Spherical aberration from trajectories in real and hard-edge solenoid fields
BISWAS B
2016-06-01
For analytical, real and hard-edge solenoidal axial magnetic fields, the low-energy electron trajectories are obtained using the third-order paraxial ray equation. Using the particle trajectories, it is shown that the spherical aberration in the hard-edge model is high and it increases monotonously with hard edginess, although the focal length converges, in agreement with a recentfield and spherical aberration model. The model paved the way for a hard-edge approximation that gives correct focal length and spherical aberration, which is verified here by the trajectory method. In essence, we show that exact hard-edge fields give infinite spherical aberrations.
Tsekov, R
2014-01-01
The finite size effect of electron and nucleus is accounted for in the model of atom. Due to their hard sphere repulsion the energy of the 1s orbital decreases and the corrections amount up to 8 % in Uranium. Several models for boundary conditions on the atomic nucleus surface are discussed as well.
Thin hard crest on the edge of ceramic acetabular liners accelerates wear in edge loading.
Sanders, Anthony P; Dudhiya, Parth J; Brannon, Rebecca M
2012-01-01
Ceramic acetabular liners may exhibit a small, sharp crest-an artifact of discontinuous machining steps--at the junction between the concave spherical surface and the interior edge. On 3 ceramic liners, this crest was found to form a 9° to 11° deviation from tangency. Edge loading wear tests were conducted directly on this crest and on a smoother region of the edge. The crest elicited 2 to 15 times greater volumetric wear on the femoral head. The propensity of the crest to rapidly (machining protocols might be a root cause of stripe wear and squeaking in ceramic acetabular bearings.
Operators associated with soft and hard spectral edges from unitary ensembles
Blower, Gordon
2008-01-01
Using Hankel operators and shift-invariant subspaces on Hilbert space, this paper develops the theory of the integrable operators associated with soft and hard edges of eigenvalue distributions of random matrices. Such Tracy-Widom operators are realized as controllability operators for linear systems, and are reproducing kernels for weighted Hardy spaces, known as Sonine spaces. Periodic solutions of Hill's equation give a new family of Tracy-Widom type operators. This paper identifies a pair of unitary groups that satisfy the von Neumann-Weyl anti-commutation relations and leave invariant the subspaces of L2 that are the ranges of projections given by the Tracy-Widom operators for the soft edge of the Gaussian unitary ensemble and hard edge of the Jacobi ensemble.
Adding one edge to planar graphs makes crossing number and 1-planarity hard
Cabello, Sergio
2012-01-01
A graph is near-planar if it can be obtained from a planar graph by adding an edge. We show the surprising fact that it is NP-hard to compute the crossing number of near-planar graphs. A graph is 1-planar if it has a drawing where every edge is crossed by at most one other edge. We show that it is NP-hard to decide whether a given near-planar graph is 1-planar. The main idea in both reductions is to consider the problem of simultaneously drawing two planar graphs inside a disk, with some of its vertices fixed at the boundary of the disk. This leads to the concept of anchored embedding, which is of independent interest. As an interesting consequence we obtain a new, geometric proof of NP-completeness of the crossing number problem, even when restricted to cubic graphs. This resolves a question of Hlin\\v{e}n\\'y.
George Marsh
2002-10-01
Some fighter pilots alive today owe their survival to tough, low-weight helmets whose qualities have been refined as a result of biomechanical modeling. Porter and his colleagues have modeled the human head as a mechanical arrangement of a heavy ball on a rod support, as a system of soft matter contained in a hard case, as an arrangement of meso-scale sub-systems, and as a combination of material systems built up from the nano-molecular and atomic scales. An extensive modeling hierarchy (Fig. 1 is held on nothing more esoteric than a networked workstation and server architecture. Nevertheless, thanks to a process of focused simplification at each hierarchical level, it is able to predict the mechanical behavior of the human head and its constituents in reacting to impacts with considerable accuracy.
Raman Model Predicting Hardness of Covalent Crystals
Zhou, Xiang-Feng; Qian, Quang-Rui; Sun, Jian; Tian, Yongjun; Wang, Hui-Tian
2009-01-01
Based on the fact that both hardness and vibrational Raman spectrum depend on the intrinsic property of chemical bonds, we propose a new theoretical model for predicting hardness of a covalent crystal. The quantitative relationship between hardness and vibrational Raman frequencies deduced from the typical zincblende covalent crystals is validated to be also applicable for the complex multicomponent crystals. This model enables us to nondestructively and indirectly characterize the hardness o...
Axial distribution of Gaussian beam limited by a hard-edged aperture
Shuyun Teng(滕树云); Liren Liu(刘立人); Zhu Luan(栾竹); Lingyu Wan(万玲玉)
2004-01-01
In this letter, the axial distribution of Gaussian beam limited by a hard-edged aperture is studied. We theoretically analyze the axial diffraction of Gaussian beam limited by a hard-edged aperture, and give the simpler formulas of the axial diffraction intensities of Gaussian beam in Fresnel diffraction field and Fraunhofer diffraction field. The corresponding numerical calculation of axial diffraction intensity distribution of Gaussian beam with different wave waist is provided and the evolution of the diffraction distribution with the wave waist of Gaussian beam is explained. As the especial cases of the truncated Gaussian beam,the Gaussian beam in free space and the parallel light limited by the aperture are discussed too, and the system parameters of the truncated Gaussian beam which can cause it to equal to these cases are given.The theoretical results conform to the numerical analysis.
Operators associated with soft and hard spectral edges from unitary ensembles.
Blower, Gordon
2008-01-01
Using Hankel operators and shift-invariant subspaces on Hilbert space, this paper develops the theory of integrable operators associated with soft and hard edges of eigenvalues distributions of random matrices. Such Tracy--Widom operators are realized as controllability operators for linear systems, and are reporducing kernels for weighted Hardy spaces, known as Sonine spaces. Periodic solutions of Hill's equation give a new family of Tracy--Widom type operators. This paper identifies a pair ...
Edge exchangeable models for network data
Crane, Harry
2016-01-01
Exchangeable models for vertex labeled graphs cannot replicate the large sample behaviors of sparsity and power law degree distributions observed in many network datasets. Out of this mathematical impossibility emerges the question of how network data can be modeled in a way that reflects known empirical behaviors and respects basic statistical principles. We address this question by observing that edges, not vertices, act as the statistical units in most network datasets, making a theory of edge labeled networks more natural for most applications. Within this context we introduce the new invariance principle of {\\em edge exchangeability}, which unlike its vertex exchangeable counterpart can produce networks with sparse and/or power law structure. We characterize the class of all edge exchangeable network models and identify a particular two parameter family of models with suitable theoretical properties for statistical inference. We discuss issues of estimation from edge exchangeable models and compare our a...
Wang, Liguo; Gao, Ming; Li, Yaqing; Gong, Lei
2017-07-01
The intensity fluctuation of the reflected field from a diffuse circular plate with a hard edge in turbulence is investigated by combining the Rytov theory and the Extended Huygens-Fresnel principle. The normalized covariance and variance of the reflected intensity are formulated and calculated. The enhancement effect on the normalized variance is discussed around the backscattering direction, which disappears rapidly as the receiving point moves away from the transmitting center. The ;averaging effect; of the target aperture is also discussed, and the results show that the normalized variance and the backscattering enhancement effect decreases with increasing target size.
The Chiral Dipolar Hard Sphere Model.
Mazars, Martial
2009-01-01
Abstract A simple molecular model of chiral molecules is presented in this paper : the chiral dipolar hard sphere model. The discriminatory interaction between enantiomers is represented by electrostatic (or magnetic) dipoles-dipoles interactions : short ranged steric repulsion are represented by hard sphere potential and, in each molecule, two point dipoles are located inside the sphere. The model is described in detail and some of its elementary properties are given ; in particul...
Colloidal membranes of hard rods: unified theory of free edge structure and twist walls.
Kaplan, C Nadir; Meyer, Robert B
2014-07-14
Monodisperse suspensions of rod like chiral fd viruses are condensed into a rod-length thick colloidal monolayers of aligned rods by depletion forces. Twist deformations of the molecules are expelled to the monolayer edge as in a chiral smectic A liquid crystal, and a cholesteric band forms at the edge. Coalescence of two such isolated membranes results in a twist wall sandwiched between two regions of aligned rods, dubbed π-walls. By modeling the membrane as a binary fluid of coexisting cholesteric and chiral smectic A liquid-crystalline regions, we develop a unified theory of the π-walls and the monolayer edge. The mean-field analysis of our model yields the molecular tilt profiles, the local thickness change, and the crossover from smectic to cholesteric behavior at the monolayer edge and across the π-wall. Furthermore, we calculate the line tension associated with the formation of these interfaces. Our model offers insights regarding the stability and the detailed structure of the π-wall and the monolayer edge.
Asymptotic forms for hard and soft edge general β conditional gap probabilities
Forrester, Peter J.; Witte, Nicholas S.
2012-06-01
An infinite log-gas formalism, due to Dyson, and independently Fogler and Shklovskii, is applied to the computation of conditioned gap probabilities at the hard and soft edges of random matrix β-ensembles. The conditioning is that there are n eigenvalues in the gap, with n≪|t|, t denoting the end point of the gap. It is found that the entropy term in the formalism must be replaced by a term involving the potential drop to obtain results consist with known asymptotic expansions in the case n=0. With this modification made for general n, the derived expansions — which are for the logarithm of the gap probabilities — are conjectured to be correct up to and including terms O(log|t|). They are shown to satisfy various consistency conditions, including an asymptotic duality formula relating β to 4/β.
Asymptotic forms for hard and soft edge general {beta} conditional gap probabilities
Forrester, Peter J., E-mail: p.forrester@ms.unimelb.edu.au [Department of Mathematics and Statistics, University of Melbourne, Victoria 3010 (Australia); Witte, Nicholas S., E-mail: nsw@ms.unimelb.edu.au [Department of Mathematics and Statistics, University of Melbourne, Victoria 3010 (Australia)
2012-06-21
An infinite log-gas formalism, due to Dyson, and independently Fogler and Shklovskii, is applied to the computation of conditioned gap probabilities at the hard and soft edges of random matrix {beta}-ensembles. The conditioning is that there are n eigenvalues in the gap, with n Much-Less-Than |t|, t denoting the end point of the gap. It is found that the entropy term in the formalism must be replaced by a term involving the potential drop to obtain results consist with known asymptotic expansions in the case n=0. With this modification made for general n, the derived expansions - which are for the logarithm of the gap probabilities - are conjectured to be correct up to and including terms O(log|t|). They are shown to satisfy various consistency conditions, including an asymptotic duality formula relating {beta} to 4/{beta}.
Asymptotic forms for hard and soft edge general $\\beta$ conditional gap probabilities
Forrester, Peter J
2011-01-01
An infinite log-gas formalism, due to Dyson, and independently Fogler and Shklovskii, is applied to the computation of conditioned gap probabilities at the hard and soft edges of random matrix $\\beta$-ensembles. The conditioning is that there are $n$ eigenvalues in the gap, with $n \\ll |t|$, $t$ denoting the end point of the gap. It is found that the entropy term in the formalism must be replaced by a term involving the potential drop to obtain results consistent with known asymptotic expansions in the case $n=0$. With this modification made for general $n$, the derived expansions - which are for the logarithm of the gap probabilities - are conjectured to be correct up to and including terms O$(\\log|t|)$. They are shown to satisfy various consistency conditions, including an asymptotic duality formula relating $\\beta$ to $4/\\beta$.
Improved Trailing Edge Noise Model
Bertagnolio, Franck
2012-01-01
The modeling of the surface pressure spectrum under a turbulent boundary layer is investigated in the presence of an adverse pressure gradient along the flow direction. It is shown that discrepancies between measurements and results from a well-known model increase as the pressure gradient...... increases. This model is modified by introducing anisotropy in the definition of the vertical velocity component spectrum across the boundary layer. The degree of anisotropy is directly related to the strength of the pressure gradient. It is shown that by appropriately normalizing the pressure gradient...... and by tuning the anisotropy factor, experimental results can be closely reproduced by the modified model. In this section, the original TNO-Blake model is modified in order to account for the effects of a pressure gradient through turbulence anisotropy. The model results are compared with measurements...
Dissecting new physics models through kinematic edges
Iyer, Abhishek M.; Maitra, Ushoshi
2017-02-01
Kinematic edges in the invariant mass distributions of different final state particles are typically a signal of new physics. In this work we propose a scenario wherein these edges could be utilized in discriminating between different classes of models. To this effect, we consider the resonant production of a heavy Higgs like resonance (H1) as a case study. Such states are a characteristic feature of many new physics scenarios beyond the standard model (SM). In the event of a discovery, it is essential to identify the true nature of the underlying theory. In this work we propose a channel, H1→t2t , where t2 is a vectorlike gauge singlet top-partner that decays into W b , Z t , h t . Invariant mass distributions constructed out of these final states are characterized by the presence of kinematic edges, which are unique to the topology under consideration. Further, since all the final state particles are SM states, the position in the edges of these invariant mass distributions can be used to exclusively determine the masses of the resonances. Observation of these features are meant to serve as a trigger, thereby mandating a more detailed analysis in a particular direction of parameter space. The absence of these edge like features, in the specific invariant mass distributions considered here, in minimal versions of supersymmetric models (MSSM) also serves as a harbinger of such non-MSSM-like scenarios.
Community Detection Using Multilayer Edge Mixture Model
Zhang, Han; Lai, Jian-Huang; Yu, Philip S
2016-01-01
A wide range of complex systems can be modeled as networks with corresponding constraints on the edges and nodes, which have been extensively studied in recent years. Nowadays, with the progress of information technology, systems that contain the information collected from multiple perspectives have been generated. The conventional models designed for single perspective networks fail to depict the diverse topological properties of such systems, so multilayer network models aiming at describing the structure of these networks emerge. As a major concern in network science, decomposing the networks into communities, which usually refers to closely interconnected node groups, extracts valuable information about the structure and interactions of the network. Unlike the contention of dozens of models and methods in conventional single-layer networks, methods aiming at discovering the communities in the multilayer networks are still limited. In order to help explore the community structure in multilayer networks, we...
Outlier Edge Detection Using Random Graph Generation Models and Applications
Zhang, Honglei; Gabbouj, Moncef
2016-01-01
Outliers are samples that are generated by different mechanisms from other normal data samples. Graphs, in particular social network graphs, may contain nodes and edges that are made by scammers, malicious programs or mistakenly by normal users. Detecting outlier nodes and edges is important for data mining and graph analytics. However, previous research in the field has merely focused on detecting outlier nodes. In this article, we study the properties of edges and propose outlier edge detection algorithms using two random graph generation models. We found that the edge-ego-network, which can be defined as the induced graph that contains two end nodes of an edge, their neighboring nodes and the edges that link these nodes, contains critical information to detect outlier edges. We evaluated the proposed algorithms by injecting outlier edges into some real-world graph data. Experiment results show that the proposed algorithms can effectively detect outlier edges. In particular, the algorithm based on the Prefe...
Fractional charge separation in the hard-core Bose Hubbard Model on the Kagome Lattice
Zhang, Xue Feng; Eggert, Sebastian
2013-03-01
We consider the hard core Bose Hubbard Model on a Kagome lattice with fixed (open) boundary conditions on two edges. We find that the fixed boundary conditions lift the degeneracy and freeze the system at 1/3 and 2/3 filling at small hopping. At larger hopping strengths, fractional charges spontaneously separate and are free to move to the edges of the system, which leads to a novel compressible phase with solid order. The compressibility is due to excitations on the edge which display a chrial symmetry breaking that is reminiscent of the quantum Hall effect. Large scale Monte Carlo simulations confirm the analytical calculations.
Exact sampling hardness of Ising spin models
Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.
2017-09-01
We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.
A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids
Fu-Zhi Dai; Yanchun Zhou
2016-01-01
Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, wh...
Wei Sun
2015-01-01
Full Text Available Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the expression of equivalent strain of composite plate was derived. Then, the analytical model of hard-coating composite plate was created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphson method to solve the vibration response and resonant frequencies of composite plate and a specific calculation procedure was also proposed. Finally, a cantilever plate coated with MgO + Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies of composite plate were calculated using the proposed method. The calculation results were compared with the experiment and general linear calculation, and the correctness of the created model was verified. The study shows the proposed method can still maintain an acceptable precision when the material nonlinearity of hard coating is stronger.
A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids
Dai, Fu-Zhi; Zhou, Yanchun
2016-01-01
Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165
A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids
Dai, Fu-Zhi; Zhou, Yanchun
2016-09-01
Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials.
A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids.
Dai, Fu-Zhi; Zhou, Yanchun
2016-09-08
Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials.
Kinetic effects in edge plasma: kinetic modeling for edge plasma and detached divertor
Takizuka, T.
2017-03-01
Detached divertor is considered a solution for the heat control in magnetic-confinement fusion reactors. Numerical simulations using the comprehensive divertor codes based on the plasma fluid modeling are indispensable for the design of the detached divertor in future reactors. Since the agreement in the results between detached-divertor experiments and simulations has been rather fair but not satisfactory, further improvement of the modeling is required. The kinetic effect is one of key issues for improving the modeling. Complete kinetic behaviors are able to be simulated by the kinetic modeling. In this paper at first, major kinetic effects in edge plasma and detached divertor are listed. One of the most powerful kinetic models, particle-in-cell (PIC) model, is described in detail. Several results of PIC simulations of edge-plasma kinetic natures are presented. Future works on PIC modeling and simulation for the deeper understanding of edge plasma and detached divertor are discussed.
Retinal image analysis based on mixture models to detect hard exudates.
Sánchez, Clara I; García, María; Mayo, Agustín; López, María I; Hornero, Roberto
2009-08-01
Diabetic Retinopathy is one of the leading causes of blindness in developed countries. Hard exudates have been found to be one of the most prevalent earliest clinical signs of retinopathy. Thus, automatic detection of hard exudates from retinal images is clinically significant. In this study, an automatic method to detect hard exudates is proposed. The algorithm is based on mixture models to dynamically threshold the images in order to separate exudates from background. A postprocessing technique, based on edge detection, is applied to distinguish hard exudates from cotton wool spots and other artefacts. We prospectively assessed the algorithm performance using a database of 80 retinal images with variable colour, brightness, and quality. The algorithm obtained a sensitivity of 90.2% and a positive predictive value of 96.8% using a lesion-based criterion. The image-based classification accuracy is also evaluated obtaining a sensitivity of 100% and a specificity of 90%.
Trailing edge noise model applied to wind turbine airfoils
Bertagnolio, Franck
The aim of this work is firstly to provide a quick introduction to the theory of noise generation that are relevant to wind turbine technology with focus on trailing edge noise. Secondly, the socalled TNO trailing edge noise model developed by Parchen [1] is described in more details. The model...
Forrester, Peter J.; Liu, Dang-Zheng
2016-05-01
The singular values squared of the random matrix product {Y = {Gr G_{r-1}} ldots G1 (G0 + A)}, where each {Gj} is a rectangular standard complex Gaussian matrix while A is non-random, are shown to be a determinantal point process with the correlation kernel given by a double contour integral. When all but finitely many eigenvalues of A* A are equal to bN, the kernel is shown to admit a well-defined hard edge scaling, in which case a critical value is established and a phase transition phenomenon is observed. More specifically, the limiting kernel in the subcritical regime of {0 1} with two distinct scaling rates. Similar results also hold true for the random matrix product {Tr T_{r-1} ldots T1 (G0 + A)}, with each {Tj} being a truncated unitary matrix.
EDGE REMOVAL OF 3D POLYGONAL MODEL USING MAYA API
SAMEER ARORA
2010-09-01
Full Text Available In various applications of computer graphics, 3D polygonal modeling is used, which consists millions of triangular polygon. In this polygon attributes – vertices, edges and faces’ details are to be stored. In order to control the processing time, storing space, and transfer speed, it is often required to reduce the information ofthese polygonal 3D models. In this paper an effort is made to reduce the number of edges. There are various methods to reduce faces and edges of these 3D models. A C++ dynamic link library as Maya Plugin has been created to remove number of edges of 3D triangular polygon model using the Quadric Error Metrics (QEM in MAYA v2010 x64 API. QEM allows fast and accurate geometric simplification of 3D models.
A dynamic stall model for airfoils with deformable trailing edges
Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Dan Christian
2007-01-01
on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa [4], which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed......The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. [7]. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments...
Liu, Meijun; Shi, Dongbo; Li, Jiang
2017-01-01
Humanities and Social Sciences (HSS) increasingly absorb knowledge from Hard Sciences, i.e., Science, Technology, Agriculture and Medicine (STAM), as testified by a growing number of citations. However, whether citing more Hard Sciences brings more citations to HSS remains to be investigated. Based on China's HSS articles indexed by the Web of Science during 1998-2014, this paper estimated two-way fixed effects negative binomial models, with journal effects and year effects. Findings include: (1) An inverse U-shaped curve was observed between the percentage of STAM references to the HSS articles and the number of citations they received; (2) STAM contributed increasing knowledge to China's HSS, while Science and Technology knowledge contributed more citations to HSS articles. It is recommended that research policy should be adjusted to encourage HSS researchers to adequately integrate STAM knowledge when conducting interdisciplinary research, as over-cited STAM knowledge may jeopardize the readability of HSS articles.
A generalized hard-sphere model for Monte Carlo simulation
Hassan, H. A.; Hash, David B.
1993-01-01
A new molecular model, called the generalized hard-sphere, or GHS model, is introduced. This model contains, as a special case, the variable hard-sphere model of Bird (1981) and is capable of reproducing all of the analytic viscosity coefficients available in the literature that are derived for a variety of interaction potentials incorporating attraction and repulsion. In addition, a new procedure for determining interaction potentials in a gas mixture is outlined. Expressions needed for implementing the new model in the direct simulation Monte Carlo methods are derived. This development makes it possible to employ interaction models that have the same level of complexity as used in Navier-Stokes calculations.
Trailing Edge Noise Model Validation and Application to Airfoil Optimization
Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian
2010-01-01
The aim of this article is twofold. First, an existing trailing edge noise model is validated by comparing with airfoil surface pressure fluctuations and far field sound pressure levels measured in three different experiments. The agreement is satisfactory in one case but poor in two other cases...... across the boundary layer near the trailing edge and to a lesser extent by a smaller boundary layer displacement thickness. ©2010 American Society of Mechanical Engineers...
Simulation technique for hard-disk models in two dimensions
Fraser, Diane P.; Zuckermann, Martin J.; Mouritsen, Ole G.
1990-01-01
A method is presented for studying hard-disk systems by Monte Carlo computer-simulation techniques within the NpT ensemble. The method is based on the Voronoi tesselation, which is dynamically maintained during the simulation. By an analysis of the Voronoi statistics, a quantity is identified...... that is extremely sensitive to structural changes in the system. This quantity, which is derived from the edge-length distribution function of the Voronoi polygons, displays a dramatic change at the solid-liquid transition. This is found to be more useful for locating the transition than either the defect density...
Edge effect modeling and experiments on active lap processing.
Liu, Haitao; Wu, Fan; Zeng, Zhige; Fan, Bin; Wan, Yongjian
2014-05-05
Edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, especially for large polishing tools. Computer controlled active lap (CCAL) uses a large size pad (e.g., 1/3 to 1/5 workpiece diameters) to grind and polish the primary mirror. Edge effect also exists in the CCAL process in our previous fabrication. In this paper the material removal rules when edge effects happen (i.e. edge tool influence functions (TIFs)) are obtained through experiments, which are carried out on a Φ1090-mm circular flat mirror with a 375-mm-diameter lap. Two methods are proposed to model the edge TIFs for CCAL. One is adopting the pressure distribution which is calculated based on the finite element analysis method. The other is building up a parametric equivalent pressure model to fit the removed material curve directly. Experimental results show that these two methods both effectively model the edge TIF of CCAL.
A dynamic stall model for airfoils with deformable trailing edges
Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Christian;
2009-01-01
, lead-lag, pitch, trailing-edge flapping. In the linear region, the model reduces to the inviscid model, which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed model can be considered a crossover between the work of Gaunaa...... for the attached flow region and Hansen et al. The model is compared qualitatively to wind tunnel measurements of a Riso/ B1-18 blade section equipped with deformable trailing-edge flap devices in the form of piezoelectric devices. Copyright © 2009 John Wiley & Sons, Ltd....
Maria Carolina Soares Pereira
2011-01-01
Full Text Available Moisture sorption isotherms of Dutch type semi-hard cheese edge in the temperature range of 10–25 ºC and water activity (Aw from 0.11 to 0.98 were determined using manometric method. The sorption curves had a sigmoid shape. The equilibrium moisture content (EMC of cheese samples increased with an increase in Aw at a constant temperature both for water adsorption and desorption. An increase in temperature caused an increase in Aw for the same moisture content (MC and, if Aw was kept constant, an increase in temperature caused a decrease in the amount of absorbed water. Critical values of equilibrium moisture content, corresponding to the Aw = 0.6, were between 11 % MC (w.b. and 17 % MC (w.b. both for moisture adsorption and desorption. Values of sorption heat were calculated from moisture sorption isotherms by applying the Clausius-Clapeyron equation. Values of the heat of desorption are higher than those of adsorption and the difference increases with the MC decrease. Heat of sorption decreased from 48.5 kJ/mol (~5.5 % MC w.b. to the values approaching the heat of vaporization of pure water, free MC. The critical value for free water evaporation is about w = 27 % (w.b. for the range of temperature 10–25 ºC.
Improvement of airfoil trailing edge bluntness noise model
Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær;
2016-01-01
, Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989). It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed...... that this was caused by a lack in the model to predict accurately noise from blunt trailing edges. For more physical understanding of bluntness noise generation, in this study, we also use an advanced in-house developed high-order computational aero-acoustic technique to investigate the details associated...... with trailing edge bluntness noise. The results from the numerical model form the basis for an improved Brooks, Pope, and Marcolini trailing edge bluntness noise model....
Model for magnetostrictive performance in soft/hard coupled bilayers
Jianjun, Li, E-mail: ljj8081@gmail.com [National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080 (China); Laboratoire de Magnétisme de Bretagne, Université de Bretagne Occidentale, 29238 Brest Cedex 3 (France); Beibei, Duan; Minglun, Li [National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080 (China)
2015-11-01
A model is set up to investigate the magnetostrictive performance and spin response in soft/hard magnetostrictive coupled bilayers. Direct coupling between soft ferromagnet and hard TbFe{sub 2} at the interface is assumed. The magnetostriction results from the rotation of ferromagnetic vector and TbFe{sub 2} vectors from the easy axis driven by applied magnetic field. Dependence of magnetostriction on TbFe{sub 2} layer thickness and interfacial exchange interaction is studied. The simulated results reveal the compromise between interfacial exchange interaction and anisotropy of TbFe{sub 2} hard layer. - Highlights: • A model for magnetostrictive performance in soft/hard coupled bilayers. • Simulated magnetostriction loop and corresponding spin response. • Competition and compromise between interfacial interaction and TbFe{sub 2} anisotropy. • Dependence of saturated magnetostriction on different parameters.
Improvement of airfoil trailing edge bluntness noise model
Wei Jun Zhu
2016-02-01
Full Text Available In this article, airfoil trailing edge bluntness noise is investigated using both computational aero-acoustic and semi-empirical approach. For engineering purposes, one of the most commonly used prediction tools for trailing edge noise are based on semi-empirical approaches, for example, the Brooks, Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989. It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed that this was caused by a lack in the model to predict accurately noise from blunt trailing edges. For more physical understanding of bluntness noise generation, in this study, we also use an advanced in-house developed high-order computational aero-acoustic technique to investigate the details associated with trailing edge bluntness noise. The results from the numerical model form the basis for an improved Brooks, Pope, and Marcolini trailing edge bluntness noise model.
Improvement of TNO type trailing edge noise models
Fischer, Andreas; Bertagnolio, Franck; Aagaard Madsen, Helge
2016-01-01
The paper describes an improvement of the so-called TNO model to predict the noise emission from aerofoil sections due to the interaction of the boundary layer turbulence with the trailing edge. The surface pressure field close to the trailing edge acts as source of sound in the TNO model....... It is computed by solving a Poisson equation which includes flow turbulence cross correlation terms. Previously published TNO type models used the assumption of Blake to simplify the Poisson equation. This paper shows that the simplification should not be used. We present a new model which fully models...... the turbulence cross correlation terms. The predictions of the new model are in better agreement with measurements of the surface pressure and far field sound spectra. The computational cost of the new model is only slightly higher than the one of the TNO model, because we derived an analytical solution...
Statistical Modeling for Radiation Hardness Assurance
Ladbury, Raymond L.
2014-01-01
We cover the models and statistics associated with single event effects (and total ionizing dose), why we need them, and how to use them: What models are used, what errors exist in real test data, and what the model allows us to say about the DUT will be discussed. In addition, how to use other sources of data such as historical, heritage, and similar part and how to apply experience, physics, and expert opinion to the analysis will be covered. Also included will be concepts of Bayesian statistics, data fitting, and bounding rates.
Edge detection based on Hodgkin-Huxley neuron model simulation.
Yedjour, Hayat; Meftah, Boudjelal; Lézoray, Olivier; Benyettou, Abdelkader
2017-04-03
In this paper, we propose a spiking neural network model for edge detection in images. The proposed model is biologically inspired by the mechanisms employed by natural vision systems, more specifically by the biologically fulfilled function of simple cells of the human primary visual cortex that are selective for orientation. Several aspects are studied in this model according to three characteristics: feedforward spiking neural structure; conductance-based model of the Hodgkin-Huxley neuron and Gabor receptive fields structure. A visualized map is generated using the firing rate of neurons representing the orientation map of the visual cortex area. We have simulated the proposed model on different images. Successful computer simulation results are obtained. For comparison, we have chosen five methods for edge detection. We finally evaluate and compare the performances of our model toward contour detection using a public dataset of natural images with associated contour ground truths. Experimental results show the ability and high performance of the proposed network model.
Learning sparse causal models is not NP-hard
Claassen, T.; Mooij, J.M.; Heskes, T.; Nicholson, A.; Smyth, P.
2013-01-01
This paper shows that causal model discovery is not an NP-hard problem, in the sense that for sparse graphs bounded by node degree k the sound and complete causal model can be obtained in worst case order N2(k+2) independence tests, even when latent variables and selection bias may be present. We pr
Gravitational collapse and thermalization in the hard wall model
Craps, Ben; Rosen, Christopher; Taliotis, Anastasios; Vanhoof, Joris; Zhang, Hongbao
2014-01-01
We study a simple example of holographic thermalization in a confining field theory: the homogeneous injection of energy in the hard wall model. Working in an amplitude expansion, we find black brane formation for sufficiently fast energy injection and a scattering wave solution for sufficiently slow injection. We comment on our expectations for more sophisticated holographic QCD models.
Modeling hard clinical end-point data in economic analyses.
Kansal, Anuraag R; Zheng, Ying; Palencia, Roberto; Ruffolo, Antonio; Hass, Bastian; Sorensen, Sonja V
2013-11-01
The availability of hard clinical end-point data, such as that on cardiovascular (CV) events among patients with type 2 diabetes mellitus, is increasing, and as a result there is growing interest in using hard end-point data of this type in economic analyses. This study investigated published approaches for modeling hard end-points from clinical trials and evaluated their applicability in health economic models with different disease features. A review of cost-effectiveness models of interventions in clinically significant therapeutic areas (CV diseases, cancer, and chronic lower respiratory diseases) was conducted in PubMed and Embase using a defined search strategy. Only studies integrating hard end-point data from randomized clinical trials were considered. For each study included, clinical input characteristics and modeling approach were summarized and evaluated. A total of 33 articles (23 CV, eight cancer, two respiratory) were accepted for detailed analysis. Decision trees, Markov models, discrete event simulations, and hybrids were used. Event rates were incorporated either as constant rates, time-dependent risks, or risk equations based on patient characteristics. Risks dependent on time and/or patient characteristics were used where major event rates were >1%/year in models with fewer health states (rates. The detailed modeling information and terminology varied, sometimes requiring interpretation. Key considerations for cost-effectiveness models incorporating hard end-point data include the frequency and characteristics of the relevant clinical events and how the trial data is reported. When event risk is low, simplification of both the model structure and event rate modeling is recommended. When event risk is common, such as in high risk populations, more detailed modeling approaches, including individual simulations or explicitly time-dependent event rates, are more appropriate to accurately reflect the trial data.
Hydration entropy change from the hard sphere model.
Graziano, Giuseppe; Lee, Byungkook
2002-12-10
The gas to liquid transfer entropy change for a pure non-polar liquid can be calculated quite accurately using a hard sphere model that obeys the Carnahan-Starling equation of state. The same procedure fails to produce a reasonable value for hydrogen bonding liquids such as water, methanol and ethanol. However, the size of the molecules increases when the hydrogen bonds are turned off to produce the hard sphere system and the volume packing density rises. We show here that the hard sphere system that has this increased packing density reproduces the experimental transfer entropy values rather well. The gas to water transfer entropy values for small non-polar hydrocarbons is also not reproduced by a hard sphere model, whether one uses the normal (2.8 A diameter) or the increased (3.2 A) size for water. At least part of the reason that the hard sphere model with 2.8 A size water produces too small entropy change is that the size of water is too small for a system without hydrogen bonds. The reason that the 3.2 A model also produces too small entropy values is that this is an overly crowded system and that the free volume introduced in the system by the addition of a solute molecule produces too much of a relief to this crowding. A hard sphere model, in which the free volume increase is limited by requiring that the average surface-to-surface distance between the solute and water molecules is the same as that between the increased-size water molecules, does approximately reproduce the experimental hydration entropy values.
An edge element approach for dynamic micromagnetic modeling
Bottauscio, O.; Chiampi, M.; Manzin, A.
2008-04-01
This paper proposes a three-dimensional dynamic micromagnetic model, based on the Galerkin weak formulation, reconstructing magnetization by finite element edge vector shape functions. The demagnetizing filed is computed using a hybrid finite element boundary element method. The procedure is compared to analytical formulas and simulations performed with the NIST/OOMMF code, focusing on damping and precessional switching in magnetic thin films.
Extended hard-sphere model and collisions of cohesive particles.
Kosinski, Pawel; Hoffmann, Alex C
2011-09-01
In two earlier papers the present authors modified a standard hard-sphere particle-wall and particle-particle collision model to account for the presence of adhesive or cohesive interaction between the colliding particles: the problem is of importance for modeling particle-fluid flow using the Lagrangian approach. This technique, which involves a direct numerical simulation of such flows, is gaining increasing popularity for simulating, e.g., dust transport, flows of nanofluids and grains in planetary rings. The main objective of the previous papers was to formally extend the impulse-based hard-sphere model, while suggestions for quantifications of the adhesive or cohesive interaction were made. This present paper gives an improved quantification of the adhesive and cohesive interactions for use in the extended hard-sphere model for cases where the surfaces of the colliding bodies are "dry," e.g., there is no liquid-bridge formation between the colliding bodies. This quantification is based on the Johnson-Kendall-Roberts (JKR) analysis of collision dynamics but includes, in addition, dissipative forces using a soft-sphere modeling technique. In this way the cohesive impulse, required for the hard-sphere model, is calculated together with other parameters, namely the collision duration and the restitution coefficient. Finally a dimensional analysis technique is applied to fit an analytical expression to the results for the cohesive impulse that can be used in the extended hard-sphere model. At the end of the paper we show some simulation results in order to illustrate the model.
Statistical Modeling for Radiation Hardness Assurance: Toward Bigger Data
Ladbury, R.; Campola, M. J.
2015-01-01
New approaches to statistical modeling in radiation hardness assurance are discussed. These approaches yield quantitative bounds on flight-part radiation performance even in the absence of conventional data sources. This allows the analyst to bound radiation risk at all stages and for all decisions in the RHA process. It also allows optimization of RHA procedures for the project's risk tolerance.
Modeling the Retreat Processes of Salt Marsh Edge
Bendoni, M.; Cappietti, L.; Francalanci, S.; Rinaldi, M.; Solari, L.
2012-12-01
Edge erosion of salt marshes due to surface waves and tide forcing is likely the chief mechanism that models marsh boundaries and by which salt marshes in worldwide coastal areas are being lost. In order to address this problem, experimental observations in a laboratory flume and field measurements in the lagoon of Venice were conducted to understand the main processes controlling marsh edge retreat, with a focus on the erosion mechanisms caused by the action of wind and tidal waves. A physical model reproducing a salt marsh bank was built inside a long wave current flume where random surface waves were generated according to a given wave spectrum. The physical model was constructed with the original soil and plants taken in a marsh of the lagoon of Venice, while the wave climate was reproduced according to field measurements. The experiments were conducted in the case of both unvegetated and vegetated bank: a first set of experiments was carried out considering only tidal wave; in the second, bank models experienced the effect of wind waves superimposed to the tide. The following data were collected during the experiments: wave climate interacting with the bank, flow velocity measurements in the eroded quasi-equilibrium configuration, pressure distribution along bank edge and internal pressure fluctuation and damping due to wave impact. Bank geometry profile and bottom topography at different times have also been collected to characterize the erosion rate with time and the evolution of bank retreat. Subsequent to laboratory activity wave climate was measured close to a marsh edge in the Lagoon of Venice with the aim at identifying wave forcing on the bank surface during a moderate wind event and comparing results with the wave stress experienced by bank models in laboratory tests. Several pressure transducers installed close to the bed were used to collect wave height and wave direction with respect to the edge of the marsh. Laboratory data and field measurement
Frustrated spin model as a hard-sphere liquid.
Mostovoy, M V; Khomskii, D I; Knoester, J; Prokof'ev, N V
2003-04-11
We show that one-dimensional topological objects (kinks) are natural degrees of freedom for an antiferromagnetic Ising model on a triangular lattice. Its ground states and the coexistence of spin ordering with an extensive zero-temperature entropy can easily be understood in terms of kinks forming a hard-sphere liquid. Using this picture we explain effects of quantum spin dynamics on that frustrated model, which we also study numerically.
EDgE multi-model hydro-meteorological seasonal hindcast experiments over Europe
Samaniego, Luis; Thober, Stephan; Kumar, Rohini; Rakovec, Oldrich; Wood, Eric; Sheffield, Justin; Pan, Ming; Wanders, Niko; Prudhomme, Christel
2017-04-01
Extreme hydrometeorological events (e.g., floods, droughts and heat waves) caused serious damage to society and infrastructures over Europe during the past decades. Developing a seamless and skillful operational seasonal forecasting system of these extreme events is therefore a key tool for short-term decision making at local and regional scales. The EDgE project funded by the Copernicus programme (C3S) provides an unique opportunity to investigate the skill of a newly created large multi-model hydro-meteorological ensemble for predicting extreme events over the Pan-EU domain at a higher resolution 5×5 km2. Two state-of-the-art seasonal prediction systems were chosen for this project. Two models from the North American MultiModel ensemble (NMME) with 22 realizations, and two models provided by the ECMWF with 30 realizations. All models provide daily forcings (P, Ta, Tmin, Tmax) of the the Pan-EU at 1°. Downscaling has been carried out with the MTCLIM algorithm (Bohn et al. 2013) and external drift Kriging using elevation as drift to induce orographic effects. In this project, four high-resolution seamless hydrologic simulations with the mHM (www.ufz.de/mhm), Noah-MP, VIC and PCR-GLOBWB have been completed for the common hindcast period of 1993-2012 resulting in an ensemble size of 208 realizations. Key indicators are focussing on six terrestrial Essential Climate Variables (tECVs): river runoff, soil moisture, groundwater recharge, precipitation, potential evapotranspiration, and snow water equivalent. Impact Indicators have been co-designed with stakeholders in Norway (hydro-power), UK (water supply), and Spain (river basin authority) to provide an improved information for decision making. The Indicators encompass diverse information such as the occurrence of high and low streamflow percentiles (floods, and hydrological drought) and lower percentiles of top soil moisture (agricultural drought) among others. Preliminary results evaluated at study sites in Norway
Portal to non-MSSM models using kinematic edges
Iyer, Abhishek M
2016-01-01
A heavy Higgs like resonance ($H_1$) is a characteristic feature of many new physics scenarios beyond the Standard Model (SM). In the event of a discovery it is essential to identify the true nature of underlying theory. In this work we propose a channel, $H_1\\rightarrow t_2t$, where $t_2$ is a vector-like gauge singlet top-partner that decays into $Wb, Zt,ht$. We construct different invariant mass distributions which are characterized by the presence of kinematic edges, unique to the topology under consideration. Using these kinematic edges, the masses of the heavy resonances can be extracted upto a reasonable accuracy. Observation of these features are meant to serve as a trigger, thereby mandating a more detailed analysis in a particular direction of parameter space. The absence of these vector-like states in minimal versions of supersymmetric models (MSSM) also serves as a harbinger of such non MSSM-like scenarios.
Improved model for mixtures of polymers and hard spheres
D'Adamo, Giuseppe; Pelissetto, Andrea
2016-12-01
Extensive Monte Carlo simulations are used to investigate how model systems of mixtures of polymers and hard spheres approach the scaling limit. We represent polymers as lattice random walks of length L with an energy penalty w for each intersection (Domb-Joyce model), interacting with hard spheres of radius R c via a hard-core pair potential of range {{R}\\text{mon}}+{{R}c} , where R mon is identified as the monomer radius. We show that the mixed polymer-colloid interaction gives rise to new confluent corrections. The leading ones scale as {{L}-ν} , where ν ≈ 0.588 is the usual Flory exponent. Finally, we determine optimal values of the model parameters w and R mon that guarantee the absence of the two leading confluent corrections. This improved model shows a significantly faster convergence to the asymptotic limit L\\to ∞ and is amenable for extensive and accurate numerical simulations at finite density, with only a limited computational effort.
Fuzzy and Regression Modelling of Hard Milling Process
A. Tamilarasan
2014-04-01
Full Text Available The present study highlights the application of box-behnken design coupled with fuzzy and regression modeling approach for making expert system in hard milling process to improve the process performance with systematic reduction of production cost. The important input fields of work piece hardness, nose radius, feed per tooth, radial depth of cut and axial depth cut were considered. The cutting forces, work surface temperature and sound pressure level were identified as key index of machining outputs. The results indicate that the fuzzy logic and regression modeling technique can be effectively used for the prediction of desired responses with less average error variation. Predicted results were verified by experiments and shown the good potential characteristics of the developed system for automated machining environment.
Kitagawa, T; Kanda, K; Shimizugawa, Y; Toyoda, N; Matsui, S; Yamada, I; Tsubakino, H; Matsuo, J
2003-01-01
Diamond-like carbon (DLC) film deposited using C sub 6 sub 0 vapor with simultaneous irradiation of an Ar cluster ion beam was characterized by a near edge X-ray absorption fine structure (NEXAFS), in order to optimize the hard DLC film deposition conditions. Contents of sp sup 2 orbitals in the films, which were estimated from NEXAFS spectra, are 30% lower than that of a conventional DLC film deposited by a RF plasma method. Those contents were obtained under the flux ratio of the C sub 6 sub 0 molecules to the Ar cluster ions to range from 1 to 20, at 5keV of Ar cluster ion acceleration energy. Average hardness of the films was 50 GPa under these flux ratios. This hardness was three times higher than that of a conventional DLC film. Furthermore, the lowest sp sup 2 content and above-mentioned high hardness were obtained at room temperature of the substrate when the depositions were performed in the range of the substrate temperature from room temperature to 250degC. (author)
Modelling of nuclear explosions in hard rock sites
Brunish, W.M.; App, F.N.
1993-05-01
This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock. In order to learn more about the response of hard rock to underground nuclear explosions, we have attempted to model the PILEDRIVER event. PILEDRIVER was fired on June 2, 1966 in the granite stock of Area 15 at the Nevada Test Site. The working point was at a depth of 462.7 m and the yield was determined to be 61 kt. Numerous surface, sub-surface and free-field measurements were made and analyzed by SRI. An attempt was made to determine the contribution of spall to the teleseismic signal, but proved unsuccessful because most of the data from below-shot-level gauges was lost. Nonetheless, there is quite a bit of good quality data from a variety of locations. We have been able to obtain relatively good agreement with the experimental PILEDRIVER waveforms. In order to do so, we had to model the granodiorite as being considerably weaker than ``good quality`` granite, and it had to undergo considerable weakening due to shock damage as well. In addition, the near-surface layers had to be modeled as being weak and compressible and as have a much lower sound speed than the material at depth. The is consistent with a fractured and jointed material at depth, and a weathered material near the surface.
Modelling of nuclear explosions in hard rock sites
Brunish, W.M.; App, F.N.
1993-01-01
This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock. In order to learn more about the response of hard rock to underground nuclear explosions, we have attempted to model the PILEDRIVER event. PILEDRIVER was fired on June 2, 1966 in the granite stock of Area 15 at the Nevada Test Site. The working point was at a depth of 462.7 m and the yield was determined to be 61 kt. Numerous surface, sub-surface and free-field measurements were made and analyzed by SRI. An attempt was made to determine the contribution of spall to the teleseismic signal, but proved unsuccessful because most of the data from below-shot-level gauges was lost. Nonetheless, there is quite a bit of good quality data from a variety of locations. We have been able to obtain relatively good agreement with the experimental PILEDRIVER waveforms. In order to do so, we had to model the granodiorite as being considerably weaker than good quality'' granite, and it had to undergo considerable weakening due to shock damage as well. In addition, the near-surface layers had to be modeled as being weak and compressible and as have a much lower sound speed than the material at depth. The is consistent with a fractured and jointed material at depth, and a weathered material near the surface.
Multicritical tensor models and hard dimers on spherical random lattices
Bonzom, Valentin
2012-01-01
Random tensor models which display multicritical behaviors in a remarkably simple fashion are presented. They come with entropy exponents \\gamma = (m-1)/m, similarly to multicritical random branched polymers. Moreover, they are interpreted as models of hard dimers on a set of random lattices for the sphere in dimension three and higher. Dimers with their exclusion rules are generated by the different interactions between tensors, whose coupling constants are dimer activities. As an illustration, we describe one multicritical point, which is interpreted as a transition between the dilute phase and a crystallized phase, though with negative activities.
Galactic Edge Clouds I: Molecular Line Observations and Chemical Modelling of Edge Cloud 2
Ruffle, P M E; Roberts, H; Lubowich, D A; Henkel, C; Pasachoff, J M; Brammer, G
2007-01-01
Edge Cloud 2 (EC2) is a molecular cloud, about 35 pc in size, with one of the largest galactocentric distances known to exist in the Milky Way. We present observations of a peak CO emission region in the cloud and use these to determine its physical characteristics. We calculate a gas temperature of 20 K and a density of n(H2) ~ 10^4 cm^-3. Based on our CO maps, we estimate the mass of EC2 at around 10^4 M_sun and continuum observations suggest a dust-to-gas mass ratio as low as 0.001. Chemical models have been developed to reproduce the abundances in EC2 and they indicate that: heavy element abundances may be reduced by a factor of five relative to the solar neighbourhood (similar to dwarf irregular galaxies and damped Lyman alpha systems); very low extinction (Av < 4 mag) due to a very low dust-to-gas ratio; an enhanced cosmic ray ionisation rate; and a higher UV field compared to local interstellar values. The reduced abundances may be attributed to the low level of star formation in this region and are...
Model analysis of edge relaxation phenomena in Tokamak plasmas
Matsukawa, Shogo [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka (Japan); Itoh, Sanae I.; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
2000-09-01
From the view point of the oscillatory characteristics, the heat transport in the plasma edge region is investigated based on a transition transport model with hysteresis nature. A hysteresis type flux-force relation is incorporated into the model by introducing a transition model of the heat diffusivity. For a given influx from the upstream side, the one dimensional heat transport equitation is solved numerically. The time evolution of the heat flux oscillation due to the hysteresis nature and the parameter dependences of its amplitude and frequency are examined. The non-monotonous relation between the frequency of the flux oscillation and the influx is obtained. The critical behavior of the transition between transport mechanisms, i.e., the hysteresis type and the discontinuous one, is expressed as power law relations of them. The self-organized criticality like behavior, i.e., power spectrum obeying power law, is found in a limiting case of the model. (author)
Thermodynamic properties of lattice hard-sphere models.
Panagiotopoulos, A Z
2005-09-08
Thermodynamic properties of several lattice hard-sphere models were obtained from grand canonical histogram- reweighting Monte Carlo simulations. Sphere centers occupy positions on a simple cubic lattice of unit spacing and exclude neighboring sites up to a distance sigma. The nearestneighbor exclusion model, sigma = radical2, was previously found to have a second-order transition. Models with integer values of sigma = 1 or 2 do not have any transitions. Models with sigma = radical3 and sigma = 3 have weak first-order fluid-solid transitions while those with sigma = 2 radical2, 2 radical3, and 3 radical2 have strong fluid-solid transitions. Pressure, chemical potential, and density are reported for all models and compared to the results for the continuum, theoretical predictions, and prior simulations when available.
Model Checking with Edge-Valued Decision Diagrams
Roux, Pierre; Siminiceanu, Radu I.
2010-01-01
We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi- Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools. Compared to the CUDD package, our tool is several orders of magnitude faster
Tesfay, Hayelom D.
Bio-ceramics are those engineered materials that find their applications in the field of biomedical engineering or medicine. They have been widely used in dental restorations, repairing bones, joint replacements, pacemakers, kidney dialysis machines, and respirators. etc. due to their physico-chemical properties, such as excellent corrosion resistance, good biocompatibility, high strength and high wear resistance. Because of their inherent brittleness and hardness nature they are difficult to machine to exact sizes and dimensions. Abrasive machining processes such as grinding is one of the most widely used manufacturing processes for bioceramics. However, the principal technical challenge resulted from these machining is edge chipping. Edge chipping is a common edge failure commonly observed during the machining of bio-ceramic materials. The presence of edge chipping on bio-ceramic products affects dimensional accuracy, increases manufacturing cost, hider their industrial applications and causes potential failure during service. To overcome these technological challenges, a new ultrasonic vibration-assisted grinding (UVAG) manufacturing method has been developed and employed in this research. The ultimate aim of this study is to develop a new cost-effective manufacturing process relevant to eliminate edge chippings in grinding of bio-ceramic materials. In this dissertation, comprehensive investigations will be carried out using experimental, theoretical, and numerical approaches to evaluate the effect of ultrasonic vibrations on edge chipping of bioceramics. Moreover, effects of nine input variables (static load, vibration frequency, grinding depth, spindle speed, grinding distance, tool speed, grain size, grain number, and vibration amplitude) on edge chipping will be studied based on the developed models. Following a description of previous research and existing approaches, a series of experimental tests on three bio-ceramic materials (Lava, partially fired Lava
Matrix models with hard walls: geometry and solutions
Chekhov, L [Steklov Mathematical Institute, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Poncelet Laboratoire International Franco-Russe, Moscow (Russian Federation); Department of Mathematics and Statistics, Concordia University, Montreal (Canada)
2006-07-14
We discuss various aspects of most general multisupport solutions to matrix models in the presence of hard walls, i.e., in the case where the eigenvalue support is confined to subdomains of the real axis. The structure of the solution at the leading order is described by semiclassical or generalized Whitham-Krichever hierarchies as in the unrestricted case. Derivatives of tau-functions for these solutions are associated with families of Riemann surfaces (with possible double points) and satisfy the Witten-Dijkgraaf-Verlinde-Verlinde equations. We then develop the diagrammatic technique for finding free energy of this model in all orders of the 't Hooft expansion in the reciprocal matrix size generalizing the Feynman diagrammatic technique for the Hermitian one-matrix model due to Eynard.
Edge-to-edge interfaces in Ti-Al modeled with the embedded atom method
Reynolds, W. T.; Farkas, D.
2006-03-01
The atomistic structure and energies of high-index interphase boundaries are explored using a combination of molecular statics and dynamics simulations with embedded atom potentials. We investigate planar boundaries between the α2 and γ phases in the Ti-Al system. The class of boundaries considered has a high-index boundary orientation; the orientation relationship between the α2 and γ phases also is high index, and a set of planes from each phase meet edge to edge at the boundary plane. For the particular case of a boundary that is commensurate in one direction and coincides with a moiré plane given by the so-called “Δ g” diffraction condition, the boundary is not structurally singular, but it is energetically stable and does not appear to dissociate into other low-energy configurations. Misfit compensating defects are not observed; misfit in directions other than the commensurate one appears to be distributed uniformly. The boundary energy is evaluated as a function of the orientation of the boundary plane, and the edge-to-edge (moiré) boundary is found to lie in an energy cusp.
Entanglement and Majorana edge states in the Kitaev model
Mandal, Saptarshi; Maiti, Moitri; Varma, Vipin Kerala
2016-07-01
We investigate the von Neumann entanglement entropy and Schmidt gap in the vortex-free ground state of the Kitaev model on the honeycomb lattice for square/rectangular and cylindrical subsystems. We find that, for both the subsystems, the free-fermionic contribution to the entanglement entropy SE exhibits signatures of the phase transitions between the gapless and gapped phases. However, within the gapless phase, we find that SE does not show an expected monotonic behavior as a function of the coupling Jz between the suitably defined one-dimensional chains for either geometry; moreover, the system generically reaches a point of minimum entanglement within the gapless phase before the entanglement saturates or increases again until the gapped phase is reached. This may be attributed to the onset of gapless modes in the bulk spectrum and the competition between the correlation functions along various bonds. In the gapped phase, on the other hand, SE always monotonically varies with Jz independent of the subregion size or shape. Finally, further confirming the Li-Haldane conjecture, we find that the Schmidt gap Δ defined from the entanglement spectrum also signals the topological transitions but only if there are corresponding zero-energy Majorana edge states that simultaneously appear or disappear across the transitions. We analytically corroborate some of our results on entanglement entropy, the Schmidt gap, and the bulk-edge correspondence using perturbation theory.
Position-sensitive transition edge sensor modeling and results
Hammock, Christina E-mail: chammock@milkyway.gsfc.nasa.gov; Figueroa-Feliciano, Enectali; Apodaca, Emmanuel; Bandler, Simon; Boyce, Kevin; Chervenak, Jay; Finkbeiner, Fred; Kelley, Richard; Lindeman, Mark; Porter, Scott; Saab, Tarek; Stahle, Caroline
2004-03-11
We report the latest design and experimental results for a Position-Sensitive Transition-Edge Sensor (PoST). The PoST is motivated by the desire to achieve a larger field-of-view without increasing the number of readout channels. A PoST consists of a one-dimensional array of X-ray absorbers connected on each end to a Transition Edge Sensor (TES). Position differentiation is achieved through a comparison of pulses between the two TESs and X-ray energy is inferred from a sum of the two signals. Optimizing such a device involves studying the available parameter space which includes device properties such as heat capacity and thermal conductivity as well as TES read-out circuitry parameters. We present results for different regimes of operation and the effects on energy resolution, throughput, and position differentiation. Results and implications from a non-linear model developed to study the saturation effects unique to PoSTs are also presented.
A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION.
Finch, Craig; Clarke, Thomas; Hickman, James J
2013-07-01
Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices.
Thermodynamic model of hardness: Particular case of boron-rich solids
Mukhanov, V. A.; Kurakevych, O. O.; Solozhenko, V. L.
2011-01-01
A number of successful theoretical models of hardness have been developed recently. A thermodynamic model of hardness, which supposes the intrinsic character of correlation between hardness and thermodynamic properties of solids, allows one to predict hardness of known or even hypothetical solids from the data on Gibbs energy of atomization of the elements, which implicitly determine the energy density per chemical bonding. The only structural data needed is the coordination number of the ato...
On the Relation between Edge and Vertex Modelling in Shape Analysis
Hobolth, Asger; Kent, John Thomas; Dryden, Ian L.
2002-01-01
circulant covariance matrix to model the edge transformation vector. This type of model is also feasible for the vertex transformation vector and in certain cases the free parameters of the two models match up in a simple way. A vertex model and an edge model are applied to a data set of sand particles...
On the Relation between Edge and Vertex Modelling in Shape Analysis
Hobolth, Asger; Kent, John Thomas; Dryden, Ian L.
2002-01-01
circulant covariance matrix to model the edge transformation vector. This type of model is also feasible for the vertex transformation vector and in certain cases the free parameters of the two models match up in a simple way. A vertex model and an edge model are applied to a data set of sand particles...
Boy, M.; Yaşar, N.; Çiftçi, İ.
2016-11-01
In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.
Edge magnetism of Heisenberg model on honeycomb lattice.
Huang, Wen-Min; Hikihara, Toshiya; Lee, Yen-Chen; Lin, Hsiu-Hau
2017-03-07
Edge magnetism in graphene sparks intense theoretical and experimental interests. In the previous study, we demonstrated the existence of collective excitations at the zigzag edge of the honeycomb lattice with long-ranged Néel order. By employing the Schwinger-boson approach, we show that the edge magnons remain robust even when the long-ranged order is destroyed by spin fluctuations. Furthermore, in the effective field-theory limit, the dynamics of the edge magnon is captured by the one-dimensional relativistic Klein-Gordon equation. It is intriguing that the boundary field theory for the edge magnon is tied up with its bulk counterpart. By performing density-matrix renormalization group calculations, we show that the robustness may be attributed to the closeness between the ground state and the Néel state. The existence of edge magnon is not limited to the honeycomb structure, as demonstrated in the rotated-square lattice with zigzag edges as well. The universal behavior indicates that the edge magnons may attribute to the uncompensated edges and can be detected in many two-dimensional materials.
Modeling Prioritized Hard Handoff Management Scheme for Wireless Mobile Networks
BISWAJIT BHOWMIK
2012-08-01
Full Text Available The channel associated with the current connection serviced by a base station is changed while a call is in progress. Usually, continuous service is achieved by supporting handoff from one cell to another. It is often initiated either by crossing a cell boundary or by deterioration in quality of the signal in the current channel. The existing call is then changed to a new base station. For the traffics which are non stationary at and are away from the servicing base station, the chances of a call to be handed off are increasing. In this paper we propose a scheme MH_2S to modeling and implementing a traffic model with handoff behavior for wireless mobile networks . The simulation model MH_2S with priority is developed to investigate the performance behavior of hard handoff strategy. Novelty of the proposed model MH_2S results that it can improve call blocking rate of handoff calls. In addition to this, measurement of blocking probabilities for both originating calls and handoff calls is another impressive achievement of the model.
Model-Checking with Edge-Valued Decision Diagrams
Roux, Pierre; Siminiceanu, Radu I.
2010-01-01
We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library along with state-of-the-art algorithms for building the transition relation and the state space of discrete state systems. We provide efficient algorithms for manipulating EVMDDs and give upper bounds of the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi-Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools: EVMDDs for encoding arithmetic expressions, identity-reduced MDDs for representing the transition relation, and the saturation algorithm for reachability analysis. We compare our new symbolic model checking EVMDD library with the widely used CUDD package and show that, in many cases, our tool is several orders of magnitude faster than CUDD.
Crystallography of Zr poisoning of Al-Ti-B grain refinement using edge-to-edge matching model
黄元春; 肖政兵; 刘宇
2013-01-01
The mechanism of zirconium poisoning on the grain-refining efficiency of an Al-Ti-B based grain refiner was studied. The experiment was conducted by melting Al-5Ti-1B and Al-3Zr master alloys together. The edge-to-edge matching model was used to investigate and compare the orientation relationships between the binary intermetallic compounds present in the Al-Ti-B-Zr system. The results show that the poisoning effect probably results from the combination of Al3 Zr with Al3 Ti and the decreased amount of Ti solute, for Al3 Ti particles have good crystallographic relationships with Al3 Zr. Totally six orientation relationships may present between them, while they play vital roles in grain refinement. TiB2 particles appear to remain unchanged because of a bit large misfit. Only one orientation relationship may present between them to prevent Al3 Zr phase from forming on the surface of TiB2, though TiB2 is agglomerated. The theoretical calculation agrees well with the experimental results. The edge-to-edge matching model is proved to be a useful tool for discovering the orientation relationships between phases.
Modeling of Airfoil Trailing Edge Flap with Immersed Boundary Method
Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær
2011-01-01
to simulate the moving part of the trailing edge. Over the main fixed part of the airfoil the Navier-Stokes (NS) equations are solved using a standard body-fitted finite volume technique whereas the moving trailing edge flap is simulated with the immersed boundary method on a curvilinear mesh. The obtained...
Cascade trailing-edge noise modeling using a mode-matching technique and the edge-dipole theory
Roger, Michel; François, Benjamin; Moreau, Stéphane
2016-11-01
An original analytical approach is proposed to model the broadband trailing-edge noise produced by high-solidity outlet guide vanes in an axial turbomachine. The model is formulated in the frequency domain and first in two dimensions for a preliminary assessment of the method. In a first step the trailing-edge noise sources of a single vane are shown to be equivalent to the onset of a so-called edge dipole, the direct field of which is expanded in a series of plane-wave modes. A criterion for the distance of the dipole to the trailing-edge and a scaling of its amplitude is defined to yield a robust model. In a second step the diffraction of each plane-wave mode is derived considering the cascade as an array of bifurcated waveguides and using a mode-matching technique. The cascade response is finally synthesized by summing the diffracted fields of all cut-on modes to yield upstream and downstream sound power spectral densities. The obtained spectral shapes are physically consistent and the present results show that upstream radiation is typically 3 dB higher than downstream radiation, which has been experimentally observed previously. Even though the trailing-edge noise sources are not vane-to-vane correlated their radiation is strongly determined by a cascade effect that consequently must be accounted for. The interest of the approach is that it can be extended to a three-dimensional annular configuration without resorting to a strip theory approach. As such it is a promising and versatile alternative to previously published methods.
Kupczyk, M.
2005-12-01
Full Text Available In the presented paper the experimental results concerning the functional quality (durability during steel machining of thin, superhard coatings produced on the cutting edges are described. Differences among mentioned properties of coatings mainly result from a coating structure. But the structure of coatings results from deposition parameters Superhard boron nitride coatings were deposited on insert cutting edges made of cemented carbides by the pulse-plasma method applying different values of the discharge voltage. The comparative investigations of mentioned coatings have been concerned of tool life of edges during hard machinable material machining (nitriding steel hardened in oil. In these investigations for the purpose of additional increase of coatings adhesion to substrates an interfacial layers were applied.
En este trabajo se describen los resultados experimentales referentes a la calidad funcional (durabilidad durante el mecanizado del acero de recubrimientos delgados, de elevada dureza del filo de corte. Las diferencias en las propiedades de los recubrimientos se deben, principalmente, a la estructura del recubrimiento. No obstante, la estructura del recubrimiento está relacionada con los parámetros de la deposición. Recubrimientos de nitruro de boro de elevada dureza se depositaron sobre filos de corte insertados, fabricados con carburos cementados mediante el método de pulsos de plasma aplicando diferentes valores de voltaje de descarga. Las investigaciones comparativas de los mencionados recubrimientos han relacionado la vida del filo de la herramienta durante el mecanizado del material (acero nitrurado endurecido en aceite. En estas investigaciones se aplicaron capas interfaciales para aumentar la adherencia del recubrimiento.
RANDOM SYSTEMS OF HARD PARTICLES:MODELS AND STATISTICS
Dietrich Stoyan
2002-01-01
This paper surveys models and statistical properties of random systems of hard particles. Such systems appear frequently in materials science, biology and elsewhere. In mathematical - statistical investigations, simulations of such structures play an important role. In these simulations various methods and models are applied, namely the RSA model, sedimentation and collective rearrangement algorithms, molecular dynamics, and Monte Carlo methods such as the Metropolis - Hastings algorithm. The statistical description of real and simulated particle systems uses ideas of the mathematical theories of random sets and point processes. This leads to characteristics such as volume fraction or porosity, covariance,contact distribution functions, specific connectivity number from the random set approach and intensity, pair correlation function and mark correlation functions from the point process approach. Some of them can be determined stereologically using planar sections, while others can only be obtained using three - dimensional data and 3D image analysis. They are valuable tools for fitting models to empirical data and, consequently, for understanding various materials, biological structures, porous media and other practically important spatial structures.
Hard-sphere kinetic models for inert and reactive mixtures
Polewczak, Jacek
2016-10-01
I consider stochastic variants of a simple reacting sphere (SRS) kinetic model (Xystris and Dahler 1978 J. Chem. Phys. 68 387-401, Qin and Dahler 1995 J. Chem. Phys. 103 725-50, Dahler and Qin 2003 J. Chem. Phys. 118 8396-404) for dense reacting mixtures. In contrast to the line-of-center models of chemical reactive models, in the SRS kinetic model, the microscopic reversibility (detailed balance) can be easily shown to be satisfied, and thus all mathematical aspects of the model can be fully justified. In the SRS model, the molecules behave as if they were single mass points with two internal states. Collisions may alter the internal states of the molecules, and this occurs when the kinetic energy associated with the reactive motion exceeds the activation energy. Reactive and non-reactive collision events are considered to be hard sphere-like. I consider a four component mixture A, B, A *, B *, in which the chemical reactions are of the type A+B\\rightleftharpoons {{A}\\ast}+{{B}\\ast} , with A * and B * being distinct species from A and B. This work extends the joined works with George Stell to the kinetic models of dense inert and reactive mixtures. The idea of introducing smearing-type effect in the collisional process results in a new class of stochastic kinetic models for both inert and reactive mixtures. In this paper the important new mathematical properties of such systems of kinetic equations are proven. The new results for stochastic revised Enskog system for inert mixtures are also provided.
Analytical and Empirical Modeling of Wear and Forces of CBN Tool in Hard Turning - A Review
Patel, Vallabh Dahyabhai; Gandhi, Anishkumar Hasmukhlal
2016-06-01
Machining of steel material having hardness above 45 HRC (Hardness-Rockwell C) is referred as a hard turning. There are numerous models which should be scrutinized and implemented to gain optimum performance of hard turning. Various models in hard turning by cubic boron nitride tool have been reviewed, in attempt to utilize appropriate empirical and analytical models. Validation of steady state flank and crater wear model, Usui's wear model, forces due to oblique cutting theory, extended Lee and Shaffer's force model, chip formation and progressive flank wear have been depicted in this review paper. Effort has been made to understand the relationship between tool wear and tool force based on the different cutting conditions and tool geometries so that appropriate model can be used according to user requirement in hard turning.
Comparison between cohesive zone models and a coupled criterion for prediction of edge debonding
Vandellos, T.; Martin, E.; Leguillon, D.
2014-01-01
International audience; The onset of edge debonding within a bonded specimen submitted to bending is modeled with two numerical approaches: the coupled criterion and the cohesive zone model. The comparison of the results obtained with the both approaches evidences that (i) the prediction of edge debonding strongly depends on the shape of the cohesive law and (ii) the trapezoidal cohesive law is the most relevant model to predict the edge debonding as compared with the coupled criterion.
SAR-PC: Edge Detection in SAR Images via an Advanced Phase Congruency Model
Yuming Xiang
2017-02-01
Full Text Available Edge detection in Synthetic Aperture Radar (SAR images has been a challenging task due to the speckle noise. Ratio-based edge detectors are robust operators for SAR images that provide constant false alarm rates, but they are only optimal for step edges. Edge detectors developed by the phase congruency model provide the identification of different types of edge features, but they suffer from speckle noise. By combining the advantages of the two edge detectors, we propose a SAR phase congruency detector (SAR-PC. Firstly, an improved local energy model for SAR images is obtained by replacing the convolution of raw image and the quadrature filters by the ratio responses. Secondly, a new noise level is estimated for the multiplicative noise. Substituting the SAR local energy and the new noise level into the phase congruency model, SAR-PC is derived. Edge response corresponds to the max moment of SAR-PC. We compare the proposed detector with the ratio-based edge detectors and the phase congruency edge detectors. Receiver Operating Characteristic (ROC curves and visual effects are used to evaluate the performance. Experimental results of simulated images and real-world images show that the proposed edge detector is robust to speckle noise and it provides a consecutive edge response.
Modelling Hard $\\gamma$-Ray Emission From Supernova Remnants
Baring, M G
1999-01-01
The observation by the CANGAROO experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a ``Holy Grail'' for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central c...
A characterization of edge reflection positive partition functions of vertex coloring models
G. Regts (Guus)
2013-01-01
htmlabstractSzegedy (B. Szegedy, Edge coloring models and reflection positivity, Journal of the American Mathematical Society 20, 2007, 969-988.) showed that the partition function of any vertex coloring model is equal to the partition function of a complex edge coloring model. Using some results in
A characterization of edge-reflection positive partition functions of vertex-coloring models
G. Regts (Guus); J. Nešetřil (Jaroslav); M Pellegrini
2013-01-01
htmlabstractSzegedy (B. Szegedy, Edge coloring models and reflection positivity, Journal of the American Mathematical Society 20, 2007, 969-988.) showed that the partition function of any vertex coloring model is equal to the partition function of a complex edge coloring model. Using some results in
Wan, Songlin; Zhang, Xiangchao; He, Xiaoying; Xu, Min
2016-12-20
Computer controlled optical surfacing requires an accurate tool influence function (TIF) for reliable path planning and deterministic fabrication. Near the edge of the workpieces, the TIF has a nonlinear removal behavior, which will cause a severe edge-roll phenomenon. In the present paper, a new edge pressure model is developed based on the finite element analysis results. The model is represented as the product of a basic pressure function and a correcting function. The basic pressure distribution is calculated according to the surface shape of the polishing pad, and the correcting function is used to compensate the errors caused by the edge effect. Practical experimental results demonstrate that the new model can accurately predict the edge TIFs with different overhang ratios. The relative error of the new edge model can be reduced to 15%.
RETRACTED: Flap side edge noise modeling and prediction
Guo, Yueping
2013-08-01
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).This article has been retracted at the request of the first author because of the overlap with previously published papers. The first author takes full responsibility and sincerely apologizes for the error made.This article has been retracted at the request of the Editor-in-Chief.The article duplicates significant parts of an earlier paper by the same author, published in AIAA (Y.P. Guo, Aircraft flap side edge noise modeling and prediction. American Institute of Aeronautics and Astronautics, (2011), 10.2514/6.2011-2731). Prior to republication, conference papers should be comprehensively extended, and re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Single pass sparsification in the streaming model with edge deletions
Goel, Ashish; Post, Ian
2012-01-01
In this paper we give a construction of cut sparsifiers of Benczur and Karger in the {\\em dynamic} streaming setting in a single pass over the data stream. Previous constructions either required multiple passes or were unable to handle edge deletions. We use $\\tilde{O}(1/\\e^2)$ time for each stream update and $\\tilde{O}(n/\\e^2)$ time to construct a sparsifier. Our $\\e$-sparsifiers have $O(n\\log^3 n/\\e^2)$ edges. The main tools behind our result are an application of sketching techniques of Ahn et al.[SODA'12] to estimate edge connectivity together with a novel application of sampling with limited independence and sparse recovery to produce the edges of the sparsifier.
Self-diffusion in liquid gallium and hard sphere model
Blagoveshchenskii Nikolay
2015-01-01
Full Text Available Incoherent and coherent components of quasielastic neutron scattering have been studied in the temperature range of T = 313 K – 793 K aiming to explore the applicability limits of the hard-sphere approach for the microscopic dynamics of liquid gallium, which is usually considered as a non-hard-sphere system. It was found that the non-hard-sphere effects come into play at the distances shorter than the average interatomic distance. The longer range diffusive dynamics of liquid Ga is dominated by the repulsive forces between the atoms.
Exact solutions of the high dimensional hard-core Fermi-Hubbard model
潘峰; 戴连荣
2001-01-01
A simple algebraic approach to exact solutions of the hard-core Fermi-Hubbard model is proposed. Excitation energies and the corresponding wavefunctions of the hard-core Fermi-Hubbard model with nearest neighbor hopping cases in high dimension are obtained by using this method, which manifests that the model is exactly solvable in any dimension.
Modelling Combined Heat Exchange in the Leading Edge of Perspective Aircraft Wing
Kandinsky Roman O.
2015-01-01
Full Text Available In this paper gas dynamic numerical modelling of leading edge flow is presented and thermal loading parameters are determined. Numerical modelling of combined radiative and conductive heat transfer of the wing edge is carried out, thermal state of structure is given and the results are analyzed.
A note on adding and deleting edges in hierarchical log-linear models
Edwards, David
2012-01-01
The operations of edge addition and deletion for hierarchical log-linear models are defined, and polynomial-time algorithms for the operations are given......The operations of edge addition and deletion for hierarchical log-linear models are defined, and polynomial-time algorithms for the operations are given...
Model regularization for seismic traveltime tomography with an edge-preserving smoothing operator
Zhang, Xiong; Zhang, Jie
2017-03-01
The solutions of the seismic first-arrival traveltime tomography are generally non-unique, and the Tikhonov model regularization for the inversion is commonly used to stabilize the inversion. However, the Tikhonov regularization for traveltime tomography often produces a low-resolution velocity model. To sharpen the velocity edges for the traveltime tomographic results and fit data at the same time, we should apply the edge-preserving concepts to regularize the inversion. In this study, we develop a new model regularization method by introducing an edge-preserving smoothing operator to detect the model edges in traveltime tomography. This edge-preserving smoothing operator is previously used in processing seismic images for enhancing resolution. We design three synthetic velocity models with sharp interfaces and with or without velocity gradients to study the performance of the regularization method with the edge-preserving smoothing operator. The new edge-preserving regularization not only sharpens the model edges but also maintains the smoothness of the velocity gradient in the layer.
FLOW STRESS MODEL FOR HARD MACHINING OF AISI H13 WORK TOOL STEEL
H. Yan; J. Hua; R. Shivpuri
2005-01-01
An approach is presented to characterize the stress response of workpiece in hard machining,accounted for the effect of the initial workpiece hardness, temperature, strain and strain rate on flow stress. AISI H13 work tool steel was chosen to verify this methodology. The proposed flow stress model demonstrates a good agreement with data collected from published experiments.Therefore, the proposed model can be used to predict the corresponding flow stress-strain response of AISI H13 work tool steel with variation of the initial workpiece hardness in hard machining.
Topological Invariants of Edge States for Periodic Two-Dimensional Models
Avila, Julio Cesar; Schulz-Baldes, Hermann, E-mail: schuba@mi.uni-erlangen.de; Villegas-Blas, Carlos [Instituto de Matematicas, UNAM (Mexico)
2013-06-15
Transfer matrix methods and intersection theory are used to calculate the bands of edge states for a wide class of periodic two-dimensional tight-binding models including a sublattice and spin degree of freedom. This allows to define topological invariants by considering the associated Bott-Maslov indices which can be easily calculated numerically. For time-reversal symmetric systems in the symplectic universality class this leads to a Z{sub 2} -invariant for the edge states. It is shown that the edge state invariants are related to Chern numbers of the bulk systems and also to (spin) edge currents, in the spirit of the theory of topological insulators.
Topological invariants of edge states for periodic two-dimensional models
Avila, Julio Cesar; Villegas-Blas, Carlos
2012-01-01
Transfer matrix methods and intersection theory are used to calculate the bands of edge states for a wide class of periodic two-dimensional tight-binding models including a sublattice and spin degree of freedom. This allows to define topological invariants by considering the associated Bott-Maslov indices which can be easily calculated numerically. For time-reversal symmetric systems in the symplectic universality class this leads to a Z_2-invariant for the edge states. It is shown that the edge state invariants are related to Chern numbers of the bulk systems and also to (spin) edge currents, in the spirit of the theory of topological insulators.
Cutting edge curve models for equal pitch cutters and their applications
吕广明; 王洪滨; 唐余勇; 彭龙刚
2004-01-01
A mathematic model is established using infinitesimal geometry for the cutting edge design of special milling cutters which use equal lead helix as cutting edges; equations are given for front-end and proclitic surface of revolution of ball pillar milling cutters, ball taper milling cutters and angularly conical milling cutters;and corresponding models are established for the continuity cutting edge curves of milling cutters. Typical examples are given to illustrate the applications of mathematic models, which prove the correctness and applicability of these geometric models.
Frequency-Weighted Model Predictive Control of Trailing Edge Flaps on a Wind Turbine Blade
Castaignet, Damien; Couchman, Ian; Poulsen, Niels Kjølstad;
2013-01-01
This paper presents the load reduction achieved with trailing edge flaps during a full-scale test on a Vestas V27 wind turbine. The trailing edge flap controller is a frequency-weighted linear model predictive control (MPC) where the quadratic cost consists of costs on the zero-phase filtered...
Model Predictive Control of Trailing Edge Flaps on a wind turbine blade
Castaignet, Damien; Poulsen, Niels Kjølstad; Buhl, Thomas;
2011-01-01
Trailing Edge Flaps on wind turbine blades have been studied in order to achieve fatigue load reduction on the turbine components. We show in this paper how Model Predictive Control can be used to do frequency weighted control of the trailing edge flaps in order to reduce fatigue damage on the bl...
Simulating colloids with Baxter's adhesive hard sphere model
Miller, M.A.; Frenkel, D.
2004-01-01
The structure of the Baxter adhesive hard sphere fluid is examined using computer simulation. The radial distribution function (which exhibits unusual discontinuities due to the particle adhesion) and static structure factor are calculated with high accuracy over a range of conditions and compared w
Simulation of the adhesive-hard-sphere model
Kranendonk, W.G.T.; Frenkel, D.
1988-01-01
Monte Carlo simulations of the three-dimensional sticky-hard-sphere system are presented. A new modified Monte Carlo algorithm has been developed which makes it possible to explore the phase diagram for a large region of both the packing fraction and the stickiness parameter t. The phase diagram is
Computer simulation of hard-core models for liquid crystals
Frenkel, D.
1987-01-01
A review is presented of computer simulations of liquid crystal systems. It will be shown that the shape of hard-core particles is of crucial importance for the stability of the phases. Both static and dynamic properties of the systems are obtained by means of computer simulation.
Simulating colloids with Baxter's adhesive hard sphere model
Miller, M.A.; Frenkel, D.
2004-01-01
The structure of the Baxter adhesive hard sphere fluid is examined using computer simulation. The radial distribution function (which exhibits unusual discontinuities due to the particle adhesion) and static structure factor are calculated with high accuracy over a range of conditions and compared
Model-based edge detector for spectral imagery using sparse spatiospectral masks.
Paskaleva, Biliana S; Godoy, Sebastián E; Jang, Woo-Yong; Bender, Steven C; Krishna, Sanjay; Hayat, Majeed M
2014-05-01
Two model-based algorithms for edge detection in spectral imagery are developed that specifically target capturing intrinsic features such as isoluminant edges that are characterized by a jump in color but not in intensity. Given prior knowledge of the classes of reflectance or emittance spectra associated with candidate objects in a scene, a small set of spectral-band ratios, which most profoundly identify the edge between each pair of materials, are selected to define a edge signature. The bands that form the edge signature are fed into a spatial mask, producing a sparse joint spatiospectral nonlinear operator. The first algorithm achieves edge detection for every material pair by matching the response of the operator at every pixel with the edge signature for the pair of materials. The second algorithm is a classifier-enhanced extension of the first algorithm that adaptively accentuates distinctive features before applying the spatiospectral operator. Both algorithms are extensively verified using spectral imagery from the airborne hyperspectral imager and from a dots-in-a-well midinfrared imager. In both cases, the multicolor gradient (MCG) and the hyperspectral/spatial detection of edges (HySPADE) edge detectors are used as a benchmark for comparison. The results demonstrate that the proposed algorithms outperform the MCG and HySPADE edge detectors in accuracy, especially when isoluminant edges are present. By requiring only a few bands as input to the spatiospectral operator, the algorithms enable significant levels of data compression in band selection. In the presented examples, the required operations per pixel are reduced by a factor of 71 with respect to those required by the MCG edge detector.
Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes
Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv
2007-04-01
In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.
Complex oscillatory yielding of model hard-sphere glasses.
Koumakis, N; Brady, J F; Petekidis, G
2013-04-26
The yielding behavior of hard sphere glasses under large-amplitude oscillatory shear has been studied by probing the interplay of Brownian motion and shear-induced diffusion at varying oscillation frequencies. Stress, structure and dynamics are followed by experimental rheology and Browian dynamics simulations. Brownian-motion-assisted cage escape dominates at low frequencies while escape through shear-induced collisions at high ones, both related with a yielding peak in G''. At intermediate frequencies a novel, for hard sphere glasses, double peak in G'' is revealed reflecting both mechanisms. At high frequencies and strain amplitudes a persistent structural anisotropy causes a stress drop within the cycle after strain reversal, while higher stress harmonics are minimized at certain strain amplitudes indicating an apparent harmonic response.
Marsh, Herbert W; Pekrun, Reinhard; Lichtenfeld, Stephanie; Guo, Jiesi; Arens, A Katrin; Murayama, Kou
2016-08-01
Ever since the classic research of Nicholls (1976) and others, effort has been recognized as a double-edged sword: while it might enhance achievement, it undermines academic self-concept (ASC). However, there has not been a thorough evaluation of the longitudinal reciprocal effects of effort, ASC, and achievement, in the context of modern self-concept theory and statistical methodology. Nor have there been developmental equilibrium tests of whether these effects are consistent across the potentially volatile early-to-middle adolescence. Hence, focusing on mathematics, we evaluate reciprocal effects models (REMs) over the first 4 years of secondary school (grades 5-8), relating effort, achievement (test scores and school grades), ASC, and ASC × Effort interactions for a representative sample of 3,144 German students (Mage = 11.75 years at Wave 1). ASC, effort, and achievement were positively correlated at each wave, and there was a clear pattern of positive reciprocal positive effects among ASC, test scores, and school grades-each contributing to the other, after controlling for the prior effects of all others. There was an asymmetrical pattern of effects for effort that is consistent with the double-edged sword premise: prior school grades had positive effects on subsequent effort, but prior effort had nonsignificant or negative effects on subsequent grades and ASC. However, on the basis of a synergistic application of new theory and methodology, we predicted and found a significant ASC × Effort interaction, such that prior effort had more positive effects on subsequent ASC and school grades when prior ASC was high-thus providing a key to breaking the double-edged sword. (PsycINFO Database Record
Bergami, L.; Gaunaa, M.
2012-02-15
The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)
Direct simulation of diatomic gases using the generalized hard sphere model
Hash, D. B.; Hassan, H. A.
1993-01-01
The generalized hard sphere model which incorporates the effects of attraction and repulsion is used to predict flow measurements in tests involving extremely low freestream temperatures. For the two cases considered, a Mach 26 nitrogen shock and a Mach 20 nitrogen flow over a flat place, only rotational excitation is deemed important, and appropriate modifications for the Borgnakke-Larsen procedure are developed. In general, for the cases considered, the present model performed better than the variable hard sphere model.
Mandal, Subhamoy; Nagaraj, Yeshaswini; Ben, Xose Luis Dean; Razansky, Daniel
2015-01-01
In this article, we present a novel scheme for segmenting the image boundary (with the background) in optoacoustic small animal in vivo imaging systems. The method utilizes a multiscale edge detection algorithm to generate a binary edge map. A scale dependent morphological operation is employed to clean spurious edges. Thereafter, an ellipse is fitted to the edge map through constrained parametric transformations and iterative goodness of fit calculations. The method delimits the tissue edges through the curve fitting model, which has shown high levels of accuracy. Thus, this method enables segmentation of optoacoutic images with minimal human intervention, by eliminating need of scale selection for multiscale processing and seed point determination for contour mapping.
Mandal, S; Viswanath, P S; Yeshaswini, N; Dean-Ben, X L; Razansky, D
2015-08-01
In this article, we present a novel scheme for segmenting the image boundary (with the background) in optoacoustic small animal in vivo imaging systems. The method utilizes a multiscale edge detection algorithm to generate a binary edge map. A scale dependent morphological operation is employed to clean spurious edges. Thereafter, an ellipse is fitted to the edge map through constrained parametric transformations and iterative goodness of fit calculations. The method delimits the tissue edges through the curve fitting model, which has shown high levels of accuracy. Thus, this method enables segmentation of optoacoutic images with minimal human intervention, by eliminating need of scale selection for multiscale processing and seed point determination for contour mapping.
Hard-sphere interactions in velocity-jump models
Franz, Benjamin; Taylor-King, Jake P.; Yates, Christian; Erban, Radek
2016-07-01
Group-level behavior of particles undergoing a velocity-jump process with hard-sphere interactions is investigated. We derive N -particle transport equations that include the possibility of collisions between particles and apply different approximation techniques to get expressions for the dependence of the collective diffusion coefficient on the number of particles and their diameter. The derived approximations are compared with numerical results obtained from individual-based simulations. The theoretical results compare well with Monte Carlo simulations providing the excluded-volume fraction is small.
Hard-sphere interactions in velocity jump models
Franz, Benjamin; Yates, Christian; Erban, Radek
2014-01-01
Group-level behaviour of particles undergoing a velocity jump process with hard-sphere interactions is investigated. We derive $N$-particle transport equations that include the possibility of collisions between particles and apply different approximation techniques to get expressions for the dependence of the collective diffusion coefficient on the number of particles and their diameter. The derived approximations are compared with numerical results obtained from individual-based simulations. The theoretical results compare well with Monte Carlo simulations providing the excluded volume fraction is small.
Raynaud, Franck; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F; Meister, Jean-Jacques; Verkhovsky, Alexander B
2016-01-01
How the cells break symmetry and organize their edge activity to move directionally is a fun- damental question in cell biology. Physical models of cell motility commonly rely on gradients of regulatory factors and/or feedback from the motion itself to describe polarization of edge activity. Theses approaches, however, fail to explain cell behavior prior to the onset of polarization. Our analysis using the model system of polarizing and moving fish epidermal keratocytes suggests a novel and simple principle of self-organization of cell activity in which local cell-edge dynamics depends on the distance from the cell center, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviors. Our findings indicate that spontaneous polarization, persistent motion, and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell center.
The hard-sphere model of strongly interacting fermion systems
Mecca, Angela
2016-01-01
The formalism based on Correlated Basis Functions (CBF) and the cluster-expansion technique has been recently employed to derive an effective interaction from a realistic nuclear Hamiltonian. One of the main objectives of the work described in this Thesis is establishing the accuracy of this novel approach--that allows to combine the flexibility of perturbation theory in the basis of eigenstates of the noninteracting system with a realistic description of short-range correlations in coordinate space--by focusing on the hard-sphere fermion system. As a first application of the formalism, the quasiparticle properties of hard spheres of degeneracy four have been determined from the two-point Green's function. The calculation has been performed carrying out a perturbative expansion of the self-energy, up to the second order in the CBF effective interaction. The main results of this study are the momentum distributions, the quasiparticle spectra and their description in terms of effective mass. The investigation o...
Kim, Min-Suk; Won, Hwa-Yeon; Jeong, Jong-Mun; Böcker, Paul; Vergaij-Huizer, Lydia; Kupers, Michiel; Jovanović, Milenko; Sochal, Inez; Ryan, Kevin; Sun, Kyu-Tae; Lim, Young-Wan; Byun, Jin-Moo; Kim, Gwang-Gon; Suh, Jung-Joon
2016-03-01
In order to optimize yield in DRAM semiconductor manufacturing for 2x nodes and beyond, the (processing induced) overlay fingerprint towards the edge of the wafer needs to be reduced. Traditionally, this is achieved by acquiring denser overlay metrology at the edge of the wafer, to feed field-by-field corrections. Although field-by-field corrections can be effective in reducing localized overlay errors, the requirement for dense metrology to determine the corrections can become a limiting factor due to a significant increase of metrology time and cost. In this study, a more cost-effective solution has been found in extending the regular correction model with an edge-specific component. This new overlay correction model can be driven by an optimized, sparser sampling especially at the wafer edge area, and also allows for a reduction of noise propagation. Lithography correction potential has been maximized, with significantly less metrology needs. Evaluations have been performed, demonstrating the benefit of edge models in terms of on-product overlay performance, as well as cell based overlay performance based on metrology-to-cell matching improvements. Performance can be increased compared to POR modeling and sampling, which can contribute to (overlay based) yield improvement. Based on advanced modeling including edge components, metrology requirements have been optimized, enabling integrated metrology which drives down overall metrology fab footprint and lithography cycle time.
Asymmetric Heat Conduction in One-Dimensional Hard-Point Model with Mass Gradient
LI Hai-Bin; NIE Qing-Miao; XIN Xiao-Tian
2009-01-01
The heat conduction in a one-dimensional (1D) hard-point model with mass gradient is studied. Using numerical simulation, we find an asymmetric heat conduction in this model with greater heat current in the direction of mass increase. The increase of temperature gradient, mass gradient and system size are found to enhance the asymmetric heat conduction. Based on the collision dynamic of a hard-point particle, we give a qualitative explanation for the underlying mechanism of asymmetric effect.
Automatic barcode recognition method based on adaptive edge detection and a mapping model
Yang, Hua; Chen, Lianzheng; Chen, Yifan; Lee, Yong; Yin, Zhouping
2016-09-01
An adaptive edge detection and mapping (AEDM) algorithm to address the challenging one-dimensional barcode recognition task with the existence of both image degradation and barcode shape deformation is presented. AEDM is an edge detection-based method that has three consecutive phases. The first phase extracts the scan lines from a cropped image. The second phase involves detecting the edge points in a scan line. The edge positions are assumed to be the intersecting points between a scan line and a corresponding well-designed reference line. The third phase involves adjusting the preliminary edge positions to more reasonable positions by employing prior information of the coding rules. Thus, a universal edge mapping model is established to obtain the coding positions of each edge in this phase, followed by a decoding procedure. The Levenberg-Marquardt method is utilized to solve this nonlinear model. The computational complexity and convergence analysis of AEDM are also provided. Several experiments were implemented to evaluate the performance of AEDM algorithm. The results indicate that the efficient AEDM algorithm outperforms state-of-the-art methods and adequately addresses multiple issues, such as out-of-focus blur, nonlinear distortion, noise, nonlinear optical illumination, and situations that involve the combinations of these issues.
Noise model for serrated trailing edges compared to wind tunnel measurements
Fischer, Andreas; Bertagnolio, Franck; Shen, Wen Zhong; Madsen, Jesper
2016-09-01
A new CFD RANS based method to predict the far field sound pressure emitted from an aerofoil with serrated trailing edge has been developed. The model was validated by comparison to measurements conducted in the Virginia Tech Stability Wind Tunnel. The model predicted 3 dB lower sound pressure levels, but the tendencies for the different configurations were predicted correctly. Therefore the model can be used to optimise the serration geometry. A disadvantage of the new model is that the computational costs are significantly higher than for the Amiet model for a straight trailing edge. However, it is by decades faster than LES methods.
Noise model for serrated trailing edges compared to wind tunnel measurements
Fischer, Andreas; Bertagnolio, Franck; Shen, Wen Zhong;
2016-01-01
A new CFD RANS based method to predict the far field sound pressure emitted from an aerofoil with serrated trailing edge has been developed. The model was validated by comparison to measurements conducted in the Virginia Tech Stability Wind Tunnel. The model predicted 3 dB lower sound pressure...... levels, but the tendencies for the different configurations were predicted correctly. Therefore the model can be used to optimise the serration geometry. A disadvantage of the new model is that the computational costs are significantly higher than for the Amiet model for a straight trailing edge. However...
Wissa, Aimy; Calogero, Joseph; Wereley, Norman; Hubbard, James E; Frecker, Mary
2015-10-26
This paper presents the stability analysis of the leading edge spar of a flapping wing unmanned air vehicle with a compliant spine inserted in it. The compliant spine is a mechanism that was designed to be flexible during the upstroke and stiff during the downstroke. Inserting a variable stiffness mechanism into the leading edge spar affects its structural stability. The model for the spar-spine system was formulated in terms of the well-known Mathieu's equation, in which the compliant spine was modeled as a torsional spring with a sinusoidal stiffness function. Experimental data was used to validate the model and results show agreement within 11%. The structural stability of the leading edge spar-spine system was determined analytically and graphically using a phase plane plot and Strutt diagrams. Lastly, a torsional viscous damper was added to the leading edge spar-spine model to investigate the effect of damping on stability. Results show that for the un-damped case, the leading edge spar-spine response was stable and bounded; however, there were areas of instability that appear for a range of spine upstroke and downstroke stiffnesses. Results also show that there exist a damping ratio between 0.2 and 0.5, for which the leading edge spar-spine system was stable for all values of spine upstroke and downstroke stiffnesses.
Consistent approach to edge detection using multiscale fuzzy modeling analysis in the human retina
Mehdi Salimian
2012-06-01
Full Text Available Today, many widely used image processing algorithms based on human visual system have been developed. In this paper a smart edge detection based on modeling the performance of simple and complex cells and also modeling and multi-scale image processing in the primary visual cortex is presented. A way to adjust the parameters of Gabor filters (mathematical models of simple cells And the proposed non-linear threshold response are presented in order to Modeling of simple and complex cells. Also, due to multi-scale modeling analysis conducted in the human retina, in the proposed algorithm, all edges of the small and large structures with high precision are detected and localized. Comparing the results of the proposed method for a reliable database with conventional methods shows the higher Performance (about 4-13% and reliability of the proposed method in the detection and localization of edge.
Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan
2012-03-01
Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots, which are difficult to diagnose. Near-infrared (NIR) hyperspectral imaging is a new promising technique for early detection of demineralization which can classify healthy and pathological dental tissues. However, due to non-ideal illumination of the tooth surface the hyperspectral images can exhibit specular reflections, in particular around the edges and the ridges of the teeth. These reflections significantly affect the performance of automated classification and visualization methods. Cross polarized imaging setup can effectively remove the specular reflections, however is due to the complexity and other imaging setup limitations not always possible. In this paper, we propose an alternative approach based on modeling the specular reflections of hard dental tissues, which significantly improves the classification accuracy in the presence of specular reflections. The method was evaluated on five extracted human teeth with corresponding gold standard for 6 different healthy and pathological hard dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized regions. Principal component analysis (PCA) was used for multivariate local modeling of healthy and pathological dental tissues. The classification was performed by employing multiple discriminant analysis. Based on the obtained results we believe the proposed method can be considered as an effective alternative to the complex cross polarized imaging setups.
Island-dynamics model for mound formation: effect of a step-edge barrier.
Papac, Joe; Margetis, Dionisios; Gibou, Frederic; Ratsch, Christian
2014-08-01
We formulate and implement a generalized island-dynamics model of epitaxial growth based on the level-set technique to include the effect of an additional energy barrier for the attachment and detachment of atoms at step edges. For this purpose, we invoke a mixed, Robin-type, boundary condition for the flux of adsorbed atoms (adatoms) at each step edge. In addition, we provide an analytic expression for the requisite equilibrium adatom concentration at the island boundary. The only inputs are atomistic kinetic rates. We present a numerical scheme for solving the adatom diffusion equation with such a mixed boundary condition. Our simulation results demonstrate that mounds form when the step-edge barrier is included, and that these mounds steepen as the step-edge barrier increases.
Simulating asymmetric colloidal mixture with adhesive hard sphere model.
Jamnik, A
2008-06-21
Monte Carlo simulation and Percus-Yevick (PY) theory are used to investigate the structural properties of a two-component system of the Baxter adhesive fluids with the size asymmetry of the particles of both components mimicking an asymmetric binary colloidal mixture. The radial distribution functions for all possible species pairs, g(11)(r), g(22)(r), and g(12)(r), exhibit discontinuities at the interparticle distances corresponding to certain combinations of n and m values (n and m being integers) in the sum nsigma(1)+msigma(2) (sigma(1) and sigma(2) being the hard-core diameters of individual components) as a consequence of the impulse character of 1-1, 2-2, and 1-2 attractive interactions. In contrast to the PY theory, which predicts the delta function peaks in the shape of g(ij)(r) only at the distances which are the multiple of the molecular sizes corresponding to different linear structures of successively connected particles, the simulation results reveal additional peaks at intermediate distances originating from the formation of rigid clusters of various geometries.
Geometrical characteristics of the enlarged fused hard sphere models of simple molecules.
Boublík, Tomas
2005-10-20
The enlarged fused hard sphere model represents a compromise between fused hard sphere- and hard convex body models of repulsive interactions of nonspherical molecules. Geometric functionals of the enlarged fused hard sphere models, i.e., the hard body volume, surface area, and "mean radius" for 25 molecules of the linear and approximately planar shapes (cycloalkanes and aromatic compounds), neopentane and cyclohexane were determined from the bond lengths and bond angles and expressed in the dimensionless form. The hard sphere diameters, first approximated by the values found from the correlation of the second virial coefficients, were then adjusted to heats of vaporization of the studied compounds. Parameters of nonsphericity and molar volumes, evaluated from these characteristics, are compared with parameters of modern semiempirical equations of state (BACK, BACKONE, SAFT). The calculated geometric quantities for a series of compounds make it possible to improve methods of determining the characteristic parameters of the modern semiempirical equations of state, as well as those from the perturbation approaches.
Computer Modeling of the Surface Texture Treated by Mill with Curved Cutting Edge
M. S. Potapova
2015-01-01
Full Text Available Application of mills with a curvilinear profile of the cutting edge (often called rough end mills allows us to increase milling rate, but a roughness of the surface treated by such mills is higher, than after milling by the "ordinary" mills with the "smooth" cutting edge. Deterioration of a roughness is caused by a curvature of cutting edge. The shape and sizes of a profile are of crucial importance for forming roughness on a surface. A literary review revealed that depending on a profile of the cutting edge the roughness of the machined surface makes Ra2…12,5μm.There is a developed parametrical computer model to visualize roughness formed on a surface after milling by the fluting cutter and curved cutting edge mill. The computer model also allows a 3D chip type to be cut off from a work-piece by the mills with various cutting edge profiles. When developing the model it was assumed that the tilt angle of a cutting flute is equal 0 °, a trajectory of the tooth movement is a circle rather than a trochoidal curve.An experimental test of the model has shown that the radial beats of the mill teeth have a very significant effect on the extent of the roughness formed on the machined surface. After amendments - taking into consideration teeth beats - introduced into model the modeling error made less than 5% that can be explained by the fact that profile parameters of the cutting edge of mills embedded in the model are inaccurate because of the tilt angle the cutting flutes.The analysis of the surface model has shown that after milling the work piece has a cellular structure. Each tooth with curved cutting edge forms the cell repeating with the next turn of a mill. The adjacent teeth form identical cells displaced in the feed path with respect to the cell formed by the previous tooth by the chip load Sz. Unlike processing by the ordinary mills with the "smooth" cutting edge in this case on a surface there is a surface texture not only in the feed
Graphical Gaussian models with edge and vertex symmetries
Højsgaard, Søren; Lauritzen, Steffen L
2008-01-01
study the properties of such models and derive the necessary algorithms for calculating maximum likelihood estimates. We identify conditions for restrictions on the concentration and correlation matrices being equivalent. This is for example the case when symmetries are generated by permutation...... of variable labels. For such models a particularly simple maximization of the likelihood function is available...
Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun
2014-01-01
The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient a...
Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments
Madsen, Jens
The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite...... models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov......-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor radius effects on the radial transport of isolated plasma filaments (blobs) in the scrape-off region of fusion plasmas...
Pyramidal Edge Detection Method Based on AWFM Filtering and Fuzzy Linking Model
无
2002-01-01
A novel multiresolution pyramidal edge detector, based on adaptive weighted fuzzy mean(AWFM)filtering and fuzzy linking model, is presented in this paper. The algorithm first constructs a pyramidal structure by repetitive AWFM filtering and subsampling of original image. Then it utilizes multiple heuristic linking criteria between the edge nodes of two adjacent levels and considers the linkage as a fuzzy model, which is trained offline. Through this fuzzy linking model, the boundaries detected at coarse resolution are propagated and refined to the bottom level from the coarse-to fine edge detection. The validation experiment results demonstrate that the proposed approach has superior performance compared with standard fixed resolution detector andprevious multiresolution approach, especially in impulse noise environment.
Interchange turbulence model for the edge plasma in SOLEDGE2D-EIRENE
Bufferand, H.; Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Ciraolo, G.; Ghendrih, P.; Bucalossi, J.; Fedorczak, N.; Gunn, J.; Tamain, P. [CEA, IRFM, Saint-Paul-Lez-Durance (France); Colin, C.; Galassi, D.; Leybros, R.; Serre, E. [Aix-Marseille Universite, CNRS, M2P2, Marseille (France)
2016-08-15
Cross-field transport in edge tokamak plasmas is known to be dominated by turbulent transport. A dedicated effort has been made to simulate this turbulent transport from first principle models but the numerical cost to run these simulations on the ITER scale remains prohibitive. Edge plasma transport study relies mostly nowadays on so-called transport codes where the turbulent transport is taken into account using effective ad-hoc diffusion coefficients. In this contribution, we propose to introduce a transport equation for the turbulence intensity in SOLEDGE2D-EIRENE to describe the interchange turbulence properties. Going beyond the empirical diffusive model, this system automatically generates profiles for the turbulent transport and hence reduces the number of degrees of freedom for edge plasma transport codes. We draw inspiration from the k-epsilon model widely used in the neutral fluid community. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Aspects of modelling classical or synchronous modelling with Solid Edge ST 9
Goanta Adrian Mihai
2017-01-01
Full Text Available The current situation of the design activity is dependent on both the level of training of the human resources and the financial resources of companies required purchasing the design software packages and complex calculation equipment. Consequently, the situation is very diverse in the sense that there are design cases using only drawing software but also classical 3D or synchronous modelling situations, simple or integrated into software packages that meet the Product Lifecycle Management (PLM principles. The natural tendency in modelling and design is primarily to the high computing power integrated software or somewhat simplified versions that, however, allow at least FEA modelling, simulation and the related 2D documentation. The paper presents some aspects of modernity in synchronous modelling as compared to the classic one, made with 2016 version of Solid Edge software from SIEMENS. Basically there were studied and analysed aspects of modelling ease, speed of changes and also optimization of commands in the modelling process of the same piece in the two versions mentioned: classic and synchronous. It is also presented the alternative path from one method to another within the same process of piece modelling, depending on the advantages provided by each method. In other words, the work is based on a case study of modelling a piece under the two modelling versions of which some aspects were highlighted and conclusions were drawn.
Matérn's hard core models of types I and II with arbitrary compact grains
Kiderlen, Markus; Hörig, Mario
Matérn's classical hard core models can be interpreted as models obtained from a stationary marked Poisson process by dependent thinning. The marks are balls of fixed radius, and a point is retained when its associated ball does not hit any other balls (type I) or when its random birth time is st...... of this model with the process of intact grains of the dead leaves model and the Stienen model leads to analogous results for the latter....
Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang
2008-03-01
Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.
Pitch Wetting on Model Basal and Edge-Plane Surfaces
2004-06-04
spin coating and then utilize the films as model substrates for pitch wetting studies. Experimental Films from indanthrone disulfonate (Optiva...Inc. South San Francisco) were formed on quartz from 7.5 wt% aqueous solution either by spin coating (rotation rate: 500 rmp for 20 seconds and then...formed by spin coating (Figs. 3,4) and Meyer-bar-coating (Fig. 5) of indanthrone disulfonate aqueous solutions followed by drying and direct
Small-angle scattering from precipitates: Analysis by use of a polydisperse hard-sphere model
Pedersen, J.S.
1993-01-01
A general polydisperse hard-sphere model for analyzing small-angle-scattering data from spherical precipitates in alloys is presented. In the model the size distribution is chosen as a Weibull density distribution and the hard-sphere interaction radius is taken as being proportional to the radius...... very good fits to the experimental data and the results are in agreement with a Li content of 25% in the precipitates. The concentration of Li in the matrix is also in good agreement with the phase diagram of Al-Li found in the literature. Results from the application of a monodisperse hard-sphere...... of the precipitates. The Weibull distribution is monomodal, and depending on the parameters describing the distribution, it can skew to either side. Small-angle x-ray- and neutron-scattering data, taken from the literature, from spherical delta' precipitates in Al-Li alloys have been analyzed with the model. It gives...
A proposition of erosion algorithm for terrain models with hardness layer
Korneliusz K. Warszawski
2014-04-01
Full Text Available Processes of erosion occurring in natural environment depend on two major factors. The first is the strength of erosion force, e.g. wind, rainfall or water flow. The second is the terrain hardness or its tolerance to erosion forces. In this article we propose a method of modelling terrain erosion process where the force is uniformly distributed over the entire model with local distribution of varying terrain sensitivity. For the simulations we use two-layered terrain model. The first layer contains information about heights distribution (height-field and simulate topography of the terrain. The second layer stores data defining its hardness (hardness-field that represents different geological structures in the terrain.
A new analytical edge spread function fitting model for modulation transfer function measurement
Tiecheng Li; Huajun Feng; Zhihai Xu
2011-01-01
@@ We propose a new analytical edge spread function (ESF) fitting model to measure the modulation transfer function (MTF).The ESF data obtained from a slanted-edge image are fitted to our model through the non-linear least squares (NLLSQ) method.The differentiation of the ESF yields the line spread function (LSF), the Fourier transform of which gives the profile of two-dimensional MTF.Compared with the previous methods, the MTF estimate determined by our method conforms more closely to the reference.A practical application of our MTF measurement in degraded image restoration also validates the accuracy of our model.%We propose a new analytical edge spread function (ESF) fitting model to measure the modulation transfer function (MTF). The ESF data obtained from a slanted-edge image are fitted to our model through the non-linear least squares (NLLSQ) method. The differentiation of the ESF yields the line spread function (LSF), the Fourier transform of which gives the profile of two-dimensional MTF. Compared with the previous methods, the MTF estimate determined by our method conforms more closely to the reference. A practical application of our MTF measurement in degraded image restoration also validates the accuracy of our model.
HL-2A Tokamak Edge Modeling with B2
Pan Yudong(潘宇东); Wang Enyao(王恩耀); Liu Yi(刘仪)
2003-01-01
The outer divertor plasma of HL-2A and its associated scrape-off plasma have been simulated using a two-dimensional multi-species fluid code of Braams with a simplified neutral gas model. HL-2A has a double-null closed divertor in separate divertor chambers above and below the nearly circular plasma tours. The computed numerical grid is developed according to an ideal magnetic surface. The calculation is involved only with pure hydrogen plasma. The emphasis has been focused on parametric studies involving variation of the assumptions made for the core plasma. The peak temperatures and the heat flux near the target are of the principal concern.
Shen Lee, Chean; Zhang, Guang-Ming; Harvey, David M.; Ma, Hong-Wei; Braden, Derek R.
2016-02-01
In acoustic micro imaging of microelectronic packages, edge effect is often presented as artifacts of C-scan images, which may potentially obscure the detection of defects such as cracks and voids in the solder joints. The cause of edge effect is debatable. In this paper, a 2D finite element model is developed on the basis of acoustic micro imaging of a flip-chip package using a 230 MHz focused transducer to investigate acoustic propagation inside the package in attempt to elucidate the fundamental mechanism that causes the edge effect. A virtual transducer is designed in the finite element model to reduce the coupling fluid domain, and its performance is characterised against the physical transducer specification. The numerical results showed that the under bump metallization (UBM) structure inside the package has a significant impact on the edge effect. Simulated wavefields also showed that the edge effect is mainly attributed to the horizontal scatter, which is observed in the interface of silicon die-to-the outer radius of solder bump. The horizontal scatter occurs even for a flip-chip package without the UBM structure.
Edge-Corrected Mean-Field Hubbard Model: Principle and Applications in 2D Materials
Xi Zhang
2017-05-01
Full Text Available This work reviews the current progress of tight-binding methods and the recent edge-modified mean-field Hubbard model. Undercoordinated atoms (atoms not fully coordinated exist at a high rate in nanomaterials with their impact overlooked. A quantum theory was proposed to calculate electronic structure of nanomaterials by incorporating bond order-length-strength (BOLS correlation to mean-field Hubbard model, i.e., BOLS-HM. Consistency between the BOLS-HM calculation and density functional theory (DFT calculation on 2D materials verified that (i bond contractions and potential well depression occur at the edge of graphene, phosphorene, and antimonene nanoribbons; (ii the physical origin of the band gap opening of graphene, phosphorene, and antimonene nanoribbons lays in the enhancement of edge potentials and hopping integrals due to the shorter and stronger bonds between undercoordinated atoms; (iii the band gap of 2D material nanoribbons expand as the width decreases due to the increasing under-coordination effects of edges which modulates the conductive behaviors; and (iv non-bond electrons at the edges and atomic vacancies of 2D material accompanied with the broken bond contribute to the Dirac-Fermi polaron (DFP with a local magnetic moment.
Frustrated spin model as a hard-sphere liquid
Mostovoy, MV; Khomskii, DI; Knoester, J; Prokof'ev, NV; Prokof’ev, N.V.
2003-01-01
We show that one-dimensional topological objects (kinks) are natural degrees of freedom for an antiferromagnetic Ising model on a triangular lattice. Its ground states and the coexistence of spin ordering with an extensive zero-temperature entropy can easily be understood in terms of kinks forming a
PASĂRE Minodora Maria
2012-05-01
Full Text Available Results obtained from Vickers hardness tests were used for analytical modeling models Buckle, Jönsson, Hogmark. Ni-P electrodeposition were obtained by varying the elaboration time. The analytic models obtained by theoretical means, by applying the corresponding formulas to each model have been compared to the experimental results obtained at hardness tests.
Extension of the hard-sphere particle-wall collision model to account for particle deposition.
Kosinski, Pawel; Hoffmann, Alex C
2009-06-01
Numerical simulations of flows of fluids with granular materials using the Eulerian-Lagrangian approach involve the problem of modeling of collisions: both between the particles and particles with walls. One of the most popular techniques is the hard-sphere model. This model, however, has a major drawback in that it does not take into account cohesive or adhesive forces. In this paper we develop an extension to a well-known hard-sphere model for modeling particle-wall interactions, making it possible to account for adhesion. The model is able to account for virtually any physical interaction, such as van der Waals forces or liquid bridging. In this paper we focus on the derivation of the new model and we show some computational results.
Modelling the cutting edge radius size effect for force prediction in micro milling
Bissacco, Giuliano; Hansen, Hans Nørgaard; Jan, Slunsky
2008-01-01
This paper presents a theoretical model for cutting force prediction in micro milling, taking into account the cutting edge radius size effect, the tool run out and the deviation of the chip flow angle from the inclination angle. A parameterization according to the uncut chip thickness to cutting...
The FACETS project: integrated core-edge-wall modeling with concurrent execution
Cary, J. R.; Balay, S.; Candy, J.; Carlsson, J. A.; Cohen, R. H.; Epperly, T.; Estep, D. J.; Fahey, M. R.; Groebner, R. J.; Hakim, A. H.; Hammett, G. W.; Indireshkumar, K.; Kruger, S. E.; Maloney, A. D.; McCune, D. C.; McInnes, L.; Morris, A.; Pankin, A.; Pletzer, A.; Pigarov, A.; Rognlien, T. D.; Shasharina, S.; Shende, S.; Vadlamani, S.; Zhang, H.
2009-11-01
The multi-institutional FACETS project has the physics goals of using computation to understand of how a consistent, coupled core-edge-wall plasma evolves, including energy flow, particle recycling, and the variation of power density on divertor plates with plasma under different conditions. FACETS is being developed to take advantage of Leadership Class Facilities (LCFs), while still being able to run on laptops with reduced fidelity models. This presentation will provide a high-level overview of the project, discussing the issues of componentization, solvers, performance monitoring, testing, visualization and first physics results for core-edge coupling.
Refinement of a discontinuity-free edge-diffraction model describing focused wave fields.
Sedukhin, Andrey G
2010-03-01
Two equivalent forms of a refined discontinuity-free edge-diffraction model describing the structure of a stationary focused wave field are presented that are valid in the framework of the scalar Debye integral representation for a diffracted rotationally symmetric converging spherical wave of a limited yet not-too-low angular opening. The first form describes the field as the sum of a direct quasi-spherical wave and a plurality of edge quasi-conical waves of different orders, the optimum discontinuity-free angular spectrum functions of all the waves being dependent on the polar angle only. According to the second form, the focused field is fully characterized by only three components--the same quasi-spherical wave and two edge quasi-conical waves of the zero and first order, of which the optimum discontinuity-free angular spectrum functions are dependent on both the polar angle and the polar radius counted from the geometrical focus.
Liu, Yizhuang, E-mail: yizhuang.liu@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Nowak, Maciej A., E-mail: maciej.a.nowak@uj.edu.pl [M. Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University, PL-30348 Krakow (Poland); Zahed, Ismail, E-mail: ismail.zahed@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)
2016-08-15
We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.
Liu, Yizhuang; Zahed, Ismail
2016-01-01
We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.
Yizhuang Liu
2016-08-01
Full Text Available We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.
Jia, Xibin; Huang, Haiyong; Wang, Runyuan
2014-01-01
Edge detection has been widely used in medical image processing, automatic diagnosis, et al. A novel edge detection algorithm, based on the fusion model, is proposed by combination with the two proposed models as follows: the matrix of most probable distribution of edge point and the matrix of the difference weight of each point. The most probable distribution of edge point can be obtained by analyzing the variance among 4-connected neighborhood points around each pixel under estimation in the image to label the all candidate edge points in the image. The difference weight of each point can be gotten by analyzing the brightness difference between the neighborhood point and the under-estimating pixel to represent the probability of being edge. The two matrices gotten from the different descriptions of spatial structure are fused together and derive from the final edge image with thresholding method on the fusion matrix. The experiments are performed based on the public diabetic retinopathy database DRIVE. According to the edge images obtained, the proposed method is subjectively analyzed to be complete and close to the Ground Truth image with very low noise in comparison with the Sobel, Canny and LOG edge detectors. The F1 measure, ROC measure and PFOM measure are separately adopted to make quantitative evaluation of the proposed edge detection algorithm. Experimental results show that the proposed method is able to improve the effect of edge detection on medical images.
Modeling the transient aerodynamic effects during the motion of a flexible trailing edge
Wolff, T.; Seume, J. R.
2016-09-01
Wind turbine blades have been becoming longer and more slender during the last few decades. The longer lever arm results in higher stresses at the blade root. Hence, the unsteady loads induced by turbulence, gust, or wind shear increase. One promising way to control these loads is to use flexible trailing edges near the blade tip. The unsteady effects which appear during the motion of a flexible trailing edge must be considered for the load calculation during the design process because of their high influence on aeroelastic effects and hence on the fatigue loads. This is not yet possible in most of the wind turbine simulation environments. Consequently, an empirical model is developed in the present study which accounts for unsteady effects during the motion of the trailing edge. The model is based on Fourier analyses of results generated with Reynolds-Averaged Navier-Stokes (RANS) simulations of a typical thin airfoil with a deformable trailing edge. The validation showed that the model fits Computational Fluid Dynamics (CFD) results simulated with a random time series of the deflection angle.
Joint spectral-timing modelling of the hard lags in GX 339-4: constraints on reflection models
Cassatella, P.; Uttley, P.; Wilms, J.; Poutanen, J.
2012-01-01
The X-ray variations of hard state black hole X-ray binaries above 2 keV show ‘hard lags’, in that the variations at harder energies follow variations at softer energies, with a time lag τ depending on frequency ν approximately as τ∝ν−0.7. Several models have so far been proposed to explain this
Application of the Optimized Baxter Model to the hard-core attractive Yukawa system
Prinsen, P.; Pamies, J.C.; Odijk, Th.; Frenkel, D.
2006-01-01
We perform Monte Carlo simulations on the hard-core attractive Yukawa system to test the Optimized Baxter Model that was introduced in [P.Prinsen and T. Odijk, J. Chem. Phys. 121, p.6525 (2004)] to study a fluid phase of spherical particles interacting through a short-range pair potential. We compar
Application of the optimized Baxter model to the hard-core attractive Yukawa system
Prinsen, P.; Pàmies, J.C.; Odijk, T.; Frenkel, D.
2006-01-01
We perform Monte Carlo simulations on the hard-core attractive Yukawa system to test the optimized Baxter model that was introduced by Prinsen and Odijk [J. Chem. Phys. 121, 6525 (2004) ] to study a fluid phase of spherical particles interacting through a short-range pair potential. We compare the c
Improved bounds on the phase transition for the hard-core model in 2 dimensions
Vera, Juan C.; Vigoda, E.; Yang, L.
2015-01-01
For the hard-core lattice gas model defined on independent sets weighted by an activity $\\lambda$, we study the critical activity $\\lambda_c(\\mathbb{Z}^2)$ for the uniqueness/nonuniqueness threshold on the 2-dimensional integer lattice $\\mathbb{Z}^2$. The conjectured value of the critical activity i
Hard Copy to Digital Transfer: 3D Models that Match 2D Maps
Kellie, Andrew C.
2011-01-01
This research describes technical drawing techniques applied in a project involving digitizing of existing hard copy subsurface mapping for the preparation of three dimensional graphic and mathematical models. The intent of this research was to identify work flows that would support the project, ensure the accuracy of the digital data obtained,…
Hadron Resonance Gas Model for An Arbitrarily Large Number of Different Hard-Core Radii
Oliinychenko, D R; Sagun, V V; Ivanytskyi, A I; Yakimenko, I P; Nikonov, E G; Taranenko, A V; Zinovjev, G M
2016-01-01
We develop a novel formulation of the hadron-resonance gas model which, besides a hard-core repulsion, explicitly accounts for the surface tension induced by the interaction between the particles. Such an equation of state allows us to go beyond the Van der Waals approximation for any number of different hard-core radii. A comparison with the Carnahan-Starling equation of state shows that the new model is valid for packing fractions 0.2-0.22, while the usual Van der Waals model is inapplicable at packing fractions above 0.11-0.12. Moreover, it is shown that the equation of state with induced surface tension is softer than the one of hard spheres and remains causal at higher particle densities. The great advantage of our model is that there are only two equations to be solved and it does not depend on the various values of the hard-core radii used for different hadronic resonances. Using this novel equation of state we obtain a high-quality fit of the ALICE hadron multiplicities measured at center-of-mass ener...
Hard Copy to Digital Transfer: 3D Models that Match 2D Maps
Kellie, Andrew C.
2011-01-01
This research describes technical drawing techniques applied in a project involving digitizing of existing hard copy subsurface mapping for the preparation of three dimensional graphic and mathematical models. The intent of this research was to identify work flows that would support the project, ensure the accuracy of the digital data obtained,…
Pion Form Factor in Chiral Limit of Hard-Wall AdS/QCD Model
Anatoly Radyushkin; Hovhannes Grigoryan
2007-12-01
We develop a formalism to calculate form factor and charge density distribution of pion in the chiral limit using the holographic dual model of QCD with hard-wall cutoff. We introduce two conjugate pion wave functions and present analytic expressions for these functions and for the pion form factor. They allow to relate such observables as the pion decay constant and the pion charge electric radius to the values of chiral condensate and hard-wall cutoff scale. The evolution of the pion form factor to large values of the momentum transfer is discussed, and results are compared to existing experimental data.
Use of a Hybrid Edge Node-Centroid Node Approach to Thermal Modeling
Peabody, Hume L.
2010-01-01
A recent proposal submitted for an ESA mission required that models be delivered in ESARAD/ESATAN formats. ThermalDesktop was the preferable analysis code to be used for model development with a conversion done as the final step before delivery. However, due to some differences between the capabilities of the two codes, a unique approach was developed to take advantage of the edge node capability of ThermalDesktop while maintaining the centroid node approach used by ESARAD. In essence, two separate meshes were used: one for conduction and one for radiation. The conduction calculations were eliminated from the radiation surfaces and the capacitance and radiative calculations were eliminated from the conduction surfaces. The resulting conduction surface nodes were coincident with all nodes of the radiation surface and were subsequently merged, while the nodes along the edges remained free. Merging of nodes on the edges of adjacent surfaces provided the conductive links between surfaces. Lastly, all nodes along edges were placed into the subnetwork and the resulting supernetwork included only the nodes associated with radiation surfaces. This approach had both benefits and disadvantages. The use of centroid, surface based radiation reduces the overall size of the radiation network, which is often the most computationally intensive part of the modeling process. Furthermore, using the conduction surfaces and allowing ThermalDesktop to calculate the conduction network can save significant time by not having to manually generate the couplings. Lastly, the resulting GMM/TMM models can be exported to formats which do not support edge nodes. One drawback, however, is the necessity to maintain two sets of surfaces. This requires additional care on the part of the analyst to ensure communication between the conductive and radiative surfaces in the resulting overall network. However, with more frequent use of this technique, the benefits of this approach can far outweigh the
Inhomogeneous model colloid-polymer mixtures: adsorption at a hard wall.
Brader, J M; Dijkstra, M; Evans, R
2001-04-01
We study the equilibrium properties of inhomogeneous model colloid-polymer mixtures. By integrating out the degrees of freedom of the ideal polymer coils, we derive a formal expression for the effective one-component Hamiltonian of the (hard sphere) colloids that is valid for arbitrary external potentials acting on both the colloids and the polymers. We show how one can recover information about the distribution of polymer in the mixture given knowledge of the colloid correlation functions calculated using the effective one-component Hamiltonian. This result is then used to furnish the connection between the free-volume and perturbation theory approaches to determining the bulk phase equilibria. For the special case of a planar hard wall the effective Hamiltonian takes an explicit form, consisting of zero-, one-, and two-body, but no higher-body, contributions provided the size ratio q=sigma(p)/sigma(c)sigma(c) and sigma(p) denote the diameters of colloid and polymer respectively. We employ a simple density functional theory to calculate colloid density profiles from this effective Hamiltonian for q=0.1. The resulting profiles are found to agree well with those from Monte Carlo simulations for the same Hamiltonian. Adding very small amounts of polymer gives rise to strong depletion effects at the hard wall which lead to pronounced enhancement of the colloid density profile (close to the wall) over what is found for hard spheres at a hard wall.
Hu, Tan-Gao; Pan, Yao-Zhong; Zhang, Jin-Shui; Li, Ling-Ling; Le, Li
2011-02-01
This paper presents a new soft and hard classification. By analyzing the target objects in the image distribution, and calculating the adaptive threshold automatically, the image is divided into three regions: pure regions, non-target objects regions and mixed regions. For pure regions and non-target objects regions, hard classification method (support vector machine) is used to quickly extract classified results; For mixed regions, soft classification method (selective endmember for linear spectral mixture model) is used to extract the abundance of target objects. Finally, it generates an integrated soft and hard classification map. In order to evaluate the accuracy of this new method, it is compared with SVM and LSMM using ALOS image. The RMSE value of new method is 0.203, and total accuracy is 95.48%. Both overall accuracies and RMSE show that integration of hard and soft classification has a higher accuracy than single hard or soft classification. Experimental results prove that the new method can effectively solve the problem of mixed pixels, and can obviously improve image classification accuracy.
Franke, Markus; Golde, Sebastian; Schöpe, Hans Joachim
2014-08-07
We investigated the process of vitrification and crystallization in a model system of colloidal hard spheres. The kinetics of the solidification process was measured using time resolved static light scattering, while the time evolution of the dynamic properties was determined using time resolved dynamic light scattering. By performing further analysis we confirm that solidification of hard sphere colloids is mediated by precursors. Analyzing the dynamic properties we can show that the long time dynamics and thus the shear rigidity of the metastable melt is highly correlated with the number density of solid clusters (precursors) nucleated. In crystallization these objects convert into highly ordered crystals whereas in the case of vitrification this conversion is blocked and the system is (temporarily) locked in the metastable precursor state. From the early stages of solidification one cannot clearly conclude whether the melt will crystallize or vitrify. Furthermore our data suggests that colloidal hard sphere glasses can crystallize via homogeneous nucleation.
A MODIFIED NONLINEAR DIFFUSION MODEL AND ITS APPLICATION TO IMAGE SMOOTHING AND EDGE DETECTION
Xu Deliang; Wang Yaguang; Zhou Chuqin; Shen Haiping
2001-01-01
A modified version of the Cotte, Lions, Morel and Coil theory for image selective smoothing and edge detection is proposed. Comparing with their model, the most important advantage of this modification is that the convolution with Gaussian processes in the filtering process is replaced by solving an initial-boundary value problem for the heat equation, which simplifies the numerical scheme to some extent. Numerical experiments on natural images are presented for this model.
X-ray edge singularity in integrable lattice models of correlated electrons
Essler, F.H. [Department of Physics, Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Frahm, H. [Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany)
1997-09-01
We study the singularities in x-ray absorption spectra of one-dimensional Hubbard and t-J models. We use boundary conformal field theory and the Bethe ansatz solutions of these models with both periodic and open boundary conditions to calculate the exponents describing the power-law decay near the edges of x-ray absorption spectra in the case where the core-hole potential has bound states. {copyright} {ital 1997} {ital The American Physical Society}
Characterisation and modelling of transition edge sensor distributed read-out imaging devices
Smith, Stephen J.; Whitford, Chris H.; Fraser, George W.; Goldie, David J.
2006-04-01
We report on the experimental characterisation and modelling of Transition Edge Sensor (TES)-based Distributed Read-Out Imaging Devices (DROIDs), for use as position-sensitive detectors in X-ray astronomy. Latest experimental results from prototype DROIDs using Ir TESs with Au absorbers are reported. Through modelling and the development of signal processing algorithms we are able to design the DROID for optimum spectral and spatial resolution depending upon application.
Characterisation and modelling of transition edge sensor distributed read-out imaging devices
Smith, Stephen J. [Department of Physics and Astronomy, Space Research Centre, Leicester University, Michael Atiyah Building, University Road, Leicester, LE1 7RH (United Kingdom)]. E-mail: sts@star.le.ac.uk; Whitford, Chris H. [Department of Physics and Astronomy, Space Research Centre, Leicester University, Michael Atiyah Building, University Road, Leicester, LE1 7RH (United Kingdom); Fraser, George W. [Department of Physics and Astronomy, Space Research Centre, Leicester University, Michael Atiyah Building, University Road, Leicester, LE1 7RH (United Kingdom); Goldie, David J. [Astrophysics Group, Cavendish Laboratory, Department of Physics, Cambridge University, Madingley Road Cambridge, CB3 OHE (United Kingdom)
2006-04-15
We report on the experimental characterisation and modelling of Transition Edge Sensor (TES)-based Distributed Read-Out Imaging Devices (DROIDs), for use as position-sensitive detectors in X-ray astronomy. Latest experimental results from prototype DROIDs using Ir TESs with Au absorbers are reported. Through modelling and the development of signal processing algorithms we are able to design the DROID for optimum spectral and spatial resolution depending upon application.
ELM control with RMP: plasma response models and the role of edge peeling response
Liu, Yueqiang; Kirk, A; Li, Li; Loarte, A; Ryan, D A; Sun, Youwen; Suttrop, W; Yang, Xu; Zhou, Lina
2016-01-01
Resonant magnetic perturbations (RMP) have extensively been demonstrated as a plausible technique for mitigating or suppressing large edge localized modes (ELMs). Associated with this is a substantial amount of theory and modelling efforts during recent years. Various models describing the plasma response to the RMP fields have been proposed in the literature, and are briefly reviewed in this work. Despite their simplicity, linear response models can provide alternative criteria, than the vacuum field based criteria, for guiding the choice of the coil configurations to achieve the best control of ELMs. The role of the edge peeling response to the RMP fields is illustrated as a key indicator for the ELM mitigation in low collisionality plasmas, in various tokamak devices.
Model calculations of edge dislocation defects and vacancies in {alpha}-Iron lattice
Petrov, L; Troev, T; Nankov, N; Popov, E, E-mail: lpetrov@inrne.bas.b [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria)
2010-01-01
Two models of defects in perfect {alpha}-iron lattice were discussed. In the perfect bcc iron lattice 42x42x42 a{sub o} (a{sub o} = 2,87 A) an edge dislocation was created, moving the second half of the bulk on one a{sub o} distance. This action generates a little volume in the middle of the bulk witch increases of the positron lifetime (PLT) calculated using the superimposed-atom method of Puska and Nieminen [1]. The result of 118 ps PLT in simple edge dislocation's model is in a good concurrence with earlier publications and experimental data [2]. Through the dislocation line one, two and three vacancies were localized. These models give the results for PLT of 146, 157 and 167 ps respectively. The computer simulations were performed using Finnis-Sinclair (FS) N-body potential.
ELM control with RMP: plasma response models and the role of edge peeling response
Liu, Yueqiang; Ham, C. J.; Kirk, A.; Li, Li; Loarte, A.; Ryan, D. A.; Sun, Youwen; Suttrop, W.; Yang, Xu; Zhou, Lina
2016-11-01
Resonant magnetic perturbations (RMP) have extensively been demonstrated as a plausible technique for mitigating or suppressing large edge localized modes (ELMs). Associated with this is a substantial amount of theory and modelling efforts during recent years. Various models describing the plasma response to the RMP fields have been proposed in the literature, and are briefly reviewed in this work. Despite their simplicity, linear response models can provide alternative criteria, than the vacuum field based criteria, for guiding the choice of the coil configurations to achieve the best control of ELMs. The role of the edge peeling response to the RMP fields is illustrated as a key indicator for the ELM mitigation in low collisionality plasmas, in various tokamak devices.
Watanabe, Hiroshi; Yukawa, Satoshi; Novotny, M A; Ito, Nobuyasu
2006-08-01
We construct asymptotic arguments for the relative efficiency of rejection-free Monte Carlo (MC) methods compared to the standard MC method. We find that the efficiency is proportional to exp(constbeta) in the Ising, sqrt[beta] in the classical XY, and beta in the classical Heisenberg spin systems with inverse temperature beta, regardless of the dimension. The efficiency in hard particle systems is also obtained, and found to be proportional to (rho(cp)-rho)(-d) with the closest packing density rho(cp), density rho, and dimension d of the systems. We construct and implement a rejection-free Monte Carlo method for the hard-disk system. The RFMC has a greater computational efficiency at high densities, and the density dependence of the efficiency is as predicted by our arguments.
Ikuta, Daijo; Kono, Yoshio; Shen, Guoyin
2016-10-01
The structure of liquid aluminum is measured up to 6.9 GPa and 1773 K using a multi-angle energy-dispersive X-ray diffraction method in a Paris-Edinburgh press. The effect of pressure and temperature on the structure and density of liquid aluminum is analyzed by means of the hard sphere model. Peak positions in the structure factor of liquid aluminum show a nearly constant value with varying temperatures at ˜1-2 GPa and slightly change with varying pressures up to 6.9 GPa at 1173-1773 K. In contrast, the height of the first peak in the structure factor significantly changes with varying pressures and temperatures. Hard sphere model analysis shows that the structure of liquid aluminum in the pressure-temperature range of this study is controlled mostly by the packing fraction with only a minor change in hard sphere diameters. The obtained packing fractions and hard sphere diameters are used to calculate densities of liquid aluminum at high pressure-temperature conditions.
Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments
Madsen, Jens
2010-09-15
The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor
Thermal Edge-Effects Model for Automated Tape Placement of Thermoplastic Composites
Costen, Robert C.
2000-01-01
Two-dimensional thermal models for automated tape placement (ATP) of thermoplastic composites neglect the diffusive heat transport that occurs between the newly placed tape and the cool substrate beside it. Such lateral transport can cool the tape edges prematurely and weaken the bond. The three-dimensional, steady state, thermal transport equation is solved by the Green's function method for a tape of finite width being placed on an infinitely wide substrate. The isotherm for the glass transition temperature on the weld interface is used to determine the distance inward from the tape edge that is prematurely cooled, called the cooling incursion Delta a. For the Langley ATP robot, Delta a = 0.4 mm for a unidirectional lay-up of PEEK/carbon fiber composite, and Delta a = 1.2 mm for an isotropic lay-up. A formula for Delta a is developed and applied to a wide range of operating conditions. A surprise finding is that Delta a need not decrease as the Peclet number Pe becomes very large, where Pe is the dimensionless ratio of inertial to diffusive heat transport. Conformable rollers that increase the consolidation length would also increase Delta a, unless other changes are made, such as proportionally increasing the material speed. To compensate for premature edge cooling, the thermal input could be extended past the tape edges by the amount Delta a. This method should help achieve uniform weld strength and crystallinity across the width of the tape.
Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps
Bergami, Leonardo
This book presents the formulation of an aero-servo-elastic model for a wind turbine rotor equipped with Adaptive Trailing Edge Flaps (ATEF), a smart rotor configuration. As the name suggests, an aero-servo-elastic model consists of three main components: an aerodynamic model, a structural model......, and a control model. The book first presents an engineering type of aerodynamic model that accounts for the dynamic effects of flap deflection. The aerodynamic model is implemented in a Blade Element Momentum framework, and coupled with a multi-body structural model in the aero-servoelastic simulation code HAWC...... the trailing edge flap deflection to actively reduce the fatigue loads on the structure. The performance of the smart rotor configuration and its control algorithms are finally quantified by aero-servo-elastic simulations of the smart rotor turbine operating in a standard turbulent wind field....
2014-01-01
Comprehensive Hard Materials deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued res...
Evidence for a coherent southeastern edge of the Farallon slab window from USArray tomography models
Panessa, Alexander
Before the San Andreas Fault developed, subduction of the ancient Farallon plate dominated North America's west coast. As the Pacific-Farallon ridge reached the continent and Farallon subduction became restricted to separate regions, an area with no slab formed under southwestern North America. The northern boundary of this "slab window" is well-defined in recent high-resolution tomography models derived from USArray data, but the geometry of the southeastern edge of the slab window has received less attention. I will show that this eastern edge exists as a coherent boundary separating the subducted Cocos plate from the slab window. I adapt stage pole data for the Cocos plate into a single surface slab model designed to track the motion of the plate through time. This model of the Cocos plate geometry is consistent with recently published tomography models derived from combinations of USArray and global seismic data. The tomography results suggest the subducted slab remains intact along the southeastern edge of the Farallon slab window.
Chemical potential of a hard sphere fluid adsorbed in model disordered polydisperse matrices.
de Leon, Aned; Pizio, O; Sokołowski, S
2006-06-01
We consider a model for adsorption of a simple fluid in disordered polydisperse adsorbents. The fluid consists of hard sphere particles. On the other hand, the adsorbents of this study are modeled as a collection of hard spheres with their diameter obeying a certain distribution function. Our focus is in the evaluation of the chemical potential of the fluid immersed in such a polydisperse material. It permits us to obtain porosity and pore size distribution for the adsorbent, as well as a set of adsorption isotherms. The latter have been calculated theoretically and by grand canonical Monte Carlo simulations. We observe that the width of assumed polydispersity distribution affects all the properties of the system. Nevertheless, the effect of matrix packing is dominant in determining adsorption for this class of models. We are convinced that the matrix structures generated via more sophisticated algorithms would exhibit stronger effects of polydispersity on the entire set of properties of adsorbed simple fluids.
The high density phase of the k-NN hard core lattice gas model
Nath, Trisha; Rajesh, R.
2016-07-01
The k-NN hard core lattice gas model on a square lattice, in which the first k next nearest neighbor sites of a particle are excluded from being occupied by another particle, is the lattice version of the hard disc model in two dimensional continuum. It has been conjectured that the lattice model, like its continuum counterpart, will show multiple entropy-driven transitions with increasing density if the high density phase has columnar or striped order. Here, we determine the nature of the phase at full packing for k up to 820 302 . We show that there are only eighteen values of k, all less than k = 4134, that show columnar order, while the others show solid-like sublattice order.
Single velocity-component modeling of leading edge turbulence interaction noise.
Gill, J; Zhang, X; Joseph, P
2015-06-01
A computational aeroacoustics approach is used to predict leading edge turbulence interaction noise for real airfoils. One-component (transverse), two-component (transverse and streamwise), and three-component (transverse, streamwise, and spanwise) synthesized turbulence disturbances are modeled instead of harmonic transverse gusts, to which previous computational studies of leading edge noise have often been confined. The effects of the inclusion of streamwise and spanwise disturbances on the noise are assessed. It is shown that accurate noise predictions can be made by modeling only transverse disturbances which reduces the computational expense of simulations. The accuracy of using only transverse disturbances is assessed for symmetric and cambered airfoils, and also for airfoils at non-zero angle of attack.
Orain, François; Bécoulet, M.; Morales, J.; Huijsmans, G. T. A.; Dif-Pradalier, G.; Hoelzl, M.; Garbet, X.; Pamela, S.; Nardon, E.; Passeron, C.; Latu, G.; Fil, A.; Cahyna, P.
2015-01-01
The dynamics of a multi-edge localized mode (ELM) cycle as well as the ELM mitigation by resonant magnetic perturbations (RMPs) are modeled in realistic tokamak X-point geometry with the non-linear reduced MHD code JOREK. The diamagnetic rotation is found to be a key parameter enabling us to reproduce the cyclical dynamics of the plasma relaxations and to model the near-symmetric ELM power deposition on the inner and outer divertor target plates consistently with experimental measurements. Moreover, the non-linear coupling of the RMPs with unstable modes are found to modify the edge magnetic topology and induce a continuous MHD activity in place of a large ELM crash, resulting in the mitigation of the ELMs. At larger diamagnetic rotation, a bifurcation from unmitigated ELMs—at low RMP current—towards fully suppressed ELMs—at large RMP current—is obtained.
High beta and second region stability analysis and ICRF edge modeling
1989-01-01
This report describes the tasks accomplished under Department of Energy contract [number sign]DE-FG02-86ER53236 in modeling the edge plasma-antenna interaction that occurs during Ion Cyclotron Range of Frequency (ICRF) heating. This work has resulted in the development of several codes which determine kinetic and fluid modifications to the edge plasma. When used in combination, these code predict the level of impurity generation observed in experiments on the experiments on the Princeton Large Torus. In addition, these models suggest improvements to the design of ICRF antennas. Also described is progress made on high beta and second region analysis. Code development for a comprehensive infernal mode analysis code is nearing completion. A method has been developed for parameterizing the second region of stability and is applied to circular cross section tokamas. Various studies for high beta experimental devices such as PBX-M and DIII-D have been carried out and are reported on.
2D edge plasma modeling extended up to the main chamber
Dekeyser, W., E-mail: wouter.dekeyser@mech.kuleuven.be [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Baelmans, M. [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Reiter, D.; Boerner, P.; Kotov, V. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM-Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany)
2011-08-01
Far SOL plasma flow, and hence main chamber recycling and plasma surface interaction, are today still only very poorly described by current 2D fluid edge codes, such as B2, UEDGE or EDGE2D, due to a common technical limitation. We have extended the B2 plasma fluid solver in the current ITER version of B2-EIRENE (SOLPS4.3) to allow plasma solutions to be obtained up to the 'real vessel wall', at least on the basis of ad hoc far SOL transport models. We apply here the kinetic Monte Carlo Code EIRENE on such plasma solutions to study effects of this model refinement on main chamber fluxes and sputtering, for an ITER configuration. We show that main chamber sputtering may be significantly modified both due to thermalization of CX neutrals in the far SOL and poloidally highly asymmetric plasma wall contact, as compared to hitherto applied teleportation of particle fluxes across this domain.
The multi-state hard core model on a regular tree
Galvin, David; Ramanan, Kavita; Tetali, Prasad
2010-01-01
The classical hard core model from statistical physics, with activity $\\lambda > 0$ and capacity $C=1$, on a graph $G$, concerns a probability measure on the set ${\\mathcal I}(G)$ of independent sets of $G$, with the measure of each independent set $I \\in {\\mathcal I}(G)$ being proportional to $\\lambda^{|I|}$. Ramanan et al. proposed a generalization of the hard core model as an idealized model of multicasting in communication networks. In this generalization, the {\\em multi-state} hard core model, the capacity $C$ is allowed to be a positive integer, and a configuration in the model is an assignment of states from $\\{0,\\ldots,C\\}$ to $V(G)$ (the set of nodes of $G$) subject to the constraint that the states of adjacent nodes may not sum to more than $C$. The activity associated to state $i$ is $\\lambda^{i}$, so that the probability of a configuration $\\sigma:V(G)\\rightarrow \\{0,\\ldots, C\\}$ is proportional to $\\lambda^{\\sum_{v \\in V(G)} \\sigma(v)}$. In this work, we consider this generalization when $G$ is a...
FEMHD: An adaptive finite element method for MHD and edge modelling
Strauss, H.R.
1995-07-01
This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.
Model of Head-Positioning Error Due to Rotational Vibration of Hard Disk Drives
Matsuda, Yasuhiro; Yamaguchi, Takashi; Saegusa, Shozo; Shimizu, Toshihiko; Hamaguchi, Tetsuya
An analytical model of head-positioning error due to rotational vibration of a hard disk drive is proposed. The model takes into account the rotational vibration of the base plate caused by the reaction force of the head-positioning actuator, the relationship between the rotational vibration and head-track offset, and the sensitivity function of track-following feedback control. Error calculated by the model agrees well with measured error. It is thus concluded that this model can predict the data transfer performance of a disk drive in read mode.
Percolation model of excess electrical noise in transition-edge sensors
Lindeman, M.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)]. E-mail: lindeman@wisp.physics.wisc.edu; Anderson, M.B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bandler, S.R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bilgri, N. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Chervenak, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gwynne Crowder, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Fallows, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Figueroa-Feliciano, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Finkbeiner, F. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Iyomoto, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lai, T. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Man, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); McCammon, D. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Nelms, K.L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Porter, F.S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Rocks, L.E. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Saab, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sadleir, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Vidugiris, G. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)
2006-04-15
We present a geometrical model to describe excess electrical noise in transition-edge sensors (TESs). In this model, a network of fluctuating resistors represents the complex dynamics inside a TES. The fluctuations can cause several resistors in series to become superconducting. Such events short out part of the TES and generate noise because much of the current percolates through low resistance paths. The model predicts that excess white noise increases with decreasing TES bias resistance (R/R{sub N}) and that perpendicular zebra stripes reduce noise and alpha of the TES by reducing percolation.
Model-based schedulability analysis of safety critical hard real-time Java programs
Bøgholm, Thomas; Kragh-Hansen, Henrik; Olsen, Petur
2008-01-01
In this paper, we present a novel approach to schedulability analysis of Safety Critical Hard Real-Time Java programs. The approach is based on a translation of programs, written in the Safety Critical Java profile introduced in [21] for the Java Optimized Processor [18], to timed automata models...... has been implemented in a tool, named SARTS, successfully used to verify the schedulability of a real-time sorting machine consisting of two periodic and two sporadic tasks. SARTS has also been applied on a number of smaller examples to investigate properties of our approach.......In this paper, we present a novel approach to schedulability analysis of Safety Critical Hard Real-Time Java programs. The approach is based on a translation of programs, written in the Safety Critical Java profile introduced in [21] for the Java Optimized Processor [18], to timed automata models...
Hard state of the urban canopy layer turbulence and its self-similar multiplicative cascade models
HU; Fei; CHENG; Xueling; ZHAO; Songnian; QUAN; Lihong
2005-01-01
It is found by experiment that under the thermal convection condition, the temperature fluctuation in the urban canopy layer turbulence has the hard state character, and the temperature difference between two points has the exponential probability density function distribution. At the same time, the turbulent energy dissipation rate fits the log-normal distribution, and is in accord with the hypothesis proposed by Kolmogorov in 1962 and lots of reported experimental results. In this paper, the scaling law of hard state temperature n order structure function is educed by the self-similar multiplicative cascade models. The theory formula is Sn = n/3μ{n(n+6)/72+[2lnn!-nln2]/2ln6}, and μ Is intermittent exponent. The formula can fit the experimental results up to order 8 exponents, is superior to the predictions by the Kolmogorov theory, the β And log-normal model.
Supersolid Phase in One-Dimensional Hard-Core Boson Hubbard Model with a Superlattice Potential
GUO Huai-Ming; LIANG Ying
2008-01-01
The ground state of the one-dimensional hard-core boson Hubbard model with a superlattice potential is studied by quantum Monte Carlo methods. We demonstrate that besides the CDW phase and the Mort insulator phase, the supersolid phase emerges due to the presence of the superlattice potential, which reflects the competition with the hopping term. We also study the densities of sublattices and have a clear idea about the distribution of the bosons on the lattice.
Response surface and neural network based predictive models of cutting temperature in hard turning
Mozammel Mia
2016-11-01
Full Text Available The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM and Artificial Neural Network (ANN were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA and mean absolute percentage error (MAPE were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.
Rovibrationally Inelastic Atom-Molecule Collision Cross Sections from a Hard Sphere Model
Lashner, Jacob; Stewart, Brian
2016-05-01
Hard-shell models have long been used to elucidate the principal features of molecular energy transfer and exchange reaction in the A + BC system. Nevertheless, no three-dimensional hard-shell calculation of inelastic collision cross sections has been reported. This work aims to fill that void. A particular motivation comes from our experimental results, which show the importance of equatorial impacts in the vibrational excitation process. Working with the simple hard-sphere model, we incorporated secondary impacts, defined as those in which A strikes C after striking B. Such collisions are important in systems such as Li2 - X, in which vibrational energy transfer occurs principally through side impacts. We discuss the complexity this adds to the model and present fully three-dimensional cross sections for rovibrational excitation of an initially stationary molecule in the homonuclear A + B2 system, examining the cross section as a function of the masses and radii of the atoms. We show how the features in the cross section evolve as these parameters are varied and calculate the contribution of secondary (near-equatorial) impacts to the dynamics. We compare with recent measurements in our laboratory and with the results of quasiclassical trajectories.
MODELING THE THERMAL DIFFUSE SOFT AND HARD X-RAY EMISSION IN M17
Velazquez, P. F.; Rodriguez-Gonzalez, A.; Esquivel, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico); Rosado, M. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ap. 70-248, 04510 D.F. (Mexico); Reyes-Iturbide, J., E-mail: pablo@nucleares.unam.mx, E-mail: ary@nucleares.unam.mx, E-mail: esquivel@nucleares.unam.mx, E-mail: margarit@astro.unam.mx [LATO-DCET/Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-000 Ilheus, BA (Brazil)
2013-04-10
We present numerical models of very young wind driven superbubbles. The parameters chosen for the simulations correspond to the particular case of the M17 nebula, but are appropriate for any young superbubble in which the wind sources have not completely dispersed their parental cloud. From the simulations, we computed the diffuse emission in the soft ([0.5-1.5] keV) and hard ([1.5-5] keV) X-ray bands. The total luminosity in our simulations agrees with the observations of Hyodo et al., about two orders of magnitude below the prediction of the standard model of Weaver et al.. The difference with respect to the standard (adiabatic) model is the inclusion of radiative cooling, which is still important in such young bubbles. We show that for this type of object the diffuse hard X-ray luminosity is significant compared to that of soft X-rays, contributing as much as 10% of the total luminosity, in contrast with more evolved bubbles where the hard X-ray emission is indeed negligible, being at least four orders of magnitude lower than the soft X-ray emission.
Unified Solutions of the Hard-Core Fermi-and Bose-Hubbard Models
PAN Feng; DAI Lian-Rong
2003-01-01
A unified algebraic approach to both the hard-core Fermi- and Bose-Hubbard models is extended to boththe finite- and infinite-site with periodic condition cases. Excitation energies and the corresponding wavefunctions ofboth the models with nearest neighbor hopping are exactly derived by using a new and simple algebraic method. It isfound that spectra of both the models are determined simply by eigenvalue problem of N × N hopping matrix, where Nis the number of sites for finite system or the period of sites for infinite system.
Resistive Reduced MHD Modeling of Multi-Edge-Localized-Mode Cycles in Tokamak X -Point Plasmas
Orain, F.; Bécoulet, M.; Huijsmans, G. T. A.; Dif-Pradalier, G.; Hoelzl, M.; Morales, J.; Garbet, X.; Nardon, E.; Pamela, S.; Passeron, C.; Latu, G.; Fil, A.; Cahyna, P.
2015-01-01
The full dynamics of a multi-edge-localized-mode (ELM) cycle is modeled for the first time in realistic tokamak X -point geometry with the nonlinear reduced MHD code jorek. The diamagnetic rotation is found to be instrumental to stabilize the plasma after an ELM crash and to model the cyclic reconstruction and collapse of the plasma pressure profile. ELM relaxations are cyclically initiated each time the pedestal gradient crosses a triggering threshold. Diamagnetic drifts are also found to yield a near-symmetric ELM power deposition on the inner and outer divertor target plates, consistent with experimental measurements.
Granular mixtures modeled as elastic hard spheres subject to a drag force.
Vega Reyes, Francisco; Garzó, Vicente; Santos, Andrés
2007-06-01
Granular gaseous mixtures under rapid flow conditions are usually modeled as a multicomponent system of smooth inelastic hard disks (two dimensions) or spheres (three dimensions) with constant coefficients of normal restitution alpha{ij}. In the low density regime an adequate framework is provided by the set of coupled inelastic Boltzmann equations. Due to the intricacy of the inelastic Boltzmann collision operator, in this paper we propose a simpler model of elastic hard disks or spheres subject to the action of an effective drag force, which mimics the effect of dissipation present in the original granular gas. For each collision term ij, the model has two parameters: a dimensionless factor beta{ij} modifying the collision rate of the elastic hard spheres, and the drag coefficient zeta{ij}. Both parameters are determined by requiring that the model reproduces the collisional transfers of momentum and energy of the true inelastic Boltzmann operator, yielding beta{ij}=(1+alpha{ij})2 and zeta{ij} proportional, variant1-alpha{ij}/{2}, where the proportionality constant is a function of the partial densities, velocities, and temperatures of species i and j. The Navier-Stokes transport coefficients for a binary mixture are obtained from the model by application of the Chapman-Enskog method. The three coefficients associated with the mass flux are the same as those obtained from the inelastic Boltzmann equation, while the remaining four transport coefficients show a general good agreement, especially in the case of the thermal conductivity. The discrepancies between both descriptions are seen to be similar to those found for monocomponent gases. Finally, the approximate decomposition of the inelastic Boltzmann collision operator is exploited to construct a model kinetic equation for granular mixtures as a direct extension of a known kinetic model for elastic collisions.
贝塞尔高斯光束通过硬边光阑的衍射损耗%Losses of Bessel-Gaussian Beams Propagating through a Hard-Edge Aperture
王莉
2001-01-01
The losses Bessel-Gaussian beams, a kind of non-diffracting beam,propagating through a hard aperture are studied, and a general formula is derived. As an example of applications, numerical calculation is performed to calculate the losses of Bessel-Gaussian beams propagating through a circular aperture. The obtained results are analyzed and discussed. The proposed method can also be applied to calculation of the losses of other types of laser beams propagating through a hard-edge aperture.%对无衍射光束——贝塞尔高斯光束通过硬边光阑时的功率损耗作了研究，给出了普适的损耗公式。作为应用举例，对零阶贝塞尔高斯光束通过圆孔硬边光阑时的衍射损耗作了详细的计算。对计算结果进行了分析和讨论。该方法还可用于其它光束通过硬边光阑的衍射损耗计算。
On fluid-solid direct coexistence simulations: the pseudo-hard sphere model.
Espinosa, Jorge R; Sanz, Eduardo; Valeriani, Chantal; Vega, Carlos
2013-10-14
We investigate methodological issues concerning the direct coexistence method, an increasingly popular approach to evaluate the solid-fluid coexistence by means of computer simulations. The first issue is the impact of the simulation ensemble on the results. We compare the NpT ensemble (easy to use but approximate) with the NpzT ensemble (rigorous but more difficult to handle). Our work shows that both ensembles yield similar results for large systems (>5000 particles). Another issue, which is usually disregarded, is the stochastic character of a direct coexistence simulation. Here, we assess the impact of stochasticity in the determination of the coexistence point. We demonstrate that the error generated by stochasticity is much larger than that caused by the use of the NpT ensemble, and can be minimized by simply increasing the system size. To perform this study we use the pseudo hard-sphere model recently proposed by Jover et al. [J. Chem. Phys. 137, 144505 (2012)], and obtain a coexistence pressure of p∗ = 11.65(1), quite similar to that of hard spheres (only about 0.6% higher). Therefore, we conclude that this model can be reliably used to investigate the physics of hard spheres in phenomena like crystal nucleation.
Hard X-ray optics simulation using the coherent mode decomposition of Gaussian Schell model
Hua, Wenqiang; Song, Li; Li, Xiuhong; Wang, Jie
2013-01-01
The propagation of hard X ray beam from partially coherent synchrotron source is simulated by using the novel method based on the coherent mode decomposition of Gaussian Schell model and wave front propagation. We investigate how the coherency properties and intensity distributions of the beam are changed by propagation through optical elements. Here, we simulate and analyze the propagation of the partially coherent radiation transmitted through an ideal slit. We present the first simulations for focusing partially coherent synchrotron hard X ray beams using this novel method. And when compared with the traditional method which assumes the source is a totally coherent point source or completely incoherent, this method is proved to be more reasonable and can also demonstrate the coherence properties of the focusing beam. We also simulate the double slit experiment and the simulated results validate the academic analysis.
Resonant Compton Upscattering Models of Magnetar Hard X-ray Emission and Polarization
Baring, Matthew G.; Wadiasingh, Zorawar; Gonthier, Peter L.; Kust Harding, Alice
2017-08-01
Non-thermal quiescent X-ray emission extending between 10 keV and around 150 keV has been seen in about 10 magnetars by RXTE, INTEGRAL, Suzaku and Fermi-GBM. For inner magnetospheric models of such hard X-ray signals, resonant Compton upscattering is anticipated to be the most efficient process for generating the continuum radiation. This is because the scattering becomes resonant at the cyclotron frequency, and the effective cross section exceeds the classical Thomson value by over two orders of magnitude. We present angle-dependent hard X-ray upscattering model spectra for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These spectra are integrated over closed field lines and obtained for different observing perspectives. The spectral cut-off energies are critically dependent on the observer viewing angles and electron Lorentz factor. We find that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the observed turnovers in magnetar hard X-ray tails. Moreover, electrons of higher energy still emit most of the radiation below around 1 MeV, except for quasi-equatorial emission locales for select pulses phases. In such cases, attenuation mechanisms such as pair creation will be prolific, thereby making it difficult to observe signals extending into the Fermi-LAT band. Our spectral computations use new state-of-the-art, spin-dependent formalism for the QED Compton scattering cross section in strong magnetic fields. The emission exhibits strong polarization above around 30 keV that is anticipated to be dependent on pulse phase, thereby defining science agendas for future hard X-ray polarimeters.
Hard electronics; Hard electronics
NONE
1997-03-01
Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.
Edge Detection Model Based on Involuntary Eye Movements of the Eye-Retina System
András Róka
2007-03-01
Full Text Available Traditional edge-detection algorithms in image processing typically convolute afilter operator and the input image, and then map overlapping input image regions tooutput signals. Convolution also serves as a basis in biologically inspired (Sobel, Laplace,Canny algorithms. Recent results in cognitive retinal research have shown that ganglioncell receptive fields cover the mammalian retina in a mosaic arrangement, withinsignificant amounts of overlap in the central fovea. This means that the biologicalrelevance of traditional and widely adapted edge-detection algorithms with convolutionbasedoverlapping operator architectures has been disproved. However, using traditionalfilters with non-overlapping operator architectures leads to considerable losses in contourinformation. This paper introduces a novel, tremor-based retina model and edge-detectionalgorithm that reconciles these differences between the physiology of the retina and theoverlapping architectures used by today's widely adapted algorithms. The algorithm takesinto consideration data convergence, as well as the dynamic properties of the retina, byincorporating a model of involuntary eye tremors and the impulse responses of ganglioncells. Based on the evaluation of the model, two hypotheses are formulated on the highlydebated role of involuntary eye tremors: 1 The role of involuntary eye tremors hasinformation theoretical implications 2 From an information processing point of view, thefunctional role of involuntary eye-movements extends to more than just the maintenance ofaction potentials. Involuntary eye-movements may be responsible for the compensation ofinformation losses caused by a non-overlapping receptive field architecture. In support ofthese hypotheses, the article provides a detailed analysis of the model's biologicalrelevance, along with numerical simulations and a hardware implementation.
Scattering for mixtures of hard spheres: comparison of total scattering intensities with model.
Anderson, B J; Gopalakrishnan, V; Ramakrishnan, S; Zukoski, C F
2006-03-01
The angular dependence of the intensity of x-rays scattered from binary and ternary hard sphere mixtures is investigated and compared to the predictions of two scattering models. Mixture ratio and total volume fraction dependent effects are investigated for size ratios equal to 0.51 and 0.22. Comparisons of model predictions with experimental results indicate the significant impact of the role of particle size distributions in interpreting the angular dependence of the scattering at wave vectors probing density fluctuations intermediate between the sizes of the particles in the mixture.
The computational hardness of counting in two-spin models on d-regular graphs
Sly, Allan
2012-01-01
The class of two-spin systems contains several important models, including random independent sets and the Ising model of statistical physics. We show that for both the hard-core (independent set) model and the anti-ferromagnetic Ising model with arbitrary external field, it is NP-hard to approximate the partition function or approximately sample from the model on d-regular graphs when the model has non-uniqueness on the d-regular tree. Together with results of Jerrum--Sinclair, Weitz, and Sinclair--Srivastava--Thurley giving FPRAS's for all other two-spin systems except at the uniqueness threshold, this gives an almost complete classification of the computational complexity of two-spin systems on bounded-degree graphs. Our proof establishes that the normalized log-partition function of any two-spin system on bipartite locally tree-like graphs converges to a limiting "free energy density" which coincides with the (non-rigorous) Bethe prediction of statistical physics. We use this result to characterize the lo...
A mechanistic model for depth-dependent hardness of ion irradiated metals
Xiao, Xiazi; Chen, Qianying; Yang, Hui; Duan, Huiling; Qu, Jianmin
2017-03-01
A mechanistic model was developed for modeling the depth-dependent hardness in ion irradiated metallic materials. The model is capable of capturing the indentation size effect, ion irradiation induced damage gradient effect, and effect of unirradiated region acting as a soft substrate. A procedure was developed and described in detail to parametrize the model based on experimentally obtained hardness vs. indentation depth curves. Very good agreement was observed between our model predictions and experimental data of several different stainless steels subjected to various ion irradiation conditions. In addition, two hardening mechanisms are revealed in the new model. One is the well-known indentation size effect arising from the creation of geometrically necessary dislocations as the indenter pierces into the materials. The other is the irradiation hardening due to the presence of irradiation-induced defects. As a function of indentation depth h, the hardening due to indentation size effect is described by hbar∗ / h , while the hardening due to irradiation first follows a power law form Phn , then changes to Z / h - Q /h3 , where hbar∗ , P, n, Z and Q > 0 are constants. This transition occurs at the indentation depth when the plastic zone reaches the end of the irradiated layer.
Modeling Flare Hard X-ray Emission from Electrons in Contracting Magnetic Islands
Guidoni, Silvina E.; Allred, Joel C.; Alaoui, Meriem; Holman, Gordon D.; DeVore, C. Richard; Karpen, Judith T.
2016-05-01
The mechanism that accelerates particles to the energies required to produce the observed impulsive hard X-ray emission in solar flares is not well understood. It is generally accepted that this emission is produced by a non-thermal beam of electrons that collides with the ambient ions as the beam propagates from the top of a flare loop to its footpoints. Most current models that investigate this transport assume an injected beam with an initial energy spectrum inferred from observed hard X-ray spectra, usually a power law with a low-energy cutoff. In our previous work (Guidoni et al. 2016), we proposed an analytical method to estimate particle energy gain in contracting, large-scale, 2.5-dimensional magnetic islands, based on a kinetic model by Drake et al. (2010). We applied this method to sunward-moving islands formed high in the corona during fast reconnection in a simulated eruptive flare. The overarching purpose of the present work is to test this proposed acceleration model by estimating the hard X-ray flux resulting from its predicted accelerated-particle distribution functions. To do so, we have coupled our model to a unified computational framework that simulates the propagation of an injected beam as it deposits energy and momentum along its way (Allred et al. 2015). This framework includes the effects of radiative transfer and return currents, necessary to estimate flare emission that can be compared directly to observations. We will present preliminary results of the coupling between these models.
Transonic Drag Reduction Through Trailing-Edge Blowing on the FAST-MAC Circulation Control Model
Chan, David T.; Jones, Gregory S.; Milholen, William E., II; Goodliff, Scott L.
2017-01-01
A third wind tunnel test of the FAST-MAC circulation control semi-span model was completed in the National Transonic Facility at the NASA Langley Research Center where the model was configured for transonic testing of the cruise configuration with 0deg flap detection to determine the potential for transonic drag reduction with the circulation control blowing. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged ap. Recent upgrades to transonic semi-span flow control testing at the NTF have demonstrated an improvement to overall data repeatability, particularly for the drag measurement, that allows for increased confidence in the data results. The static thrust generated by the blowing slot was removed from the wind-on data using force and moment balance data from wind-o thrust tares. This paper discusses the impact of the trailing-edge blowing to the transonic aerodynamics of the FAST-MAC model in the cruise configuration, where at flight Reynolds numbers, the thrust-removed corrected data showed that an overall drag reduction and increased aerodynamic efficiency was realized as a consequence of the blowing.
Numerical modeling of the airflow around a forest edge using LiDAR-derived forest heigths
Boudreault, Louis-Etienne; Dellwik, Ebba; Bechmann, Andreas
to the numerical CFD model. A sensitivity analysis with regards to the resolution of the structured forest height grid obtained from the implemented digital elevation model (DEM) was carried out. CFD calculations were conducted with the forest height grid taken as input and the complete methodology results......NS) approach using the k−e turbulence model with a corresponding canopy model. The example site investigated is a forest edge located on the Falster island in Denmark, where a measurement campaign was conducted. The LiDAR scans are used in order to obtain the forest heights, which served as input...... are finally briefly compared to the wind measurements of the site with regards to the calculated wind field prediction accuracy....
Device modeling of superconductor transition edge sensors based on the two-fluid theory
Wang, Tian-Shun; Zhu, Qing-Feng; Wang, Jun-Xian; Li, Tie-Fu; Liu, Jian-She; Chen, Wei; Zhou, Xingxiang
2012-01-01
In order to support the design and study of sophisticated large scale transition edge sensor (TES) circuits, we use basic SPICE elements to develop device models for TESs based on the superfluid-normal fluid theory. In contrast to previous studies, our device model is not limited to small signal simulation, and it relies only on device parameters that have clear physical meaning and can be easily measured. We integrate the device models in design kits based on powerful EDA tools such as CADENCE and OrCAD, and use them for versatile simulations of TES circuits. Comparing our simulation results with published experimental data, we find good agreement which suggests that device models based on the two-fluid theory can be used to predict the behavior of TES circuits reliably and hence they are valuable for assisting the design of sophisticated TES circuits.
Simulations of Edge Effect in 1D Spin Crossover Compounds by Atom-Phonon Coupling Model
Linares, J.; Chiruta, D.; Jureschi, C. M.; Alayli, Y.; Turcu, C. O.; Dahoo, P. R.
2016-08-01
We used the atom-phonon coupling model to explain and illustrate the behaviour of a linear nano-chain of molecules. The analysis of the system's behaviour was performed using Free Energy method, and by applying Monte Carlo Metropolis (MCM) method which take into account the phonon contribution. In particular we tested both the MCM algorithm and the dynamic-matrix method and we expose how the thermal behaviour of a 1D spin crossover system varies as a function of different factors. Furthermore we blocked the edge atoms of the chain in its high spin state to study the effect on the system's behaviour.
Kendl, Alexander
2014-01-01
Turbulent transport of trace impurities impurities in the edge and scrape-off-layer of tokamak fusion plasmas is modelled by three dimensional electromagnetic gyrofluid computations including evolution of plasma profile gradients. The source function of impurity ions is dynamically computed from pre-determined measured and calculated electron impact ionization cross section data. The simulations describe the generation and further passive turbulent E-cross-B advection of the impurities by intermittent fluctuations and coherent filamentary structures (blobs) across the scrape-off-layer.
Model for computing kinetics of the graphene edge epitaxial growth on copper
Khenner, Mikhail
2016-06-01
A basic kinetic model that incorporates a coupled dynamics of the carbon atoms and dimers on a copper surface is used to compute growth of a single-layer graphene island. The speed of the island's edge advancement on Cu[111] and Cu[100] surfaces is computed as a function of the growth temperature and pressure. Spatially resolved concentration profiles of the atoms and dimers are determined, and the contributions provided by these species to the growth speed are discussed. Island growth under the conditions of a thermal cycling is studied.
Evidence against a three-phase point in a binary hard-core lattice model
Verberkmoes, Alain; Nienhuis, Bernard
1999-09-01
Using Monte Carlo simulation, Van Duijneveldt and Lekkerkerker [Phys. Rev. Lett. 71, 4264 (1993)] found gas-liquid-solid behavior in a simple two-dimensional lattice model with two types of hard particles. The same model is studied here by means of numerical transfer-matrix calculations, focusing on the finite-size scaling of the gaps between the largest few eigenvalues. No evidence for a gas-liquid transition is found. We discuss the relation of the model with a solvable restricted solid-on-solid model of which the states obey the same exclusion rules. Finally, a detailed analysis of the relation with the dilute three-state Potts model strongly supports the tricritical point rather than a three-phase point.
Sensitivity testing practice on pre-processing parameters in hard and soft coupled modeling
Z. Ignaszak
2010-01-01
Full Text Available This paper pays attention to the problem of practical applicability of coupled modeling with the use of hard and soft models types and necessity of adapted to that models data base possession. The data base tests results for cylindrical 30 mm diameter casting made of AlSi7Mg alloy were presented. In simulation tests that were applied the Calcosoft system with CAFE (Cellular Automaton Finite Element module. This module which belongs to „multiphysics” models enables structure prediction of complete casting with division of columnar and equiaxed crystals zones of -phase. Sensitivity tests of coupled model on the particular values parameters changing were made. On these basis it was determined the relations of CET (columnar-to-equaiaxed transition zone position influence. The example of virtual structure validation based on real structure with CET zone location and grain size was shown.
Living on the Edge: A Toy Model for Holographic Reconstruction of Algebras with Centers
Donnelly, William; Marolf, Donald; Wien, Jason
2016-01-01
We generalize the Pastawski-Yoshida-Harlow-Preskill (HaPPY) holographic quantum error-correcting code to provide a toy model for bulk gauge fields or linearized gravitons. The key new elements are the introduction of degrees of freedom on the links (edges) of the associated tensor network and their connection to further copies of the HaPPY code by an appropriate isometry. The result is a model in which boundary regions allow the reconstruction of bulk algebras with central elements living on the interior edges of the (greedy) entanglement wedge, and where these central elements can also be reconstructed from complementary boundary regions. In addition, the entropy of boundary regions receives both Ryu-Takayanagi-like contributions and further corrections that model the $\\frac{\\delta \\text{Area}}{4G_N}$ term of Faulkner, Lewkowycz, and Maldacena. Comparison with Yang-Mills theory then suggests that this $\\frac{\\delta \\text{Area}}{4G_N}$ term can be reinterpreted as a part of the bulk entropy of gravitons under...
Edge excitations in fractional Chern insulators
Luo, Wei-Wei; Chen, Wen-Chao; Wang, Yi-Fei; Gong, Chang-De
2013-10-01
Recent theoretical papers have demonstrated the realization of fractional quantum anomalous Hall states (also called fractional Chern insulators) in topological flat band lattice models without an external magnetic field. Such newly proposed lattice systems play a vital role in obtaining a large class of fractional topological phases. Here we report the exact numerical studies of edge excitations for such systems in a disk geometry loaded with hard-core bosons, which will serve as a more viable experimental probe for such topologically ordered states. We find convincing numerical evidence of a series of edge excitations characterized by the chiral Luttinger liquid theory for the bosonic fractional Chern insulators in both the honeycomb disk Haldane model and the kagome-lattice disk model. We further verify these current-carrying chiral edge states by inserting a central flux to test their compressibility.
Zhi-yong Ren; Hai-ping Wu; Jian-ming Ma; De-zhu Ma
2004-01-01
Three model polyurethane hard segments based on dimethylol butanoic acid (DMBA) and 1,6-hexane diisocyanate (HDI), toluene diisocyanate (TDI) and 4,4'-diphenylmethane diisocyanate (MDI) were prepared by the solution method.Fourier Infrared (FTIR) spectroscopy was employed to study the H-bonds in these model polyurethanes. The model polyurethane hard segment prepared from HDI and 1,4-butanodiol (BDO) was used for comparison. It was found that the H-bond but gives more H-bond patterns based on the two H-bond donors, urethane NH and carboxylic OH. The carboxylic aromatic model hard segments is stronger than that of aliphatic hard segments. The appearance of the free C = O and the fact that almost all N-H is H-bonded suggest that there possibly exist either the third H-bond acceptor or the H-bond formed by one acceptor with two donors.
Understanding of edge and screw dislocations in nanostructures by modeling and simulations
Dontsova, Evgeniya
The role of the extended dislocation defects in nanostructures only recently began to be explored. In bulk materials, dislocations are modeled only away from their cores within the framework of the continuum mechanics. It is known that applying continuum modeling in the core region leads to divergences. In nanostructures, the core region dominates and new investigation methods are needed. This work contributes to the fundamental understanding of the role of dislocations in important carbon and zinc oxide nanostructures, by using atomistic investigation methods. In quasi-zero-dimensional structures, thesis describes the first attempt to rationalize dislocation processes in carbon nano-onions. Experiments show that carbon nano-onions exhibit an unusual dislocation dynamics with unexpected attraction of outer edge dislocation towards the core. Atomistic calculations combined with rigorous energy analysis attribute this behavior to an unusual inward driving force on the outer edge dislocation associated with a reduction in the number of dangling bonds. Moving on to quasi-one-dimensional nanostructures, we study the stability of screw-dislocated zinc oxide structures in the wurtzite phase with a symmetry-adapted molecular dynamics methodology, which introduces a significant simplification in the simulation domain size by accounting for the helical symmetry explicitly. The goal is to provide the theoretical support for a universal screw-dislocation-driven growth mechanism suggested by recent experiments. Moreover, the effects of axial screw dislocations on the electronic properties in helical zinc oxide nanowires and nanotubes are explored. We demonstrate significant screw-dislocation-induced band gap modifications that originate in the highly distorted cores. Finally, using the same objective technique, we investigate the stability against torsional deformations of quasi-one-dimensional graphene nanoribbons with bare, F-, and OH-saturated armchair edges. The prevalence
A magnetic model for low/hard state of black hole binaries
Ye, Yong-Chun; Huang, Chang-Yin; Cao, Xiao-Feng
2015-01-01
A magnetic model for low/hard state (LHS) of black hole X-ray binaries (BHXBs),H1743-322 and GX 339-4, is proposed based on the transportation of magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with quasi-steady jet is modelled based on transportation of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio/X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model.
Phase behavior of polyampholytes from charged hard-sphere chain model.
Jiang, Jianwen; Feng, Jian; Liu, Honglai; Hu, Ying
2006-04-14
A molecular thermodynamic theory is developed for polyampholytes from the coarse-grained charged hard-sphere chain model. The phase behavior of polyampholytes with variations in sequence and chain length is satisfactorily predicted by the theory, consistent with simulation results and experimental observations. At a fixed chain length, the phase envelope expands as the sequence of charge distribution becomes less random. With increasing chain length, the phase envelope expands for diblock and random polyampholytes, but shrinks for zwitterionic polyampholytes. The predicted critical temperature, density, and pressure exhibit scaling relations with chain length for all the three (diblock, random, and zwitterionic) polyampholytes.
Energy spectrum and phase diagrams of two-sublattice hard-core boson model
I.V. Stasyuk
2013-06-01
Full Text Available The energy spectrum, spectral density and phase diagrams have been obtained for two-sublattice hard-core boson model in frames of random phase approximation approach. Reconstruction of boson spectrum at the change of temperature, chemical potential and energy difference between local positions in sublattices is studied. The phase diagrams illustrating the regions of existence of a normal phase which can be close to Mott-insulator (MI or charge-density (CDW phase diagrams as well as the phase with the Bose-Einstein condensate (SF phase are built.
EDGE EFFECT MODELING AND STUDY FOR THREE-CHIP RGB LIGHT-EMITTING DIODES
A. I. Podosinnikov
2015-03-01
Full Text Available Subject of study. The paper deals with light quality improvement of multi–chip RGB light-emitting diodes (LEDs and luminaries on their basis. In particular, we have studied the issues of the edge effect reducing, which is non–uniformity of color when observing the source of light under different angles as well as non-uniformity of color distribution on the illuminated surface. Methods. Experimental study of the edge effect has been performed, namely, the analysis of the halo at the periphery of the illuminated area and the non–uniformity of area at the surface of the screen illuminated with RGB LEDs with and without light concentrators. Modeling of illumination distribution at various distances from the source for the system containing four RGB LEDs with reflectors by ZEMAX software has been carried out. Assessment of the uniformity for light distribution via calculating the chromaticity coordinates has been performed. Main results. The possibility of modeling application at the stage of a luminary design is shown on the example of RGB LEDs for assessing the efficiency of light flux usage and colorimetric parameters. Suggested method simplifies significantly the design of luminaries and reduces associated costs. Practical relevance. The findings can be used in the design of luminaries based on RGB LEDs, including the ones with secondary optics elements.
Maniaci, David C.; White, Edward B.; Wilcox, Benjamin; Langel, Christopher M.; van Dam, C. P.; Paquette, Joshua A.
2016-09-01
Leading edge erosion and roughness accumulation is an issue observed with great variability by wind plant operators, but with little understanding of the effect on wind turbine performance. In wind tunnels, airfoil models are typically tested with standard grit roughness and trip tape to simulate the effects of roughness and erosion observed in field operation, but there is a lack of established relation between field measurements and wind tunnel test conditions. A research collaboration between lab, academic, and industry partners has sought to establish a method to estimate the effect of erosion in wind turbine blades that correlates to roughness and erosion measured in the field. Measurements of roughness and erosion were taken off of operational utility wind turbine blades using a profilometer. The field measurements were statistically reproduced in the wind tunnel on representative tip and midspan airfoils. Simultaneously, a computational model was developed and calibrated to capture the effect of roughness and erosion on airfoil transition and performance characteristics. The results indicate that the effects of field roughness fall between clean airfoil performance and the effects of transition tape. Severe leading edge erosion can cause detrimental performance effects beyond standard roughness. The results also indicate that a heavily eroded wind turbine blade can reduce annual energy production by over 5% for a utility scale wind turbine.
A. Tamilarasan
2014-05-01
Full Text Available The characteristic features of hard milling are variable chip thickness and intermittent cutting. Such tendency rapidly increases the tool wear and reduces the metal removal rate against the cutting temperature results poor surface finish. Therefore, the objective of this present study was to present the mathematical models for modeling and analysis on the effects of process parameters, including the feed per tooth, radial depth of cut, axial depth of cut and cutting speed on cutting temperature, tool wear and metal removal rate in hard milling of 100MnCrW4 (Type O1 tool steel using (TiN+TiAlN coated carbide inserts. A central composite rotatable design with four factors and five levels was chosen to minimize the number of experimental conditions. Further, the reduced developed models were used for multiple-response optimization by desirability function approach in order to determine the optimum cutting parameters. These optimized machining parameters are validated experimentally and the experimental and predicted values were in a good agreement with small consistent error.
Gazzillo, Domenico; Giacometti, Achille; Fantoni, Riccardo; Sollich, Peter
2006-11-01
We investigate the dependence of the stickiness parameters tij=1/(12tauij)--where the tauij are the conventional Baxter parameters--on the solute diameters sigmai and sigmaj in multicomponent sticky hard sphere (SHS) models for fluid mixtures of mesoscopic neutral particles. A variety of simple but realistic interaction potentials, utilized in the literature to model short-ranged attractions present in real solutions of colloids or reverse micelles, is reviewed. We consider: (i) van der Waals attractions, (ii) hard-sphere-depletion forces, (iii) polymer-coated colloids, and (iv) solvation effects (in particular hydrophobic bonding and attractions between reverse micelles of water-in-oil microemulsions). We map each of these potentials onto an equivalent SHS model by requiring the equality of the second virial coefficients. The main finding is that, for most of the potentials considered, the size-dependence of tij(T,sigmai,sigmaj) can be approximated by essentially the same expression, i.e., a simple polynomial in the variable sigmaisigmaj/sigmaij2, with coefficients depending on the temperature T, or--for depletion interactions--on the packing fraction eta0 of the depletant particles.
Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps
Bergami, Leonardo
2014-01-01
A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam
Briscoe, B.; Eardley, P.; Songhurst, D.; Le Faucheur, F.; Charny, A.; Liatsos, V.; Babiarz, J.; Chan, K.; Dudley, S.; Karagiannis, G.; Bader, A.; Westberg, L.; Briscoe, B.; Eardley, P.; Songhurst, D.; Le Faucheur, F.; Charny, A.; Liatsos, V.; Babiarz, J.; Chan, K.; Dudley, S.; Karagiannis, G.; Bader, A.; Westberg, L.
2006-01-01
This document describes a deployment model for pre-congestion notification (PCN) operating in a large DiffServ-based region of the Internet. PCN-based admission control protects the quality of service of existing flows in normal circumstances, whilst if necessary (eg after a large failure) pre-empti
Hard electronics; Hard electronics
NONE
1998-03-01
In the fields of power conversion devices and broadcasting/communication amplifiers, high power, high frequency and low losses are desirable. Further, for electronic elements in aerospace/aeronautical/geothermal surveys, etc., heat resistance to 500degC is required. Devices which respond to such hard specifications are called hard electronic devices. However, with Si which is at the core of the present electronics, the specifications cannot fully be fulfilled because of the restrictions arising from physical values. Accordingly, taking up new device materials/structures necessary to construct hard electronics, technologies to develop these to a level of IC were examined and studied. They are a technology to make devices/IC of new semiconductors such as SiC, diamond, etc. which can handle higher temperature, higher power and higher frequency than Si and also is possible of reducing losses, a technology to make devices of hard semiconducter materials such as a vacuum microelectronics technology using ultra-micro/high-luminance electronic emitter using negative electron affinity which diamond, etc. have, a technology to make devices of oxides which have various electric properties, etc. 321 refs., 194 figs., 8 tabs.
A model for managing edge effects in harvest scheduling using spatial optimization
Kai L. Ross; Sándor F. Tóth
2016-01-01
Actively managed forest stands can create new forest edges. If left unchecked over time and across space, forest operations such as clear-cuts can create complex networks of forest edges. Newly created edges alter the landscape and can affect many environmental factors. These altered environmental factors have a variety of impacts on forest growth and structure and can...
Improved segmentation of low-contrast lesions using sigmoid edge model.
Foruzan, Amir Hossein; Chen, Yen-Wei
2016-07-01
The intensity profile of an image in the vicinity of a tissue's boundary is modeled by a step/ramp function. However, this assumption does not hold in cases of low-contrast images, heterogeneous tissue textures, and where partial volume effect exists. We propose a hybrid algorithm for segmentation of CT/MR tumors in low-contrast, noisy images having heterogeneous/homogeneous or hyper-/hypo-intense abnormalities. We also model a smoothed noisy intensity profile by a sigmoid function and employ it to find the true location of boundary more accurately. A novel combination of the SVM, watershed, and scattered data approximation algorithms is employed to initially segment a tumor. Small and large abnormalities are treated distinctly. Next, the proposed sigmoid edge model is fitted to the normal profile of the border. The estimated parameters of the model are then utilized to find true boundary of a tissue. We extensively evaluated our method using synthetic images (contaminated with varying levels of noise) and clinical CT/MR data. Clinical images included 57 CT/MR volumes consisting of small/large tumors, very low-/high-contrast images, liver/brain tumors, and hyper-/hypo-intense abnormalities. We achieved a Dice measure of [Formula: see text] and average symmetric surface distance of [Formula: see text] mm. Regarding IBSR dataset, we fulfilled Jaccard index of [Formula: see text]. The average run-time of our code was [Formula: see text] s. Individual treatment of small and large tumors and boundary correction using the proposed sigmoid edge model can be used to develop a robust tumor segmentation algorithm which deals with any types of tumors.
Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers
Maingi, R. [North Carolina State Univ., Raleigh, NC (United States)
1992-08-01
The objective of this study is to devise a detailed description of the tokamak scrape-off-layer (SOL), which includes the best available models of both the plasma and neutral species and the strong coupling between the two in many SOL regimes. A good estimate of both particle flux and heat flux profiles at the limiter/divertor target plates is desired. Peak heat flux is one of the limiting factors in determining the survival probability of plasma-facing-components at high power levels. Plate particle flux affects the neutral flux to the pump, which determines the particle exhaust rate. A technique which couples a two-dimensional (2-D) plasma and a 2-D neutral transport code has been developed (coupled code technique), but this procedure requires large amounts of computer time. Relevant physics has been added to an existing two-neutral-species model which takes the SOL plasma/neutral coupling into account in a simple manner (molecular physics model), and this model is compared with the coupled code technique mentioned above. The molecular physics model is benchmarked against experimental data from a divertor tokamak (DIII-D), and a similar model (single-species model) is benchmarked against data from a pump-limiter tokamak (Tore Supra). The models are then used to examine two key issues: free-streaming-limits (ion energy conduction and momentum flux) and the effects of the non-orthogonal geometry of magnetic flux surfaces and target plates on edge plasma parameter profiles.
Siwabessy, P. Justy W.; Tran, Maggie; Picard, Kim; Brooke, Brendan P.; Huang, Zhi; Smit, Neil; Williams, David K.; Nicholas, William A.; Nichol, Scott L.; Atkinson, Ian
2017-05-01
Spatial information on the distribution of seabed substrate types in high use coastal areas is essential to support their effective management and environmental monitoring. For Darwin Harbour, a rapidly developing port in northern Australia, the distribution of hard substrate is poorly documented but known to influence the location and composition of important benthic biological communities (corals, sponges). In this study, we use angular backscatter response curves to model the distribution of hard seabed in the subtidal areas of Darwin Harbour. The angular backscatter response curve data were extracted from multibeam sonar data and analysed against backscatter intensity for sites observed from seabed video to be representative of "hard" seabed. Data from these sites were consolidated into an "average curve", which became a reference curve that was in turn compared to all other angular backscatter response curves using the Kolmogorov-Smirnov goodness-of-fit. The output was used to generate interpolated spatial predictions of the probability of hard seabed (p-hard) and derived hard seabed parameters for the mapped area of Darwin Harbour. The results agree well with the ground truth data with an overall classification accuracy of 75% and an area under curve measure of 0.79, and with modelled bed shear stress for the Harbour. Limitations of this technique are discussed with attention to discrepancies between the video and acoustic results, such as in areas where sediment forms a veneer over hard substrate.
Russier, V., E-mail: russier@glvt-cnrs.fr [ICMPE, UMR 7182 CNRS and University UPEC, 2 rue Henri Dunant, 94320 Thiais (France); Younsi, K.; Bessais, L. [ICMPE, UMR 7182 CNRS and University UPEC, 2 rue Henri Dunant, 94320 Thiais (France)
2012-03-15
In nanocomposite magnetic materials the exchange coupling between phases plays a central role in the determination of the extrinsic magnetic properties of the material: coercive field,remanence magnetization. Exchange coupling is therefore of crucial importance in composite systems made of magnetically hard and soft grains or in partially crystallized media including nanosized crystallites in a soft matrix. It has been shown also to be a key point in the control of stratified hard/soft media coercive field in the research for optimized recording media. A signature of the exchange coupling due to the nanostructure is generally obtained on the magnetization curve M(H) with a plateau characteristic of the domain wall compression at the hard/soft interface ending at the depinning of the wall inside the hard phase. This compression/depinning behavior is clearly evidenced through one dimensional description of the interface, which is rigorously possible only in stratified media. Starting from a local description of the hard/soft interface in a model for nanocomposite system we show that one can extend this kind of behavior for system of hard crystallites embedded in a soft matrix. - Highlights: Black-Right-Pointing-Pointer Exchange coupling between hard and soft components of a magnetic nanocomposite. Black-Right-Pointing-Pointer Connection between one dimensional stratified media and three dimensional model. Black-Right-Pointing-Pointer Investigation of the compression behavior of the local magnetization profile at the interface.
Turner, Travis L.; Moore, James B.; Long, David L.
2017-01-01
Airframe noise is a growing concern in the vicinity of airports because of population growth and gains in engine noise reduction that have rendered the airframe an equal contributor during the approach and landing phases of flight for many transport aircraft. The leading-edge-slat device of a typical high-lift system for transport aircraft is a prominent source of airframe noise. Two technologies have significant potential for slat noise reduction; the slat-cove filler (SCF) and the slat-gap filler (SGF). Previous work was done on a 2D section of a transport-aircraft wing to demonstrate the implementation feasibility of these concepts. Benchtop hardware was developed in that work for qualitative parametric study. The benchtop models were mechanized for quantitative measurements of performance. Computational models of the mechanized benchtop apparatus for the SCF were developed and the performance of the system for five different SCF assemblies is demonstrated.
Soft edge results for longest increasing paths on the planar lattice
Georgiou, Nicos
2010-01-01
For two-dimensional last-passage time models of weakly increasing paths, interesting scaling limits have been proved for points close the axis (the hard edge). For strictly increasing paths of Bernoulli($p$) marked sites, the relevant boundary is the line $y=px$. We call this the soft edge to contrast it with the hard edge. We prove laws of large numbers for the maximal cardinality of a strictly increasing path in the rectangle $[\\fl{p^{-1}n -xn^a}]\\times[n]$ as the parameters $a$ and $x$ vary. The results change qualitatively as $a$ passes through the value 1/2.
An application of the asymptotic theory to a threshold model for the estimate of Martens Hardness
Grazia Vicario
2007-10-01
Full Text Available Hardness measurements have a significant role in mechanical metrology, as they are frequently used to characterise materials properties relevant to industrial processes. A recently introduced method, called Martens Hardness, is based on force and indentation records obtained during a test cycle; the Force/Depth Curve, which describes the indetation pattern, is typically formed by two parts having a zero-point in common. A segmented regression model is proposed in this paper, based on the introduction of a threshold parameter in order to estimate the unknown zero-point. The problem is not trivial, since the relationship between observed force and indentation depth is structural and, moreover, the number of nuisance parameters grows with the number of measured data. The asymptotic likelihood theory leads to an estimate of the unknown parameters of the model. Monte Carlo simulations are resorted to in order to analyse the properties of estimators under different hypotheses about measurement errors, and to etablish the applicability conditions of the method proposed.
Analytical Modeling of Surface Roughness, Hardness and Residual Stress Induced by Deep Rolling
Magalhães, Frederico C.; Abrão, Alexandre M.; Denkena, Berend; Breidenstein, Bernd; Mörke, Tobias
2016-12-01
Deep rolling is a mechanical surface treatment that can significantly alter the features of metallic components and despite the fact that it has been used for a long time, to date the influence of the interaction among the principal process parameters has not been thoroughly understood. Aiming to fulfill this gap, this work addresses the effect of deep rolling on surface finish and mechanical properties from the analytical and experimental viewpoints. More specifically, the influence of deep rolling pressure and number of passes on surface roughness, hardness and residual stress induced on AISI 1060 steel is investigated. The findings indicate that the surface roughness after deep rolling is closely related to the yield strength of the work material and the available models can satisfactorily predict the former parameter. Better agreement between the mathematical and experimental hardness values is achieved when a single deep rolling pass is employed, as well as when the yield strength of the work material increases. Compressive residual stress is generally induced after deep rolling, irrespectively of the selected heat treatment and deep rolling parameters. Finally, the model proposed to predict residual stress provides results closest to the experimental data especially when the annealed material is considered.
Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks.
Levis, Demian; Berthier, Ludovic
2014-06-01
We introduce a kinetic Monte Carlo model for self-propelled hard disks to capture with minimal ingredients the interplay between thermal fluctuations, excluded volume, and self-propulsion in large assemblies of active particles. We analyze in detail the resulting (density, self-propulsion) nonequilibrium phase diagram over a broad range of parameters. We find that purely repulsive hard disks spontaneously aggregate into fractal clusters as self-propulsion is increased and rationalize the evolution of the average cluster size by developing a kinetic model of reversible aggregation. As density is increased, the nonequilibrium clusters percolate to form a ramified structure reminiscent of a physical gel. We show that the addition of a finite amount of noise is needed to trigger a nonequilibrium phase separation, showing that demixing in active Brownian particles results from a delicate balance between noise, interparticle interactions, and self-propulsion. We show that self-propulsion has a profound influence on the dynamics of the active fluid. We find that the diffusion constant has a nonmonotonic behavior as self-propulsion is increased at finite density and that activity produces strong deviations from Fickian diffusion that persist over large time scales and length scales, suggesting that systems of active particles generically behave as dynamically heterogeneous systems.
On Network-Error Correcting Convolutional Codes under the BSC Edge Error Model
Prasad, K
2010-01-01
Convolutional network-error correcting codes (CNECCs) are known to provide error correcting capability in acyclic instantaneous networks within the network coding paradigm under small field size conditions. In this work, we investigate the performance of CNECCs under the error model of the network where the edges are assumed to be statistically independent binary symmetric channels, each with the same probability of error $p_e$($0\\leq p_e<0.5$). We obtain bounds on the performance of such CNECCs based on a modified generating function (the transfer function) of the CNECCs. For a given network, we derive a mathematical condition on how small $p_e$ should be so that only single edge network-errors need to be accounted for, thus reducing the complexity of evaluating the probability of error of any CNECC. Simulations indicate that convolutional codes are required to possess different properties to achieve good performance in low $p_e$ and high $p_e$ regimes. For the low $p_e$ regime, convolutional codes with g...
Koda, Tomonori; Hyodo, Yosuke; Momoi, Yuichi; Kwak, Musun; Kang, Dongwoo; Choi, Youngseok; Nishioka, Akihiro; Haba, Osamu; Yonetake, Koichiro
2016-02-01
In this article, we describe the effects of an anisotropic substrate on the alignment of a nematic liquid crystal. We examine how the substrate affects the alignment of a nematic liquid crystal by Monte Carlo simulation. The liquid crystal on a substrate was described by the phase separation of liquid crystal molecules and substrate molecules, both of which were modeled by hard particles. We used hard rods to represent both the liquid crystal and the substrate. The length of the hard rods representing the substrate was adjusted to represent the degree of substrate anisotropy. The results show that the nematic alignment could either be reinforced or weakened, depending on the length of the substrate rods. Mean field theory is used to analyze the simulation results. We confirmed that the distance over which the substrate affects the bulk liquid crystal is about 3 nm for the present hard-rod-based model.
Mitarai, Namiko; Nakanishi, Hiizu
2002-01-01
Dynamical behavior of steady granular flow is investigated numerically in the inelastic hard sphere limit of the soft sphere model. We find distinctively different limiting behaviors for the two flow regimes, i.e., the collisional flow and the frictional flow. In the collisional flow, the hard sphere limit is straightforward; the number of collisions per particle per unit time converges to a finite value and the total contact time fraction with other particles goes to zero. For the frictional...
Reconstruction of binary geological images using analytical edge and object models
Abdollahifard, Mohammad J.; Ahmadi, Sadegh
2016-04-01
Reconstruction of fields using partial measurements is of vital importance in different applications in geosciences. Solving such an ill-posed problem requires a well-chosen model. In recent years, training images (TI) are widely employed as strong prior models for solving these problems. However, in the absence of enough evidence it is difficult to find an adequate TI which is capable of describing the field behavior properly. In this paper a very simple and general model is introduced which is applicable to a fairly wide range of binary images without any modifications. The model is motivated by the fact that nearly all binary images are composed of simple linear edges in micro-scale. The analytic essence of this model allows us to formulate the template matching problem as a convex optimization problem having efficient and fast solutions. The model has the potential to incorporate the qualitative and quantitative information provided by geologists. The image reconstruction problem is also formulated as an optimization problem and solved using an iterative greedy approach. The proposed method is capable of recovering the image unknown values with accuracies about 90% given samples representing as few as 2% of the original image.
Mendoza, Carlos I; Santamaría-Holek, I
2009-01-28
We propose a simple and general model accounting for the dependence of the viscosity of a hard sphere suspension at arbitrary volume fractions. The model constitutes a continuum-medium description based on a recursive-differential method where correlations between the spheres are introduced through an effective volume fraction. In contrast to other differential methods, the introduction of the effective volume fraction as the integration variable implicitly considers interactions between the spheres of the same recursive stage. The final expression for the viscosity scales with this effective volume fraction, which allows constructing a master curve that contains all the experimental situations considered. The agreement of our expression for the viscosity with experiments at low- and high-shear rates and in the high-frequency limit is remarkable for all volume fractions.
Hard diffraction at HERA in the dipole model of BFKL dynamics
Munier, S; Royon, C; Royon, Ch.
1998-01-01
Using the QCD dipole picture of the hard BFKL pomeron, we derive the general expressions of the elastic and inelastic components of the proton diffractive structure functions. We obtain a good 7 parameter fit (including a secondary reggeon contribution) to data taken at HERA by the H1 and ZEUS collaborations. The main characteristic features of the model in reproducing the data are discussed, namely the effective pomeron intercept, the scaling violations and the beta dependence. A difference obtained in the separate H1 and ZEUS fits leads us to analyse directly the differences between both measurements. Predictions on R, the ratio of longitudinal to transverse photon cross sections are performed and lead to very large values at high beta and large virtuality Q which may lead to a discrimination between models.
Temporal behaviour of the thermal model of hard X-ray bursts
Mackinnon, A. L.
1985-01-01
A simple, analytic model is presented of a hot, thermal hard X-ray source, continuously heated, bounded by ion-acoustic conduction fronts, and expanding in a loop. The model is used to investigate the assumption that the 'rise time' of the X-ray emission is approximately given by the loop length divided by the ion-sound speed appropriate to the peak temperature. It is found that a freely-expanding source does not behave in this way; instead, the rise time is symptomatic of the timescale for primary energy release. If the energy release rate does not fall significantly before the source fills the loop, however, then this assumption may be approximately satisfied, if a condition on the temporal behavior of the energy release is satisfied. Finally, some remarks on the relative timing of temperature and emission measure peaks are made, and possible further applications mentioned of the results presented herein.
Inoue, K; Ochi, H; Habara, K; Taketsuka, M; Saito, H; Ichihashi, N; Iwatsuki, K
2009-12-01
The effect of conventional continuous freezer parameters [mix flow (L/h), overrun (%), drawing temperature ( degrees C), cylinder pressure (kPa), and dasher speed (rpm)] on the hardness of ice cream under varying measured temperatures (-5, -10, and -15 degrees C) was investigated systematically using response surface methodology (central composite face-centered design), and the relationships were expressed as statistical models. The range (maximum and minimum values) of each freezer parameter was set according to the actual capability of the conventional freezer and applicability to the manufacturing process. Hardness was measured using a penetrometer. These models showed that overrun and drawing temperature had significant effects on hardness. The models can be used to optimize freezer conditions to make ice cream of the least possible hardness under the highest overrun (120%) and a drawing temperature of approximately -5.5 degrees C (slightly warmer than the lowest drawing temperature of -6.5 degrees C) within the range of this study. With reference to the structural elements of the ice cream, we suggest that the volume of overrun and ice crystal content, ice crystal size, and fat globule destabilization affect the hardness of ice cream. In addition, the combination of a simple instrumental parameter and response surface methodology allows us to show the relation between freezer conditions and one of the most important properties-hardness-visually and quantitatively on the practical level.
Analysis of soft and hard strip-loaded horns using a circular cylindrical model
Lier, Erik
1990-06-01
Strip-loaded horns with transverse (soft) and longitudinal (hard) strips are analyzed theoretically. The method is based on a circular cylindrical and uniform waveguide model with a periodic strip structure. The field is represented by an infinite series of space harmonics (Floquet modes) in the air-filled central region and in the dielectrically filled wall region. The tangential field is forced to be continuous across the air-dielectric boundary. The propagation constant and the total field (including the hybrid factor) can be determined by solving the resulting matrix equations. The convergence of the solution has been accelerated by calculating the higher-order terms analytically. It is shown that the soft-strip-loaded horn in principle exhibits the same electrical behavior as a corrugated horn. The horn represents an interesting alternative to the corrugated horn in wide-band or dual-band applications, in particular for millimeter waves and for lightweight applications onboard satellites. The hard-strip-loaded horn has potentially high gain and low cross polarization over a certain frequency range, dependent on the horn dimensions, thickness of the dielectric wall and on how strongly the stripline modes are being excited.
Improvement and extension of the generalized hard-sphere reaction probability model.
Schübler, M A; Petkow, D; Herdrich, G
2012-04-01
The GHS (Generalized Hard Sphere)-based standard reaction probability model commonly used in probabilistic particle methods is evaluated. We show that the original model has no general validity with respect to the molecular reaction. Mathematical consistency exists only for reactions with vanishing activation energy. For small energies close to the activation threshold the individual reaction probability for the special case of associative ionization of atomic nitrogen diverges. This makes the model extremely expensive, and nonphysical. An improved model is derived, and its implementation is verified on basis of the aforementioned reaction. Both models converge to the same value at large energies. The relative error of the original model with respect to the new model is independent of the particle pairing and, hence, of the reaction type. The error is smaller than 1% for collision energies in excess of 200 times the activation energy. For typical simulation problems like atmospheric high-enthalpy entry flows (assuming heavy-particle temperatures on the order of 10000 K) the relative error is in the order of 10(5)%.
Ho, K. C.; Gader, P. D.; Frigui, H.; Wilson, J. N.
2007-04-01
This paper examines the confidence level fusion of several promising algorithms for the vehiclemounted ground penetrating radar landmine detection system. The detection algorithms considered here include Edge Histogram Descriptor (EHD), Hidden Markov Model (HMM), Spectral Correlation Feature (SCF) and NUKEv6. We first form a confidence vector by collecting the confidence values from the four individual detectors. The fused confidence is assigned to be the difference in the square of the Mahalanobis distance to the non-mine class and the square of the Mahalanobis distance to the mine class. Experimental results on a data collection that contains over 1500 mine encounters indicate that the proposed fusion technique can reduce the false alarm rate by a factor of two at 90% probability of detection when compared to the best individual detector.
Kamruzzaman, M.; Lutz, Th.; Würz, W.;
2012-01-01
-layer properties such as two-point turbulent velocity correlations, the spectra of the associated wall pressure fluctuations and the emitted trailing-edge far-field noise were performed in the laminar wind tunnel of the Institute of Aerodynamics and Gas Dynamics, University of Stuttgart. The measurements were...... carried out for a NACA 643-418 airfoil, at Re = 2.5 ×106, angle of attack of −6° to 6°. Numerical results of different prediction schemes are extensively validated and discussed elaborately. The investigations on the TNO-Blake noise prediction model show that the numerical wall pressure fluctuation...... with measurements in the frequency region higher than 1 kHz, whereas they over-predict the sound pressure level in the low-frequency region. Copyright © 2011 John Wiley & Sons, Ltd....
Rognlien, Thomas; Rensink, Marvin
2016-10-01
Transport simulations for the edge plasma of tokamaks and other magnetic fusion devices requires the coupling of plasma and recycling or injected neutral gas. There are various neutral models used for this purpose, e.g., atomic fluid model, a Monte Carlo particle models, transition/escape probability methods, and semi-analytic models. While the Monte Carlo method is generally viewed as the most accurate, it is time consuming, which becomes even more demanding for device simulations of high densities and size typical of fusion power plants because the neutral collisional mean-free path becomes very small. Here we examine the behavior of an extended fluid neutral model for hydrogen that includes both atoms and molecules, which easily includes nonlinear neutral-neutral collision effects. In addition to the strong charge-exchange between hydrogen atoms and ions, elastic scattering is included among all species. Comparisons are made with the DEGAS 2 Monte Carlo code. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.
Model predictive control of trailing edge flaps on a wind turbine blade
Castaignet, Damien Bruno
, in Roskilde, Denmark. One blade of the turbine was equipped with three independent trailing edge flaps. In spite of the failure of several sensors and actuators, the test of the trailing edge flaps controller described in this thesis showed a consistent flapwise blade root fatigue load reduction. An average......Trailing edge flaps on wind turbine blades have been investigated for several years. Aero-servoelastic simulations carried out with different simulation tools, trailing edge flaps configurations and controller designs proved that trailing edge flaps are a suitable solution for reducing some...... of the wind turbine fatigue and extreme loads. This potential was confirmed with wind tunnel tests made on blade sections with trailing edge flaps and on a scaled two-bladed wind turbine in a wind tunnel. The work presented in this thesis includes a full-scale test run on a Vestas V27 wind turbine equipped...
Convective and Microwave Dryings of Raffia Fruit: Modeling and Effects on Color and Hardness
Raymond G. Elenga
2013-08-01
Full Text Available Biodiversity conservation with the improvement of living conditions requires the efficiency in use of all resources. For instance, A better exploitation of the endemic oleaginous plants of the tropical forests should mitigate the extension of the palm plantations which is one of the greatest threats of the biodiversity in this area. The raffia palm fruit contains edible oil richer in nutrients than oil palm. However, oil raffia production remains weak because entirely based on empirical methods. This study compares the effect of convective and microwave dryings on the drying kinetics, color and hardness of the raffia pulp. Moreover, four drying kinetics models and the concept of characteristic drying curve have been tested for this pulp. To this end, six drying temperatures and four power levels have been used. The results show that the drying time passes from 10 h at 40°C to 3 h at 90°C and from 30 min at 140 W to 5 min at 560 W. The results could be represented by one characteristic drying curve. Among the four models used, the Modified Khazaei model is the best. The coefficient of effective diffusivity varies from 0.63×10-10 to 3.8×10-10 m2/s for convective drying and from 10.05×10-10 to 88.5×10-10 m2/s for microwave. The activation energy is 34±2 KJ/mol. It is found that convective drying degrades the color and increases the hardness of the pulp more than microwave drying.
Hard-core thinnings of germ-grain models with power-law grain sizes
Kuronen, Mikko
2012-01-01
Random sets with long-range dependence can be generated using a Boolean model with power-law grain sizes. We study thinnings of such Boolean models which have the hard-core property that no grains overlap in the resulting germ-grain model. A fundamental question is whether long-range dependence is preserved under such thinnings. To answer this question we study four natural thinnings of a Poisson germ-grain model where the grains are spheres with a regularly varying size distribution. We show that a thinning which favors large grains preserves the slow correlation decay of the original model, whereas a thinning which favors small grains does not. Our most interesting finding concerns the case where only disjoint grains are retained, which corresponds to the well-known Mat\\'ern type I thinning. In the resulting germ-grain model, typical grains have exponentially small sizes, but rather surprisingly, the long-range dependence property is still present. As a byproduct, we obtain new mechanisms for generating hom...
Impact of the hard-coded parameters on the hydrologic fluxes of the land surface model Noah-MP
Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Attinger, Sabine; Thober, Stephan
2016-04-01
Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The process descriptions contain a number of parameters that can be soil or plant type dependent and are typically read from tabulated input files. Land surface models may have, however, process descriptions that contain fixed, hard-coded numbers in the computer code, which are not identified as model parameters. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the importance of the fixed values on restricting the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options, which are mostly spatially constant values. This is in addition to the 71 standard parameters of Noah-MP, which mostly get distributed spatially by given vegetation and soil input maps. We performed a Sobol' global sensitivity analysis of Noah-MP to variations of the standard and hard-coded parameters for a specific set of process options. 42 standard parameters and 75 hard-coded parameters were active with the chosen process options. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated. These sensitivities were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the
Edge Transport Modeling using the 3D EMC3-Eirene code on Tokamaks and Stellarators
Lore, J. D.; Ahn, J. W.; Briesemeister, A.; Ferraro, N.; Labombard, B.; McLean, A.; Reinke, M.; Shafer, M.; Terry, J.
2015-11-01
The fluid plasma edge transport code EMC3-Eirene has been applied to aid data interpretation and understanding the results of experiments with 3D effects on several tokamaks. These include applied and intrinsic 3D magnetic fields, 3D plasma facing components, and toroidally and poloidally localized heat and particle sources. On Alcator C-Mod, a series of experiments explored the impact of toroidally and poloidally localized impurity gas injection on core confinement and asymmetries in the divertor fluxes, with the differences between the asymmetry in L-mode and H-mode qualitatively reproduced in the simulations due to changes in the impurity ionization in the private flux region. Modeling of NSTX experiments on the effect of 3D fields on detachment matched the trend of a higher density at which the detachment occurs when 3D fields are applied. On DIII-D, different magnetic field models were used in the simulation and compared against the 2D Thomson scattering diagnostic. In simulating each device different aspects of the code model are tested pointing to areas where the model must be further developed. The application to stellarator experiments will also be discussed. Work supported by U.S. DOE: DE-AC05-00OR22725, DE AC02-09CH11466, DE-FC02-99ER54512, and DE-FC02-04ER54698.
A. V. Golovnev
2015-01-01
Full Text Available The calculations of the aerodynamic characteristics of the aircraft model having mechanized leading edge are conducted, and then comparing the results with experimental data. It is shown that the use of computational methods for the determination of the aerodynamic characteristics allows to deepen the results of experimental modeling in air tunnels.
Lozovoy, K. A.; Pishchagin, A. A.; Kokhanenko, A. P.; Voitsekhovskii, A. V.
2016-08-01
In this paper refining of mathematical model for calculation of parameters of selforganised quantum dots (QDs) of Ge on Si grown by the method of molecular beam epitaxy (MBE) is done. Calculations of pyramidal and wedge-like clusters formation energy were conducted with respect to contributions of surface energy, additional edge energy, elastic strain relaxation, and decrease in the atoms attraction to substrate. With the help of well-known model based on the generalization of classical nucleation theory it was shown that elongated islands emerge later than pyramidal clusters. Calculations of QDs surface density and size distribution function for wedge-like clusters with different length to width ratio were performed. The absence of special geometry of islands for which surface density and average size of islands reach points of extremum that was predicted earlier by the model not taking into account energy of edges was revealed when considering the additional contribution of edge formation energy.
Modeling the early afterglow in the short and hard GRB 090510
Fraija, Nissim; Veres, Peter; Duran, Rodolfo Barniol
2016-01-01
The bright, short and hard GRB 090510 was detected by all instruments aboard Fermi and Swift satellites. The multiwavelength observations of this burst presented similar features with the Fermi-LAT-detected gamma-ray bursts. In the framework of the external shock model of early afterglow, a leptonic scenario that evolves in a homogeneous medium is proposed to revisit GRB 090510 and explain the multiwavelength light curve observations presented in this burst. These observations are consistent with the evolution of a jet before and after the jet break. The long-lasting LAT, X-ray and optical fluxes are explained in the synchrotron emission from the adiabatic forward shock. Synchrotron self-Compton emission from the reverse shock is consistent with the bright LAT peak provided that progenitor environment is entrained with strong magnetic fields. It could provide compelling evidence of magnetic field amplification in the neutron star merger.
Modeling the Early Afterglow in the Short and Hard GRB 090510
Fraija, N.; Lee, W. H.; Veres, P.; Barniol Duran, R.
2016-11-01
The bright, short, and hard GRB 090510 was detected by all instruments aboard the Fermi and Swift satellites. The multiwavelength observations of this burst presented similar features to the Fermi-LAT-detected gamma-ray bursts. In the framework of the external shock model of early afterglow, a leptonic scenario that evolves in a homogeneous medium is proposed to revisit GRB 090510 and explain the multiwavelength light curve observations presented in this burst. These observations are consistent with the evolution of a jet before and after the jet break. The long-lasting LAT, X-ray, and optical fluxes are explained in the synchrotron emission from the adiabatic forward shock. Synchrotron self-Compton emission from the reverse shock is consistent with the bright LAT peak provided that the progenitor environment is entrained with strong magnetic fields. It could provide compelling evidence of magnetic field amplification in the neutron star merger.
Electro-Optomechanical Transduction & Quantum Hard-Sphere Model for Dissipative Rydberg-EIT Media
Zeuthen, Emil
transduction functionality into the well-established framework of electrical engineering, thereby facilitating its implementation in potential applications such as nuclear magnetic resonance imaging and radio astronomy. We consider such optomechanical sensing of weak electrical signals and discuss how...... the equivalent circuit formalism can be used to optimize the electrical circuit design. We also discuss the parameter requirements for transducing microwave photons in the quantum regime. Part II: Effective photon-photon interactions can be engineered by combining long-range Rydberg interactions between atoms....... We introduce a new approach to analyzing this challenging many-body problem in the limit of large optical depth per blockade radius. The idea is to separate the single-polariton EIT physics from the Rydberg-Rydberg interactions in a serialized manner while using a hard-sphere model for the latter...
A Fokker-Planck model of hard sphere gases based on H-theorem
Gorji, M. Hossein; Torillhon, Manuel
2016-11-01
It has been shown recently that the Fokker-Planck kinetic model can be employed as an approximation of the Boltzmann equation for rarefied gas flow simulations [4, 5, 10]. Similar to the direct simulation Monte-Carlo (DSMC), the Fokker-Planck solution algorithm is based on the particle Monte-Carlo representation of the distribution function. Yet opposed to DSMC, here the particles evolve along independent stochastic paths where no collisions need to be resolved. This leads to significant computational advantages over DSMC, considering small Knudsen numbers [10]. The original Fokker-Planck model (FP) for rarefied gas flow simulations was devised according to the Maxwell type pseudo-molecules [4, 5]. In this paper a consistent Fokker-Planck equation is derived based on the Boltzmann collision integrals and maximum entropy distribution. Therefore the resulting model fulfills the H-theorem and leads to correct relaxation of velocity moments up to heat fluxes consistent with hard sphere interactions. For assessment of the model, simulations are performed for Mach 5 flow around a vertical plate using both Fokker-Planck and DSMC simulations. Compared to the original FP model, significant improvements are achieved at high Mach flows.
Bruckner, M. Z.; Macdonald, H.; Beane, R. J.; Manduca, C. A.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.; Wiese, K.; Wysession, M. E.; Iverson, E. A. R.; Fox, S.
2015-12-01
The On the Cutting Edge (CE) program offers a successful model for designing and convening professional development events. Information about the model is now available on the CE website. The program model has evolved from more than 12 years of experience, building with input from strong leaders and participants. CE offers face-to-face, virtual, and hybrid events, and features a rich website that supports these professional development events as well as a growing community with a shared interest in effective geoscience teaching. Data from national surveys, participant feedback, and self-report data indicate the program's success in improving undergraduate geoscience education. Successes are also demonstrated in classroom observations using RTOP, indicating a significant difference in teaching style among participants and non-participants. A suite of web pages, with a planning timeline, provides guidance to those interested in designing and convening face-to-face or virtual events based on the CE model. The pages suggest ways to develop robust event goals and evaluation tools, how to choose strong leaders and recruit diverse participants, advice for designing effective event programs that utilize participant expertise, websites, and web tools, and suggestions for effectively disseminating event results and producing useful products. The CE model has been successfully transferred to projects that vary in scale and discipline. Best practices from the CE model include (1) thinking of the workshop as shared enterprise among conveners and participants; (2) incorporating conveners and participants who bring diverse viewpoints and approaches; (3) promoting structured discussions that utilize participants' expertise; (4) emphasizing practical strategies to effect change; and (5) using the website as a platform to prepare for the workshop, share ideas, and problem-solve challenges. Learn more about how to utilize this model for your project at:serc.carleton.edu/NAGTWorkshops/workshops/convene
Henriksen, Lars Christian; Bergami, Leonardo; Andersen, Peter Bjørn
2013-01-01
This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model......-based controller. The combined control approach allow to achieve higher load alleviations, furthermore, in the presence of e.g. deterioration of an actuator, it enables an online re-tuning of the workload distribution of blade pitch and trailing edge flaps, thus potentially increasing the smart rotor reliability....
This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model......-based controller. The combined control approach allow to achieve higher load alleviations, furthermore, in the presence of e.g. deterioration of an actuator, it enables an online re-tuning of the workload distribution of blade pitch and trailing edge flaps, thus potentially increasing the smart rotor reliability....
Modeling of transient dust events in fusion edge plasmas with DUSTT-UEDGE code
Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.
2016-10-01
It is well known that dust can be produced in fusion devices due to various processes involving structural damage of plasma exposed materials. Recent computational and experimental studies have demonstrated that dust production and associated with it plasma contamination can present serious challenges in achieving sustained fusion reaction in future fusion devices, such as ITER. To analyze the impact, which dust can have on performance of fusion plasmas, modeling of coupled dust and plasma transport with DUSTT-UEDGE code is used by the authors. In past, only steady-state computational studies, presuming continuous source of dust influx, were performed due to iterative nature of DUSTT-UEDGE code coupling. However, experimental observations demonstrate that intermittent injection of large quantities of dust, often associated with transient plasma events, may severely impact fusion plasma conditions and even lead to discharge termination. In this work we report on progress in coupling of DUSTT-UEDGE codes in time-dependent regime, which allows modeling of transient dust-plasma transport processes. The methodology and details of the time-dependent code coupling, as well as examples of simulations of transient dust-plasma transport phenomena will be presented. These include time-dependent modeling of impact of short out-bursts of different quantities of tungsten dust in ITER divertor on the edge plasma parameters. The plasma response to the out-bursts with various duration, location, and ejected dust sizes will be analyzed.
A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation
Liu, Yang
2010-03-01
We propose an efficient scheme to absorb reflections from the model boundaries in numerical solutions of wave equations. This scheme divides the computational domain into boundary, transition, and inner areas. The wavefields within the inner and boundary areas are computed by the wave equation and the one-way wave equation, respectively. The wavefields within the transition area are determined by a weighted combination of the wavefields computed by the wave equation and the one-way wave equation to obtain a smooth variation from the inner area to the boundary via the transition zone. The results from our finite-difference numerical modeling tests of the 2D acoustic wave equation show that the absorption enforced by this scheme gradually increases with increasing width of the transition area. We obtain equally good performance using pseudospectral and finite-element modeling with the same scheme. Our numerical experiments demonstrate that use of 10 grid points for absorbing edge reflections attains nearly perfect absorption. © 2010 Society of Exploration Geophysicists.
Models for Flare Statistics and the Waiting-time Distribution of Solar Flare Hard X-ray Bursts
Wheatland, M. S.; Edney, S. D.
1999-12-01
In a previous study (Wheatland, Sturrock, McTiernan 1998), a waiting-time distribution was constructed for solar flare hard X-ray bursts observed by the ICE/ISEE-3 spacecraft. A comparison of the observed distribution with that of a time-dependent Poisson process indicated an overabundance of short waiting times (10~s -- 10~min), implying that the hard X-ray bursts are not independent events. Models for flare statistics assume or predict that flares are independent events -- in particular the avalanche model makes this specific prediction. The results of the previous study may be reconciled with the avalanche picture if individual flares produce several distinct bursts of hard X-ray emission. A detailed comparison of the avalanche model and the ICE/ISEE-3 waiting-time distribution is presented here.
Neto, A.; Cavallo, D.; Gerini, G.
2011-01-01
This paper presents a Green's function based procedure to assess edge effects in finite wideband connected arrays. Truncation effects are more severe in broadband arrays, since the inter-element mutual coupling facilitates the propagation of edge-born waves that can become dominant over large portio
Petrosian, Vahé; Chen, Qingrong
2010-04-01
The model of stochastic acceleration of particles by turbulence has been successful in explaining many observed features of solar flares. Here, we demonstrate a new method to obtain the accelerated electron spectrum and important acceleration model parameters from the high-resolution hard X-ray (HXR) observations provided by RHESSI. In our model, electrons accelerated at or very near the loop top (LT) produce thin target bremsstrahlung emission there and then escape downward producing thick target emission at the loop footpoints (FPs). Based on the electron flux spectral images obtained by the regularized spectral inversion of the RHESSI count visibilities, we derive several important parameters for the acceleration model. We apply this procedure to the 2003 November 3 solar flare, which shows an LT source up to 100-150 keV in HXR with a relatively flat spectrum in addition to two FP sources. The results imply the presence of strong scattering and a high density of turbulence energy with a steep spectrum in the acceleration region.
Hard-sphere perturbation theory for a model of liquid Ga.
Tsai, K H; Wu, Ten-Ming
2008-07-14
Investigating thermodynamic properties of a model for liquid Ga, we have extended the application of the hard-sphere (HS) perturbation theory to an interatomic pair potential that possesses a soft repulsive core and a long-range oscillatory part. The model is interesting for displaying a discontinuous jump on the main-peak position of the radial distribution function at some critical density. At densities less than this critical value, the effective HS diameter of the model, estimated by the variational HS perturbation theory, has a substantial reduction with increasing density. Thus, the density dependence of the packing fraction of the HS reference fluid has an anomalous behavior, with a negative slope, within a density region below the critical density. By adding a correction term originally proposed by Mon to remedy the inherent deficiency of the HS perturbation theory, the extended Mansoori-Canfield/Rasaiah-Stell theory [J. Chem. Phys. 120, 4844 (2004)] very accurately predicts the Helmholtz free energy and entropy of the model, including an excess entropy anomaly. Almost occurring in the same density region, the excess entropy anomaly is found to be associated with the anomalous packing faction of the HS fluid.
Virrueta, A.; Gaines, J.; O'Hern, C. S.; Regan, L.
2015-03-01
Current research in the O'Hern and Regan laboratories focuses on the development of hard-sphere models with stereochemical constraints for protein structure prediction as an alternative to molecular dynamics methods that utilize knowledge-based corrections in their force-fields. Beginning with simple hydrophobic dipeptides like valine, leucine, and isoleucine, we have shown that our model is able to reproduce the side-chain dihedral angle distributions derived from sets of high-resolution protein crystal structures. However, methionine remains an exception - our model yields a chi-3 side-chain dihedral angle distribution that is relatively uniform from 60 to 300 degrees, while the observed distribution displays peaks at 60, 180, and 300 degrees. Our goal is to resolve this discrepancy by considering clashes with neighboring residues, and averaging the reduced distribution of allowable methionine structures taken from a set of crystallized proteins. We will also re-evaluate the electron density maps from which these protein structures are derived to ensure that the methionines and their local environments are correctly modeled. This work will ultimately serve as a tool for computing side-chain entropy and protein stability. A. V. is supported by an NSF Graduate Research Fellowship and a Ford Foundation Fellowship. J. G. is supported by NIH training Grant NIH-5T15LM007056-28.
Mustafa Ucgul
2015-09-01
Full Text Available The energy required for tillage processes accounts for a significant proportion of total energy used in crop production. In many tillage processes decreasing the draft and upward vertical forces is often desired for reduced fuel use and improved penetration, respectively. Recent studies have proved that the discrete element modelling (DEM can effectively be used to model the soil–tool interaction. In his study, Fielke (1994 [1] examined the effect of the various tool cutting edge geometries, namely; cutting edge height, length of underside rub, angle of underside clearance, on draft and vertical forces. In this paper the experimental parameters of Fielke (1994 [1] were simulated using 3D discrete element modelling techniques. In the simulations a hysteretic spring contact model integrated with a linear cohesion model that considers the plastic deformation behaviour of the soil hence provides better vertical force prediction was employed. DEM parameters were determined by comparing the experimental and simulation results of angle of repose and penetration tests. The results of the study showed that the simulation results of the soil-various tool cutting edge geometries agreed well with the experimental results of Fielke (1994 [1]. The modelling was then used to simulate a further range of cutting edge geometries to better define the effect of sweep tool cutting edge geometry parameters on tillage forces. The extra simulations were able to show that by using a sharper cutting edge with zero vertical cutting edge height the draft and upward vertical force were further reduced indicating there is benefit from having a really sharp cutting edge. The extra simulations also confirmed that the interpolated trends for angle of underside clearance as suggested by Fielke (1994 [1] where correct with a linear reduction in draft and upward vertical force for angle of underside clearance between the ranges of −25 and −5°, and between −5 and 0°. The
Li, Lifeng
2012-04-01
I extend a previous work [J. Opt. Soc. Am. A, 738 (2011)] on field singularities at lossless metal-dielectric right-angle edges and their ramifications to the numerical modeling of gratings to the case of arbitrary metallic wedge angles. Simple criteria are given that allow one knowing the lossless permittivities and the arbitrary wedge angles to determine if the electric field at the edges is nonsingular, can be regularly singular, or can be irregularly singular without calculating the singularity exponent. Furthermore, the knowledge of the singularity type enables one to predict immediately if a numerical method that uses Fourier expansions of the transverse electric field components at the edges will converge or not without making any numerical tests. All conclusions of the previous work about the general relationships between field singularities, Fourier representation of singular fields, and convergence of numerical methods for modeling lossless metal-dielectric gratings have been reconfirmed.
The Widom-Rowlinson model, the hard-core model and the extremality of the complete graph
Cohen, Emma; Csikvári, Péter; Perkins, Will; Tetali, Prasad
2016-01-01
Let $H_{\\mathrm{WR}}$ be the path on $3$ vertices with a loop at each vertex. D. Galvin conjectured, and E. Cohen, W. Perkins and P. Tetali proved that for any $d$-regular simple graph $G$ on $n$ vertices we have $$\\hom(G,H_{\\mathrm{WR}})\\leq \\hom(K_{d+1},H_{\\mathrm{WR}})^{n/(d+1)}.$$ In this paper we give a short proof of this theorem together with the proof of a conjecture of Cohen, Perkins and Tetali. Our main tool is a simple bijection between the Widom-Rowlinson model and the hard-core m...
Azizi, Mohamed Walid; Belhadi, Salim; Yallese, Mohamed Athmane [Univ. of Guelma, Guelma (Algeria); Mabrouki, Tarek; Rigal, Jean Francois [Univ. of Lyon, Lyon (France)
2012-12-15
An experimental investigation was conducted to analyze the effect of cutting parameters (cutting speed, feed rate and depth of cut) and workpiece hardness on surface roughness and cutting force components. The finish hard turning of AISI 52100 steel with coated Al2O3 + TiC mixed ceramic cutting tools was studied. The planning of experiment were based on Taguchi's L27 orthogonal array. The response table and analysis of variance (ANOVA) have allowed to check the validity of linear regression model and to determine the significant parameters affecting the surface roughness and cutting forces. The statistical analysis reveals that the feed rate, workpiece hardness and cutting speed have significant effects in reducing the surface roughness; whereas the depth of cut, workpiece hardness and feed rate are observed to have a statistically significant impact on the cutting force components than the cutting speed. Consequently, empirical models were developed to correlate the cutting parameters and workpiece hardness with surface roughness and cutting forces. The optimum machining conditions to produce the lowest surface roughness with minimal cutting force components under these experimental conditions were searched using desirability function approach for multiple response factors optimization. Finally, confirmation experiments were performed to verify the pertinence of the developed empirical models.
Vimla Vyas
2008-04-01
Speeds of sound and densities of three ternary liquid systems namely, toluene + -heptane + -hexane (I), cyclohexane + -heptane + -hexane (II) and -hexane + - heptane + -decane (III) have been measured as a function of the composition at 298.15 K at atmospheric pressure. The experimental isothermal compressibility has been evaluated from measured values of speeds of sound and density. The isothermal compressibility of these mixtures has also been computed theoretically using different models for hard sphere equations of state and Flory's statistical theory. Computed values of isothermal compressibility have been compared with experimental findings. A satisfactory agreement has been observed. The superiority of Flory's statistical theory has been established quite reasonably over hard sphere models.
Boolean operations of STL models based on edge-facet intersection
无
2007-01-01
For the data processing of the Rapid Prototyping Manufacturing, Boolean operation can offer a versatile tool for editing or modifying the STL model, adding the artificial construction, and creating the complex assistant support structure to meet the special technical requests. The topological structure of STL models was built firstly in order to obtain the neighborhood relationship among the triangular facets. The intersection test between every edge of one solid and every facet of another solid Was taken to get the intersection points. According to the matching relationship of the triangle index recorded in the data structure of the intersection points, the intersection segments array and the intersection loop were traced out. Each intersected triangle was subdivided by the Constrained Delaunay Triangulations. The intersected surfaces were divided into several surface patches along the intersection loops. The inclusion prediction between the surface patch and the other solid was taken by testing whether the candidate point Was inside or outside the solid region of the slice. Detecting the loops for determination of the valid intersection lines greatly increases the efficiency and the reliability of the process.
Modeling Shock Train Leading Edge Detection in Dual-Mode Scramjets
Ladeinde, Foluso; Lou, Zhipeng; Li, Wenhai
2016-11-01
The objective of this study is to accurately model the detection of shock train leading edge (STLE) in dual-mode scramjet (DMSJ) engines intended for hypersonic flight in air-breathing propulsion systems. The associated vehicles have applications in military warfare and intelligence, and there is commercial interest as well. Shock trains are of interest because they play a significant role in the inability of a DMSJ engine to develop the required propulsive force. The experimental approach to STLE detection has received some attention; as have numerical calculations. However, virtually all of the numerical work focus on mechanically- (i.e., pressure-) generated shock trains, which are much easier to model relative to the phenomenon in the real system where the shock trains are generated by combustion. A focus on combustion, as in the present studies, enables the investigation of the effects of equivalence ratio, which, together with the Mach number, constitutes an important parameter determining mode transition. The various numerical approaches implemented in our work will be reported, with result comparisons to experimental data. The development of an STLE detection procedure in an a priori manner will also be discussed.
The Development of an IT Governance Maturity Model for Hard and Soft Governance
Smits, D.; Hillegersberg, van J.; Devos, Jan; DeHaes, Steven
2014-01-01
To be able to advance in maturity, organizations should pay attention to both the hard and soft aspects of governance. Current literature on IT governance (ITG) is mostly directed at the hard part of governance, focusing on structures and processes. The soft part of governance is related to social a
A Coupled Thermo-Hydro-Mechanical Model of Jointed Hard Rock for Compressed Air Energy Storage
Xiaoying Zhuang
2014-01-01
Full Text Available Renewable energy resources such as wind and solar are intermittent, which causes instability when being connected to utility grid of electricity. Compressed air energy storage (CAES provides an economic and technical viable solution to this problem by utilizing subsurface rock cavern to store the electricity generated by renewable energy in the form of compressed air. Though CAES has been used for over three decades, it is only restricted to salt rock or aquifers for air tightness reason. In this paper, the technical feasibility of utilizing hard rock for CAES is investigated by using a coupled thermo-hydro-mechanical (THM modelling of nonisothermal gas flow. Governing equations are derived from the rules of energy balance, mass balance, and static equilibrium. Cyclic volumetric mass source and heat source models are applied to simulate the gas injection and production. Evaluation is carried out for intact rock and rock with discrete crack, respectively. In both cases, the heat and pressure losses using air mass control and supplementary air injection are compared.
Inference in Graphical Gaussian Models with Edge and Vertex Symmetries with the gRc Package for R
Højsgaard, Søren; Lauritzen, Steffen L
2007-01-01
In this paper we present the R package gRc for statistical inference in graphical Gaussian models in which symmetry restrictions have been imposed on the concentration or partial correlation matrix. The models are represented by coloured graphs where parameters associated with edges or vertices o...... of same colour are restricted to being identical. We describe algorithms for maximum likelihood estimation and discuss model selection issues. The paper illustrates the practical use of the gRc package......In this paper we present the R package gRc for statistical inference in graphical Gaussian models in which symmetry restrictions have been imposed on the concentration or partial correlation matrix. The models are represented by coloured graphs where parameters associated with edges or vertices...
Evaluation and Modeling of Edge-Seal Materials for Photovoltaic Applications
Kempe, M. D.; Dameron, A. A.; Moricone, T. J.; Reese, M. O.
2011-02-01
Because of the sensitivity of some photovoltaic devices to moisture-induced corrosion, they are packaged using impermeable front- and back-sheets along with an edge seal to prevent moisture ingress. Evaluation of edge seal materials can be difficult because of the low permeation rates involved and/or non-Fickian behavior. Here, using a Ca film deposited on a glass substrate, we demonstrate the evaluation of edge seal materials in a manner that effectively duplicates their use in a photovoltaic application and compare the results with standard methods for measuring water vapor transport. We demonstrate how moisture permeation data from polymer films can be used to estimate moisture ingress rates and compare the results of these two methods. Encapsulant materials were also evaluated for comparison and to highlight the need for edge seals. Of the materials studied, desiccant filled polyisobutylene materials demonstrate by far the best potential to keep moisture out for a 20 to 30 year lifetime.
Bocquet, L
2006-01-01
We show that the baking of potato wedges constitutes a crunchy example of edge effects, which are usually demonstrated in electrostatics. A simple model of the diffusive transport of water vapor around the potato wedges shows that the water vapor flux diverges at the sharp edges in analogy with its electrostatic counterpart. This increased evaporation at the edges leads to the crispy taste of these parts of the potatoes.
Bocquet, Lydéric
2007-02-01
We show that the baking of potato wedges constitutes a crunchy example of edge effects, which are usually demonstrated in electrostatics. A simple model of the diffusive transport of water vapor around the potato wedges shows that the water vapor flux diverges at the sharp edges in analogy with its electrostatic counterpart. This increased evaporation at the edges leads to the crispy taste of these parts of the potatoes.
Ahmed Naif Al-Khazraji
2014-12-01
Full Text Available The aim of this paper is to model and optimize the fatigue life and hardness of medium carbon steel CK35 subjected to dynamic buckling. Different ranges of shot peening time (STP and critical points of slenderness ratio which is between the long and intermediate columns, as input factors, were used to obtain their influences on the fatigue life and hardness, as main responses. Experimental measurements of shot peening time and buckling were taken and analyzed using (DESIGN EXPERT 8 experimental design software which was used for modeling and optimization purposes. Mathematical models of responses were obtained and analyzed by ANOVA variance to verify the adequacy of the models. The resultant quadratic models were obtained. A good agreement was found between the results of these models and optimization with the experimental ones with confidence level of 95 %.
Phoenix, Michelle; Rosenbaum, Peter
2017-09-29
Several concepts - risk, resilience, disability and hard-to-reach families in early intervention services - are talked and written about in many ways. Family Stress Theory can be usefully applied to explore these issues systematically. The relationship between risk and disability is complex, and the role of resilience is not fully understood. The idea of "hard-to-reach families" is not well defined, thus presenting challenges to service providers and policy makers. Reflection: This paper presents the Model of Risk, Disability and Hard-to-Reach Families and uses the model to: (1) define the groups of high risk families and families of children with disabilities and explore the concept of resilience within these groups; (2) describe services offered to these groups; and (3) reflect on service use and so-called "hard-to-reach families". Each section includes suggested applications for service providers that may inform the work done with young children and their families who experience risk or disability. Service providers can apply the Model of Risk, Disability and Hard-to-Reach Families to consider each family's unique strengths and challenges, and use those individual elements to influence service recommendations and anticipate service use. Implications for rehabilitation The concepts of risk, resilience, and hard-to-reach families are poorly defined in the literatures, but have important implications with respect to early childhood intervention services. Family Stress Theory can help to identify high-risk families and account for family resilience It is important for clinicians, researchers and policy makers to consider the relationship between disability and risk with respect to services offered to families and the potential barriers to service use. Clinicians and policy makers have a role in promoting accessible early childhood services.
Quantification of the specific yield in a two-layer hard-rock aquifer model
Durand, Véronique; Léonardi, Véronique; de Marsily, Ghislain; Lachassagne, Patrick
2017-08-01
Hard rock aquifers (HRA) have long been considered to be two-layer systems, with a mostly capacitive layer just below the surface, the saprolite layer, and a mainly transmissive layer underneath, the fractured layer. Although this hydrogeological conceptual model is widely accepted today within the scientific community, it is difficult to quantify the respective storage properties of each layer with an equivalent porous medium model. Based on an HRA field site, this paper attempts to quantify in a distinct manner the respective values of the specific yield (Sy) in the saprolite and the fractured layer, with the help of a deterministic hydrogeological model. The study site is the Plancoët migmatitic aquifer located in north-western Brittany, France, with piezometric data from 36 observation wells surveyed every two weeks for eight years. Whereas most of the piezometers (26) are located where the water table lies within the saprolite, thus representing the specific yield of the unconfined layer (Sy1), 10 of them are representative of the unconfined fractured layer (Sy2), due to their position where the saprolite is eroded or unsaturated. The two-layer model, based on field observations of the layer geometry, runs with the MODFLOW code. 81 values of the Sy1/Sy2 parameter sets were tested manually, as an inverse calibration was not able to calibrate these parameters. In order to calibrate the storage properties, a new quality-of-fit criterion called ;AdVar; was also developed, equal to the mean squared deviation of the seasonal piezometric amplitude variation. Contrary to the variance, AdVar is able to select the best values for the specific yield in each layer. It is demonstrated that the saprolite layer is about 2.5 times more capacitive than the fractured layer, with Sy1 = 10% (7% < Sy1 < 15%) against Sy2 = 2% (1% < Sy2 < 3%), in this particular example.
Bayesian edge detector for SAR imagery using discontinuity-adaptive Markov random field modeling
Yuan Zhan; He You; Cai Fuqing
2013-01-01
Synthetic aperture radar (SAR) image is severely affected by multiplicative speckle noise, which greatly complicates the edge detection. In this paper, by incorporating the discontinuity-adaptive Markov random field (DAMRF) and maximum a posteriori (MAP) estimation criterion into edge detection, a Bayesian edge detector for SAR imagery is accordingly developed. In the pro-posed detector, the DAMRF is used as the a priori distribution of the local mean reflectivity, and a maximum a posteriori estimation of it is thus obtained by maximizing the posteriori energy using gradient-descent method. Four normalized ratios constructed in different directions are computed, based on which two edge strength maps (ESMs) are formed. The final edge detection result is achieved by fusing the results of two thresholded ESMs. The experimental results with synthetic and real SAR images show that the proposed detector could efficiently detect edges in SAR images, and achieve better performance than two popular detectors in terms of Pratt’s figure of merit and visual evaluation in most cases.
Will we ever model PSC? - "it's hard to be a PSC model!".
Pollheimer, Marion J; Trauner, Michael; Fickert, Peter
2011-12-01
Cholangiopathies such as primary sclerosing cholangitis (PSC) represent an important group of liver diseases of the intra- and extrahepatic bile ducts frequently causing end-stage liver disease with significant morbidity and mortality due to limited treatment options. The relatively low incidence of PSC and the difficult accessibility of the human bile duct system for longitudinal studies may represent some of the critical reasons for the lack of profound knowledge in regard to PSC pathophysiology. Therefore, there is an urgent need for reliable, well-defined and easily reproducible animal models to learn more about the pathophysiology of PSC and to test novel treatment modalities. In an ideal world, immunogenetically predisposed animals would develop fibrous-obliterative cholangitis of the intra- and extrahepatic bile ducts in association with inflammation of the gut (especially colitis) in a highly reproducible manner allowing to test new drugs. To date, however, no such animal model is available. We aimed to provide a systematic overview of current available rodent models for sclerosing cholangitis and biliary fibrosis and therefore critically analyzed the characteristics of models for chemically-induced cholangitis, knock-out mouse models with cholangitis, cholangitis induced by infectious agents, models of experimental biliary obstruction, models involving enteric bacterial cell-wall components or colitis, and models of primary biliary epithelial and endothelial cell injury.
Mitarai, Namiko; Nakanishi, Hiizu
2003-02-01
Dynamical behavior of steady granular flow is investigated numerically in the inelastic hard-sphere limit of the soft-sphere model. We find distinctively different limiting behaviors for the two flow regimes, i.e., the collisional flow and the frictional flow. In the collisional flow, the hard-sphere limit is straightforward; the number of collisions per particle per unit time converges to a finite value and the total contact time fraction with other particles goes to zero. For the frictional flow, however, we demonstrate that the collision rate diverges as the power of the particle stiffness so that the time fraction of the multiple contacts remains finite even in the hard-sphere limit, although the contact time fraction for the binary collisions tends to zero.
Majumder, Rupamanjari; Pandit, Rahul; Panfilov, A V
2014-10-01
Wave propagation around various geometric expansions, structures, and obstacles in cardiac tissue may result in the formation of unidirectional block of wave propagation and the onset of reentrant arrhythmias in the heart. Therefore, we investigated the conditions under which reentrant spiral waves can be generated by high-frequency stimulation at sharp-edged obstacles in the ten Tusscher-Noble-Noble-Panfilov (TNNP) ionic model for human cardiac tissue. We show that, in a large range of parameters that account for the conductance of major inward and outward ionic currents of the model [fast inward Na(+) current (INa), L-type slow inward Ca(2+) current (ICaL), slow delayed-rectifier current (IKs), rapid delayed-rectifier current (IKr), inward rectifier K(+) current (IK1)], the critical period necessary for spiral formation is close to the period of a spiral wave rotating in the same tissue. We also show that there is a minimal size of the obstacle for which formation of spirals is possible; this size is ∼2.5 cm and decreases with a decrease in the excitability of cardiac tissue. We show that other factors, such as the obstacle thickness and direction of wave propagation in relation to the obstacle, are of secondary importance and affect the conditions for spiral wave initiation only slightly. We also perform studies for obstacle shapes derived from experimental measurements of infarction scars and show that the formation of spiral waves there is facilitated by tissue remodeling around it. Overall, we demonstrate that the formation of reentrant sources around inexcitable obstacles is a potential mechanism for the onset of cardiac arrhythmias in the presence of a fast heart rate.
EDGE BASED 3D INDOOR CORRIDOR MODELING USING A SINGLE IMAGE
A. Baligh Jahromi
2015-08-01
Full Text Available Reconstruction of spatial layout of indoor scenes from a single image is inherently an ambiguous problem. However, indoor scenes are usually comprised of orthogonal planes. The regularity of planar configuration (scene layout is often recognizable, which provides valuable information for understanding the indoor scenes. Most of the current methods define the scene layout as a single cubic primitive. This domain-specific knowledge is often not valid in many indoors where multiple corridors are linked each other. In this paper, we aim to address this problem by hypothesizing-verifying multiple cubic primitives representing the indoor scene layout. This method utilizes middle-level perceptual organization, and relies on finding the ground-wall and ceiling-wall boundaries using detected line segments and the orthogonal vanishing points. A comprehensive interpretation of these edge relations is often hindered due to shadows and occlusions. To handle this problem, the proposed method introduces virtual rays which aid in the creation of a physically valid cubic structure by using orthogonal vanishing points. The straight line segments are extracted from the single image and the orthogonal vanishing points are estimated by employing the RANSAC approach. Many scene layout hypotheses are created through intersecting random line segments and virtual rays of vanishing points. The created hypotheses are evaluated by a geometric reasoning-based objective function to find the best fitting hypothesis to the image. The best model hypothesis offered with the highest score is then converted to a 3D model. The proposed method is fully automatic and no human intervention is necessary to obtain an approximate 3D reconstruction.
Meson effective mass in the isospin medium in hard-wall AdS/QCD model
Mamedov, Shahin [Gazi University, Department of Physics, Ankara (Turkey); Baku State University, Institute for Physical Problems, Baku (Azerbaijan); Azerbaijan National Academy of Sciences, Institute of Physics, Baku (Azerbaijan)
2016-02-15
We study a mass splitting of the light vector, axial-vector, and pseudoscalar mesons in the isospin medium in the framework of the hard-wall model. We write an effective mass definition for the interacting gauge fields and scalar field introduced in gauge field theory in the bulk of AdS space-time. Relying on holographic duality we obtain a formula for the effective mass of a boundary meson in terms of derivative operator over the extra bulk coordinate. The effective mass found in this way coincides with the one obtained from finding of poles of the two-point correlation function. In order to avoid introducing distinguished infrared boundaries in the quantization formula for the different mesons from the same isotriplet we introduce extra action terms at this boundary, which reduces distinguished values of this boundary to the same value. Profile function solutions and effective mass expressions were found for the in-medium ρ, a{sub 1}, an π mesons. (orig.)
Two-state Bose-Hubbard model in the hard-core boson limit
O.V. Velychk
2011-03-01
Full Text Available Phase transition into the phase with Bose-Einstein (BE condensate in the two-band Bose-Hubbard model with the particle hopping in the excited band only is investigated. Instability connected with such a transition (which appears at excitation energies δ0|, where |t'0| is the particle hopping parameter is considered. The re-entrant behaviour of spinodales is revealed in the hard-core boson limit in the region of positive values of chemical potential. It is found that the order of the phase transition undergoes a change in this case and becomes the first one; the re-entrant transition into the normal phase does not take place in reality. First order phase transitions also exist at negative values of δ (under the condition δ>δcrit≈ − 0.12|t'0|. At μ0|, μ phase diagrams are built and localizations of tricritical points are established. The conditions are found at which the separation on the normal phase and the phase with the BE condensate takes place.
Gelation and state diagram for a model nanoparticle system with adhesive hard sphere interactions
Wagner, Norman; Aaron, Eberle
2012-02-01
We provide the first comprehensive state diagram of thermoreversible gelation in a model nanoparticle system from dilute concentrations to the attractive driven glass. We show the temperature dependence of the interparticle potential is related to a surface molecular phase transition of the brush layer using neutron reflectivity (NR) and small-angle neutron scattering (SANS) [1]. We establish the temperature dependence of the interparticle potential using SANS, dynamic light scattering (DLS), and rheology. The potential parameters extracted from SANS suggest that, for this system, gelation is an extension of the Mode Coupling Theory (MCT) attractive driven glass line (ADG) to lower volume fractions and follows the percolation transition. Below the critical concentration, gelation proceeds without competition for phase separation [2]. These results are used to develop a complete state diagram for the sticky hard sphere reference system. [4pt] [1] A.P.R. Eberle, N.J. Wagner, B. Akgun, S.K. Satija, Langmuir 26 3003 (2010).[0pt] [2] A.P.R. Eberle, N.J. Wagner, R. Castaneda-Priego, Phys. Rev. Let. 105704 (2011).
Morales-Pinzón, Tito; Lurueña, Rodrigo; Gabarrell, Xavier; Gasol, Carles M; Rieradevall, Joan
2014-02-01
A study was conducted to determine the financial and environmental effects of water quality on rainwater harvesting systems. The potential for replacing tap water used in washing machines with rainwater was studied, and then analysis presented in this paper is valid for applications that include washing machines where tap water hardness may be important. A wide range of weather conditions, such as rainfall (284-1,794 mm/year); water hardness (14-315 mg/L CaCO3); tap water prices (0.85-2.65 Euros/m(3)) in different Spanish urban areas (from individual buildings to whole neighbourhoods); and other scenarios (including materials and water storage capacity) were analysed. Rainfall was essential for rainwater harvesting, but the tap water prices and the water hardness were the main factors for consideration in the financial and the environmental analyses, respectively. The local tap water hardness and prices can cause greater financial and environmental impacts than the type of material used for the water storage tank or the volume of the tank. The use of rainwater as a substitute for hard water in washing machines favours financial analysis. Although tap water hardness significantly affects the financial analysis, the greatest effect was found in the environmental analysis. When hard tap water needed to be replaced, it was found that a water price of 1 Euro/m(3) could render the use of rainwater financially feasible when using large-scale rainwater harvesting systems. When the water hardness was greater than 300 mg/L CaCO3, a financial analysis revealed that an net present value greater than 270 Euros/dwelling could be obtained at the neighbourhood scale, and there could be a reduction in the Global Warming Potential (100 years) ranging between 35 and 101 kg CO2 eq./dwelling/year.
Confirming the thermal Comptonization model for black hole X-ray emission in the low-hard state
Castro, M; Braga, J; Maiolino, T; Pottschmidt, K; Wilms, J
2014-01-01
Hard X-ray spectra of black hole binaries in the low/hard state are well modeled by thermal Comptonization of soft seed photons by a corona-type region with $kT$\\thinspace$\\sim 50${\\thinspace}keV and optical depth around 1. Previous spectral studies of 1E{\\thinspace}1740.7$-$2942, including both the soft and the hard X-ray bands, were always limited by gaps in the spectra or by a combination of observations with imaging and non-imaging instruments. In this study, we have used three rare nearly-simultaneous observations of 1E{\\thinspace}1740.7$-$1942 by both XMM-Newton and INTEGRAL satellites to combine spectra from four different imaging instruments with no data gaps, and we successfully applied the Comptonization scenario to explain the broadband X-ray spectra of this source in the low/hard state. For two of the three observations, our analysis also shows that, models including Compton reflection can adequately fit the data, in agreement with previous reports. We show that the observations can also be modele...
Characteristics of Solar Flare Hard X-ray Emissions: Observations and Models
Liu, Wei
2007-05-01
The main theme of this dissertation is the investigation of the physics of acceleration and transport of particles in solar flares and their radiative signatures. The observational studies, using hard X-rays (HXRs) observed by RHESSI, concentrate on four flares, which support the classical magnetic reconnection model of flares in various ways. In the 11/03/2003 X3.9 flare, there is an upward motion of the loop-top source, accompanied by a systematic increase in the separation of the foot-point sources at a comparable speed. This is consistent with the reconnection model with an inverted-Y geometry. The 04/30/2002 M1.3 event exhibits rarely observed two coronal sources, with very similar spectra and their higher-energy emission being close together. This suggests that reconnection occurs between the two sources. In the 10/29/2003 X10 flare, the logarithmic total HXR flux of the two foot-points correlates with their mean magnetic field. The foot-points show asymmetric HXR fluxes, qualitatively consistent with the magnetic mirroring effect. The 11/13/2003 M1.7 flare reveals evidence of chromospheric evaporation directly imaged by RHESSI for the first time. The emission centroids move toward the loop-top, indicating a density increase in the loop. The theoretical modeling of this work combines the Stanford stochastic acceleration model with the NRL hydrodynamic model to study the interplay of the particle acceleration, transport, and radiation effects and the atmospheric response to the energy deposition by electrons. I find that low-energy electrons in the quasi-thermal portion of the spectrum affects the hydrodynamics by producing more heating in the corona than the previous models that used a power-law spectrum with a low-energy cutoff. The Neupert effect is found to be present and effects of suppression of thermal conduction are tested in the presence of hydrodynamic flows. I gratefully thank my adviser, Prof. Vahe' Petrosian, my collaborators, and funding support
David A Rolls
Full Text Available We compare two broad types of empirically grounded random network models in terms of their abilities to capture both network features and simulated Susceptible-Infected-Recovered (SIR epidemic dynamics. The types of network models are exponential random graph models (ERGMs and extensions of the configuration model. We use three kinds of empirical contact networks, chosen to provide both variety and realistic patterns of human contact: a highly clustered network, a bipartite network and a snowball sampled network of a "hidden population". In the case of the snowball sampled network we present a novel method for fitting an edge-triangle model. In our results, ERGMs consistently capture clustering as well or better than configuration-type models, but the latter models better capture the node degree distribution. Despite the additional computational requirements to fit ERGMs to empirical networks, the use of ERGMs provides only a slight improvement in the ability of the models to recreate epidemic features of the empirical network in simulated SIR epidemics. Generally, SIR epidemic results from using configuration-type models fall between those from a random network model (i.e., an Erdős-Rényi model and an ERGM. The addition of subgraphs of size four to edge-triangle type models does improve agreement with the empirical network for smaller densities in clustered networks. Additional subgraphs do not make a noticeable difference in our example, although we would expect the ability to model cliques to be helpful for contact networks exhibiting household structure.
Toward edge minability for role mining in bipartite networks
Dong, Lijun; Wang, Yi; Liu, Ran; Pi, Benjie; Wu, Liuyi
2016-11-01
Bipartite network models have been extensively used in information security to automatically generate role-based access control (RBAC) from dataset. This process is called role mining. However, not all the topologies of bipartite networks are suitable for role mining; some edges may even reduce the quality of role mining. This causes unnecessary time consumption as role mining is NP-hard. Therefore, to promote the quality of role mining results, the capability that an edge composes roles with other edges, called the minability of edge, needs to be identified. We tackle the problem from an angle of edge importance in complex networks; that is an edge easily covered by roles is considered to be more important. Based on this idea, the k-shell decomposition of complex networks is extended to reveal the different minability of edges. By this way, a bipartite network can be quickly purified by excluding the low-minability edges from role mining, and thus the quality of role mining can be effectively improved. Extensive experiments via the real-world datasets are conducted to confirm the above claims.
Craig, Erin M.; Stricker, Jonathan; Gardel, Margaret; Mogilner, Alex
2015-05-01
Cell motility relies on the continuous reorganization of a dynamic actin-myosin-adhesion network at the leading edge of the cell, in order to generate protrusion at the leading edge and traction between the cell and its external environment. We analyze experimentally measured spatial distributions of actin flow, traction force, myosin density, and adhesion density in control and pharmacologically perturbed epithelial cells in order to develop a mechanical model of the actin-adhesion-myosin self-organization at the leading edge. A model in which the F-actin network is treated as a viscous gel, and adhesion clutch engagement is strengthened by myosin but weakened by actin flow, can explain the measured molecular distributions and correctly predict the spatial distributions of the actin flow and traction stress. We test the model by comparing its predictions with measurements of the actin flow and traction stress in cells with fast and slow actin polymerization rates. The model predicts how the location of the lamellipodium-lamellum boundary depends on the actin viscosity and adhesion strength. The model further predicts that the location of the lamellipodium-lamellum boundary is not very sensitive to the level of myosin contraction.
Craig, Erin M.; Stricker, Jonathan; Gardel, Margaret L.; Mogilner, Alex
2015-01-01
Cell motility relies on the continuous reorganization of a dynamic actin-myosin-adhesion network at the leading edge of the cell, in order to generate protrusion at the leading edge and traction between the cell and its external environment. We analyze experimentally measured spatial distributions of actin flow, traction force, myosin density, and adhesion density in control and pharmacologically perturbed epithelial cells in order to develop a mechanical model of the actin-adhesion-myosin self-organization at the leading edge. A model in which the F-actin network is treated as a viscous gel, and adhesion clutch engagement is strengthened by myosin but weakened by actin flow, can explain the measured molecular distributions and correctly predict the spatial distributions of the actin flow and traction stress. We test the model by comparing its predictions with measurements of the actin flow and traction stress in cells with fast and slow actin polymerization rates. The model predicts how the location of the lamellipodium-lamellum boundary depends on the actin viscosity and adhesion strength. The model further predicts that the location of the lamellipodium-lamellum boundary is not very sensitive to the level of myosin contraction. PMID:25969948
M. Williams-Tripp
2012-01-01
Full Text Available The endemic Pyrenean Desman (Galemys pyrenaicus is an elusive, rare, and vulnerable species declining over its entire and narrow range (Spain, Portugal, France, and Andorra. The principal set of conservation measures in France is a 5-years National Action Plan based on 25 conservation actions. Priority is given to update its present distribution and develop tools for predictive distribution models. We aim at building the first species distribution model and map for the northern edge of the range of the Desman and confronting the outputs of the model to target conservation efforts in the context of environmental change. Contrasting to former comparable studies, we derive a simpler model emphasizing the importance of factors linked to precipitation and not to the temperature. If temperature is one of the climate change key factors, depicted shrinkage in Desman distribution could be lower or null at the northern (French edge suggesting thus a major role for this northern population in terms of conservation of the species. Finally, we question the applied issue of temporal and spatial transferability for such environmental favourability models when it is made at the edge of the distribution range.
Sudhakar, U.; Srinivas, J., Dr.
2016-02-01
This paper proposes modelling and optimization issues relating to friction-stir welding process of aluminium alloys. A specially prepared SS tool of square headed pin profile with cylindrical shoulder is used with a vertical milling machine. Effects of process variables including tool rotation and tool velocity on the weld performance are studied in terms of impact strength and hardness. Three different rotational motions and three welding speeds (feeds) of tool are considered at constant axial load (depth of cut) condition and altogether nine experiments are conducted on a vertical milling machine with specially prepared fixture. Each weld sample is then tested for its impact strength (IS) and hardness independently. A model is developed to correlate the relations between the hardness/impact strength with tool rotation and weld speed using neural networks. The optimized process conditions are predicted to improvise the impact strength and hardness of the weld. Further, the morphology of the weld is studied using SEM to know the material flow characteristics.
Bernardo, Joseph T.
2014-05-01
Hard/soft information fusion has been proposed as a way to enhance diagnostic capability for the condition monitoring of machinery. However, there is a limited understanding of where hard/soft information fusion could and should be applied in the condition monitoring of aircraft. Condition-based maintenance refers to the philosophy of performing maintenance when the need arises, based upon indicators of deterioration in the condition of the machinery. The addition of the multisensory capability of human cognition to electronic sensors may create a fuller picture of machinery condition. Since 1988, the Joint Directors of Laboratories (JDL) data fusion process model has served as a framework for information fusion research. Advances are described in the application of hard/soft information fusion in condition monitoring using terms that condition-based maintenance professionals in aviation will recognize. Emerging literature on hard/soft information fusion in condition monitoring is organized into the levels of the JDL data fusion process model. Gaps in the literature are identified, and the author's ongoing research is discussed. Future efforts will focus on building domain-specific frameworks and experimental design, which may provide a foundation for improving flight safety, increasing mission readiness, and reducing the cost of maintenance operations.
Validation of coupled core-edge pedestal-SOL modeling against DIII-D high beta discharges
Park, J. M.; Green, D.; Batchelor, D.; Elwasif, W.; Snyder, P. B.; Meneghini, O.; Candy, J.; Kim, K.
2016-10-01
A new core-edge pedestal-SOL modeling has been validated against the DIII-D experiments by integrating three independent, compound workflows of FASTRAN (1D core), EPED (edge pedestal), and C2 (2D SOL) within the Integrated Plasma Simulator (IPS) framework. The FASTRAN workflow computes all transport channels including the density, temperature, rotation, and plasma current, self-consistently with an EPED1 edge pedestal, MHD equilibrium, external heating and current drives. The particle and energy fluxes are matched at the separatrix between the FASTRAN-EPED and C2 workflows in an iterative steady-state solution procedure to determine the density and temperature at the separatrix, which is used to provide improved EPED1 input and to efficiently close the strong dependency loop among the regions. The result reproduces the experimental profiles from the magnetic axis to divertor/wall for the DIII-D high β discharges, guiding an optimum core-edge solution for the βN > 4 steady-state operation. Work supported in part by the US DoE under DE-AC05-00OR22725 and DE-FC02-06ER54873.
Sparrow, Victor Ward
1990-01-01
This study has concerned the propagation of finite amplitude, i.e. weakly non-linear, acoustical blast waves from explosions over hard and porous media models of outdoor ground surfaces. The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency domain exhibits a finite impedance, the linear phenomenological porous model of Morse and Ingard was used. The phenomenological equations are solved in the time domain for coupling with the time domain propagation solution in the air. The numerical solution is found through the method of finite differences. The second-order in time and fourth -order in space MacCormack method was used in the air, and the second-order in time and space MacCormack method was used in the porous medium modeling the ground. Two kinds of numerical absorbing boundary conditions were developed for the air propagation equations to truncate the physical domain for solution on a computer. Radiation conditions first were used on those sides of the domain where there were outgoing waves. Characteristic boundary conditions secondly are employed near the acoustic source. The numerical model agreed well with the Pestorius algorithm for the propagation of electric spark pulses in the free field, and with a result of Pfriem for normal plane reflection off a hard surface. In addition, curves of pressure amplification versus incident angle for waves obliquely incident on the hard and porous surfaces were produced which are similar to those in the literature. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance over hard surfaces as r to the power -1.2. This result is consistent with the work of Reed. For propagation over the porous ground surface, the model predicted that this surface decreased the decay rate with distance for the larger blasts compared to the rate expected in the linear acoustics limit.
Kim, Hyunok; Mohr, William; Yang, Yu-Ping; Zelenak, Paul; Kimchi, Menachem
2011-08-01
Numerical modeling of local formability, such as hole-edge cracking and shear fracture in bending of AHSS, is one of the challenging issues for simulation engineers for prediction and evaluation of stamping and crash performance of materials. This is because continuum-mechanics-based finite element method (FEM) modeling requires additional input data, "failure criteria" to predict the local formability limit of materials, in addition to the material flow stress data input for simulation. This paper presents a numerical modeling approach for predicting hole-edge failures during static bend tests of AHSS structures. A local-strain-based failure criterion and a stress-triaxiality-based failure criterion were developed and implemented in LS-DYNA simulation code to predict hole-edge failures in component bend tests. The holes were prepared using two different methods: mechanical punching and water-jet cutting. In the component bend tests, the water-jet trimmed hole showed delayed fracture at the hole-edges, while the mechanical punched hole showed early fracture as the bending angle increased. In comparing the numerical modeling and test results, the load-displacement curve, the displacement at the onset of cracking, and the final crack shape/length were used. Both failure criteria also enable the numerical model to differentiate between the local formability limit of mechanical-punched and water-jet-trimmed holes. The failure criteria and static bend test developed here are useful to evaluate the local formability limit at a structural component level for automotive crash tests.
Thermodynamic hardness and the maximum hardness principle
Franco-Pérez, Marco; Gázquez, José L.; Ayers, Paul W.; Vela, Alberto
2017-08-01
An alternative definition of hardness (called the thermodynamic hardness) within the grand canonical ensemble formalism is proposed in terms of the partial derivative of the electronic chemical potential with respect to the thermodynamic chemical potential of the reservoir, keeping the temperature and the external potential constant. This temperature dependent definition may be interpreted as a measure of the propensity of a system to go through a charge transfer process when it interacts with other species, and thus it keeps the philosophy of the original definition. When the derivative is expressed in terms of the three-state ensemble model, in the regime of low temperatures and up to temperatures of chemical interest, one finds that for zero fractional charge, the thermodynamic hardness is proportional to T-1(I -A ) , where I is the first ionization potential, A is the electron affinity, and T is the temperature. However, the thermodynamic hardness is nearly zero when the fractional charge is different from zero. Thus, through the present definition, one avoids the presence of the Dirac delta function. We show that the chemical hardness defined in this way provides meaningful and discernible information about the hardness properties of a chemical species exhibiting integer or a fractional average number of electrons, and this analysis allowed us to establish a link between the maximum possible value of the hardness here defined, with the minimum softness principle, showing that both principles are related to minimum fractional charge and maximum stability conditions.
Nesterova, Natalia; Makarieva, Olga; Lebedeva, Lyudmila
2017-04-01
of river runoff, snow depth, soil temperature and moisture in the Mogot study site are satisfactory. Model parameterization developed on the Mogot watersheds was employed to simulate runoff generation in the four river basins with area from 150 to 4060 km2 in the surrounded region. We conclude that data about internal catchment processes is extremely helpful for the increasing model realism. Hard and soft experimental knowledge in the form of model parameters and settings could be transferred to larger river basins in the region. The study is supported by Russian Foundation for Basic Research (project 15-35-21146).
Breakup and then makeup: a predictive model of how cilia self-regulate hardness for posture control
Bandyopadhyay, Promode R.; Hansen, Joshua C.
2013-06-01
Functioning as sensors and propulsors, cilia are evolutionarily conserved organelles having a highly organized internal structure. How a paramecium's cilium produces off-propulsion-plane curvature during its return stroke for symmetry breaking and drag reduction is not known. We explain these cilium deformations by developing a torsional pendulum model of beat frequency dependence on viscosity and an olivo-cerebellar model of self-regulation of posture control. The phase dependence of cilia torsion is determined, and a bio-physical model of hardness control with predictive features is offered. Crossbridge links between the central microtubule pair harden the cilium during the power stroke; this stroke's end is a critical phase during which ATP molecules soften the crossbridge-microtubule attachment at the cilium inflection point where torsion is at its maximum. A precipitous reduction in hardness ensues, signaling the start of ATP hydrolysis that re-hardens the cilium. The cilium attractor basin could be used as reference for perturbation sensing.
Thiem, Oeyvind A.
2004-12-01
In this thesis the focus has been on anisotropy, internal pressure errors and shelf edge/slope processes. Anisotropy is a common problem in ocean models. Especially where a rectangular grid is used to discretize the horizontal. Selecting a horizontal grid, which reduces the anisotropy, will therefore probably be important when new ocean models are being developed. Hexagonal grid discretization in the horizontal has the desired property of reducing anisotropy, and therefore this grid should be considered as a reasonable choice for new ocean models. In sigma coordinate models internal pressure errors occur in areas with steep topography. In the second paper in this thesis, it is shown that the internal pressure errors depend on the grid orientation. It is further shown that the erroneous velocities in the sea mount test case of Beckmann and Haidvogel (1993) can be reduced significantly by first computing the internal pressure gradients in both the original and a coordinate system where the axis are rotated 45 degrees to the original. Then a normalized weighted linear combination of the two estimates is used as the internal pressure gradients in the simulation. A following up paper where this method is used on a real ocean should be performed to investigate how well this method performs in domains with irregular topography. In such an experiment the boundary should be closed and the initial velocities set to zero. The occurring currents should then be compared with a corresponding experiment, where the initial pressure gradients are computed in the original grid only. In the third and fourth paper the focus is on the use of BOM in along shelf barotropic flow. First the generation of eddies is investigated. This is done in the third paper and two simulations are performed. The first simulation is a barotropic simulation, and the second is a two layer simulation. The results from both simulations show development of eddies, but the strength of the eddies depend on the
S. Dutta
2015-12-01
Full Text Available Reducing the switching energy of devices that rely on magnetic domain wall motion requires scaling the devices to widths well below 100 nm, where the nanowire line edge roughness (LER is an inherent source of domain wall pinning. We investigate the effects of periodic and isolated rectangular notches, triangular notches, changes in anisotropy, and roughness measured from images of fabricated wires, in sub-100-nm-wide nanowires with in-plane and perpendicular magnetic anisotropy using micromagnetic modeling. Pinning fields calculated for a model based on discretized images of physical wires are compared to experimental measurements. When the width of the domain wall is smaller than the notch period, the domain wall velocity is modulated as the domain wall propagates along the wire. We find that in sub-30-nm-wide wires, edge defects determine the operating threshold and domain wall dynamics.
1989-12-31
This report describes the tasks accomplished under Department of Energy contract {number_sign}DE-FG02-86ER53236 in modeling the edge plasma-antenna interaction that occurs during Ion Cyclotron Range of Frequency (ICRF) heating. This work has resulted in the development of several codes which determine kinetic and fluid modifications to the edge plasma. When used in combination, these code predict the level of impurity generation observed in experiments on the experiments on the Princeton Large Torus. In addition, these models suggest improvements to the design of ICRF antennas. Also described is progress made on high beta and second region analysis. Code development for a comprehensive infernal mode analysis code is nearing completion. A method has been developed for parameterizing the second region of stability and is applied to circular cross section tokamas. Various studies for high beta experimental devices such as PBX-M and DIII-D have been carried out and are reported on.
Miranda, M; Díaz, L; Sicilia, M; Cristóbal, I; Cassinello, J
2011-01-01
We report evidence of hierarchical resource selection by large herbivores and plant neighbouring effects in a Mediterranean ecosystem. Plant palatability was assessed according to herbivore foraging decisions. We hypothesize that under natural conditions large herbivores follow a hierarchical foraging pattern, starting at the landscape scale, and then selecting patches and individual plants. A between- and within-patch selection study was carried out in an area formed by scrubland and pasture patches, connected by habitat edges. With regard to between-patch selection, quality-dependent resource selection is reported: herbivores mainly consume pasture in spring and woody plants in winter. Within-patch selection was also observed in scrub habitats, influenced by season, relative patch palatability and edge effect. We defined a Proximity Index (PI) between palatable and unpalatable plants, which allowed verification of neighbouring effects. In spring, when the preferred food resource (i.e. herbs) is abundant, we observed that in habitat edges large herbivores basically select the relatively scarce palatable shrubs, whereas inside scrubland, unpalatable shrub consumption was related to increasing PI. In winter, a very different picture was observed; there was low consumption of palatable species surrounded by unpalatable species in habitat edges, where the latter were more abundant. These outcomes could be explained though different plant associations described in the literature. We conclude that optimal foraging theory provides a conceptual framework behind the observed interactions between plants and large herbivores in Mediterranean ecosystems.
Leading edge erosion of coated wind turbine blades: Review of coating life models
Slot, H.M.; Gelinck, E.R.M.; Rentrop, C.; Heider, E. van der
2015-01-01
Erosion of the leading edge of wind turbine blades by droplet impingement wear, reduces blade aerodynamic efficiency and power output. Eventually, it compromises the integrity of blade surfaces. Elastomeric coatings are currently used for erosion resistance, yet the life of such coatings cannot be p
Li, L.; Liu, Y. Q.; Kirk, A.; Wang, N.; Liang, Y.; Ryan, D.; Suttrop, W.; Dunne, M.; Fischer, R.; Fuchs, J. C.; Kurzan, B.; Piovesan, P.; Willensdorfer, M.; Zhong, F. C.; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2016-12-01
Toroidal computations are performed using the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), in order to understand correlations between the plasma response and the observed mitigation of the edge localized modes (ELM) using resonant magnetic perturbation fields in ASDEX Upgrade. In particular, systematic numerical scans of the edge safety factor reveal that the amplitude of the resonant poloidal harmonic of the response radial magnetic field near the plasma edge, as well as the plasma radial displacement near the X-point, can serve as good indicators for predicting the optimal toroidal phasing between the upper and lower rows of coils in ASDEX Upgrade. The optimal coil phasing scales roughly linearly with the edge safety factor {{q}95} , for various choices of the toroidal mode number n = 1-4 of the coil configuration. The optimal coil phasing is also predicted to vary with the upper triangularity of the plasma shape in ASDEX Upgrade. Furthermore, multiple resonance effects of the plasma response, with continuously varying {{q}95} , are computationally observed and investigated.
Orientation Relationships between Ferrite and Cementite by Edge-to-edge Matching Principle
Ning Zhong; Xiaodong Wang; Zhenghong Guo; Yonghua Rong
2011-01-01
The crystallographic features of pearlite were investigated by experiments and edge-to-edge matching principle. Two new orientation relationships between ferrite and cementite were determinated by selected area electron diffraction and then explained by our modified edge-to-edge matching method. The consistence of the experimental results with theoretical prediction confirms the practicability of the modified edge-to-edge matching model.
Porwal, Amit; Chandrashekhar, Naveen H; Nadiger, Ramesh K; Meshramkar, Roseline D; Guttal, Satyabodh S
2011-03-01
The aim of this study was to evaluate and compare the linear dimensional change, surface hardness and surface roughness of the refractory casts poured against different duplicating media. Polyvinyl siloxane and Agar-agar were used for duplicating the stainless steel die. Sixty refractory models were prepared which were divided into two groups: I and II with 30 samples each respectively. Each group was subdivided into 3 subgroups with 10 samples each which were treated differently. All the specimens were measured for the linear dimensional change and surface hardness and the obtained data was statistically analyzed. Surface roughness was evaluated qualitatively taking SEM photomicrographs. Statistical analysis of linear dimensional change using one-way ANOVA showed statistically significant difference between subgroups of group I and non-significant difference between subgroups of group II. One-way ANOVA for Brinell hardness number showed statistically significant difference between the subgroups of group I & II. Student's 't' test results for linear dimensional change among different subgroups of group I & II showed significant difference between IA-IIA, IB-IIB, IC-IIC. Similarly 't'-test results for Brinell hardness number showed significant difference between subgroups IA-IIA, IB-IIB, and IC-IIC. Surface characteristics of the refractory casts poured against polyvinyl siloxane duplicating media were found to be better than the Agar media.
Growth, survival, and peptidolytic activity of Lactobacillus plantarum I91 in a hard-cheese model.
Bergamini, C V; Peralta, G H; Milesi, M M; Hynes, E R
2013-09-01
In this work, we studied the growth, survival, and peptidolytic activity of Lactobacillus plantarum I91 in a hard-cheese model consisting of a sterile extract of Reggianito cheese. To assess the influence of the primary starter and initial proteolysis level on these parameters, we prepared the extracts with cheeses that were produced using 2 different starter strains of Lactobacillus helveticus 138 or 209 (Lh138 or Lh209) at 3 ripening times: 3, 90, and 180 d. The experimental extracts were inoculated with Lb. plantarum I91; the control extracts were not inoculated and the blank extracts were heat-treated to inactivate enzymes and were not inoculated. All extracts were incubated at 34°C for 21 d, and then the pH, microbiological counts, and proteolysis profiles were determined. The basal proteolysis profiles in the extracts of young cheeses made with either strain tested were similar, but many differences between the proteolysis profiles of the extracts of the Lh138 and Lh209 cheeses were found when riper cheeses were used. The pH values in the blank and control extracts did not change, and no microbial growth was detected. In contrast, the pH value in experimental extracts decreased, and this decrease was more pronounced in extracts obtained from either of the young cheeses and from the Lh209 cheese at any stage of ripening. Lactobacillus plantarum I91 grew up to 8 log during the first days of incubation in all of the extracts, but then the number of viable cells decreased, the extent of which depended on the starter strain and the age of the cheese used for the extract. The decrease in the counts of Lb. plantarum I91 was observed mainly in the extracts in which the pH had diminished the most. In addition, the extracts that best supported the viability of Lb. plantarum I91 during incubation had the highest free amino acids content. The effect of Lb. plantarum I91 on the proteolysis profile of the extracts was marginal. Significant changes in the content of free
Zhou, Alice Qinhua; O'Hern, Corey S; Regan, Lynne
2014-10-01
The side-chain dihedral angle distributions of all amino acids have been measured from myriad high-resolution protein crystal structures. However, we do not yet know the dominant interactions that determine these distributions. Here, we explore to what extent the defining features of the side-chain dihedral angle distributions of different amino acids can be captured by a simple physical model. We find that a hard-sphere model for a dipeptide mimetic that includes only steric interactions plus stereochemical constraints is able to recapitulate the key features of the back-bone dependent observed amino acid side-chain dihedral angle distributions of Ser, Cys, Thr, Val, Ile, Leu, Phe, Tyr, and Trp. We find that for certain amino acids, performing the calculations with the amino acid of interest in the central position of a short α-helical segment improves the match between the predicted and observed distributions. We also identify the atomic interactions that give rise to the differences between the predicted distributions for the hard-sphere model of the dipeptide and that of the α-helical segment. Finally, we point out a case where the hard-sphere plus stereochemical constraint model is insufficient to recapitulate the observed side-chain dihedral angle distribution, namely the distribution P(χ₃) for Met.
Timoshenko, Janis; Shivhare, Atal; Scott, Robert W J; Lu, Deyu; Frenkel, Anatoly I
2016-07-20
We adopted ab initio X-ray absorption near edge structure (XANES) modeling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modeling, where the candidate structures are known, and the inverse modeling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by revealing the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.
Carney, Kelly; Melis, Matthew; Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan
2004-01-01
Upon the commencement of the analytical effort to characterize the impact dynamics and damage of the Space Shuttle Columbia leading edge due to External Tank insulating foam, the necessity of creating analytical descriptions of these materials became evident. To that end, material models were developed of the leading edge thermal protection system, Reinforced Carbon Carbon (RCC), and a low density polyurethane foam, BX-250. Challenges in modeling the RCC include its extreme brittleness, the differing behavior in compression and tension, and the anisotropic fabric layup. These effects were successfully included in LS-DYNA Material Model 58, *MAT_LAMINATED_ COMPOSITE_ FABRIC. The differing compression and tension behavior was modeled using the available damage parameters. Each fabric layer was given an integration point in the shell element, and was allowed to fail independently. Comparisons were made to static test data and coupon ballistic impact tests before being utilized in the full scale analysis. The foam's properties were typical of elastic automotive foams; and LS-DYNA Material Model 83, *MAT_FU_CHANG_FOAM, was successfully used to model its behavior. Material parameters defined included strain rate dependent stress-strain curves for both loading and un-loading, and for both compression and tension. This model was formulated with static test data and strain rate dependent test data, and was compared to ballistic impact tests on load-cell instrumented aluminum plates. These models were subsequently utilized in analysis of the Shuttle leading edge full scale ballistic impact tests, and are currently being used in the Return to Flight Space Shuttle re-certification effort.
Note: equation of state and the freezing point in the hard-sphere model.
Robles, Miguel; López de Haro, Mariano; Santos, Andrés
2014-04-07
The merits of different analytical equations of state for the hard-sphere system with respect to the recently computed high-accuracy value of the freezing-point packing fraction are assessed. It is found that the Carnahan-Starling-Kolafa and the branch-point approximant equations of state yield the best performance.
Habitat edges have weak effects on duck nest survival at local spatial scales
Raquel, Amelia J; Ringelman, Kevin M.; Ackerman, Joshua T.; Eadie, John M.
2015-01-01
Edge effects on nesting success have been documented in breeding birds in a variety of contexts, but there is still uncertainty in how edge type and spatial scale determine the magnitude and detectability of edge effects. Habitat edges are often viewed as predator corridors that surround or penetrate core habitat and increase the risk of predation for nearby nests. We studied the effects of three different types of potential predator corridors (main perimeter roads, field boundaries, and ATV trails within fields) on waterfowl nest survival in California. We measured the distance from duck nests to the nearest edge of each type, and used distance as a covariate in a logistic exposure analysis of nest survival. We found only weak evidence for edge effects due to predation. The best supported model of nest survival included all three distance categories, and while all coefficient estimates were positive (indicating that survival increased with distance from edge), 85% coefficient confidence intervals approached or bounded zero indicating an overall weak effect of habitat edges on nest success. We suggest that given the configuration of edges at our site, there may be few areas far enough from hard edges to be considered ‘core’ habitat, making edge effects on nest survival particularly difficult to detect.
Zhang, Xue-Feng; Eggert, Sebastian
2013-10-01
We consider the extended hard-core Bose-Hubbard model on a kagome lattice with boundary conditions on two edges. We find that the sharp edges lift the degeneracy and freeze the system into a striped order at 1/3 and 2/3 filling for zero hopping. At small hopping strengths, holes spontaneously appear and separate into fractional charges which move to the edges of the system. This leads to a novel edge liquid phase, which is characterized by fractional charges near the edges and a finite edge compressibility but no superfluid density. The compressibility is due to excitations on the edge which display a chiral symmetry breaking that is reminiscent of the quantum Hall effect and topological insulators. Large scale Monte Carlo simulations confirm the analytical considerations.
Mia, Mozammel; Al Bashir, Mahmood; Dhar, Nikhil Ranjan
2016-10-01
Hard turning is increasingly employed in machining, lately, to replace time-consuming conventional turning followed by grinding process. An excessive amount of tool wear in hard turning is one of the main hurdles to be overcome. Many researchers have developed tool wear model, but most of them developed it for a particular work-tool-environment combination. No aggregate model is developed that can be used to predict the amount of principal flank wear for specific machining time. An empirical model of principal flank wear (VB) has been developed for the different hardness of workpiece (HRC40, HRC48 and HRC56) while turning by coated carbide insert with different configurations (SNMM and SNMG) under both dry and high pressure coolant conditions. Unlike other developed model, this model includes the use of dummy variables along with the base empirical equation to entail the effect of any changes in the input conditions on the response. The base empirical equation for principal flank wear is formulated adopting the Exponential Associate Function using the experimental results. The coefficient of dummy variable reflects the shifting of the response from one set of machining condition to another set of machining condition which is determined by simple linear regression. The independent cutting parameters (speed, rate, depth of cut) are kept constant while formulating and analyzing this model. The developed model is validated with different sets of machining responses in turning hardened medium carbon steel by coated carbide inserts. For any particular set, the model can be used to predict the amount of principal flank wear for specific machining time. Since the predicted results exhibit good resemblance with experimental data and the average percentage error is <10 %, this model can be used to predict the principal flank wear for stated conditions.
A direct heating model to overcome the edge effect in microplates.
Lau, Chun Yat; Zahidi, Alifa Afiah Ahmad; Liew, Oi Wah; Ng, Tuck Wah
2015-01-01
Array-based tests in a microplate format are complicated by the regional variation in results of the outer against the inner wells of the plate. Analysis of the evaporation mechanics of sessile drops showed that evaporation rate increase with temperature was due to changes in the heat of vaporization, density and diffusion coefficient. In simulations of direct bottom heating of standard microplates, considerable heat transfer via conduction from the side walls was found to be responsible for lower temperatures in the liquid in wells close to the edge. Applying a two temperature heating mode, 304 K at the side compared to 310 K at the bottom, allowed for a more uniform temperature distribution. Transparency microplates were found to inherently possess immunity to the edge effect problem due to the presence of air between the liquid and solid wall.
Kolski, Jeffrey S. [Los Alamos National Laboratory; Barlow, David B. [Los Alamos National Laboratory; Macek, Robert J. [Los Alamos National Laboratory; McCrady, Rodney C. [Los Alamos National Laboratory
2011-01-01
Particle ray tracing through simulated 3D magnetic fields was executed to investigate the effective quadrupole strength of the edge focusing of the rectangular bending magnets in the Los Alamos Proton Storage Ring (PSR). The particle rays receive a kick in the edge field of the rectangular dipole. A focal length may be calculated from the particle tracking and related to the fringe field integral (FINT) model parameter. This tech note introduces the baseline lattice model of the PSR and motivates the need for an improvement in the baseline model's vertical tune prediction, which differs from measurement by .05. An improved model of the PSR is created by modifying the fringe field integral parameter to those suggested by the ray tracing investigation. This improved model is then verified against measurement at the nominal PSR operating set point and at set points far away from the nominal operating conditions. Lastly, Linear Optics from Closed Orbits (LOCO) is employed in an orbit response matrix method for model improvement to verify the quadrupole strengths of the improved model.
Resistive reduced MHD modeling of multi-edge-localized-mode cycles in Tokamak X-point plasmas.
Orain, F; Bécoulet, M; Huijsmans, G T A; Dif-Pradalier, G; Hoelzl, M; Morales, J; Garbet, X; Nardon, E; Pamela, S; Passeron, C; Latu, G; Fil, A; Cahyna, P
2015-01-23
The full dynamics of a multi-edge-localized-mode (ELM) cycle is modeled for the first time in realistic tokamak X-point geometry with the nonlinear reduced MHD code jorek. The diamagnetic rotation is found to be instrumental to stabilize the plasma after an ELM crash and to model the cyclic reconstruction and collapse of the plasma pressure profile. ELM relaxations are cyclically initiated each time the pedestal gradient crosses a triggering threshold. Diamagnetic drifts are also found to yield a near-symmetric ELM power deposition on the inner and outer divertor target plates, consistent with experimental measurements.
Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos
Li, Xue-yan; Li, Xue-mei; Li, Xue-wei; Qiu, He-ting
2017-03-01
This paper proposes a new framework of fare optimization & game model for studying the competition between two travel modes (high speed railway and civil aviation) in which passengers' group behavior is taken into consideration. The small-world network is introduced to construct the multi-agent model of passengers' travel mode choice. The cumulative prospect theory is adopted to depict passengers' bounded rationality, the heterogeneity of passengers' reference point is depicted using the idea of group emotion computing. The conceptions of "Langton parameter" and "evolution entropy" in the theory of "edge of chaos" are introduced to create passengers' "decision coefficient" and "evolution entropy of travel mode choice" which are used to quantify passengers' group behavior. The numerical simulation and the analysis of passengers' behavior show that (1) the new model inherits the features of traditional model well and the idea of self-organizing traffic flow evolution fully embodies passengers' bounded rationality, (2) compared with the traditional model (logit model), when passengers are in the "edge of chaos" state, the total profit of the transportation system is higher.
Liu, Jing; Shao, Yimin
2017-06-01
Rotor bearing systems (RBSs) play a very valuable role for wind turbine gearboxes, aero-engines, high speed spindles, and other rotational machinery. An in-depth understanding of vibrations of the RBSs is very useful for condition monitoring and diagnosis applications of these machines. A new twelve-degree-of-freedom dynamic model for rigid RBSs with a localized defect (LOD) is proposed. This model can formulate the housing support stiffness, interfacial frictional moments including load dependent and load independent components, time-varying displacement excitation caused by a LOD, additional deformations at the sharp edges of the LOD, and lubricating oil film. The time-varying displacement model is determined by a half-sine function. A new method for calculating the additional deformations at the sharp edges of the LOD is analytical derived based on an elastic quarter-space method presented in the literature. The proposed dynamic model is utilized to analyze the influences of the housing support stiffness and LOD sizes on the vibration characteristics of the rigid RBS, which cannot be predicted by the previous dynamic models in the literature. The results show that the presented method can give a new dynamic modeling method for vibration formulation for a rigid RBS with and without the LOD on the races.
Zhang, Qiang; Zong, Hong-Shi
2016-01-01
The afterglow of GRBs is believed to originate from the synchrotron emission of shock-accelerated electrons produced by the interaction between the outflow and the external medium. The accelerated electrons are usually assumed to follow a power law energy distribution with an index of $p$. Observationally, although most GRB afterglows have a $p$ larger than 2, there are still a few GRBs suggestive of a hard ($p<2$) electron spectrum. GRB 091127, with well-sampled broad-band afterglow data, shows evidence of a hard electron spectrum and strong spectral evolution, with a spectral break moving from high to lower energies. The spectral break evolves very fast and cannot be explained by the cooling break in the standard afterglow model, unless evolving microphysical parameters are assumed. Besides, the multi-band afterglow light curves show an achromatic break at around 33 ks. Based on the model of a hard electron spectrum with an injection break, we interpret the observed spectral break as the synchrotron freq...
AN Xi-Zhong
2007-01-01
The crystallization, corresponding to the fcc structure (with packing density p ≈ 0.74), of smooth equal hard spheres under batch-wised feeding and three-dimensional interval vibration is numerically obtained by using the discrete element method. The numerical experiment shows that the ordered packing can be realized by proper control of the dynamic parameters such as batch of each feeding § and vibration amplitude A. The radial distribution function and force network are used to characterize the ordered structure. The defect formed during vibrated packing is characterized as well The results in our work fill the gap of getting packing density between random close packing and fcc packing in phase diagram which provides an effective way of theoretically investigating the complex process and mechanism of hard sphere crystallization and its dynamics.
Fraser, Diane P.; Zuckermann, Martin J.; Mouritsen, Ole G.
1991-01-01
A two-dimensional Monte Carlo simulation method based on the NpT ensemble and the Voronoi tesselation, which was previously developed for single-species hard-disk systems, is extended, along with a version of scaled-particle theory, to many-component mixtures. These systems are unusual in the sense...... that their composition is not fixed, but rather determined by a set of internal degeneracies assigned to the differently sized hard disks, where the larger disks have the higher degeneracies. Such systems are models of monolayers of molecules with internal degrees of freedom. The combined set of translational...... and internal degrees of freedom leads to a rich phase structure that includes solid-liquid transitions (governed by the translational variables) as well as transitions involving changes in average disk size (governed by the internal variables). The relationship between these two types of transitions is studied...
Gazzillo, Domenico; Giacometti, Achille
2004-03-08
We discuss structural and thermodynamical properties of Baxter's adhesive hard sphere model within a class of closures which includes the Percus-Yevick (PY) one. The common feature of all these closures is to have a direct correlation function vanishing beyond a certain range, each closure being identified by a different approximation within the original square-well region. This allows a common analytical solution of the Ornstein-Zernike integral equation, with the cavity function playing a privileged role. A careful analytical treatment of the equation of state is reported. Numerical comparison with Monte Carlo simulations shows that the PY approximation lies between simpler closures, which may yield less accurate predictions but are easily extensible to multicomponent fluids, and more sophisticate closures which give more precise predictions but can hardly be extended to mixtures. In regimes typical for colloidal and protein solutions, however, it is found that the perturbative closures, even when limited to first order, produce satisfactory results.
Wolf, Aaron S.; Asimow, Paul D.; Stevenson, David J.
2015-08-01
We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme temperatures and pressures, including deep mantle conditions like those in the early Earth magma ocean. The Coordinated Hard Sphere Mixture (CHaSM) is based on an extension of the hard sphere mixture model, accounting for the range of coordination states available to each cation in the liquid. By utilizing approximate analytic expressions for the hard sphere model, this method is capable of predicting complex liquid structure and thermodynamics while remaining computationally efficient, requiring only minutes of calculation time on standard desktop computers. This modeling framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide range of pressures and temperatures. We find that the typical coordination number of the Mg cation evolves continuously upward from 5.25 at 0 GPa to 8.5 at 250 GPa. The results produced by CHaSM are evaluated by comparison with predictions from published first-principles molecular dynamics calculations, indicating that CHaSM is accurately capturing the dominant physics controlling the behavior of oxide melts at high pressure. Finally, we present a simple quantitative model to explain the universality of the increasing Grüneisen parameter trend for liquids, which directly reflects their progressive evolution toward more compact solid-like structures upon compression. This general behavior is opposite that of solid materials, and produces steep adiabatic thermal profiles for silicate melts, thus playing a crucial role in magma ocean evolution.
Saab, T. E-mail: tsaab@milkyway.gsfc.nasa.gov; Apodacas, E.; Bandler, S.R.; Boyce, K.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Hammock, C.; Kelley, R.; Lindeman, M.; Porter, F.S.; Stahle, C.K
2004-03-11
Characterizing and understanding, in detail, the behavior of a Transition Edge Sensor (TES) is required for achieving an energy resolution of 2 eV at 6 keV desired for future X-ray observatory missions. This paper will report on a suite of measurements (e.g. impedance and I-V among others) and simulations that were developed to extract a comprehensive set of TES parameters such as heat capacity, thermal conductivity, and R(T,I), {alpha}(T,I), and {beta}{sub i}(T,I) surfaces. These parameters allow for the study of the TES calorimeter behavior at and beyond the small signal regime.
Yeckel, Andrew
2016-09-01
A thermocapillary model of edge-defined film-fed growth (EFG) is developed to analyze an experimental system for high speed growth of cesium iodide as a model system for halide scintillator production. The model simulates heat transfer and fluid dynamics in the die, melt, and crystal under conditions of steady growth. Appropriate mass, force, and energy balances are used to compute self-consistent shapes of the growth interface and melt-vapor meniscus. The model is applied to study the effects of growth rate, die geometry, and furnace heat transfer on the limits of system operability. An inverse problem formulation is used to seek operable states at high growth rates by adjusting the overall temperature level and thermal gradient in the furnace. The model predicts that steady growth is feasible at rates greater than 20 mm/h for crystals up to 18 mm in diameter under reasonable furnace gradients.
Cai, Hongzhu; Hu, Xiangyun; Li, Jianhui; Endo, Masashi; Xiong, Bin
2017-02-01
We solve the 3D controlled-source electromagnetic (CSEM) problem using the edge-based finite element method. The modeling domain is discretized using unstructured tetrahedral mesh. We adopt the total field formulation for the quasi-static variant of Maxwell's equation and the computation cost to calculate the primary field can be saved. We adopt a new boundary condition which approximate the total field on the boundary by the primary field corresponding to the layered earth approximation of the complicated conductivity model. The primary field on the modeling boundary is calculated using fast Hankel transform. By using this new type of boundary condition, the computation cost can be reduced significantly and the modeling accuracy can be improved. We consider that the conductivity can be anisotropic. We solve the finite element system of equations using a parallelized multifrontal solver which works efficiently for multiple source and large scale electromagnetic modeling.
Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.
2015-12-01
Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, compression.
Morgan, Harry L., Jr.
2002-01-01
This report presents the results of a test conducted in the Langley Low-Turbulence Pressure Tunnel to measure the flow field properties of a flap-edge vortex. The model was the EET (Energy Efficient Transport) Flap-Edge Vortex Model, which consists of a main element and a part-span, single-slotted trailing-edge flap. The model surface was instrumented with several chordwise and spanwise rows of pressure taps on each element. The off-body flow field velocities were to be measured in several planes perpendicular to the flap edge with a laser velocimetry system capable of measuring all three components in coincidence. However, due to seeding difficulties, the preliminary laser data did not have sufficient accuracy to be suitable for presentation; therefore, this report presents only the tabulated and plotted surface pressure data. In addition, the report contains a detail description of the model which can be used to generate accurate CFD grid structures.
Earon, Ofri
2013-01-01
the building. The research explores and develops the architectural characteristics of correlations between the resident, the singular unit, the building and the given location at the edge zone. It approaches the edge zone of the urban house as a platform for dynamic interactions between these behaviours....... The following text includes the first draft of the first two chapters: introduction and theory. The chapters are not written completely, and some parts are written only as headlines. These headlines and other comments are marked in red. The text is on working progress and far from being finished...
Earon, Ofri
2014-01-01
of the involved actors at the border. By doing so, the study underlines a forgotten, yet important, role of this edge zone – being a zone of commonality between the house and city, between indoors and outdoors, between the man at home and the man at the street. The city of Copenhagen promotes porous borders...... is a collection of material from the case study of an ongoing PhD study titled: LIVING EDGE - The Architectural and Urban Prospect of Domestic Borders. The paper includes a description of the problem analysis, research question, method, discussion and conclusion....
Tobita, Tohru, E-mail: tobita.tohru@jaea.go.jp [Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki-prefecture 319-1195 (Japan); Nakagawa, Shou [Department of Materials Science, Osaka Prefecture University, Sakai-shi, Osaka 599-8531 (Japan); Takeuchi, Tomoaki; Suzuki, Masahide [Neutron Irradiation and Testing Reactor Center, Japan Atomic Energy Agency, Narita, Oarai, Higashiibaraki-gun, Ibaraki-prefecture 311-1393 (Japan); Ishikawa, Norito [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki-prefecture 319-1195 (Japan); Chimi, Yasuhiro [Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki-prefecture 319-1195 (Japan); Saitoh, Yuichi [Department of Advanced Radiation Technology, Japan Atomic Energy Agency, Watanuki, Takasaki-shi, Gunma-prefecture 370-1292 (Japan); Soneda, Naoki; Nishida, Kenji; Ishino, Siori [Central Research Institute of Electric Power Industry, Komae-shi, Tokyo 201-8511 (Japan); Iwase, Akihiro [Department of Materials Science, Osaka Prefecture University, Sakai-shi, Osaka 599-8531 (Japan)
2014-09-15
Three kinds of Fe-based model alloys, Fe–0.018 atomic percent (at.%) Cu, Fe–0.53at.%Cu, and Fe–1.06at.%Cu were irradiated with 2 MeV electrons up to the dose of 2 × 10{sup −5} dpa at 250 °C. After the irradiation, the increase in Vickers hardness and the decrease in electrical resistivity were observed. The increase in hardness by electron irradiation is proportional to the product of the Cu contents and the square root of the electron dose. The decrease in electrical resistivity is proportional to the product of the square of Cu contents and the electron dose. Cu clustering in the materials with electron irradiation and thermal aging was observed by means of the Atom Probe Tomography (APT). The change in Vickers hardness and electrical resistivity is well correlated with micro-structure evolution related to the Cu clustering process. The irradiation hardening was proportional to the square root of volume fraction of the Cu clusters from early stage of irradiation.
Mehraeen, Shafigh
2013-05-01
We compare the merits of a hopping model and a mobility edge model in the description of the effect of charge-carrier concentration on the electrical conductivity, carrier mobility, and Fermi energy of organic semiconductors. We consider the case of a composite electronic density of states (DOS) that consists of a superposition of a Gaussian DOS and an exponential DOS. Using kinetic Monte Carlo simulations, we apply the two models in order to interpret the recent experimental data reported for n-doped C60 films. While both models are capable of reproducing the experimental data very well and yield qualitatively similar characteristic parameters for the density of states, some discrepancies are found at the quantitative level. © 2013 American Physical Society.
Cai, Hongzhu; Xiong, Bin; Han, Muran
2014-01-01
This paper presents a linear edge-based finite element method for numerical modeling of 3D controlled-source electromagnetic data in an anisotropic conductive medium. We use a nonuniform rectangular mesh in order to capture the rapid change of diffusive electromagnetic field within the regions...... of anomalous conductivity and close to the location of the source. In order to avoid the source singularity, we solve Maxwell's equation with respect to anomalous electric field. The nonuniform rectangular mesh can be transformed to hexahedral mesh in order to simulate the bathymetry effect. The sparse system...
Cluster model calculation of N near K-edge energy-loss fine structures in hexagonal GaN crystal
无
2001-01-01
A cluster model is used to calculate electron energy-loss fine structures in crystal. The multiple-scattering self-consistent-field method is employed in the calculation. Our theoretical results of N near K-edge energy loss fine structures in hexagonal GaN crystal are in good agreement with the experimental spectra. Future possible experiments in energy-filtered transmission electron microscopy (EFTEM) are discussed and proposed because our theoretical work can provide clear assignments for transmitted electrons with different energy losses.
Hard and soft computing models of composite curing process looking toward monitoring and control
Rubino, F.; Carlone, P.; Aleksendrić, D.; Ćirović, V.; Sorrentino, L.; Bellini, C.
2016-10-01
The curing process of thermosetting resins plays a key role on the final quality of the composite material components. Soft computing techniques proved to be an efficient method to control and optimize the curing process, replacing the conventional experimental and numerical approaches. In this paper artificial neural network (ANN) and fuzzy logic control (FLC) were implemented together to predict and control the temperature and degree of cure profile during the autoclave curing process. The obtained outcomes proved the capability of ANNs and FLC with respect to the hard computing methods.
Chung, Chung-Hou; Lee, Der-Hau; Chao, Sung-Po
2014-07-01
We study the quantum phases and phase transitions of the Kane-Mele Hubbard (KMH) model on a zigzag ribbon of honeycomb lattice at a finite size via the weak-coupling renormalization group (RG) approach. In the noninteracting limit, the Kane-Mele (KM) model is known to support topological edge states where electrons show helical property with orientations of the spin and momentum being locked. The effective interedge hopping terms are generated due to finite-size effect. In the presence of an on-site Coulomb (Hubbard) interaction and the interedge hoppings, special focus is put on the stability of the topological edge states (TI phase) in the KMH model against (i) the charge and spin gaped (II) phase, (ii) the charge gaped but spin gapless (IC) phase, and (iii) the spin gaped but charge gapless (CI) phase depending on the number (even/odd) of the zigzag ribbons, doping level (electron filling factor) and the ratio of the Coulomb interaction to the interedge tunneling. We discuss different phase diagrams for even and odd numbers of zigzag ribbons. We find the TI-CI, II-IC, and II-CI quantum phase transitions are of the Kosterlitz-Thouless (KT) type. By computing various correlation functions, we further analyze the nature and leading instabilities of these phases. The relevance of our results for graphene is discussed.
Krychowiak, M; Koenig, R; Wolf, R; Klinger, T [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany); Mertens, Ph; Schweer, B; Brezinsek, S; Schmitz, O; Samm, U [Institut fuer Energieforschung (Plasmaphysik), FZ Juelich, EURATOM Association, TEC, Juelich (Germany); Brix, M, E-mail: maciej.krychowiak@ipp.mpg.d [UKAEA, JET-Experimental Department, EURATOM Association, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom)
2010-05-01
Local values of the electron density and temperature in the edge of a fusion plasma can be derived with high space and time resolution by the use of line radiation of atomic helium beams. The accuracy of this method is mainly limited by the uncertainties in the collisional-radiative (CR) model which is needed in order to obtain both plasma parameters from the measured relative intensities of atomic helium lines. Laser-induced fluorescence spectroscopy on a thermal helium beam in the edge plasma of the tokamak TEXTOR in Juelich was applied to validate the CR model of helium. By use of a high-power, pulsed laser system (a dye laser pumped by an excimer laser) several laser excitation schemes starting from the n=2 levels have been tried. The fluorescence light was observed at the laser wavelength and elsewhere in the spectrum providing information on population densities of initial levels as well as on collisional population transfer between excited levels. This paper summarises the results of the measurements, showing principal limits and possible improvements of this experimental validation method of the CR model of the diagnostic helium beam.
Krychowiak, M.; Mertens, Ph; König, R.; Schweer, B.; Brezinsek, S.; Schmitz, O.; Brix, M.; Samm, U.; Wolf, R.; Klinger, T.
2010-05-01
Local values of the electron density and temperature in the edge of a fusion plasma can be derived with high space and time resolution by the use of line radiation of atomic helium beams. The accuracy of this method is mainly limited by the uncertainties in the collisional-radiative (CR) model which is needed in order to obtain both plasma parameters from the measured relative intensities of atomic helium lines. Laser-induced fluorescence spectroscopy on a thermal helium beam in the edge plasma of the tokamak TEXTOR in Jülich was applied to validate the CR model of helium. By use of a high-power, pulsed laser system (a dye laser pumped by an excimer laser) several laser excitation schemes starting from the n=2 levels have been tried. The fluorescence light was observed at the laser wavelength and elsewhere in the spectrum providing information on population densities of initial levels as well as on collisional population transfer between excited levels. This paper summarises the results of the measurements, showing principal limits and possible improvements of this experimental validation method of the CR model of the diagnostic helium beam.
Toropova, Alla P; Toropov, Andrey A; Marzo, Marco; Escher, Sylvia E; Dorne, Jean Lou; Georgiadis, Nikolaos; Benfenati, Emilio
2017-03-30
Continuous QSAR models have been developed and validated for the prediction of no-observed-adverse-effect (NOAEL) in rats, using training and test sets from the Fraunhofer RepDose® database and EFSA's Chemical Hazards Database: OpenFoodTox. This paper demonstrates that the HARD index, as an integrated attribute of SMILES, improves the prediction power of NOAEL values using the continuous QSAR models and Monte Carlo simulations. The HARD-index is a line of eleven symbols, which represents the presence, or absence of eight chemical elements (nitrogen, oxygen, sulfur, phosphorus, fluorine, chlorine, bromine, and iodine) and different kinds of chemical bonds (double bond, triple bond, and stereo chemical bond). Optimal molecular descriptors calculated with the Monte Carlo technique (maximization of correlation coefficient between the descriptor and endpoint) give satisfactory predictive models for NOAEL. Optimal molecular descriptors calculated in this way with the Monte Carlo technique (maximization of correlation coefficient between the descriptor and endpoint) give amongst the best results available in the literature. The models are built up in accordance with OECD principles. Copyright © 2017 Elsevier Ltd. All rights reserved.
New convergence criteria for the vortex-lattice models of the leading-edge separation
Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.
1976-01-01
The convergence criterion for the vortex-lattice technique which deals with delta wings exhibiting significant leading-edge separation was studied. It was shown that one can predict pressure distributions without irregularities which agree fairly well with experimental data (which show some irregularities of their own) by replacing the system of discrete vortex lines with a single concentrated core. This core has a circulation equal to the algebraic sum of the circulations around the discrete lines and is located at the centroid of these lines. Moreover, there is a requirement that the position and strength of the core must converge as the number of elements increases. Because the calculation of the position and strength of the core is much less involved than the calculation of the loads, this approach has the additional desirable feature of requiring less computational time.
Geloni, Gianluca; Saldin, Evgeni; Schneidmiller, Evgeni; Yurkov, Mikhail
2008-01-01
We formulate a complete theory of Edge Radiation based on a novel method relying on Fourier Optics techniques. Similar types of radiation like Transition Undulator Radiation are addressed in the framework of the same formalism. Special attention is payed in discussing the validity of approximations upon which the theory is built. Our study makes consistent use of both similarity techniques and comparisons with numerical results from simulation. We discuss both near and far zone. Physical understanding of many asymptotes is discussed. Based on the solution of the field equation with a tensor Green's function technique, we also discuss an analytical model to describe the presence of a vacuum chamber. In particular, explicit calculations for a circular vacuum chamber are reported. Finally, we consider the use of Edge Radiation as a tool for electron beam diagnostics. We discuss Coherent Edge Radiation, Extraction of Edge Radiation by a mirror, and other issues becoming important at high electron energy and long ...
Form factors and transverse charge and magnetization densities in the hard-wall AdS/QCD model
Mondal, Chandan
2016-01-01
We present a study of the flavor form factors in the framework of a hard-wall AdS/QCD model and compare with the available experimental data. We obtain the flavor form factors by decomposing the Dirac and Pauli form factors for the nucleons using the charge and isospin symmetry. Further, we present a detailed study of the flavor structures of the charge and anomalous magnetization densities in the transverse plane. Both the unpolarized and the transversely polarized nucleons are considered here. We compare the AdS/QCD results with two standard phenomenological parametrizations.
Phase transitions in Bose-Fermi-Hubbard model in the heavy fermion limit: Hard-core boson approach
I.V. Stasyuk
2015-12-01
Full Text Available Phase transitions are investigated in the Bose-Fermi-Hubbard model in the mean field and hard-core boson approximations for the case of infinitely small fermion transfer and repulsive on-site boson-fermion interaction. The behavior of the Bose-Einstein condensate order parameter and grand canonical potential is analyzed as functions of the chemical potential of bosons at zero temperature. The possibility of change of order of the phase transition to the superfluid phase in the regime of fixed values of the chemical potentials of Bose- and Fermi-particles is established. The relevant phase diagrams are built.
Heat and particle transport in a one-dimensional hard-point gas model with on-site potential
Lei Wang
2015-05-01
Full Text Available Heat and particle transport in a one-dimensional hard-point gas of elastically colliding particles are studied. In the nonequal mass case, due to the presence of on-site potential, the heat conduction of the model obeys the Fourier law and all the transport coefficients asymptotically approach constants in the thermodynamic limit. The thermoelectric figure of merit ZT increases slowly with the system length L and is proportional to the height of the potential barriers H in high H regime. These findings may serve as a guide for future theoretical and experimental studies.
Blume, M.; Skoda, R.
2015-12-01
A compressible density-based time-explicit low Mach number consistent viscous flow solver is utilised in combination with a barotropic cavitation model for the analysis of cloud cavitation on a circular leading edge (CLE) hydrofoil. For 5° angle of attack, cloud structure and shedding frequency for different cavitation numbers are compared to experimental data. A strong grid sensitivity is found in particular for high cavitation numbers. On a fine grid, a very good agreement with validation data is achieved even without explicit turbulence model. The neglect of viscous effects as well as a two-dimensional set-up lead to a less realistic prediction of cloud structures and frequencies. Comparative simulations with the Sauer-Schnerr cavitation model and modified pre-factors of the mass transfer terms underestimate the measured shedding frequency.
Karampinos, Efstratios; Hadjigeorgiou, John; Turcotte, Pascal
2016-12-01
Structurally defined squeezing mechanisms in hard rock mining often result in buckling failures and large deformations. In mining drives, the primary objective is to mitigate and manage, in a cost-effective way, as opposed to arrest the deformation. This paper is a contribution to an improved understanding of the impact of several reinforcement scenarios in structurally controlled deformations in hard rock mines. The influence of reinforcement in the 3D discrete element method is explored, extending previous numerical work that has captured the squeezing buckling mechanism driven by foliation and high stresses in the selected mine site. A comprehensive strategy for explicitly modelling rock reinforcement using the DEM was developed and implemented in a series of 3D numerical models. The models were calibrated based on field testing of reinforcement and observations at the LaRonde Mine. They were used to investigate the influence of different reinforcement strategies at different deformation stages. The numerical results were in agreement with the field observations and demonstrated the practical implications of using yielding reinforcement elements. This was supported by field data where the use of yielding bolts reduced the drift convergence and rehabilitation. The methodology is applicable to other mine sites facing structurally controlled large deformations.
Heo, Hwan; Lee, Won Oh; Shin, Kwang Yong; Park, Kang Ryoung
2014-05-15
We propose a new method for measuring the degree of eyestrain on 3D stereoscopic displays using a glasses-type of eye tracking device. Our study is novel in the following four ways: first, the circular area where a user's gaze position exists is defined based on the calculated gaze position and gaze estimation error. Within this circular area, the position where edge strength is maximized can be detected, and we determine this position as the gaze position that has a higher probability of being the correct one. Based on this gaze point, the eye foveation model is defined. Second, we quantitatively evaluate the correlation between the degree of eyestrain and the causal factors of visual fatigue, such as the degree of change of stereoscopic disparity (CSD), stereoscopic disparity (SD), frame cancellation effect (FCE), and edge component (EC) of the 3D stereoscopic display using the eye foveation model. Third, by comparing the eyestrain in conventional 3D video and experimental 3D sample video, we analyze the characteristics of eyestrain according to various factors and types of 3D video. Fourth, by comparing the eyestrain with or without the compensation of eye saccades movement in 3D video, we analyze the characteristics of eyestrain according to the types of eye movements in 3D video. Experimental results show that the degree of CSD causes more eyestrain than other factors.
The dark matter halo shape of edge-on disk galaxies - III. Modelling the HI observations: results
O'Brien, J C; van der Kruit, P C
2010-01-01
This is the third paper in a series in which we attempt to put constraints on the flattening of dark halos in disk galaxies. For this purpose we need to analyse the observed XV diagrams in edge-on galaxies to accurately measure the radial HI surface density, the rotation curve and the HI velocity dispersion. We present the results of the modelling of HI observations of 8 HI-rich, late-type, edge-on galaxies. In all of these we find differential rotation. Most systems display HI velocity dispersions of 6.5 to 7.5 km s$^{-1}$ and all except one show radial structure. There is an increase in the mean HI velocity dispersion with maximum rotation velocity, at least up to 120 km s$^{-1}$. Next we analyse the observations to derive the radial variation of the thickness (flaring) of the HI layer. We find that with the exception of the asymmetric IC5052, all of the galaxies in our sample are good candidates for 3D mass modelling to measure the dark halo shape. The flaring profiles are symmetric and have a common shape...
R. Daud
2013-06-01
Full Text Available Shielding interaction effects of two parallel edge cracks in finite thickness plates subjected to remote tension load is analyzed using a developed finite element analysis program. In the present study, the crack interaction limit is evaluated based on the fitness of service (FFS code, and focus is given to the weak crack interaction region as the crack interval exceeds the length of cracks (b > a. Crack interaction factors are evaluated based on stress intensity factors (SIFs for Mode I SIFs using a displacement extrapolation technique. Parametric studies involved a wide range of crack-to-width (0.05 ≤ a/W ≤ 0.5 and crack interval ratios (b/a > 1. For validation, crack interaction factors are compared with single edge crack SIFs as a state of zero interaction. Within the considered range of parameters, the proposed numerical evaluation used to predict the crack interaction factor reduces the error of existing analytical solution from 1.92% to 0.97% at higher a/W. In reference to FFS codes, the small discrepancy in the prediction of the crack interaction factor validates the reliability of the numerical model to predict crack interaction limits under shielding interaction effects. In conclusion, the numerical model gave a successful prediction in estimating the crack interaction limit, which can be used as a reference for the shielding orientation of other cracks.
Hwan Heo
2014-05-01
Full Text Available We propose a new method for measuring the degree of eyestrain on 3D stereoscopic displays using a glasses-type of eye tracking device. Our study is novel in the following four ways: first, the circular area where a user’s gaze position exists is defined based on the calculated gaze position and gaze estimation error. Within this circular area, the position where edge strength is maximized can be detected, and we determine this position as the gaze position that has a higher probability of being the correct one. Based on this gaze point, the eye foveation model is defined. Second, we quantitatively evaluate the correlation between the degree of eyestrain and the causal factors of visual fatigue, such as the degree of change of stereoscopic disparity (CSD, stereoscopic disparity (SD, frame cancellation effect (FCE, and edge component (EC of the 3D stereoscopic display using the eye foveation model. Third, by comparing the eyestrain in conventional 3D video and experimental 3D sample video, we analyze the characteristics of eyestrain according to various factors and types of 3D video. Fourth, by comparing the eyestrain with or without the compensation of eye saccades movement in 3D video, we analyze the characteristics of eyestrain according to the types of eye movements in 3D video. Experimental results show that the degree of CSD causes more eyestrain than other factors.
Koubiti, M.; Marandet, Y.; Godbert-Mouret, L.; Stamm, R.; Touati, K. [Physique des Interactions Ioniques et Moleculaires, UMR 6633 CNRS/Universite de Provence, centre de Saint-Jerome, Marseille (Spain); Capes, H.; Escarguel, A.; Guirlet, R.; Michelis, C. De [Departement de Recherches sur la Fusion Controlee, Association EURATOM-CEA Cadrache, Saint Paul lez Durance (France)
2001-07-01
The plasma in the periphery of a magnetic fusion device plays an important role in the spread of particle and heat power. To optimise its role, it is necessary to characterize the edge plasma and understand all the interaction processes between the plasma constituents (ions, electrons and neutrals), and also their interactions with the device walls. For that purpose, high-resolution passive emission spectroscopy is well suitable since it is a non-intrusive method However, edge plasma diagnostics based on this method requires the accurate modelling of the observed spectra. A lineshape model initially developed for Stark broadening has been recently updated to include the Zeeman effect. The synthetic line profiles can be convolved with a Gaussian or a Lorentzian to account for the Doppler broadening and the instrumental function. For ionising conditions of edge plasmas such as those realized in front of the neutraliser plates (NP) of the Tore-Supra (TS) Ergodic Divertor where the electron temperature and density are usually higher than 10 eV and lower than 10{sup 19} m{sup -3}, the electron excitation of deuterium atoms dominates the recombination and only the first lines of the Balmer series are measured By fitting and analysing the spectrum of the deuterium Balmer {alpha} line (D{alpha}) emitted at different radial positions, information on the edge neutral populations can be obtained. In particular the neutral pro' auction mechanism and the dominant neutral relaxation processes can be identified from Doppler profile analysis. For this purpose we have analysed the lineshape of (D{alpha}) emitted in front of an equatorial NP of the ergodic diverter by a plasma region extending up to 2 cm radially away from the NP surface. For recombining plasma conditions such as Hose obtained in axisymmetric divertors, the electron temperature and density are respectively lower than 1 eV and higher than 10{sup 20} m{sup -3}, the volume recombination dominates the excitation
An integrated model of hard and soft context in sensor management
Hintz, Kenneth J.; Kadar, Ivan
2016-05-01
The integration of hard (physical) and soft (meta-physical) contexts in an information fusion system requires the identification of the specific mission oriented goals which it is desired to achieve. Just as most sensors cannot acquire data omnidirectionally, it is not computationally feasible to evaluate all contexts within which acquired data can be understood by an information fusion system. We first define a notional problem consisting of operating and hiding areas and transit routes between them. We then define physical and meta-physical contexts within which data acquired from the observed area can be interpreted and define the piecewise application of context specific transformations to a partition of the global problem of understanding data in context.
Wietholt, Christian; Hsiao, Ing-Tsung; Chen, Chin-Tu
2007-03-01
Small animal SPECT using low energy photons of I-125 and approaching resolutions of microscopic levels, imaging parameters such as pinhole edge penetration, detector blur, geometric response, detector and pinhole misalignment, and gamma photon attenuation and scatter can have increasingly noticeable and/or adverse effects on reconstructed image quality. Iterative reconstruction algorithms, the widelyaccepted standard for emission tomography, allow modeling of such parameters through a system matrix. For this Monte Carlo simulation study, non-uniform attenuation correction was added to the existing system model. The model was constructed using ray-tracing and further included corrections for edge penetration, detector blur, and geometric aperture response. For each ray passing through different aperture locations, this method attenuates a voxel's contribution to a detector element along the photon path, which is then weighted according to a pinhole penetration model. To lower the computational and memory expenses, symmetry along the detector axes and an incremental storage scheme for the system model were used. For evaluating the nonuniform attenuation correction method, 3 phantoms were designed of which projection images were simulated using Monte Carlo methods. The first phantom was used to examined skin artifacts, the second to simulate attenuation by bone, and the third to generate artifacts of an air-filled space surrounded by soft tissue. In reconstructions without attenuation correction, artifacts were observed with up to a 40% difference in activity. These could be corrected using the implemented method, although in one case overcorrection occurred. Overall, attenuation correction improved reconstruction accuracy of the radioisotope distribution in the presence of structural differences.
A reconnection-driven model of the hard X-ray loop-top source from flare 2004-Feb-26
Longcope, Dana; Brewer, Jasmine
2016-01-01
A compact X-class flare on 2004-Feb-26 showed a concentrated source of hard X-rays at the tops of the flare's loops. This was analyzed in previous work (Longcope et al. 2010), and interpreted as plasma heated and compressed by slow magnetosonic shocks generated during post-reconnection retraction of the flux. That work used analytic expressions from a thin flux tube (TFT) model, which neglected many potentially important factors such as thermal conduction and chromospheric evaporation. Here we use a numerical solution of the TFT equations to produce a more comprehensive and accurate model of the same flare, including those effects previously omitted. These simulations corroborate the prior hypothesis that slow mode shocks persist well after the retraction has ended, thus producing a compact, loop-top source instead of an elongated jet, as steady reconnection models predict. Thermal conduction leads to densities higher than analytic estimates had predicted, and evaporation enhances the density still higher, bu...
Jiang, Binhui; Mao, Haojie; Cao, Libo; Yang, King H
2014-09-01
Improved Cardiopulmonary Resuscitation (CPR) approaches will largely benefit the children in need. The constant peak displacement and constant peak force loading methods were analyzed on hard bed for pediatric CPR by an anatomically-detailed 10 year-old (YO) child thorax finite element (FE) model. The chest compression and rib injury risk were studied for children with various levels of thorax stiffness. We created three thorax models with different chest stiffness. Simulated CPR׳s in the above two conditions were performed. Three different compression rates were considered under the constant peak displacement condition. The model-calculated deflections and forces were analyzed. The rib maximum principle strains (MPS׳s) were used to predict the potential risk of rib injury. Under the constant peak force condition, the chest deflection ranged from 34.2 to 42.2mm. The highest rib MPS was 0.75%, predicted by the compliant thorax model. Under the normal constant peak displacement condition, the highest rib MPS was 0.52%, predicted by the compliant thorax model. The compression rate did not affect the highest rib MPS. Results revealed that the thoracic stiffness had great effects on the quality of CPR. To maintain CPR quality for various children, the constant peak displacement technique is recommended when the CPR is performed on the hard bed. Furthermore, the outcome of CPR in terms of rib strains and total work are not sensitive to the compression rate. The FE model-predicted high strains were in the ribs, which have been found to be vulnerable to CPR in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.
HERschel Observations of Edge-on Spirals (HEROES). II: Tilted-ring modelling of the atomic gas disks
Allaert, F; Baes, M; De Geyter, G; Hughes, T M; Lewis, F; Bianchi, S; De Looze, I; Fritz, J; Holwerda, B W; Verstappen, J; Viaene, S
2015-01-01
Context. Edge-on galaxies can offer important insights in galaxy evolution as they are the only systems where the distribution of the different components can be studied both radially and vertically. The HEROES project was designed to investigate the interplay between the gas, dust, stars and dark matter (DM) in a sample of 7 massive edge-on spiral galaxies. Aims. In this second HEROES paper we present an analysis of the atomic gas content of 6 out of 7 galaxies in our sample. The remaining galaxy was recently analysed according to the same strategy. The primary aim of this work is to constrain the surface density distribution, the rotation curve and the geometry of the gas disks in a homogeneous way. In addition we identify peculiar features and signs of recent interactions. Methods. We construct detailed tilted-ring models of the atomic gas disks based on new GMRT 21-cm observations of NGC 973 and UGC 4277 and re-reduced archival HI data of NGC 5907, NGC 5529, IC 2531 and NGC 4217. Potential degeneracies be...
Kopparapu, Ravi kumar; Haqq-Misra, Jacob; Yang, Jun; Kasting, James F; Meadows, Victoria; Terrien, Ryan; Mahadevan, Suvrath
2016-01-01
Terrestrial planets at the inner edge of the habitable zone of late-K and M-dwarf stars are expected to be in synchronous rotation, as a consequence of strong tidal interactions with their host stars. Previous global climate model (GCM) studies have shown that, for slowly-rotating planets, strong convection at the substellar point can create optically thick water clouds, increasing the planetary albedo, and thus stabilizing the climate against a thermal runaway. However these studies did not use self-consistent orbital/rotational periods for synchronously rotating planets placed at different distances from the host star. Here we provide new estimates of the inner edge of the habitable zone for synchronously rotating terrestrial planets around late-K and M-dwarf stars using a 3-D Earth-analog GCM with self-consistent relationships between stellar metallicity, stellar effective temperature, and the planetary orbital/rotational period. We find that both atmospheric dynamics and the efficacy of the substellar clo...
Martínez, Fabio; Romero, Eduardo; Dréan, Gaël; Simon, Antoine; Haigron, Pascal; De Crevoisier, Renaud; Acosta, Oscar
2014-01-01
Accurate segmentation of the prostate and organs at risk in computed tomography (CT) images is a crucial step for radiotherapy (RT) planning. Manual segmentation, as performed nowadays, is a time consuming process and prone to errors due to the a high intra- and inter-expert variability. This paper introduces a new automatic method for prostate, rectum and bladder segmentation in planning CT using a geometrical shape model under a Bayesian framework. A set of prior organ shapes are first built by applying Principal Component Analysis (PCA) to a population of manually delineated CT images. Then, for a given individual, the most similar shape is obtained by mapping a set of multi-scale edge observations to the space of organs with a customized likelihood function. Finally, the selected shape is locally deformed to adjust the edges of each organ. Experiments were performed with real data from a population of 116 patients treated for prostate cancer. The data set was split in training and test groups, with 30 and 86 patients, respectively. Results show that the method produces competitive segmentations w.r.t standard methods (Averaged Dice = 0.91 for prostate, 0.94 for bladder, 0.89 for Rectum) and outperforms the majority-vote multi-atlas approaches (using rigid registration, free-form deformation (FFD) and the demons algorithm) PMID:24594798
Beggi, Andrea; Bordone, Paolo; Buscemi, Fabrizio; Bertoni, Andrea
2015-12-01
We compute the exact single-particle time-resolved dynamics of electronic Mach-Zehnder interferometers based on Landau edge-states transport, and assess the effect of the spatial localization of carriers on the interference pattern. The exact carrier dynamics is obtained by solving numerically the time-dependent Schrödinger equation with a suitable 2D potential profile reproducing the interferometer design. An external magnetic field, driving the system to the quantum Hall regime with filling factor one, is included. The injected carriers are represented by a superposition of edge states, and their interference pattern—controlled via magnetic field and/or area variation—reproduces the one of (Ji et al 2003 Nature 422 415). By tuning the system towards different regimes, we find two additional features in the transmission spectra, both related to carrier localization, namely a damping of the Aharonov-Bohm oscillations with increasing difference in the arms length, and an increased mean transmission that we trace to the energy-dependent transmittance of quantum point contacts. Finally, we present an analytical model, also accounting for the finite spatial dispersion of the carriers, able to reproduce the above effects.
Yamagata, Atsushi
1994-01-01
We perform the Monte Carlo simulations of the hard-sphere lattice gas on the simple cubic lattice with nearest neighbour exclusion. The critical activity is estimated, $z_{\\rm c} = 1.0588 \\pm 0.0003$. Using a relation between the hard-sphere lattice gas and the antiferromagnetic Ising model in an external magnetic field, we conclude that there is no re-entrant phase transition of the latter on the simple cubic lattice.
A disk-corona model for low/hard state of black hole X-ray binaries
Wang, Jiu-Zhou; Huang, Chang-Yin
2013-01-01
A disk-corona model for fitting low/hard (LH) state of associated steady jet of black hole X-ray binaries (BHXBs) is proposed based on the large-scale magnetic field configuration of the coexistence of the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes,where the magnetic field configuration for the BP process is determined by the requirement of energy conversion from Poynting energy flux into kinetic energy flux in the jet. It is found that corona current is crucial to guarantee the consistency of the jet launching from accretion disk. The relative importance of the BZ to BP processes in powering jets from black hole accretion disk is discussed, and the LH state of several BHXBs is fitted based on our model.In addition, we suggest that magnetic field configuration could be regarded as the second parameter for governing the state transition of BHXBs.
1985-09-01
PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE
Michael E Rudd
2014-08-01
Full Text Available Previous work demonstrated that perceived surface reflectance (lightness can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatial integrates these steps along paths through the image to compute lightness (Rudd & Zemach, 2004, 2005, 2007. This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013 suggests that the human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010 further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer’s interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd & Zemach, 2005. Here, I show how the separate influences of grouping and attention on lightness can be together modeled by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013, and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.
Rudd, Michael E.
2014-01-01
Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4. PMID:25202253
Experimental investigation and calibration of surface pressure modeling for trailing edge noise
Bertagnolio, Franck
2011-01-01
The modeling of the surface pressure spectrum under a turbulent boundary layer is investigated in the presence of an adverse pressure gradient along the flow direction. It is shown that discrepancies between measurements and results from a well-known model increase as the pressure gradient...... increases. This model is modified by introducing anisotropy in the definition of the vertical velocity component spectrum across the boundary layer. The degree of anisotropy is directly related to the strength of the pressure gradient. It is shown that by appropriately normalizing the pressure gradient...... and by tuning the anisotropy factor, experimental results can be closely reproduced by the modified model....
Turbulence in edge and core transport barriers: new experimental results and modeling
Tokuzawa, T.
2017-02-01
In this paper, recent progressive studies on experimental analysis and theoretical models for turbulence phenomena around the transport barriers in high-performance magnetic confined fusion plasma are reviewed. The linkage of radial electric fields and turbulence, the importance of radial electric field curvature, and observations of spatiotemporal turbulence structures are described with related theoretical models.
American Society for Testing and Materials. Philadelphia
2007-01-01
1.1 Conversion Table 1 presents data in the Rockwell C hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.2 Conversion Table 2 presents data in the Rockwell B hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.3 Conversion Table 3 presents data on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, and Knoop hardness of nickel and high-nickel alloys (nickel content o...
Statistical model of natural stimuli predicts edge-like pooling of spatial frequency channels in V2
Gutmann Michael
2005-02-01
Full Text Available Abstract Background It has been shown that the classical receptive fields of simple and complex cells in the primary visual cortex emerge from the statistical properties of natural images by forcing the cell responses to be maximally sparse or independent. We investigate how to learn features beyond the primary visual cortex from the statistical properties of modelled complex-cell outputs. In previous work, we showed that a new model, non-negative sparse coding, led to the emergence of features which code for contours of a given spatial frequency band. Results We applied ordinary independent component analysis to modelled outputs of complex cells that span different frequency bands. The analysis led to the emergence of features which pool spatially coherent across-frequency activity in the modelled primary visual cortex. Thus, the statistically optimal way of processing complex-cell outputs abandons separate frequency channels, while preserving and even enhancing orientation tuning and spatial localization. As a technical aside, we found that the non-negativity constraint is not necessary: ordinary independent component analysis produces essentially the same results as our previous work. Conclusion We propose that the pooling that emerges allows the features to code for realistic low-level image features related to step edges. Further, the results prove the viability of statistical modelling of natural images as a framework that produces quantitative predictions of visual processing.
Edge conduction in vacuum glazing
Simko, T.M.; Collins, R.E. [Sydney Univ., NSW (Australia). Dept. of Applied Physics; Beck, F.A.; Arasteh, D. [Lawrence Berkeley Lab., CA (United States)
1995-03-01
Vacuum glazing is a form of low-conductance double glazing using in internal vacuum between the two glass sheets to eliminate heat transport by gas conduction and convection. An array of small support pillars separates the sheets; fused solder glass forms the edge seal. Heat transfer through the glazing occurs by radiation across the vacuum gap, conduction through the support pillars, and conduction through the bonded edge seal. Edge conduction is problematic because it affects stresses in the edge region, leading to possible failure of the glazing; in addition, excessive heat transfer because of thermal bridging in the edge region can lower overall window thermal performance and decrease resistance to condensation. Infrared thermography was used to analyze the thermal performance of prototype vacuum glazings, and, for comparison, atmospheric pressure superwindows. Research focused on mitigating the edge effects of vacuum glazings through the use of insulating trim, recessed edges, and framing materials. Experimentally validated finite-element and finite-difference modeling tools were used for thermal analysis of prototype vacuum glazing units and complete windows. Experimental measurements of edge conduction using infrared imaging were found to be in good agreement with finite-element modeling results for a given set of conditions. Finite-element modeling validates an analytic model developed for edge conduction.
Alves, Gilvan A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Lab. de Cosmologia e Fisica Experimental de Altas Energias
2000-07-01
Full text follows: We review recent Hard Diffraction results from the D{phi} experiment at Fermilab, for the following processes: hard color singlet exchange, hard single diffraction, and hard double pomeron exchange. Measurements of rates, {eta}, E{sub T} and {radical}S dependencies are presented and comparisons made with predictions of several models. (author)
Agent-based Ecological Model Calibration - on the Edge of a New Approach
Pereira, Antonio; Reis, Luis Paulo
2008-01-01
The purpose of this paper is to present a new approach to ecological model calibration -- an agent-based software. This agent works on three stages: 1- It builds a matrix that synthesizes the inter-variable relationships; 2- It analyses the steady-state sensitivity of different variables to different parameters; 3- It runs the model iteratively and measures model lack of fit, adequacy and reliability. Stage 3 continues until some convergence criteria are attained. At each iteration, the agent knows from stages 1 and 2, which parameters are most likely to produce the desired shift on predicted results.
Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia
2015-01-01
This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope
Extended numerical modeling of impurity neoclassical transport in tokamak edge plasmas
Inoue, H.; Yamoto, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama (Japan); Homma, Y. [Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama (Japan); Research Fellow of Japan Society for the Promotion of Science, Tokyo (Japan)
2016-08-15
Understanding of impurity transport in tokamaks is an important issue in order to reduce the impurity contamination in fusion core plasmas. Recently, a new kinetic numerical scheme of impurity classical/neoclassical transport has been developed. This numerical scheme makes it possible to include classical self-diffusion (CL SD), classical inward pinch (CL IWP), and classical temperature screening effect (CL TSE) of impurity ions. However, impurity neoclassical transport has been modeled only in the case where background plasmas are in the Pfirsch-Schluter (PS) regime. The purpose of this study is to extend our previous model to wider range of collisionality regimes, i.e., not only the PS regime, but also the plateau regime. As in the previous study, a kinetic model with Binary Collision Monte-Carlo Model (BMC) has been adopted. We focus on the modeling of the neoclassical self-diffusion (NC SD) and the neoclassical inward pinch (NC IWP). In order to simulate the neoclassical transport with the BCM, velocity distribution of background plasma ions has been modeled as a deformed Maxwell distribution which includes plasma density gradient. Some test simulations have been done. As for NC SD of impurity ions, our scheme reproduces the dependence on the collisionality parameter in wide range of collisionality regime. As for NC IWP, in cases where test impurity ions and background ions are in the PS and plateau regimes, parameter dependences have been reproduced. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Phase behavior of hard particles
Duijneveldt, J.S. van; Lekkerkerker, H.N.W.
1995-01-01
The phase behavior of hard particles and mixtures thereof is reviewed. Special attention is given to a lattice model consisting of hard hexagons and points on a triangular lattice. This model appears to have two disordered phases and an ordered phase.
Van Genderen, Eric; Gensemer, Robert; Smith, Carrie; Santore, Robert; Ryan, Adam
2007-08-30
The goal of this study was to evaluate the reliability of the Biotic Ligand Model to predict Cu toxicity in very hard surface water (>200 mg/L as CaCO(3)), relative to current copper criteria methodologies (hardness-based equation and the water-effect ratio; WER). To test these methods, we conducted acute Cu toxicity tests with three aquatic test species (Ceriodaphnia dubia, Daphnia pulex and Pimephales promelas) in seven surface waters. The sites were representative of effluent-dependent or effluent-dominated streams common to the arid western United States of America (arid West) and a wide range of water quality variables were tested. In addition, concurrent Cu toxicity tests were conducted in laboratory waters that were matched to hardness and alkalinity of the sites to facilitate calculation of WER values. Results were used to characterize empirical relationships between water quality characteristics and Cu toxicity, and to compare measured Cu toxicity with Biotic Ligand Model (BLM) predictions. Acute toxicity tests were also conducted with C. dubia and P. promelas in a range of Ca or Mg-dominated hardness concentrations to determine the independent effects of Ca or Mg on Cu toxicity at high hardness levels. Conclusions from this study suggest that the BLM generates appropriate criteria for the waters tested in this study when compared to the hardness-based equation or WER approach. Although the historical site-specific methods are useful for surface waters with hardness alkalinity, Ca, Mg and Na). Therefore, the BLM offers an improved alternative to the hardness-based and WER approaches, particularly for situations where the current methods would be under-protective of sensitive aquatic life.
Dai, Haifeng; Zhu, Letao; Zhu, Jiangong; Wei, Xuezhe; Sun, Zechang
2015-10-01
The accurate monitoring of battery cell temperature is indispensible to the design of battery thermal management system. To obtain the internal temperature of a battery cell online, an adaptive temperature estimation method based on Kalman filtering and an equivalent time-variant electrical network thermal (EENT) model is proposed. The EENT model uses electrical components to simulate the battery thermodynamics, and the model parameters are obtained with a least square algorithm. With a discrete state-space description of the EENT model, a Kalman filtering (KF) based internal temperature estimator is developed. Moreover, considering the possible time-varying external heat exchange coefficient, a joint Kalman filtering (JKF) based estimator is designed to simultaneously estimate the internal temperature and the external thermal resistance. Several experiments using the hard-cased LiFePO4 cells with embedded temperature sensors have been conducted to validate the proposed method. Validation results show that, the EENT model expresses the battery thermodynamics well, the KF based temperature estimator tracks the real central temperature accurately even with a poor initialization, and the JKF based estimator can simultaneously estimate both central temperature and external thermal resistance precisely. The maximum estimation errors of the KF- and JKF-based estimators are less than 1.8 °C and 1 °C respectively.
Mind the edge! The role of adjacency matrix degeneration in maximum entropy weighted network models
Sagarra, Oleguer; Díaz-Guilera, Albert
2015-01-01
Complex network null models based on entropy maximization are becoming a powerful tool to characterize and analyze data from real systems. However, it is not easy to extract good and unbiased information from these models: A proper understanding of the nature of the underlying events represented in them is crucial. In this paper we emphasize this fact stressing how an accurate counting of configurations compatible with given constraints is fundamental to build good null models for the case of networks with integer valued adjacency matrices constructed from aggregation of one or multiple layers. We show how different assumptions about the elements from which the networks are built give rise to distinctively different statistics, even when considering the same observables to match those of real data. We illustrate our findings by applying the formalism to three datasets using an open-source software package accompanying the present work and demonstrate how such differences are clearly seen when measuring networ...
Periodic and Aperiodic Close Packing: A Spontaneous Hard-Sphere Model.
van de Waal, B. W.
1985-01-01
Shows how to make close-packed models from balloons and table tennis balls to illustrate structural features of clusters and organometallic cluster-compounds (which are of great interest in the study of chemical reactions). These models provide a very inexpensive and tactile illustration of the organization of matter for concrete operational…
Modelling of the dynamic behaviour of hard-to-machine alloys
Hokka, M.; Leemet, T.; Shrot, A.; Bäker, M.; Kuokkala, V.-T.
2012-08-01
Machining of titanium alloys and nickel based superalloys can be difficult due to their excellent mechanical properties combining high strength, ductility, and excellent overall high temperature performance. Machining of these alloys can, however, be improved by simulating the processes and by optimizing the machining parameters. The simulations, however, need accurate material models that predict the material behaviour in the range of strains and strain rates that occur in the machining processes. In this work, the behaviour of titanium 15-3-3-3 alloy and nickel based superalloy 625 were characterized in compression, and Johnson-Cook material model parameters were obtained from the results. For the titanium alloy, the adiabatic Johnson-Cook model predicts softening of the material adequately, but the high strain hardening rate of Alloy 625 in the model prevents the localization of strain and no shear bands were formed when using this model. For Alloy 625, the Johnson-Cook model was therefore modified to decrease the strain hardening rate at large strains. The models were used in the simulations of orthogonal cutting of the material. For both materials, the models are able to predict the serrated chip formation, frequently observed in the machining of these alloys. The machining forces also match relatively well, but some differences can be seen in the details of the experimentally obtained and simulated chip shapes.
Modelling of the dynamic behaviour of hard-to-machine alloys
Bäker M.
2012-08-01
Full Text Available Machining of titanium alloys and nickel based superalloys can be difficult due to their excellent mechanical properties combining high strength, ductility, and excellent overall high temperature performance. Machining of these alloys can, however, be improved by simulating the processes and by optimizing the machining parameters. The simulations, however, need accurate material models that predict the material behaviour in the range of strains and strain rates that occur in the machining processes. In this work, the behaviour of titanium 15-3-3-3 alloy and nickel based superalloy 625 were characterized in compression, and Johnson-Cook material model parameters were obtained from the results. For the titanium alloy, the adiabatic Johnson-Cook model predicts softening of the material adequately, but the high strain hardening rate of Alloy 625 in the model prevents the localization of strain and no shear bands were formed when using this model. For Alloy 625, the Johnson-Cook model was therefore modified to decrease the strain hardening rate at large strains. The models were used in the simulations of orthogonal cutting of the material. For both materials, the models are able to predict the serrated chip formation, frequently observed in the machining of these alloys. The machining forces also match relatively well, but some differences can be seen in the details of the experimentally obtained and simulated chip shapes.
Geloni, G.; Kocharyan, V.; Saldin, E.; Schneidmiller, E.; Yurkov, M.
2008-08-15
We formulate a complete theory of Edge Radiation based on a novel method relying on Fourier Optics techniques. Similar types of radiation like Transition UndulatorRadiation are addressed in the framework of the same formalism. Special attention is payed in discussing the validity of approximations upon which the theory is built. Our study makes consistent use of both similarity techniques and comparisons with numerical results from simulation. We discuss both near and far zone. Physical understanding of many asymptotes is discussed. Based on the solution of the field equation with a tensor Green's function technique, we also discuss an analytical model to describe the presence of a vacuum chamber. In particular, explicit calculations for a circular vacuum chamber are reported. Finally, we consider the use of Edge Radiation as a tool for electron beam diagnostics. We discuss Coherent Edge Radiation, Extraction of Edge Radiation by a mirror, and other issues becoming important at high electron energy and long radiation wavelength. Based on this work we also study the impact of Edge Radiation on XFEL setups and we discuss recent results. (orig.)
EDGE2D-EIRENE modelling of near SOL E r: possible impact on the H-mode power threshold
Chankin, A. V.; Delabie, E.; Corrigan, G.; Harting, D.; Maggi, C. F.; Meyer, H.; Contributors, JET
2017-04-01
Recent EDGE2D-EIRENE simulations of JET plasmas showed a significant difference between radial electric field (E r) profiles across the separatrix in two divertor configurations, with the outer strike point on the horizontal target (HT) and vertical target (VT) (Chankin et al 2016 Nucl. Mater. Energy, doi: 10.1016/j.nme.2016.10.004). Under conditions (input power, plasma density) where the HT plasma went into the H-mode, a large positive E r spike in the near scrape-off layer (SOL) was seen in the code output, leading to a very large E × B shear across the separatrix over a narrow region of a fraction of a cm width. No such E r feature was obtained in the code solution for the VT configuration, where the H-mode power threshold was found to be twice as high as in the HT configuration. It was hypothesised that the large E × B shear across the separatrix in the HT configuration could be responsible for the turbulence suppression leading to an earlier (at lower input power) L-H transition compared to the VT configuration. In the present work these ideas are extended to cover some other experimental observations on the H-mode power threshold variation with parameters which typically are not included in the multi-machine H-mode power threshold scalings, namely: ion mass dependence (isotope H-D-T exchange), dependence on the ion ∇B drift direction, and dependence on the wall material composition (ITER-like wall versus carbon wall in JET). In all these cases EDGE2D-EIRENE modelling shows larger positive E r spikes in the near SOL under conditions where the H-mode power threshold is lower, at least in the HT configuration.
Fagundes, D A; Pancheri, G; Srivastava, Y N; Shekhovtsova, O
2015-01-01
We show that the onset and rise of QCD mini-jets provide the dynamical mechanism behind the appearance of a soft edge in pp collisions around ISR energies and thus such a soft edge is built in our mini-jet model with soft gluon re-summation. Here the model is optimized for LHC at $\\sqrt{s} = 7, 8 TeV$ and predictions are made for higher LHC and cosmic ray energies. Further, we provide a phenomenological picture to discuss the breakup of the total cross-section into its elastic, uncorrelated and correlated inelastic pieces in the framework of a one-channel eikonal function.
Nowak, Michael A.; Hanke, Manfred; Trowbridge, Sarah N.; Markoff, Sera B.; Wilms, Joern; Pottschmidt, Katja; Coppi, Paolo; Maitra, Dipankar; Davis, Jhn E.; Tramper, Frank
2009-01-01
Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard "low states". Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the "focused wind" from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary s focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations, and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c2. All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum-dependent, none of the broad line fits allow for an inner disk radius that is > 40 GM/c(sup 2).
Electronics Modeling and Design for Cryogenic and Radiation Hard Applications Project
National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with a focus on very low temperature and...
Hydrodynamic model for ultra-short pulse ablation of hard dental tissue
London, R.A.; Bailey, D.S.; Young, D.A.; Alley, W.E.; Feit, M.D.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Neev, J. [Beckman Laser Inst., Irvine, CA (United States)
1996-02-29
A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 fsec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.
Electronics Modeling and Design for Cryogenic and Radiation Hard Applications Project
National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with a focus on very low temperature and...
On (no) inverse magnetic catalysis in the QCD hard and soft wall models
Dudal, D; Mertens, T G
2015-01-01
In this paper, we study the influence of an external magnetic field in holographic QCD models where the backreaction is modeled in via an appropriate choice of the background metric. We add a phenomenological soft wall dilaton to incorporate better IR behavior (confinement). Elaborating on previous studies conducted by [JHEP 1505 (2015) 121], we first discuss the Hawking-Page transition, the dual of the deconfinement transition, as a function of the magnetic field. We confirm that the critical deconfinement temperature can drop with the magnetic field. Secondly, we study the quark condensate holographically as a function of the applied magnetic field and demonstrate that this model does not exhibit inverse magnetic catalysis at the level of the chiral transition. The quest for a holographic QCD model that qualitatively describes the inverse magnetic catalysis at finite temperature is thus still open. Throughout this work, we pay special attention to the different holographic parameters and we attempt to fix t...
Bloemen, S; Aerts, C; Dupret, M A; Østensen, R H; Degroote, P; Müller-Ringat, E; Rauch, T
2014-01-01
We have computed a new grid of evolutionary subdwarf B star (sdB) models from the start of central He burning, taking into account atomic diffusion due to radiative levitation, gravitational settling, concentration diffusion, and thermal diffusion. We have computed the non-adiabatic pulsation properties of the models and present the predicted p-mode and g-mode instability strips. In previous studies of the sdB instability strips, artificial abundance enhancements of Fe and Ni were introduced in the pulsation driving layers. In our models, the abundance enhancements of Fe and Ni occur naturally, eradicating the need to use artificial enhancements. We find that the abundance increases of Fe and Ni were previously underestimated and show that the instability strip predicted by our simulations solves the so-called blue edge problem of the subdwarf B star g-mode instability strip. The hottest known g-mode pulsator, KIC 10139564, now resides well within the instability strip {even when only modes with low spherical...
Exploring the Constrained Maximum Edge-weight Connected Graph Problem
Zhen-ping Li; Shi-hua Zhang; Xiang-Sun Zhang; Luo-nan Chen
2009-01-01
Given an edge weighted graph,the maximum edge-weight connected graph (MECG) is a connected subgraph with a given number of edges and the maximal weight sum.Here we study a special case,i.e.the Constrained Maximum Edge-Weight Connected Graph problem (CMECG),which is an MECG whose candidate subgraphs must include a given set of k edges,then also called the k-CMECG.We formulate the k-CMECG into an integer linear programming model based on the network flow problem.The k-CMECG is proved to be NP-hard.For the special case 1-CMECG,we propose an exact algorithm and a heuristic algorithm respectively.We also propose a heuristic algorithm for the k-CMECG problem.Some simulations have been done to analyze the quality of these algorithms.Moreover,we show that the algorithm for 1-CMECG problem can lead to the solution of the general MECG problem.
A Reynolds Number Study of Wing Leading-Edge Effects on a Supersonic Transport Model at Mach 0.3
Williams, M. Susan; Owens, Lewis R., Jr.; Chu, Julio
1999-01-01
A representative supersonic transport design was tested in the National Transonic Facility (NTF) in its original configuration with small-radius leading-edge flaps and also with modified large-radius inboard leading-edge flaps. Aerodynamic data were obtained over a range of Reynolds numbers at a Mach number of 0.3 and angles of attack up to 16 deg. Increasing the radius of the inboard leading-edge flap delayed nose-up pitching moment to a higher lift coefficient. Deflecting the large-radius leading-edge flap produced an overall decrease in lift coefficient and delayed nose-up pitching moment to even higher angles of attack as compared with the undeflected large- radius leading-edge flap. At angles of attack corresponding to the maximum untrimmed lift-to-drag ratio, lift and drag coefficients decreased while lift-to-drag ratio increased with increasing Reynolds number. At an angle of attack of 13.5 deg., the pitching-moment coefficient was nearly constant with increasing Reynolds number for both the small-radius leading-edge flap and the deflected large-radius leading-edge flap. However, the pitching moment coefficient increased with increasing Reynolds number for the undeflected large-radius leading-edge flap above a chord Reynolds number of about 35 x 10 (exp 6).
边缘效应的去除函数模型及实验%Removal function model and experiment of edge effect
邓伟杰; 张峰; 郑立功
2011-01-01
计算机控制光学表面技术(CCOS)是加工光学非球面的一项重要技术.在计算机控制小磨头抛光技术中,边缘效应严重制约了CCOS技术的加工精度和加工效率,是亟待解决的技术难点之一.获得磨头在加工工件边缘时的定量去除模型,并通过驻留时间算法进行补偿,是解决该问题的重要途径.采用边缘压强阶跃分布模型,并通过理论推导,得出边缘效应下的去除函数计算模型.去除函数实验的结果表明,该边缘去除函数计算模型的数值绝对误差在5％内,边缘去除函数模型与实际加工吻合很好,可以用于指导实际抛光过程.%Computer controlled optical surfacing (CCOS) is an important technology for manufacturing optical aspheric mirrors. Edge effect is one of the key problems in CCOS and restricts the fabrication efficiency and accuracy in practice seriously. It is an important way to solve edge effect by obtaining the quantitative removal model when grinding head is fabricating the edge of workpiece and compensating it with dwell time algorithm. Skin model is used to describe the pressure distribution in edge region. The calculation model of edge removal function was derived from skin model theoretically. In order to validate the edge removal function model, the removal function experiments were completed with the practical parameters. The experimental results show that the absolute value error between the theoretical model and the experimental results is less than 5%, and the calculation model of edge removal function could be used to solve edge effect in the practical fabrication.
ELECTRONIC BANKING AS ANS COMPETITIVE EDGE FOR COMMERCIAL BANKS OF PAKISTAN: ROE MODEL
Sundas Rauf
2013-12-01
Full Text Available The impact of electronic banking on the profitability of commercial banks has been measured by developing the integrated model based on Return on Equity for the period of 2002 to 2012. Three major banks named as National Bank of Pakistan, Habib Metropolitan Bank, and Askari Bank Limited have been incorporated into the sample of this study, by applying the Ordinary Least Square (OLS , it has been concluded that services of E-Banking have significant impact on the profitability of recent adopters in terms of Return on Equity.
2003-01-01
CERN will be organizing a special information day on Friday, 27th June, designed to promote the wearing of hard hats and ensure that they are worn correctly. A new prevention campaign will also be launched.The event will take place in the hall of the Main Building from 11.30 a.m. to 2.00 p.m., when you will be able to come and try on various models of hard hat, including some of the very latest innovative designs, ask questions and pass on any comments and suggestions.
Exact solutions of the high dimensional hard-core Fermi-Hubbard model
PAN; Feng
2001-01-01
［1］Hubbard, J., Electron correlations in narrow energy bands, Proc. R. Soc. London, A, 963, 276: 238.［2］Hubbard, J., Electron correlations in narrow energy bands II. The degenerate band case, Proc. R. Soc. London A, 963, A277: 237.［3］Anderson, P. W., The resonating valence bond state in La2CuOand superconductivity, Science, 987, 235: 96.［4］Lieb, E. H, Wu, F. Y., Absence of Mott transition in an exact solution of the short-range one-band model in one dimension, Phys. Rev. Lett., 968, 20: 445.［5］Ogata, M., Shiba, H., Bethe-ansatz wave function, momentum distribution, and spin correlation in the one-dimensional strongly correlated Hubbard model, Phys. Rev., 990, B4: 326.［6］Ogata, M., Sugiyama, T., Shiba, H., Magnetic-field effects on the correlation functions in the one-dimensional strongly correlated Hubbard model, Phys. Rev., 990, B43: 840.［7］Mei, C., Chen, L., Study of the interaction between two electrons in the single band Hubbard model, Z. Phys., 988, B72: 429.［8］Caspers, W. J., Iske, P. L., Exact spectrum for n electrons in the single band Hubbard model, Physica, 989, A, 57: 033.［9］Kirson, M. W., A dynamical supersymmetry in the Hubbard model, Phys. Rev. Lett., 997, 78: 24.［10］Woynarovich, F., Excitations with complex wavefunctions in a Hubbard chain: II. States with several pairs of complex wavenumbers, J. Phys., 982, C5: 97.
Schmitz, O.; Becoulet, M.; Cahyna, P.; Evans, T. E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R. A.; Reiser, D.; Fenstermacher, M. E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.
2016-06-01
Results from three-dimensional modeling of plasma edge transport and plasma-wall interactions during application of resonant magnetic perturbation (RMP) fields for control of edge-localized modes in the ITER standard 15 MA Q = 10 H-mode are presented. The full 3D plasma fluid and kinetic neutral transport code EMC3-EIRENE is used for the modeling. Four characteristic perturbed magnetic topologies are considered and discussed with reference to the axisymmetric case without RMP fields. Two perturbation field amplitudes at full and half of the ITER ELM control coil current capability using the vacuum approximation are compared to a case including a strongly screening plasma response. In addition, a vacuum field case at high q 95 = 4.2 featuring increased magnetic shear has been modeled. Formation of a three-dimensional plasma boundary is seen for all four perturbed magnetic topologies. The resonant field amplitudes and the effective radial magnetic field at the separatrix define the shape and extension of the 3D plasma boundary. Opening of the magnetic field lines from inside the separatrix establishes scrape-off layer-like channels of direct parallel particle and heat flux towards the divertor yielding a reduction of the main plasma thermal and particle confinement. This impact on confinement is most accentuated at full RMP current and is strongly reduced when screened RMP fields are considered, as well as for the reduced coil current cases. The divertor fluxes are redirected into a three-dimensional pattern of helical magnetic footprints on the divertor target tiles. At maximum perturbation strength, these fingers stretch out as far as 60 cm across the divertor targets, yielding heat flux spreading and the reduction of peak heat fluxes by 30%. However, at the same time substantial and highly localized heat fluxes reach divertor areas well outside of the axisymmetric heat flux decay profile. Reduced RMP amplitudes due to screening or reduced RMP
Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh
2013-01-01
This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.
Largo, Julio; Wilding, Nigel B
2006-03-01
We report a Monte Carlo simulation study of the properties of highly asymmetric binary hard-sphere mixtures. This system is treated within an effective fluid approximation in which the large particles interact through a depletion potential [R. Roth, Phys. Rev. E 62 5360 (2000)] designed to capture the effects of a virtual sea of small particles. We generalize this depletion potential to include the effects of explicit size dispersity in the large particles and consider the case in which the particle diameters are distributed according to a Schulz form having a degree of polydispersity 14%. The resulting alteration (with respect to the monodisperse limit) of the metastable fluid-fluid critical point parameters is determined for two values of the ratio of the diameters of the small and large particles: q(triple bond)sigma(s)/(-)sigma(b)=0.1 and q=0.05. We find that the inclusion of polydispersity moves the critical point to lower reservoir volume fractions of the small particles and high volume fractions of the large ones. The estimated critical point parameters are found to be in good agreement with those predicted by a generalized corresponding states argument which provides a link to the known critical adhesion parameter of the adhesive hard-sphere model. Finite-size scaling estimates of the cluster percolation line in the one phase fluid region indicate that inclusion of polydispersity moves the critical point deeper into the percolating regime. This suggests that phase separation is more likely to be preempted by dynamical arrest in polydisperse systems.
Ernren, A.T.; Arthur, R.; Glynn, P.D.; McMurry, J.
1999-01-01
Four researchers were asked to provide independent modeled estimates of the solubility of a radionuclide solid phase, specifically Pu(OH)4, under five specified sets of conditions. The objectives of the study were to assess the variability in the results obtained and to determine the primary causes for this variability.In the exercise, modelers were supplied with the composition, pH and redox properties of the water and with a description of the mineralogy of the surrounding fracture system A standard thermodynamic data base was provided to all modelers. Each modeler was encouraged to use other data bases in addition to the standard data base and to try different approaches to solving the problem.In all, about fifty approaches were used, some of which included a large number of solubility calculations. For each of the five test cases, the calculated solubilities from different approaches covered several orders of magnitude. The variability resulting from the use of different thermodynamic data bases was in most cases, far smaller than that resulting from the use of different approaches to solving the problem.
Boundary Effects for One-Dimensional Bariev Model with Hard-Core Repulsion
LIXiao-Jun; YUERui-Hong
2004-01-01
For the Bariev model for correlated hopping in one dimension under open boundary conditions, the Bethe ansatz equations are analyzed for both a repulsive and an attractive interaction in several limiting cases, i.e., the ground state, the weak and strong coupling limits. The contributions of the boundary fields to both the magnetic susceptibility and the specific heat are obtained.
Boundary Effects for One-Dimensional Bariev Model with Hard-Core Repulsion
LI Xiao-Jun; YUE Rui-Hong
2004-01-01
For the Bariey model for correlated hopping in one dimension under open boundary conditions, the Bethe ansatz equations are analyzed for both a repulsive and an attractive interaction in several limiting cases, i.e., the ground state, the weak and strong coupling limits. The contributions of the boundary fields to both the magnetic susceptibility and the specific heat are obtained.
A realistic quantum capacitance model for quantum Hall edge state based Fabry-Pérot interferometers
Kilicoglu, O.; Eksi, D.; Siddiki, A.
2017-01-01
In this work, the classical and the quantum capacitances are calculated for a Fabry-Pérot interferometer operating in the integer quantized Hall regime. We first consider a rotationally symmetric electrostatic confinement potential and obtain the widths and the spatial distribution of the insulating (incompressible) circular strips using a charge density profile stemming from self-consistent calculations. Modelling the electrical circuit of capacitors composed of metallic gates and incompressible/compressible strips, we investigate the conditions to observe Aharonov-Bohm (quantum mechanical phase dependent) and Coulomb blockade (capacitive coupling dependent) effects reflected in conductance oscillations. In a last step, we solve the Schrödinger and the Poisson equations self-consistently in a numerical manner taking into account realistic experimental geometries. We find that, describing the conductance oscillations either by Aharanov-Bohm or Coulomb blockade strongly depends on sample properties also other than size, therefore, determining the origin of these oscillations requires further experimental and theoretical investigation.
Modelling of the dynamic behaviour of hard-to-machine alloys
Bäker M.; Shrot A.; Leemet T.; Hokka M.; Kuokkala V.-T.
2012-01-01
Machining of titanium alloys and nickel based superalloys can be difficult due to their excellent mechanical properties combining high strength, ductility, and excellent overall high temperature performance. Machining of these alloys can, however, be improved by simulating the processes and by optimizing the machining parameters. The simulations, however, need accurate material models that predict the material behaviour in the range of strains and strain rates that occur in the machining proc...
Estimating the properties of hard X-ray solar flares by constraining model parameters
Ireland, Jack; Schwartz, Richard A; Holman, Gordon D; Dennis, Brian R
2013-01-01
We compare four different methods of calculating uncertainty estimates in fitting parameterized models to RHESSI X-ray spectra, considering only statistical sources of error. Three of the four methods are based on estimating the scale-size of the minimum in a hypersurface formed by the weighted sum of the squares of the differences between the model fit and the data as a function of the fit parameters, and are implemented as commonly practiced. The fourth method uses Bayesian data analysis and Markov chain Monte Carlo (MCMC) techniques to calculate an uncertainty estimate. Two flare spectra are modeled: one from the GOES X1.3 class flare of 19 January 2005, and the other from the X4.8 flare of 23 July 2002. The four methods give approximately the same uncertainty estimates for the 19 January 2005 spectral fit parameters, but lead to very different uncertainty estimates for the 23 July 2002 spectral fit. This is because each method implements different analyses of the hypersurface, yielding method-dependent re...
Sharma, Neetika [Indian Institute of Science Education and Research Mohali, Mohali (India)
2016-04-15
We incorporate the perturbative evolution effects in the generalized parton distributions (GPDs) calculated in effective light-front quark model for the nucleon. The perturbative effects enter into formalism through the evolution of GPDs according to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-like (DGLAP) equation. We obtain the evolved GPDs in the momentum space and transverse impact parameter space. We observe that combining the light-front quark model with the perturbative evolution effects, give the effective model for studying the phenomenological GPDs. (orig.)
Dippers and dusty disc edges: new diagnostics and comparison to model predictions
Bodman, Eva H. L.; Quillen, Alice C.; Ansdell, Megan; Hippke, Michael; Boyajian, Tabetha S.; Mamajek, Eric E.; Blackman, Eric G.; Rizzuto, Aaron; Kastner, Joel H.
2017-09-01
We revisit the nature of large dips in flux from extinction by dusty circumstellar material that is observed by Kepler for many young stars in the Upper Sco and ρ Oph star formation regions. These young, low-mass 'dipper' stars are known to have low accretion rates and primarily host moderately evolved dusty circumstellar discs. Young low-mass stars often exhibit rotating starspots that cause quasi-periodic photometric variations. We found no evidence for periods associated with the dips that are different from the starspot rotation period in spectrograms constructed from the light curves. The material causing the dips in most of these light curves must be approximately corotating with the star. We find that disc temperatures computed at the disc corotation radius are cool enough that dust should not sublime. Crude estimates for stellar magnetic field strengths and accretion rates are consistent with magnetospheric truncation near the corotation radius. Magnetospheric truncation models can explain why the dips are associated with material near corotation and how dusty material is lifted out of the mid-plane to obscure the star that would account for the large fraction of young low-mass stars that are dippers. We propose that variations in disc orientation angle, stellar magnetic field dipole tilt axis and disc accretion rate are underlying parameters accounting for differences in the dipper light curves.
SITE 94. Modelling of groundwater chemistry at Aespoe Hard Rock Laboratory
Emren, A.T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry
1999-02-01
In this report a model is described, which has been able to give agreement between observed and modelled values for more than ten element concentrations (including pH and pE values). The model makes use of a number of steady state waters which are mixed naturally after which the mixtures react with minerals in the fractures. The end member waters are supposed to have been present in the fracture system during a time interval which is long enough for the rock groundwater system to have reached a steady state. Some elements, e.g. chlorine, is modelled as conservative (inert with respect to the rock). Most element concentrations cannot be explained from mixing alone. Rather reactions with the fracture walls have to be taken into account. The situation is complicated by the fact that a system comprised of groundwater and a number of fracture minerals may violate Gibb`s phase rule. In such a system, no global equilibrium state exists, and thus the water can never reach equilibrium with respect to all the fracture minerals. The end member waters eventually formed can be expected to be in a steady state condition rather than equilibrium with respect to the fracture minerals. It should be noted that such a steady state is not an equilibrium state. Rather, the water chemistry has to fluctuate as a result of spatial variability in the local mineral set. In most cases when an end member water is sampled, a large number of local waters are mixed causing the fluctuations to cancel out. The CRACKER is a program which has been developed to handle this complicated chemical situation. It couples chemistry and transport, using elaborate chemical modelling in combination with a simplified transport model. The program simulates chemical reactions of groundwater flowing through a plane fracture. The simulation results show that although the end member waters are far from equilibrium with respect to most of the minerals, they are in a steady state with respect to the rock. The chemistry
Results from EDGES High-band. I. Constraints on Phenomenological Models for the Global 21 cm Signal
Monsalve, Raul A.; Rogers, Alan E. E.; Bowman, Judd D.; Mozdzen, Thomas J.
2017-09-01
We report constraints on the global 21 cm signal due to neutral hydrogen at redshifts 14.8≥slant z≥slant 6.5. We derive our constraints from low-foreground observations of the average sky brightness spectrum conducted with the EDGES High-band instrument between 2015 September 7 and October 26. Observations were calibrated by accounting for the effects of antenna beam chromaticity, antenna and ground losses, signal reflections, and receiver parameters. We evaluate the consistency between the spectrum and phenomenological models for the global 21 cm signal. For tanh-based representations of the ionization history during the epoch of reionization, we rule out, at ≥slant 2σ significance, models with duration of up to {{Δ }}z=1 at z≈ 8.5 and higher than {{Δ }}z=0.4 across most of the observed redshift range under the usual assumption that the 21 cm spin temperature is much larger than the temperature of the cosmic microwave background during reionization. We also investigate a “cold” intergalactic medium (IGM) scenario that assumes perfect Lyα coupling of the 21 cm spin temperature to the temperature of the IGM, but that the latter is not heated by early stars or stellar remants. Under this assumption, we reject tanh-based reionization models of duration {{Δ }}z≲ 2 over most of the observed redshift range. Finally, we explore and reject a broad range of Gaussian models for the 21 cm absorption feature expected in the First Light era. As an example, we reject 100 mK Gaussians with duration (full width at half maximum) {{Δ }}z≤slant 4 over the range 14.2≥slant z≥slant 6.5 at ≥slant 2σ significance.
Hayashi, Tomohiko; Oshima, Hiraku; Harano, Yuichi; Kinoshita, Masahiro
2016-09-01
For neutral hard-sphere solutes, we compare the reduced density profile of water around a solute g(r), solvation free energy μ, energy U, and entropy S under the isochoric condition predicted by the two theories: dielectrically consistent reference interaction site model (DRISM) and angle-dependent integral equation (ADIE) theories. A molecular model for water pertinent to each theory is adopted. The hypernetted-chain (HNC) closure is employed in the ADIE theory, and the HNC and Kovalenko-Hirata (K-H) closures are tested in the DRISM theory. We also calculate g(r), U, S, and μ of the same solute in a hard-sphere solvent whose molecular diameter and number density are set at those of water, in which case the radial-symmetric integral equation (RSIE) theory is employed. The dependences of μ, U, and S on the excluded volume and solvent-accessible surface area are analyzed using the morphometric approach (MA). The results from the ADIE theory are in by far better agreement with those from computer simulations available for g(r), U, and μ. For the DRISM theory, g(r) in the vicinity of the solute is quite high and becomes progressively higher as the solute diameter d U increases. By contrast, for the ADIE theory, it is much lower and becomes further lower as d U increases. Due to unphysically positive U and significantly larger |S|, μ from the DRISM theory becomes too high. It is interesting that μ, U, and S from the K-H closure are worse than those from the HNC closure. Overall, the results from the DRISM theory with a molecular model for water are quite similar to those from the RSIE theory with the hard-sphere solvent. Based on the results of the MA analysis, we comparatively discuss the different theoretical methods for cases where they are applied to studies on the solvation of a protein.
Gelation in a model 1-component system with adhesive hard-sphere interactions
Kim, Jung Min; Eberle, Aaron; Fang, Jun; Wagner, Norman
2012-02-01
Colloidal dispersions can undergo a dynamical arrest of the disperse phase leading to a system with solid-like properties when either the volume fraction or the interparticle potential is varied. Systems that contain low to moderate particulate concentrations form gels whereas higher concentrations lead to glassy states in which caging by nearest neighbors can be a significant contributor to the arrested long-time dynamics. Colloid polymer mixtures have been the prevalent model system for studying the effect of attraction, where attractions are entropically driven by depletion effects, in which gelation has been shown to be a result of phase separation [1]. Using the model 1-component octadecyl coated silica nanoparticle system, Eberle et al. [2] found the gel-line to intersect the spinodal to the left of the critical point, and at higher concentrations extended toward the mode coupling theory attractive driven glass line. . We continue this study by varying the particle diameter and find quantitative differences which we explain by gravity. 1. Lu, P.J., et al., Nature, 2008. 453(7194): p. 499-504.2. Eberle, A.P.R., N.J. Wagner, and R. Castaneda-Priego, Physical Review Letters, 2011. 106(10).
Estimating the Properties of Hard X-Ray Solar Flares by Constraining Model Parameters
Ireland, J.; Tolbert, A. K.; Schwartz, R. A.; Holman, G. D.; Dennis, B. R.
2013-01-01
We wish to better constrain the properties of solar flares by exploring how parameterized models of solar flares interact with uncertainty estimation methods. We compare four different methods of calculating uncertainty estimates in fitting parameterized models to Ramaty High Energy Solar Spectroscopic Imager X-ray spectra, considering only statistical sources of error. Three of the four methods are based on estimating the scale-size of the minimum in a hypersurface formed by the weighted sum of the squares of the differences between the model fit and the data as a function of the fit parameters, and are implemented as commonly practiced. The fourth method is also based on the difference between the data and the model, but instead uses Bayesian data analysis and Markov chain Monte Carlo (MCMC) techniques to calculate an uncertainty estimate. Two flare spectra are modeled: one from the Geostationary Operational Environmental Satellite X1.3 class flare of 2005 January 19, and the other from the X4.8 flare of 2002 July 23.We find that the four methods give approximately the same uncertainty estimates for the 2005 January 19 spectral fit parameters, but lead to very different uncertainty estimates for the 2002 July 23 spectral fit. This is because each method implements different analyses of the hypersurface, yielding method-dependent results that can differ greatly depending on the shape of the hypersurface. The hypersurface arising from the 2005 January 19 analysis is consistent with a normal distribution; therefore, the assumptions behind the three non- Bayesian uncertainty estimation methods are satisfied and similar estimates are found. The 2002 July 23 analysis shows that the hypersurface is not consistent with a normal distribution, indicating that the assumptions behind the three non-Bayesian uncertainty estimation methods are not satisfied, leading to differing estimates of the uncertainty. We find that the shape of the hypersurface is crucial in understanding
Crack edge detection using comprehensive CV and facet model.%综合CV和Facet模型的裂纹边缘检测
向才兵; 曾理
2011-01-01
Edge detection of CV model is continuous and closed,but the accuracy is not high. While the result of Facet model has high accuracy, but is not continuous.A new method of comprehensive CV model and Facet model is researched in this paper. This method includes several parts as follow. Firstly,the crack edge is detected by CV model in the whole image.Secondly,the new crack edge is detected by Facet model only in the neighborhood of CV detection result. Thirdly,the final crack edge is attained by combining detection results of CV and Facet together. This method is applied to crack edge detection of industrial CT images.The experimental results show the effectiveness of it.%CV模型能检测到连续封闭的裂纹边缘,但边缘的定位精度不高,Facet模型定位裂纹边缘的精度高,但不连续.针对上述问题,研究了一种综合CV和Facet模型的算法.该算法利用CV模型进行边缘检测,在CV边缘点的附近运用Facet模型进行检测,将两种方法分别获得的边缘点进行融合得到连续封闭且定位准确的边缘.将该算法应用于工业CT图像的裂纹边缘检测中,实验结果表明该方法是有效的.
Hadhri, Mahdi; Ouafi, Abderazzak El; Barka, Noureddine [University of Quebec, Rimouski (Canada)
2017-02-15
This paper presents a comprehensive approach developed to design an effective prediction model for hardness profile in laser surface transformation hardening process. Based on finite element method and Artificial neural networks, the proposed approach is built progressively by (i) examining the laser hardening parameters and conditions known to have an influence on the hardened surface attributes through a structured experimental investigation, (ii) investigating the laser hardening parameters effects on the hardness profile through extensive 3D modeling and simulation efforts and (ii) integrating the hardening process parameters via neural network model for hardness profile prediction. The experimental validation conducted on AISI4340 steel using a commercial 3 kW Nd:Yag laser, confirm the feasibility and efficiency of the proposed approach leading to an accurate and reliable hardness profile prediction model. With a maximum relative error of about 10 % under various practical conditions, the predictive model can be considered as effective especially in the case of a relatively complex system such as laser surface transformation hardening process.
Hardness and Methods to Solve CLIQUE
ZHU Daming; LUAN Junfeng; MA Shaohan
2001-01-01
The paper briefly reviews NP-hard optimization problems and their inapproximability. The hardness of solving CLIQUE problem is specifically discussed. A dynamic-programming algorithm and its improved version for CLIQUE are reviewed and some additional analysis is presented. The analysis implies that the improved algorithm, HEWN (hierarchical edge-weighted network), only provides a heuristic or useful method, but cannot be called a polynomial algorithm.
Lamperski, Stanisław; Sosnowska, Joanna; Bhuiyan, Lutful Bari; Henderson, Douglas
2014-01-07
Even though ionic liquids are composed of nonspherical ions, it is shown here that the general features of the capacitance of an electrical double layer can be obtained using a charged hard sphere model. We have shown in our earlier studies that at high electrolyte concentrations or large magnitudes of the electrode charge density the fact that the ions have a finite size, and are not point ions, cause the capacitance near the potential of zero charge to increase and change from a minimum to a maximum as the ionic concentration is increased and to decrease as the magnitude of the electrode charge density increases. Here, we show that the asymmetry of the capacitance of an ionic liquid can be explained qualitatively by using spherical ions of different size without attempting to introduce the ionic shape in a detailed manner. This means that the general features of the capacitance of the double layer of an ionic liquid can be studied without using a complex model, although the study of the density or charge profiles of an ionic fluid would require one. However, this is often unnecessary in the analysis of many experiments.
Integrable one-dimensional N-component fermion model with correlated hopping and hard-core repulsion
Yue Ruihong. E-mail: yue@phy.nw.ed.nc; Schlottmann, P. E-mail: schlottm@phy.fsu.edu
2002-12-30
The N-component Bariev model for correlated hopping and a hard-core repulsion is shown to be integrable in one dimension. The solution of the model is obtained within the framework of nested Bethe Ansatz. The ground state integral equations for the densities of the rapidities are derived for repulsive and attractive correlations. In zero-field and for a repulsive interaction the spin excitations are gapped and only the charge sector has a Fermi surface. The properties are then those of a one-component Luttinger liquid. The spin-gaps are gradually closed with increasing magnetic field. For an attractive interaction potential charge bound states (generalized non-local Cooper pairs) are formed and the spin excitations are gapped in zero magnetic field. The ground state properties and the critical exponents of correlation functions are discussed for both, repulsive and attractive, potentials. The string hypothesis is invoked to derive the thermodynamic Bethe Ansatz equations. Some special limits of the thermodynamic equations are analyzed, e.g., the weak and strong interaction cases, and the low and high temperature limits.
Lukšič, Miha; Hribar-Lee, Barbara; Vlachy, Vojko; Pizio, O
2012-12-28
The canonical Monte Carlo computer simulations and integral equation theory were applied to examine the structural and thermodynamic properties of a mixture of ions and a core-softened fluid molecules. The positive and negative ions forming a +1:-1 salt were modeled as charged hard spheres, immersed in the dielectric medium. It was shown previously that the core-softened fluid under study is characterized by a set of structural, thermodynamic, and dynamic anomalies. The principal objective of this work was to elucidate how the presence of ions alters this behavior. The structural properties of the mixtures are discussed in terms of the pair distribution functions; in addition, the pair contribution to the excess entropy was calculated. Thermodynamic properties are investigated by using the dependencies of energy and compressibility factor on density, composition of the mixture, and reduced temperature. The heat capacity was also evaluated. Our principal findings concern the description of structural anomalies in the mixture, the dependence of the temperature of maximum density on the ionic concentration, and establishing the regions delimiting the structural and thermodynamic anomalies of the model mixture.
The dark matter halo shape of edge-on disk galaxies - II. Modelling the HI observations: methods
O'Brien, J C; van der Kruit, P C
2010-01-01
This is the second paper of a series in which we attempt to put constraints on the flattening of dark halos in disk galaxies. For this purpose, we observe the HI in edge-on galaxies, where it is in principle possible to measure the force field in the halo vertically and radially from gas layer flaring and rotation curve decomposition respectively. To calculate the force fields, we need to analyse the observed XV diagrams to accurately measure all three functions that describe the planar kinematics and distribution of a galaxy: the radial HI surface density, the rotation curve and the HI velocity dispersion. In this paper, we discuss the improvements and limitations of the methods previously used to measure these HI properties. We extend the constant velocity dispersion method to include determination of the HI velocity dispersion as a function of galactocentric radius and perform extensive tests on the quality of the fits. We will apply this 'radial decomposition XV modelling method' to our HI observations of...
Ochi, Hiroshi; Bamba, Takeshi; Naito, Hiroshige; Iwatsuki, Keiji; Fukusaki, Eiichiro
2012-11-01
Metabolic fingerprinting using gas chromatography with flame ionization detector (GC/FID) was used to generate a practical metabolomics-based tool for quality evaluation of natural cheese. Hydrophilic low molecular weight components, relating to sensory characteristics, including amino acids, fatty acids, amines, organic acids, and saccharides, were extracted and derivatized prior to the analysis. Data on 12 cheeses, six Cheddar cheeses and six Gouda cheeses, were analyzed by multivariate analysis. Prediction models for two sensory attributes relating to maturation, "Rich flavor" and "Sour flavor", were constructed with 4199 data points from GC/FID, and excellent predictability was validated. Chromatograms from GC/FID and gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS) were comparable when the same column was used. Although GC/FID alone cannot identify peaks, the mutually complementary relationship between GC/FID and GC/MS does allow peak identification. Compounds contributing significantly to the sensory predictive models included lactose, succinic acid, L-lactic acid, and aspartic acid for "Rich flavor", and lactose, L-lactic acid, and succinic acid for "Sour flavor". Since similar model precision was obtained using GC/FID and GC/TOF-MS, metabolic fingerprinting using GC/FID, which is a relatively inexpensive instrument compared with GC/MS, is easy to maintain and operate, and is a valid alternative when metabolomics (especially using GC/MS) is to be used in a practical setting as a novel quality evaluation tool for manufacturing processes or final products. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Horsten, N., E-mail: niels.horsten@kuleuven.be; Baelmans, M. [KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, 3001 Leuven (Belgium); Dekeyser, W. [ITER Organization, route de Vinon-sur-Verdon, 13067 St. Paul lez Durance Cedex (France); Samaey, G. [KU Leuven, Department of Computer Science, Celestijnenlaan 200A, 3001 Leuven (Belgium)
2016-01-15
We derive fluid neutral approximations for a simplified 1D edge plasma model, suitable to study the neutral behavior close to the target of a nuclear fusion divertor, and compare its solutions to the solution of the corresponding kinetic Boltzmann equation. The plasma is considered as a fixed background extracted from a detached 2D simulation. We show that the Maxwellian equilibrium distribution is already obtained very close to the target, justifying the use of a fluid approximation. We compare three fluid neutral models: (i) a diffusion model; (ii) a pressure-diffusion model (i.e., a combination of a continuity and momentum equation) assuming equal neutral and ion temperatures; and (iii) the pressure-diffusion model coupled to a neutral energy equation taking into account temperature differences between neutrals and ions. Partial reflection of neutrals reaching the boundaries is included in both the kinetic and fluid models. We propose two methods to obtain an incident neutral flux boundary condition for the fluid models: one based on a diffusion approximation and the other assuming a truncated Chapman-Enskog distribution. The pressure-diffusion model predicts the plasma sources very well. The diffusion boundary condition gives slightly better results overall. Although including an energy equation still improves the results, the assumption of equal ion and neutral temperature already gives a very good approximation.
Exact diagonalization study of a half-filled extended hard-core boson model in one dimension
Kim, Sung Moon; Choi, Hwan Bin; Lee, Yong Woo; Lee, Ji-Woo
2015-09-01
We study a model for interacting spinless bosons in one dimension. The bosons are under a hard-core condition, which does not allow two or more bosons in the same site. However, nearestneighbor interactions between bosons ( V) and hoppings to the nearest empty site ( t) are allowed. As V increases from a large negative value, the system undergoes a quantum phase transition from a phase-separation (PS) phase to a superfluid (SF) phase because the hopping term overcomes the attractive energy. When V becomes positive and is increased more, the superfluid phase becomes a charge-density-wave (CDW) phase because the repulsive energy blocks the movements of bosons. Via exact diagonalizations, we calculated the ground-state energies, the correlation energies, and the kinetic energies to obtain signatures of the quantum phase transitions. We adopted a fast stateseeking algorithm that enabled us to calculate the ground states and the ground-state energies up to L = 32 more efficiently. Some results are compared with those of quantum Monte Carlo simulations by using stochastic series expansion for the Heisenberg point, and the momentum distribution functions for the three phases are discussed.
The vanishing limit of the square-well fluid: the adhesive hard-sphere model as a reference system.
Largo, J; Miller, M A; Sciortino, F
2008-04-07
We report a simulation study of the gas-liquid critical point for the square-well potential, for values of well width delta as small as 0.005 times the particle diameter sigma. For small delta, the reduced second virial coefficient at the critical point B2*c is found to depend linearly on delta. The observed weak linear dependence is not sufficient to produce any significant observable effect if the critical temperature Tc is estimated via a constant B2*c assumption, due to the highly nonlinear transformation between B2*c and Tc. This explains the previously observed validity of the law of corresponding states. The critical density rho c is also found to be constant when measured in units of the cube of the average distance between two bonded particles (1+0.5 delta)sigma. The possibility of describing the delta-->0 dependence with precise functional forms provides improved accurate estimates of the critical parameters of the adhesive hard-sphere model.
C. P. Singh
2015-09-01
Full Text Available The subspecies of Swamp Deer, the Hard-ground Barasingha (Rucervus duvaucelii branderi Pocock, is presently found only in Kanha Tiger Reserve (KTR in Madhya Pradesh, India. This subspecies is highly vulnerable to extinction, and reintroduction in suitable sites is the need of the hour. Environmental niche models (GARP, SVM, ED, CSM aimed at providing a detailed prediction of species distribution by relating presence of species to 19 bioclimatic indices were developed, using swamp deer occurrence records in KTR. The predictions were appropriately weighted with the prevailing LU/LC classes to identify suitable habitats in Madhya Pradesh, India. The result shows that the southern region of Madhya Pradesh is suitable for the sustenance of Barasingha with varying degrees of habitability. Vicarious validation shows that most of these forest areas were the same as that of historical records dating back to 50 years. However, land use maps can help identify areas where this subspecies can be reintroduced.
Tanvir Hassan, S.M.; Lubczynski, M.; Niswonger, R.G.; Su, Zhongbo
2014-01-01
The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic
Glane, Sebastian; Reich, Felix A.; Müller, Wolfgang H.
2017-06-01
This study is dedicated to continuum-scale material modeling of isotropic permanent magnets. An affine-linear extension to the commonly used ideal hard model for permanent magnets is proposed, motivated, and detailed. In order to demonstrate the differences between these models, bar and horseshoe magnets are considered. The structure of the boundary value problem for the magnetic field and related solution techniques are discussed. For the ideal model, closed-form analytical solutions were obtained for both geometries. Magnetic fields of the boundary value problems for both models and differently shaped magnets were computed numerically by using the boundary element method. The results show that the character of the magnetic field is strongly influenced by the model that is used. Furthermore, it can be observed that the shape of an affine-linear magnet influences the near-field significantly. Qualitative comparisons with experiments suggest that both the ideal and the affine-linear models are relevant in practice, depending on the magnetic material employed. Mathematically speaking, the ideal magnetic model is a special case of the affine-linear one. Therefore, in applications where knowledge of the near-field is important, the affine-linear model can yield more accurate results—depending on the magnetic material.
Zang, Wen-Hua; Yin, Shen-Hua; Tang, De-Cai; Li, Bing-Bing
2014-03-01
To study the effect of medicines for activating blood and reinforcing Qi on the number of new micro-vessels and the protein expressions of VEGF and bFGF in the infarcted myocardium edge area of acute myocardial infarction (AMI) model in rats. The AMI model of rats was established. After the successful model establishment, rats were randomly divided into the sham-operated group, the model group, the Danshen-Huangqi (1 : 2) group, the Danshen-Huangqi (1 : 1) group, the Chuanxiong-Huangqi (1 : 2) group, the Danshen group, the Chuanxiong group, the Chishao group and the Shexiang Baoxin pill group, with five rats in each group. Rats in each medicated group were orally administered with drugs as per 13.5 g x kg(-1) x d(-1) once everyday for three weeks. The immunohistochemical SP method was adopted to detect the expression of vWF in myocardial tissues, and count the number of micro-vessels (MVC). The protein expression of VEGF and bFGF in myocardial tissues were determined by Western blot. The new micro-vessels stained by vWF factor could be found in the infarcted myocardium edge area of the sham-operated group, the model group and all of medicated groups. The sham-operated group show unobvious new micro-vessels in myocardial tissues. A small amount of new micro-vessels could be seen in the infarcted myocardium edge area of the model group. Whereas a larger number of micro-vessels could be seen in the infarcted myocardium edge area of all of medicated groups. The differences between the sham-operated group and the model group had statistical significance (P effect in promoting angiogenesis. Their mechanism for promoting angiogenesis may be related to the improvement of the protein expressions of VEGF and bFGF, so as to increase the contents of VEGF and bFGF and promote the angiogenesis of new vessels.
Ebrahimi, Sara; Kompany-Zareh, Mohsen, E-mail: kmpz@dr.com
2016-02-04
Reversible hybridization reaction plays a key role in fundamental biological processes, in many laboratory techniques, and also in DNA based sensing devices. Comprehensive investigation of this process is, therefore, essential for the development of more sophisticated applications. Kinetics and thermodynamics of the hybridization reaction, as a second order process, are systematically investigated with the aid of the soft and hard chemometric methods. Labeling two complementary 21 mer DNA single strands with FAM and Texas red fluorophores, enabled recording of the florescence excitation−emission matrices during the experiments which led to three-way data sets. The presence of fluorescence resonance energy transfer in excitation and emission modes and the closure in concentration mode, made the three-way data arrays rank deficient. To acquire primary chemical information, restricted Tucker3 as a soft method was employed. Herein a model-based method, hard restricted trilinear decomposition, is introduced for in depth analysis of rank deficient three-way data sets. By employing proposed hard method, the nonlinear model parameters as well as the correct profiles could be estimated. In addition, a simple constraint is presented to extract chemically reasonable output profiles regarding the core elements of restricted Tucker3 model. - Highlights: • Hard restricted trilinear decomposition (HrTD) was introduced for model-based analysis of three-way rank deficient data. • DNA hybridization was investigated by two-dimensional fluorescence spectroscopy and soft/hard multi-way techniques. • Restricted Tucker3 analysis enabled accurate estimation of pure FRET profiles in the hybridized form. • HrTD was successfully employed to estimate kinetic and equilibrium parameters of DNA hybridization system. • The performance of the proposed methods in response to different physical stimuli was successfully evaluated.
Garrido, Mariano; Larrechi, Maria Soledad; Rius, F Xavier; Mercado, Luis Adolfo; Galià, Marina
2007-02-05
Soft- and hard-modelling strategy was applied to near-infrared spectroscopy data obtained from monitoring the reaction between glycidyloxydimethylphenyl silane, a silicon-based epoxy monomer, and aniline. On the basis of the pure soft-modelling approach and previous chemical knowledge, a kinetic model for the reaction was proposed. Then, multivariate curve resolution-alternating least squares optimization was carried out under a hard constraint, that compels the concentration profiles to fulfil the proposed kinetic model at each iteration of the optimization process. In this way, the concentration profiles of each species and the corresponding kinetic rate constants of the reaction, unpublished until now, were obtained. The results obtained were contrasted with 13C NMR. The joint interval test of slope and intercept for detecting bias was not significant (alpha=5%).
Shadle, S. E.
1994-08-01
Ligand K-edge X-ray absorption spectroscopy (XAS) has been developed as a technique for the investigation of ligand-metal bonding and has been applied to the study of electronic structure in organic model complexes and metalloprotein active sites. Ligand K-edge XAS has been measured at the chloride K-edge for a series of complexes containing chloride ligands bound to open shell d(sup 9) copper ions. The intensity of the pre-edge feature in these spectra reflects the covalency in the half-occupied d(sub x)2(sub -y)2-derived molecular orbital (HOMO) of the complex. The energy of the pre-edge feature is related to both the charge on the ligand and the HOMO energy. An analysis of the intensity and energy of the pre-edge feature as well as the energy of the rising edge absorption provides quantitative information about the covalency of the ligand-metal interaction, the charge donated by the chloride, and the energy of the copper d-manifold. The results demonstrate that ligand K-edge XAS features can be used to obtain quantitative information about ligand-metal bonding. The results also identify the chemical basis for trends in the XAS data for the complexes: D(sub 4h)CuCl4(sup 2-), D(sub 2d)CuCl4(sup 2-), planar, trans-CuCl2(pdmp)(sub 2) (pdmp=N-phenyl-3,5-dimethylpyrazole), square pyramidal CuCl5(sup 3-), the planar dimer KCuCl3, the distorted tetrahedral dimer (Ph4P)CuCl3, and two dimers with mixed ligation, one containing a bridging chloride, and the other, terminally bound chloride. A geometric distortion from square planar to distorted tetrahedral results in a decrease in the chloride-copper HOMO covalency but an increase in the total charge donation by the chlorides. Thus, while the geometry can maximize the overlap for a highly covalent HOMO, this does not necessarily reflect the overall charge donation. The Cl-Cu(II) bonding interactions are dependent on the nature of the other coordinating ligands.
Yepuri, Giridhara Babu; Talanki Puttarangasetty, Ashok Babu; Kolke, Deepak Kumar; Jesuraj, Felix
2016-06-01
Increasing the gas turbine inlet temperature is one of the key technologies in raising gas turbine engine power output. Film cooling is one of the efficient cooling techniques to cool the hot section components of a gas turbine engines in turn the turbine inlet temperature can be increased. This study aims at investigating the effect of RANS-type turbulence models on adiabatic film cooling effectiveness over a scaled up gas turbine blade leading edge surfaces. For the evaluation, five different two equation RANS-type turbulent models have been taken in consideration, which are available in the ANSYS-Fluent. For this analysis, the gas turbine blade leading edge configuration is generated using Solid Works. The meshing is done using ANSYS-Workbench Mesh and ANSYS-Fluent is used as a solver to solve the flow field. The considered gas turbine blade leading edge model is having five rows of film cooling circular holes, one at stagnation line and the two each on either side of stagnation line at 30° and 60° respectively. Each row has the five holes with the hole diameter of 4 mm, pitch of 21 mm arranged in staggered manner and has the hole injection angle of 30° in span wise direction. The experiments are carried in a subsonic cascade tunnel facility at heat transfer lab of CSIR-National Aerospace Laboratory with a Reynolds number of 1,00,000 based on leading edge diameter. From the Computational Fluid Dynamics (CFD) evaluation it is found that K-ɛ Realizable model gives more acceptable results with the experimental values, compared to the other considered turbulence models for this type of geometries. Further the CFD evaluated results, using K-ɛ Realizable model at different blowing ratios are compared with the experimental results.
Park, Chang Min; Heo, Jiyong; Her, Namguk; Chu, Kyoung Hoon; Jang, Min; Yoon, Yeomin
2016-10-15
This study aims to provide insights into the mechanisms governing the deposition and retention of silver nanoparticles (AgNPs) in saturated porous media. Column experiments were conducted with quartz sand under saturated conditions to investigate the deposition kinetics of AgNPs, their mobility at different groundwater hardnesses (10-400 mg/L as CaCO3), and humic acid (HA, 0-50 mg/L as dissolved organic carbon [DOC]). An anionic surfactant, sodium dodecyl sulfate (SDS), was used as a dispersing agent to prepare a SDS-AgNPs suspension. The deposition kinetics of AgNPs were highly sensitive to the surfactant concentration, ionic strength, and cation type in solution. The breakthrough curves (BTCs) of SDS-AgNPs suggested that the transport and retention were influenced by groundwater hardness and HA. At low water hardness and high HA, high mobility of SDS-AgNPs was observed in saturated conditions. However, the retention of SDS-AgNPs increased substantially in very hard water with a low concentration of HA, because of a decreased primary energy barrier and the straining effect during the course of transport experiments. A modified clean-bed filtration theory and a two-site kinetic attachment model showed good fits with the BTCs of SDS-AgNPs. The fitted model parameters (katt and kstr) could be used successfully to describe that the retention behaviors were dominated by electrostatic and electrosteric repulsion, based on extended Derjaguin-Landau-Vaerwey-Overbeek calculations.
Prinja, A.K.
1998-09-01
relatively smooth as a consequence of the less localized recycling, leading to an improved convergence rate of the numerical algorithm. Peak plasma density is lower and the temperature correspondingly higher than those predicted by the standard diffusion model. It is believed that the FFCD model is more accurate. With both the TP continuation and multigrid methods, the author has demonstrated the robustness of these two methods. A mutually beneficial hybridization between the TP method and multigrid methods is clearly an alternative for edge plasma simulation. While the fundamental transport model considered in this work has ignored important physics such as drifts and currents, he has nevertheless demonstrated the versatility and robustness of the numerical scheme to handle such new physics. The application of gaseous-radiative divertor model in this work is just a beginning and up to this point numerically, the future is exciting.
Han, Chang-Fu; Wu, Bo-Hsiung; Lin, Jen-Fin; Chung, Chen-Kuei
2008-08-13
A general mechanical model, which is composed of the mechanical models employed to describe the contact behaviors and deformations arising in all layers (including the substrate), is successfully developed in the present study for multilayer specimens in order to evaluate the contact projected area by a theoretical model, and thus the hardness and reduced modulus, using nanoindentation tests. The governing differential equations for the depth solutions of the indenter tip formed at all layers of the specimen under their contact load are developed individually. The influence of the material properties of the substrate on a multilayer specimen's hardness and reduced modulus at various indentation depths can thus be evaluated. Transition and pop-in occurred at depths near, but still before, the C (top layer)/a-Si (buffer layer) interface and the a-Si/Si (substrate) interface, respectively. Using the present analysis, the depths corresponding to the transition and pop-in behaviors can be predicted effectively.
Xiang, Shiming; Zhang, Haijiang
2016-11-01
It is known full-waveform inversion (FWI) is generally ill-conditioned and various strategies including pre-conditioning and regularizing the inversion system have been proposed to obtain a reliable estimation of the velocity model. Here, we propose a new edge-guided strategy for FWI in frequency domain to efficiently and reliably estimate velocity models with structures of the size similar to the seismic wavelength. The edges of the velocity model at the current iteration are first detected by the Canny edge detection algorithm that is widely used in image processing. Then, the detected edges are used for guiding the calculation of FWI gradient as well as enforcing edge-preserving total variation (TV) regularization for next iteration of FWI. Bilateral filtering is further applied to remove noise but keep edges of the FWI gradient. The proposed edge-guided FWI in the frequency domain with edge-guided TV regularization and bilateral filtering is designed to preserve model edges that are recovered from previous iterations as well as from lower frequency waveforms when FWI is conducted from lower to higher frequencies. The new FWI method is validated using the complex Marmousi model that contains several steeply dipping fault zones and hundreds of horizons. Compared to FWI without edge guidance, our proposed edge-guided FWI recovers velocity model anomalies and edges much better. Unlike previous image-guided FWI or edge-guided TV regularization strategies, our method does not require migrating seismic data, thus is more efficient for real applications.
Hassan, S.M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Zhongbo, Su
2014-01-01
The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface–groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y−1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y−1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.
Pai, Shantaram S.; Riha, David S.
2013-01-01
Physics-based models are routinely used to predict the performance of engineered systems to make decisions such as when to retire system components, how to extend the life of an aging system, or if a new design will be safe or available. Model verification and validation (V&V) is a process to establish credibility in model predictions. Ideally, carefully controlled validation experiments will be designed and performed to validate models or submodels. In reality, time and cost constraints limit experiments and even model development. This paper describes elements of model V&V during the development and application of a probabilistic fracture assessment model to predict cracking in space shuttle main engine high-pressure oxidizer turbopump knife-edge seals. The objective of this effort was to assess the probability of initiating and growing a crack to a specified failure length in specific flight units for different usage and inspection scenarios. The probabilistic fracture assessment model developed in this investigation combined a series of submodels describing the usage, temperature history, flutter tendencies, tooth stresses and numbers of cycles, fatigue cracking, nondestructive inspection, and finally the probability of failure. The analysis accounted for unit-to-unit variations in temperature, flutter limit state, flutter stress magnitude, and fatigue life properties. The investigation focused on the calculation of relative risk rather than absolute risk between the usage scenarios. Verification predictions were first performed for three units with known usage and cracking histories to establish credibility in the model predictions. Then, numerous predictions were performed for an assortment of operating units that had flown recently or that were projected for future flights. Calculations were performed using two NASA-developed software tools: NESSUS(Registered Trademark) for the probabilistic analysis, and NASGRO(Registered Trademark) for the fracture
Jing, Yu; Wang, Yaxuan; Liu, Jianxin; Liu, Zhaoxia
2015-08-01
Edge detection is a crucial method for the location and quantity estimation of oil slick when oil spills on the sea. In this paper, we present a robust active contour edge detection algorithm for oil spill remote sensing images. In the proposed algorithm, we define a local Gaussian data fitting energy term with spatially varying means and variances, and this data fitting energy term is introduced into a global minimization active contour (GMAC) framework. The energy function minimization is achieved fast by a dual formulation of the weighted total variation norm. The proposed algorithm avoids the existence of local minima, does not require the definition of initial contour, and is robust to weak boundaries, high noise and severe intensity inhomogeneity exiting in oil slick remote sensing images. Furthermore, the edge detection of oil slick and the correction of intensity inhomogeneity are simultaneously achieved via the proposed algorithm. The experiment results have shown that a superior performance of proposed algorithm over state-of-the-art edge detection algorithms. In addition, the proposed algorithm can also deal with the special images with the object and background of the same intensity means but different variances.
The dark matter halo shape of edge-on disk galaxies III. Modelling the HI observations : results
O'Brien, J. C.; Freeman, K. C.; van der Kruit, P. C.
This is the third paper in a series in which we attempt to put constraints on the flattening of dark halos in disk galaxies. We observed for this purpose the Hi in edge-on galaxies, where it is in principle possible to measure the force field in the halo vertically and radially from gas layer
HERschel Observations of Edge-on Spirals (HEROES). II. Tilted-ring modelling of the atomic gas disks
Allaert, F.; Gentile, G.; Baes, M.; De Geyter, G.; Hughes, T. M.; Lewis, F.; Bianchi, S.; De Looze, I.; Fritz, J.; Holwerda, B. W.; Verstappen, J.; Viaene, S.
2015-01-01
Context. Edge-on galaxies can offer important insight into galaxy evolution because they are the only systems where the distribution of the different components can be studied both radially and vertically. The HEROES project was designed to investigate the interplay between the gas, dust, stars, and
Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.
2005-01-01
"Partners in Science" is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves…
Witkon, Yael
2012-01-01
This paper describes the setting up and the first year of running of an innovative outreach service for adolescents on the edge of care that aimed at redressing family breakdown and preventing placements in the care system. It was a collaborative endeavour between social services and a child and adolescent mental health provision to facilitate the…
Forces in Hard Turning of 51CrV4 with Wiper Cutting Tool
HE Xinfeng; WU Su; Hubert Kratz
2006-01-01
For precision machining, the hard turning process is becoming an important alternative to some of the existing grinding processes. This paper presents an analytical model for predicting cutting forces in hard turning of 51CrV4 with hardness of 68 HRC. The cutting tool used is made from cubic boron nitride (CBN) with a wiper cutting edge. Formulas for differential chip loads are derived for three different situations, depending on the radial depth of cut. The cutting forces are determined by integrating the differential cutting forces over the tool-workpiece engagement domain. For validation, cutting forces predicted by the model were compared with experimental measurements, and most of the results agree quite well.
Cağlar, Tolga; Berker, A Nihat
2011-11-01
The roughening phase diagram of the d=3 Ising model with uniaxially anisotropic interactions is calculated for the entire range of anisotropy, from decoupled planes to the isotropic model to the solid-on-solid model, using hard-spin mean-field theory. The phase diagram contains the line of ordering phase transitions and, at lower temperatures, the line of roughening phase transitions, where the interface between ordered domains roughens. Upon increasing the anisotropy, roughening transition temperatures settle after the isotropic case, whereas the ordering transition temperature increases to infinity. The calculation is repeated for the d=2 Ising model for the full range of anisotropy, yielding no roughening transition.
Nedospasov, A. V.
1992-12-01
Edge turbulence is of decisive importance for the distribution of particle and energy fluxes to the walls of tokamaks. Despite the availability of extensive experimental data on the turbulence properties, its nature still remains a subject for discussion. This paper contains a review of the most recent theoretical and experimental studies in the field, including mainly the studies to which Wootton (A.J. Wooton, J. Nucl. Mater. 176 & 177 (1990) 77) referred to most in his review at PSI-9 and those published later. The available theoretical models of edge turbulence with volume dissipation due to collisions fail to fully interpret the entire combination of experimental facts. In the scrape-off layer of a tokamak the dissipation prevails due to the flow of current through potential shifts near the surface of limiters of divertor plates. The different origins of turbulence at the edge and in the core plasma due to such dissipation are discussed in this paper. Recent data on the electron temperature fluctuations enabled one to evaluate the electric probe measurements of turbulent flows of particles and heat critically. The latest data on the suppression of turbulence in the case of L-H transitions are given. In doing so, the possibility of exciting current instabilities in biasing experiments (rather than only to the suppression of existing turbulence) is given some attention. Possible objectives of further studies are also discussed.
The complete T-->V,R energy conversion in three-body collisions within the hard sphere model.
Azriel, Vladimir M; Rusin, Lev Yu; Sevryuk, Mikhail B
2005-02-15
It is shown that in hard sphere (impulsive) collisions of atoms with diatomic molecules, complete conversion of the collision energy into the internal energy of the diatomic partner is possible for any number of impacts between the elastic balls representing the particles. The corresponding collision geometries and relations between the masses of the particles are described in detail.
Fatemeh Vejdani-Aram
2015-03-01
Full Text Available Background and Objectives: While all students are vulnerable to injuries, such vulnerability may even be higher in the deaf and hard-of-hearing students. Therefore, this study evaluated a health belief model-based educational program to prevent school injuries among deaf and hard-of-hearing high school students. Materials and Methods: This quasi-experimental study was conducted on all deaf and hard-of-hearing students who attended two special schools in Hamadan (Iran during 2014. They were randomly assigned to either the intervention group (n = 23 or the control group (n = 27. Data were collected using a self-report questionnaire containing items on demographic characteristics, constructs of the health belief model, and knowledge and preventive behaviors. In both groups, the questionnaires were filled out through interviews before and two months after the intervention. The intervention included distributing booklets and holding five educational sessions. Data were analyzed with paired t, independent t, chi square, and Fisher’s exact tests in SPSS16. Results: After the educational intervention, the mean scores of knowledge (P=0.002, preventive behaviors (P=0.001, and constructs of the health belief model, i.e. perceived severity (P=0.001, perceived benefits (P=0.001, self-efficacy (P=0.001, and cues to action (P=0.001, were significantly higher in the intervention group than in the control group. Conclusion: According to our findings, an educational intervention based on the health belief model can promote behaviors to prevent school injuries among deaf and hard-of-hearing students.
Jet formation at the sea ice edge
Feltham, D. L.; Heorton, H. D.
2014-12-01
The sea ice edge presents a region of many feedback processes between the atmosphere, ocean and sea ice, which are inadequately represented in current climate models. Here we focus on on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines. This sharp change in surface roughness is experienced by the atmosphere flowing over, and ocean flowing under, a compacted sea ice edge. We have studied a dynamic sea ice edge responding to atmospheric and oceanic jet formation. The shape and strength of atmospheric and oceanic jets during on-ice flows is calculated from existing studies of the sea ice edge and prescribed to idealised models of the sea ice edge. An idealised analytical model of sea ice drift is developed and compared to a sea ice climate model (the CICE model) run on an idealised domain. The response of the CICE model to jet formation is tested at various resolutions. We find that the formation of atmospheric jets during on-ice winds at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice edge jet. The modelled sea ice edge jet is in agreement with an observed jet although more observations are needed for validation. The increase in ice drift speed is dependent upon the angle between the ice edge and wind and can result in a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation during on-ice currents and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans has been analysed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.
Ebrahimi, Sara; Kompany-Zareh, Mohsen
2016-02-01
Reversible hybridization reaction plays a key role in fundamental biological processes, in many laboratory techniques, and also in DNA based sensing devices. Comprehensive investigation of this process is, therefore, essential for the development of more sophisticated applications. Kinetics and thermodynamics of the hybridization reaction, as a second order process, are systematically investigated with the aid of the soft and hard chemometric methods. Labeling two complementary 21 mer DNA single strands with FAM and Texas red fluorophores, enabled recording of the florescence excitation-emission matrices during the experiments which led to three-way data sets. The presence of fluorescence resonance energy transfer in excitation and emission modes and the closure in concentration mode, made the three-way data arrays rank deficient. To acquire primary chemical information, restricted Tucker3 as a soft method was employed. Herein a model-based method, hard restricted trilinear decomposition, is introduced for in depth analysis of rank deficient three-way data sets. By employing proposed hard method, the nonlinear model parameters as well as the correct profiles could be estimated. In addition, a simple constraint is presented to extract chemically reasonable output profiles regarding the core elements of restricted Tucker3 model.
Zhang, Xiuyun; Xin, John; Ding, Feng
2013-04-01
The edge of two dimensional (2D) graphene, as the surface of a three dimensional (3D) crystal, plays a crucial role in the determination of its physical, electronic and chemical properties and thus has been extensively studied recently. In this review, we summarize the recent advances in the study of graphene edges, including edge formation energy, edge reconstruction, method of graphene edge synthesis and the recent progress on metal-passivated graphene edges and the role of edges in graphene CVD growth. We expect this review to provide a guideline for readers to gain a clear picture of graphene edges from several aspects, especially the catalyst-passivated graphene edges and their role in graphene CVD growth.
Rasmussen, Christine O
2015-01-01
We present an overview of the options for diffraction implemented in the general--purpose event generator Pythia 8. We review the existing model for low-- and high--mass soft diffraction and present a new model for hard diffraction in pp and ppbar collisions. Both models uses the Pomeron approach pioneered by Ingelman and Schlein, factorising the single diffractive cross section into a Pomeron flux and a Pomeron PDF. The model for hard diffraction is implemented as a part of the multiparton interactions framework, thereby introducing a dynamical rapidity gap survival probability that explicitly breaks factorisation.
Rasmussen, Christine O
2015-01-01
We present an overview of the options for diffraction implemented in the general-purpose event generator Pythia 8. We review the existing model for soft diffraction and present a new model for hard diffraction. Both models use the Pomeron approach pioneered by Ingelman and Schlein, factorising the diffractive cross section into a Pomeron flux and a Pomeron PDF, with several choices for both implemented in Pythia 8. The model of hard diffraction is implemented as a part of the multiparton interactions (MPI) framework, thus introducing a dynamical gap survival probability that explicitly breaks factorisation.
Overgaard Rasmussen, Christine
2016-07-01
We present an overview of the options for diffraction implemented in the general-purpose event generator Pythia 8 [1]. We review the existing model for soft diffraction and present a new model for hard diffraction. Both models use the Pomeron approach pioneered by Ingelman and Schlein, factorising the diffractive cross section into a Pomeron flux and a Pomeron PDF, with several choices for both implemented in Pythia 8. The model of hard diffraction is implemented as a part of the multiparton interactions (MPI) framework, thus introducing a dynamical gap survival probability that explicitly breaks factorisation.
边缘增强型非局部模型超分辨率重建算法%Edge-enhanced nonlocal model super-resolution reconstruction
蒋建国; 董艳春; 齐美彬; 侯天峰
2011-01-01
In order to overcome the weak robustness,the weak reservation of edges, and the high sensitivity to noise in some super-resolution methods, we propose a nonlocal-means super-resolution reconstruction with enhanced edges based on the MAP frame. This method adopts the nonlocal-means model, and computes the modulus of the model together with the edges of the image. The proposed method mends effectively super-resolution reconstruction based on the bilateral total variance ( BTV) model and based on the Markov random field ( MRF) model. Our method is more robust and it is more able to reserve edges and to remove noise. Experimental results show that the proposed method is robust, and can reserves the edges well under low signal to noise ratio, getting a better reconstruction result.%针对一些超分辨率重建算法鲁棒性差、边缘保持能力有限、降噪效果不理想等不足,提出一种基于最大后验概率估计的边缘增强型非局部模型超分辨率重建算法.算法引入了非局部模型,并将图像的边缘信息加入模型系数的计算中,是对基于BTV( bilateral total variance)模型超分辨率重建和基于MRF( Markov random field)模型超分辨率重建的有效改进,提高了算法的鲁棒性、边缘保持能力和降噪能力.实验结果表明,该算法性能稳定,在信噪比较低情况下也能保持图像的边缘信息,取得比较好的重建效果.
Heijerick, D G; Janssen, C R; De Coen, W M
2003-02-01
The effect of changes in pH, hardness, and dissolved organic carbon (DOC) and the possible interactions among these parameters on the chronic toxicity of zinc to D. magna were investigated. Based on a Central Composite Design, models were developed that can explain the observed variation in EC(10) and EC(50) as a function of these toxicity modifying factors. All three parameters significantly altered the observed effect concentrations based on net reproductive rate. The largest differences in 21-day EC(10)s and EC(50)s caused by these factors were 10.1 and 4.9, respectively. An increase in pH and/or DOC decreased zinc toxicity. The significant interaction between pH and DOC on observed chronic Zn toxicity is in accordance with earlier reported increased sorption efficiency of Zn to humic substances at higher pH levels. Lowest Zn toxicity was observed in tests performed with moderately hard test media (between 200 and 300 mg/L as CaCO(3)). Lower or higher hardness of the test medium resulted in lower effect concentrations. Based on physico-chemical characteristics of the test media, developed models can be used to explain the variation between reported NOECs for Zn and may improve current environmental risk assessment procedures of metals.
Yue, Z.; Raikh, M. E.
2016-09-01
The Quantum anomalous Hall (QAH) effect in the films with nontrivial band structure accompanies the ferromagnetic transition in the system of magnetic dopants. Experimentally, the QAH transition manifests itself as a jump in the dependence of longitudinal resistivity on a weak external magnetic field. Microscopically, this jump originates from the emergence of a chiral edge mode on one side of the ferromagnetic transition. We study analytically the effect of an extended confinement on the structure of the edge modes. We employ the simplest model of the extended confinement in the form of a potential step next to the hard wall. It is shown that, unlike the conventional quantum Hall effect, where all edge channels are chiral, in the QAH effect, a complex structure of the boundary leads to nonchiral edge modes which are present on both sides of the ferromagnetic transition. Wave functions of nonchiral modes are different above and below the transition: on the "topological" side, where the chiral edge mode is supported, nonchiral modes are "repelled" from the boundary; i.e., they are much less localized than on the "trivial" side. Thus, the disorder-induced scattering into these modes will boost the extension of the chiral edge mode. The prime experimental manifestation of nonchiral modes is that, by contributing to longitudinal resistance, they smear the QAH transition.
Amigo, José Manuel; Del Olmo Alvarez, Arantxa; Engelsen, Merete Møller; Lundkvist, Henrik; Engelsen, Søren Balling
2016-10-01
Bread staling is one of the most costly food deterioration processes. This study presents an in-depth, multivariate, statistical assessment of the differences in the staling process of white wheat bread as a function of storage time, usage of maltogenic α-amylases and spatial position in the loaf by texture measurements and non-linear fitting (Avrami). This study demonstrates the effects of anti-staling enzymes upon bread staling, where significant changes in the spatial staling kinetics occur. While the spatial development of staling is reduced in the outer crumb by anti-staling enzymes, the staling is retarded in the middle. The Avrami model suggests that this happens by two different competing mechanisms: one which increases the initial staling rate, and one which slows the convergence towards the limiting hardness. The two enzyme treated breads differed widely in early and ultimate resilience, despite the fact that they were adjusted to provide the same ultimate hardness.
Computation of Edge-Edge-Edge Events Based on Conicoid Theory for 3-D Object Recognition
WU Chenye; MA Huimin
2009-01-01
The availability of a good viewpoint space partition is crucial in three dimensional (3-D) object rec-ognition on the approach of aspect graph. There are two important events depicted by the aspect graph ap-proach, edge-edge-edge (EEE) events and edge-vertex (EV) events. This paper presents an algorithm to compute EEE events by characteristic analysis based on conicoid theory, in contrast to current algorithms that focus too much on EV events and often overlook the importance of EEE events. Also, the paper provides a standard flowchart for the viewpoint space partitioning based on aspect graph theory that makes it suitable for perspective models. The partitioning result best demonstrates the algorithm's efficiency with more valu-able viewpoints found with the help of EEE events, which can definitely help to achieve high recognition rate for 3-D object recognition.
Sánchez-Salguero, Raúl; Camarero, Jesus Julio; Gutiérrez, Emilia; González Rouco, Fidel; Gazol, Antonio; Sangüesa-Barreda, Gabriel; Andreu-Hayles, Laia; Linares, Juan Carlos; Seftigen, Kristina
2016-10-26
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought-prone areas, tree populations located at the driest and southernmost distribution limits (rear-edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear-edges of the continuous distributions of these tree species. We used tree-ring width data from a network of 110 forests in combination with the process-based Vaganov-Shashkin-Lite growth model and climate-growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear-edge. By contrast, growth of high-elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of -10.7% and -16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear-edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear-edge stands. Our modeling
Srinivasa Rao, Y.; Reddy, T. V. K.; Nayudu, P. T.
2000-09-01
In hard-rock terrain, due to the lack of primary porosity in the bedrock, joints, fault zones, and weathered zones are the sources for groundwater occurrence and movement. To study the groundwater potential in the hard-rock terrain and drought-prone area in the Niva River basin, southern Andhra Pradesh state, India, Landsat 5 photographic data were used to prepare an integrated hydrogeomorphology map. Larsson's integrated deformation model was applied to identify the various fracture systems, to pinpoint those younger tensile fracture sets that are the main groundwater reservoirs, and to understand the importance of fracture density in groundwater prospecting. N35°-55°E fractures were identified as tensile and N35°-55°W fractures as both tensile and shear in the study area. Apparently, these fractures are the youngest open fractures. Wherever N35°-55°E and N35°-55°W fracture densities are high, weathered-zone thickness is greater, water-table fluctuations are small, and well yields are high. Groundwater-potential zones were delineated and classified as very good, good to very good, moderate to good, and poor. Résumé. Dans les roches de socle, l'absence de porosité primaire dans la roche fait que les fractures, les zones de faille et les zones d'altération sont les sites où l'eau souterraine est présente et s'écoule. Pour étudier le potentiel en eau souterraine dans la région de socle sujette à la sécheresse du bassin de la rivière Niva (sud de l'État d'Andhra Pradesh, Inde), des données photographiques de Landsat 5 ont été utilisées pour préparer une carte hydro-géomorphologique. Le modèle intégré de déformation de Larssons a été mis en œuvre pour identifier les différents systèmes de fractures, pour mettre l'accent sur les ensembles de fractures en extension les plus jeunes qui constituent les principaux réservoirs d'eau souterraine, et pour comprendre l'importance de la densité de fractures pour la prospection de l
Stability of edge states and edge magnetism in graphene nanoribbons
Kunstmann, Jens; Özdoğan, Cem; Quandt, Alexander; Fehske, Holger
2010-01-01
We critically discuss the stability of edge states and edge magnetism in zigzag edge graphene nanoribbons (ZGNRs). We point out that magnetic edge states might not exist in real systems, and show that there are at least three very natural mechanisms - edge reconstruction, edge passivation, and edge closure - which dramatically reduce the effect of edge states in ZGNRs or even totally eliminate them. Even if systems with magnetic edge states could be made, the intrinsic magnetism would not be ...
How Forest Inhomogeneities Affect the Edge Flow
Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas
2016-01-01
is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between......Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (>1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark...... the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge...
Zhang, Jing; Wang, Chenchen; Ji, Li; Liu, Weiping
2016-05-16
According to the electrophilic theory in toxicology, many chemical carcinogens in the environment and/or their active metabolites are electrophiles that exert their effects by forming covalent bonds with nucleophilic DNA centers. The theory of hard and soft acids and bases (HSAB), which states that a toxic electrophile reacts preferentially with a biological macromolecule that has a similar hardness or softness, clarifies the underlying chemistry involved in this critical event. Epoxides are hard electrophiles that are produced endogenously by the enzymatic oxidation of parent chemicals (e.g., alkenes and PAHs). Epoxide ring opening proceeds through a SN2-type mechanism with hard nucleophile DNA sites as the major facilitators of toxic effects. Thus, the quantitative prediction of chemical reactivity would enable a predictive assessment of the molecular potential to exert electrophile-mediated toxicity. In this study, we calculated the activation energies for reactions between epoxides and the guanine N7 site for a diverse set of epoxides, including aliphatic epoxides, substituted styrene oxides, and PAH epoxides, using a state-of-the-art density functional theory (DFT) method. It is worth noting that these activation energies for diverse epoxides can be further predicted by quantum chemically calculated nucleophilic indices from HSAB theory, which is a less computationally demanding method than the exacting procedure for locating the transition state. More importantly, the good qualitative/quantitative correlations between the chemical reactivity of epoxides and their bioactivity suggest that the developed model based on HSAB theory may aid in the predictive hazard evaluation of epoxides, enabling the early identification of mutagenicity/carcinogenicity-relevant SN2 reactivity.
Edge adaptive directional total variation
Hua Zhang
2013-11-01
Full Text Available The directional total variation (DTV model has been proposed very recently for image denoising. However, the DTV model works well when there is just one dominant direction in the image. In this Letter, the authors propose to make the DTV model adaptive to image edge direction so that the proposed model can handle images with several dominant directions. Experiment and comparison show the effectiveness of the proposed method.
Vladimirov, Igor; Jak, Eugene
2007-04-28
We study an interacting particle system on the simple cubic lattice satisfying the nearest neighbor exclusion (NNE) which forbids any two nearest sites to be simultaneously occupied. Under the constraint, we develop an edge-to-site reduction of the Bethe-Peierls entropy approximation of the cluster variation method. The resulting NNE-corrected Bragg-Williams approximation is applied to statistical mechanical modeling of a liquid silicate formed by silica and a univalent network modifier, for which we derive the molar Gibbs energy of mixing and enthalpy of mixing and compare the predictions with available thermodynamic data.
Kalinko, Aleksandr; Bauer, Matthias; Timoshenko, Janis; Kuzmin, Alexei
2016-11-01
Classical molecular dynamics (MD) and reverse Monte Carlo methods coupled with ab initio multiple-scattering extended x-ray absorption fine structure (EXAFS) calculations were used for modeling of scheelite-type AWO4 (A = Ca, Sr, Ba) W L 3-edge EXAFS spectra. The two theoretical approaches are complementary and allowed us to perform analysis of full EXAFS spectra. Both methods reproduce well the structure and dynamics of tungstates in the outer coordination shells, however the classical MD simulations underestimate the W-O bond MSRD due to a neglect of quantum zero-point-motion. The thermal vibration amplitudes, correlation effects and anisotropy of the tungstate structure were also estimated.
Wear of hard materials by hard particles
Hawk, Jeffrey A.
2003-10-01
Hard materials, such as WC-Co, boron carbide, titanium diboride and composite carbide made up of Mo2C and WC, have been tested in abrasion and erosion conditions. These hard materials showed negligible wear in abrasion against SiC particles and erosion using Al2O3 particles. The WC-Co materials have the highest wear rate of these hard materials and a very different material removal mechanism. Wear mechanisms for these materials were different for each material with the overall wear rate controlled by binder composition and content and material grain size.
Thrasher, Amy
2014-11-01
This article describes an intervention program offered at the University of Colorado Boulder that supports peer interaction among young children with autism spectrum disorders and their typical peers using a multicomponent approach, including video modeling. Characteristics of autism that may interfere with the development of peer interaction in young children will be discussed. Components of the approach will be described and the evidence base for the application of these components examined in regards to children with autism and for the potential application to children with the dual diagnosis of autism and deafness or hard of hearing.
I.V. Stasyuk
2012-10-01
Full Text Available The Bose-Einstein condensation in the hard-core boson limit (HCB of the Bose-Hubbard model with two local states and the particle hopping in the excited band only is investigated. For the purpose of considering the non-ergodicity, a single-particle spectral density is calculated in the random phase approximation by means of the temperature boson Green functions. The non-ergodic contribution to the momentum distribution function of particles (connected with the static density fluctuations increases significantly and becomes comparable with the ergodic contribution in the superfluid phase near the tricritical point.
Leconte, M; Jeon, Y M
2016-01-01
We derive and study a simple 1D nonlinear model for Edge Localized Mode (ELM) cycles. The nonlinear dynamics of a resistive ballooning mode is modeled via a single nonlinear equation of the Ginzburg-Landau type with a radial frequency gradient due to a prescribed ExB shear layer of finite extent. The nonlinearity is due to the feedback of the mode on the profile. We identify a novel mechanism, whereby the ELM only crosses the linear stability boundary once, and subsequently stays in the nonlinear regime for the full duration of the cycles. This is made possible by the shearing and merging of filaments by the ExB flow, which forces the system to oscillate between a radially-uniform solution and a non-uniform solitary - wave like solution. The model predicts a 'phase-jump' correlated with the ELM bursts.
Dai, Shuyu; Kobayashi, M.; Kawamura, G.; Morita, S.; Zhang, H. M.; Oishi, T.; Feng, Y.; Wang, D. Z.; Suzuki, Y.; the LHD Experimental Group
2016-06-01
The transport properties and line emissions of carbon impurity in the stochastic layer of the Large Helical Device have been investigated with the 3D edge transport code EMC3-EIRENE. A parameter study has been performed to examine the sensitivity of the simulation results on each transport term in the impurity transport model and the impurity source characteristics, i.e. the source amount and the location. The modelling has revealed that in order to reproduce the experimental results of the emission distribution, the impurity perpendicular transport coefficient (D imp) and the first wall source play important roles, while changes to the ion thermal and the friction forces are rather irrelevant. The detailed study of flux tube tracing and magnetic field structure in the edge stochastic layer, in relation to impurity transport, has shown that the deeper penetration of impurity into the higher plasma density region due to the enhanced D imp and the first wall source is responsible for the change of emission pattern as well as the intensity. The analysis indicates that D imp might be larger than that of background plasma by a few factors and also that there probably exists a substantial amount of first wall impurity source.
P. Marinkovic
2011-03-01
Full Text Available The aim of this work is to analyse the possibility to increase the service life of working parts on construction machinery exposed to intensive wear, such as steel blades of the rotary device for roadside vegetation maintenance and grass cutting. A special attention is paid to characteristic working conditions and complex wear mechanisms. In order to select the most appropriate reparation technology, both model and real investigations were conducted. The aim of the model investigations was to select the most appropriate procedure, filler materials and hard facing technology. Worn cutting edges of the blades were hard faced and sharpened by grinding to the shape and dimensions of new blades. Then, both new and repaired blades were alternately mounted on the rotor of the machine. Their wear was monitored under the same working and weather conditions. The repaired blades have proven more resistant to wear than the new ones, which is due to better properties of the hard faced layers.
Edge-Matching Problems with Rotations
Ebbesen, Martin; Fischer, Paul; Witt, Carsten
2011-01-01
Edge-matching problems, also called puzzles, are abstractions of placement problems with neighborhood conditions. Pieces with colored edges have to be placed on a board such that adjacent edges have the same color. The problem has gained interest recently with the (now terminated) Eternity II...... puzzle, and new complexity results. In this paper we consider a number of settings which differ in size of the puzzles and the manipulations allowed on the pieces. We investigate the effect of allowing rotations of the pieces on the complexity of the problem, an aspect that is only marginally treated so...... far. We show that some problems have polynomial time algorithms while others are NP-complete. Especially we show that allowing rotations in one-row puzzles makes the problem NP-hard. We moreover show that many commonly considered puzzles can be emulated by simple puzzles with quadratic pieces, so...
Performance of active edge pixel sensors
Bomben, M.; Ducourthial, A.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; D'Eramo, L.; Giacomini, G.; Marchiori, G.; Zorzi, N.; Rummler, A.; Weingarten, J.
2017-05-01
To cope with the High Luminosity LHC harsh conditions, the ATLAS inner tracker has to be upgraded to meet requirements in terms of radiation hardness, pile up and geometrical acceptance. The active edge technology allows to reduce the insensitive area at the border of the sensor thanks to an ion etched trench which avoids the crystal damage produced by the standard mechanical dicing process. Thin planar n-on-p pixel sensors with active edge have been designed and produced by LPNHE and FBK foundry. Two detector module prototypes, consisting of pixel sensors connected to FE-I4B readout chips, have been tested with beams at CERN and DESY. In this paper the performance of these modules are reported. In particular the lateral extension of the detection volume, beyond the pixel region, is investigated and the results show high hit efficiency also at the detector edge, even in presence of guard rings.
Improved Edge Awareness in Discontinuity Preserving Smoothing
Heinrich, Stuart B
2011-01-01
Discontinuity preserving smoothing is a fundamentally important procedure that is useful in a wide variety of image processing contexts. It is directly useful for noise reduction, and frequently used as an intermediate step in higher level algorithms. For example, it can be particularly useful in edge detection and segmentation. Three well known algorithms for discontinuity preserving smoothing are nonlinear anisotropic diffusion, bilateral filtering, and mean shift filtering. Although slight differences make them each better suited to different tasks, all are designed to preserve discontinuities while smoothing. However, none of them satisfy this goal perfectly: they each have exception cases in which smoothing may occur across hard edges. The principal contribution of this paper is the identification of a property we call edge awareness that should be satisfied by any discontinuity preserving smoothing algorithm. This constraint can be incorporated into existing algorithms to improve quality, and usually ha...
Schoville, Benjamin J; Brown, Kyle S; Harris, Jacob A; Wilkins, Jayne
2016-01-01
The Middle Stone Age (MSA) is associated with early evidence for symbolic material culture and complex technological innovations. However, one of the most visible aspects of MSA technologies are unretouched triangular stone points that appear in the archaeological record as early as 500,000 years ago in Africa and persist throughout the MSA. How these tools were being used and discarded across a changing Pleistocene landscape can provide insight into how MSA populations prioritized technological and foraging decisions. Creating inferential links between experimental and archaeological tool use helps to establish prehistoric tool function, but is complicated by the overlaying of post-depositional damage onto behaviorally worn tools. Taphonomic damage patterning can provide insight into site formation history, but may preclude behavioral interpretations of tool function. Here, multiple experimental processes that form edge damage on unretouched lithic points from taphonomic and behavioral processes are presented. These provide experimental distributions of wear on tool edges from known processes that are then quantitatively compared to the archaeological patterning of stone point edge damage from three MSA lithic assemblages-Kathu Pan 1, Pinnacle Point Cave 13B, and Die Kelders Cave 1. By using a model-fitting approach, the results presented here provide evidence for variable MSA behavioral strategies of stone point utilization on the landscape consistent with armature tips at KP1, and cutting tools at PP13B and DK1, as well as damage contributions from post-depositional sources across assemblages. This study provides a method with which landscape-scale questions of early modern human tool-use and site-use can be addressed.
X.Q. Xu; C.S. Chang
2007-01-01
@@ The plasma edge includes the pedestal, scrape-off, and divertor regions. A complete edge physics should deal with the plasma, atomic, and the plasma-wall interaction phenomena. The edge provides the source of plasma through ionization of the incoming neutral particles and source of impurity through the wall sputtering. Edge plasma sets a boundary condition for the core confinement physics. Importance of the edge plasma has been elevated to the top list of the ITER physics research needs due to the necessity of the self-organized plasma pedestal and its destruction by edge localized mode activities. Extrapolation of the present tokamak data base predicts that a sufficient pedestal height is a necessary condition for the success of ITER.