Graywackes are determined in laboratory and the resistance of the rock material to catastrophic crack extension or propagation has been determined. Based on the Fracture Toughness values and the rock properties, critical Energy Release Rates have been estimated. However further studies in this direction is to be carried out to understand the fracture propagation characteristics in three-dimensional space.

  6. The automation of the "making safe" process in South African hard-rock underground mine

    CSIR Research Space (South Africa)

    Teleka, SR

    2011-07-01

    Full Text Available In South African hard-rock mines, best practice dictates that the hanging-walls be inspected after blasting. This process is known as ‘making safe’ and although intended to save lives, it is laborious and subjective. Pressure is placed on the barrer...

  7. Rocks and Other Hard Places: Tracing Ethical Thinking in Korean and English Dialog

    Science.gov (United States)

    Kim, Yong-Ho; Kellogg, David

    2015-01-01

    Researchers into moral education, and ethics educators too, often find themselves between a rock and a hard place. On the one hand, we wish to know what the child will do beyond the narrow range of communicative functions carried out in a classroom, and to do this, we employ purely hypothetical problems, that is, problems that from the child's…

  8. Underground laboratories for rock mechanics before radioactive waste

    International Nuclear Information System (INIS)

    Duffaut, P.

    1985-01-01

    Many rock mechanics tests are performed in situ, most of them underground since 1936 at the Beni Bahdel dam. The chief tests for understanding the rock mass behaviour are deformability tests (plate test and pressure cavern test, including creep experiments) and strength tests (compression of a mine pillar, shear test on rock mass or joint). Influence of moisture, heat, cold and freeze are other fields of investigation which deserve underground laboratories. Behaviour of test galleries, either unsupported or with various kinds of support, often is studied along time, and along the work progression, tunnel face advance, enlargement or deepening of the cross section. The examples given here help to clarify the concept of underground laboratory in spite of its many different objectives. 38 refs.; 1 figure; 1 table

  9. The Rock Cycle or It's Hard When You're a Rock.

    Science.gov (United States)

    Pugsley, David C.

    Produced for primary grades, this booklet provides study of the mineral or rock cycle in nature. Line drawings, a minimum amount of narrative, and a glossary of terms make up its content. The booklet is designed to be used as reading material, a coloring book, or for dramatic arts with students acting out parts of the cycle. This work was prepared…

  10. Hard-rock GMPEs versus Vs30-Kappa Host-to-Target Adjustment Techniques : Why so Large Differences in High Frequency Hard-Rock Motion ?

    Science.gov (United States)

    Bard, P. Y.; Laurendeau, A.; Hollender, F.; Perron, V.; Hernandez, B.; Foundotos, L.

    2016-12-01

    Assessment of local seismic hazard on hard rock sites (1000 processing of the Japanese KiK-net recordings from stiff sites (500 deep, within-motion to outcropping motion, or on a deconvolution of surface recordings using the velocity profile and 1D simulation, which has been performed both in the response spectrum and Fourier domains. Each of these virtual "outcropping hard-rock motion" data sets has then been used to derive GMPEs with simple functional forms, using as site condition proxy the S-wave velocity at depth (VSDH), ranging from 1000 to 3000 m/s. Both sets provide very similar predictions, which are much smaller at high frequencies (f > 10 Hz) than those estimated with the traditional HTTA technique - by a factor up to 3-4,. These differences decrease for decreasing frequency, and become negligible at low frequency (f shallow, moderate velocity layers. Not only this resonant amplification is not correctly accounted for by the quarter-wavelength approach used in the traditional HTTA adjustment techniques, but it may also significantly impact and bias the κ measurements, and the (VS30- κ0) relationships implicitly used in HTTA techniques.

  11. Influence of different geological structures on stress–strain state of hard rock mass

    Science.gov (United States)

    Kuznetzov, NN; Fedotova, YuV

    2018-03-01

    The results of numerical simulation of stress–strain state in a hard rock mass area with the complex geological structures are presented. The variants of the stress value change are considered depending on the boundary conditions and physical properties of the model blocks. Furthermore, the possibility of in-situ stress formation under the influence of energy coming from the deeper Earth’s layers is demonstrated in terms of the Khibiny Massif.

  12. Evaluating the Relationships Between NTNU/SINTEF Drillability Indices with Index Properties and Petrographic Data of Hard Igneous Rocks

    Science.gov (United States)

    Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad; Azali, Sadegh Tarigh

    2017-11-01

    Thorough and realistic performance predictions are among the main requisites for estimating excavation costs and time of the tunneling projects. Also, NTNU/SINTEF rock drillability indices, including the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), and Cutter Life Index™ (CLI), are among the most effective indices for determining rock drillability. In this study, brittleness value (S20), Sievers' J-Value (SJ), abrasion value (AV), and Abrasion Value Cutter Steel (AVS) tests are conducted to determine these indices for a wide range of Iranian hard igneous rocks. In addition, relationships between such drillability parameters with petrographic features and index properties of the tested rocks are investigated. The results from multiple regression analysis revealed that the multiple regression models prepared using petrographic features provide a better estimation of drillability compared to those prepared using index properties. Also, it was found that the semiautomatic petrography and multiple regression analyses provide a suitable complement to determine drillability properties of igneous rocks. Based on the results of this study, AV has higher correlations with studied mineralogical indices than AVS. The results imply that, in general, rock surface hardness of hard igneous rocks is very high, and the acidic igneous rocks have a lower strength and density and higher S20 than those of basic rocks. Moreover, DRI is higher, while BWI is lower in acidic igneous rocks, suggesting that drill and blast tunneling is more convenient in these rocks than basic rocks.

  13. Release consequence analysis for a hypothetical geologic radioactive waste repository in hard rock

    International Nuclear Information System (INIS)

    1979-12-01

    This report makes an evaluation of the long-term behaviour of the wastes placed in a hard rock repository. Impacts were analyzed for the seven reference fuel cycles of WG 7. The reference repository for this study is for granitic rock or gneiss as the host rock. The descriptions of waste packages and repository facilities used in this study represent only one of many possible designs based on the multiple barriers concept. The repository's size is based on a nuclear economy producing 100 gigawatts of electricity per year for 1 year. The objective of the modeling efforts presented in this study is to predict the rate of transport of radioactive contaminants from the repository through the geosphere to the biosphere and thus determine an estimate of the potential dose to humans so that the release consequence impacts of the various fuel cycles can be compared. Currently available hydrologic, leach, transport, and dose models were used in this study

  14. A study on the U speciation in groundwater of a hard rock aquifer in South India

    International Nuclear Information System (INIS)

    Thivya, C.; Chidambaram, S.; Thilagavathi, R.; Nepolian, M.; Adithya, V.S.; Tirumalesh, K.; Prasanna, M.V.

    2015-01-01

    Speciation of uranium indicates the contribution of this ion into different species. An attempt has been made to study the spatial and temporal variations of U speciation in the hard rock aquifer of South India. The major rock types have granulite facies with high grade metamorphic rocks and younger intrusive. It also comprises of Fissile hornblende biotite gneiss, Charnockite, Quartzite, Granite and Flood Plain Alluvium. A total of 108 samples were collected from the handpumps of the study area for two seasons (Pre monsoon and South West monsoon). The groundwater samples were analysed for U and other ions like Ca 2+ , Mg 2+ , Na + and K + , HCO 3 - , Cl - , SO 4 2- , PO 4 3- , NO 3 - , F - , H 4 SiO 4 , pH, EC and TDS using standard procedures

  15. Study of the Peak Shear Strength of a Cement-Filled Hard Rock Joint

    Science.gov (United States)

    She, Cheng-Xue; Sun, Fu-Ting

    2018-03-01

    The peak shear strength of a cement-filled hard rock joint is studied by theoretical analysis and laboratory testing. Based on the concept of the shear resistance angle, by combining the statistical method and fractal theory, three new parameters are proposed to characterize the three-dimensional joint morphology, reflecting the effects of the average roughness, multi-scale asperities and the dispersion degree of the roughness distribution. These factors are independent of the measurement scale, and they reflect the anisotropy of the joint roughness. Compressive shear tests are conducted on cement-filled joints. Because joints without cement can be considered special cement-filled joints in which the filling degree of cement is zero, they are also tested. The cement-filled granite joint fails primarily along the granite-cement interfaces. The filling degree of cement controls the joint failure and affects its mechanical behaviour. With a decrease in the filling degree of cement, the joint cohesion decreases; however, the dilatancy angle and the basic friction angle of the interface increase. As the filling degree approaches zero, the cohesion approaches zero, while the dilatancy angle and the basic friction angle increase to those of the joint without cement. A set of formulas is proposed to evaluate the peak shear strength of the joints with and without cement. The formulas are shown to be reasonable by comparison with the tested peak shear strength, and they reflect the anisotropy of the strength. This research deepens the understanding of cement-filled joints and provides a method to evaluate their peak shear strength.

  16. Appraisal of hard rock for potential underground repositories of radioactive wastes. LBL-7004

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1978-01-01

    Underground burial of radioactive wastes in hard rock may be an effective and safe means of isolating them from the environment and from man. The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 km to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  17. Frictional sliding in layered rock: laboratory-scale experiments

    International Nuclear Information System (INIS)

    Buescher, B.J.; Perry, K.E. Jr.; Epstein, J.S.

    1996-09-01

    The work is part of the rock mechanics effort for the Yucca Mountain Site Characterization Program. The laboratory-scale experiments are intended to provide high quality data on the mechanical behavior of jointed structures that can be used to validate complex numerical models for rock-mass behavior. Frictional sliding between simulated rock joints was studied using phase shifting moire interferometry. A model, constructed from stacks of machined and sandblasted granite plates, contained a central hole bore normal to the place so that frictional slip would be induced between the plates near the hole under compressive loading. Results show a clear evolution of slip with increasing load. Since the rock was not cycled through loading- unloading, the quantitative differences between the three data sets are probably due to a ''wearing-in'' effect. The highly variable spatial frequency of the data is probably due to the large grain size of the granite and the stochastic frictional processes. An unusual feature of the evolution of slip with increasing load is that as the load gets larger, some plates seem to return to a null position. Figs, 6 refs

  18. Appraisal of hard rock for potential underground repositories of radioactive wastes

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1977-10-01

    The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  19. A Coupled Thermo-Hydro-Mechanical Model of Jointed Hard Rock for Compressed Air Energy Storage

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhuang

    2014-01-01

    Full Text Available Renewable energy resources such as wind and solar are intermittent, which causes instability when being connected to utility grid of electricity. Compressed air energy storage (CAES provides an economic and technical viable solution to this problem by utilizing subsurface rock cavern to store the electricity generated by renewable energy in the form of compressed air. Though CAES has been used for over three decades, it is only restricted to salt rock or aquifers for air tightness reason. In this paper, the technical feasibility of utilizing hard rock for CAES is investigated by using a coupled thermo-hydro-mechanical (THM modelling of nonisothermal gas flow. Governing equations are derived from the rules of energy balance, mass balance, and static equilibrium. Cyclic volumetric mass source and heat source models are applied to simulate the gas injection and production. Evaluation is carried out for intact rock and rock with discrete crack, respectively. In both cases, the heat and pressure losses using air mass control and supplementary air injection are compared.

  20. Prehistoric Rock Structures of the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R Pace

    2007-04-01

    Over the past 13,500 years, human populations have lived in and productively utilized the natural resources offered by the cold desert environment of the northeastern Snake River Plain in eastern Idaho. Within an overall framework of hunting and gathering, groups relied on an intimate familiarity with the natural world and developed a variety of technologies to extract the resources that they needed to survive. Useful items were abundant and found everywhere on the landscape. Even the basaltic terrain and the rocks, themselves, were put to productive use. This paper presents a preliminary classification scheme for rock structures built on the Idaho National Laboratory landscape by prehistoric aboriginal populations, including discussions of the overall architecture of the structures, associated artifact assemblages, and topographic placement. Adopting an ecological perspective, the paper concludes with a discussion of the possible functions of these unique resources for the desert populations that once called the INL home.

  1. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach

    NARCIS (Netherlands)

    Tanvir Hassan, S.M.; Lubczynski, M.; Niswonger, R.G.; Su, Zhongbo

    2014-01-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic

  2. Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks - Sardón catchment (Spain)

    OpenAIRE

    Francés, Alain; Lubczynski, Maciek W.; Roy, Jean; Santos, Fernando A. Monteiro; Ardekani, Mohammad R. Mahmoudzadeh

    2014-01-01

    Hard rock aquifers are highly heterogeneous and hydrogeologically complex. To contribute to the design of hydrogeological conceptual models of hard rock aquifers, we propose a multi-techniques methodology based on a downward approach that combines remote sensing (RS), non-invasive hydrogeophysics and hydrogeological field data acquisition. The proposed methodology is particularly suitable for data scarce areas. It was applied in the pilot research area of Sardón catchment (80 km2)...

  3. Assessment of fluoride contaminations in groundwater of hard rock aquifers in Madurai district, Tamil Nadu (India)

    Science.gov (United States)

    Thivya, C.; Chidambaram, S.; Rao, M. S.; Thilagavathi, R.; Prasanna, M. V.; Manikandan, S.

    2017-05-01

    The fluoride contamination in drinking water is already gone to the alarming level and it needs the immediate involvement and attention of all people to solve this problem. Fluoride problem is higher in hard rock terrains in worldwide and Madurai is such type of hard rock region. Totally 54 samples were collected from the Madurai district of Tamilnadu with respect to lithology. The samples collected were analysed for major cations and anions using standard procedures. The higher concentration of fluoride is noted in the Charnockite rock types of northern part of the study area. 20 % of samples are below 0.5 ppm and 6 % of samples are above 1.5 ppm exceeding the permissible limit. The affinity between the pH and fluoride ions in groundwater suggests that dissolution of fluoride bearing minerals in groundwater. The higher concentration of fluoride ions are observed in the lower EC concentration. The isotopic study suggests that fluoride is geogenic in nature. In factor scores, fluoride is noted in association with pH which indicates the dissolution process.

  4. Friction of hard surfaces and its application in earthquakes and rock slope stability

    Science.gov (United States)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we discuss the friction models for hard surfaces and their applications in earth sciences. The rate and state friction (RSF) model, which is basically modified form of the classical Amontons-Coulomb friction laws, is widely used for explaining the crustal earthquakes and the rock slope failures. Yet the RSF model has further been modified by considering the role of temperature at the sliding interface known as the rate, state and temperature friction (RSTF) model. Further, if the pore pressure is also taken into account then it is stated as the rate, state, temperature and pore pressure friction (RSTPF) model. All the RSF models predict a critical stiffness as well as a critical velocity at which sliding behavior becomes stable/unstable. The friction models are also used for predicting time of failure of the rock mass on an inclined plane. Finally, the limitation and possibilities of the proposed friction models are also highlighted.

  5. Porosity measurements of crystalline rocks by laboratory and geophysical methods

    International Nuclear Information System (INIS)

    Alexander, J.; Hall, D.H.; Storey, B.C.

    1981-12-01

    Porosity values of igneous and metamorphic crystalline rocks have been determined from core samples taken at specific depths from Altnabreac, by a combination of laboratory and geophysical techniques. Using resaturation and mercury injection methods in three laboratories within I.G.S., porosity values have been derived and the effect of variations in the measuring techniques and results obtained have been compared. Comparison of inter-laboratory porosity values illustrates that systematic errors are present, resulting in higher porosity values for samples subjected to re-testing. This is considered to be caused by the variable nature of the initial samples combined with the inability to completely dry or resaturate samples during a second testing. Geophysical techniques for determining in situ porosity using the neutron log have been carried out in borehole ALA. The neutron log has been calibrated with laboratory derived porosity values and an empirical formula derived enabling porosity values to be ascribed throughout the logged borehole ALA. Comparison of the porosity results from Altnabreac with crystalline samples elsewhere in America, Europe and the U.K. suggest that porosities at Altnabreac are lower than average. However, very few publications concerned with water movement in crystalline areas actually state the method used. (author)

  6. Deciphering groundwater potential zones in hard rock terrain using geospatial technology.

    Science.gov (United States)

    Dar, Imran A; Sankar, K; Dar, Mithas A

    2011-02-01

    Remote sensing and geographical information system (GIS) has become one of the leading tools in the field of groundwater research, which helps in assessing, monitoring, and conserving groundwater resources. This paper mainly deals with the integrated approach of remote sensing and GIS to delineate groundwater potential zones in hard rock terrain. Digitized vector maps pertaining to chosen parameters, viz. geomorphology, geology, land use/land cover, lineament, relief, and drainage, were converted to raster data using 23 m×23 m grid cell size. Moreover, curvature of the study area was also considered while manipulating the spatial data. The raster maps of these parameters were assigned to their respective theme weight and class weights. The individual theme weight was multiplied by its respective class weight and then all the raster thematic layers were aggregated in a linear combination equation in Arc Map GIS Raster Calculator module. Moreover, the weighted layers were statistically modeled to get the areal extent of groundwater prospects with respect to each thematic layer. The final result depicts the favorable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.

  7. Recent development in the design of hard rock tunnel boring machines for the mining industry

    International Nuclear Information System (INIS)

    Snyder, L.L.; Williams, R.I.

    1991-01-01

    Underground development for nuclear waste storage will possibly require tunnels to be excavated in a variety of rock conditions and configurations. Recent innovations in Tunnel Boring Machine (TBM) design have allowed for an evolved style of TBM which has distinct advantages over the standard machines. Present day conventional hard rock TBM's were developed primarily for the long, relatively straight tunnels of the civil construction industry, thereby making them for the most part, unsuitable for the sharp curves, turnouts, declines, inclines and ramps required in many underground environments. The five foot to 36 foot (1.52 to 11 m) diameter machines are capable of boring tunnels with curve radiuses as small as 40 to 90 feet (12.2 to 27.5 m) depending on size. These short turning radiuses can be accomplished while gripping the tunnel walls horizontally in the traditional manner or vertically as required when intersecting existing tunnels, or making turnouts from the tunnel that the machine has just bored. The machine's length is approximately half of a traditional machine's length while still employing a full measure of thrust, horsepower and rock cutting ability. The machine's short length, combined with a patented machine structure allows it to steer while boring without causing harmful eccentric loads on the cutterhead and main bearing assembly. The machine configuration is versatile and can be easily modified to operate in a wide variety of conditions

  8. BEM-DDM modelling of rock damage and its implications on rock laboratory strength and in-situ stresses

    International Nuclear Information System (INIS)

    Matsui, Hiroya

    2008-03-01

    Within the framework of JAEA's Research and Development on deep geological environments for assessing the safety and reliability of the disposal technology for nuclear waste, this study was conducted to determine the effects of sample damage on the strength obtained from laboratory results (uniaxial compression and Brazilian test). Results of testing on samples of Toki granite taken at Shobasama and at the construction site for the Mizunami Underground Research Laboratory (MIU) at Mizunami, Gifu Pref., Japan, were analysed. Some spatial variation of the results along the boreholes suggested the presence of a correlation between the laboratory strength and the in-situ stresses measured by means of the hydro-fracturing method. To confirm this, numerical analyses of the drilling process in brittle rock by means of a BEM-DDM program (FRACOD 2D ) were carried out to study the induced fracture patterns. These fracture patterns were compared with similar results reported by other published studies and were found to be realistic. The correlation between strength and in-situ stresses could then be exploited to estimate the stresses and the location of core discing observed in boreholes where stress measurements were not available. A correction of the laboratory strength results was also proposed to take into account sample damage during drilling. Modelling of Brazilian tests shows that the calculated fracture patterns determine the strength of the models. This is different from the common assumption that failure occurs when the uniform tensile stress in the sample reaches the tensile strength of the rock material. Based on the modelling results, new Brazilian tests were carried out on samples from borehole MIZ-1 that confirmed the failure mechanism numerically observed. A numerical study of the fracture patterns induced by removal of the overburden on a large scale produces fracture patterns and stress distributions corresponding to observations in crystalline hard rock in

  9. Coupled Hydro-Economic Dynamics of Groundwater Irrigated Agriculture in a Hard Rock Region of India

    Science.gov (United States)

    Modi, V.; Fishman, R.; Siegfried, T. U.; Raj, P.; Vasquez, V.; Narula, K.; Lall, U.

    2009-12-01

    We analyze the dynamics of groundwater and irrigated agriculture in a semi-arid, hard rock region of India, which is characterized by low-yield, limited storativity aquifers. Telengana, in western Andhra Pradesh has witnessed a relentless expansion of the total irrigated area. Total crop irrigation water requirements have increased by more than 50 percent over the last 30 years. Nowadays, more than 80 percent of the net irrigated area in the region is irrigated from groundwater. Given limited, period monsoonal recharge to the aquifers, it can be estimated that groundwater irrigation intensity is surpassing sustainable allocation levels by a factor of 3. It is not further surprising that the region is increasingly affected by widespread groundwater depletion, with negative consequences for farmers and the energy sector as well as the natural environment. Using data on water tables, precipitation and agricultural land use, we show how both rainfall and farmers’ choices effect water tables and how these, in turn, re-effect farmers choices and agricultural outcomes in a dynamic relationship that allows us to model the interaction between the natural hydrological and agricultural-social dynamics. We use the model to elucidate and quantify the meaning of groundwater mining in this hard rock environment. In contrast to deep alluvial aquifers, excessive extraction does not lead to sustained long term deepening of the water table, but to increased fluctuations in the supply of groundwater for irrigation and the loss of the buffering capacity. For the farmers, this potentially translates into increasingly perilous agricultural production outcomes during monsoonal failures. Furthermore, the dry season agricultural production that entirely depends on the availability of sufficient amounts of irrigation water is progressively threatened under the current allocation scenario. Alternative management practices to address the aquifer depletion issues are discussed. We show that

  10. Application of deep hole blasting to shaft sinking in a hard rock-type uranium mine in south china

    International Nuclear Information System (INIS)

    Feng Haisheng; Zeng Lingguo; Ding Dexin

    2009-01-01

    The shaft for backfilling in the 43 exploratory line on the 200 m level in the Mianhuakang mining area in a hard rock uranium mine in South China could not be excavated by using conventional shaft sinking methode since it was near the fault zone and the rock around it was broken and water-bearing. Therefore, the shaft was excavated by using deep hole blasting. This paper presented the design for the blasting and the construction. (authors)

  11. Stepwise Inquiry into Hard Water in a High School Chemistry Laboratory

    Science.gov (United States)

    Kakisako, Mami; Nishikawa, Kazuyuki; Nakano, Masayoshi; Harada, Kana S.; Tatsuoka, Tomoyuki; Koga, Nobuyoshi

    2016-01-01

    This study focuses on the design of a learning program to introduce complexometric titration as a method for determining water hardness in a high school chemistry laboratory. Students are introduced to the different properties and reactions of hard water in a stepwise manner so that they gain the necessary chemical knowledge and conceptual…

  12. Studies on the recovery of REEY from a hard-rock deposit of Rajasthan

    International Nuclear Information System (INIS)

    Karan, Ram; Giri, Nitai; Anand Rao, K.; Sreenivas, T.

    2017-01-01

    Dantala area in Banner district of Rajasthan is endowed with poly metallic mineralization hosted in tuffaceous rocks consisting of REE, Zr, Nb, U Th, Zn and Ag. The region has potential to become a hardrock rare earth resource in India. The chemical and XRF analysis of a representative borehole sample revealed that the ore has about 68% SiO_2, 7.7% Al_2O_3, 7.4% Fe_2O_3, 4.75% CaO along with 305 ppm Nb, 109 ppm Th, 3738 ppm TREE of which, 2580 ppm is LREE and 1158 ppm is HREE including 777 ppm Y. The deportment profile of REEY in the sample determined by sequential chemical extraction technique. Major distribution of REEY is dissolvable only under highly acidic conditions as the REEY are bound to iron oxides and are associated with refractory phases (zircon?). Heavy media separation of coarsely crushed material showed presence of about 90% of REEY values in specific gravity d'' 2.8. Therefore, the REEY values could not be preconcentrated by conventional physical beneficiation techniques. Direct 'whole ore' leaching using HCL and H_2SO_4 in 'pug cure leaching' mode with H_2SO_4 yielded about 50% dissolution of REEY values. The paper discusses the process complexities in the recovery of REEY from this hard rock ore sample

  13. The typology of Irish hard-rock aquifers based on an integrated hydrogeological and geophysical approach

    Science.gov (United States)

    Comte, Jean-Christophe; Cassidy, Rachel; Nitsche, Janka; Ofterdinger, Ulrich; Pilatova, Katarina; Flynn, Raymond

    2012-12-01

    Groundwater flow in hard-rock aquifers is strongly controlled by the characteristics and distribution of structural heterogeneity. A methodology for catchment-scale characterisation is presented, based on the integration of complementary, multi-scale hydrogeological, geophysical and geological approaches. This was applied to three contrasting catchments underlain by metamorphic rocks in the northern parts of Ireland (Republic of Ireland and Northern Ireland, UK). Cross-validated surface and borehole geophysical investigations confirm the discontinuous overburden, lithological compartmentalisation of the bedrock and important spatial variations of the weathered bedrock profiles at macro-scale. Fracture analysis suggests that the recent (Alpine) tectonic fabric exerts strong control on the internal aquifer structure at meso-scale, which is likely to impact on the anisotropy of aquifer properties. The combination of the interpretation of depth-specific hydraulic-test data with the structural information provided by geophysical tests allows characterisation of the hydrodynamic properties of the identified aquifer units. Regionally, the distribution of hydraulic conductivities can be described by inverse power laws specific to the aquifer litho-type. Observed groundwater flow directions reflect this multi-scale structure. The proposed integrated approach applies widely available investigative tools to identify key dominant structures controlling groundwater flow, characterising the aquifer type for each catchment and resolving the spatial distribution of relevant aquifer units and associated hydrodynamic parameters.

  14. Large scale laboratory diffusion experiments in clay rocks

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, M.; Missana, T.; Mingarro, M.; Martin, P.L.; Cormenzana, J.L.

    2005-01-01

    Full text of publication follows: Clay formations are potential host rocks for high-level radioactive waste repositories. In clay materials the radionuclide diffusion is the main transport mechanism. Thus, the understanding of the diffusion processes and the determination of diffusion parameters in conditions as similar as possible to the real ones, are critical for the performance assessment of deep geological repository. Diffusion coefficients are mainly measured in the laboratory using small samples, after a preparation to fit into the diffusion cell. In addition, a few field tests are usually performed for confirming laboratory results, and analyse scale effects. In field or 'in situ' tests the experimental set-up usually includes the injection of a tracer diluted in reconstituted formation water into a packed off section of a borehole. Both experimental systems may produce artefacts in the determination of diffusion coefficients. In laboratory the preparation of the sample can generate structural change mainly if the consolidated clay have a layered fabric, and in field test the introduction of water could modify the properties of the saturated clay in the first few centimeters, just where radionuclide diffusion is expected to take place. In this work, a large scale laboratory diffusion experiment is proposed, using a large cylindrical sample of consolidated clay that can overcome the above mentioned problems. The tracers used were mixed with clay obtained by drilling a central hole, re-compacted into the hole at approximately the same density as the consolidated block and finally sealed. Neither additional treatment of the sample nor external monitoring are needed. After the experimental time needed for diffusion to take place (estimated by scoping calculations) the block was sampled to obtain a 3D distribution of the tracer concentration and the results were modelled. An additional advantage of the proposed configuration is that it could be used in 'in situ

  15. Acoustic emission and ultrasonic-velocity methods used to characterise the excavation disturbance associated with deep tunnels in hard rock

    Science.gov (United States)

    Falls, Stephen D.; Young, R. Paul

    1998-04-01

    Acoustic emission (AE) and ultrasonic-velocity monitoring studies have been undertaken at both the Atomic Energy of Canada Limited (AECL) Underground Research Laboratory (URL) and at the Swedish Nuclear Fuel Waste Management Company (SKB) Hard Rock Laboratory (HRL). At both locations the excavations were tunnels in granitic material at approximately 420 m depth. However, the stress regime was more severe at the URL Mine-by tunnel site than the HRL ZEDEX tunnel. Different parts of the ZEDEX tunnel were created using different excavation techniques. Using AE and ultrasonic techniques to study these tunnels we have been able to examine the nature of the excavation-disturbed zone around the tunnel, as well as examining the effects of different stress regimes and excavation techniques. Studies were undertaken both during and after the Mine-by tunnel excavation and during excavation in the ZEDEX tunnel. AE monitoring in the wall of the Mine-by tunnel during excavation showed that some activity occurred in the sidewall regions, but the spatial density of AE hypocentres increased toward the regions in the floor and roof of the tunnel where breakout notches formed. This sidewall activity was clustered primarily within 0.5 m of the tunnel wall. AE monitoring in the floor of the tunnel showed that small numbers of AE continued to occur in the notch region in the floor of the tunnel over 2 years after excavation was completed. This activity became more acute as the rock was heated, imposing thermally induced stresses on the volume. Ultrasonic-velocity studies both in the floor and the wall of the tunnel showed that the velocity is strongly anisotropic with the direction of slowest velocity orthogonal to the tunnel surface. The velocity increased with distance into the rock from the tunnel surface. In the floor, this effect was seen up to 2 m from the tunnel surface. Most of the change occurred within the first 0.5 m from the tunnel perimeter. At the lower-stress HRL, most of

  16. Focusing on the Hard parts: A Biomechanics Laboratory Exercise

    Science.gov (United States)

    Fingerut, Jonathan; Orbe, Kristina; Flynn, Daniel; Habdas, Piotr

    2013-01-01

    As part of a biomechanics course aimed at both upper-division Biology and Physics majors, this laboratory exercise introduces students to the ingenious ways in which organisms vary the composition and form of support and defensive structures such as bone and shell to maximize their strength while minimizing the energetic cost needed to produce…

  17. The Spatial Assessment of the Current Seismic Hazard State for Hard Rock Underground Mines

    Science.gov (United States)

    Wesseloo, Johan

    2018-06-01

    Mining-induced seismic hazard assessment is an important component in the management of safety and financial risk in mines. As the seismic hazard is a response to the mining activity, it is non-stationary and variable both in space and time. This paper presents an approach for implementing a probabilistic seismic hazard assessment to assess the current hazard state of a mine. Each of the components of the probabilistic seismic hazard assessment is considered within the context of hard rock underground mines. The focus of this paper is the assessment of the in-mine hazard distribution and does not consider the hazard to nearby public or structures. A rating system and methodologies to present hazard maps, for the purpose of communicating to different stakeholders in the mine, i.e. mine managers, technical personnel and the work force, are developed. The approach allows one to update the assessment with relative ease and within short time periods as new data become available, enabling the monitoring of the spatial and temporal change in the seismic hazard.

  18. Hard Rock Café Colombia, ejemplo de una franquicia exitosa

    Directory of Open Access Journals (Sweden)

    Julian Besedicheck Prieto

    2008-11-01

    Full Text Available La incursión y expansión de restaurantes y cadenas hoteleras en Colombia ha generado distintas oportunidades de negocio; por lo tanto, es importante analizar desde distintas ópticas este fenómeno, porque éste puede ser una solución empresarial para muchas compañías, inversionistas y personas. Con el auge del comercio internacional y la apertura económica en Colombia han ingresado un gran número de empresas al mercado nacional bajo distintas figuras, dentro de éstas se encuentra la franquicia, que ha permitido el ingreso de compañías de la industria de restaurantes como McDonald’s, Burger King, TGI Fridays, entre otras.En el siguiente artículo se observará una breve muestra del funcionamiento y desarrollo del restaurante Hard Rock Café Bogotá, desde su primer contacto con la casa matriz hasta su apertura y sus eventos durante los últimos 6 años.

  19. Hard Rock Café Colombia, ejemplo de una franquicia exitosa

    Directory of Open Access Journals (Sweden)

    Julián Besedicheck Prieto

    2008-11-01

    Full Text Available La incursión y expansión de restaurantes y cadenas hoteleras en Colombia ha generado distintas oportunidades de negocio; por lo tanto, es importante analizar desde distintas ópticas este fenómeno, porque éste puede ser una solución empresarial para muchas compañías, inversionistas y personas. Con el auge del comercio internacional y la apertura económica en Colombia han ingresado un gran número de empresas al mercado nacional bajo distintas figuras, dentro de éstas se encuentra la franquicia, que ha permitido el ingreso de compañías de la industria de restaurantes como McDonald’s, Burger King, TGI Fridays, entre otras. En el siguiente artículo se observará una breve muestra del funcionamiento y desarrollo del restaurante Hard Rock Café Bogotá, desde su primer contacto con la casa matriz hasta su apertura y sus eventos durante los últimos 6 años.

  20. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    Energy Technology Data Exchange (ETDEWEB)

    Biglin, D.; Wassell, M.

    1997-12-31

    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  1. The use of magnetic resonance sounding for quantifying specific yield and transmissivity in hard rock aquifers: The example of Benin

    Science.gov (United States)

    Vouillamoz, J. M.; Lawson, F. M. A.; Yalo, N.; Descloitres, M.

    2014-08-01

    Hundreds of thousands of boreholes have been drilled in hard rocks of Africa and Asia for supplying human communities with drinking water. Despite the common use of geophysics for improving the siting of boreholes, a significant number of drilled holes does not deliver enough water to be equipped (e.g. 40% on average in Benin). As compared to other non-invasive geophysical methods, magnetic resonance sounding (MRS) is selective to groundwater. However, this distinctive feature has not been fully used in previous published studies for quantifying the drainable groundwater in hard rocks (i.e. the specific yield) and the short-term productivity of aquifer (i.e. the transmissivity). We present in this paper a comparison of MRS results (i.e. the water content and pore-size parameter) with both specific yield and transmissivity calculated from long duration pumping tests. We conducted our experiments in six sites located in different hard rock groups in Benin, thus providing a unique data set to assess the usefulness of MRS in hard rock aquifers. We found that the MRS water content is about twice the specific yield. We also found that the MRS pore-size parameter is well correlated with the specific yield. Thus we proposed two linear equations for calculating the specific yield from the MRS water content (with an uncertainty of about 10%) and from the pore-size parameter (with an uncertainty of about 20%). The later has the advantage of defining a so-named MRS cutoff time value for indentifying non-drainable MRS water content and thus low groundwater reserve. We eventually propose a nonlinear equation for calculating the specific yield using jointly the MRS water content and the pore-size parameters, but this approach has to be confirmed with further investigations. This study also confirmed that aquifer transmissivity can be estimated from MRS results with an uncertainty of about 70%. We conclude that MRS can be usefully applied for estimating aquifer specific yield and

  2. Identification of a Suitable 3D Printing Material for Mimicking Brittle and Hard Rocks and Its Brittleness Enhancements

    Science.gov (United States)

    Zhou, T.; Zhu, J. B.

    2018-03-01

    Three-dimensional printing (3DP) is a computer-controlled additive manufacturing technique which is able to repeatedly and accurately fabricate objects with complicated geometry and internal structures. After 30 years of fast development, 3DP has become a mainstream manufacturing process in various fields. This study focuses on identifying the most suitable 3DP material from five targeted available 3DP materials, i.e. ceramics, gypsum, PMMA (poly(methyl methacrylate)), SR20 (acrylic copolymer) and resin (Accura® 60), to simulate brittle and hard rocks. Firstly, uniaxial compression tests were performed to determine the mechanical properties and failure patterns of the 3DP samples fabricated by those five materials. Experimental results indicate that among current 3DP techniques, the resin produced via stereolithography (SLA) is the most suitable 3DP material for mimicking brittle and hard rocks, although its brittleness needs to be improved. Subsequently, three methods including freezing, incorporation of internal macro-crack and addition of micro-defects were adopted to enhance the brittleness of the 3DP resin, followed by uniaxial compression tests on the treated samples. Experimental results reveal that 3DP resin samples with the suggested treatments exhibited brittle properties and behaved similarly to natural rocks. Finally, some prospective improvements which can be used to facilitate the application of 3DP techniques to rock mechanics were also discussed. The findings of this paper could contribute to promoting the application of 3DP technique in rock mechanics.

  3. Processes and mechanisms governing hard rock cliff erosion in western Brittany, France

    Science.gov (United States)

    Laute, Katja; Letortu, Pauline; Le Dantec, Nicolas

    2017-04-01

    The evolution of rocky coasts is controlled by the interplay between subaerial, marine as well as biological processes, and the geological context. In times of ongoing climate change it is difficult to predict how these erosional landscapes will respond for example to anticipated sea-level rise or to an increase in storminess. However, it can be expected that changes in the morphodynamics of rocky coasts will have a noticeable effect on society and infrastructure. Recent studies have proven that monitoring cliff micro-seismic ground motion has been very effective in exploring both marine and atmospheric actions on coastal cliffs. But only few studies have focused so far on the effects of wave loading and water circulation (runoff, infiltration, water table variations) on cliff stability and subsequent erosion, considering the interaction between subaerial and marine processes. This project focuses on the identification and quantification of environmental controls on hard rock cliff erosion with an emphasis on discriminating the relative contributions of subaerial and marine processes. We aim at relating different sources of mechanical stress (e.g. wave loading, direct wave impact, hydrostatic pressure, thermal expansion) to cliff-scale strain (cliff-top swaying and shaking) and micro-fracturing (generation, expansion and contraction of micro-cracks) with the objective to unravel and discriminate triggering mechanisms of cliff failure. A four-month monitoring field experiment during the winter period (February-May) of 2017 is carried out at a cliff face located in Porsmilin beach (western Brittany, France). The selected cliff section is exposed to Atlantic swell from the south/southwest with a significant wave height of ca. 1.5 m on average and, reaching up to 4 m during storm events. The cliff rises ca. 20 m above the beach and is mainly formed of orthogneiss with intrusions of granodiorite. The entire cliff is highly fractured and altered, which can promote slope

  4. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Michael S. Bruno

    2005-12-31

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer

  5. Selected elements of rock burst state assessment in case studies from the Silesian hard coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Kabiesz; Janusz Makowka [Central Mining Institute, Katowice (Poland)

    2009-09-15

    Exploitation of coal seams in the Upper Silesian Coal Basin is conducted in complex and difficult conditions. These difficulties are connected with the occurrence of many natural mining hazards and limitations resulting from the existing in this area surface infrastructure. One of the most important problems of Polish mining is the rock burst hazard and reliable evaluation of its condition. During long-years' mining practice in Poland a comprehensive system of evaluation and control of this hazard was developed. In the paper the main aspects of rock burst hazard state evaluation will be presented, comprising: 1) rock mass inclination for rock bursts, i.e., rock strength properties investigation, comprehensive parametric evaluation of rock mass inclination for rock bursts, prognosis of seismic events induced by mining operations, methods of computer-aided modelling of stress and rock mass deformation parameters distribution, strategic rock mass classification under rock burst degrees; 2) immediate seismic and rock burst hazard state evaluation, i.e., low diameter test drilling method, seismologic and seismoacoustic method, comprehensive method of rock burst hazard state evaluation, non-standard methods of evaluation; 3) legal aspects of rock burst hazard state evaluation. Selected elements of the hazard state evaluation system are illustrated with specific practical examples of their application. 11 refs., 14 figs.

  6. The Gran Sasso underground laboratories (measurements of rock radioactivity and neutron fluxes)

    International Nuclear Information System (INIS)

    Bellotti, E.; Buraschi, M.; Fiorini, E.; Liguori, C.

    1985-01-01

    The authors report on measurements of rock radioactivity and neutron flux performed in the Gran Sasso underground laboratories of the INFN in Italy. The Gran Sasso' Laboratories of the INFN are located underground, in galleries which have been excavated under the Gran Sasso mountain range. The minimum rock thickness covering the laboratories is about 1400 m of rock of average density 2.8 g cm/sup -3/, corresponding to a thickness of some 4000 m of water equivalent. The laboratories are located at about 1000 m above sea level. The main destination of these laboratories is to shelter very huge particle detectors which shall detect extremely rare nuclear events of extraordinary interest for particle physics as well as for astrophysics and cosmology. In these laboratories, the radiation background is expected to be extremely low, which is the main condition for performing the proposed experiments

  7. A study on variation in dissolved silica concentration in groundwater of hard rock aquifers in Southeast coast of India

    International Nuclear Information System (INIS)

    Pradeep, K; Nepolian, M; Anandhan, P; Chandran; Kaviyarasan, R; Chidambaram, S; Prasanna, M V

    2016-01-01

    Ground water of hard rock aquifers due to its lesser permeability results in the increased residence time, which leads to the higher concentration of ions. Hence in order to understand the hydro-geochemistry of the groundwater of a hard rock aquifer in India, 23 groundwater samples were collected from different locations of the study area and subjected to analysis of major cations and anions. The results of silica showed different range of concentration and was plotted in different groups. In order to understand the reason for this variation, different techniques like Thermodynamics, Statistics and GIS were adopted and it was inferred that the concentration was mainly governed by lithology and land use pattern of the study area. (paper)

  8. Time-lapse electrical surveys to locate infiltration zones in weathered hard rock tropical areas

    Science.gov (United States)

    Wubda, M.; Descloitres, M.; Yalo, N.; Ribolzi, O.; Vouillamoz, J. M.; Boukari, M.; Hector, B.; Séguis, L.

    2017-07-01

    In West Africa, infiltration and groundwater recharge processes in hard rock areas are depending on climatic, surface and subsurface conditions, and are poorly documented. Part of the reason is that identification, location and monitoring of these processes is still a challenge. Here, we explore the potential for time-lapse electrical surveys to bring additional information on these processes for two different climate situations: a semi-arid Sahelian site (north of Burkina and a humid Sudanian site (north of Benin), respectively focusing on indirect (localized) and direct (diffuse) recharge processes. The methodology is based on surveys in dry season and rainy season on typical pond or gully using Electrical Resistivity Tomography (ERT) and frequency electromagnetic (FEM) apparent conductivity mapping. The results show that in the Sahelian zone an indirect recharge occurs as expected, but infiltration doesn't takes place at the center of the pond to the aquifer, but occurs laterally in the banks. In Sudanian zone, the ERT survey shows a direct recharge process as expected, but also a complicated behavior of groundwater dilution, as well as the role of hardpans for fast infiltration. These processes are ascertained by groundwater monitoring in adjacent observing wells. At last, FEM time lapse mapping is found to be difficult to quantitatively interpreted due to the non-uniqueness of the model, clearly evidenced comparing FEM result to auger holes monitoring. Finally, we found that time-lapse ERT can be an efficient way to track infiltration processes across ponds and gullies in both climatic conditions, the Sahelian setting providing results easier to interpret, due to significant resistivity contrasts between dry and rain seasons. Both methods can be used for efficient implementation of punctual sensors for complementary studies. However, FEM time-lapse mapping remains difficult to practice without external information that renders this method less attractive for

  9. Quantification of the specific yield in a two-layer hard-rock aquifer model

    Science.gov (United States)

    Durand, Véronique; Léonardi, Véronique; de Marsily, Ghislain; Lachassagne, Patrick

    2017-08-01

    Hard rock aquifers (HRA) have long been considered to be two-layer systems, with a mostly capacitive layer just below the surface, the saprolite layer, and a mainly transmissive layer underneath, the fractured layer. Although this hydrogeological conceptual model is widely accepted today within the scientific community, it is difficult to quantify the respective storage properties of each layer with an equivalent porous medium model. Based on an HRA field site, this paper attempts to quantify in a distinct manner the respective values of the specific yield (Sy) in the saprolite and the fractured layer, with the help of a deterministic hydrogeological model. The study site is the Plancoët migmatitic aquifer located in north-western Brittany, France, with piezometric data from 36 observation wells surveyed every two weeks for eight years. Whereas most of the piezometers (26) are located where the water table lies within the saprolite, thus representing the specific yield of the unconfined layer (Sy1), 10 of them are representative of the unconfined fractured layer (Sy2), due to their position where the saprolite is eroded or unsaturated. The two-layer model, based on field observations of the layer geometry, runs with the MODFLOW code. 81 values of the Sy1/Sy2 parameter sets were tested manually, as an inverse calibration was not able to calibrate these parameters. In order to calibrate the storage properties, a new quality-of-fit criterion called ;AdVar; was also developed, equal to the mean squared deviation of the seasonal piezometric amplitude variation. Contrary to the variance, AdVar is able to select the best values for the specific yield in each layer. It is demonstrated that the saprolite layer is about 2.5 times more capacitive than the fractured layer, with Sy1 = 10% (7% < Sy1 < 15%) against Sy2 = 2% (1% < Sy2 < 3%), in this particular example.

  10. Quiet tunneling method in hard rock mass by cutting grooves and fracturing rock; Mizo wo hori, iwa wo wari, katai tonneru wo shizukani kussaku

    Energy Technology Data Exchange (ETDEWEB)

    Noma, T. [Fujita Corp., Tokyo (Japan)

    1998-08-15

    Where blasting cannot be applied due to large vibration and noise, adoption of mechanical tunneling is essential to tunneling of hard rock. In tunneling of hard rock, the existing of free surface is important. The free surface means a surface which does not restrict destruction on fracturing and it is important to form a continuous free surface efficiently and economically. The development of a new free surface forming engineering method is described. It requires no exclusive machines and all drilling works can be operated with general drill jumbo machine. In this new engineering method, the free surface is formed by continuous drilling of a single hole. Spinning anti-bend (SAB) rod is inserted into the existing drilled hole and a drill bit generates the free surface by contact with and blow the SAB rod. The procedure of the continuous drilling, an application example and the features of the procedure are described. This method has an ability to form a free surface more than 3.5m{sup 2}h even for rock bed wit compression strength more than 200MPa. 2 refs., 8 figs.

  11. UK modelling of thermal effects on leakage from hard rock depositories

    International Nuclear Information System (INIS)

    Bourke, P.J.

    1980-01-01

    Thermally induced stress through and around depositories have been calculated assuming the rock to have constant mechanical properties obtained from laboratory measurements and ignoring the effects of existing fractures. After allowing for probable values of the natural stress field, regions of net tension and high shear stress which might cause new fractures were found. This analysis is, however, not yet considered to be reliable because of uncertainty about the above assumptions. Further, even if it is accurate, it is incomplete because it is still not possible to relate quantitatively calculated stresses to changes in permeability and porosity due to changes in existing fractures or initiation of new ones. Accordingly, further theoretical work is being done to plan an underground study of the effects of heating on a well defined fracture. Measurements of strain and modulus will be made to investigate the validity of the mechanical assumptions and hydraulic data will be obtained to relate stress to resistance to flow. It is hoped that further analysis will then allow an assessment of the importance of thermal stress around a depository to be made

  12. Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks - Sardón catchment (Spain)

    Science.gov (United States)

    Francés, Alain P.; Lubczynski, Maciek W.; Roy, Jean; Santos, Fernando A. M.; Mahmoudzadeh Ardekani, Mohammad R.

    2014-11-01

    Hard rock aquifers are highly heterogeneous and hydrogeologically complex. To contribute to the design of hydrogeological conceptual models of hard rock aquifers, we propose a multi-techniques methodology based on a downward approach that combines remote sensing (RS), non-invasive hydrogeophysics and hydrogeological field data acquisition. The proposed methodology is particularly suitable for data scarce areas. It was applied in the pilot research area of Sardón catchment (80 km2) located west of Salamanca (Spain). The area was selected because of hard-rock hydrogeology, semi-arid climate and scarcity of groundwater resources. The proposed methodology consisted of three main steps. First, we detected the main hydrogeological features at the catchment scale by processing: (i) a high resolution digital terrain model to map lineaments and to outline fault zones; and (ii) high-resolution, multispectral satellite QuickBird and WorldView-2 images to map the outcropping granite. Second, we characterized at the local scale the hydrogeological features identified at step one with: i) ground penetrating radar (GPR) to assess groundwater table depth complementing the available monitoring network data; ii) 2D electric resistivity tomography (ERT) and frequency domain electromagnetic (FDEM) to retrieve the hydrostratigraphy along selected survey transects; iii) magnetic resonance soundings (MRS) to retrieve the hydrostratigraphy and aquifer parameters at the selected survey sites. In the third step, we drilled 5 boreholes (25 to 48 m deep) and performed slug tests to verify the hydrogeophysical interpretation and to calibrate the MRS parameters. Finally, we compiled and integrated all acquired data to define the geometry and parameters of the Sardón aquifer at the catchment scale. In line with a general conceptual model of hard rock aquifers, we identified two main hydrostratigraphic layers: a saprolite layer and a fissured layer. Both layers were intersected and drained by

  13. Comparison of laboratory, in situ, and rock mass measurements of the hydraulic conductivity of metamorphic rock at the Savannah River Plant near Aiken, South Carolina

    International Nuclear Information System (INIS)

    Marine, I.W.

    1980-01-01

    In situ testing of exploratory wells in metamorphic rock indicates that two types of fracturing occur in the rock mass. Rock containing small openings that permit only extremely slow movement of water is termed virtually impermeable rock. Rock containing openings of sufficient size to permit transmission of water at a significantly faster rate is termed hydraulically transmissive rock. Laboratory methods are unsuitable for measuring hydraulic conductivity in hydraulically transmissive rock; however, for the virtually impermeable rock, values comparable to the in situ tests are obtained. The hydraulic conductivity of the rock mass over a large region is calculated by using the hydraulic gradient, porosity, and regional velocity. This velocity is determined by dividing the inferred travel distance by the age of water which is determined by the helium content of the water. This rock mass hydraulic conductivity value is between the values measured for the two types of fractures, but is closer to the measured value for the virtually impermeable rock. This relationship is attributed to the control of the regional flow rate by the virtually impermeable rock where the discrete fractures do not form a continuous open connection through the entire rock mass. Thus, laboratory methods of measuring permeability in metamorphic rock are of value if they are properly applied

  14. The Vaigat Rock Avalanche Laboratory, west-central Greenland

    Science.gov (United States)

    Dunning, S.; Rosser, N. J.; Szczucinski, W.; Norman, E. C.; Benjamin, J.; Strzelecki, M.; Long, A. J.; Drewniak, M.

    2013-12-01

    Rock avalanches have unusually high mobility and pose both an immediate hazard, but also produce far-field impacts associated with dam breach, glacier collapse and where they run-out into water, tsunami. Such secondary hazards can often pose higher risks than the original landslide. The prediction of future threats posed by potential rock avalanches is heavily reliant upon understanding of the physics derived from an interpretation of deposits left by previous events, yet drawing comparisons between multiple events is normally challenging as interactions with complex mountainous terrain makes deposits from each event unique. As such numerical models and the interpretation of the underlying physics which govern landslide mobility is commonly case-specific and poorly suited to extrapolation beyond the single events the model is tuned to. Here we present a high-resolution LiDAR and hyperspectral dataset captured across a unique cluster of large rock avalanche source areas and deposits in the Vaigat straight, west central Greenland. Vaigat offers the unprecedented opportunity to model a sample of > 15 rock avalanches of various age sourced from an 80 km coastal escarpment. At Vaigat many of the key variables (topography, geology, post-glacial history) are held constant across all landslides providing the chance to investigate the variations in dynamics and emplacement style related to variable landslide volume, drop-heights, and thinning/spreading over relatively simple, unrestricted run-out zones both onto land and into water. Our data suggest that this region represents excellent preservation of landslide deposits, and hence is well suited to calibrate numerical models of run out dynamics. We use this data to aid the interpretation of deposit morphology, structure lithology and run-out characteristics in more complex settings. Uniquely, we are also able to calibrate our models using a far-field dataset of well-preserved tsunami run-up deposits, resulting from the 21

  15. Abrasiveness and hardness of rocks of Cretaceous deposits of Chechen-Ingushetiya. Ob abrazivnosti i tverdosti gornykh porod melovykh otlozhenii Checheno-Ingushetii

    Energy Technology Data Exchange (ETDEWEB)

    Trofimenko, Yu.P.

    1981-01-01

    Presented are results of studies of the abrasiveness and hardness of core material taken from Upper Cretaceous deposits in the process of drilling deep boreholes in the areas of Chechen-Ingushetiya. Based on the studies it is established that the abrasiveness of rock is mainly influenced by the coarseness of the mineral grains in the rock, their mineralogical composition, and the composition of the cement. Given is a system of clasification of the investigated core material with respect to abrasiveness and hardness.

  16. Proceedings of a technical session on rock mechanics ''Advance in laboratory sample testing''

    International Nuclear Information System (INIS)

    Come, B.

    1984-01-01

    This report brings together a series of papers about rock mechanics. The meeting was divided into three sessions, which dealt with the three main types of rock formation currently considered in the CEC Programme: granite, clay and salt. Safe disposal of high-level radioactive waste involves the proper design of deep underground repositories. This necessitates an in-depth knowledge of the mechanical properties of the rock mass. The behaviour of the rock mass must be known both for the construction and the operation (heating effects) of the repository. Usually, the dominant factor for designing an underground structure is the fracturing of the rock mass. In the present case, the rock is chosen with a very low fracturing. Therefore, the mechanical properties of the formation are mainly those of the rock matrix. These properties are obtained, at least in a first exploratory step, by laboratory testing of rock samples obtained by core-drilling from surface. This aspect of rock characterization was thought to deserve a special technical meeting, in order to bring together most of the results obtained in this field by contracting partners of the CEC for the years 1980-82

  17. Comparison of thermally induced and naturally occurring water-borne leakages from hard rock depositories for radioactive waste

    International Nuclear Information System (INIS)

    Bourke, P.J.; Robinson, P.C.

    1981-01-01

    The relative importance of thermally induced and naturally occurring flows of water as causes of leakage from hard rock depositories for radioactive wastes is assessed. Separate analyses are presented for involatile, high level waste from reprocessing of fuel and for plutonium contaminated waste from fabrication of fuel. The effects of varying the quantities of wastes, pre-burial storage and the shapes and depths of depositories are considered. It is concluded that for representative values of these variables, thermal flow will remain the major cause of leakage for long times after the burial of both types of waste. (Auth.)

  18. Site study plan for routine laboratory rock mechanics, Deaf Smith County Site, Texas: Revision 1

    International Nuclear Information System (INIS)

    1987-12-01

    This Site Study Plan for Routine Laboratory Rock Mechanics describes routine laboratory testing to be conducted on rock samples collected as part of the characterization of the Deaf Smith County site, Texas. This study plan describes the early laboratory testing. Additional testing may be required and the type and scope of testing will be dependent upon the results of the early testing. This study provides for measurements of index, hydrological, mechanical, and chemical properties with tests which are standardized and used widely in geotechnical investigations. Another Site Study Plan for Nonroutine Laboratory Rock Mechanics describes laboratory testing of samples from the site to determine mechanical, thermomechanical, and thermal properties by less widely used methods, many of which have been developed specifically for characterization of the site. Data from laboratory tests will be used for characterization of rock strata, design of shafts and underground facilities, and modeling of repository behavior in support of resolution of both preclosure and postclosure issues. A tentative testing schedule and milestone log are given. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that appropriate documentation is maintained. 18 refs., 8 figs., 3 tabs

  19. Use of variations in unit cell length, reflectance and hardness for determining the origin of Fe disulphides in sedimentary rocks

    Science.gov (United States)

    Dill, H. G.; Eberhard, E.; Hartmann, B.

    1997-01-01

    Fe disulphides are common opaque accessories in sedimentary rocks. Both marcasite and pyrite may shed some light on the depositional environment and help determine the diagenesis of their host rocks. Quantitative ore microscopy (reflectance measurements, Vickers hardness numbers) and X-ray diffraction methods, supplemented with scanning electron microscopy and chemical analyses, were applied to pyrite (and some marcasite) hosted by sedimentary rocks spanning the interval from the Devonian to the Pliocene, and formed in various marine and continental environments. Quantitative ore microscopy of pyrites of sedimentary origin does not seem to be an efficient tool for analyzing the environment owing to the inhomogeneous nature of sulphide aggregates when viewed under the ore microscope, and the variable amounts of minor elements (e.g., As, Ni, and Co) that control the reflectance values (RV) and Vickers hardness numbers (VHN) of the host sulphides. However, such parameters as crystal habit and unit cell length of pyrite, which correlate with FeS x, are useful for environmental analysis. The redox conditions and the presence of organic remains during formation are the main factors determining these crystallographic parameters. Differences in these parameters from those of pure, ideal FeS 2 can be related to substitution of, e.g., wustite in the pyrite lattice, reflecting moderate oxidation (i.e. in the microenvironment). As far as crystal habit and length of the cell edge are concerned, late stage diagenesis is obviously less important than the microenvironment attending initial formation. The environment of deposition (i.e. the macroenvironment) of pyrite-bearing rocks has no influence on the crystal morphology or the length of the unit cell of Fe disulphide. X-ray diffraction measurements demonstrate that this method provides useful evidence on the microenvironment of sulphide precipitation around a single, equant pyrite, as well as around pyritized fossils.

  20. Effects of earthquake induced rock shear on containment system integrity. Laboratory testing plan development

    International Nuclear Information System (INIS)

    Read, Rodney S.

    2011-07-01

    This report describes a laboratory-scale testing program plan to address the issue of earthquake induced rock shear effects on containment system integrity. The document contains a review of relevant literature from SKB covering laboratory testing of bentonite clay buffer material, scaled analogue tests, and the development of related material models to simulate rock shear effects. The proposed testing program includes standard single component tests, new two-component constant volume tests, and new scaled analogue tests. Conceptual drawings of equipment required to undertake these tests are presented along with a schedule of tests. The information in this document is considered sufficient to engage qualified testing facilities, and to guide implementation of laboratory testing of rock shear effects. This document was completed as part of a collaborative agreement between SKB and Nuclear Waste Management Organization (NWMO) in Canada

  1. Effects of earthquake induced rock shear on containment system integrity. Laboratory testing plan development

    Energy Technology Data Exchange (ETDEWEB)

    Read, Rodney S. (RSRead Consulting Inc. (Canada))

    2011-07-15

    This report describes a laboratory-scale testing program plan to address the issue of earthquake induced rock shear effects on containment system integrity. The document contains a review of relevant literature from SKB covering laboratory testing of bentonite clay buffer material, scaled analogue tests, and the development of related material models to simulate rock shear effects. The proposed testing program includes standard single component tests, new two-component constant volume tests, and new scaled analogue tests. Conceptual drawings of equipment required to undertake these tests are presented along with a schedule of tests. The information in this document is considered sufficient to engage qualified testing facilities, and to guide implementation of laboratory testing of rock shear effects. This document was completed as part of a collaborative agreement between SKB and Nuclear Waste Management Organization (NWMO) in Canada

  2. Twenty years of research at the Mont Terri rock laboratory: what we have learnt

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Federal Office of Topography swisstopo, Wabern (Switzerland)

    2017-04-15

    The 20 papers in this Special Issue address questions related to the safe deep geological disposal of radioactive waste. Here we summarize the main results of these papers related to issues such as: formation of the excavation damaged zone, self-sealing processes, thermo-hydro-mechanical processes, anaerobic corrosion, hydrogen production and effects of microbial activity, and transport and retention processes of radionuclides. In addition, we clarify the question of transferability of results to other sites and programs and the role of rock laboratories for cooperation and training. Finally, we address the important role of the Mont Terri rock laboratory for the public acceptance of radioactive waste disposal. (author)

  3. Geological disposal of high-level radioactive waste. Conceptual repository design in hard rock

    International Nuclear Information System (INIS)

    Beale, H.; Griffin, J.R.; Davies, J.W.; Burton, W.R.

    1980-01-01

    The paper gives an interim report on UK studies on possible designs for a repository for vitrified high-level radioactive waste in crystalline rock. The properties of the waste are described and general technical considerations of consequences of disposal in the rock. As an illustration, two basic designs are described associated with pre-cooling in an intermediate store. Firstly, a 'wet repository' is outlined wherein canisters are sealed up closely in boreholes in the rock in regions of low groundwater movement. Secondly, a 'dry repository' above sea level is described where emplacement in tunnels is followed by a loose backfill containing activity absorbers. A connection to deep permeable strata maintains water levels below emplacement positions. Variants on the two basic schemes (tunnel emplacement in a wet repository and in situ cooling) are also assessed. It is concluded that all designs discussed produce a size of repository feasible for construction in the UK. Further, (1) a working figure of 100 0 C per maximum rock temperature is not exceeded, (2) no insuperable engineering problems have so far been found, though rock mechanics studies are at an early stage; (3) it is not possible to discount the escape of a few long-lived 'man-made' isotopes. A minute increment to natural activity in the biosphere may occur from traces of uranium and its decay chains; (4) at this stage, all the designs are still possible candidates for the construction of a UK repository. (author)

  4. Taking into Account the Role of the Weathering Profile in Determining Hydrodynamic Properties of Hard Rock Aquifers

    Directory of Open Access Journals (Sweden)

    Mahamadou Koïta

    2017-09-01

    Full Text Available The present study aims at understanding the role of the structure and the geometry of the weathering profile on the hydrodynamic behavior of hard rock aquifers. We first described 2D geophysical cross sections of weathering profiles realized and validated on an experimental site. Next, we implemented five long-term pumping tests in wells drilled at various locations of these cross sections. Finally, we chose the appropriate analytical solutions to determine the hydrodynamic parameters in consistence with the structure and the geometry of the weathering profile. Results reveal that land covers, weathering type and thickness, presence of no flow boundaries, etc. are all factors that explain the flow regime, which appears therefore much less unpredictable. In other words, the 2D geophysical data are enough to locate the best permeable areas, or the areas where the structure of the aquifer without impervious boundaries and with leakage favor a good long-term behavior of the well. The values of aquifer’s transmissivity vary between 5.10−3 and 4.10−5 m2/s. The storage varies between 0.06 and 7.10−7. The variability of these parameters from site to site reflects the high heterogeneity of hard rock aquifers.

  5. MBC model analysis for predicting the rock behavior in excavating the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Mori, Takayuki; Iwano, Keita; Nakajima, Makoto; Morikawa, Seiji; Tabei, Kazuto

    2005-03-01

    As a Phase 1 of MIU project (Mizunami Underground Research Laboratory project), through the laboratory and borehole in-situ tests, JNC Tono Geoscience Center plans to constitute the comprehensive geological model and predicts the rock behaviors in excavating the shaft and gallery. These model and results leads to be reflected by the next step research projects. So far, the Phase 1 of MIU project is coming to final stage, and the Phase 2 will start at next year in which the in-situ researches are planned through the excavation. In this study, the comprehensive geometrical model was drawn out through the Phase 1 data, and MBC model analysis was carried out to predict the rock mass behavior around the shaft and gallery. The following results are obtained. 1. With MIZ-1 borehole core, artificial joints, which are assumed to be produced by rock blasting, were formed through the Brazilian test. And through the rock shear test for these joints, these mechanical properties were obtained. 2. By examining the MIZ-1 borehole research data, Mizunami site was classified by mechanical and joint properties and the Geomechanical model were made up. 3. Through the MBC model, the shaft and gallery cases were analyzed which depend on the rock mass classification, Excavation Damaged Zone, and the direction of the galleries. These results showed that in most cases, the joint opening were little because of the rock stiffness, but by the existence of high inclined joints, the side wall of the galleries were damaged by the excavation. (author)

  6. Fifteen years of microbiological investigation in Opalinus Clay at the Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Leupin, O.X. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Bernier-Latmani, R.; Bagnoud, A. [Swiss Federal Office of Technology EPFL, Lausanne (Switzerland); Moors, H.; Leys, N.; Wouters, K. [Belgian Nuclear Research Centre SCK-CEN, Mol (Belgium); Stroes-Gascoyne, S. [University of Saskatchewan, Saskatoon (Canada)

    2017-04-15

    Microbiological studies related to the geological disposal of radioactive waste have been conducted at the Mont Terri rock laboratory in Opalinus Clay, a potential host rock for a deep geologic repository, since 2002. The metabolic potential of microorganisms and their response to excavation-induced effects have been investigated in undisturbed and disturbed claystone cores and in pore- (borehole) water. Results from nearly 15 years of research at the Mont Terri rock laboratory have shown that microorganisms can potentially affect the environment of a repository by influencing redox conditions, metal corrosion and gas production and consumption under favourable conditions. However, the activity of microorganisms in undisturbed Opalinus Clay is limited by the very low porosity, the low water activity, and the largely recalcitrant nature of organic matter in the claystone formation. The presence of microorganisms in numerous experiments at the Mont Terri rock laboratory has suggested that excavation activities and perturbation of the host rock combined with additional contamination during the installation of experiments in boreholes create favourable conditions for microbial activity by providing increased space, water and substrates. Thus effects resulting from microbial activity might be expected in the proximity of a geological repository i.e., in the excavation damaged zone, the engineered barriers, and first containments (the containers). (authors)

  7. Fifteen years of microbiological investigation in Opalinus Clay at the Mont Terri rock laboratory (Switzerland)

    International Nuclear Information System (INIS)

    Leupin, O.X.; Bernier-Latmani, R.; Bagnoud, A.; Moors, H.; Leys, N.; Wouters, K.; Stroes-Gascoyne, S.

    2017-01-01

    Microbiological studies related to the geological disposal of radioactive waste have been conducted at the Mont Terri rock laboratory in Opalinus Clay, a potential host rock for a deep geologic repository, since 2002. The metabolic potential of microorganisms and their response to excavation-induced effects have been investigated in undisturbed and disturbed claystone cores and in pore- (borehole) water. Results from nearly 15 years of research at the Mont Terri rock laboratory have shown that microorganisms can potentially affect the environment of a repository by influencing redox conditions, metal corrosion and gas production and consumption under favourable conditions. However, the activity of microorganisms in undisturbed Opalinus Clay is limited by the very low porosity, the low water activity, and the largely recalcitrant nature of organic matter in the claystone formation. The presence of microorganisms in numerous experiments at the Mont Terri rock laboratory has suggested that excavation activities and perturbation of the host rock combined with additional contamination during the installation of experiments in boreholes create favourable conditions for microbial activity by providing increased space, water and substrates. Thus effects resulting from microbial activity might be expected in the proximity of a geological repository i.e., in the excavation damaged zone, the engineered barriers, and first containments (the containers). (authors)

  8. Utilization of hard rock dust with red clay to produce roof tiles

    Directory of Open Access Journals (Sweden)

    Mst. Shanjida Sultana

    2015-03-01

    Full Text Available Utilization of rock dust to produce roof tiles and its effects on properties of tiles, mixed with red clay collected from Naogaon district of Bangladesh were investigated. After proper characterization of the raw materials, tiles were prepared with different percentages of rock dust (10-50% mixed with clay sintered from 850-1100 °C temperature. Rock dust has been found good for using as fluxing material after XRF study. The samples were tested for different properties such as water absorption, porosity, mechanical strength, linear shrinkage, and bulk density. The strength values have exceeded the minimum standard requirement for roof tiles with low water absorption in most samples. The results obtained made it possible to conclude about the possibility of producing roof tiles incorporating up to 40% of rock dust having better properties (lower water absorption 6.5%, strength value 31.97 MPa fired at 900 °C. Therefore these dust acts as a fluxing agent and reducing the sinteringtemperature of the clay material.

  9. GRS' research on clay rock in the Mont Terri underground laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wieczorek, Klaus; Czaikowski, Oliver [Gesellschaft fuer Anlagen- und Reaktorsicherheit gGmbH, Braunschweig (Germany)

    2016-07-15

    For constructing a nuclear waste repository and for ensuring the safety requirements are met over very long time periods, thorough knowledge about the safety-relevant processes occurring in the coupled system of waste containers, engineered barriers, and the host rock is indispensable. For respectively targeted research work, the Mont Terri rock laboratory is a unique facility where repository research is performed in a clay rock environment. It is run by 16 international partners, and a great variety of questions are investigated. Some of the work which GRS as one of the Mont Terri partners is involved in is presented in this article. The focus is on thermal, hydraulic and mechanical behaviour of host rock and/or engineered barriers.

  10. Influence of rock spalling on concrete lining in shaft sinking at the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Tsusaka, Kimikazu; Inagaki, Daisuke; Nago, Makito; Koike, Masashi; Matsubara, Makoto; Sugawara, Kentaro

    2013-01-01

    A shaft is the shortest way to access the deep underground. In shaft sinking through large-scale faults or under low competence factor, spalling of shaft walls is likely to occur. Although earlier studies indicated that rock spalling is an undesirable phenomenon that threatens safety in excavation work and causes delay in construction schedule, there have been few studies which discussed damage to concrete lining induced by spalling. Japan Atomic Energy Agency has been constructing three shafts (one for ventilation and the others for access) to a depth of 500 m in the Horonobe Underground Research Laboratory. During the construction of the Ventilation Shaft (4.5 m diameter) below a depth of 250 m, rock spalling occurred at several depths and an open crack developed in the concrete lining installed just above the location of the rock spalling. In this study, the geometry of the shaft wall was measured using a three-dimensional laser scanner. Numerical analysis was also conducted to estimate changes in stress distribution and deformation induced by rock spalling in both the concrete lining and the surrounding rock. As a result, it was clarified that rock spalling induced a vertical tensile stress in the concrete lining. Especially, the tensile stress in a concrete lining was likely to exceed the tensile strength of the concrete lining when it developed more than 100 cm into the wall rock. (author)

  11. Progress in 1988 1990 with computer applications in the ``hard-rock'' arena: Geochemistry, mineralogy, petrology, and volcanology

    Science.gov (United States)

    Rock, Nicholas M. S.

    This review covers rock, mineral and isotope geochemistry, mineralogy, igneous and metamorphic petrology, and volcanology. Crystallography, exploration geochemistry, and mineral exploration are excluded. Fairly extended comments on software availability, and on computerization of the publication process and of specimen collection indexes, may interest a wider audience. A proliferation of both published and commercial software in the past 3 years indicates increasing interest in what traditionally has been a rather reluctant sphere of geoscience computer activity. However, much of this software duplicates the same old functions (Harker and triangular plots, mineral recalculations, etc.). It usually is more efficient nowadays to use someone else's program, or to employ the command language in one of many general-purpose spreadsheet or statistical packages available, than to program a specialist operation from scratch in, say, FORTRAN. Greatest activity has been in mineralogy, where several journals specifically encourage publication of computer-related activities, and IMA and MSA Working Groups on microcomputers have been convened. In petrology and geochemistry, large national databases of rock and mineral analyses continue to multiply, whereas the international database IGBA grows slowly; some form of integration is necessary to make these disparate systems of lasting value to the global "hard-rock" community. Total merging or separate addressing via an intelligent "front-end" are both possibilities. In volcanology, the BBC's videodisk Volcanoes and the Smithsonian Institution's Global Volcanism Project use the most up-to-date computer technology in an exciting and innovative way, to promote public education.

  12. Near-field thermal transient and thermomechanical stress analysis of a disposal vault in crystalline hard rock

    International Nuclear Information System (INIS)

    Tsui, K.K.; Tsai, A.; Lee, C.F.

    1981-01-01

    The Canadian Nuclear Fuel Waste Management Program currently focuses on the development of a disposal vault in crystalline hard rock at a reference depth of 1 km below the surface in a suitable pluton in the Canadian Shield. As part of Ontario Hydro's technical assistance to the Atomic Energy of Canada Limited in this program, studies are being carried out to determine the effects of radiogenic heat on the near-field behaviour of a disposal vault. This paper presents the study results obtained to date. Temperature and stress fields were computed and cross-checked by several finite element codes. A comparison between vertical and horizontal borehole emplacement concepts is made. The effects of material non-linearity (temperature dependence) and three-dimensionality on the thermomechanical response are evaluated. Case histories of thermal spalling or fracturing in rock were summarized and discussed to illustrate the possible mechanisms and processes involved in thermal fracturing. An assessment of the thermomechanical stability of the rock mass around a disposal vault under a state of high horizontal in-situ stress is also presented

  13. Influence of Subjectivity in Geological Mapping on the Net Penetration Rate Prediction for a Hard Rock TBM

    Science.gov (United States)

    Seo, Yongbeom; Macias, Francisco Javier; Jakobsen, Pål Drevland; Bruland, Amund

    2018-05-01

    The net penetration rate of hard rock tunnel boring machines (TBM) is influenced by rock mass degree of fracturing. This influence is taken into account in the NTNU prediction model by the rock mass fracturing factor ( k s). k s is evaluated by geological mapping, the measurement of the orientation of fractures and the spacing of fractures and fracture type. Geological mapping is a subjective procedure. Mapping results can therefore contain considerable uncertainty. The mapping data of a tunnel mapped by three researchers were compared, and the influence of the variation in geological mapping was estimated to assess the influence of subjectivity in geological mapping. This study compares predicted net penetration rates and actual net penetration rates for TBM tunneling (from field data) and suggests mapping methods that can reduce the error related to subjectivity. The main findings of this paper are as follows: (1) variation of mapping data between individuals; (2) effect of observed variation on uncertainty in predicted net penetration rates; (3) influence of mapping methods on the difference between predicted and actual net penetration rate.

  14. Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations with Learning Classifiers

    Directory of Open Access Journals (Sweden)

    Esperanza García-Gonzalo

    2016-06-01

    Full Text Available The mining industry relies heavily on empirical analysis for design and prediction. An empirical design method, called the critical span graph, was developed specifically for rock stability analysis in entry-type excavations, based on an extensive case-history database of cut and fill mining in Canada. This empirical span design chart plots the critical span against rock mass rating for the observed case histories and has been accepted by many mining operations for the initial span design of cut and fill stopes. Different types of analysis have been used to classify the observed cases into stable, potentially unstable and unstable groups. The main purpose of this paper is to present a new method for defining rock stability areas of the critical span graph, which applies machine learning classifiers (support vector machine and extreme learning machine. The results show a reasonable correlation with previous guidelines. These machine learning methods are good tools for developing empirical methods, since they make no assumptions about the regression function. With this software, it is easy to add new field observations to a previous database, improving prediction output with the addition of data that consider the local conditions for each mine.

  15. Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations with Learning Classifiers.

    Science.gov (United States)

    García-Gonzalo, Esperanza; Fernández-Muñiz, Zulima; García Nieto, Paulino José; Bernardo Sánchez, Antonio; Menéndez Fernández, Marta

    2016-06-29

    The mining industry relies heavily on empirical analysis for design and prediction. An empirical design method, called the critical span graph, was developed specifically for rock stability analysis in entry-type excavations, based on an extensive case-history database of cut and fill mining in Canada. This empirical span design chart plots the critical span against rock mass rating for the observed case histories and has been accepted by many mining operations for the initial span design of cut and fill stopes. Different types of analysis have been used to classify the observed cases into stable, potentially unstable and unstable groups. The main purpose of this paper is to present a new method for defining rock stability areas of the critical span graph, which applies machine learning classifiers (support vector machine and extreme learning machine). The results show a reasonable correlation with previous guidelines. These machine learning methods are good tools for developing empirical methods, since they make no assumptions about the regression function. With this software, it is easy to add new field observations to a previous database, improving prediction output with the addition of data that consider the local conditions for each mine.

  16. Hard rock tunnel boring machine penetration test as an indicator of chipping process efficiency

    Directory of Open Access Journals (Sweden)

    M.C. Villeneuve

    2017-08-01

    Full Text Available The transition from grinding to chipping can be observed in tunnel boring machine (TBM penetration test data by plotting the penetration rate (distance/revolution against the net cutter thrust (force per cutter over the full range of penetration rates in the test. Correlating penetration test data to the geological and geomechanical characteristics of rock masses through which a penetration test is conducted provides the ability to reveal the efficiency of the chipping process in response to changing geological conditions. Penetration test data can also be used to identify stress-induced tunnel face instability. This research shows that the strength of the rock is an important parameter for controlling how much net cutter thrust is required to transition from grinding to chipping. It also shows that the geological characteristics of a rock will determine how efficient chipping occurs once it has begun. In particular, geological characteristics that lead to efficient fracture propagation, such as fabric and mica contents, will lead to efficient chipping. These findings will enable a better correlation between TBM performance and geological conditions for use in TBM design, as a basis for contractual payments where penetration rate dominates the excavation cycle and in further academic investigations into the TBM excavation process.

  17. Hard rock excavation at the CSM/OCRD test site using Swedish blast design techniques

    International Nuclear Information System (INIS)

    Holmberg, R.

    1983-09-01

    This report is the third in a series describing research conducted by the Colorado School of Mines for the Office of Crystalline Repository Development (OCRD) to determine the extent of blast damage in rock surrounding an underground opening. A special room, called the CSM/OCRD room, was excavated at the CSM experimental mine for the purpose of assessing blast damage in the rock around the room. Even though this mine is not proposed as a nuclear waste repository site, the instrumentation and methods of blast damage assessment developed in this project are applicable to proposed repository sites. This report describes the application of Swedish blasting technology for the excavation of the test room. The design of the blasting patterns including the selection of explosives, hole sizes and location, explosive loading densities, and delay intervals is based upon the theories of Langefors and Kihlstrom in combination with methods used at the Swedish Detonic Research Foundation for minimizing unwanted rock damage. The practical application of the design procedures to seven rounds and the achieved results is discussed

  18. The far field heating effects of a radioactive waste depository in hard rock

    International Nuclear Information System (INIS)

    Hodgkinson, D.P.; Bourke, P.J.

    1978-01-01

    Fission product heating of the rock surrounding a depository for high level radioactive waste, will result in high temperatures and high thermal gradients over distances of several hundred metres for many centuries. The consequent thermal expansion of the rock leads to stresses which could alter the fracture pattern and therefore the permeability of the rock. These problems are assessed by considering an idealised model of a depository for which analytic solutions to the temperature and stress fields are derived. A related problem is that any water present in the fissures will tend to rise because of its decrease in density on heating. If the water had previously leached away some of the radionuclides in the waste, then this convective transport constitutes a possible leakage path back to the biosphere. For the low permeabilities expected at a depository site, it is possible to linearise the resulting equations and derive analytic solutions for the flow velocities. This procedure has been carried out for the idealised depository model, in order to estimate the magnitude of these effects

  19. Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array

    Science.gov (United States)

    Zang, Arno; Stephansson, Ove; Stenberg, Leif; Plenkers, Katrin; Specht, Sebastian; Milkereit, Claus; Schill, Eva; Kwiatek, Grzegorz; Dresen, Georg; Zimmermann, Günter; Dahm, Torsten; Weber, Michael

    2017-02-01

    In this paper, an underground experiment at the Äspö Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Äspö HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Ävrö granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with

  20. Microseismicity of an Unstable Rock Mass: From Field Monitoring to Laboratory Testing

    Science.gov (United States)

    Colombero, C.; Comina, C.; Vinciguerra, S.; Benson, P. M.

    2018-02-01

    The field-scale microseismic (MS) activity of an unstable rock mass is known to be an important tool to assess damage and cracking processes eventually leading to macroscopic failures. However, MS-event rates alone may not be enough for a complete understanding of the trigger mechanisms of mechanical instabilities. Acoustic Emission (AE) techniques at the laboratory scale can be used to provide complementary information. In this study, we report a MS/AE comparison to assess the stability of a granitic rock mass in the northwestern Italian Alps (Madonna del Sasso). An attempt to bridge the gap between the two different scales of observation, and the different site and laboratory conditions, is undertaken to gain insights on the rock mass behavior as a function of external governing factors. Time- and frequency-domain parameters of the MS/AE waveforms are compared and discussed with this aim. At the field scale, special attention is devoted to the correlation of the MS-event rate with meteorological parameters (air temperature and rainfalls). At the laboratory scale, AE rates, waveforms, and spectral content, recorded under controlled temperature and fluid conditions, are analyzed in order to better constrain the physical mechanisms responsible for the observed field patterns. The factors potentially governing the mechanical instability at the site were retrieved from the integration of the results. Abrupt thermal variations were identified as the main cause of the site microsesimicity, without highlighting irreversible acceleration in the MS-event rate potentially anticipating the rock mass collapse.

  1. Hydrogeological pre-modelling exercises. Assessment of impact of the Aespoe Hard Rock Laboratory. Sensitivities of palaeo-hydrogeology. Development of a local near-surface Hydro-DFN for KLX09B-F. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Shevelan, John; Swift, Ben; Gylling, Bjoern; Marsic, Niko; Hermanson, Jan; Oehman, Johan

    2007-12-01

    Numerical modelling has been used to investigate the potential impact of the Aespoe HRL on regional groundwater flow and hydro-geochemistry in the Laxemar study area. The numerical models have been adapted for this application from the ones use in the site-descriptive modelling (SDM) and SR-Can assessment modelling based on Laxemar version 1.2. In order to test the robustness of the simulation results, sensitivities were studied with respect to different flow boundary conditions and the hydraulic properties of the Quaternary deposits, particularly those beneath the sea around the Aespoe island. The simulations show that the Aespoe HRL has a local effect on the groundwater situation. Typically, in the simulations, the rock under the Aespoe island, the bays around it and the Aevroe area (mainly western part of the islands of Aevroe, Mjaelen and Haaloe) are influenced. In the sensitivity study, visualisations of the drawdown caused by the HRL tunnel system show small differences in the results for head versus flux top boundary conditions, little sensitivity to a change in the surface infiltration rate, but most sensitivity to the contact between the sea and the bedrock beneath the seabed sediments. For all simulation cases considered, results suggest that the Aespoe HRL has not been in operation sufficiently long to have affected the chemistry of samples collected at Laxemar and Simpevarp, though there is some possibility that Aevroe samples have been altered, at least for boreholes in the western part of Aevroe, Mjaelen and Haaloe. The distribution of flow and discharge areas around the bay at Aespoe is clearly affected by the HRL for all cases. Using the drawdown in percussion drilled boreholes around Aespoe as an interference test suggests that there is a partial reduction in the hydraulic contact between the sea and the groundwater system in the bedrock beneath. It is recommended that the conclusions about appropriate hydraulic properties for Quaternary sediments

  2. Hydrogeological pre-modelling exercises. Assessment of impact of the Aespoe Hard Rock Laboratory. Sensitivities of palaeo-hydrogeology. Development of a local near-surface Hydro-DFN for KLX09B-F. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Shevelan, John; Swift, Ben (Serco Assurance, Harwell (GB)); Gylling, Bjoern; Marsic, Niko (Kemakta Konsult AB, Stockholm (SE)); Hermanson, Jan; Oehman, Johan (Golders Associates (SE))

    2007-12-15

    Numerical modelling has been used to investigate the potential impact of the Aespoe HRL on regional groundwater flow and hydro-geochemistry in the Laxemar study area. The numerical models have been adapted for this application from the ones use in the site-descriptive modelling (SDM) and SR-Can assessment modelling based on Laxemar version 1.2. In order to test the robustness of the simulation results, sensitivities were studied with respect to different flow boundary conditions and the hydraulic properties of the Quaternary deposits, particularly those beneath the sea around the Aespoe island. The simulations show that the Aespoe HRL has a local effect on the groundwater situation. Typically, in the simulations, the rock under the Aespoe island, the bays around it and the Aevroe area (mainly western part of the islands of Aevroe, Mjaelen and Haaloe) are influenced. In the sensitivity study, visualisations of the drawdown caused by the HRL tunnel system show small differences in the results for head versus flux top boundary conditions, little sensitivity to a change in the surface infiltration rate, but most sensitivity to the contact between the sea and the bedrock beneath the seabed sediments. For all simulation cases considered, results suggest that the Aespoe HRL has not been in operation sufficiently long to have affected the chemistry of samples collected at Laxemar and Simpevarp, though there is some possibility that Aevroe samples have been altered, at least for boreholes in the western part of Aevroe, Mjaelen and Haaloe. The distribution of flow and discharge areas around the bay at Aespoe is clearly affected by the HRL for all cases. Using the drawdown in percussion drilled boreholes around Aespoe as an interference test suggests that there is a partial reduction in the hydraulic contact between the sea and the groundwater system in the bedrock beneath. It is recommended that the conclusions about appropriate hydraulic properties for Quaternary sediments

  3. Geomass: geological modelling analysis and simulation software for the characterisation of fractured hard rock environments

    International Nuclear Information System (INIS)

    White, M.J.; Humm, J.P.; Todaka, N.; Takeuchi, S.

    1998-01-01

    This paper presents the development and functionality of a suite of applications which are being developed to support the geological investigations in the Tono URL. GEOMASS will include 3D geological modelling, 3D fluid flow and solute transport and 3D visualisation capabilities. The 3D geological modelling in GEOMASS will be undertaken using a commercially available 3D geological modelling system, EarthVision. EarthVision provides 3D mapping, interpolation, analysis and well planning software. It is being used in the GEOMASS system to provide the geological framework (structure of the tectonic faults and stratigraphic and lithological contacts) to the 3D flow code. It is also being used to gather the geological data into a standard format for use throughout the investigation programme. The 3D flow solver to be used in GEOMASS is called Frac-Affinity. Frac-Affinity models the 3D geometry of the flow system as a hybrid medium, in which the rock contains both permeable, intact rock and fractures. Frac-Affinity also performs interpolation of heterogeneous rock mass property data using a fractal based approach and the generation of stochastic fracture networks. The code solves for transient flow over a user defined sub-region of the geological framework supplied by EarthVision. The results from Frac-Affinity are passed back to EarthVision so that the flow simulation can be visualized alongside the geological structure. This work-flow allows rapid assessment of the role of geological features in controlling flow. This paper will present the concepts and approach of GEOMASS and illustrate the practical application of GEOMASS using data from Tono

  4. Pollen structure visualization using high-resolution laboratory-based hard X-ray tomography.

    Science.gov (United States)

    Li, Qiong; Gluch, Jürgen; Krüger, Peter; Gall, Martin; Neinhuis, Christoph; Zschech, Ehrenfried

    2016-10-14

    A laboratory-based X-ray microscope is used to investigate the 3D structure of unstained whole pollen grains. For the first time, high-resolution laboratory-based hard X-ray microscopy is applied to study pollen grains. Based on the efficient acquisition of statistically relevant information-rich images using Zernike phase contrast, both surface- and internal structures of pine pollen - including exine, intine and cellular structures - are clearly visualized. The specific volumes of these structures are calculated from the tomographic data. The systematic three-dimensional study of pollen grains provides morphological and structural information about taxonomic characters that are essential in palynology. Such studies have a direct impact on disciplines such as forestry, agriculture, horticulture, plant breeding and biodiversity. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Simulating the time-dependent behaviour of excavations in hard rock

    CSIR Research Space (South Africa)

    Malan, DF

    2002-10-01

    Full Text Available (1993) estimated the rock disintegration of the roof of the Swedish repository at Forsmark where the excavation is intersected by a fracture zone. By generalising the structure to be one of regular layers of blocks and applying a log- time creep law, he... and secondary closure in squeezing tunnels. Tertiary movements can be considered by providing suitable laws relating the values of the mechanical parameters (such as viscosity) to the irreversible part of the time-dependent strain. These rheological models...

  6. Mizunami Underground Research Laboratory project. Rock mechanical investigations annual report for fiscal year 2013

    International Nuclear Information System (INIS)

    Sato, Toshinori; Sanada, Hiroyuki; Tanno, Takeo

    2015-02-01

    In order to establish the scientific and technical basis for geological disposal of technology, Japan Atomic Energy Agency (JAEA) is pursuing the geoscientific research project namely the Mizunami Underground Research Laboratory (MIU) in the crystalline rock environment at Tono Geoscience Center (TGC). In the MIU Project, geoscientific research is being carried out in three overlapping phases; Surface-based Investigation Phase (Phase I: FY1996 - 2004), Construction Phase (Phase II: FY2004- in progress) and Operation Phase (Phase III: FY2010- in progress). In the rock mechanical investigations at the Phase II, the research aims at “Characterization of geological environment in the Excavation Disturbed Zone (EDZ)” from the viewpoint of safety assessment. For the research, the specific information of the EDZ such as (1) size and structures, (2) petrophysical/geomechanical properties, and (3) stress state are required. The research also aims at “Characterization of geomechanical stability around tunnel” from the viewpoint of design and construction of underground facilities. For the research, the specific information such as (4) local stress regime, (5) spatial variability of petrophysical/geomechanical properties of rocks, and (6) distribution of discontinuities intersecting underground tunnels are required. The measurement system for rock mass behavior has been manufactured and set for groundwater recovery experiment in the Phase III. This report presents the results of following rock mechanical investigations conducted in FY 2013. In-situ stress measurements using Compact Conical-ended Borehole Overcoring Technique were performed at the - 500m stage. Measurement system for rock mass displacement using optical fiber was installed at the - 500m stage as part of the groundwater recovery experiment. Study on the modeling based on equivalent continuum model was continued. Phenomenological study and theoretical study on long-term behavior of crystalline rock were

  7. 'Between a rock and a hard place': applied anthropology and AIDS research on a commercial farm in Zambia.

    Science.gov (United States)

    Bond, V

    1997-01-01

    Fieldwork on a commercial farm in southern Zambia, which was aimed at designing an HIV prevention program for farm workers, gradually exposed the nature of sexual liaisons between young girls, coming to work on the farm from the surrounding villages, and older migrant men workers. Before completing fieldwork, the anthropologist voiced her concern about the implications of these liaisons for the spread of STDs and HIV with the local rural community, farm management and farm workers. The immediate outcome of her intercessions was the decision by management to sack under-age workers. Although some members of the local community, including local research assistants, and some managers and workers welcomed this decision, others were angered by it. Caught between interest groups and conflicting guidelines, the anthropologist, it is argued, was in a no-win situation, 'between a rock and a hard place'. The paper proposes that the application of anthropological ethics in AIDS research needs some re-evaluation.

  8. In situ heating experiments in hard rock: their objectives and design

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Witherspoon, P.A.

    1978-01-01

    Of the many alternatives that are being considered for the disposal of nuclear wastes, deep underground burial is favored. The wealth of experience concerning the design and construction of underground excavations does not include the unique effects of heating excavations by radioactive decay, nor the issue of long-term isolation. The effects of heating are important in establishing the feasibility of this method of disposal, and are essential for the design of an underground repository. Near-field phenomena around individual canisters can be studied by full-scale experiments, using electrical heaters. The thermal diffusivity of rock is so low that information concerning the interaction between full-scale heaters and of the effects of heating a large volume of rock cannot be measured in full-scale experiments lasting less than a few decades. To overcome this difficulty, a time-scaled heating experiment has been developed in which a reduction in linear scale is accompanied by an acceleration of the time scale to the second power. In this experiment, the linear scale is about a third, so that the time scale is about ten fold

  9. In situ heating experiments in hard rock: their objectives and design

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Witherspoon, P.A.; California Univ., Berkeley

    1978-01-01

    Of the many alternatives that are being considered for the disposal of nuclear wastes, deep underground burial is favored. The wealth of experience concerning the design and construction of underground excavations does not include the unique effects of heating excavations by radioactive decay, nor the issue of long-term isolation. The effects of heating are important in establishing the feasibility of this method of disposal and are essential for the design of an underground repository. Near-field phenomena around individual canisters can be studied by full-scale experiments, using electrical heaters. The thermal diffusivity of rock is so low that information concerning the interaction between full-scale heaters and of the effects of heating a large volume of rock cannot be measured in full-scale experiments lasting less than a few decades. To overcome this difficulty, a time-scaled heating experiment has been developed in which a reduction in linear scale is accompanied by an acceleration of the time scale to the second power. In this experiment, the linear scale is about a third, so that the time scale is about ten fold

  10. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods

    Science.gov (United States)

    Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.

    2004-01-01

    In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.

  11. The Mont Terri rock laboratory: International research in the Opalinus Clay

    International Nuclear Information System (INIS)

    Bossart, P.

    2015-01-01

    This article reports on a visit made to the rock laboratory in Mont Terri, Switzerland, where research is being done concerning rock materials that can possibly be used for the implementation of repositories for nuclear wastes. Emphasis is placed on the project’s organisation, rock geology and on-going experiments. International organisations also involved in research on nuclear waste repositories are listed. The research facilities in tunnels built in Opalinus Clay at the Mont Terri site are described. The geology of Opalinus Clay and the structures found in the research tunnels are discussed, as is the hydro-geological setting. The research programme and various institutions involved are listed and experiments carried out are noted. The facilities are now also being used for research on topics related to carbon sequestration

  12. Geological modeling of a fault zone in clay rocks at the Mont-Terri laboratory (Switzerland)

    Science.gov (United States)

    Kakurina, M.; Guglielmi, Y.; Nussbaum, C.; Valley, B.

    2016-12-01

    Clay-rich formations are considered to be a natural barrier for radionuclides or fluids (water, hydrocarbons, CO2) migration. However, little is known about the architecture of faults affecting clay formations because of their quick alteration at the Earth's surface. The Mont Terri Underground Research Laboratory provides exceptional conditions to investigate an un-weathered, perfectly exposed clay fault zone architecture and to conduct fault activation experiments that allow explore the conditions for stability of such clay faults. Here we show first results from a detailed geological model of the Mont Terri Main Fault architecture, using GoCad software, a detailed structural analysis of 6 fully cored and logged 30-to-50m long and 3-to-15m spaced boreholes crossing the fault zone. These high-definition geological data were acquired within the Fault Slip (FS) experiment project that consisted in fluid injections in different intervals within the fault using the SIMFIP probe to explore the conditions for the fault mechanical and seismic stability. The Mont Terri Main Fault "core" consists of a thrust zone about 0.8 to 3m wide that is bounded by two major fault planes. Between these planes, there is an assembly of distinct slickensided surfaces and various facies including scaly clays, fault gouge and fractured zones. Scaly clay including S-C bands and microfolds occurs in larger zones at top and bottom of the Mail Fault. A cm-thin layer of gouge, that is known to accommodate high strain parts, runs along the upper fault zone boundary. The non-scaly part mainly consists of undeformed rock block, bounded by slickensides. Such a complexity as well as the continuity of the two major surfaces are hard to correlate between the different boreholes even with the high density of geological data within the relatively small volume of the experiment. This may show that a poor strain localization occurred during faulting giving some perspectives about the potential for

  13. Theoretical and laboratory investigations of flow through fractures in crystalline rock

    International Nuclear Information System (INIS)

    Witherspoon, P.A.; Watkins, D.J.; Tsang, Y.W.

    1981-01-01

    A theoretical model developed for flow through a deformable fracture subject to stresses was successfully tested against laboratory experiments. The model contains no arbitrary parameters and can be used to predict flow rates through a single fracture if the fractional fracture contact area can be estimated and if stress-deformation data are available. These data can be obtained from laboratory or in situ tests. The model has considerable potential for practical application. The permeability of ultralarge samples of fractured crystalline rock as a function of stresses was measured. Results from tests on a pervasively fractured 1-m-diameter specimen of granitic rock showed that drastically simplifying assumptions must be used to apply theoretical models to this type of rock mass. Simple models successfully reproduce the trend of reduced permeability as stress is applied in a direction normal to the fracture plane. The tests also demonstrated how fracture conductivity increases as a result of dilatancy associated with shear displacements. The effect of specimen size on the hydraulic properties of fractured rock was also investigated. Permeability tests were performed on specimens of charcoal black granite containing a single fracture subjected to normal stress. Results are presented for tests performed on a 0.914-m-diameter specimen and on the same specimen after it had been reduced to 0.764 m in diameter. The data show that fracture conductivity is sensitive to stress history and sample disturbance

  14. Heat-energy storage through semi-opened circulation into low-permeability hard-rock aquifers

    Science.gov (United States)

    Pettenati, Marie; Bour, Olivier; Ausseur, Jean-Yves; de Dreuzy, Jean-Raynald; de la Bernardie, Jérôme; Chatton, Eliot; Lesueur, Hervé; Bethencourt, Lorine; Mougin, Bruno; Aquilina, Luc; Koch, Florian; Dewandel, Benoit; Boisson, Alexandre; Mosser, Jean-François; Pauwels, Hélène

    2016-04-01

    In low-permeability environments, the solutions of heat storage are still limited to the capacities of geothermal borehole heat exchangers. The ANR Stock-en-Socle project explores the possibilities of periodic storage of sensitive heat1 in low-permeability environments that would offer much better performance than that of borehole heat exchangers, especially in terms of unit capacity. This project examines the storage possibilities of using semi-open water circulation in typically a Standing Column Well (SCW), using the strong heterogeneity of hard-rock aquifers in targeting the least favorable areas for water resources. To solve the main scientific issues, which include evaluating the minimum level of permeability required around a well as well as its evolution through time (increase and decrease) due to water-rock interaction processes, the study is based on an experimental program of fieldwork and modelling for studying the thermal, hydraulic and geochemical processes involved. This includes tracer and water-circulation tests by injecting hot water in different wells located in distinct hard-rock settings (i.e. granite and schist) in Brittany, Ploemeur (H+ observatory network) and Naizin. A numerical modelling approach allows studying the effects of permeability structures on the storage and heat-recovery capacities, whereas the modelling of reactive transfers will provide an understanding of how permeability evolves under the influence of dissolution and precipitation. Based on the obtained results, technical solutions will be studied for constructing a well of the SCW type in a low-permeability environment. This work will be completed by a technical and economic feasibility study leading to an investment and operations model. This study aims to describe the suitability of SCW storage for shallow geothermal energy. In order to reach these objectives, Stock-en-Socle is constructed around a public/private partnership between two public research organizations, G

  15. Iodide behaviour in hard clay rocks under controlled physico-chemical conditions at different concentrations

    International Nuclear Information System (INIS)

    Frasca, B.; Savoye, S.; Wittebroodt, C.; Leupin, O.X.; Descostes, M.; Grenut, B.; Meier, P.; Michelot, J.L.

    2010-01-01

    Document available in extended abstract form only. With a half-life of 1.6 10 7 years, its high mobility and its potential to accumulate in the biosphere, iodine-129 is considered, from safety assessment calculations for radioactive waste repositories, to be one of the main radiological dose contributors. Based on the findings of previous studies, iodide, especially at low concentrations, seems to be migrating at a slower rate in clay rock than Cl-36. The cause of this retardation regarding the diffusion of iodide versus chloride is not yet understood but several hypotheses are point towards sorption on natural organic matter (NOM), pyrite or redox reactions. Oxidation of iodide would form IO 3 - which is known to have a higher sorption affinity on several soils and sediment samples than iodide. The present project aims at exploring the effect on the iodide behaviour of two parameters: (i) the initial concentration of iodide and (ii) the amount of NOM contained in the argillite samples. Such an investigation is carried out on Tournemire argillite by means of both batch and through-diffusion experiments. The main challenge is to exclude as much as possible the occurrence of any experimental artefact that could induce iodide uptake (oxygen contamination, dissolution/precipitation of carbonate phases). Regarding redox conditions and rock equilibrium, all the experiments were carried out under physico-chemical conditions as close as possible to those prevailing in field. Using a glove box with an atmosphere of N 2 /CO 2 (respectively 99.6% and 0.4%), we preserved the experiments from oxygen and maintained the calculated in-situ carbonate equilibrium. At first, four through-diffusion experiments with the non-sorbing tracers HTO and Cl-36 were performed to allow the diffusive parameters of each sample to be defined. Afterwards, iodide was injected in the diffusion cells at four different concentrations (10 -6 M to 10 -3 M). Thus, the comparison of the incoming fluxes of

  16. From rhetoric to reality in science: Between Little Rock and a hard place

    International Nuclear Information System (INIS)

    Goodwin, I.

    1992-01-01

    As Bill Clinton makes the transition from candidate to president, he confronts the job of transforming campaign rhetoric to the reality of political compromise and budgetary constraint. Discussed in this article are Mr. Clinton's campaign promises related to funding for national laboratories, defense, and secondary education. Also discussed are Vice President Gore's views toward environmental cleanup and protection. Speculation is made of President Clinton's budget plans and Cabinet-level appointments

  17. A Closer Look at the Design of Cutterheads for Hard Rock Tunnel-Boring Machines

    Directory of Open Access Journals (Sweden)

    Jamal Rostami

    2017-12-01

    Full Text Available The success of a tunnel-boring machine (TBM in a given project depends on the functionality of all components of the system, from the cutters to the backup system, and on the entire rolling stock. However, no part of the machine plays a more crucial role in the efficient operation of the machine than its cutterhead. The design of the cutterhead impacts the efficiency of cutting, the balance of the head, the life of the cutters, the maintenance of the main bearing/gearbox, and the effectiveness of the mucking along with its effects on the wear of the face and gage cutters/muck buckets. Overall, cutterhead design heavily impacts the rate of penetration (ROP, rate of machine utilization (U, and daily advance rate (AR. Although there has been some discussion in commonly available publications regarding disk cutters, cutting forces, and some design features of the head, there is limited literature on this subject because the design of cutterheads is mainly handled by machine manufacturers. Most of the design process involves proprietary algorithms by the manufacturers, and despite recent attention on the subject, the design of rock TBMs has been somewhat of a mystery to most end-users. This paper is an attempt to demystify the basic concepts in design. Although it may not be sufficient for a full-fledged design by the readers, this paper allows engineers and contractors to understand the thought process in the design steps, what to look for in a proper design, and the implications of the head design on machine operation and life cycle. Keywords: TBM cutterhead design, Cutterhead layout, Disk cutters, Cutting pattern, TBM efficiency

  18. Choosing between rocks, hard places and a lot more. The economic interface

    International Nuclear Information System (INIS)

    Haldorsen, H.H.

    1996-01-01

    decisions: for deciding whether or not to explore or develop, for choosing between exploration prospects ('rocks') in a licensing round, for choosing between basins or countries ('places') in which one wants to explore and produce, and for choosing between development concepts, recovery mechanisms, plateau rates, ... (and a lot more), in field development planning. Due to the largely unpredictable nature of the subsurface and the future oil price, the concepts of 'risk' (=possibility of a financial loss or an unachieved objective) and unfortunately, to a lesser extent 'grisk' (possibility of a financial gain in excess of the objective) are quite central in the oil business. Illustrations of 'risk' and 'grisk' will be presented. 24 refs

  19. Attenuation characteristics of seismic motion based on earthquake observation records. Identification of damping factor at hard rock sites and its influences on ground stability evaluation

    International Nuclear Information System (INIS)

    Sato, Hiroaki; Kanatani, Mamoru; Ohtori, Yasuki

    2005-01-01

    In this report, we examined validity of currently available ground stability evaluation method by applying commonly used damping factor which was invariant for frequency. First, we conducted a survey of the actual conditions of damping factors, which were used in ground stability evaluation, on 10 existing nuclear power plants. As a result, we found that damping factor of 0.03(3%) was used in of 80 percent investigated plants. Next, a spectral inversion method using very fast simulated annealing was proposed for identifying damping factor and its lower limit. Here, the lower limit of damping factor means intrinsic damping factor. The developed inversion method was applied to borehole array data recorded at hard rock ground. From the inversion, it was found that intrinsic damping factor of hard rock ground distributed between about 0.03(3%) and 0.06(3%) at a depth of less than 100m, and between about 0.003(0.3%) and 0.01(1%) at a depth of more than 100m. Furthermore, we indicated that scattering damping factor with in a depth of less than 100m was in proportion to the almost -1.0 power of the frequency, and the factor in a depth of more than 100m had a peak in a frequency range from about 1.0 to 5.0 Hz. Therefore, it was recognized that commonly used damping of 0.03(3%) expressed intrinsic damping factor of shallower hard rock ground. Finally, we estimated the influences of damping factor on ground stability evaluation by 2D dynamic FEM analyses of hard rock foundation ground considering 8 slipping lines using 6 combinations of damping factor. It was demonstrated that the variation of damping factor was not so decisive on the results of ground stability evaluation. This suggests present ground stability evaluation method by applying commonly used damping factor is reasonable for hard rock sites. (author)

  20. Theoretical analysis and design of hydro-hammer with a jet actuator: An engineering application to improve the penetration rate of directional well drilling in hard rock formations.

    Science.gov (United States)

    He, Jiang-Fu; Liang, Yun-Pei; Li, Li-Jia; Luo, Yong-Jiang

    2018-01-01

    Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations.

  1. A study on rock mass behaviour induced by shaft sinking in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Tsusaka, Kimikazu; Tokiwa, Tetsuya; Inagaki, Daisuke; Hatsuyama, Yoshihiro; Koike, Masashi; Ijiri, Yuji

    2012-01-01

    Japan Atomic Energy Agency has been excavating three deep shafts through soft sedimentary rock in the Horonobe Underground Research Laboratory. In this paper, the authors discussed rock mass behaviour induced by a 6.5 m diameter shaft sinking. They conducted geological mapping in an excavation face and boreholes digged around the shaft wall, field measurements such as convergence measurements and monitoring of rock displacements using multi-interval borehole extensometers around a shaft at around 160 m and 220 m in depths, and three-dimensional numerical analysis which models the shaft excavation procedure such as timing of installation of support elements and setting and removal of a concrete form. As a result, it was clarified that remarkably large compressive strains occurred within about 1 m into the shaft wall in a radial direction since the rock mass behaviour was controlled by the concrete lining and that the behaviour would predominantly be induced by the fractures closing which opened significantly and propagated during excavation steps before the installation of a concrete lining and the directions where the strains occurred heavily depended on the fracture orientation around the shaft. (author)

  2. Develop guidelines for the design of pillar systems for shallow and intermediate depth, tabular, hard rock mines and provide a methodology for assessing hangingwall stability and support requirements for the panels between pillars

    CSIR Research Space (South Africa)

    York, G

    1998-12-01

    Full Text Available The design of hard rock pillars, in shallow to intermediate depth hard rock mines, has been redefined as the determination of the pillar system load bearing capacity. This entails the ability to design each of the components of the pillar system...

  3. Interactions of trace elements with fracture filling minerals from the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Landstroem, O.; Tullborg, E.L.

    1995-06-01

    This report focuses on the distribution of stable elements and natural radionuclides (e.g. REEs, Th, Ra, Sr and Cs) in natural fracture systems. They have been redistributed by natural processes in the past; mobilization, transport and deposition of which the latter is manifested as 'enrichments' of the elements in fracture fillings. Fillings dominated by Fe-oxyhydroxide, calcite and clay minerals show the highest concentrations. Precipitates from different fractures show large variations in concentration levels of trace elements, REE patterns, and activity and activity ratios of natural radionuclides, reflecting variations in physical, chemical and hydrological properties of the fractures. The incorporation of REEs, Sr, Th and U in calcite is significant. The precipitation rate influences the amount of Sr incorporated and probably other elements as well. Clay minerals have high sorption capacity and are important in the retention of Cs and Sr as well as of REEs, Th, U and Ra. The importance of clay minerals in radionuclide retention is emphasized by the results from this study, even small amounts of clay minerals in fractures and fracture zones can significantly influence the radionuclide migration. Accurate determination of quantities and types of clay minerals is therefore very important for radionuclide migration modelling. 58 refs, 14 figs, 12 tabs

  4. Measurements of colloid concentrations in the fracture zone, Aespoe Hard Rock Laboratory, Sweden

    International Nuclear Information System (INIS)

    Ledin, A.; Dueker, A.; Karlsson, Stefan; Allard, B.

    1995-06-01

    The applicability of light scattering in combination with photon correlation spectroscopy (PCS) for determination of concentration and size distribution of colloidal matter in a deep groundwater was tested in situ and on-line. Well-defined reference colloids of Fe 2 O 3 , Al(OH) 3 , SiO 2 , kaolinite, illite and a high molecular humic acid in aqueous media were used as model substances for calibration of the PCS instrument. The intensity of scattered light was found to be dependent on the composition of the colloids. The colloid concentration in the rather saline groundwater was below the detection limit for the PCS equipment used, which corresponds to a colloid concentration not higher than 0.5 mg/l and probably below 0.1 mg/l according to the measurements on-line and in situ at Aespoe and in comparison to the calibrations performed with reference colloids. The results clearly demonstrated that the stability, concentration and composition of a colloid-size suspended phase in the anoxic groundwater with high content of Fe(II), like the one in Aespoe, is extremely sensitive to exposure to atmospheric conditions during sample handling and preparation. Diffusion of air into the closed measuring cuvette was enough to alter the colloid content significantly within 6 hours. A particle fraction with the size distribution in the range 170-700 nm was formed within 45 min when air was allowed to diffuse into the aqueous phase from the air filled upper part of the cuvette. The corresponding time to generate a significant colloid precipitate was less than 1 min when a stream of air was bubbled through the water samples. The precipitated colloid phase consisted of a mixture of ferric (hydr)oxide and calcium carbonate in all three cases. 53 refs, 8 figs, 2 tabs

  5. Interactions of trace elements with fracture filling minerals from the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Landstroem, O [Studsvik Eco and Safety AB, Nykoeping (Sweden); Tullborg, E L [Terralogica AB (Sweden)

    1995-06-01

    This report focuses on the distribution of stable elements and natural radionuclides (e.g. REEs, Th, Ra, Sr and Cs) in natural fracture systems. They have been redistributed by natural processes in the past; mobilization, transport and deposition of which the latter is manifested as `enrichments` of the elements in fracture fillings. Fillings dominated by Fe-oxyhydroxide, calcite and clay minerals show the highest concentrations. Precipitates from different fractures show large variations in concentration levels of trace elements, REE patterns, and activity and activity ratios of natural radionuclides, reflecting variations in physical, chemical and hydrological properties of the fractures. The incorporation of REEs, Sr, Th and U in calcite is significant. The precipitation rate influences the amount of Sr incorporated and probably other elements as well. Clay minerals have high sorption capacity and are important in the retention of Cs and Sr as well as of REEs, Th, U and Ra. The importance of clay minerals in radionuclide retention is emphasized by the results from this study, even small amounts of clay minerals in fractures and fracture zones can significantly influence the radionuclide migration. Accurate determination of quantities and types of clay minerals is therefore very important for radionuclide migration modelling. 58 refs, 14 figs, 12 tabs.

  6. The modeler's influence on calculated solubilities for performance assessments at the Aespoe hard-rock laboratory

    International Nuclear Information System (INIS)

    Emren, A.T.; Arthur, R.; Glynn, P.D.; McMurry, J.

    1999-01-01

    Four researchers were asked to provide independent modeled estimates of the solubility of a radionuclide solid phase, specifically Pu(OH) 4 , under five specified sets of conditions. The objectives of the study were to assess the variability in the results obtained and to determine the primary causes for this variability. In the exercise, modelers were supplied with the composition, pH and redox properties of the water and with a description of the mineralogy of the surrounding fracture system. A standard thermodynamic data base was provided to all modelers. Each modeler was encouraged to use other data bases in addition to the standard data base and to try different approaches to solving the problem. In all, about fifty approaches were used, some of which included a large number of solubility calculations. For each of the five test cases, the calculated solubilities from different approaches covered several orders of magnitude. The variability resulting from the use of different thermodynamic data bases was in most cases, far smaller than that resulting from the use of different approaches to solving the problem

  7. Laboratory testing of gneissic rocks in Olkiluoto borehole OL-KR24

    International Nuclear Information System (INIS)

    Eloranta, P.

    2006-10-01

    The stress-strain behaviour of anisotropic gneissic rocks from Olkiluoto, Finland, was studied for a total of 25 rock mechanics tests. Samples were selected from borehole OLKR24 at a depth level of 417-442 m. Tests included 15 uniaxial compression tests, 10 indirect tensile strength tests and 6 triaxial compression tests. Strain gauges were installed in five samples to evaluate the anisotropic properties, and acoustic emission sensors were installed in ten samples to estimate the stress damage levels. The specimen preparation and tests were carried out at the Laboratory of Rock Engineering, Helsinki University of Technology, Finland. Specimens were tested under laboratory-air-dry conditions and were photographed before and after the tests. The values obtained for the uniaxial compressive strength were in the range 56.5 - 165.9 MPa and for the indirect tensile strength 7.7 - 12.1 MPa. The anisotropic ratio of Young's modulus, E/E', was of the order of 1.1. (orig.)

  8. Performance of the Opalinus Clay under thermal loading: experimental results from Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Gens, A. [Universitat Politència de Catalunya, Barcelona (Spain); Wieczorek, K. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) GmbH, Braunschweig (Germany); Gaus, I. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); and others

    2017-04-15

    The paper presents an overview of the behaviour of Opalinus Clay under thermal loading as observed in three in situ heating tests performed in the Mont Terri rock laboratory: HE-B, HE-D and HE-E. The three tests are summarily described; they encompass a broad range of test layouts and experimental conditions. Afterwards, the following topics are examined: determination of thermal conductivity, thermally-induced pore pressure generation and thermally-induced mechanical effects. The mechanisms underlying pore pressure generation and dissipation are discussed in detail and the relationship between rock damage and thermal loading is examined using an additional in situ test: SE-H. The paper concludes with an evaluation of the various thermo-hydro-mechanical (THM) interactions identified in the heating tests. (authors)

  9. Performance of EVA-Based Membranes for SCL in Hard Rock

    Science.gov (United States)

    Holter, Karl Gunnar

    2016-04-01

    The bonded property of multi-layered sprayed concrete tunnel linings (SCL) waterproofed with sprayed membranes means that the constituent materials will be exposed to the groundwater without any draining or mechanically separating measures. Moisture properties of the sprayed concrete and membrane materials are therefore important in order to establish the system properties of such linings. Ethyl-vinyl-acetate based sprayed membranes exhibit high water absorption potential under direct exposure to water, but are found to be significantly less hygroscopic and exhibit lower sorptivity (water absorption rate) than sprayed concrete. This material behavior explains the relatively dry in situ condition of the membrane that was observed. Measured in situ moisture content levels of the membrane material in tunnel linings have been found to vary within the range of 30-40 % of the maximum water absorption potential, and show a decreasing trend over the first 4 years after construction has been completed. A model for the mechanical loading, moisture condition and thermal exposure of the membrane and the resulting realistic parameters to be tested is presented. Laboratory testing methods for the membrane materials are evaluated considering possible loads, moisture and freezing exposure. Material testing of membrane materials was conducted with preconditioning to realistic moisture contents and under different temperature conditions including relevant freezing temperatures for tunnel linings. The main effects of the in situ moisture condition of the tested membrane materials are favorable tensile strengths in the range of 1.1-1.5 MPa and low risk of freeze-thaw damage. The crack bridging capacity of the tested membranes is found to be sensitive to temperature. With membrane thicknesses in the range of 3-4 mm, crack bridging capacity up to 4-6 mm opening of the crack width at 23 °C and approximately 1 mm opening at -3 °C was measured for the tested membranes. No significant

  10. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India.

    Science.gov (United States)

    Rashid, Mehnaz; Lone, Mahjoor Ahmad; Ahmed, Shakeel

    2012-08-01

    The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains.

  11. NITRATE POLLUTION IN SHALLOW GROUNDWATER OF A HARD ROCK REGION IN SOUTH CENTRAL INDIA

    Science.gov (United States)

    Brindha, K.; Rajesh, R.; Murugan, R.; Elango, L.

    2009-12-01

    Groundwater forms a major source of drinking water in most parts of the world. Due to the lack of piped drinking water supply, the population in rural areas depend on the groundwater resources for domestic purposes. Hence, the quality of groundwater in such regions needs to be monitored regularly. Presence of high concentration of nitrate in groundwater used for drinking is a major problem in many countries as it causes health related problems. Most often infants are affected by the intake of high nitrate in drinking water and food. The present study was carried out with the objective of assessing the nitrate concentration in groundwater and determining the causes for nitrate in groundwater in parts of Nalgonda district in India which is located at a distance of about 135 km towards ESE direction from Hyderabad. Nitrate concentration in groundwater of this area was analysed by collecting groundwater samples from forty six representative wells. Samples were collected once in two months from March 2008 to March 2009. A total of 244 groundwater samples were collected during the study. Soil samples were collected from fifteen locations during May 2009 and the denitrifying bacteria were isolated from the soil using spread plate method. The nitrate concentration in groundwater samples were analysed in the laboratory using Metrohm 861 advanced compact ion chromatograph using appropriate standards. The highest concentration of nitrate recorded during the sampling period was 879.65mg/l and the lowest concentration was below detection limit. The maximum permissible limit of nitrate for drinking water as per Bureau of Indian Standards is 45mg/l. About 13% of the groundwater samples collected from this study area possessed nitrate concentration beyond this limit. The nitrate concentration was high in the southeastern part of the study area. This implies that the nitrate concentration in groundwater tends to increase along the flow direction. Application of fertilizers is one

  12. Fracture toughness properties of rocks in Olkiluoto: Laboratory measurements 2008-2009

    Energy Technology Data Exchange (ETDEWEB)

    Siren, T.

    2012-05-15

    In Olkiluoto an underground rock characterization facility (ONKALO) for the final disposal site of spent nuclear fuel has been under thorough research many years, but further knowledge is needed on fracture toughness parameters. Fracture toughness parameters are important for example in fracture mechanics prediction for Posiva's Olkiluoto Spalling Experiment (POSE). This working report describes a laboratory campaign that was done between 2008 and 2009. The campaign aimed at determining the fracture mechanics parameters as well as density and ultrasonic velocities for Olkiluoto rocks. The specimens delivered were selected by Posiva; the core showed no damage and the quality of the delivered cores was good with varying sample diameter. Most of the test samples (9 out of 12) are gneissic rock. The Mode I fracture toughness was determined using two different methods to account for two different fracturing directions. The methods are the Chevron Bend (CB) test as proposed in the ISRM Suggested Method and a method based on the Brazilian Disk (BD) experiment. The Mode II fracture toughness was determined using the Punch-Through Shear with Confining Pressure experiment on the remaining pieces from the CB testing. The scatter in the results is very large, even within one piece of core sample. Usually the scatter of results is less than 5 %. The high scatter in the data at hand is believed to be due to the very inhomogeneous nature of the rock material. The magnitude of the determined Mode I fracture toughness compares well with available reported data for medium to coarse grained granitoide rocks. However the scatter of the mode II fracture toughness values is higher than experienced on other rock types, but the variability is reasonable for the inhomogeneous rock type. Distinguishing the fracture toughness values for different anisotropy directions would require more thorough testing with quality samples at different anisotropy directions. However since fracture

  13. Comprehensive Interpretation of the Laboratory Experiments Results to Construct Model of the Polish Shale Gas Rocks

    Science.gov (United States)

    Jarzyna, Jadwiga A.; Krakowska, Paulina I.; Puskarczyk, Edyta; Wawrzyniak-Guz, Kamila; Zych, Marcin

    2018-03-01

    More than 70 rock samples from so-called sweet spots, i.e. the Ordovician Sa Formation and Silurian Ja Member of Pa Formation from the Baltic Basin (North Poland) were examined in the laboratory to determine bulk and grain density, total and effective/dynamic porosity, absolute permeability, pore diameters size, total surface area, and natural radioactivity. Results of the pyrolysis, i.e., TOC (Total Organic Carbon) together with S1 and S2 - parameters used to determine the hydrocarbon generation potential of rocks, were also considered. Elemental composition from chemical analyses and mineral composition from XRD measurements were also included. SCAL analysis, NMR experiments, Pressure Decay Permeability measurements together with water immersion porosimetry and adsorption/ desorption of nitrogen vapors method were carried out along with the comprehensive interpretation of the outcomes. Simple and multiple linear statistical regressions were used to recognize mutual relationships between parameters. Observed correlations and in some cases big dispersion of data and discrepancies in the property values obtained from different methods were the basis for building shale gas rock model for well logging interpretation. The model was verified by the result of the Monte Carlo modelling of spectral neutron-gamma log response in comparison with GEM log results.

  14. Time dependent fracture growth in intact crystalline rock: new laboratory procedures

    International Nuclear Information System (INIS)

    Backers, T.; Stephansson, O.

    2008-01-01

    Short term laboratory tests to determine the strength of rock material are commonly used to assess stability of rock excavations. However, loading the rock below its short term strength may lead to delayed failure due to slow stable fracture growth. This time-dependent phenomenon is called subcritical fracture growth. A fracture mechanics based approach is applied in this study to determine the parameters describing subcritical fracture growth under Mode Ⅰ (tensile) and Mode Ⅱ (in-plane shear) loading in terms of the stress intensity factors of saturated granodiorite from the) Aespoe HRL. A statistical method is applied to data from three-point bending (tension) and Punch-Through Shear with Confining Pressure, PTS/CP, (shear) experiments. One population of each set-up was subjected to rapid loading tests yielding a strength probability distribution. A second population was loaded up to a certain fraction of the statistical percentage for failure and the time-to-failure was determined. From these two populations the subcritical fracture growth parameters were determined successfully. Earlier studies demonstrated subcritical fracture growth under Mode I loading conditions, but this study shows that under a Mode Ⅱ load time-dependent fracture growth exists as well. (authors)

  15. Spanish participation in the Haw Project: Laboratory investigations on Gamma irradiation effects in rock salt

    International Nuclear Information System (INIS)

    Cuevas, C. de las; Miralles, L.; Teixidor, P.; Garcia Veigas, J.; Dies, X.; Ortega, X.; Pueyo, J.J.

    1993-01-01

    In order to prove the safe disposal of high-level radioactive waste (HAW) in salt rock, a five years test disposal of thirty highly radioactive radiation sources is planned in the Asse salt mine, in the Federal Republic of Germany. The thirty radiation sources consist of steel canisters containing the vitrified radionuclides Caesium 137 and Strontium 90 in quantities sufficient to cover the bandwidth of heat generation and gamma radiation of real HAW. The radiation sources will be emplaced in six boreholes located in two galleries at the 800 m level. Two electrical heater tests were already started in November 1988 and are continuosly surveyed in respect of the rock mass. Also the handling system necessary for the emplacement of the radioactive canisters was developed and succesfully tested. A laboratory investigation programme on radiation effects in salt is being performed in advance to the radioactive canister emplacement. This programme includes the investigation of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Part of this programme has been carried out since 1988 at the University of Barcelona, basically what refers to colloidal sodium determinations by light absorption measurements and microstructural studies on irradiated salt samples. For gamma dose and dose rate measurements in the test field, measuring systems consisting of ionisation chambers as well as solid state dosemeters were developed and tested. Thermomechanical computer code validation is performed by calculational predictions and parallel investigation of the stress and displacement fields in the underground test field

  16. The LUT-Gauge for overcoring rock stress measurements - Technical description and laboratory evaluation

    International Nuclear Information System (INIS)

    Leijon, B.

    1988-03-01

    The development of the LUT-Gauge - a triaxial borehole instrument for overcoring rock stress measurements - is reported. The borehole gauge and the associated equipment is described in some detail. The experimental procedures applicable to field measurements with the device are presented. A series of laboratory tests, aimed at investigating the performance of the instrumentation, are reported, This included basic tests of mechanical and electrical reliability, as well as investigations of the thermal sensitivity of the measuring method. These factors are significant with respect to the applicability of the method under field conditions. The results from the laboratory tests showed that instrument performance was in all respects satisfactory. Furthermore, that the effects of temperature changes, expressed as the corresponding measuring error to be expected under typical field conditions, was less than ± 1 MPa. (author)

  17. Implementation of the full-scale emplacement (FE) experiment at the Mont Terri rock laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Müller, H.R.; Garitte, B.; Vogt, T.; and others

    2017-04-15

    Opalinus Clay is currently being assessed as the host rock for a deep geological repository for high-level and low- and intermediate-level radioactive wastes in Switzerland. Within this framework, the 'Full-Scale Emplacement' (FE) experiment was initiated at the Mont Terri rock laboratory close to the small town of St-Ursanne in Switzerland. The FE experiment simulates, as realistically as possible, the construction, waste emplacement, backfilling and early post-closure evolution of a spent fuel/vitrified high-level waste disposal tunnel according to the Swiss repository concept. The main aim of this multiple heater test is the investigation of repository-induced thermo-hydro-mechanical (THM) coupled effects on the host rock at this scale and the validation of existing coupled THM models. For this, several hundred sensors were installed in the rock, the tunnel lining, the bentonite buffer, the heaters and the plug. This paper is structured according to the implementation timeline of the FE experiment. It documents relevant details about the instrumentation, the tunnel construction, the production of the bentonite blocks and the highly compacted 'granulated bentonite mixture' (GBM), the development and construction of the prototype 'backfilling machine' (BFM) and its testing for horizontal GBM emplacement. Finally, the plug construction and the start of all 3 heaters (with a thermal output of 1350 Watt each) in February 2015 are briefly described. In this paper, measurement results representative of the different experimental steps are also presented. Tunnel construction aspects are discussed on the basis of tunnel wall displacements, permeability testing and relative humidity measurements around the tunnel. GBM densities achieved with the BFM in the different off-site mock-up tests and, finally, in the FE tunnel are presented. Finally, in situ thermal conductivity and temperature measurements recorded during the first heating months

  18. Analysis of the hydraulic data from the MI fracture zone at the Grimsel Rock Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Davey, A.; Karasaki, K.; Long, J.C.S.; Landsfeld, M.; Mensch, A.; Martel, S.J.

    1989-10-01

    One of the major problems in analyzing flow and transport in fractured rock is that the flow may be largely confined to a poorly connected network of fractures. In order to overcome some of this problem, Lawrence Berkeley Laboratory (LBL) has been developing a new type of fracture hydrology model called an equivalent discontinuum model. In this model the authors represent the discontinuous nature of the problem through flow on a partially filled lattice. A key component in constructing an equivalent discontinuum model from this lattice is removing some of the conductive elements such that the system is partially connected in the same manner as the fracture network. This is done through a statistical inverse technique called simulated annealing. The fracture network model is annealed by continually modifying a base model, or template such that the modified systems behave more and more like the observed system. In order to see how the simulated annealing algorithm works, the authors have developed a series of synthetic real cases. In these cases, the real system is completely known so that the results of annealing to steady state data can be evaluated absolutely. The effect of the starting configuration has been studied by varying the percent of conducting elements in the initial configuration. Results have shown that the final configurations converge to about the same percentage of conducting elements. An example using Nagra field data from the Migration Experiment (MI) at Grimsel Rock Laboratory in Switzerland is also analyzed. 24 refs., 33 figs., 3 tabs

  19. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach

    Science.gov (United States)

    Hassan, S.M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Zhongbo, Su

    2014-01-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface–groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y−1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y−1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.

  20. Correlation of pre-earthquake electromagnetic signals with laboratory and field rock experiments

    Directory of Open Access Journals (Sweden)

    T. Bleier

    2010-09-01

    Full Text Available Analysis of the 2007 M5.4 Alum Rock earthquake near San José California showed that magnetic pulsations were present in large numbers and with significant amplitudes during the 2 week period leading up the event. These pulsations were 1–30 s in duration, had unusual polarities (many with only positive or only negative polarities versus both polarities, and were different than other pulsations observed over 2 years of data in that the pulse sequence was sustained over a 2 week period prior to the quake, and then disappeared shortly after the quake. A search for the underlying physics process that might explain these pulses was was undertaken, and one theory (Freund, 2002 demonstrated that charge carriers were released when various types of rocks were stressed in a laboratory environment. It was also significant that the observed charge carrier generation was transient, and resulted in pulsating current patterns. In an attempt to determine if this phenomenon occurred outside of the laboratory environment, the authors scaled up the physics experiment from a relatively small rock sample in a dry laboratory setting, to a large 7 metric tonne boulder comprised of Yosemite granite. This boulder was located in a natural, humid (above ground setting at Bass Lake, Ca. The boulder was instrumented with two Zonge Engineering, Model ANT4 induction type magnetometers, two Trifield Air Ion Counters, a surface charge detector, a geophone, a Bruker Model EM27 Fourier Transform Infra Red (FTIR spectrometer with Sterling cycle cooler, and various temperature sensors. The boulder was stressed over about 8 h using expanding concrete (Bustartm, until it fractured into three major pieces. The recorded data showed surface charge build up, magnetic pulsations, impulsive air conductivity changes, and acoustical cues starting about 5 h before the boulder actually broke. These magnetic and air conductivity pulse signatures resembled both the laboratory

  1. Develop guidelines for the design of pillar systems for shallow and intermediate depth, tabular, hard rock mines and provide methodology for assessing hangingwall stability and support requirements for the panels between pillars

    CSIR Research Space (South Africa)

    Haile, AT

    1995-12-01

    Full Text Available The overall view of the research being conducted at Impala platinum was to improve pillar design techniques through a rock testing programme, underground instrumentation and back analysis. The laboratory rock testing programme has provided a useful...

  2. Hydrogeology of the rock mass encountered at the 240 level of Canada's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kozak, E.T.; Davison, C.C.

    1992-09-01

    The rock mass surrounding the 240 level of Canada's Underground Research Laboratory (URL) has been hydrogeologically characterized through observations made in the tunnel and room excavations and from a network of radiating low-dipping boreholes. The 240 level complex sits in a wedge of grey-to-pink granite between two important, low-dipping, hydraulically active fracture zones, known as Fracture Zone 2 (FZ2) and Fracture Zone 2.5 (FZ2.5), a splay of FZ2. There is no apparent seepage into the 240 level room and tunnel network from the surrounding rock mass except from a vertical fracture intersected by the Room 209 tunnel. Extensive hydraulic and geomechanical tests have been conducted in boreholes intersecting the Room 209 vertical fracture, and transmissivities were found to range from 10 -10 to 10 -6 m 2 /s. FZ2 and FZ2.5 occur at the 240 m depth approximately 10 m to the west and 100 m to the south respectively of the 240 level tunnel network. Hydraulic testing within packer-isolated boreholes intersecting these fracture zones showed that transmissivities ranged from 10 -7 to 10 -5 m 2 /s in FZ2, and 10 -9 to 10 -7 m 2 /s in FZ2.5. No naturally-occurring fractures were encountered east of the 240 level complex up to 300 m away. The rock mass to the north of the 240 level is dominated by the Room 209 vertical fracture, which tends to splay with distance and has been intersected 95 m from the Room 209 tunnel. (Author) (50 figs., 5 tabs., 10 refs.)

  3. Diffusion and retention experiment at the Mont Terri underground rock laboratory in St. Ursanne

    International Nuclear Information System (INIS)

    Leupin, O.X.; Wersin, P.; Gimmi, Th.; Van Loon, L.; Eikenberg, J.; Baeyens, B.; Soler, J.M.; Dewonck, S.; Wittebroodt, C.; Samper, J.; Yi, S.; Naves, A.

    2010-01-01

    Document available in extended abstract form only. Because of their favourable hydraulic and retention properties that limit the migration of radionuclides, indurated clays are being considered as potential host rocks for radioactive waste disposal. Migration of radionuclides by diffusion and retention is thereby one of the main concerns for safety assessment and therefore carefully investigated at different scales. The transfer from dispersed sorption batch and diffusion data from lab experiments to field scale is however not always straightforward. Thus, combined sorption and diffusion experiments at both lab and field scale are instrumental for a critical verification of the applicability of such sorption and diffusion data. The present migration field experiment 'DR' (Diffusion and Retention experiment) at the Mont Terri Rock Laboratory (Switzerland) is the continuation of a series of successful diffusion experiments. The design is based on these previous diffusion experiments and has been extended to two diffusion chambers in a single borehole drilled perpendicular to the bedding plane. The radionuclides were injected as a pulse in both upper and lower loops where artificial pore water is circulating. The injected tracers were tritium, iodide, bromide, sodium-22, strontium-85, caesium (stable) for the lower diffusion chamber and deuterium caesium-137, barium-133, cobalt-60, europium-152, selenium (stable) and selenium-75 for the lower diffusion chamber. Their decrease in the circulation fluid - as they diffuse into the clay - is continuously monitored by online?-detection and regular sampling. The goals are fourfold (i) obtain diffusion and retention data for moderately to strongly sorbing tracers and to verify the corresponding data obtained on small-scale lab samples, (ii) improve diffusion data for the rock anisotropy, (iii) quantify effects of the borehole-disturbed zone for non-reactive tracers and (iv) improve data for long term diffusion. The

  4. Laboratory studies of groundwater degassing in replicas of natural fractured rock for linear flow geometry

    International Nuclear Information System (INIS)

    Geller, J.T.

    1998-02-01

    Laboratory experiments to simulate two-phase (gas and water) flow in fractured rock evolving from groundwater degassing were conducted in transparent replicas of natural rock fractures. These experiments extend the work by Geller et al. (1995) and Jarsjo and Geller (1996) that tests the hypothesis that groundwater degassing caused observed flow reductions in the Stripa Simulated Drift Experiment (SDE). Understanding degassing effects over a range of gas contents is needed due to the uncertainty in the gas contents of the water at the SDE. The main objectives of this study were to: (1) measure the effect of groundwater degassing on liquid flow rates for lower gas contents than the values used in Geller for linear flow geometry in the same fracture replicas of Geller; (2) provide a data set to develop a predictive model of two-phase flow in fractures for conditions of groundwater degassing; and (3) improve the certainty of experimental gas contents (this effort included modifications to the experimental system used by Geller et al. and separate gas-water equilibration tests). The Stripa site is being considered for a high-level radioactive waste repository

  5. Acceleration to failure in geophysical signals prior to laboratory rock failure and volcanic eruptions (Invited)

    Science.gov (United States)

    Main, I. G.; Bell, A. F.; Greenhough, J.; Heap, M. J.; Meredith, P. G.

    2010-12-01

    The nucleation processes that ultimately lead to earthquakes, volcanic eruptions, rock bursts in mines, and landslides from cliff slopes are likely to be controlled at some scale by brittle failure of the Earth’s crust. In laboratory brittle deformation experiments geophysical signals commonly exhibit an accelerating trend prior to dynamic failure. Similar signals have been observed prior to volcanic eruptions, including volcano-tectonic earthquake event and moment release rates. Despite a large amount of effort in the search, no such statistically robust systematic trend is found prior to natural earthquakes. Here we describe the results of a suite of laboratory tests on Mount Etna Basalt and other rocks to examine the nature of the non-linear scaling from laboratory to field conditions, notably using laboratory ‘creep’ tests to reduce the boundary strain rate to conditions more similar to those in the field. Seismic event rate, seismic moment release rate and rate of porosity change show a classic ‘bathtub’ graph that can be derived from a simple damage model based on separate transient and accelerating sub-critical crack growth mechanisms, resulting from separate processes of negative and positive feedback in the population dynamics. The signals exhibit clear precursors based on formal statistical model tests using maximum likelihood techniques with Poisson errors. After correcting for the finite loading time of the signal, the results show a transient creep rate that decays as a classic Omori law for earthquake aftershocks, and remarkably with an exponent near unity, as commonly observed for natural earthquake sequences. The accelerating trend follows an inverse power law when fitted in retrospect, i.e. with prior knowledge of the failure time. In contrast the strain measured on the sample boundary shows a less obvious but still accelerating signal that is often absent altogether in natural strain data prior to volcanic eruptions. To test the

  6. Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments

    International Nuclear Information System (INIS)

    Bossart, P.; Bernier, F.; Birkholzer, J.

    2017-01-01

    Geologic repositories for radioactive waste are designed as multi-barrier disposal systems that perform a number of functions including the long-term isolation and containment of waste from the human environment, and the attenuation of radionuclides released to the subsurface. The rock laboratory at Mont Terri (canton Jura, Switzerland) in the Opalinus Clay plays an important role in the development of such repositories. The experimental results gained in the last 20 years are used to study the possible evolution of a repository and investigate processes closely related to the safety functions of a repository hosted in a clay rock. At the same time, these experiments have increased our general knowledge of the complex behaviour of argillaceous formations in response to coupled hydrological, mechanical, thermal, chemical, and biological processes. After presenting the geological setting in and around the Mont Terri rock laboratory and an overview of the mineralogy and key properties of the Opalinus Clay, we give a brief overview of the key experiments that are described in more detail in the following research papers to this Special Issue of the Swiss Journal of Geosciences. These experiments aim to characterise the Opalinus Clay and estimate safety-relevant parameters, test procedures, and technologies for repository construction and waste emplacement. Other aspects covered are: bentonite buffer emplacement, high-pH concrete-clay interaction experiments, anaerobic steel corrosion with hydrogen formation, depletion of hydrogen by microbial activity, and finally, release of radionuclides into the bentonite buffer and the Opalinus Clay barrier. In the case of a spent fuel/high-level waste repository, the time considered in performance assessment for repository evolution is generally 1 million years, starting with a transient phase over the first 10,000 years and followed by an equilibrium phase. Experiments dealing with initial conditions, construction, and waste

  7. Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Swisstopo, Federal Office of Topography, Wabern (Switzerland); Bernier, F. [Federal Agency for Nuclear Control FANC, Brussels (Belgium); Birkholzer, J. [Lawrence Berkeley National Laboratory, Berkeley (United States); and others

    2017-04-15

    Geologic repositories for radioactive waste are designed as multi-barrier disposal systems that perform a number of functions including the long-term isolation and containment of waste from the human environment, and the attenuation of radionuclides released to the subsurface. The rock laboratory at Mont Terri (canton Jura, Switzerland) in the Opalinus Clay plays an important role in the development of such repositories. The experimental results gained in the last 20 years are used to study the possible evolution of a repository and investigate processes closely related to the safety functions of a repository hosted in a clay rock. At the same time, these experiments have increased our general knowledge of the complex behaviour of argillaceous formations in response to coupled hydrological, mechanical, thermal, chemical, and biological processes. After presenting the geological setting in and around the Mont Terri rock laboratory and an overview of the mineralogy and key properties of the Opalinus Clay, we give a brief overview of the key experiments that are described in more detail in the following research papers to this Special Issue of the Swiss Journal of Geosciences. These experiments aim to characterise the Opalinus Clay and estimate safety-relevant parameters, test procedures, and technologies for repository construction and waste emplacement. Other aspects covered are: bentonite buffer emplacement, high-pH concrete-clay interaction experiments, anaerobic steel corrosion with hydrogen formation, depletion of hydrogen by microbial activity, and finally, release of radionuclides into the bentonite buffer and the Opalinus Clay barrier. In the case of a spent fuel/high-level waste repository, the time considered in performance assessment for repository evolution is generally 1 million years, starting with a transient phase over the first 10,000 years and followed by an equilibrium phase. Experiments dealing with initial conditions, construction, and waste

  8. Groundwater targeting in a hard-rock terrain using fracture-pattern modeling, Niva River basin, Andhra Pradesh, India

    Science.gov (United States)

    Srinivasa Rao, Y.; Reddy, T. V. K.; Nayudu, P. T.

    2000-09-01

    In hard-rock terrain, due to the lack of primary porosity in the bedrock, joints, fault zones, and weathered zones are the sources for groundwater occurrence and movement. To study the groundwater potential in the hard-rock terrain and drought-prone area in the Niva River basin, southern Andhra Pradesh state, India, Landsat 5 photographic data were used to prepare an integrated hydrogeomorphology map. Larsson's integrated deformation model was applied to identify the various fracture systems, to pinpoint those younger tensile fracture sets that are the main groundwater reservoirs, and to understand the importance of fracture density in groundwater prospecting. N35°-55°E fractures were identified as tensile and N35°-55°W fractures as both tensile and shear in the study area. Apparently, these fractures are the youngest open fractures. Wherever N35°-55°E and N35°-55°W fracture densities are high, weathered-zone thickness is greater, water-table fluctuations are small, and well yields are high. Groundwater-potential zones were delineated and classified as very good, good to very good, moderate to good, and poor. Résumé. Dans les roches de socle, l'absence de porosité primaire dans la roche fait que les fractures, les zones de faille et les zones d'altération sont les sites où l'eau souterraine est présente et s'écoule. Pour étudier le potentiel en eau souterraine dans la région de socle sujette à la sécheresse du bassin de la rivière Niva (sud de l'État d'Andhra Pradesh, Inde), des données photographiques de Landsat 5 ont été utilisées pour préparer une carte hydro-géomorphologique. Le modèle intégré de déformation de Larssons a été mis en œuvre pour identifier les différents systèmes de fractures, pour mettre l'accent sur les ensembles de fractures en extension les plus jeunes qui constituent les principaux réservoirs d'eau souterraine, et pour comprendre l'importance de la densité de fractures pour la prospection de l

  9. Direct laboratory observation of fluid distribution and its influence on acoustic properties of patchy saturated rocks

    Science.gov (United States)

    Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.

    2009-04-01

    samples (38 mm in diameter, approximately 60 mm long) were dried in oven under reduced pressure. In dynamic saturation experiments, samples were jacketed in the experimental cell, made from transparent for X-radiation material (PMMA). Distillate water was injected into the sample from the one side. Fluid distribution in such "dynamic" experiment: both spatial and time dependant was measured using X-ray Computer Tomograph (CT) with resolution 0.2 x 0.2 x 1 mm3. Velocities (Vp, and Vs) at ultrasonic frequency of 1 MHz, were measured in the direction perpendicular to initial direction of the fluid flow injection. Sample saturation was estimated from the CT results. In "quasi static" experiments samples were saturated during long period of time (over 2 weeks) to achieve uniform distribution of liquid inside the sample. Saturation was determined by measurement of the weight of water fraction. All experiments were performed at laboratory environments at temperature 25 C. Ultrasonic velocities and fluid saturations were measured simultaneously during water injection into sandstone core samples. The experimental results obtained on low-permeability samples show that at low saturation values the velocity-saturation dependence can be described by the Gassmann-Wood relationship. However, with increasing saturation a sharp increase of P-wave velocity is observed, eventually approaching the Gassmann-Hill relationship. We connect the characteristics of the transition behavior of the velocity-saturation relationships to the increasing size of the patches inside the rock sample. In particular, we show that for relatively large fluid injection rate this transition occurs at smaller degrees of saturation as compared with high injection rate. We model the experimental data using the so-called White model (Toms 2007) that assumes fluid patch distribution as a periodic assemblage of concentric spheres. We can observe reasonable agreement between experimental results and theoretical

  10. Analysis of Fan Waves in a Laboratory Model Simulating the Propagation of Shear Ruptures in Rocks

    Science.gov (United States)

    Tarasov, B. G.; Sadovskii, V. M.; Sadovskaya, O. V.

    2017-12-01

    The fan-shaped mechanism of rotational motion transmission in a system of elastically bonded slabs on flat surface, simulating the propagation of shear ruptures in super brittle rocks, is analyzed. Such ruptures appear in the Earth's crust at seismogenic depths. They propagate due to the nucleation of oblique tensile microcracks, leading to the formation of a fan domino-structure in the rupture head. A laboratory physical model was created which demonstrates the process of fan-structure wave propagation. Equations of the dynamics of rotational motion of slabs as a mechanical system with a finite number of degrees of freedom are obtained. Based on the Merson method of solving the Cauchy problem for systems of ordinary differential equations, the computational algorithm taking into account contact interaction of slabs is developed. Within the framework of a simplified mathematical model of dynamic behavior of a fan-shaped system in the approximation of a continuous medium, the approximate estimates of the length of a fan depending on the velocity of its motion are obtained. It is shown that in the absence of friction a fan can move with any velocity that does not exceed the critical value, which depends on the size, the moment of inertia of slabs, the initial angle and the elasticity coefficient of bonds. In the presence of friction a fan stops. On the basis of discrete and continuous models, the main qualitative features of the behavior of a fan-structure moving under the action of applied tangential forces, whose values in a laboratory physical model are regulated by a change in the inclination angle of the rupture plane, are analyzed. Comparison of computations and laboratory measurements and observations shows good correspondence between the results.

  11. Groundwater-quality data in the Bear Valley and Selected Hard Rock Areas study unit, 2010: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the 112-square-mile Bear Valley and Selected Hard Rock Areas (BEAR) study unit was investigated by the U.S. Geological Survey (USGS) from April to August 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The BEAR study unit was the thirty-first study unit to be sampled as part of the GAMA-PBP. The GAMA Bear Valley and Selected Hard Rock Areas study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system and to facilitate statistically consistent comparisons of untreated groundwater quality throughout California. The primary aquifer system is defined as the zones corresponding to the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the BEAR study unit. Groundwater quality in the primary aquifer system may differ from the quality in the shallow or deep water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. In the BEAR study unit, groundwater samples were collected from two study areas (Bear Valley and Selected Hard Rock Areas) in San Bernardino County. Of the 38 sampling sites, 27 were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the primary aquifer system in the study unit (grid sites), and the remaining 11 sites were selected to aid in the understanding of the potential groundwater-quality issues associated with septic tank use and with ski areas in the study unit (understanding sites). The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOCs], pesticides and

  12. Rock Formation and Cosmic Radiation Exposure Ages in Gale Crater Mudstones from the Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, Paul; Farley, Ken; Malespin, Charles; Gellert, Ralph; Grotzinger, John

    2014-05-01

    The quadrupole mass spectrometer (QMS) in the Sample Analysis at Mars (SAM) suite of the Mars Science Laboratory (MSL) has been utilized to secure abundances of 3He, 21Ne, 36Ar, and 40Ar thermally evolved from the mudstone in the stratified Yellowknife Bay formation in Gale Crater. As reported by Farley et al. [1] these measurements of cosmogenic and radiogenic noble gases together with Cl and K abundances measured by MSL's alpha particle X-ray spectrometer enable a K-Ar rock formation age of 4.21+0.35 Ga to be established as well as a surface exposure age to cosmic radiation of 78+30 Ma. Understanding surface exposures to cosmic radiation is relevant to the MSL search for organic compounds since even the limited set of studies carried out, to date, indicate that even 10's to 100's of millions of years of near surface (1-3 meter) exposure may transform a significant fraction of the organic compounds exposed to this radiation [2,3,4]. Transformation of potential biosignatures and even loss of molecular structural information in compounds that could point to exogenous or endogenous sources suggests a new paradigm in the search for near surface organics that incorporates a search for the most recently exposed outcrops through erosional processes. The K-Ar rock formation age determination shows promise for more precise in situ measurements that may help calibrate the martian cratering record that currently relies on extrapolation from the lunar record with its ground truth chronology with returned samples. We will discuss the protocol for the in situ noble gas measurements secured with SAM and ongoing studies to optimize these measurements using the SAM testbed. References: [1] Farley, K.A.M Science Magazine, 342, (2013). [2] G. Kminek et al., Earth Planet Sc Lett 245, 1 (2006). [3] Dartnell, L.R., Biogeosciences 4, 545 (2007). [4] Pavlov, A. A., et al. Geophys Res Lett 39, 13202 (2012).

  13. Investigating the impact of global climatic and landuse changes on groundwater resources in hard rock areas of South India

    Science.gov (United States)

    Ferrant, S.; Perrin, J.; Marechal, J.; Dewandel, B.; Aulong, S.; Ahmed, S.

    2010-12-01

    In most parts of India, and particularly in South India, groundwater levels are hazardously declining, while agricultural groundwater use is increasing. The current issue is to address the probable evolution of water table levels in relation with climate and agricultural changes. The aim of the SHIVA-ANR project (http://www.shiva-anr.org) is to provide some indicators of the water availability at the village scale to evaluate the vulnerability of farmers facing global changes. This study focuses on a particularly water stressed semi-arid area of South India characterized by hard rock geology with naturally low recharge capacity and limited surface water availability. The study catchment is located in the agricultural area of the Kudaliar river watershed (980km^2) located 50 km north of Hyderabad, India. It is composed of about 120 villages. Socio economic surveys have been carried out at the village scale to evaluate the present socio-economic situation of farmers. It also provides more details on various cultural and irrigation practices at this scale. The landuse has been evaluated by remote sensing with two satellite images, one after monsoon (October 2009), and the other during dry season (March 2010). Groundwater-irrigated rice paddies represent about 10% of the area, whereas rainfed crop (corn and cotton) represent about 45%. Numerous small tanks (reservoir) situated on the river network define a water harvesting system of 2% of the catchment area which captures surface runoff during monsoon. No discharges data are available at the outlet, as the river is dry most of the year. A hydro-geological survey has been carried out to provide a map of aquifer thickness and the general state of the groundwater level before and after monsoon. The Soil Water Assessment Tool model (SWAT) has been calibrated to assess the water budget of the agricultural catchment under present conditions. Soil parameters calibration is made first on seasonal groundwater recharge for

  14. Mineral and chemical composition of rock core and surface gas composition in Horonobe Underground Research Laboratory project. Phase 1

    International Nuclear Information System (INIS)

    Hiraga, Naoto; Ishii, Eiichi

    2008-02-01

    The following three kinds of analyses were conducted for the 1st phase of the Horonobe Underground Research Laboratory Project. Mineral composition analysis of core sample. Whole rock chemical composition analysis of core sample. Surface gas composition analysis. This document summarizes the results of these analyses. (author)

  15. Geomechanical analysis of excavation-induced rock mass behavior of faulted Opalinus clay at the Mont Terri underground rock laboratory (Switzerland)

    International Nuclear Information System (INIS)

    Thoeny, R.

    2014-01-01

    Clay rock formations are potential host rocks for deep geological disposal of nuclear waste. However, they exhibit relatively low strength and brittle failure behaviour. Construction of underground openings in clay rocks may lead to the formation of an excavation damage zone (EDZ) in the near-field area of the tunnel. This has to be taken into account during risk assessment for waste-disposal facilities. To investigate the geomechanical processes associated with the rock mass response of faulted Opalinus Clay during tunnelling, a full-scale ‘mine-by’ experiment was carried out at the Mont Terri Underground Rock Laboratory (URL) in Switzerland. In the ‘mine-by’ experiment, fracture network characteristics within the experimental section were characterized prior to and after excavation by integrating structural data from geological mapping of the excavation surfaces and from four pre- and post-excavation boreholes.The displacements and deformations in the surrounding rock mass were measured using geo-technical instrumentation including borehole inclinometers, extensometers and deflectometers, together with high-resolution geodetic displacement measurements and laser scanning measurements on the excavation surfaces. Complementary data was gathered from structural and geophysical characterization of the surrounding rock mass. Geological and geophysical techniques were used to analyse the structural and kinematic relationships between the natural and excavation-induced fracture network surrounding the ‘mine-by’ experiment. Integrating the results from seismic refraction tomography, borehole logging, and tunnel surface mapping revealed that spatial variations in fault frequency along the tunnel axis alter the rock mass deformability and strength. Failure mechanisms, orientation and frequency of excavation-induced fractures are significantly influenced by tectonic faults. On the side walls, extensional fracturing tangential to the tunnel circumference was the

  16. Geomechanical analysis of excavation-induced rock mass behavior of faulted Opalinus clay at the Mont Terri underground rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Thoeny, R.

    2014-07-01

    Clay rock formations are potential host rocks for deep geological disposal of nuclear waste. However, they exhibit relatively low strength and brittle failure behaviour. Construction of underground openings in clay rocks may lead to the formation of an excavation damage zone (EDZ) in the near-field area of the tunnel. This has to be taken into account during risk assessment for waste-disposal facilities. To investigate the geomechanical processes associated with the rock mass response of faulted Opalinus Clay during tunnelling, a full-scale ‘mine-by’ experiment was carried out at the Mont Terri Underground Rock Laboratory (URL) in Switzerland. In the ‘mine-by’ experiment, fracture network characteristics within the experimental section were characterized prior to and after excavation by integrating structural data from geological mapping of the excavation surfaces and from four pre- and post-excavation boreholes.The displacements and deformations in the surrounding rock mass were measured using geo-technical instrumentation including borehole inclinometers, extensometers and deflectometers, together with high-resolution geodetic displacement measurements and laser scanning measurements on the excavation surfaces. Complementary data was gathered from structural and geophysical characterization of the surrounding rock mass. Geological and geophysical techniques were used to analyse the structural and kinematic relationships between the natural and excavation-induced fracture network surrounding the ‘mine-by’ experiment. Integrating the results from seismic refraction tomography, borehole logging, and tunnel surface mapping revealed that spatial variations in fault frequency along the tunnel axis alter the rock mass deformability and strength. Failure mechanisms, orientation and frequency of excavation-induced fractures are significantly influenced by tectonic faults. On the side walls, extensional fracturing tangential to the tunnel circumference was the

  17. Laboratory measurements of P- and S-wave anisotropy in synthetic rocks by 3D printing

    Science.gov (United States)

    Kong, L.; Ostadhassan, M.; Tamimi, N.; Li, C.; Alexeyev, A.

    2017-12-01

    Synthetic rocks have been widely used to realize the models with controlled factors in rock physics and geomechanics experiments. Additive manufacturing technology, known as 3D printing, is becoming a popular method to produce the synthetic rocks as the advantages of timesaving, economics, and control. In terms of mechanical properties, the duplicability of 3D printed rock towards a natural rock has been studied whereas the seismic anisotropy still remains unknown as being the key factor in conducting rock physics experiments. This study utilized a 3D printer with gypsum as the ink to manufacture a series of synthetic rocks that have the shapes of octagonal prisms, with half of them printed from lateral and another half from the bottom. An ultrasonic investigation system was set up to measure the P- and S- wave velocities at different frequencies while samples were under dry conditions. The results show the impact of layered property on the P- and S- wave velocities. The measurement results were compared with the predicted results of Hudson model, demonstrating that the synthetic rock from 3D printing is a transverse isotropic model. The seismic anisotropy indicates that the availability of using 3D printed rocks to duplicate natural rocks for the purpose of recreating the experiments of rock physics. Future experiments will be performed on the dependence of seismic anisotropy on fracture geometry and density in 3D printed synthetic rocks.

  18. Proceedings of the fifth international groundwater conference on the assessment and management of groundwater resources in hard rock systems with special reference to basaltic terrain

    International Nuclear Information System (INIS)

    Thangarajan, M.; Mayilswami, C.; Kulkarni, P.S.; Singh, V.P.

    2012-01-01

    Groundwater resources in hard rock regions with limited renewable potential have to be managed judiciously to ensure adequate supplies of dependable quantity and quality. It is a natural resource with economic, strategic and environmental value, which is under stress both due to changing climatic and anthropogenic factors. Therefore the management strategies need to be aimed at sustenance of this limited resource. In India, and also elsewhere in the world major parts of the semi-arid regions are characterized by hard rocks and it is of vital importance to understand the nature of the aquifer systems and its current stress conditions. Though the achievements through scientific development in exploration and exploitation are commendable, it has adversely affected the hard rock aquifer system, both in terms of quantity and quality; which is of major concern today. In order to reverse the situation, better management strategy of groundwater resources needs to be devised for prevention of further degradation of quality and meeting out the future demand of quantity. This necessitates: understanding the flow mechanism, evaluating the potential and evolving optimal utilization schemes, and assessing and monitoring quality in the changing scenario of anthropogenically induced agricultural, urban, industrial and climatic change. The groundwater flow mechanism through fractures in hard rocks is yet to be fully understood in terms of fracture geometry and its relation to groundwater flow. The characterization of flow geometry in basaltic aquifer is yet to be fully explored. Groundwater pollution due to anthropogenic factors is very slow process with long-term impacts on carbon cycle and global climatic change on one hand and quality on the other. It is generally recognized that the prevention of groundwater pollution is cheaper than its remedial measures in the long run. Furthermore, because of the nature of groundwater flow and the complexity and management uncertainty of

  19. Innovaciones tecnológicas en la atención al cliente: Ushuaïa Ibiza Beach Hotel y Hard Rock Hotel Ibiza

    OpenAIRE

    Ramón Cardona, José; Jiménez Caballero, José Luis (Coordinador)

    2016-01-01

    Palladium Hotel Group es la octava cadena hotelera de España y ha centrado sus objetivos en generar valor añadido para los clientes, siendo la experiencia emocional la línea central de su producto. El Ushuaïa Ibiza Beach Hotel y el Hard Rock Hotel Ibiza han sido el campo de pruebas de varias innovaciones tecnológicas para la atención al cliente: integración de las redes sociales en la experiencia del cliente (Social Presence); implantación de tecnología biométrica; uso de ...

  20. Laboratory tools to quantify biogenic dissolution of rocks and minerals: a model rock biofilm growing in percolation columns

    Directory of Open Access Journals (Sweden)

    Franz eSeiffert

    2016-04-01

    Full Text Available Sub-aerial biofilms (SAB are ubiquitous, self-sufficient microbial ecosystems found on mineral surfaces at all altitudes and latitudes. SABs, which are the principal causes of weathering on exposed terrestrial surfaces, are characterised by patchy growth dominated by associations of algae, cyanobacteria, fungi and heterotrophic bacteria. A recently developed in vitro system to study colonisation of rocks exposed to air included two key SAB participants - the rock-inhabiting ascomycete Knufia petricola (CBS 123872 and the phototrophic cyanobacterium Nostoc punctiforme ATCC29133. Both partners are genetically tractable and we used them here to study weathering of granite, K-feldspar and plagioclase. Small fragments of the various rocks or minerals (1 to 6 mm were packed into flow-through columns and incubated with 0.1% glucose and 10 µM thiamine-hydrochloride (90 µL.min-1 to compare weathering with and without biofilms. Dissolution of the minerals was followed by: analysing (i the degradation products in the effluent from the columns via Inductively Coupled Plasma Spectroscopy and (ii by studying polished sections of the incubated mineral fragment/grains using scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analyses. K. petricola/N. punctiforme stimulated release of Ca, Na, Mg and Mn. Analyses of the polished sections confirmed depletion of Ca, Na and K near the surface of the fragments. The abrupt decrease in Ca concentration observed in peripheral areas of plagioclase fragments favoured a dissolution-reprecipitation mechanism. Percolation columns in combination with a model biofilm can thus be used to study weathering in closed systems. Columns can easily be filled with different minerals and biofilms, the effluent as well as grains can be collected after long-term exposure under axenic conditions and easily analysed.

  1. Laboratory tools to quantify biogenic dissolution of rocks and minerals: a model rock biofilm growing in percolation columns

    Science.gov (United States)

    Seiffert, Franz; Bandow, Nicole; Kalbe, Ute; Milke, Ralf; Gorbushina, Anna

    2016-04-01

    Sub-aerial biofilms (SAB) are ubiquitous, self-sufficient microbial ecosystems found on mineral surfaces at all altitudes and latitudes. SABs, which are the principal causes of weathering on exposed terrestrial surfaces, are characterised by patchy growth dominated by associations of algae, cyanobacteria, fungi and heterotrophic bacteria. A recently developed in vitro system to study colonisation of rocks exposed to air included two key SAB participants - the rock-inhabiting ascomycete Knufia petricola (CBS 123872) and the phototrophic cyanobacterium Nostoc punctiforme ATCC29133. Both partners are genetically tractable and we used them here to study weathering of granite, K-feldspar and plagioclase. Small fragments of the various rocks or minerals (1 to 6 mm) were packed into flow-through columns and incubated with 0.1% glucose and 10 µM thiamine-hydrochloride (90 µL.min-1) to compare weathering with and without biofilms. Dissolution of the minerals was followed by: analysing (i) the degradation products in the effluent from the columns via Inductively Coupled Plasma Spectroscopy and (ii) by studying polished sections of the incubated mineral fragment/grains using scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analyses. K. petricola/N. punctiforme stimulated release of Ca, Na, Mg and Mn. Analyses of the polished sections confirmed depletion of Ca, Na and K near the surface of the fragments. The abrupt decrease in Ca concentration observed in peripheral areas of plagioclase fragments favoured a dissolution-reprecipitation mechanism. Percolation columns in combination with a model biofilm can thus be used to study weathering in closed systems. Columns can easily be filled with different minerals and biofilms, the effluent as well as grains can be collected after long-term exposure under axenic conditions and easily analysed.

  2. Choosing between a rock and a hard place: Camouflage in the round-tailed horned lizard Phrynosoma modestum

    Directory of Open Access Journals (Sweden)

    William E. COOPER, Jr., Wade C. SHERBROOKE

    2012-08-01

    Full Text Available The round-tailed horned lizard Phrynosoma modestum is cryptically colored and resembles a small stone when it draws legs close to its body and elevates its back. We investigated effectiveness of camouflage in P. modestum and its dependence on stones by placing a lizard in one of two microhabitats (uniform sand or sand with surface rocks approximately the same size as lizards. An observer who knew which microhabitat contained the lizard was asked to locate the lizard visually. Latency to detection was longer and probability of no detection within 60 s was higher for lizards on rock background than on bare sand. In arenas where lizards could choose to occupy rock or bare sand, much higher proportions selected rocky backgrounds throughout the day; at night all lizards slept among stones. A unique posture gives P. modestum a rounded appearance similar to many natural stones. Lizards occasionally adopted the posture, but none did so in response to a nearby experimenter. Stimuli that elicit the posture are unknown. That P. modestum is better camouflaged among rocks than on bare sand and prefers to occupy rocky areas suggests that special resemblance to rocks (masquerade enhances camouflage attributable to coloration and immobility [Current Zoology 58 (4: 541–548, 2012].

  3. Joint seismic, hydrogeological, and geomechanical investigations of a fracture zone in the Grimsel Rock Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Majer, E.L.; Myer, L.R.; Peterson, J.E. Jr.; Karasaki, K.; Long, J.C.S.; Martel, S.J.; Bluemling, P.; Vomvoris, S.

    1990-06-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. From 1987 to 1989 the United States Department of Energy (DOE) and the Swiss Cooperative for the Storage of Nuclear Waste (Nagra) participated in an agreement to carryout experiments for understanding the effect of fractures in the storage and disposal of nuclear waste. As part of this joint work field and laboratory experiments were conducted at a controlled site in the Nagra underground Grimsel test site in Switzerland. The primary goal of these experiments in this fractured granite was to determine the fundamental nature of the propagation of seismic waves in fractured media, and to relate the seismological parameters to the hydrological parameters. The work is ultimately aimed at the characterization and monitoring of subsurface sites for the storage of nuclear waste. The seismic experiments utilizes high frequency (1000 to 10,000 Hertz) signals in a cross-hole configuration at scales of several tens of meters. Two-, three-, and four-sided tomographic images of the fractures and geologic structure were produced from over 60,000 raypaths through a 10 by 21 meter region bounded by two nearly horizontal boreholes and two tunnels. Intersecting this region was a dominant fracture zone which was the target of the investigations. In addition to these controlled seismic imaging experiments, laboratory work using core from this region were studied for the relation between fracture content, saturation, and seismic velocity and attenuation. In-situ geomechanical and hydrologic tests were carried out to determine the mechanical stiffness and conductivity of the fractures. 20 refs., 90 figs., 6 tabs

  4. Exploring diffusion and sorption processes at the Mont Terri rock laboratory (Switzerland): lessons learned from 20 years of field research

    Energy Technology Data Exchange (ETDEWEB)

    Leupin, O.X. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Van Loon, L.R. [Paul Scherrer Institute PSI, Villigen (Switzerland); Gimmi, T. [Institute of Geological Sciences, University of Berne, Berne (Switzerland); Gimmi, T. [Institute of Environmental Assessment and Water Research IDAEA-CSIC, Barcelona (Spain); and others

    2017-04-15

    Transport and retardation parameters of radionuclides, which are needed to perform a safety analysis for a deep geological repository for radioactive waste in a compacted claystone such as Opalinus Clay, must be based on a detailed understanding of the mobility of nuclides at different spatial scales (laboratory, field, geological unit). Thanks to steadily improving experimental designs, similar tracer compositions in different experiments and complementary small laboratory-scale diffusion tests, a unique and large database could be compiled. This paper presents the main findings of 20 years of diffusion and retention experiments at the Mont Terri rock laboratory and their impact on safety analysis. (authors)

  5. In-situ experiments on bentonite-based buffer and sealing materials at the Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Wieczorek, K. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) GmbH, Braunschweig (Germany); Gaus, I. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Mayor, J. C. [Empresa Nacional de Residuos Radiactivos SA (ENRESA), Madrid (Spain); and others

    2017-04-15

    Repository concepts in clay or crystalline rock involve bentonite-based buffer or seal systems to provide containment of the waste and limit advective flow. A thorough understanding of buffer and seal evolution is required to make sure the safety functions are fulfilled in the short and long term. Experiments at the real or near-real scale taking into account the interaction with the host rock help to make sure the safety-relevant processes are identified and understood and to show that laboratory-scale findings can be extrapolated to repository scale. Three large-scale experiments on buffer and seal properties performed in recent years at the Mont Terri rock laboratory are presented in this paper: The 1:2 scale HE-E heater experiment which is currently in operation, and the full-scale engineered barrier experiment and the Borehole Seal experiment which have been completed successfully in 2014 and 2012, respectively. All experiments faced considerable difficulties during installation, operation, evaluation or dismantling that required significant effort to overcome. The in situ experiments show that buffer and seal elements can be constructed meeting the expectations raised through small-scale testing. It was, however, also shown that interaction with the host rock caused additional effects in the buffer or seal that could not always be quantified or even anticipated from the experience of small-scale tests (such as re-saturation by pore-water from the rock, interaction with the excavation damaged zone in terms of preferential flow or mechanical effects). This led to the conclusion that testing of the integral system buffer/rock or seal/rock is needed. (authors)

  6. Deformation mechanisms and evolution of the microstructure of gouge in the Main Fault in Opalinus Clay in the Mont Terri rock laboratory (CH)

    Science.gov (United States)

    Laurich, Ben; Urai, Janos L.; Vollmer, Christian; Nussbaum, Christophe

    2018-01-01

    We studied gouge from an upper-crustal, low-offset reverse fault in slightly overconsolidated claystone in the Mont Terri rock laboratory (Switzerland). The laboratory is designed to evaluate the suitability of the Opalinus Clay formation (OPA) to host a repository for radioactive waste. The gouge occurs in thin bands and lenses in the fault zone; it is darker in color and less fissile than the surrounding rock. It shows a matrix-based, P-foliated microfabric bordered and truncated by micrometer-thin shear zones consisting of aligned clay grains, as shown with broad-ion-beam scanning electron microscopy (BIB-SEM) and optical microscopy. Selected area electron diffraction based on transmission electron microscopy (TEM) shows evidence for randomly oriented nanometer-sized clay particles in the gouge matrix, surrounding larger elongated phyllosilicates with a strict P foliation. For the first time for the OPA, we report the occurrence of amorphous SiO2 grains within the gouge. Gouge has lower SEM-visible porosity and almost no calcite grains compared to the undeformed OPA. We present two hypotheses to explain the origin of gouge in the Main Fault: (i) authigenic generation consisting of fluid-mediated removal of calcite from the deforming OPA during shearing and (ii) clay smear consisting of mechanical smearing of calcite-poor (yet to be identified) source layers into the fault zone. Based on our data we prefer the first or a combination of both, but more work is needed to resolve this. Microstructures indicate a range of deformation mechanisms including solution-precipitation processes and a gouge that is weaker than the OPA because of the lower fraction of hard grains. For gouge, we infer a more rate-dependent frictional rheology than suggested from laboratory experiments on the undeformed OPA.

  7. Comprenhensive Program of Engineering and Geologic Surveys for Designing and Constructing Radioactive Waste Storage Facilities in Hard Rock Massifs

    International Nuclear Information System (INIS)

    Gupalo, T.; Milovidov, V.; Prokopoca, O.; Jardine, L.

    2002-01-01

    Geological, geophysical, and engineering-geological research conducted at the 'Yeniseisky' site obtained data on climatic, geomorphologic, geological conditions, structure and properties of composing rock, and conditions of underground water recharge and discharge. These results provide suficient information to make an estimate of the suitability of locating a radioactive waste (RW) underground isolation facility at the Nizhnekansky granitoid massif.

  8. Influence of convective-energy transfer on calculated temperature distributions in proposed hard-rock nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, R R; Reda, D C [Sandia National Labs., Albuquerque, NM (USA)

    1982-06-01

    This study assesses the relative influence of convective-energy transfer on predicted temperature distributions for a nuclear-waste repository located in water-saturated rock. Using results for energy transfer by conduction only (no water motion) as a basis of comparison, it is shown that a considerable amount of energy can be removed from the repository by pumping out water that migrates into the drift from regions adjacent to the buried waste canisters. Furthermore, the results show that the influence of convective-energy transfer on mine drift cooling requirements can be significant for cases where the in-situ permeability of the rock is greater than one millidarcy (a regime potentially encountered in repository scenarios).

  9. 5-year chemico-physical evolution of concrete-claystone interfaces, Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Mäder, U.; Jenni, A. [Institute of Geological Sciences, University of Berne, Berne (Switzerland); Lerouge, C. [French Geological Survey BRGM, Orléans (France); and others

    2017-04-15

    The Cement-Opalinus Clay Interaction (CI) Experiment at the Mont Terri rock laboratory is a long-term passive diffusion-reaction experiment between contrasting materials of relevance to engineered barrier systems/near-field for deep disposal of radioactive waste in claystone (Opalinus Clay). Reaction zones at interfaces of Opalinus Clay with two different types of concrete (OPC and 'low-pH'/ESDRED) were examined by sampling after 2.2 and 4.9 years. Analytical methods included element mapping (SEM, EPMA), select spot analysis (EDAX), 14C-MMA impregnation for radiography, and powder methods (IR, XRD, clay-exchanger characterisation) on carefully extracted miniature samples (mm). The presence of aggregate grains in concrete made the application of all methods difficult. Common features are a very limited extent of reaction within claystone, and a distinct and regularly zoned reaction zone within the cement matrix that is more extensive in the low-alkali cement (ESDRED). Both interfaces feature a de-calcification zone and overprinted a carbonate alteration zone thought to be mainly responsible for the observed porosity reduction. While OPC shows a distinct sulphate enrichment zone (indicative of ingress from Opalinus Clay), ESDRED displays a wide Mg-enriched zone, also with claystone pore-water as a source. A conclusion is that substitution of OPC by low-alkali cementitious products is not advantageous or necessary solely for the purpose of minimizing the extent of reaction between claystone and cementitious materials. Implications for reactive transport modelling are discussed. (authors)

  10. In Situ Experiment and Numerical Model Validation of a Borehole Heat Exchanger in Shallow Hard Crystalline Rock

    Directory of Open Access Journals (Sweden)

    Mateusz Janiszewski

    2018-04-01

    Full Text Available Accurate and fast numerical modelling of the borehole heat exchanger (BHE is required for simulation of long-term thermal energy storage in rocks using boreholes. The goal of this study was to conduct an in situ experiment to validate the proposed numerical modelling approach. In the experiment, hot water was circulated for 21 days through a single U-tube BHE installed in an underground research tunnel located at a shallow depth in crystalline rock. The results of the simulations using the proposed model were validated against the measurements. The numerical model simulated the BHE’s behaviour accurately and compared well with two other modelling approaches from the literature. The model is capable of replicating the complex geometrical arrangement of the BHE and is considered to be more appropriate for simulations of BHE systems with complex geometries. The results of the sensitivity analysis of the proposed model have shown that low thermal conductivity, high density, and high heat capacity of rock are essential for maximising the storage efficiency of a borehole thermal energy storage system. Other characteristics of BHEs, such as a high thermal conductivity of the grout, a large radius of the pipe, and a large distance between the pipes, are also preferred for maximising efficiency.

  11. Strain Localization and Weakening Processes in Viscously Deforming Rocks: Numerical Modeling Based on Laboratory Torsion Experiments

    Science.gov (United States)

    Doehmann, M.; Brune, S.; Nardini, L.; Rybacki, E.; Dresen, G.

    2017-12-01

    Strain localization is an ubiquitous process in earth materials observed over a broad range of scales in space and time. Localized deformation and the formation of shear zones and faults typically involves material softening by various processes, like shear heating and grain size reduction. Numerical modeling enables us to study the complex physical and chemical weakening processes by separating the effect of individual parameters and boundary conditions. Using simple piece-wise linear functions for the parametrization of weakening processes allows studying a system at a chosen (lower) level of complexity (e.g. Cyprych et al., 2016). In this study, we utilize a finite element model to test two weakening laws that reduce the strength of the material depending on either the I) amount of accumulated strain or II) deformational work. Our 2D Cartesian models are benchmarked to single inclusion torsion experiments performed at elevated temperatures of 900 °C and pressures of up to 400 MPa (Rybacki et al., 2014). The experiments were performed on Carrara marble samples containing a weak Solnhofen limestone inclusion at a maximum strain rate of 2.0*10-4 s-1. Our models are designed to reproduce shear deformation of a hollow cylinder equivalent to the laboratory setup, such that material leaving one side of the model in shear direction enters again on the opposite side using periodic boundary conditions. Similar to the laboratory tests, we applied constant strain rate and constant stress boundary conditions.We use our model to investigate the time-dependent distribution of stress and strain and the effect of different parameters. For instance, inclusion rotation is shown to be strongly dependent on the viscosity ratio between matrix and inclusion and stronger ductile weakening increases the localization rate while decreasing shear zone width. The most suitable weakening law for representation of ductile rock is determined by combining the results of parameter tests with

  12. Constraints on behaviour of a mining‐induced earthquake inferred from laboratory rock mechanics experiments

    Science.gov (United States)

    McGarr, Arthur F.; Johnston, Malcolm J.; Boettcher, M.; Heesakkers, V.; Reches, Z.

    2013-01-01

    On December 12, 2004, an earthquake of magnitude 2.2, located in the TauTona Gold Mine at a depth of about 3.65 km in the ancient Pretorius fault zone, was recorded by the in-mine borehole seismic network, yielding an excellent set of ground motion data recorded at hypocentral distances of several km. From these data, the seismic moment tensor, indicating mostly normal faulting with a small implosive component, and the radiated energy were measured; the deviatoric component of the moment tensor was estimated to be M0 = 2.3×1012 N·m and the radiated energy ER = 5.4×108 J. This event caused extensive damage along tunnels within the Pretorius fault zone. What rendered this earthquake of particular interest was the underground investigation of the complex pattern of exposed rupture surfaces combined with laboratory testing of rock samples retrieved from the ancient fault zone (Heesakkers et al.2011a, 2011b). Event 12/12 2004 was the result of fault slip across at least four nonparallel fault surfaces; 25 mm of slip was measured at one location on the rupture segment that is most parallel with a fault plane inferred from the seismic moment tensor, suggesting that this segment accounted for much of the total seismic deformation. By applying a recently developed technique based on biaxial stick-slip friction experiments (McGarr2012, 2013) to the seismic results, together with the 25 mm slip observed underground, we estimated a maximum slip rate of at least 6.6 m/s, which is consistent with the observed damage to tunnels in the rupture zone. Similarly, the stress drop and apparent stress were found to be correspondingly high at 21.9 MPa and 6.6 MPa, respectively. The ambient state of stress, measured at the approximate depth of the earthquake but away from the influence of mining, in conjunction with laboratory measurements of the strength of the fault zone cataclasites, indicates that during rupture of the M 2.2 event, the normal stress acting on the large-slip fault

  13. Evaluation of stress and saturation effects on seismic velocity and electrical resistivity - laboratory testing of rock samples

    Science.gov (United States)

    Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav

    2016-04-01

    Repository, located in a deep geological formation, is today considered the most suitable solution for disposal of spent nuclear fuel and high-level waste. The geological formations, in combination with an engineered barrier system, should ensure isolation of the waste from the environment for thousands of years. For long-term monitoring of such underground excavations special monitoring systems are developed. In our research we developed and tested monitoring system based on repeated ultrasonic time of flight measurement and electrical resistivity tomography (ERT). As a test site Bedřichov gallery in the northern Bohemia was selected. This underground gallery in granitic rock was excavated using Tunnel Boring Machine (TBM). The seismic high-frequency measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The ERT measurement is performed also on the rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. An analysis of relation of seismic velocity and electrical resistivity on water saturation and stress state of the granitic rock is necessary for the interpretation of both seismic monitoring and ERT. Laboratory seismic and resistivity measurements were performed. One series of experiments was based on uniaxial loading of dry and saturated granitic samples. The relation between stress state and ultrasonic wave velocities was tested separately for dry and saturated rock samples. Other experiments were focused on the relation between electrical resistivity of the rock sample and its saturation level. Rock samples with different porosities were tested. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  14. Growth of juvenile hard clams in Narragansett Bay after laboratory exposure to low pH

    Science.gov (United States)

    Ocean uptake of carbon dioxide is causing decreases in pH and the concentration of carbonate ions used by marine organisms during shell and skeletal formation. When these conditions are reproduced in laboratory environments and field enclosures, effects on biological rates such ...

  15. Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock

    International Nuclear Information System (INIS)

    Widestrand, Henrik; Byegaard, Johan; Ohlsson, Yvonne; Tullborg, Eva-Lena

    2003-06-01

    This report comprises a strategy for the handling of laboratory investigations of diffusivity and sorption characteristics within the discipline-specific programme 'Transport Properties of the Rock' in the SKB site investigations. The aim of the transport programme is to investigate the solute transport properties at a site in order to acquire data that are required for an assessment of the long-term performance and radiological safety of the deep repository. The result of the transport programme is the Transport Properties Site Descriptive Model, i.e. a description of the site-specific properties for the transport of solutes in the groundwater at a site. A strategy for the methodology, control of sampling and characterisation programme and interpretation of the results, is proposed. The basis for the laboratory investigations is a conceptual geological model based on the geological model produced in the geology programme. Major and minor types of rock and fractures are defined and characterised according to the quality of the general database and site-specific needs. The selection of samples and analyses is determined in close co-operation with the geology, hydrogeology, hydrogeochemistry and rock mechanics programmes. The result of the laboratory investigations is a retardation model, which is used as an input in the Transport Properties Site Descriptive Model. The interpretation and production of a retardation model is described and exemplified. Lastly, method-specific strategies and recommendations are given, including strategies for the selection of tracers in the experiments and for the treatment of the sampled geologic materials

  16. Laboratory investigations

    International Nuclear Information System (INIS)

    Handin, J.

    1980-01-01

    Our task is to design mined-repository systems that will adequately secure high-level nuclear waste for at least 10,000 yr and that will be mechanically stable for 50 to 100-yr periods of retrievability during which mistakes could be corrected and a valuable source of energy could be reclaimed, should national policy on the reprocessing of spent fuel ever change. The only credible path for the escape of radionuclides from the repository to the biosphere is through ground-water, and in hard rock, bulk permeability is largely governed by natural and artificial fracture systems. Catastrophic failure of an excavation in hard rock is likely to occur at the weakest links - the discontinuities in the rock mass that is perturbed first by mining and then by radiogenic heating. The laboratory can contribute precise measurements of the pertinent thermomechanical, hydrological and chemical properties and improve our understanding of the fundamental processes through careful experiments under well controlled conditions that simulate the prototype environment. Thus laboratory investigations are necessary, but they are not sufficient, for conventional sample sizes are small relative to natural defects like joints - i.e., the rock mass is not a continuum - and test durations are short compared to those that predictive modeling must take into account. Laboratory investigators can contribute substantially more useful data if they are provided facilities for testing large specimens(say one cubic meter) and for creep testing of all candidate host rocks. Even so, extrapolations of laboratory data to the field in neither space nor time are valid without the firm theoretical foundations yet to be built. Meanwhile in-situ measurements of structure-sensitive physical properties and access to direct observations of rock-mass character will be absolutely necessary

  17. Laboratory Rock Testing and Hydrologic Calculations to Support the Underground Technology Program

    National Research Council Canada - National Science Library

    Chitty, Daniel

    1998-01-01

    .... The testing and data analysis will support definition of the mechanical properties of the rock as functions of porosity, as well as assignment of porosity values for the various in situ layers...

  18. Assessment of groundwater potential based on aquifer properties of hard rock terrain in the Chittar-Uppodai watershed, Tamil Nadu, India

    Science.gov (United States)

    Kumar, T. Jeyavel Raja; Balasubramanian, A.; Kumar, R. S.; Dushiyanthan, C.; Thiruneelakandan, B.; Suresh, R.; Karthikeyan, K.; Davidraju, D.

    2016-06-01

    Aquifer performance was tested in 24 locations to assess the groundwater potential of the hard rock terrain in the Chittar-Uppodai watershed of the Tambaraparani River basin. Geologically, the area consists of biotite gneiss, charnockite, and quartzite. The aquifer characteristics, such as transmissivity ( T), the storage coefficient, specific capacity, optimum yield, and the recovery rate were calculated. The drawdown transmissivity was determined using Jacob's straight-line method, while the recovery transmissivity was determined by the Theis method. The drawdown transmissivity was low in the western areas, particularly at Kadayanallur, and was higher in the other areas. The recovery transmissivity was high in the western area, and, with the exception of Gangaikondan, was low at other locations. The assessment indicates that there is groundwater potential in the western part of the study area because of favorable results for recovery drawdown, aquifer thickness, and specific capacity.

  19. Laboratory scale micro-seismic monitoring of rock faulting and injection-induced fault reactivation

    Science.gov (United States)

    Sarout, J.; Dautriat, J.; Esteban, L.; Lumley, D. E.; King, A.

    2017-12-01

    The South West Hub CCS project in Western Australia aims to evaluate the feasibility and impact of geosequestration of CO2 in the Lesueur sandstone formation. Part of this evaluation focuses on the feasibility and design of a robust passive seismic monitoring array. Micro-seismicity monitoring can be used to image the injected CO2plume, or any geomechanical fracture/fault activity; and thus serve as an early warning system by measuring low-level (unfelt) seismicity that may precede potentially larger (felt) earthquakes. This paper describes laboratory deformation experiments replicating typical field scenarios of fluid injection in faulted reservoirs. Two pairs of cylindrical core specimens were recovered from the Harvey-1 well at depths of 1924 m and 2508 m. In each specimen a fault is first generated at the in situ stress, pore pressure and temperature by increasing the vertical stress beyond the peak in a triaxial stress vessel at CSIRO's Geomechanics & Geophysics Lab. The faulted specimen is then stabilized by decreasing the vertical stress. The freshly formed fault is subsequently reactivated by brine injection and increase of the pore pressure until slip occurs again. This second slip event is then controlled in displacement and allowed to develop for a few millimeters. The micro-seismic (MS) response of the rock during the initial fracturing and subsequent reactivation is monitored using an array of 16 ultrasonic sensors attached to the specimen's surface. The recorded MS events are relocated in space and time, and correlate well with the 3D X-ray CT images of the specimen obtained post-mortem. The time evolution of the structural changes induced within the triaxial stress vessel is therefore reliably inferred. The recorded MS activity shows that, as expected, the increase of the vertical stress beyond the peak led to an inclined shear fault. The injection of fluid and the resulting increase in pore pressure led first to a reactivation of the pre

  20. Mizunami Underground Research Laboratory project. Rock mechanical investigations measurement of the rock strain and displacement during shaft excavation at GL.-200m level of research galley

    International Nuclear Information System (INIS)

    Hirano, Toru; Seno, Yasuhiro; Hikima, Ryoichi; Matsui, Hiroya

    2011-09-01

    In order to establish the scientific and technical basis for geological disposal of high-level radioactive waste, Japan Atomic Energy Agency (JAEA) is proceeding with the geoscientific research in the research galleries excavated at the Mizunami Underground Research Laboratory (MIU). One of the scientific and technical objectives of this project is to understand the change of geological environment due to excavation of research galleries. The investigation described herein is the measurement of the rock strain / displacement while pre-excavation grouting or excavating of the shaft around the GL.-200m level of research gallery. A brief summary is presented as follows. 1) Apparent strain with pre-excavation grouting: Injection pressure during pre-excavation grouting could explain the observed strain. Maximum principal strain 'E1' (extension) was oriented to NS direction. The measured fracture system at the site includes a fracture set perpendicular to E1. We infer that these fracture expanded due to grout injection pressure. 2) Apparent strain during excavation of the shaft: Rock behavior of stress release was observed when the bottom of shaft passed by and lining of shaft was constructed. The observed strain was very small and almost same scale as the expected strain for elastic material. But the observed strain of radial direction was compression whereas the expected strain was extension. Therefore it was estimated that rock behavior was affected by cracks. 3) Applicability of the FBG sensors for in situ displacement measurement near the shaft: FBG sensors were stable and reliable in comparison to strain meters or inclinometers. There was no electrical equipment trouble nor large drift in measurements. FBG results can lead to understand bending mode of borehole. But we cannot specify the displacement direction from these data in some cases. (author)

  1. The need for sustainable technology diffusion in mining: Achieving the use of belt conveyor systems in the German hard-rock quarrying industry

    Directory of Open Access Journals (Sweden)

    Tobias Braun

    2017-01-01

    Full Text Available The movement of raw materials can be one of the most challenging tasks in open pit mining, with truck transportation representing the largest factor in mining costs and resulting in major greenhouse gas (GHG emissions. In this study, the transportation methods of bulk materials within German hard-rock open pit mines were investigated. Approximately 450 quarries were studied for their production tonnage, lease areas, mined rock type as well as mining methods and processing equipment. The results demonstrate that 90% of the operations use truck-based transportation methods, with the remainder relying partly or completely on continuous conveyor-based systems. The installation of continuous conveyors compared to trucks represents a real alternative because of reduced dead load, reduced GHG emissions and in many cases even reduced costs. Thus, for in-pit haulage in quarries sustainable technology substitutions exist that are yet to be adopted by the German quarrying industry. As this study shows, in the future the diffusion of sustainable technologies requires site champions and large-scale case studies that demonstrate their successful introduction in the mining value chain.

  2. Spatial and temporal variations of radon concentrations in groundwater of hard rock aquifers in Madurai district, India

    International Nuclear Information System (INIS)

    Thivya, C.; Chidambaram, S.; Thilagavathi, R.; Nepolian, M.; Tirumalesh, K.; Prasanna, M.V.

    2017-01-01

    Radon ("2"2"2Rn) and other radionuclides in groundwater can lead to health problems if present in higher concentrations. A study was carried out in Madurai district of Tamilnadu by collecting groundwater samples for four different seasons and aims to identify the regions with higher "2"2"2Rn concentration along with their spatial and seasonal variations. "2"2"2Rn has been compared with field parameters, log pCO_2, major ions and uranium to detect the factors responsible for the higher concentration in groundwater. The weathering process induces the release of higher uranium ions from the granitic terrain from the rock matrix which enhances the "2"2"2Rn levels in groundwater. (author)

  3. Analysis on the Relationship Between Layout and Consumption of Face Cutters on Hard Rock Tunnel Boring Machines (TBMs)

    Science.gov (United States)

    Geng, Qi; Bruland, Amund; Macias, Francisco Javier

    2018-01-01

    The consumption of TBM disc cutters is influenced by the ground conditions (e.g. intact rock properties, rock mass properties, etc.), the TBM boring parameters (e.g. thrust, RPM, penetration, etc.) and the cutterhead design parameters (e.g. cutterhead shape, cutter layout). Previous researchers have done much work on the influence of the ground conditions and TBM boring parameters on cutter consumption; however, limited research has been found on the relationship between the cutterhead design and cutter consumption. The purpose of the present paper is to study the influence of layout on consumption for the TBM face cutters. Data collected from six tunnels (i.e. the Røssåga Headrace Tunnel in Norway, the Qinling Railway Tunnel in China, tubes 3 and 4 of the Guadarrama Railway Tunnel in Spain, the parallel tubes of the Vigo-Das Maceiras Tunnel in Spain) were used for analysis. The cutter consumption shape curve defined as the fitted function of the normalized cutter consumption versus the cutter position radius is found to be uniquely determined by the cutter layout and was used for analysis. The straightness and smoothness indexes are introduced to evaluate the quality of the shape curves. The analytical results suggest that the spacing of face cutters in the inner and outer parts of cutterhead should to be slightly larger and smaller, respectively, than the average spacing, and the difference of the position angles between the neighbouring cutters should be constant among the cutter positions. The 2-spiral layout pattern is found to be better than other layout patterns in view of cutter consumption and cutterhead force balance.

  4. Hard rock drilling: from conventional technologies to the potential use of laser; Perfuracao em rochas duras: das tecnologias convencionais ate o potencial uso do laser

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, Renato; Lomba, Rosana Fatima Teixieira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Perez, Maria Angelica Acosta; Valente, Luiz Carlos Guedes; Braga, Arthur Martins Barbosa [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2012-07-01

    One of the biggest challenges in the drilling of the carbonate rocks of the Pre-salt is to overcome the low penetration rates that have been obtained in the drilling of the reservoir rock in the vertical and directional wells. To overcome this challenge, a great effort is being developed in several lines of research, both in developing new concepts in drill bits and in the selection of a drilling system that together with appropriate type of bit provide an expected improvement in performance. To achieve these results, procedures are being prioritized and drilling systems with lower vibration levels are being used, since this phenomenon of vibration reduces the performance of penetration rate also affecting the lifetime of the equipment and consequently causes a reduction in reliability of all system and raises the cost per meter of drilling. Thus, new drill bit technology and new drilling systems are under development and, among these technologies we can distinguish those that promote improvements in conventional technologies and innovative technologies frankly which uses new mechanisms to cut or weaken the rock. This paper presents an overview of the conventional technology of drilling systems and drill bits, and provides information about the researches that have been developed with the use of innovative technologies which is presented as highly promising, among these innovative technologies, laser drilling and the drilling itself assisted by laser. In this process the laser beam has the main function to weaken the rock improving the rate of penetration. This paper presents a summary of studies and analyzes which are underway to investigate the potential of laser technology, also presents some results of laboratory tests already carried out. The drilling fluid in which the laser will have to pass through in the future applications is analyzed on the approach of their physicochemical properties. Thus, a better understanding of the interaction with the drilling

  5. Applicability of initial stress measurement methods to Horonobe Siliceous rocks and initial stress state around Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Sanada, Hiroyuki; Niunoya, Sumio; Matsui, Hiroya; Fujii, Yoshiaki

    2009-01-01

    Understanding initial stress condition in deep underground is important for such construction as rock cavern for geological disposal of HLW and underground power plant. Neogene sedimentary rock is widely distributed in Japan. There are only a few studies of initial stress measurement in Neogene sedimentary rock mass in Japan due to difficulty of measurement. Evaluation of initial stress condition around Horonobe Underground Research Laboratory Project was carried out in order to understand initial stress condition and applicability of AE, DSCA and hydraulic fracturing (HF) methods to Neogene sedimentary rock. Initial stress values obtained from AE method is smaller than overburden pressure due to time dependency of Kaizer effect. It would be difficult to use AE method as initial stress measurement method for Horonobe Siliceous rocks. Principal stress values by DSCA are similar to those by HF tests. Directions of maximum horizontal principal stresses are approximately in E-W and corresponded to HF results. In HF, rod type and wire-line type systems were compared. Workability of rod type was much better than wire-line type. However, re-opening pressure were not able to be precisely measured in case of rod type system due to the large compliance of the packers and rods. Horizontal maximum and minimum principal stresses increase linearly in HF results. Deviatoric stress is acting at shallow depth. Initial stress condition approaches hydrostatic condition with depth. Direction of maximum horizontal principal stress was in E-W direction which was similar to tectonic movement around Horonobe URL by triangular surveying. (author)

  6. Rock fracture dynamics research at AECL's Underground Research Laboratory: applications to geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.P. [Univ. of Toronto, Toronto, ON (Canada); Haycox, J.R. [Applied Seismology Consultants Limited, Shrewsbury, Shropshire (United Kingdom); Martino, J. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Studies of rock fracture dynamics at AECL's Underground Research Laboratory (URL) have helped to provide a fundamental understanding of how crystalline rock responds to stresses induced from excavation, pressurization and temperature changes. The data acquired continue to provide insights into how a facility for the future geological disposal of radioactive waste could be engineered. Research into microseismic (MS), acoustic emission (AE), and ultrasonic velocity measurements has been performed on the full-scale sealed, pressurized, and heated horizontal elliptical tunnel at the Tunnel Sealing Experiment (TSX). The continuous monitoring of the experiment for 8 years provides a unique dataset for the understanding of the medium-term performance of an engineered disposal facility. This paper summarizes the results, interpretations and key findings of the experiment paying particular focus to the heating and cooling/depressurization of the chamber. Initial drilling of the tunnel and bulkheads causes microfracturing around the tunnel, mapped by MS and AEs, and is used as a benchmark for fracturing representing the excavated damaged zone (EDZ). There is no further extension to the volume during pressurization or heating of the tunnel suggesting an increase in crack density and coalescence of cracks rather than extension into unfractured rock. The dominant structure within the seismic cloud has been investigated using a statistical approach applying the three-point method. MS events in the roof exhibit a dominant pattern of sub-horizontal and shallow-dipping well defined planar features, but during cooling and depressurization a 45 degree dip normal to the tunnel axis is observed, which may be caused by movement in the rock-concrete interface due to differential cooling of the bulkhead and host rock. Cooling and depressurization of the TSX have not led to a significant increase in the number of MS or AE events. Ultrasonic results suggest the rock gets even stiffer

  7. Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock

    Energy Technology Data Exchange (ETDEWEB)

    Widestrand, Henrik; Byegaard, Johan [Geosigma AB, Kungaelv (Sweden); Ohlsson, Yvonne [SWECO VIAK AB, Stockholm (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden)

    2003-06-01

    This report comprises a strategy for the handling of laboratory investigations of diffusivity and sorption characteristics within the discipline-specific programme 'Transport Properties of the Rock' in the SKB site investigations. The aim of the transport programme is to investigate the solute transport properties at a site in order to acquire data that are required for an assessment of the long-term performance and radiological safety of the deep repository. The result of the transport programme is the Transport Properties Site Descriptive Model, i.e. a description of the site-specific properties for the transport of solutes in the groundwater at a site. A strategy for the methodology, control of sampling and characterisation programme and interpretation of the results, is proposed. The basis for the laboratory investigations is a conceptual geological model based on the geological model produced in the geology programme. Major and minor types of rock and fractures are defined and characterised according to the quality of the general database and site-specific needs. The selection of samples and analyses is determined in close co-operation with the geology, hydrogeology, hydrogeochemistry and rock mechanics programmes. The result of the laboratory investigations is a retardation model, which is used as an input in the Transport Properties Site Descriptive Model. The interpretation and production of a retardation model is described and exemplified. Lastly, method-specific strategies and recommendations are given, including strategies for the selection of tracers in the experiments and for the treatment of the sampled geologic materials.

  8. Surface morphology of active normal faults in hard rock: Implications for the mechanics of the Asal Rift, Djibouti

    Science.gov (United States)

    Pinzuti, Paul; Mignan, Arnaud; King, Geoffrey C. P.

    2010-10-01

    Tectonic-stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localised magma intrusion, with normal faults accommodating extension and subsidence only above the maximum reach of the magma column. In these magmatic rifting models, or so-called magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Vertical profiles of normal fault scarps from levelling campaign in the Asal Rift, where normal faults seem sub-vertical at surface level, have been analysed to discuss the creation and evolution of normal faults in massive fractured rocks (basalt lava flows), using mechanical and kinematics concepts. We show that the studied normal fault planes actually have an average dip ranging between 45° and 65° and are characterised by an irregular stepped form. We suggest that these normal fault scarps correspond to sub-vertical en echelon structures, and that, at greater depth, these scarps combine and give birth to dipping normal faults. The results of our analysis are compatible with the magmatic intrusion models instead of tectonic-stretching models. The geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.

  9. Laboratory Experiments to Evaluate Matrix Diffusion of Dissolved Organic Carbon Carbon-14 in Southern Nevada Fractured-rock Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald L. [Nevada University, Reno, NV (United States). Desert Research Institute; Fereday, Wyatt [Nevada University, Reno, NV (United States). Desert Research Institute

    2016-05-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) is used to estimate groundwater ages by comparing the DIC 14C content in groundwater in the recharge area to the DIC 14C content in the downgradient sampling point. However, because of chemical reactions and physical processes between groundwater and aquifer rocks, the amount of DIC 14C in groundwater can change and result in 14C loss that is not because of radioactive decay. This loss of DIC 14C results in groundwater ages that are older than the actual groundwater ages. Alternatively, dissolved organic carbon (DOC) 14C in groundwater does not react chemically with aquifer rocks, so DOC 14C ages are generally younger than DIC 14C ages. In addition to chemical reactions, 14C ages may also be altered by the physical process of matrix diffusion. The net effect of a continuous loss of 14C to the aquifer matrix by matrix diffusion and then radioactive decay is that groundwater appears to be older than it actually is. Laboratory experiments were conducted to measure matrix diffusion coefficients for DOC 14C in volcanic and carbonate aquifer rocks from southern Nevada. Experiments were conducted using bromide (Br-) as a conservative tracer and 14C-labeled trimesic acid (TMA) as a surrogate for groundwater DOC. Outcrop samples from six volcanic aquifers and five carbonate aquifers in southern Nevada were used. The average DOC 14C matrix diffusion coefficient for volcanic rocks was 2.9 x 10-7 cm2/s, whereas the average for carbonate rocks was approximately the same at 1.7 x 10-7 cm2/s. The average Br- matrix diffusion coefficient for volcanic rocks was 10.4 x 10-7 cm2/s, whereas the average for carbonate rocks was less at 6.5 x 10-7 cm2/s. Carbonate rocks exhibited greater variability in

  10. Beyond-laboratory-scale prediction for channeling flows through subsurface rock fractures with heterogeneous aperture distributions revealed by laboratory evaluation

    Science.gov (United States)

    Ishibashi, Takuya; Watanabe, Noriaki; Hirano, Nobuo; Okamoto, Atsushi; Tsuchiya, Noriyoshi

    2015-01-01

    The present study evaluates aperture distributions and fluid flow characteristics for variously sized laboratory-scale granite fractures under confining stress. As a significant result of the laboratory investigation, the contact area in fracture plane was found to be virtually independent of scale. By combining this characteristic with the self-affine fractal nature of fracture surfaces, a novel method for predicting fracture aperture distributions beyond laboratory scale is developed. Validity of this method is revealed through reproduction of the results of laboratory investigation and the maximum aperture-fracture length relations, which are reported in the literature, for natural fractures. The present study finally predicts conceivable scale dependencies of fluid flows through joints (fractures without shear displacement) and faults (fractures with shear displacement). Both joint and fault aperture distributions are characterized by a scale-independent contact area, a scale-dependent geometric mean, and a scale-independent geometric standard deviation of aperture. The contact areas for joints and faults are approximately 60% and 40%. Changes in the geometric means of joint and fault apertures (µm), em, joint and em, fault, with fracture length (m), l, are approximated by em, joint = 1 × 102 l0.1 and em, fault = 1 × 103 l0.7, whereas the geometric standard deviations of both joint and fault apertures are approximately 3. Fluid flows through both joints and faults are characterized by formations of preferential flow paths (i.e., channeling flows) with scale-independent flow areas of approximately 10%, whereas the joint and fault permeabilities (m2), kjoint and kfault, are scale dependent and are approximated as kjoint = 1 × 10-12 l0.2 and kfault = 1 × 10-8 l1.1.

  11. Why 1D electrical resistivity techniques can result in inaccurate siting of boreholes in hard rock aquifers and why electrical resistivity tomography must be preferred: the example of Benin, West Africa

    Science.gov (United States)

    Alle, Iboukoun Christian; Descloitres, Marc; Vouillamoz, Jean-Michel; Yalo, Nicaise; Lawson, Fabrice Messan Amen; Adihou, Akonfa Consolas

    2018-03-01

    Hard rock aquifers are of particular importance for supplying people with drinking water in Africa and in the world. Although the common use of one-dimensional (1D) electrical resistivity techniques to locate drilling site, the failure rate of boreholes is usually high. For instance, about 40% of boreholes drilled in hard rock aquifers in Benin are unsuccessful. This study investigates why the current use of 1D techniques (e.g. electrical profiling and electrical sounding) can result in inaccurate siting of boreholes, and checks the interest and the limitations of the use of two-dimensional (2D) Electrical Resistivity Tomography (ERT). Geophysical numerical modeling and comprehensive 1D and 2D resistivity surveys were carried out in hard rock aquifers in Benin. The experiments carried out at 7 sites located in different hard rock groups confirmed the results of the numerical modeling: the current use of 1D techniques can frequently leads to inaccurate siting, and ERT better reveals hydrogeological targets such as thick weathered zone (e.g. stratiform fractured layer and preferential weathering associated with subvertical fractured zone). Moreover, a cost analysis demonstrates that the use of ERT can save money at the scale of a drilling programme if ERT improves the success rate by only 5% as compared to the success rate obtained with 1D techniques. Finally, this study demonstrates, using the example of Benin, that the use of electrical resistivity profiling and sounding for siting boreholes in weathered hard rocks of western Africa should be discarded and replaced by the use of ERT technique, more efficient.

  12. In Situ Observation of Rock Spalling in the Deep Tunnels of the China Jinping Underground Laboratory (2400 m Depth)

    Science.gov (United States)

    Feng, Xia-Ting; Xu, Hong; Qiu, Shi-Li; Li, Shao-Jun; Yang, Cheng-Xiang; Guo, Hao-Sen; Cheng, Yuan; Gao, Yao-Hui

    2018-04-01

    To study rock spalling in deep tunnels at China Jinping Underground Laboratory Phase II (CJPL-II), photogrammetry method and digital borehole camera were used to quantify key features of rock spalling including orientation, thickness of slabs and the depth of spalling. The failure mechanism was analysed through scanning electron microscope and numerical simulation based on FLAC3D. Observation results clearly showed the process of rock spalling failure: a typical spalling pattern around D-shaped tunnels after top-heading and bottom bench were discovered. The orientation and thickness of the slabs were obtained. The slabs were parallel to the excavated surfaces of the tunnel and were related to the shape of the tunnel surface and orientation of the principal stress. The slabs were alternately thick and thin, and they gradually increased in thickness from the sidewall inwards. The form and mechanism of spalling at different locations in the tunnels, as influenced by stress state and excavation, were analysed. The result of this study was helpful to those rethinking the engineering design, including the excavation and support of tunnels, or caverns, at high risk of spalling.

  13. Rock weathering by indigenous heterotrophic bacteria of Bacillus spp. at different temperature: a laboratory experiment

    Science.gov (United States)

    Štyriaková, I.; Štyriak, I.; Oberhänsli, H.

    2012-07-01

    The bio-weathering of basalt, granite and gneiss was experimentally investigated in this study. These rock-forming minerals weathered more rapidly via the ubiquitous psychrotrophic heterotrophic bacteria . With indigenous bacteria of Bacillus spp. from sediments of Lake Baikal, we traced the degradation process of silicate minerals to understand the weathering processes occurring at the change temperature in the subsurface environment with organic input. The bacteria mediated dissolution of minerals was monitored with solution and solid chemistry, X-ray analyses as well as microscopic techniques. We determined the impact of the bacteria on the mineral surface and leaching of K, Ca, Mg, Si, Fe, and Al from silicate minerals. In the samples the release of major structural elements of silicates was used as an overall indicator of silicate mineral degradation at 4°C and 18°C from five medium exchanges over 255 days of rock bioleaching. The increase of temperature importantly affected the efficiency of Fe extraction from granite and basalt as well as Si extraction from granite and gneiss. In comparison with elemental extraction order at 4°C, Ca was substituted first by Fe or Si. It is evident that temperature influences rock microbial weathering and results in a change of elements extraction.

  14. A laboratory study of supercritical CO2 adsorption on cap rocks in the geological storage conditions

    Science.gov (United States)

    Jedli, Hedi; Jbara, Abdessalem; Hedfi, Hachem; Bouzgarrou, Souhail; Slimi, Khalifa

    2017-04-01

    In the present study, various cap rocks have been experimentally reacted in water with supercritical CO2 in geological storage conditions ( P = 8 × 106 Pa and T = 80 °C) for 25 days. To characterize the potential CO2-water-rock interactions, an experimental setup has been built to provide additional information concerning the effects of structure, thermal and surface characteristics changes due to CO2 injection with cap rocks. In addition, CO2 adsorption capacities of different materials (i.e., clay evaporate and sandstone) are measured. These samples were characterized by XRD technique. The BET specific surface area was determined by nitrogen isotherms. In addition, thermal characteristics of untreated adsorbents were analyzed via TGA method and topography surfaces are identified by Scanning Electron Microscope (SEM). Taking into account pressure and temperature, the physical as well as chemical mechanisms of CO2 retention were determined. Isotherm change profiles of samples for relative pressure range indicate clearly that CO2 was adsorbed in different quantities. In accordance with the X-ray diffraction, a crystalline phase was formed due to the carbonic acid attack and precipitation of some carbonate.

  15. Bacterial sulphate reduction and mixing processes at the Aespoe Hard Rock Laboratory indicated by groundwater δ34S isotope signatures

    International Nuclear Information System (INIS)

    Wallin, Bill

    2011-04-01

    This report includes data mostly obtained from δ 34 S isotope measurements of groundwater at the Aespoe Island and one sampling from the Laxemar site, southeastern Sweden, during tunnel construction. Early sampling at Aespoe (up to 1992), before tunnel excavation, indicates a groundwater system with multiple sulphur sources. The isotope changes over time in the dissolved sulphate were studied during a sampling campaign in the monitoring phase from 1993 to 1995. A total of 88 samples were collected by SKB between 1992 and 1995 from core-drilled surface boreholes and from boreholes drilled in the tunnel (34 of these samples were collected from the tunnel boreholes). The results of the analyses have been the focus of discussion of the isotope changes with time in the dissolved sulphate (SO 4 2- ). The results indicate that the sulphur isotope signatures in the dissolved sulphate of the groundwater and those from fracture-filling sulphides at Aespoe originate from multiple sulphur sources in the groundwater at Aespoe and Laxemar. The data may be grouped as follows: a) typically homogeneous marine signatures of dissolved SO 4 2- are observed, with δ 34 S values of approximately +21 per mille CDT at intermediate depths of approximately 100-250 m; b) dissolved sulphate in the groundwater at greater depths (below 600 m) with average values of approximately +10 per mille CDT; and c) a dissolved SO 4 2- originating from a mixture of these sulphur sources (100-600m), although there is a difference between a mixture and modification by reduction. Reduced sulphur with low δ 34 S values is also recorded in fracture-filling sulphides, with δ 34 S values of approximately 0 to -10 per mille CDT. This may contribute to small changes in the isotope signature of the dissolved SO 4 2- , probably by sulphide oxidation in the past. The changes in the δ 34 S isotope data for dissolved SO 4 2- over the 1992-1996 period suggest a complex situation, indicating both sulphate reduction by sulphate-reducing bacteria (SRB) and groundwater mixing from shallow marine and deeper, older groundwater sources during tunnel construction. These isotope changes were likely induced by the up-coning of deeper saline water and the inflow of Baltic Sea water to an intermediate depth (e.g., 200-400 m) at Aspo. The increase in δ 34 S isotope values of dissolved SO 4 2- , peaking at +28 per mille CDT (probably due to position of the tunnel below the Baltic Sea), was accompanied by a decrease in sulphate concentration in many places and, in some samples, also by changes in bicarbonate concentration, all of which are evidence of microbial sulphate reduction

  16. Aespoe Hard Rock Laboratory. The use of focused ion beams for structural characterisation of bentonite. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Wegden, Marie; Kristiansson, Per (Division of Nuclear Physics, Lund Inst. of Technology (Sweden)); Svensson, Daniel; Sjoeland, Anders (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2009-07-01

    Bentonite clay is planned to be used in the KBS-3 concept for future nuclear high level waste (HLW) repository in Sweden. In the concept the spent nuclear fuel is placed in an iron insert, which is encapsulated in a copper canister. The copper canister is embedded in compacted bentonite and deposited at 500 m depth in granite bedrock. The compacted bentonite will act as a buffer material, giving mechanical support for the copper canister, reducing water movements and capturing potentially escaping radionuclides. Bentonite contains high amounts of smectite minerals (most common is montmorillonite), which are swelling clay minerals. The smectite minerals are layered and have the ability to store water in its structure. This is done by intercalating water between the layers and expanding the interlayer distance. The exceptional swelling capacity makes bentonite a suitable buffer material that works as a sealant and barrier. Heterogeneity in the material, compaction and in swelling may result in porosity, both on the nano- and micrometre scale. This may affect the permeability of the clay and may mediate the transport of radionuclides, cations and corrosion products. The aim of this work is to investigate the feasibility of using common ion beam techniques for structural characterisation of bentonite, including studying the mineral composition and the coarse porosity. The analytical techniques used were scanning transmission ion microscopy (STIM), particle-induced X-ray emission (PIXE) and elastic p-p scattering, performed at the Lund Nuclear Microprobe. On-axis STIM analysis was performed in order to measure and map the areal mass density of the sample. Since it was impossible to differentiate an increase in thickness from an area of higher mass density, as well as discerning depth variations, the STIM analysis was also performed in tomographic mode, in an attempt to obtain 3D structural information. The tomographic reconstruction showed that the bentonite had an interesting internal structure, with micrometre-sized features indicating both accessory minerals and potential pores. PIXE analysis was performed subsequently for investigation and mapping of the element distribution in the samples. From these element maps, the different mineral phases and regions suitable for further analysis could be identified. Finally hydrogen analysis was performed with the elastic p-p scattering method, in order to measure the water content in the sample. This method can be useful in further examinations of bentonite, if the variation in porosity is to be studied as a function of the degree of water saturation. This work demonstrates that, in a combination, PIXE, hydrogen analysis and microtomography with the STIM technique, can provide unique information on the internal structure and element distribution in a microscopic bentonite sample. Removal of water from the clay sample will change the clay structure and porosity due to the dehydration of the interlayer space and is hence problematic, however in this feasibility study this problem is neglected.

  17. Validation of groundwater flow model using the change of groundwater flow caused by the construction of AESPOE hard rock laboratory

    International Nuclear Information System (INIS)

    Hasegawa, Takuma; Tanaka, Yasuharu

    2004-01-01

    A numerical model based on results during pre-investigation phases was applied to the groundwater flow change caused by the construction of AEspoe HRL. The drawdowns and chloride concentration during tunnel construction were simulated to validate the numerical model. The groundwater flow was induced by inflow from the Baltic Sea to the tunnel through the hydraulic conductor domain (HCD). The time series of tunnel progress and inflow, boundaries of the Baltic Sea, transmissivity and geometry of HCD are therefore important in representing the groundwater flow. The numerical model roughly represented the groundwater flow during tunnel construction. These simulations were effective in validating the numerical model for groundwater flow and solute transport. (author)

  18. Aespoe Hard Rock Laboratory. The use of focused ion beams for structural characterisation of bentonite. A feasibility study

    International Nuclear Information System (INIS)

    Wegden, Marie; Kristiansson, Per; Svensson, Daniel; Sjoeland, Anders

    2009-01-01

    Bentonite clay is planned to be used in the KBS-3 concept for future nuclear high level waste (HLW) repository in Sweden. In the concept the spent nuclear fuel is placed in an iron insert, which is encapsulated in a copper canister. The copper canister is embedded in compacted bentonite and deposited at 500 m depth in granite bedrock. The compacted bentonite will act as a buffer material, giving mechanical support for the copper canister, reducing water movements and capturing potentially escaping radionuclides. Bentonite contains high amounts of smectite minerals (most common is montmorillonite), which are swelling clay minerals. The smectite minerals are layered and have the ability to store water in its structure. This is done by intercalating water between the layers and expanding the interlayer distance. The exceptional swelling capacity makes bentonite a suitable buffer material that works as a sealant and barrier. Heterogeneity in the material, compaction and in swelling may result in porosity, both on the nano- and micrometre scale. This may affect the permeability of the clay and may mediate the transport of radionuclides, cations and corrosion products. The aim of this work is to investigate the feasibility of using common ion beam techniques for structural characterisation of bentonite, including studying the mineral composition and the coarse porosity. The analytical techniques used were scanning transmission ion microscopy (STIM), particle-induced X-ray emission (PIXE) and elastic p-p scattering, performed at the Lund Nuclear Microprobe. On-axis STIM analysis was performed in order to measure and map the areal mass density of the sample. Since it was impossible to differentiate an increase in thickness from an area of higher mass density, as well as discerning depth variations, the STIM analysis was also performed in tomographic mode, in an attempt to obtain 3D structural information. The tomographic reconstruction showed that the bentonite had an interesting internal structure, with micrometre-sized features indicating both accessory minerals and potential pores. PIXE analysis was performed subsequently for investigation and mapping of the element distribution in the samples. From these element maps, the different mineral phases and regions suitable for further analysis could be identified. Finally hydrogen analysis was performed with the elastic p-p scattering method, in order to measure the water content in the sample. This method can be useful in further examinations of bentonite, if the variation in porosity is to be studied as a function of the degree of water saturation. This work demonstrates that, in a combination, PIXE, hydrogen analysis and microtomography with the STIM technique, can provide unique information on the internal structure and element distribution in a microscopic bentonite sample. Removal of water from the clay sample will change the clay structure and porosity due to the dehydration of the interlayer space and is hence problematic, however in this feasibility study this problem is neglected

  19. Aespoe Hard Rock Laboratory. Ground magnetic survey at site for planned facility for calibration of borehole orientation equipment at Aespoe

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Haakan (GeoVista AB (Sweden))

    2012-01-15

    This report presents survey description and results of ground magnetic measurements carried out by GeoVista AB at Aespoe in December, 2011. The purpose of the ground magnetic measurement was to measure variations in the earth magnetic field and to gain knowledge of the magnetization of the bedrock in an area where SKB plan to build a facility for calibration of equipment for measurements of borehole orientation. A total of 312 data points were collected along three survey lines, 104 points/profile. The data show nice and smooth variations that appear to be natural. There is a clear consistency of the magnetic field variations between the three survey lines, which indicates that the variations in the magnetic field reflect geological variations related to lithology and content of magnetic minerals. There are no indications of artifacts or erroneous data. The anomaly field averages at -32 nT with peak values of Min = -1,016 nT and Max = +572 nT. The strongest anomalies occur at profile length c. 130-140 m. Adding the background field of 50,823 nT, measured at a base station located close to the survey area, the total magnetic field averages at 50,791+-226 nT. The ground magnetic measurement gives background information before the construction of the calibration facility. The magnetic anomaly at c. 130-140 m give possibilities to control disturbances of magnetic-accelerometer based instruments. The magnetic measurements show that it is possible to construct the facility at the site

  20. Aespoe Hard Rock Laboratory. Ground magnetic survey at site for planned facility for calibration of borehole orientation equipment at Aespoe

    International Nuclear Information System (INIS)

    Mattsson, Haakan

    2012-01-01

    This report presents survey description and results of ground magnetic measurements carried out by GeoVista AB at Aespoe in December, 2011. The purpose of the ground magnetic measurement was to measure variations in the earth magnetic field and to gain knowledge of the magnetization of the bedrock in an area where SKB plan to build a facility for calibration of equipment for measurements of borehole orientation. A total of 312 data points were collected along three survey lines, 104 points/profile. The data show nice and smooth variations that appear to be natural. There is a clear consistency of the magnetic field variations between the three survey lines, which indicates that the variations in the magnetic field reflect geological variations related to lithology and content of magnetic minerals. There are no indications of artifacts or erroneous data. The anomaly field averages at -32 nT with peak values of Min = -1,016 nT and Max = +572 nT. The strongest anomalies occur at profile length c. 130-140 m. Adding the background field of 50,823 nT, measured at a base station located close to the survey area, the total magnetic field averages at 50,791±226 nT. The ground magnetic measurement gives background information before the construction of the calibration facility. The magnetic anomaly at c. 130-140 m give possibilities to control disturbances of magnetic-accelerometer based instruments. The magnetic measurements show that it is possible to construct the facility at the site

  1. Development of a Curriculum to Teach the "Soft Skills" Necessary for the Future Deaf and Hard-of-Hearing Laboratory Technician Workforce

    Science.gov (United States)

    Ross, Annemarie D.; Pagano, Todd

    2009-01-01

    There is often a particular void in the education of deaf and hard-of-hearing students who intend to become competent working laboratory technicians. Inasmuch as certain basic professional skills ("soft skills," in this case) are not generally taught in traditional science courses, a new curriculum has been developed in order to enforce…

  2. Analysis of Copper-Bearing Rocks and Minerals for Their Metal Content Using Visible Spectroscopy: A First Year Chemistry Laboratory Exploration

    Science.gov (United States)

    Bopegedera, A. M. R. P.

    2016-01-01

    General chemistry and introductory chemistry students were presented with a laboratory exploration for the determination of the mass percent of copper in rock and mineral samples. They worked independently in the laboratory, which involved multiple lab (pipetting, preparing standard solutions by quantitative dilution, recording visible spectra…

  3. Sociality Affects REM Sleep Episode Duration Under Controlled Laboratory Conditions in the Rock Hyrax, Procavia capensis

    Directory of Open Access Journals (Sweden)

    Nadine Gravett

    2017-11-01

    Full Text Available The rock hyrax, Procavia capensis, is a highly social, diurnal mammal. In the current study several physiologically measurable parameters of sleep, as well as the accompanying behavior, were recorded continuously from five rock hyraxes, for 72 h under solitary (experimental animal alone in the recording chamber, and social conditions (experimental animal with 1 or 2 additional, non-implanted animals in the recording chamber. The results revealed no significant differences between solitary and social conditions for total sleep times, number of episodes, episode duration or slow wave activity (SWA for all states examined. The only significant difference observed between social and solitary conditions was the average duration of rapid eye movement (REM sleep episodes. REM sleep episode duration was on average 20 s and 40 s longer under social conditions daily and during the dark period, respectively. It is hypothesized that the increase in REM sleep episode duration under social conditions could possibly be attributed to improved thermoregulation strategies, however considering the limited sample size and design of the current study further investigations are needed to confirm this finding. Whether the conclusions and the observations made in this study can be generalized to all naturally socially sleeping mammals remains an open question.

  4. Natural gas extraction and artificial gas injection experiments in Opalinus Clay, Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Vinsot, A.; Lundy, M. [Agence Nationale pour la Gestion des Déchets Radioactifs ANDRA, Meuse Haute-Marne Center, Bure (France); Appelo, C.A.J. [Dr C.A.J. Appelo, Hydrochemical Consultant, Amsterdam (Netherlands); and others

    2017-04-15

    Two experiments have been installed at Mont Terri in 2004 and 2009 that allowed gas circulation within a borehole at a pressure between 1 and 2 bar. These experiments made it possible to observe the natural gases that were initially dissolved in pore-water degassing into the borehole and to monitor their content evolution in the borehole over several years. They also allowed for inert (He, Ne) and reactive (H{sub 2}) gases to be injected into the borehole with the aim either to determine their diffusion properties into the rock pore-water or to evaluate their removal reaction kinetics. The natural gases identified were CO{sub 2}, light alkanes, He, and more importantly N{sub 2}. The natural concentration of four gases in Opalinus Clay pore-water was evaluated at the experiment location: N{sub 2} 2.2 mmol/L ± 25%, CH{sub 4} 0.30 mmol/L ± 25%, C{sub 2}H{sub 6} 0.023 mmol/L ± 25%, C{sub 3}H{sub 8} 0.012 mmol/L ± 25%. Retention properties of methane, ethane, and propane were estimated. Ne injection tests helped to characterize rock diffusion properties regarding the dissolved inert gases. These experimental results are highly relevant towards evaluating how the fluid composition could possibly evolve in the drifts of a radioactive waste disposal facility. (authors)

  5. Changes in Ultrasonic Velocity from Fluid Substitution, Calculated with Laboratory Methods, Digital Rock Physics, and Biot Theory

    Science.gov (United States)

    Goldfarb, E. J.; Ikeda, K.; Tisato, N.

    2017-12-01

    Seismic and ultrasonic velocities of rocks are function of several variables including fluid saturation and type. Understanding the effect of each variable on elastic waves can be valuable when using seismic methods for subsurface modeling. Fluid type and saturation are of specific interest to volcanology, water, and hydrocarbon exploration. Laboratory testing is often employed to understand the effects of fluids on elastic waves. However, laboratory testing is expensive and time consuming. It normally requires cutting rare samples into regular shapes. Fluid injection can also destroy specimens as removing the fluid after testing can prove difficult. Another option is theoretical modeling, which can be used to predict the effect of fluids on elastic properties, but it is often inaccurate. Alternatively, digital rock physics (DRP) can be used to investigate the effect of fluid substitution. DRP has the benefit of being non invasive, as it does not require regular sample shapes or fluid injection. Here, we compare the three methods for dry and saturated Berea sandstone to test the reliability of DRP. First, ultrasonic velocities were obtained from laboratory testing. Second, for comparison, we used a purely theoretical approach - i.e., Hashin-Shtrikman and Biot theory - to estimate the wave speeds at dry and wet conditions. Third, we used DRP. The dry sample was scanned with micro Computed Tomography (µCT), and a three dimensional (3D) array was recorded. We employed a segmentation-less method to convert each 3D array value to density, porosity, elastic moduli, and wave speeds. Wave propagation was simulated numerically at similar frequency as the laboratory. To simulate fluid substitution, we numerically substituted air values for water and repeated the simulation. The results from DRP yielded similar velocities to the laboratory, and accurately predicted the velocity change from fluid substitution. Theoretical modeling could not accurately predict velocity, and

  6. Synthesis of Expansive Mortar Developed in Laboratory for Dismounting of Ornamental Rocks

    International Nuclear Information System (INIS)

    Lucena D V; Campos D B C; Lira H L; Neves G A

    2011-01-01

    The expansive mortar is constituted by a mixture of watery phase with an agent expander, when hydrated, presents volume increase and the generation of fictions in the rock due to generated pressure. The objective of this work is to synthecize expansive mortar that they present enough expansive pressure for the dismounting of granite and marble. They had been used as raw materials: carbonate of calcium, Portland cement and additives for control of the expansion. The formularizations had been synthecized on the basis of the chemical analysis of a mortar commercial and characterized by XRD, laser particle size measurements and evaluation of expansive pressure. All the developed formularizations had presented similar characteristics to the ones of the commercial mortar.

  7. Applying Squeezing Technique to Clayrocks: Lessons Learned from Experiments at Mont Terri Rock Laboratory

    International Nuclear Information System (INIS)

    Fernandez, A. M.; Sanchez-Ledesma, D. M.; Tournassat, C.; Melon, A.; Gaucher, E.; Astudillo, E.; Vinsot, A.

    2013-01-01

    Knowledge of the pore water chemistry in clay rock formations plays an important role in determining radionuclide migration in the context of nuclear waste disposal. Among the different in situ and ex-situ techniques for pore water sampling in clay sediments and soils, squeezing technique dates back 115 years. Although different studies have been performed about the reliability and representativeness of squeezed pore waters, more of them were achieved on high porosity, high water content and unconsolidated clay sediments. A very few of them tackled the analysis of squeezed pore water from low-porosity, low water content and highly consolidated clay rocks. In this work, a specially designed and fabricated one-dimensional compression cell two directional fluid flow was used to extract and analyse the pore water composition of Opalinus Clay core samples from Mont Terri (Switzerland). The reproducibility of the technique is good and no ionic ultrafiltration, chemical fractionation or anion exclusion was found in the range of pressures analysed: 70-200 MPa. Pore waters extracted in this range of pressures do not decrease in concentration, which would indicate a dilution of water by mixing of the free pore water and the outer layers of double layer water (Donnan water). A threshold (safety) squeezing pressure of 175 MPa was established for avoiding membrane effects (ion filtering, anion exclusion, etc.) from clay particles induced by increasing pressures. Besides, the pore waters extracted at these pressures are representative of the Opalinus Clay formation from a direct comparison against in situ collected borehole waters. (Author)

  8. Applying Squeezing Technique to Clayrocks: Lessons Learned from Experiments at Mont Terri Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A. M.; Sanchez-Ledesma, D. M.; Tournassat, C.; Melon, A.; Gaucher, E.; Astudillo, E.; Vinsot, A.

    2013-07-01

    Knowledge of the pore water chemistry in clay rock formations plays an important role in determining radionuclide migration in the context of nuclear waste disposal. Among the different in situ and ex-situ techniques for pore water sampling in clay sediments and soils, squeezing technique dates back 115 years. Although different studies have been performed about the reliability and representativeness of squeezed pore waters, more of them were achieved on high porosity, high water content and unconsolidated clay sediments. A very few of them tackled the analysis of squeezed pore water from low-porosity, low water content and highly consolidated clay rocks. In this work, a specially designed and fabricated one-dimensional compression cell two directional fluid flow was used to extract and analyse the pore water composition of Opalinus Clay core samples from Mont Terri (Switzerland). The reproducibility of the technique is good and no ionic ultrafiltration, chemical fractionation or anion exclusion was found in the range of pressures analysed: 70-200 MPa. Pore waters extracted in this range of pressures do not decrease in concentration, which would indicate a dilution of water by mixing of the free pore water and the outer layers of double layer water (Donnan water). A threshold (safety) squeezing pressure of 175 MPa was established for avoiding membrane effects (ion filtering, anion exclusion, etc.) from clay particles induced by increasing pressures. Besides, the pore waters extracted at these pressures are representative of the Opalinus Clay formation from a direct comparison against in situ collected borehole waters. (Author)

  9. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate

    Science.gov (United States)

    Winters, W.J.; Pecher, I.A.; Waite, W.F.; Mason, D.H.

    2004-01-01

    This paper presents results of shear strength and acoustic velocity (p-wave) measurements performed on: (1) samples containing natural gas hydrate from the Mallik 2L-38 well, Mackenzie Delta, Northwest Territories; (2) reconstituted Ottawa sand samples containing methane gas hydrate formed in the laboratory; and (3) ice-bearing sands. These measurements show that hydrate increases shear strength and p-wave velocity in natural and reconstituted samples. The proportion of this increase depends on (1) the amount and distribution of hydrate present, (2) differences, in sediment properties, and (3) differences in test conditions. Stress-strain curves from the Mallik samples suggest that natural gas hydrate does not cement sediment grains. However, stress-strain curves from the Ottawa sand (containing laboratory-formed gas hydrate) do imply cementation is present. Acoustically, rock physics modeling shows that gas hydrate does not cement grains of natural Mackenzie Delta sediment. Natural gas hydrates are best modeled as part of the sediment frame. This finding is in contrast with direct observations and results of Ottawa sand containing laboratory-formed hydrate, which was found to cement grains (Waite et al. 2004). It therefore appears that the microscopic distribution of gas hydrates in sediment, and hence the effect of gas hydrate on sediment physical properties, differs between natural deposits and laboratory-formed samples. This difference may possibly be caused by the location of water molecules that are available to form hydrate. Models that use laboratory-derived properties to predict behavior of natural gas hydrate must account for these differences.

  10. Experiments on thermo-hydro-mechanical behaviour of Opalinus Clay at Mont Terri rock laboratory, Switzerland

    Directory of Open Access Journals (Sweden)

    Paul Bossart

    2017-06-01

    Full Text Available Repositories for deep geological disposal of radioactive waste rely on multi-barrier systems to isolate waste from the biosphere. A multi-barrier system typically comprises the natural geological barrier provided by the repository host rock – in our case the Opalinus Clay – and an engineered barrier system (EBS. The Swiss repository concept for spent fuel and vitrified high-level waste (HLW consists of waste canisters, which are emplaced horizontally in the middle of an emplacement gallery and are separated from the gallery wall by granular backfill material (GBM. We describe here a selection of five in-situ experiments where characteristic hydro-mechanical (HM and thermo-hydro-mechanical (THM processes have been observed. The first example is a coupled HM and mine-by test where the evolution of the excavation damaged zone (EDZ was monitored around a gallery in the Opalinus Clay (ED-B experiment. Measurements of pore-water pressures and convergences due to stress redistribution during excavation highlighted the HM behaviour. The same measurements were subsequently carried out in a heater test (HE-D where we were able to characterise the Opalinus Clay in terms of its THM behaviour. These yielded detailed data to better understand the THM behaviours of the granular backfill and the natural host rock. For a presentation of the Swiss concept for HLW storage, we designed three demonstration experiments that were subsequently implemented in the Mont Terri rock laboratory: (1 the engineered barrier (EB experiment, (2 the in-situ heater test on key-THM processes and parameters (HE-E experiment, and (3 the full-scale emplacement (FE experiment. The first demonstration experiment has been dismantled, but the last two ones are on-going.

  11. Conceptual and analytical modeling of fracture zone aquifers in hard rock. Implications of pumping tests in the Pohjukansalo well field, east-central Finland

    International Nuclear Information System (INIS)

    Leveinen, J.

    2001-01-01

    the approximate cone of depression around pumping wells and, subsequently, the extent of protection areas. In many developing countries, knowledge of water level fluctuations is insufficient and long-term pumping tests are not economically feasible. Sustainable well yield must be estimated by extrapolating short-term tests. Fractional flow dimension models commonly simulate responses to pumping in hard rocks and, therefore, can improve the present groundwater management methods. Conductive fracture zones generally control the 3-dimensional flow paths in fractured rocks and, subsequently, affect the spatial variations of groundwater composition. Studies of groundwater quality should probably take into account to what extent the sampled bored well represents groundwater in the hydrogeologically favorable parts of the bedrock. (orig.)

  12. Bulk rock elastic moduli at high pressures, derived from the mineral textures and from extrapolated laboratory data

    International Nuclear Information System (INIS)

    Ullemeyer, K; Keppler, R; Lokajíček, T; Vasin, R N; Behrmann, J H

    2015-01-01

    The elastic anisotropy of bulk rock depends on the mineral textures, the crack fabric and external parameters like, e.g., confining pressure. The texture-related contribution to elastic anisotropy can be predicted from the mineral textures, the largely sample-dependent contribution of the other parameters must be determined experimentally. Laboratory measurements of the elastic wave velocities are mostly limited to pressures of the intermediate crust. We describe a method, how the elastic wave velocity trends and, by this means, the elastic constants can be extrapolated to the pressure conditions of the lower crust. The extrapolated elastic constants are compared to the texture-derived ones. Pronounced elastic anisotropy is evident for phyllosilicate minerals, hence, the approach is demonstrated for two phyllosilicate-rich gneisses with approximately identical volume fractions of the phyllosilicates but different texture types. (paper)

  13. Mechanical and bulk properties of intact rock collected in the laboratory in support of the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Price, R.H.; Martin, R.J. III; Boyd, P.J.; Boinott, G.N.

    1994-01-01

    A comprehensive laboratory investigation is determining the mechanical properties of tuffs for the Yucca Mountain Site Characterization Project (YMP). Most recently, experiments have been performed on tuff samples from a series of drill holes along the planned alignment of the Exploratory Study Facilities (ESF) north ramp. Unconfined compression and indirect tension experiments were performed and the results are being analyzed with the help of bulk property information. The results on samples from eight of the drill holes are presented. In general, the properties vary widely, but are highly dependent on the sample porosity. The developed relationships between mechanical properties and porosity are powerful tools in the effort to model the rock mass response of Yucca Mountain to the emplacement of the potential high-level radioactive waste repository

  14. Exploratory simulations of multiphase effects in gas injection and ventilation tests in an underground rock laboratory

    International Nuclear Information System (INIS)

    Finsterle, S.

    1990-06-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects was sponsored by the US Department of Energy (DOE) through the Lawrence Berkeley Laboratory (LBL) and the Swiss Nationale Genossenschaft fuer die Lagerung radioaktiver Abfaella (Nagra) and concluded in September 1989. 16 refs., 29 figs., 4 tabs

  15. Laboratory ultrasonic pulse velocity logging for determination of elastic properties from rock core

    Science.gov (United States)

    Blacklock, Natalie Erin

    During the development of deep underground excavations spalling and rockbursting have been recognized as significant mechanisms of violent brittle failure. In order to predict whether violent brittle failure will occur, it is important to identify the location of stiffness transitions that are associated with geologic structure. One approach to identify the effect of geologic structures is to apply borehole geophysical tools ahead of the tunnel advance. Stiffness transitions can be identified using mechanical property analysis surveys that combine acoustic velocity and density data to calculate acoustic estimates of elastic moduli. However, logistical concerns arise since the approach must be conducted at the advancing tunnel face. As a result, borehole mechanical property analyses are rarely used. Within this context, laboratory ultrasonic pulse velocity testing has been proposed as a potential alternative to borehole mechanical property analysis since moving the analysis to the laboratory would remove logistical constraints and improve safety for the evaluators. In addition to the traditional method of conducting velocity testing along the core axis, two new methodologies for point-focused testing were developed across the core diameter, and indirectly along intact lengths of drill core. The indirect test procedure was implemented in a continuous ultrasonic velocity test program along 573m of drill core to identify key geologic structures that generated transitions in ultrasonic elastic moduli. The test program was successful at identifying the location of geologic contacts, igneous intrusions, faults and shear structures. Ultrasonic values of Young's modulus and bulk modulus were determined at locations of significant velocity transitions to examine the potential for energy storage and energy release. Comparison of results from different ultrasonic velocity test configurations determined that the indirect test configuration provided underestimates for values of

  16. Design calculations for a combined ventilation and brine injection experiment at the Grimsel Rock Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Finsterle, S.; Pruess, K.

    1993-07-01

    A combined ventilation and brine injection test is planned at the Grimsel Test Site. The objective of the experiment is to study the transport of liquid and gas in the vicinity of a ventilated drift in order to evaluate the impact of the drying process on the characterization of the rock matrix. The proposed test sequence includes a desaturation-resaturation cycle. In addition, brine and fresh water will be injected from a borehole as trace electrolytes in order to better track the propagation of the individual phases. Results of design calculations using the TOUGH2 code show that injection of brine may significantly influence the unsaturated flow behavior by changing the pressure and saturation distribution around the borehole. Transport velocity is predicted to be very slow, requiring several months for the brine to reach the draft wall. However, the presence of preferential flow paths may reduce travel time and alter brine content and saturation distribution so that certain sensors may respond earlier or not at all

  17. Grimsel test site. Analysis of radar measurements performed at the Grimsel rock laboratory in October 1985

    International Nuclear Information System (INIS)

    Falk, L.; Magnusson, K.A.; Olsson, O.; Ammann, M.; Keusen, H.R.; Sattel, G.

    1988-02-01

    In October 1985 Swedish Geological Co. conducted a radar reflection survey at Grimsel Test Site to map discontinuities in the rock mass of the Underground Seismic (US) test field. These measurements first designed as a test of the equipment at that specific site allowed a comprehensive interpretation of the geometrical structure of the test field. The geological interpretation of the radar reflectors observed is discussed and a possible way is shown to construct a geological model of a site using the combination of radar results and geological information. Additionally to these results the report describes the radar equipment and the theoretical background for the analysis of the data. The main geological features in the area under investigation, situated in the 'Zentraler Aaregranit', are lamprophyre dykes and fracture/shear zones. Their position and strike have been determined using single- and crosshole radar data, SABIS data (accoustic televiewer) as well as existing geological information from the boreholes or the drifts under the assumption of steep dipping elements (70 to 90 o ). (author) 10 refs., 32 figs., 17 tabs

  18. Laboratory experiments on heat-drive two-phase flows in natural and artificial rock fractures

    International Nuclear Information System (INIS)

    Kneafsey, Timothy J.; Pruess, Karsten

    1998-01-01

    Water flow in partially saturated fractures under thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. At the potential high-level nuclear waste repository at Yucca Mountain, water flowing in fast pathways may ultimately contact waste packages and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize heat-driven liquid flow in fracture models that included (1) assemblies of roughened glass plates, (2) epoxy replicas of rock fractures, and (3) a fractured specimen of Topopah Spring tuff. Continuous rivulet flow was observed for high liquid flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for lower flow rates and wide apertures. Heat pipe conditions (vapor-liquid counterflow with phase change) were identified in five of the seven experiments in which spatially resolved thermal monitoring was performed but not when vapor-liquid counterflow was hindered by very narrow apertures and when an inadequate working fluid volume was used

  19. P-waves imaging of the FRI and BK zones at the Grimsel Rock Laboratory

    International Nuclear Information System (INIS)

    Majer, E.L.; Peterson, J.E. Jr.; Blueming, P.; Sattel, G.

    1990-08-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geological repository for nuclear waste. Tomographic imaging studies using a high frequency (10 Khz.) piezoelectric source and a three component receiver were carried out in two different regions of the underground Nagra Grimsel test facility in Switzerland. Both sites were in fractured granite, one being in a strongly foliated granite (FRI site), and the other being in a relatively homogeneous granite (BK zone). The object of the work was to determine if the seismic techniques could be useful in imaging the fracture zones and provide information on the hydrologic conditions. Both amplitude and velocity tomograms were obtained from the Data. The results indicate that the fracture zones strongly influenced the seismic wave propagation, thus imaging the fracture zones that were hydrologically important. 11 refs., 24 figs

  20. Feral Cattle in the White Rock Canyon Reserve at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hansen, Leslie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-27

    At the request of the Los Alamos Field Office (the Field Office), Los Alamos National Security (LANS) biologists placed remote-triggered wildlife cameras in and around the mouth of Ancho Canyon in the White Rock Canyon Reserve (the Reserve) to monitor use by feral cattle. The cameras were placed in October 2012 and retrieved in January 2013. Two cameras were placed upstream in Ancho Canyon away from the Rio Grande along the perennial flows from Ancho Springs, two cameras were placed at the north side of the mouth to Ancho Canyon along the Rio Grande, and two cameras were placed at the south side of the mouth to Ancho Canyon along the Rio Grande. The cameras recorded three different individual feral cows using this area as well as a variety of local native wildlife. This report details our results and issues associated with feral cattle in the Reserve. Feral cattle pose significant risks to human safety, impact cultural and biological resources, and affect the environmental integrity of the Reserve. Regional stakeholders have communicated to the Field Office that they support feral cattle removal.

  1. Caught between a rock and a hard place: An intrinsic single case study of nurse researchers' experiences of the presence of a nursing research culture in clinical practice.

    Science.gov (United States)

    Berthelsen, Connie Bøttcher; Hølge-Hazelton, Bibi

    2018-04-01

    To explore how nurse researchers in clinical positions experience the presence of a nursing research culture in clinical practice. Higher demands in the hospitals for increasing the quality of patient care engender a higher demand for the skills of health professionals and evidence-based practice. However, the utilisation of nursing research in clinical practice is still limited. Intrinsic single case study design underlined by a constructivist perspective. Data were produced through a focus group interview with seven nurse researchers employed in clinical practice in two university hospitals in Zealand, Denmark, to capture the intrinsic aspects of the concept of nursing research culture in the context of clinical practice. A thematic analysis was conducted based on Braun and Clarke's theoretical guideline. "Caught between a rock and a hard place" was constructed as the main theme describing how nurse researchers in clinical positions experience the presence of a nursing research culture in clinical practice. The main theme was supported by three subthemes: Minimal academic tradition affects nursing research; Minimal recognition from physicians affects nursing research; and Moving towards a research culture. The nurse researchers in this study did not experience the presence of a nursing research culture in clinical practice, however; they called for more attention on removing barriers against research utilisation, promotion of applied research and interdisciplinary research collaboration, and passionate management support. The results of this case study show the pressure which nurse researchers employed in clinical practice are exposed to, and give examples on how to accommodate the further development of a nursing research culture in clinical practice. © 2017 John Wiley & Sons Ltd.

  2. Predictive hydro-mechanical excavation simulation of a mine-by test at the Mont Terri rock laboratory

    International Nuclear Information System (INIS)

    Krug, St.; Shao, H.; Hesser, J.; Nowak, T.; Kunz, H.; Vietor, T.

    2010-01-01

    Document available in extended abstract form only. The Mont Terri rock laboratory was extended from mid October 2007 to end 2008 with the goal to allow the project partners to continue their cooperative research on the long term. The extension of the underground laboratory by the excavation of an additional 165 metres long access tunnel (Gallery 08) with four niches was taken as opportunity to conduct an instrumented mine-by test in one of the niches (Niche 2/Niche MB). The measurements during the bedding parallel excavation provided a large amount of data as a basis to understand the hydro-mechanical (HM) coupled behaviour of Opalinus Clay around the excavated niche. BGR was involved in the in-situ investigations (seismic measurements) as a member of the experiment team consisting of five organisations (incl. NAGRA, ANDRA, GRS, Obayashi). An important issue for BGR is the application of the numerical code RockFlow (RF) for HM coupled simulations in order to understand the behaviour of Opalinus Clay by the use of the gained measuring data for validation. Under the management of NAGRA a blind prediction was carried out for a group of modelers belonging to some of the experiment team organisations. After a first comparison between the numerical results of different HM coupled models during the prediction meeting of the teams in June 2009 the measurement data are provided by NAGRA in order to validate the numerical models. Basically the model predictions have already shown the correct tendencies and ranges of observed deformation and pore water pressure evolution besides some under- or overestimations. The future RF validation results after having done some slight parameter adjustments are intended to be presented in the paper. The excavation of Niche 2 was done from 13 October to 7 November 2008 with a constant excavation rate of 1.30 m per day. The orientation of the niche follows the bedding strike, which amounts 60 deg.. The bedding planes have an average dip of

  3. Geomechanical behaviour of Opalinus Clay at multiple scales: results from Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Amann, F.; Wild, K.M.; Loew, S. [Institute of Geology, Engineering Geology, Swiss Federal Institute of Technology, Zurich (Switzerland); Yong, S. [Knight Piesold Ltd, Vancouver (Canada); Thoeny, R. [Grundwasserschutz und Entsorgung, AF-Consult Switzerland AG, Baden (Switzerland); Frank, E. [Sektion Geologie (GEOL), Eidgenössisches Nuklear-Sicherheitsinspektorat (ENSI), Brugg (Switzerland)

    2017-04-15

    The paper represents a summary about our research projects conducted between 2003 and 2015 related to the mechanical behaviour of Opalinus Clay at Mont Terri. The research summarized covers a series of laboratory and field tests that address the brittle failure behaviour of Opalinus Clay, its undrained and effective strength, the dependency of petro-physical and mechanical properties on total suction, hydro-mechanically coupled phenomena and the development of a damage zone around excavations. On the laboratory scale, even simple laboratory tests are difficult to interpret and uncertainties remain regarding the representativeness of the results. We show that suction may develop rapidly after core extraction and substantially modifies the strength, stiffness, and petro-physical properties of Opalinus Clay. Consolidated undrained tests performed on fully saturated specimens revealed a relatively small true cohesion and confirmed the strong hydro-mechanically coupled behaviour of this material. Strong hydro-mechanically coupled processes may explain the stability of cores and tunnel excavations in the short term. Pore-pressure effects may cause effective stress states that favour stability in the short term but may cause longer-term deformations and damage as the pore-pressure dissipates. In-situ observations show that macroscopic fracturing is strongly influenced by bedding planes and faults planes. In tunnel sections where opening or shearing along bedding planes or faults planes is kinematically free, the induced fracture type is strongly dependent on the fault plane frequency and orientation. A transition from extensional macroscopic failure to shearing can be observed with increasing fault plane frequency. In zones around the excavation where bedding plane shearing/shearing along tectonic fault planes is kinematically restrained, primary extensional type fractures develop. In addition, heterogeneities such as single tectonic fault planes or fault zones

  4. VIRTUS. Virtual underground laboratory in rock salt; VIRTUS. Virtuelles Untertagelabor im Steinsalz

    Energy Technology Data Exchange (ETDEWEB)

    Wieczorek, Klaus [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Behlau, Joachim; Heemann, Ulrich [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Masik, Steffen; Raab, Michael [Fraunhofer-Institut fuer Fabrikbetrieb und -Automatisierung (IFF), Magdeburg (Germany); Mueller, Christian; Simo, Eric Kuate [DBE Technology GmbH, Peine (Germany)

    2014-12-15

    Germany does not have an underground laboratory to study the behavior of geological formations for the use as final repository for radioactive high-level wastes. VIRTUS was developed to have an adequate tool to study the complex and safety relevant processes in geological structures for a fast and effective planning and testing of final repository design. The three-dimensional visualization of the numerical simulations results will help n the scientists and the interested public to understand the process flows in a final repository.

  5. The interaction of sorbing and non-sorbing tracers with different Aespoe rock types. Sorption and diffusion experiments in the laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Byegaard, J.; Johansson, Henrik; Skaalberg, M. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry; Tullborg, E.L. [Terralogica AB, Graabo (Sweden)

    1998-11-01

    Laboratory experiments studying the sorption and diffusivity of different tracers in Aespoe Hard Rock Laboratory (Aespoe HRL) site specific conditions have been performed. The experiments were conducted by applying both the batch sorption and the through diffusion technique. The investigation was focused on slightly sorbing tracers, i e, alkaline metals (Na{sup +}, Rb{sup +} and Cs{sup +}) and alkaline earth metals (Ca{sup 2+}, Sr{sup 2+} and Ba{sup 2+}), but some presumed non-sorbing species have also been included. The dominating generic rock material from Aespoe HRL, Aespoe-diorite and fine-grained granite, were used as well as some altered wall rock and mylonite from the Feature A fracture, the fracture where in situ migration studies have been performed. Synthetic groundwater was used; similar to the high saline groundwater found at the 350m level at Aespoe HRL and at the Feature A site. The results of batch experiments show that the sorption of the tracers increase in the order Na

  6. The interaction of sorbing and non-sorbing tracers with different Aespoe rock types. Sorption and diffusion experiments in the laboratory scale

    International Nuclear Information System (INIS)

    Byegaard, J.; Johansson, Henrik; Skaalberg, M.

    1998-11-01

    Laboratory experiments studying the sorption and diffusivity of different tracers in Aespoe Hard Rock Laboratory (Aespoe HRL) site specific conditions have been performed. The experiments were conducted by applying both the batch sorption and the through diffusion technique. The investigation was focused on slightly sorbing tracers, i e, alkaline metals (Na + , Rb + and Cs + ) and alkaline earth metals (Ca 2+ , Sr 2+ and Ba 2+ ), but some presumed non-sorbing species have also been included. The dominating generic rock material from Aespoe HRL, Aespoe-diorite and fine-grained granite, were used as well as some altered wall rock and mylonite from the Feature A fracture, the fracture where in situ migration studies have been performed. Synthetic groundwater was used; similar to the high saline groundwater found at the 350m level at Aespoe HRL and at the Feature A site. The results of batch experiments show that the sorption of the tracers increase in the order Na + in the order of (4-30)x10 -6 m 3 /kg and for Cs + in the range of (I-400)x10 -3 m 3 /kg. The variations in sorption coefficients are due to differences in the composition of the geological material, contact time and particle size. Sorption is generally stronger for the Aespoe-diorite than for the fine-grained granite which is explained by the much higher concentration of biotite in Aespoe diorite than in fine-grained granite. In the altered material the biotite has been transformed to chlorite and a lower sorptivity is shown for those material compared to the fresh diorite and granite, respectively. Attempts to explain the sorption and desorption results to a surface sorption - diffusion model are presented. The diffusion results show that the tracers were retarded in the same order as was expected from the measured batch sorption coefficients. Furthermore, the largest size fraction was the most representative when comparing batch sorption coefficients with sorption coefficients evaluated from the

  7. Work Hard / Play Hard

    OpenAIRE

    Burrows, J.; Johnson, V.; Henckel, D.

    2016-01-01

    Work Hard / Play Hard was a participatory performance/workshop or CPD experience hosted by interdisciplinary arts atelier WeAreCodeX, in association with AntiUniversity.org. As a socially/economically engaged arts practice, Work Hard / Play Hard challenged employees/players to get playful, or go to work. 'The game changes you, you never change the game'. Employee PLAYER A 'The faster the better.' Employer PLAYER B

  8. Survey of in situ testing at underground laboratories with application to geologic disposal of spent fuel waste in crystalline rock

    International Nuclear Information System (INIS)

    Hardin, E.

    1992-04-01

    This report is intended for use in designing testing programs, or as backup material for the review of 'R and D 92' which will be the next three-year plan for spent fuel repository siting and characterization activities in Sweden. There are eight major topics, each of which is addressed in a chapter of around 2000 to 10000 words. The major topics are defined to capture the reasons for testing, in a way that limits overlap between chapters. Other goals of this report are to provide current information on recent or ongoing tests in crystalline rock, and to describe insights which are important but not obvious from the literature. No data are presented, but the conclusions of testing programs are summarized. The principal sources were reports (in English) produced by the laboratory projects particularly the Stripa Project (SKB), the Underground Research Laboratory in Canada (AECL), and the Grimsel Test Site in Switzerland (Nagra). Articles from refereed journals have been used in lieu of project literature where possible and appropriate. (au)

  9. Laboratory Characterization of Chemico-osmotic, Hydraulic and Diffusion Properties of Rocks: Apparatus Development

    International Nuclear Information System (INIS)

    Takeda, M.; Hiratsuka, T.; Ito, K.

    2009-01-01

    Excess fluid pressures induced by chemical osmosis in natural formations may have a significant influence on groundwater systems in a geological time scale. Examinations of the possibility and duration times require characterization of the chemico-osmotic, hydraulic and diffusion properties of representative formation media under field conditions. To develop a laboratory apparatus for chemical osmosis experiments that simulates in-situ conditions, typical litho-static and background pore pressures, a fundamental concept of the chemical osmosis experiment using a closed fluid circuit system (referred to as a closed system hereafter) was revisited. Coupled processes in the experiment were examined numerically. In preliminary experiments at atmospheric pressure a chemical osmosis experiment using the closed system was demonstrated. An approximation method for determining the chemico-osmotic property was attempted. Based on preliminary examinations, an experimental system capable of loading the confining and pore pressures on the sample was thus developed. (authors)

  10. Verification and characterization of continuum behavior of fractured rock at AECL Underground Research Laboratory

    International Nuclear Information System (INIS)

    Long, J.C.S.

    1985-02-01

    The purposes of this study are to determine when a fracture system behaves as a porous medium and what the corresponding permeability tensor is. A two-dimensional fracture system model is developed with density, size, orientation, and location of fractures in an impermeable matrix as random variables. Simulated flow tests through the models measure directional permeability, K/sub g/. Polar coordinate plots of 1/√K/sub g/, which are ellipses for equivalent anistropic homogeneous porous media, are graphed and best fit ellipses are calculated. Fracture length and areal density were varied such that fracture frequency was held constant. The examples showed the permeability increased with fracture length. The modeling techniques were applied to data from the Atomic Energy of Canada Ltd.'s Underground Research Laboratory facility in Manitoba, Canada by assuming the fracture pattern at the surface persists at depth. Well test data were used to estimate the aperture distribution by both correlating and not correlating the aperture with fracture length. The permeability of models with uncorrelated length and aperture were smaller than those for correlated models. A Monte Carlo type study showed that analysis of steady state packer tests consistently underestimate the mean aperture. Finally, a three-dimensional model in which fractures are discs randomly located in space, interactions between the fractures are line segments, and the solution of the steady state flow equations is based on image theory was discussed

  11. Does fault strengthening in laboratory rock friction experiments really depend primarily upon time and not slip?

    Science.gov (United States)

    Bhattacharya, Pathikrit; Rubin, Allan M.; Beeler, Nicholas M.

    2017-08-01

    The popular constitutive formulations of rate-and-state friction offer two end-member views on whether friction evolves only with slip (Slip law) or with time even without slip (Aging law). While rate stepping experiments show support for the Slip law, laboratory-observed frictional behavior near-zero slip rates has traditionally been inferred as supporting Aging law style time-dependent healing, in particular, from the slide-hold-slide experiments of Beeler et al. (1994). Using a combination of new analytical results and explicit numerical (Bayesian) inversion, we show instead that the slide-hold-slide data of Beeler et al. (1994) favor slip-dependent state evolution during holds. We show that, while the stiffness-independent rate of growth of peak stress (following reslides) with hold duration is a property shared by both the Aging and (under a more restricted set of parameter combinations) Slip laws, the observed stiffness dependence of the rate of stress relaxation during long holds is incompatible with the Aging law with constant rate-state parameters. The Slip law consistently fits the evolution of the stress minima at the end of the holds well, whether fitting jointly with peak stresses or otherwise. But neither the Aging nor Slip laws fit all the data well when a - b is constrained to values derived from prior velocity steps. We also attempted to fit the evolution of stress peaks and minima with the Kato-Tullis hybrid law and the shear stress-dependent Nagata law, both of which, even with the freedom of an extra parameter, generally reproduced the best Slip law fits to the data.

  12. Site study plan for non-routine laboratory rock mechanics, Deaf Smith County Site, Texas: Revision 1

    International Nuclear Information System (INIS)

    1987-12-01

    This Site Study Plan describes the non-routine rock mechanics and thermal properties laboratory testing program planned for the characterization of site-specific geologic materials for the Deaf Smith County site, Texas. The study design provides for measurements of index, mechanical, thermomechanical, thermal and special properties for the host salt, and where appropriate, for nonhost lithologies. The types of tests which will be conducted are constant stress (creep) tests, constant strain (stress relaxation) tests, constant strain-rate tests, constant stress-rate tests, cyclic loading tests, hollow cylinder tests, uniaxial and triaxial compression tests, direct tension tests, indirect (triaxial) shear tests, thermal property determinations (conductivity, specific heat, expansivity, and diffusivity), fracture healing tests, thermal decrepitation tests, moisture content determinations, and petrographic and micromechanics analyses. Tests will be conducted at confining pressures up to 30 MPa and temperatures up to 300/degree/C. These data are used to construct mathematical models for the phenomenology of salt deformation. The models are then used in finite-element codes to predict repository response. A tentative testing schedule and milestone log are given. The duration of the testing program is expected to be approximately 5 years. 44 refs., 13 figs., 13 tabs

  13. Rock shape, restitution coefficients and rockfall trajectory modelling

    Science.gov (United States)

    Glover, James; Christen, Marc; Bühler, Yves; Bartelt, Perry

    2014-05-01

    Restitution coefficients are used in rockfall trajectory modelling to describe the ratio between incident and rebound velocities during ground impact. They are central to the problem of rockfall hazard analysis as they link rock mass characteristics to terrain properties. Using laboratory experiments as a guide, we first show that restitution coefficients exhibit a wide range of scatter, although the material properties of the rock and ground are constant. This leads us to the conclusion that restitution coefficients are poor descriptors of rock-ground interaction. The primary problem is that "apparent" restitution coefficients are applied at the rock's centre-of-mass and do not account for rock shape. An accurate description of the rock-ground interaction requires the contact forces to be applied at the rock surface with consideration of the momentary rock position and spin. This leads to a variety of rock motions including bouncing, sliding, skipping and rolling. Depending on the impact configuration a wide range of motions is possible. This explains the large scatter of apparent restitution coefficients. We present a rockfall model based on newly developed hard-contact algorithms which includes the effects of rock shape and therefore is able to reproduce the results of different impact configurations. We simulate the laboratory experiments to show that it is possible to reproduce run-out and dispersion of different rock shapes using parameters obtained from independent tests. Although this is a step forward in rockfall trajectory modelling, the problem of parametersing real terrain remains.

  14. Corrosion of carbon steel in clay environments relevant to radioactive waste geological disposals, Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Necib, S. [Agence Nationale pour la Gestion des Déchets Radioactifs ANDRA, Meuse Haute-Marne, Center RD 960, Bure (France); Diomidis, N. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Keech, P. [Nuclear Waste Management Organisation NWMO, Toronto (Canada); Nakayama, M. [Japan Atomic Energy Agency JAEA, Horonobe-Cho (Japan)

    2017-04-15

    Carbon steel is widely considered as a candidate material for the construction of spent fuel and high-level waste disposal canisters. In order to investigate corrosion processes representative of the long term evolution of deep geological repositories, two in situ experiments are being conducted in the Mont Terri rock laboratory. The iron corrosion (IC) experiment, aims to measure the evolution of the instantaneous corrosion rate of carbon steel in contact with Opalinus Clay as a function of time, by using electrochemical impedance spectroscopy measurements. The Iron Corrosion in Bentonite (IC-A) experiment intends to determine the evolution of the average corrosion rate of carbon steel in contact with bentonite of different densities, by using gravimetric and surface analysis measurements, post exposure. Both experiments investigate the effect of microbial activity on corrosion. In the IC experiment, carbon steel showed a gradual decrease of the corrosion rate over a period of 7 years, which is consistent with the ongoing formation of protective corrosion products. Corrosion product layers composed of magnetite, mackinawite, hydroxychloride and siderite with some traces of oxidising species such as goethite were identified on the steel surface. Microbial investigations revealed thermophilic bacteria (sulphate and thiosulphate reducing bacteria) at the metal surface in low concentrations. In the IC-A experiment, carbon steel samples in direct contact with bentonite exhibited corrosion rates in the range of 2 µm/year after 20 months of exposure, in agreement with measurements in absence of microbes. Microstructural and chemical characterisation of the samples identified a complex corrosion product consisting mainly of magnetite. Microbial investigations confirmed the limited viability of microbes in highly compacted bentonite. (authors)

  15. Litho- and biostratigraphy of the Opalinus Clay and bounding formations in the Mont Terri rock laboratory (Switzerland)

    International Nuclear Information System (INIS)

    Hostettler, B.; Reisdorf, A. G.; Jaeggi, D.

    2017-01-01

    A 250 m-deep inclined well, the Mont Terri BDB-1, was drilled through the Jurassic Opalinus Clay and its bounding formations at the Mont Terri rock laboratory (NW Switzerland). For the first time, a continuous section from (oldest to youngest) the topmost members of the Staffelegg Formation to the basal layers of the Hauptrogenstein Formation is now available in the Mont Terri area. We extensively studied the drill core for lithostratigraphy and biostratigraphy, drawing upon three sections from the Mont Terri area. The macropaleontological, micropaleontological, and palynostratigraphical data are complementary, not only spatially but they also cover almost all biozones from the Late Toarcian to the Early Bajocian. We ran a suite of geophysical logs to determine formational and intraformational boundaries based on clay content in the BDB-1 well. In the framework of an interdisciplinary study, analysis of the above-mentioned formations permitted us to process and derive new and substantial data for the Mont Terri area in a straightforward way. Some parts of the lithologic inventory, stratigraphic architecture, thickness variations, and biostratigraphic classification of the studied formations deviate considerably from occurrences in northern Switzerland that crop out further to the east. For instance, with the exception of the Sissach Member, no further lithostratigraphic subdivision in members is proposed for the Passwang Formation. Also noteworthy is that the ca. 130 m-thick Opalinus Clay in the BDB-1 core is 20 m thinner than that equivalent section found in the Mont Terri tunnel. The lowermost 38 m of the Opalinus Clay can be attributed chronostratigraphically solely to the Aalensis Zone (Late Toarcian). Deposition of the Opalinus Clay began at the same time farther east in northern Switzerland (Aalensis Subzone, Aalensis Zone), but in the Mont Terri area the sedimentation rate was two or three orders of magnitude higher. (authors)

  16. Litho- and biostratigraphy of the Opalinus Clay and bounding formations in the Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Hostettler, B. [Naturhistorisches Museum der Burgergemeinde Berne, Berne (Switzerland); Reisdorf, A. G. [Geologisch-Paläontologisches InstitutUniversität Basle, Basle (Switzerland); Jaeggi, D. [Swisstopo, Federal Office of Topography, Wabern (Switzerland); and others

    2017-04-15

    A 250 m-deep inclined well, the Mont Terri BDB-1, was drilled through the Jurassic Opalinus Clay and its bounding formations at the Mont Terri rock laboratory (NW Switzerland). For the first time, a continuous section from (oldest to youngest) the topmost members of the Staffelegg Formation to the basal layers of the Hauptrogenstein Formation is now available in the Mont Terri area. We extensively studied the drill core for lithostratigraphy and biostratigraphy, drawing upon three sections from the Mont Terri area. The macropaleontological, micropaleontological, and palynostratigraphical data are complementary, not only spatially but they also cover almost all biozones from the Late Toarcian to the Early Bajocian. We ran a suite of geophysical logs to determine formational and intraformational boundaries based on clay content in the BDB-1 well. In the framework of an interdisciplinary study, analysis of the above-mentioned formations permitted us to process and derive new and substantial data for the Mont Terri area in a straightforward way. Some parts of the lithologic inventory, stratigraphic architecture, thickness variations, and biostratigraphic classification of the studied formations deviate considerably from occurrences in northern Switzerland that crop out further to the east. For instance, with the exception of the Sissach Member, no further lithostratigraphic subdivision in members is proposed for the Passwang Formation. Also noteworthy is that the ca. 130 m-thick Opalinus Clay in the BDB-1 core is 20 m thinner than that equivalent section found in the Mont Terri tunnel. The lowermost 38 m of the Opalinus Clay can be attributed chronostratigraphically solely to the Aalensis Zone (Late Toarcian). Deposition of the Opalinus Clay began at the same time farther east in northern Switzerland (Aalensis Subzone, Aalensis Zone), but in the Mont Terri area the sedimentation rate was two or three orders of magnitude higher. (authors)

  17. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  18. Spectral variations in rocks and soils containing ferric iron hydroxide and(or) sulfate minerals as seen by AVIRIS and laboratory spectroscopy

    Science.gov (United States)

    Rockwell, Barnaby W.

    2004-01-01

    Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data covering the Big Rock Candy Mountain area of the Marysvale volcanic field, west-central Utah, identified abundant rocks and soils bearing jarosite, goethite, and chlorite associated with volcanic rocks altered to propylitic grade during the Miocene (2321 Ma). Propylitically-altered rocks rich in pyrite associated with the relict feeder zones of convecting, shallow hydrothermal systems are currently undergoing supergene oxidation to natrojarosite, kaolinite, and gypsum. Goethite coatings are forming at the expense of jarosite where most pyrite has been consumed through oxidation in alluvium derived from pyrite-bearing zones. Spectral variations in the goethite-bearing rocks that resemble variations found in reference library samples of goethites of varying grain size were observed in the AVIRIS data. Rocks outside of the feeder zones have relatively low pyrite content and are characterized by chlorite, epidote, and calcite, with local copper-bearing quartz-calcite veins. Iron-bearing minerals in these rocks are weathering directly to goethite. Laboratory spectral analyses were applied to samples of iron-bearing rock outcrops and alluvium collected from the area to determine the accuracy of the AVIRIS-based mineral identification. The accuracy of the iron mineral identification results obtained by analysis of the AVIRIS data was confirmed. In general, the AVIRIS analysis results were accurate in identifying medium-grained goethite, coarse-grained goethite, medium- to coarse-grained goethite with trace jarosite, and mixtures of goethite and jarosite. However, rock fragments from alluvial areas identified as thin coatings of goethite with the AVIRIS data were found to consist mainly of medium- to coarse-grained goethite based on spectral characteristics in the visible and near-infrared. To determine if goethite abundance contributed to the spectral variations observed in goethite-bearing rocks

  19. Hard-x-ray phase-difference microscopy with a low-brilliance laboratory x-ray source

    International Nuclear Information System (INIS)

    Kuwabara, Hiroaki; Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Mizutani, Haruo

    2011-01-01

    We have developed a hard-X-ray phase-imaging microscopy method using a low-brilliance X-ray source. The microscope consists of a sample, a Fresnel zone plate, a transmission grating, and a source grating creating an array of mutually incoherent X-ray sources. The microscope generates an image exhibiting twin features of the sample with opposite signs separated by a distance, which is processed to generate a phase image. The method is quantitative even for non-weak-phase objects that are difficult to be quantitatively examined by the widely used Zernike phase-contrast microscopy, and it has potentially broad applications in the material and biological science fields. (author)

  20. Long Term Sorption Diffusion Experiment (LTDE-SD). Supporting laboratory program - Sorption diffusion experiments and rock material characterisation. With supplement of adsorption studies on intact rock samples from the Forsmark and Laxemar site investigations

    Energy Technology Data Exchange (ETDEWEB)

    Widestrand, Henrik; Byegaard, Johan; Selnert, Eva; Skaalberg, Mats; Hoeglund, Susanne; Gustafsson, Erik (Geosigma AB, Uppsala (Sweden))

    2010-12-15

    The LTDE-SD experiment, (Long Term Sorption Diffusion Experiment) aims at increasing the scientific knowledge of sorption and diffusion under in situ conditions and to provide data for performance and safety assessment calculations. In this report, performance and results of laboratory sorption and diffusion experiments and porosity investigations using site-specific crushed and intact rock materials are presented, including a geological and mineralogical characterization of the samples. A synthetic groundwater and a part of the radionuclide tracer cocktail that was used for the in situ experiment were used also in the laboratory experiments. 13 radionuclide tracers were analysed in the laboratory experiments. The method descriptions from SKB Site Investigations were applied in order to enable comparisons with Site Investigations data. The water saturation porosity of 10 unaltered matrix rock samples from KA3065A02 and A03 is 0.26 +- 0.08% and two fracture material samples show porosities of 2.4% and 5.2% respectively. 14C-methylmethacrylate impregnation (the PMMA-method) show that the unaltered rock matrix porosity is relatively homogeneous with grain boundary porosity, while the porosity of fracture samples is heterogeneous and have increased porosity up to more than 10% in some parts. Through-diffusion experiments using tritiated water (H3HO) give a matrix diffusivity in the range from 2.7centre dot10-14 to 6.5centre dot10-14 m2/s in four samples from KA3065A02 and A03. The results of the porosity and diffusion measurements are coherent in ranges with earlier LTDE-SD measurements and are also in line with the SKB Site Investigations results. In the batch sorption experiments using crushed rock material, two matrix rock samples of Aevroe granodiorite, one red-stained altered Aevroe granodiorite sample and two chlorite-calcite dominated fracture samples were analysed for three different size fractions as a function of time up to 186 days contact time. The

  1. U–Pb, Rb–Sr, and U-series isotope geochemistry of rocks and fracture minerals from the Chalk River Laboratories site, Grenville Province, Ontario, Canada

    International Nuclear Information System (INIS)

    Neymark, L.A.; Peterman, Z.E.; Moscati, R.J.; Thivierge, R.H.

    2013-01-01

    Highlights: • AECL evaluates Chalk River Laboratories site as potential nuclear waste repository. • Isotope-geochemical data for rocks and fracture minerals at CRL site are reported. • Zircons from gneiss and granite yielded U–Pb ages of 1472 ± 14 and 1045 ± 6 Ma. • WR Rb–Sr and Pb–Pb systems do not show substantial large-scale isotopic mobility. • U-series and REE data do not support oxidizing conditions at depth in the past 1 Ma. - Abstract: As part of the Geologic Waste Management Facility feasibility study, Atomic Energy of Canada Ltd. (AECL) is evaluating the suitability of the Chalk River Laboratories (CRL) site in Ontario, situated in crystalline rock of the southwestern Grenville Province, for the possible development of an underground repository for low- and intermediate-level nuclear waste. This paper presents petrographic and trace element analyses, U–Pb zircon dating results, and Rb–Sr, U–Pb and U-series isotopic analyses of gneissic drill core samples from the deep CRG-series characterization boreholes at the CRL site. The main rock types intersected in the boreholes include hornblende–biotite (±pyroxene) gneisses of granitic to granodioritic composition, leucocratic granitic gneisses with sparse mafic minerals, and garnet-bearing gneisses with variable amounts of biotite and/or hornblende. The trace element data for whole-rock samples plot in the fields of within-plate, syn-collision, and volcanic arc-type granites in discrimination diagrams used for the tectonic interpretation of granitic rocks. Zircons separated from biotite gneiss and metagranite samples yielded SHRIMP-RG U–Pb ages of 1472 ± 14 (2σ) and 1045 ± 6 Ma, respectively, in very good agreement with widespread Early Mesoproterozoic plutonic ages and Ottawan orogeny ages in the Central Gneiss Belt. The Rb–Sr, U–Pb, and Pb–Pb whole-rock errorchron apparent ages of most of the CRL gneiss samples are consistent with zircon U–Pb age and do not indicate

  2. Spectral analysis and classification of igneous and metamorphic rocks of Hamedan region for remote sensing studies; using laboratory reflectance spectra (350-2500 nm)

    International Nuclear Information System (INIS)

    Rangzan, K.; Saki, A.; Hassanshahi, H.; Mojaradi, B.

    2012-01-01

    Reflectance spectrometry techniques with the integration of remote sensing data help us in identifying and mapping the phenomena on the earth. Using these techniques to discriminate the petrologic units independently and without knowing the spectral behavior of rocks along the electromagnetic wavelengths can not be so much useful. For the purposes of this study, 65 samples of igneous and metamorphic rocks from Hamedan region were collected and their spectra were measured using Fieldspec3 device in laboratory. The spectra were analyzed on the basis of absorption, position and shape. Petrographic analyses were used to interpret the absorption patterns as well. Then the spectra were classified according to spectral patterns. This measurement was done on both freshly cut and exposed surfaces of the samples and except a few samples, the two sets of spectra did not differ significantly. Finally, to evaluate the possibility of recognition of these targets, the responses of two hyper spectral and multispectral sensors were simulated from spectra representative of the spectral classes, showing that significant identification and classification of well exposed rocks are potentially possible using remote instruments providing high quality spectra. Also Aster simulation showed that a preliminary gross discrimination of rocks was however possible.

  3. Review on the prevailing methods for the prediction of potential rock burst / rock spalling in tunnels

    OpenAIRE

    Panthi, Krishna Kanta

    2017-01-01

    Rock burst / rock spalling is among the prevailing stability challenges, which can be met while tunneling through hard rock mass. Especially, this is very relevant for the mountainous country like Norway where hard rock is dominating and many road, railway and hydropower tunnels have to be aligned deep into the mountain with steep valley slope topography. Tunnels passing beneath deep rock cover (overburden), in general, are subjected to high in-situ stresses. If the rock mass is relatively un...

  4. Monitoring and modelling of thermo-hydro-mechanical processes - main results of a heater experiment at the Mont Terri underground rock laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ingeborg, G.; Alheid, H.J. [BGR - Federal Institute for Geosciences and Natural Resources, Hannover (Germany); Jockwerz, N. [Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) - Final Repository Research Division, Braunschweig (Germany); Mayor, J.C. [ENRESA - Empresa Nacional des Residuos Radioactivos, Madrid (Spain); Garcia-Siner, J.L. [AITEMIN -Asociacion para la Investigacion y Desarrollo Industrial de los Recursos Naturales, Madrid, (Spain); Alonso, E. [CIMNE - Centre Internacional de Metodos Numerics en Ingenyeria, UPC, Barcelona (Spain); Weber, H.P. [NAGRA - National Cooperative for the Disposal of Radioactive Waste, Wettingen (Switzerland); Plotze, M. [ETHZ - Swiss Federal Institute of Technology Zurich, IGT, Zurich, (Switzerland); Klubertanz, G. [COLENCO Power Engineering Ltd., Baden (Switzerland)

    2005-07-01

    The long-term safety of permanent underground repositories relies on a combination of engineered and geological barriers, so that the interactions between the barriers in response to conditions expected in a high-level waste repository need to be identified and fully understood. Co-financed by the European Community, a heater experiment was realized on a pilot plant scale at the underground laboratory in Mont Terri, Switzerland. The experiment was accompanied by an extensive programme of continuous monitoring, experimental investigations on-site as well as in laboratories, and numerical modelling of the coupled thermo-hydro-mechanical processes. Heat-producing waste was simulated by a heater element of 10 cm diameter, held at a constant surface temperature of 100 C. The heater element (length 2 m) operated in a vertical borehole of 7 m depth at 4 to 6 m depth. It was embedded in a geotechnical barrier of pre-compacted bentonite blocks (outer diameter 30 cm) that were irrigated for 35 months before the heating phase (duration 18 months) began. The host rock is a highly consolidated stiff Jurassic clay stone (Opalinus Clay). After the heating phase, the vicinity of the heater element was explored by seismic, hydraulic, and geotechnical tests to investigate if the heating had induced changes in the Opalinus Clay. Additionally, rock mechanic specimens were tested in the laboratory. Finally, the experiment was dismantled to provide laboratory specimens of post - heating buffer and host rock material. The bentonite blocks were thoroughly wetted at the time of the dismantling. The volume increase amounted to 5 to 9% and was thus below the bentonite potential. Geo-electrical measurements showed no decrease of the water content in the vicinity of the heater during the heating phase. Decreasing energy input to the heater element over time suggests hence, that the bentonite dried leading to a decrease of its thermal conductivity. Gas release during the heating period occurred

  5. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, G. T., E-mail: seidler@uw.edu; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R. [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States)

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  6. Effects of elevated CO2 levels on eggs and larvae of a North Pacific flatfish (northern rock sole, Lepidopsetta polyxystra) from laboratory experiment studies from 2012-02-01 to 2013-09-30 (NCEI Accession 0136906)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains the results of a laboratory experiment study to understand the effect of ocean acidification on eggs and larvae of northern rock sole,...

  7. Laboratory tests to study the influence of rock stress confinement on the performances of TBM discs in tunnels

    Science.gov (United States)

    Innaurato, N.; Oggeri, C.; Oreste, P.; Vinai, R.

    2011-06-01

    To clarify some aspects of rock destruction with a disc acting on a high confined tunnel face, a series of tests were carried out to examine fracture mechanisms under an indenter that simulates the tunnel boring machine (TBM) tool action, in the presence of an adjacent groove, when a state of stress (lateral confinement) is imposed on a rock sample. These tests proved the importance of carefully establishing the optimal distance of grooves produced by discs acting on a confined surface, and the value (as a mere order of magnitude) of the increase of the thrust to produce the initiation of chip formation, as long as the confinement pressure becomes greater.

  8. Geochemical signature of paleofluids in microstructures from Main Fault in the Opalinus Clay of the Mont Terri rock laboratory, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Clauer, N. [Laboratoire d’Hydrologie et de Géochimie de Strasbourg (CNRS-UdS), Strasbourg (France); Techer, I. [Equipe Associée, Chrome, Université de Nîmes, Nîmes (France); Nussbaum, Ch. [Swiss Geological Survey, Federal Office of Topography Swisstopo, Wabern (Switzerland); Laurich, B. [Structural Geology, Tectonics and Geomechanics, RWTH Aachen University, Aachen (Germany); Laurich, B. [Federal Institute for Geosciences and Natural Resources BGR, Hannover (Germany)

    2017-04-15

    The present study reports on elemental and Sr isotopic analyses of calcite and associated celestite infillings of various microtectonic features collected mostly in the Main Fault of the Opalinus Clay from Mont Terri rock laboratory. Based on a detailed microstructural description of veins, slickensides, scaly clay aggregates and gouges, the geochemical signatures of the infillings were compared to those of the leachates from undeformed Opalinus Clay, and to the calcite from veins crosscutting Hauptrogenstein, Passwang and Staffelegg Formations above and below the Opalinus Clay. Vein calcite and celestite from Main Fault yield identical {sup 87}Sr/{sup 86}Sr ratios that are also close to those recorded in the Opalinus Clay matrix inside the Main Fault, but different from those of the diffuse Opalinus Clay calcite outside the fault. These varied {sup 87}Sr/{sup 86}Sr ratios of the diffuse calcite evidence a lack of interaction among the associated connate waters and the flowing fluids characterized by a homogeneous Sr signature. The {sup 87}Sr/{sup 86}Sr homogeneity at 0.70774 ± 0.00001 (2σ) for the infillings of most microstructures in the Main Fault, as well as of veins from nearby limestone layer and sediments around the Opalinus Clay, claims for an 'infinite' homogeneous marine supply, whereas the gouge infillings apparently interacted with a fluid chemically more complex. According to the known regional paleogeographic evolution, two seawater supplies were inferred and documented in the Delémont Basin: either during the Priabonian (38-34 Ma ago) from western Bresse graben, and/or during the Rupelian (34-28 Ma ago) from northern Rhine Graben. The Rupelian seawater that yields a mean {sup 87}Sr/{sup 86}Sr signature significantly higher than those of the microstructural infillings seems not to be the appropriate source. Alternatively, Priabonian seawater yields a mean {sup 87}Sr/{sup 86}Sr ratio precisely matching that of the leachates from diffuse

  9. Hard rock excavation at the CSM/OCRD test site using crater theory and current United States controlled smooth wall blasting practices, June 1982

    International Nuclear Information System (INIS)

    Sperry, P.E.; Chitombo, G.P.; Hustrulid, W.A.

    1984-08-01

    This report is the fourth in a series describing experiments conducted by the Colorado School of Mines for the Office of Crystalline Repository Development (OCRD) to determine the extent of blast damage in rock surrounding an underground opening. The report describes the application of tunnel design procedures based upon crater theory and current United States controlled smooth wall blasting practices for the excavation of the CSM/OCRD test room in the Colorado School of Mines, Experimental Mine (Edgar Mine) in Idaho Springs, Colorado. Ten blast rounds were used to excavate the test room. The first seven rounds were designed with Swedish Techniques, and described in the third report in this series, and the design of rounds eight through ten used crater theory. Crater theory is described in this document along with its application to the CSM/OCRD Room excavation. Calculation for spacing, burden, number and type of holes, explosives placement, and overall powder factor are discussed. A series of single charge cratering test shots, designed to evaluate some of the input data for the blast designs, are discussed. The input data include: Strain Energy Factor E, a dimensionless factor which varies according to the explosive and rock type; Critical Depth, N, the charge depth at which the explosive begins to fracture rock at the free face; Optimum Depth Ratio Δ 0 , which is a ratio between Optimum Charge Depth, d 0 , and Critical Charge Depth, d/sub c/; and charge Weight, W. A non-linear least squared regression method to best fit the general bell-shape curve of the crater results is discussed. Both scaled weight and scaled volume criteria are reported in the analysis of results. 10 references, 17 figures, 16 tables

  10. A coupled mechanical-hydrological methodology for modeling flow in jointed rock masses using laboratory data for the joint flow model

    International Nuclear Information System (INIS)

    Voss, C.F.; Bastian, R.J.; Shotwell, L.R.

    1986-01-01

    Pacific Northwest Laboratory (PNL) currently supports the U.S. Department of Energy's Office of Civilian Radioactive Waste Management in developing and evaluating analytical methods for assessing the suitability of sites for geologic disposal of high-level radioactive waste. The research includes consideration of hydrological, geomechanical, geochemical, and waste package components and the evaluation of the degree of coupling that can occur between two or more of these components. The PNL effort and those of other research groups investing potential waste sites in the U.S. and abroad are producing a suite of computer codes to analyze the long-term performance of the proposed repository sites. This paper summarizes the ongoing research in rock mechanics at PNL involving flow through jointed rock. The objective of this research is to develop a methodology for modeling the coupled mechanical-hydrological process of flow through joints and then attempt to validate a ''simple'' model using small-scale laboratory test data as a basis for judging whether the approach has merit. This paper discusses the laboratory tests being conducted to develop a joint behavioral constitutive model for the numerical method under development and the modeling approach being considered

  11. White Rock

    Science.gov (United States)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even ha