WorldWideScience

Sample records for hard corrugated wall

  1. Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls

    International Nuclear Information System (INIS)

    Buren, Mandula; Jian, Yongjun; Chang, Long

    2014-01-01

    In this paper a perturbation method is introduced to study the electromagnetohydrodynamic (EMHD) flow in a microparallel channel with slightly corrugated walls. The corrugations of the two walls are periodic sinusoidal waves of small amplitude either in phase or half-period out of phase, and the perturbation solutions of velocity and volume flow rate are obtained. Using numerical computation the effects of the corrugations on the flow are graphically analysed. The results show that the influence of corrugation on the flow decreases with Hartmann number. The phase difference of wall corrugations becomes unimportant when the wavenumber is greater than 3 or when the Hartmann number is greater than 4. With the increase in wavenumber, the decreasing effects of corrugations on the flow increase. When the wavenumber is smaller than the threshold wavenumber (it is a function of Hartmann number) and the wall corrugations are half-period out of phase, the corrugations can enhance the mean velocity of EMHD flow. However, the mean velocity is always decreased when the corrugations are in phase. (paper)

  2. Evaluation of Steel Shear Walls Behavior with Sinusoidal and Trapezoidal Corrugated Plates

    Directory of Open Access Journals (Sweden)

    Emad Hosseinpour

    2015-01-01

    Full Text Available Reinforcement of structures aims to control the input energy of unnatural and natural forces. In the past four decades, steel shear walls are utilized in huge constructions in some seismic countries such as Japan, United States, and Canada to lessen the risk of destructive forces. The steel shear walls are divided into two types: unstiffened and stiffened. In the former, a series of plates (sinusoidal and trapezoidal corrugated with light thickness are used that have the postbuckling field property under overall buckling. In the latter, steel profile belt series are employed as stiffeners with different arrangement: horizontal, vertical, or diagonal in one side or both sides of wall. In the unstiffened walls, increasing the thickness causes an increase in the wall capacity under large forces in tall structures. In the stiffened walls, joining the stiffeners to the wall is costly and time consuming. The ANSYS software was used to analyze the different models of unstiffened one-story steel walls with sinusoidal and trapezoidal corrugated plates under lateral load. The obtained results demonstrated that, in the walls with the same dimensions, the trapezoidal corrugated plates showed higher ductility and ultimate bearing compared to the sinusoidal corrugated plates.

  3. Axial Crushing Behaviors of Thin-Walled Corrugated and Circular Tubes - A Comparative Study

    Science.gov (United States)

    Reyaz-Ur-Rahim, Mohd.; Bharti, P. K.; Umer, Afaque

    2017-10-01

    With the help of finite element analysis, this research paper deals with the energy absorption and collapse behavior with different corrugated section geometries of hollow tubes made of aluminum alloy 6060-T4. Literature available experimental data were used to validate the numerical models of the structures investigated. Based on the results available for symmetric crushing of circular tubes, models were developed to investigate corrugated thin-walled structures behavior. To study the collapse mechanism and energy absorbing ability in axial compression, the simulation was carried in ABAQUS /EXPLICIT code. In the simulation part, specimens were prepared and axially crushed to one-fourth length of the tube and the energy diagram of crushing force versus axial displacement is shown. The effect of various parameters such as pitch, mean diameter, corrugation, amplitude, the thickness is demonstrated with the help of diagrams. The overall result shows that the corrugated section geometry could be a good alternative to the conventional tubes.

  4. Numerical Investigation of Structural Response of Corrugated Blast Wall Depending on Blast Load Pulse Shapes

    Directory of Open Access Journals (Sweden)

    Jung Min Sohn

    Full Text Available Abstract Hydrocarbon explosions are one of most hazardous events for workers on offshore platforms. To protect structures against explosion loads, corrugated blast walls are typically installed. However, the profiles of real explosion loads are quite different depending on the congestion and confinement of Topside structures. As the level of congestion and confinement increases, the explosion load increases by up to 8 bar, and the rising time of the load decreases. This study primarily aims to investigate the structural behavior characteristics of corrugated blast walls under different types of explosion loadings. Four loading shapes were applied in the structural response analysis, which utilized a dynamic nonlinear finite element method.

  5. A technology to improve formability for aluminum alloy thin-wall corrugated sheet component hydroforming

    Directory of Open Access Journals (Sweden)

    Lang Lihui

    2015-01-01

    Full Text Available The explosively forming projectile (EFP had been traditional adopted for the aluminum thin-walled corrugated sheet, whose deformation range is large but the formability is poor, and this process usually has problems of poor surface quality, long manufacturing cycle and high cost. The active hydroforming process was suggested to solve these issues during EFP. A new technology named as blank bulging by turning the upside down active hydroforming technology was proposed to overcome difficulties in non-uniform thickness distribution and cracking failure of corrugated sheet during the conventional hydroforming process. Both numerical simulations and experiments were conducted for this new technology. The result show that the deformation capacity of aluminum alloys can be improved effectively, and the more uniform distribution of wall thickness was obtained by this new method. It is conducted that the new method is universal for thin-walled, shallow drawing parts with complex section.

  6. Influence of presence of inclined centered baffle and corrugation frequency on natural convection heat transfer flow of air inside a square enclosure with corrugated side walls

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Salam Hadi; Jabbar, Mohammed Yousif; Mohamad, Ahmad Saddy [Mechanical Engineering Department, College of Engineering, Babylon University, Babylon Province (Iraq)

    2011-09-15

    The main objective of this study is to investigate the effect of presence of insulated inclined centered baffle and corrugation frequency on the steady natural convection in a sinusoidal corrugated enclosure. The present study is based on such a configuration where the two vertical sinusoidal walls are maintained at constant low temperature whereas a constant heat flux source whose length is 80% of the width of the enclosure is discretely embedded in the bottom wall. The remaining parts of the bottom wall and the top wall are adiabatic. The finite volume method has been used to solve the governing Navier-Stokes and the energy conservation equations of the fluid medium in the enclosure in order to investigate the effects of baffle inclination angles, corrugation frequencies and Grashof numbers on the fluid flow and heat transfer in the enclosure. The values of the governing parameters are the Grashof number Gr (10{sup 3}-10{sup 6}), the corrugation frequencies CF (1, 2 and 3), baffle inclination angles (0 deg. {<=} {phi} {<=} 150 deg.) and Prandtl number Pr (0.71). Results are presented in the form of streamline and isotherm plots. The results of this investigation are illustrated that the average Nusselt number increases with increase in both the Grashof number and corrugation frequency for different baffle inclination angles and the presence of inclined baffle and increasing the corrugation frequency have significant effects on the average Nusselt numbers, streamlines and isotherms inside the enclosure. The obtained numerical results have been compared with literature ones, and it gives a reliable agreement. (authors)

  7. Evaluation of Thermo-Fluid Performance of Compact Heat Exchanger with Corrugated Wall Channels

    International Nuclear Information System (INIS)

    Tak, Nam Il; Lee, Won Jae

    2006-01-01

    One of the key components of an indirect nuclear hydrogen production system is an intermediate heat exchanger (IHX). For the IHX, a printed circuit heat exchanger (PCHE) is known as one of the promising types due to its compactness and ability to operate at high temperatures and under high pressures. The PCHE is a relatively new heat exchanger. It has been commercially manufactured only since 1985 and solely by one British vendor, HeatricTM. Due to its short history and limited production, sufficient information about the PCHE is not available for the design of the IHX in open literatures. The predominant shape of flow channels of the PCHE is laterally corrugated. The flow in a corrugated wall channel is very interesting since a variety of flow phenomena can be considered by changing the amplitude-to-wavelength ratio. In the present paper, thermo-fluid performance of a heat exchanger with a typical PCHE geometry has been evaluated. Computational fluid dynamics (CFD) analysis was performed to analyze a gas flow behavior in a corrugated wall channel

  8. Mathematical Model for Thin-walled Corrugated Tube under Axial Compression

    Directory of Open Access Journals (Sweden)

    Eyvazian Arameh

    2016-01-01

    Full Text Available In this research, theoretical investigation of corrugated aluminum tubes is performed to predicting the energy absorption characteristics. Aim to deform plastic tubes in predetermined intervals, corrugations are introduced on its surface. Theoretical relations are presented for predicting the energy absorption and mean crushing load of corrugated tubes. Other than that, corrugation helps to control the failure mode.

  9. Thermo-hydraulic characterization of a self-pumping corrugated wall heat exchanger

    International Nuclear Information System (INIS)

    Schmidmayer, Kevin; Kumar, Prashant; Lavieille, Pascal; Miscevic, Marc; Topin, Frédéric

    2017-01-01

    Compactness, efficiency and thermal control of the heat exchanger are of critical significance for many electronic industry applications. In this view, a new concept of heat exchanger at millimeter scale is proposed and numerically studied. It consists in dynamically deforming at least one of its walls by a progressive wave in order to create an active corrugated channel. Systematic studies were performed in single-phase flow on the different deformation parameters that allow obtaining the thermo-hydraulic characteristics of the system. It has been observed the dynamic wall deformation induces a significant pumping effect. Intensification of heat transfer remains very important even for highly degraded waveforms although the pumping efficiency is reduced in this case. The mechanical power applied on the upper wall to deform it dynamically is linked to the wave shape, amplitude, frequency and outlet-inlet pressure difference. The overall performance of the proposed system has been evaluated and compared to existing static channels. The performance of the proposed heat exchanger evolved in two steps for a given wall deformation. It declines slightly up to a critical value of mechanical power applied on the wall. When this critical value is exceeded, it deteriorates significantly, reaching the performance of existing conventional systems. - Highlights: • A new concept of heat exchanger within channel at millimeter scale is proposed. • Upper wall is deformed dynamically by applying external mechanical power. • Pumping effect is observed and is linked to the wave shape, amplitude and frequency. • Efficient proposed system in low Reynolds number range. • Overall performance is significantly high compared to static corrugated and straight channels.

  10. Hard wall - soft wall - vorticity scattering in shear flow

    NARCIS (Netherlands)

    Rienstra, S.W.; Singh, D.K.

    2014-01-01

    An analytically exact solution, for the problem of lowMach number incident vorticity scattering at a hard-soft wall transition, is obtained in the form of Fourier integrals by using theWiener-Hopf method. Harmonic vortical perturbations of inviscid linear shear flow are scattered at the wall

  11. Hard wall - soft wall - vorticity scattering in shear flow

    NARCIS (Netherlands)

    Rienstra, S.W.; Singh, D.K.

    2014-01-01

    An analytically exact solution, for the problem of low Mach number incident vorticity scattering at a hard-soft wall transition, is obtained in the form of Fourier integrals by using the Wiener-Hopf method. Harmonic vortical perturbations of inviscid linear shear flow are scattered at the wall

  12. Using pipe with corrugated walls for a subterahertz free electron laser

    Directory of Open Access Journals (Sweden)

    Gennady Stupakov

    2015-03-01

    Full Text Available A metallic pipe with corrugated walls supports propagation of a high-frequency mode that is in resonance with a relativistic beam propagating along the axis of the pipe. This mode can be excited by a beam whose length is a fraction of the wavelength. In this paper, we study another option of excitation of the resonant mode—via the mechanism of the free electron laser instability. This mechanism works if the bunch length is much longer than the wavelength of the radiation and, hence, does not require bunch compression. It provides an alternative to excitation by short bunches that can be realized with relatively low energy and low peak-current electron beams.

  13. Beam Expansion of Blind Spot Detection Radar Antennas Using a Radome with Defected Corrugated Inner Wall

    Directory of Open Access Journals (Sweden)

    Hayeon Kim

    2017-01-01

    Full Text Available A beam expanding radome for 76.5 GHz automotive radar antennas is presented whose inner surface is engraved with corrugations. The radar used for blind spot detection (BSD requires a very wide beam width to ensure longer time for tracking out-of-sight objects. It is found that the corrugations modulate the phase velocities of the waves along the surface, which increases beam width in the far field. In addition, defects in the corrugation increase beam width even further. The presented structure satisfies the beam width requirement while keeping a low profile.

  14. Development of ideal solution and validation of stiffness and strength by finite element method for truss-wall corrugated cellular solids

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Ho [Samjung E and W, Changwon (Korea, Republic of); Lee, Jung Hwan [Korea Institute of Materials Science,Changwon (Korea, Republic of); Lee, Je Hyun [Changwon National University, Changwon (Korea, Republic of)

    2014-05-15

    The objective of this study is to find the density, stiffness, and strength of truss-wall unit cell models. The diamond-corrugation, triangular-corrugation, and Navtruss-corrugation models are used for the unit cell. The ideal solutions derived for these are based on solid wall unit cell models and are developed using the Gibson-Ashby theory. To verify the ideal solutions of the models, the density, strength, and stiffness are simulated using ABAQUS software and compared with the ideal solutions on a log-log scale. The material properties of stainless steel 304 are applied. The diameter is 0.5 mm; the opening width is 0.5 mm; and the corrugation angle is 45 .deg. . Consequently, the relative Young's modulus and relative yield strength of the truss-wall unit models are good matches for the ideal expectations. It may be possible to apply a truss-wall model to diverse fields such as transportation or biomedical applications as one of the open-cell cellular solids.

  15. Development of ideal solution and validation of stiffness and strength by finite element method for truss-wall corrugated cellular solids

    International Nuclear Information System (INIS)

    Choi, Jeong Ho; Lee, Jung Hwan; Lee, Je Hyun

    2014-01-01

    The objective of this study is to find the density, stiffness, and strength of truss-wall unit cell models. The diamond-corrugation, triangular-corrugation, and Navtruss-corrugation models are used for the unit cell. The ideal solutions derived for these are based on solid wall unit cell models and are developed using the Gibson-Ashby theory. To verify the ideal solutions of the models, the density, strength, and stiffness are simulated using ABAQUS software and compared with the ideal solutions on a log-log scale. The material properties of stainless steel 304 are applied. The diameter is 0.5 mm; the opening width is 0.5 mm; and the corrugation angle is 45 .deg. . Consequently, the relative Young's modulus and relative yield strength of the truss-wall unit models are good matches for the ideal expectations. It may be possible to apply a truss-wall model to diverse fields such as transportation or biomedical applications as one of the open-cell cellular solids.

  16. Scattering of atoms by solid surfaces: A CCGM theory of diffraction by a one-dimensional stationary periodic wall

    International Nuclear Information System (INIS)

    Goodman, F.O.; Scribani, L.

    1981-01-01

    The CCGM theory of elastic atom--surface scattering, proposed by Cabrera, Celli, Goodman, and Manson [Surf. Sci. 19, 67 (1970)], is applied to the now-popular corrugated wall model of the scattering. Instead of the original ''hard'' wall, a ''softer'' wall, with finite potential step height, is used. The CCGM soft-wall results are compared with corresponding exact hard-wall results, for corrugations of the sinusoidal type and of other types, for example those with nondifferentiable corrugation functions. It is concluded that the CCGM soft-wall results agree well with the exact hard-wall results provided that neither the dimensionless corrugation amplitude nor the dimensionless atom wave number is too large, although no explanation of the reason for this agreement is given. The results are important because a typical exact calculation may be far more time consuming than is a typical CCGM calculation, particularly for the ''nastier'' corrugation functions

  17. Performance of a remote steering antenna for ECRH/ECCS applications using 4-wall corrugated square waveguide

    International Nuclear Information System (INIS)

    Kasparek, W.; Gantenbein, G.; Plaum, B.; Wacker, R.; Filipovic, E.; Chirkov, A.V.; Denisov, G.G.; Kuzikov, S.V.; Ohkubo, K.; Hollmann, F.; Wagner, D.

    2003-01-01

    For the upper ECW launcher on ITER, the use of a 'remote steering antenna' based on the imaging properties of rectangular waveguides is planned. To characterise launchers of this type, low-power experiments on a 4-side corrugated square waveguide with a scanning mirror at the input of the waveguide were performed in the frequency range of 140 to 160 GHz. It is shown, that elliptical polarisation needed for ECCD can be transmitted without depolarization. The usable steering range of the antenna is at least -10 angle < φ ≤ + 10 angle. Experiments with the scanning plane in the diagonal of the square waveguide led to a negligible increase the scanning range, and lobes in the upward and downward direction are detected at larger scanning angles. Mitre bends can be integrated into the waveguide without prohibitive extra loss, which is demonstrated by far-field measurements. Detailed calorimetric measurements for this set up confirm this statement for the polarisation perpendicular to the scanning plane, whereas extra loss is measured for the parallel polarisation. Results are discussed and are compared to theory. (authors)

  18. Passive heat transfer enhancement in 3D corrugated tube

    DEFF Research Database (Denmark)

    Navickaité, Kristina; Engelbrecht, Kurt; Bahl, Christian

    transfer and fluid flow with a constant wall temperature and total pressure drop. The governing equations for these problems were solved using the Finite Element Method. The results of numerical modelling show significant increase in NTU for double corrugated tubes compared to a circular tube. The friction......An innovative hydraulic design was studied for corrugated tube geometry for a heat exchanger. An ellipse based double corrugation was used as a concept of the geometry. The hydraulic diameter (Dh) is maintained over the tube length while the shape of the cross section varies continuously along...... the flow direction. 38 corrugated tubes with a Dh of 5 mm were studied numerically with corrugation heights from 0.23 to 0.69 mm and corrugation periods from 5 to 50 mm for laminar flow with water. Computational fluid dynamics (CFD) is used as a tool to study the effect of corrugation geometry on heat...

  19. Casimir stress in materials: Hard divergency at soft walls

    Science.gov (United States)

    Griniasty, Itay; Leonhardt, Ulf

    2017-11-01

    The Casimir force between macroscopic bodies is well understood, but not the Casimir stress inside bodies. Suppose empty space or a uniform medium meets a soft wall where the refractive index is continuous but its derivative jumps. For this situation we predict a characteristic power law for the stress inside the soft wall and close to its edges. Our result shows that such edges are not tolerated in the aggregation of liquids at surfaces, regardless whether the liquid is attracted or repelled.

  20. MODULUS OF ELASTICITY AND HARDNESS OF COMPRESSION AND OPPOSITE WOOD CELL WALLS OF MASSON PINE

    Directory of Open Access Journals (Sweden)

    Yanhui Huang,

    2012-05-01

    Full Text Available Compression wood is commonly found in Masson pine. To evaluate the mechanical properties of the cell wall of Masson pine compression and opposite wood, nanoindentation was used. The results showed that the average values of hardness and cell wall modulus of elasticity of opposite wood were slightly higher than those of compression wood. With increasing age of the annual ring, the modulus of elasticity showed a negative correlation with microfibril angle, but a weak correlation was observed for hardness. In opposite and compression wood from the same annual ring, the differences in average values of modulus of elasticity and hardness were small. These slight differences were explained by the change of microfibril angle (MFA, the press-in mode of nanoindentation, and the special structure of compression wood. The mechanical properties were almost the same for early, transition, and late wood in a mature annual ring of opposite wood. It can therefore be inferred that the average modulus of elasticity (MOE and hardness of the cell walls in a mature annual ring were not being affected by cell wall thickness.

  1. Wetting phase transition of two segregated Bose–Einstein condensates restricted by a hard wall

    Energy Technology Data Exchange (ETDEWEB)

    Thu, Nguyen Van [Department of Physics, Hanoi Pedagogical University No. 2, Hanoi (Viet Nam); Phat, Tran Huu [Vietnam Atomic Energy Commission, 59 Ly Thuong Kiet, Hanoi (Viet Nam); Song, Pham The, E-mail: thesong80@icloud.com [Tay Bac University, Son La (Viet Nam)

    2016-04-01

    Highlights: • System of two segregated Bose–Einstein condensates limited by a wall is studied. • Double-parabola approximation is applied to Gross–Pitaevskii theory. • Interface tension and wetting phase diagram are established. - Abstract: The wetting phase transition in the system of two segregated Bose–Einstein condensates (BECs) restricted by a hard wall is studied by means of the double-parabola approximation (DPA) applied to the Gross–Pitaevskii (GP) theory. We found the interfacial tension and the wetting phase diagram which depend weakly on the spatial restriction.

  2. Hardness of high-pressure high-temperature treated single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kawasaki, S.; Nojima, Y.; Yokomae, T.; Okino, F.; Touhara, H.

    2007-01-01

    We have performed high-pressure high-temperature (HPHT) treatments of high quality single-walled carbon nanotubes (SWCNTs) over a wide pressure-temperature range up to 13 GPa-873 K and have investigated the hardness of the HPHT-treated SWCNTs using a nanoindentation technique. It was found that the hardness of the SWCNTs treated at pressures greater than 11 GPa and at temperatures higher than 773 K is about 10 times greater than that of the SWCNTs treated at low temperature. It was also found that the hardness change of the SWCNTs is related to the structural change by the HPHT treatments which was based on synchrotron X-ray diffraction measurements

  3. Corrugated Membrane Nonlinear Deformation Process Calculation

    Directory of Open Access Journals (Sweden)

    A. S. Nikolaeva

    2015-01-01

    Full Text Available Elastic elements are widely used in instrumentation. They are used to create a particular interference between the parts, for accumulating mechanical energy, as the motion transmission elements, elastic supports, and sensing elements of measuring devices. Device reliability and quality depend on the calculation accuracy of the elastic elements. A corrugated membrane is rather common embodiment of the elastic element.The corrugated membrane properties depend largely on its profile i.e. a generatrix of the meridian surface.Unlike other types of pressure elastic members (bellows, tube spring, the elastic characteristics of which are close to linear, an elastic characteristic of the corrugated membrane (typical movement versus external load is nonlinear. Therefore, the corrugated membranes can be used to measure quantities, nonlinearly related to the pressure (e.g., aircraft air speed, its altitude, pipeline fluid or gas flow rate. Another feature of the corrugated membrane is that significant movements are possible within the elastic material state. However, a significant non-linearity of membrane characteristics leads to severe complicated calculation.This article is aimed at calculating the corrugated membrane to obtain the elastic characteristics and the deformed shape of the membrane meridian, as well as at investigating the processes of buckling. As the calculation model, a thin-walled axisymmetric shell rotation is assumed. The material properties are linearly elastic. We consider a corrugated membrane of sinusoidal profile. The membrane load is a uniform pressure.The algorithm for calculating the mathematical model of an axisymmetric corrugated membrane of constant thickness, based on the Reissner’s theory of elastic thin shells, was realized as the author's program in C language. To solve the nonlinear problem were used a method of changing the subspace of control parameters, developed by S.S., Gavriushin, and a parameter marching method

  4. Study of the effect of hard projectiles impacting reinforced concrete walls

    International Nuclear Information System (INIS)

    Berriaud, C.; Sokolovsky, A.

    1977-01-01

    Among the risks examined in the framework of nuclear safety in France, quite unlikely events are examined as constituting a safety cover. This type of event includes the possible impact of aircrafts, or rotor splinters. Research on the limit strength of a wall under the impact of a hard projectile presently gives incentive results. First, a good agreement appears between works performed in parallel directions by EDF and CEA. Secondly, the special field of aerial projectiles is much better known as it was with previous formulations. Third, such research highly contributes to the knowledge of the mechanical strength of reinforced concrete structures [fr

  5. Theory of the interface between a classical plasma and a hard wall

    International Nuclear Information System (INIS)

    Ballone, P.; Pastore, G.; Tosi, M.P.; Trieste Univ.

    1983-09-01

    The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody self-consistently into the theory a 'contact theorem', fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. It is also shown that the interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile. (author)

  6. Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    McMorrow, Julian J; Cress, Cory D; Gaviria Rojas, William A; Geier, Michael L; Marks, Tobin J; Hersam, Mark C

    2017-03-28

    Increasingly complex demonstrations of integrated circuit elements based on semiconducting single-walled carbon nanotubes (SWCNTs) mark the maturation of this technology for use in next-generation electronics. In particular, organic materials have recently been leveraged as dopant and encapsulation layers to enable stable SWCNT-based rail-to-rail, low-power complementary metal-oxide-semiconductor (CMOS) logic circuits. To explore the limits of this technology in extreme environments, here we study total ionizing dose (TID) effects in enhancement-mode SWCNT-CMOS inverters that employ organic doping and encapsulation layers. Details of the evolution of the device transport properties are revealed by in situ and in operando measurements, identifying n-type transistors as the more TID-sensitive component of the CMOS system with over an order of magnitude larger degradation of the static power dissipation. To further improve device stability, radiation-hardening approaches are explored, resulting in the observation that SWNCT-CMOS circuits are TID-hard under dynamic bias operation. Overall, this work reveals conditions under which SWCNTs can be employed for radiation-hard integrated circuits, thus presenting significant potential for next-generation satellite and space applications.

  7. Anatomy of the Corrugator Muscle.

    Science.gov (United States)

    Hwang, Kun; Lee, Jung Hun; Lim, Hee Joong

    2017-03-01

    The aim of this article is to systematically review the anatomy and action of the corrugator muscle. PubMed and Scopus were searched using the terms "corrugator" AND "anatomy." Among the 60 full texts from the 145 relevant abstracts, 34 articles without sufficient content were excluded and 4 articles drawn from the reference lists were added. Among the 30 articles analyzed (721 hemifaces), 28% classified by oblique head and transverse head, and 72% did not. Corrugator originated mostly from the medial supraorbital rim (45%), followed by the medial frontal bone (31%), the medial infraorbital rim (17%), and the upper nasal process (7%). Corrugator extended through the frontalis and orbicularis oculi (41%), only the frontalis (41%), or only the orbicularis oculi (18%). Corrugator ran superolaterally (59%), or laterally (41%). Corrugators inserted mostly to the middle of the eyebrow (57%), or the medial half of the eyebrow (36%), but also to the glabella region (7%). The length of the corrugator ranged 38 to 53 mm. The transverse head (23.38 mm) was longer than the oblique head (19.75 mm). Corrugator was thicker at the medial canthus than at the midpupillary line. Corrugator was innervated by the temporal branch of the facial nerve (66%), the zygomatic branch (17%), or the angular nerve (zygomatic branch and buccal branch, 17%). Supraorbital nerve (60%) or supratrochlear nerve (40%) penetrated the corrugator. The action was depressing, pulling the eyebrow medially (91%), or with medial eyebrow elevation and lateral eyebrow depression (9%). Surgeons must keep this anatomy in mind during surgical procedures.

  8. Influence of temperature on the critical in-plane field range for VBLs in the walls of hard domains

    International Nuclear Information System (INIS)

    Nie, X.F.; Guo, G.X.; Xu, J.P.; Liu, S.P.; Wang, L.N.; Huo, S.G.

    2006-01-01

    The influence of temperature on the critical in-plane field range for vertical Bloch lines in the walls of three kinds of hard domains is investigated experimentally. It is found that for each kind of three hard domains, there exists a critical in-plane field range, i. e. [H ip (1) (T),H ip (2) (T)], which depends on temperatures and in which vertical Bloch lines are unstable. Here, H ip (1) (T) is the initial critical in-plane field where VBLs in the walls of three kinds of hard domains are annihilated, and H ip (2) (T) is the lowest in-plane field where VBLs in their corresponding hard domains are annihilated completely. H ip (1) (T), H ip (2) (T) and [H ip (1) (T),H ip (2) (T)], all decrease as the temperature increase. Furthermore, H ip (1) (T) and H ip (2) (T) reach zero at T 0 1 and T 0 , respectively. In addition, there exists a relationship among them, when T is unchanged, H ip (1) (T) of the three kinds of hard domains (ordinary hard bubbles (OHB), first kind of dumbbell domain (ID) and second kind of dumbbell domains (IID)) decrease successively, and theirH ip (2) (T) are the same

  9. Meson effective mass in the isospin medium in hard-wall AdS/QCD model

    Energy Technology Data Exchange (ETDEWEB)

    Mamedov, Shahin [Gazi University, Department of Physics, Ankara (Turkey); Baku State University, Institute for Physical Problems, Baku (Azerbaijan); Azerbaijan National Academy of Sciences, Institute of Physics, Baku (Azerbaijan)

    2016-02-15

    We study a mass splitting of the light vector, axial-vector, and pseudoscalar mesons in the isospin medium in the framework of the hard-wall model. We write an effective mass definition for the interacting gauge fields and scalar field introduced in gauge field theory in the bulk of AdS space-time. Relying on holographic duality we obtain a formula for the effective mass of a boundary meson in terms of derivative operator over the extra bulk coordinate. The effective mass found in this way coincides with the one obtained from finding of poles of the two-point correlation function. In order to avoid introducing distinguished infrared boundaries in the quantization formula for the different mesons from the same isotriplet we introduce extra action terms at this boundary, which reduces distinguished values of this boundary to the same value. Profile function solutions and effective mass expressions were found for the in-medium ρ, a{sub 1}, an π mesons. (orig.)

  10. Plasma influence on the dispersion properties of finite-length, corrugated waveguides

    OpenAIRE

    Shkvarunets, A.; Kobayashi, S.; Weaver, J.; Carmel, Y.; Rodgers, J.; Antonsen, T.; Granatstein, V.L.; Destler, W.W.; Ogura, K.; Minami, K.

    1996-01-01

    We present an experimental study of the electromagnetic properties of transverse magnetic modes in a corrugated-wall cavity filled with a radially inhomogeneous plasma. The shifts of the .resonant frequencies of a finite-length, corrugated cavity were measured as a function of the background plasma density and the dispersion diagram was reconstructed up to a peak plasma density of 1012 em - 3. Good agreement with a calculated dispersion diagram is obtained for plasma densities below 5 X 1011 ...

  11. Plasma influence on the dispersion properties of finite-length, corrugated waveguides

    Science.gov (United States)

    Shkvarunets, A.; Kobayashi, S.; Weaver, J.; Carmel, Y.; Rodgers, J.; Antonsen, T. M., Jr.; Granatstein, V. L.; Destler, W. W.; Ogura, K.; Minami, K.

    1996-03-01

    We present an experimental study of the electromagnetic properties of transverse magnetic modes in a corrugated-wall cavity filled with a radially inhomogeneous plasma. The shifts of the resonant frequencies of a finite-length, corrugated cavity were measured as a function of the background plasma density and the dispersion diagram was reconstructed up to a peak plasma density of 1012 cm-3. Good agreement with a calculated dispersion diagram is obtained for plasma densities below 5×1011 cm-3.

  12. Enhanced electrical conductivity and hardness of silver-nickel composites by silver-coated multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Lee, Dongmok; Sim, Jeonghyun; Baik, Seunghyun; Kim, Wonyoung; Moon, Chuldong; Cho, Wookdong

    2015-01-01

    We investigated electrical conductivity and Vickers hardness of Ag- and Ni-based composites prepared by powder metallurgy involving spark plasma sintering. The starting composition was Ag:Ni = 61:39 vol%, which provided an electrical conductivity of 3.30 × 10"5 S cm"−"1 and a hardness of 1.27 GPa. The addition of bare multi-walled carbon nanotubes (MWNTs, 1.45 vol%) increased hardness (1.31 GPa) but decreased electrical conductivity (2.99 × 10"5 S cm"−"1) and carrier mobility (11 cm"2 V"−"1 s"−"1) due to the formation of Ni_3C in the interface between the MWNTs and Ni during spark plasma sintering. The formation of Ni_3C was prevented by coating the surface of the nanotubes with Ag (nAgMWNTs), concomitantly increasing electrical conductivity (3.43 × 10"5 S cm"−"1) and hardness (1.37 GPa) of the sintered specimen (Ag:Ni:nAgMWNTs = 59.55:39:1.45 vol%). The electrical contact switching time (133 357) was also increased by 30%, demonstrating excellent feasibility as electrical contact materials for electric power industries. (paper)

  13. Heat transfer enhancement and pumping power optimization using CuO-water nanofluid through rectangular corrugated pipe

    Science.gov (United States)

    Salehin, Musfequs; Ehsan, Mohammad Monjurul; Islam, A. K. M. Sadrul

    2017-06-01

    Heat transfer enhancement by corrugation in fluid domain is a popular method. The rate of improvement is more when it is used highly thermal conductive fluid as heating or cooling medium. In this present study, heat transfer augmentation was investigated numerically by implementing corrugation in the fluid domain and nanofluid as the base fluid in the turbulent forced convection regime. Finite volume method (FVM) was applied to solve the continuity, momentum and energy equations. All the numerical simulations were considered for single phase flow. A rectangle corrugated pipe with 5000 W/m2 constant heat flux subjected to the corrugated wall was considered as the fluid domain. In the range of Reynolds number 15000 to 40000, thermo-physical and hydrodynamic behavior was investigated by using CuO-water nanofluid from 1% to 5% volume fraction as the base fluid through the corrugated fluid domain. Corrugation justification was performed by changing the amplitude of the corrugation and the corrugation wave length for obtaining the increased heat transfer rate with minimum pumping power. For using CuO-water nanofluid, augmentation was also found more in the rectangle corrugated pipe both in heat transfer and pumping power requirement with the increase of Reynolds number and the volume fraction of nanofluid. For the increased pumping power, optimization of pumping power by using nanofluid was also performed for economic finding.

  14. Vibronic Rabi resonances in harmonic and hard-wall ion traps for arbitrary laser intensity and detuning

    International Nuclear Information System (INIS)

    Lizuain, I.; Muga, J. G.

    2007-01-01

    We investigate laser-driven vibronic transitions of a single two-level atomic ion in harmonic and hard-wall traps. In the Lamb-Dicke regime, for tuned or detuned lasers with respect to the internal frequency of the ion, and weak or strong laser intensities, the vibronic transitions occur at well-isolated Rabi resonances, where the detuning-adapted Rabi frequency coincides with the transition frequency between vibrational modes. These vibronic resonances are characterized as avoided crossings of the dressed levels (eigenvalues of the full Hamiltonian). Their peculiarities due to symmetry constraints and trapping potential are also examined

  15. Fractal analysis on a classical hard-wall billiard with openings using a two-dimensional set of initial conditions

    International Nuclear Information System (INIS)

    Ree, Suhan

    2003-01-01

    Fractal analysis is performed to measure the chaoticity of a classical hard-wall billiard with openings. We use the circular billiard with a straight cut with two openings, and a two-dimensional (2D) set of initial conditions that produce all possible trajectories of a particle injected from one opening. We numerically compute the fractal dimension of singular points of the function that maps an initial condition to the number of collisions with the wall before the exit, using the box-counting algorithm that uses uniformly distributed points inside the 2D set of initial conditions. Finally, the classical chaotic properties are observed while the parameters of the billiard are varied, and the results are compared with those with the one-dimensional set of initial conditions

  16. Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation

    Science.gov (United States)

    Yan Wu; Siqun Wang; Dingguo Zhou; Cheng Xing; Yang Zhang; Zhiyong Cai

    2010-01-01

    Agricultural biomaterials such as crop stalks are natural sources of cellulosic fiber and have great potential as reinforced materials in bio-composites. In order to evaluate their potential as materials for reinforcement, the nano-mechanical properties of crop-stalk cell walls, i.e. those of cotton (Gossypium herbaceu) stalk, soybean (Glycine max) stalk, cassava (...

  17. Experimental studies of Steel Corrugated Constructions

    Directory of Open Access Journals (Sweden)

    Lazarev Yuriy

    2016-01-01

    Full Text Available The purpose of this particular article is to assess existing calculations of steel corrugated constructions. Steel Corrugated Construction is a perspective type of constructions, which is exhibiting numerous advantages in comparison with one that currently applied in automobile and railroad networks (reinforced concrete water-throughput pipes, reinforced concrete frame bridges. The evaluation of experimental data on models of constructions of this particular type has been carried out in order to improve calculations of Steel Corrugated Constructions.

  18. Fracture Behaviours in Compression-loaded Triangular Corrugated Core Sandwich Panels

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2016-01-01

    Full Text Available The failure modes occurring in sandwich panels based on the corrugations of aluminium alloy, carbon fibre-reinforced plastic (CFRP and glass fibre-reinforced plastic (GFRP are analysed in this work. The fracture behaviour of these sandwich panels under compressive stresses is determined through a series of uniform lateral compression performed on samples with different cell wall thicknesses. Compression test on the corrugated-core sandwich panels were conducted using an Instron series 4505 testing machine. The post-failure examinations of the corrugated-core in different cell wall thickness were conducted using optical microscope. Load-displacement graphs of aluminium alloy, GFRP and CFRP specimens were plotted to show progressive damage development with five unit cells. Four modes of failure were described in the results: buckling, hinges, delamination and debonding. Each of these failure modes may dominate under different cell wall thickness or loading condition, and they may act in combination. The results indicate that thicker composites corrugated-core panels tend can recover more stress and retain more stiffness. This analysis provides a valuable insight into the mechanical behaviour of corrugated-core sandwich panels for use in lightweight engineering applications.

  19. Persistent Spin Current in a Hard-Wall Confining Quantum Wire with Weak Dresselhaus Spin-Orbit Coupling

    International Nuclear Information System (INIS)

    Fu Xi; Zhou Guanghui

    2009-01-01

    We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density j s,xi T and j s,yi T (i = x, y, z). We find that the elements j T s,xx and j T s,yy have a antisymmetrical relation and the element j T s,yz has the same amount level as j s,xx T and j s,yy T . We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.

  20. Persistent Spin Current in a Hard-Wall Confining Quantum Wire with Weak Dresselhaus Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    FU Xi; ZHOU Guang-Hui

    2009-01-01

    We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors.Both the quantum wire and conductors are described by a hard-wall confining potential.Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density jTs,xi and jTs,yi(I = x, y, z).We lind that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level jTs,xx and jTs,yy.We also find a net linear spin current density, which has peaks at the center of quantum wire.The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.

  1. Nonlinear finite element modeling of corrugated board

    Science.gov (United States)

    A. C. Gilchrist; J. C. Suhling; T. J. Urbanik

    1999-01-01

    In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...

  2. Flow induced pulsations caused by corrugated tubes

    NARCIS (Netherlands)

    Shatto, D.P.; Belfroid, S.P.C.; Peters, M.C.A.M.

    2007-01-01

    Corrugated tubes can produce a tonal noise when used for gas transport, for instance in the case of flexible risers. The whistling sound is generated by shear layer instability due to the boundary layer separation at each corrugation. This whistling is examined by investigating the frequency,

  3. Flow induced pulsations generated in corrugated tubes

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Swindell, R.; Tummers, R.

    2008-01-01

    Corrugated tubes can produce a tonal noise when used for gas transport, for instance in the case of flexible risers. The whistling sound is generated by shear layer instability due to the boundary layer separation at each corrugation. This whistling is examined by investigating the frequency,

  4. Corrugated megathrust revealed offshore from Costa Rica

    Science.gov (United States)

    Edwards, Joel H.; Kluesner, Jared; Silver, Eli A.; Brodsky, Emily E.; Brothers, Daniel; Bangs, Nathan L.; Kirkpatrick, James D.; Wood, Ruby; Okamato, Kristina

    2018-01-01

    Exhumed faults are rough, often exhibiting topographic corrugations oriented in the direction of slip; such features are fundamental to mechanical processes that drive earthquakes and fault evolution. However, our understanding of corrugation genesis remains limited due to a lack of in situ observations at depth, especially at subducting plate boundaries. Here we present three-dimensional seismic reflection data of the Costa Rica subduction zone that image a shallow megathrust fault characterized by corrugated, and chaotic and weakly corrugated topographies. The corrugated surfaces extend from near the trench to several kilometres down-dip, exhibit high reflection amplitudes (consistent with high fluid content/pressure) and trend 11–18° oblique to subduction, suggesting 15 to 25 mm yr−1 of trench-parallel slip partitioning across the plate boundary. The corrugations form along portions of the megathrust with greater cumulative slip and may act as fluid conduits. In contrast, weakly corrugated areas occur adjacent to active plate bending faults where the megathrust has migrated up-section, forming a nascent fault surface. The variations in megathrust roughness imaged here suggest that abandonment and then reestablishment of the megathrust up-section transiently increases fault roughness. Analogous corrugations may exist along significant portions of subduction megathrusts globally.

  5. Electromagnetic radiation of electrons in corrugated graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ktitorov, S. A., E-mail: ktitorov@mail.ioffe.ru; Myhamadiarov, R. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-08-15

    Bremsstrahlung in corrugated single-layer graphene in the presence of a ballistic transport current is analyzed. Radiation of a similar nature is observed in undulators and wigglers. Regular and chaotic corrugations (ripples) are considered. It is shown that the quadratic relation between the Monge membrane function and the synthetic calibration field leads to the appearance of a central peak in the radiation spectral density. Possible formation mechanisms of single-layer graphene corrugation are proposed. In one case, the corrugation is considered as an incommensurate superstructure in a two-dimensional crystal, resulting from instability developing in the optical phonon subsystem with the formation of a periodic soliton train. Corrugation results from the interaction of subsystems. Another possible mechanism consists in instability of the membrane flat state due to strong fluctuations characteristic of two-dimensional systems.

  6. Enhanced heat transfer with corrugated flow channel in anode side of direct methanol fuel cells

    International Nuclear Information System (INIS)

    Heidary, H.; Abbassi, A.; Kermani, M.J.

    2013-01-01

    Highlights: • Effect of corrugated flow channel on the heat exchange of DMFC is studied. • Corrugated boundary (except rectangular type) increase heat transfer up to 90%. • Average heat transfer in rectangular-corrugated boundary is less than straight one. • In Re > 60, wavy shape boundary has highest heat transfer. • In Re < 60, triangular shape boundary has highest heat transfer. - Abstract: In this paper, heat transfer and flow field analysis in anode side of direct methanol fuel cells (DMFCs) is numerically studied. To enhance the heat exchange between bottom cold wall and core flow, bottom wall of fluid delivery channel is considered as corrugated boundary instead of straight (flat) one. Four different shapes of corrugated boundary are recommended here: rectangular shape, trapezoidal shape, triangular shape and wavy (sinusoidal) shape. The top wall of the channel (catalyst layer boundary) is taken as hot boundary, because reaction occurs in catalyst layer and the bottom wall of the channel is considered as cold boundary due to coolant existence. The governing equations are numerically solved in the domain by the control volume approach based on the SIMPLE technique (1972). A wide spectrum of numerical studies is performed over a range of various shape boundaries, Reynolds number, triangle block number, and the triangle block amplitude. The performed parametric studies show that corrugated channel with trapezoidal, triangular and wavy shape enhances the heat exchange up to 90%. With these boundaries, cooling purpose of reacting flow in anode side of DMFCs would be better than straight one. Also, from the analogy between the heat and mass transfer problems, it is expected that the consumption of reacting species within the catalyst layer of DMFCs enhance. The present work provides helpful guidelines to the bipolar plate manufacturers of DMFCs to considerably enhance heat transfer and performance of the anode side of DMFC

  7. Corrugated thimble tube for controlling control rod descent in nuclear reactor

    International Nuclear Information System (INIS)

    Luetzow, H.J.

    1981-01-01

    A thimble tube construction is described which will provide a controlled descent for a control rod while minimizing the reaction forces which must be absorbed by the thimble tube and reducing the possibility that a foreign particle could interfere with the free descent of a control rod. A thimble tube is formed with helically-corrugate internal walls which cooperate with a control rod contained in the tube in an emergency situation to provide a progressively-increasing hydraulic restraining force as each adjacent corrugation is encountered

  8. Radiant absorption characteristics of corrugated curved tubes

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2017-01-01

    Full Text Available The utilization of modern paraboloidal concentrators for conversion of solar radiation into heat energy requires the development and implementation of compact and efficient heat absorbers. Accurate estimation of geometry influence on absorption characteristics of receiver tubes is an important step in this process. This paper deals with absorption characteristics of heat absorber made of spirally coiled tubes with transverse circular corrugations. Detailed 3-D surface-to-surface Hemicube method was applied to compare radiation performances of corrugated and smooth curved tubes. The numerical results were obtained by varying the tube curvature ratio and incident radiant heat flux intensity. The details of absorption efficiency of corrugated tubes and the effect of curvature on absorption properties for both corrugated and smooth tubes were presented. The results may have significance to further analysis of highly efficient heat absorbers exposed to concentrated radiant heating. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 42006

  9. Effects of die profile on grain refinement in Al–Mg alloy processed by repetitive corrugation and straightening

    Energy Technology Data Exchange (ETDEWEB)

    Thangapandian, N., E-mail: erpandian@gmail.com [Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai 600025 (India); Balasivanandha Prabu, S. [Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai 600025 (India); Padmanabhan, K.A. [Centre for Nanotechnology, University of Hyderabad, Hyderabad 500046 (India)

    2016-01-01

    It is shown that a proper selection of corrugation die profile and die parameters is essential for achieving homogeneous grain refinement in materials subjected to repetitive corrugation and straightening (RCS). An Al–Mg (AA 5083) alloy was subjected to the RCS process using three different corrugation die profiles (V-groove, Flat groove, and Semi-circular groove), followed by straightening to determine the allowable maximum number of passes prior to surface cracking/fracture. Mechanical properties, i.e., hardness and tensile strength of the RCS samples were measured and compared as functions of corrugation die profiles and number of passes and the changes in microstructure. Grain refinement was studied using Electron Back Scattered Diffraction (EBSD) analysis and Transmission Electron Microscopy (TEM).

  10. Corrugated Membrane Nonlinear Deformation Process Calculation

    OpenAIRE

    A. S. Nikolaeva; S. A. Podkopaev

    2015-01-01

    Elastic elements are widely used in instrumentation. They are used to create a particular interference between the parts, for accumulating mechanical energy, as the motion transmission elements, elastic supports, and sensing elements of measuring devices. Device reliability and quality depend on the calculation accuracy of the elastic elements. A corrugated membrane is rather common embodiment of the elastic element.The corrugated membrane properties depend largely on its profile i.e. a gener...

  11. Scattering of atoms by a stationary sinusoidal hard wall: Rigorous treatment in (n+1) dimensions and comparison with the Rayleigh method

    International Nuclear Information System (INIS)

    Goodman, F.O.

    1977-01-01

    A rigorous treatment of the scattering of atoms by a stationary sinusoidal hard wall in (n+1) dimensions is presented, a previous treatment by Masel, Merrill, and Miller for n=1 being contained as a special case. Numerical comparisons are made with the GR method of Garcia, which incorporates the Rayleigh hypothesis. Advantages and disadvantages of both methods are discussed, and it is concluded that the Rayleigh GR method, if handled properly, will probably work satisfactorily in physically realistic cases

  12. Cells on corrugations for pollution control

    International Nuclear Information System (INIS)

    Clyde, R.

    1993-01-01

    Old cardboard boxes constitute 12% of landfills. White rot fungus can be grown on the boxes and buried in contaminated soil. The fungus needs air which is entrapped in the corrugations. The fungus is sensitive to large amounts of TNT but it is protected when inside the corrugations. Fast food containers are filling landfills. Lactic acid production needs air and the polymers are biodegradable. When corrugations are put in a half full rotary unit, holes in the valleys make drops, and mass transfer to drops is much higher than to a flat surface. A lab corrugator has been made from an old washing machine wringer, so other fibers can be corrugated. When the bacterium, Zymomonas mobilis is grown on Tyvek fiber, lead and six valent chromium are removed from wastewater in a few seconds. Zymomonas on rotating fibers converts sugar to alcohol in 10--15 minutes and when a light is shown into flat rotating discs, it hits a thin moving film to destroy dioxin. Salt on roads causes millions of dollars damage to bridges and cars but calcium magnesium acetate is not corrosive and can be made with cells on rotating fibers

  13. The annihilation of vertical-Bloch lines in the walls of hard domains to which bias fields and in-plane fields are alternately applied

    International Nuclear Information System (INIS)

    Sun, H.Y.; Hu, H.N.; Nie, X.F.

    2001-01-01

    The annihilation of vertical-Bloch lines in magnetic domain walls of the ordinary hard bubbles, to which both bias fields and in-plane fields are alternately applied, is investigated experimentally. The influence of an in-plane magnetic field on ordinary hard bubbles (OHB), dumbbell domains of the first kind (ID), and dumbbell domains of the second kind (IID) was analyzed, and a critical in-plane field range [H ip 0 ,H ip 2 ] for vertical Bloch line (VBL) annihilation was found. For the three types of hard domains (H ip 0 is the minimum critical in-plane field of VBLs which begin to be unstable, H ip 2 is the minimum critical in-plane field which only needs to be applied one time for collapse of all OHBs), the critical field range is the same with H ip 0 ≅8πM s . We hypothesize that there exists a direction along which the vertical-Bloch lines in the domain walls are annihilated most easily. It is also observed that the stability of vertical-Bloch lines in the domain walls does not depend on the initial state. This provides a more detailed description of the minimum critical in-plane field than previously known

  14. Assessment of rail long-pitch corrugation

    Science.gov (United States)

    Valehrach, Jan; Guziur, Petr; Riha, Tomas; Plasek, Otto

    2017-09-01

    The paper focuses on defects of the running surface of the rail, namely the rail corrugation defect and specifically long-pitch corrugation in curves of small radii. These defects cause a shorter life of the rails, greater maintenance costs and increase the noise and vibration pollution. Therefore, it is very important to understand the formation and development of the imperfection of the rails. In the paper, various sections of railway tracks in the Czech Republic are listed, each of them completed with comparison of defect development, the particular track superstructure, rolling stock, axle load, traffic load etc. Based on performed measurements, defect development has been proved as different on sections with similar (or even same) parameters. The paper assumes that a train velocity is the significant circumstance for defect development rates. Assessment of track section with under sleeper pads, which are expected to be the one of the possible ways to suppress the corrugation defect development, is included in evaluation.

  15. An Experimental Study on the Shear Hysteresis and Energy Dissipation of the Steel Frame with a Trapezoidal-Corrugated Steel Plate.

    Science.gov (United States)

    Shon, Sudeok; Yoo, Mina; Lee, Seungjae

    2017-03-06

    The steel frame reinforced with steel shear wall is a lateral load resisting system and has higher strength and shear performance than the concrete shear wall system. Especially, using corrugated steel plates in these shear wall systems improves out-of-plane stiffness and flexibility in the deformation along the corrugation. In this paper, a cyclic loading test of this steel frame reinforced with trapezoidal-corrugated steel plate was performed to evaluate the structural performance. The hysteresis behavior and the energy dissipation capacity of the steel frame were also compared according to the corrugated direction of the plate. For the test, one simple frame model without the wall and two frame models reinforced with the plate are considered and designed. The test results showed that the model reinforced with the corrugated steel plate had a greater accumulated energy dissipation capacity than the experimental result of the non-reinforced model. Furthermore, the energy dissipation curves of two reinforced frame models, which have different corrugated directions, produced similar results.

  16. Optimum fiber distribution in singlewall corrugated fiberboard

    Science.gov (United States)

    Millard W. Johnson; Thomas J. Urbanik; William E. Denniston

    1979-01-01

    Determining optimum distribution of fiber through rational design of corrugated fiberboard could result in significant reductions in fiber required to meet end-use conditions, with subsequent reductions in price pressure and extension of the softwood timber supply. A theory of thin plates under large deformations is developed that is both kinematically and physically...

  17. Stiffness Matrices and Anisotropy in the Trapezoidal Corrugated Composite Sheets

    Directory of Open Access Journals (Sweden)

    Mohammad Golzar

    2013-10-01

    Full Text Available In the some applications like as morphing technology, high strain and anisotropic behavior are essential design requirements. The corrugated composite sheets due to their special geometries have potential to high deflection under axial loading through longitudinal direction of corrugation. In this research, the strain and the anisotropic behavior of corrugated composite sheets are investigated by fabricating glass/epoxy samples with trapezoidal geometries. For evaluation of the mechanical behavior of the composites the samples were subjected to tension and flexural tests in the longitudinal and transverse directions of corrugation. In order to determine anisotropic behavior of the corrugated sheets, two approaches were introduced: (1 tensile anisotropic (E* and (2 flexural anisotropic (D*. The anisotropic behavior and ultimate deflections were investigated theoretically and experimentally. In this paper, mechanical behaviors based on theoretical and experimental analysis including the elastic constants and stiffness matrices of trapezoidal corrugated composite sheets were studied and the results were verified by finite element method. The results of the numerical and analytical solutions were compared with those of experimental tests. Finally, the load-displacement curves of tensile tests in longitudinal direction of corrugation, the ultimate deflection and anisotropy behavior of these exclusive composite sheets in the corrugated composite sheets were studied experimentally. The experimental results of the trapezoidal corrugated sheets showed that one of the most important parameters in the ultimate strain was amplitude of the corrugation elements. Generally, increasing the amplitude and element per length unit of trapezoidal corrugated specimen led to higher ultimate strain.

  18. Silicon Carbide Corrugated Mirrors for Space Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  19. On the whistling of corrugated pipes with narrow cavities

    NARCIS (Netherlands)

    Golliard, J.; Belfroid, S.P.C.; González Diez, N.; Bendiksen, E.; Frimodt, C.

    2013-01-01

    Pipes with a corrugated inner surface, as used inflexible pipes for gas production and transport, can be subject to Flow-Induced Pulsations when the flow velocities are higher than a certain onset velocity. The onset velocity for classical corrugated pipes can be predicted on basis of the geometry

  20. Dynamic tension testing equipment for paperboard and corrugated fiberboard

    Science.gov (United States)

    W. D. Godshall

    1965-01-01

    The objective of this work was to develop a method, the testing equipment, and the instrumentation with which dynamic stress-strain information may be obtained for paperboards and built-up corrugated fiberboards as used in corrugated fiberboard containers. Much information is available on the properties of these materials when subjected to static or low rates of...

  1. Numerical Investigation of Corrugated Wire Mesh Laminate

    Directory of Open Access Journals (Sweden)

    Jeongho Choi

    2013-01-01

    Full Text Available The aim of this work is to develop a numerical model of Corrugated Wire Mesh Laminate (CWML capturing all its complexities such as nonlinear material properties, nonlinear geometry and large deformation behaviour, and frictional behaviour. Development of such a model will facilitate numerical simulation of the mechanical behaviour of the wire mesh structure under various types of loading as well as the variation of the CWML configuration parameters to tailor its mechanical properties to suit the intended application. Starting with a single strand truss model consisting of four waves with a bilinear stress-strain model to represent the plastic behaviour of stainless steel, the finite element model is gradually built up to study single-layer structures with 18 strands of corrugated wire meshes consistency and double- and quadruple-layered laminates with alternating crossply orientations. The compressive behaviour of the CWML model is simulated using contact elements to model friction and is compared to the load-deflection behaviour determined experimentally in uniaxial compression tests. The numerical model of the CWML is then employed to conduct the aim of establishing the upper and lower bounds of stiffness and load capacity achievable by such structures.

  2. Measuring the height-to-height correlation function of corrugation in suspended graphene

    International Nuclear Information System (INIS)

    Kirilenko, D.A.; Brunkov, P.N.

    2016-01-01

    Nanocorrugation of 2D crystals is an important phenomenon since it affects their electronic and mechanical properties. The corrugation may have various sources; one of them is flexural phonons that, in particular, are responsible for the thermal conductivity of graphene. A study of corrugation of just the suspended graphene can reveal much of valuable information on the physics of this complicated phenomenon. At the same time, the suspended crystal nanorelief can hardly be measured directly because of high flexibility of the 2D crystal. Moreover, the relief portion related to rapid out-of-plane oscillations (flexural phonons) is also inaccessible by such measurements. Here we present a technique for measuring the Fourier components of the height–height correlation function H(q) of suspended graphene which includes the effect of flexural phonons. The technique is based on the analysis of electron diffraction patterns. The H(q) is measured in the range of wavevectors q≈0.4–4.5 nm"−"1. At the upper limit of this range H(q) does follow the T/κq"4 law. So, we measured the value of suspended graphene bending rigidity κ=1.2±0.4 eV at ambient temperature T≈300 K. At intermediate wave vectors, H(q) follows a slightly weaker exponent than theoretically predicted q"−"3"."1"5 but is closer to the results of the molecular dynamics simulation. At low wave vectors, the dependence becomes even weaker, which may be a sign of influence of charge carriers on the dynamics of undulations longer than 10 nm. The technique presented can be used for studying physics of flexural phonons in other 2D materials. - Highlights: • A technique for measuring free-standing 2D crystal corrugation is proposed. • The height-to-height correlation function of the suspended graphene corrugation is measured. • Various parameters of the intrinsic graphene properties are experimentally determined.

  3. Effects of carbon coating and pore corrugation on capillary condensation of nitrogen in SBA-15 mesoporous silica.

    Science.gov (United States)

    Morishige, Kunimitsu

    2013-09-24

    To examine the origin of an ink-bottle-like structure in SBA-15 formed by carbon coating and the effects of pore corrugation on capillary condensation and evaporation of a vapor in the cylindrical pores, we measured the adsorption isotherms of nitrogen at 77 K on 10 kinds of SBA-15 samples before and after a carbon coating process by the exposure to acetylene at 1073 K, as well as desorption scanning curves and subloops on the untreated samples. These SBA-15 samples were synthesized under the different conditions of initial SiO2/P123 ratio and hydrothermal treatment. SBA-15 with relatively large microporosity tends to form easily constrictions inside the main channels by the carbon coating. This strongly suggests that the rough pore walls of SBA-15 may induce the incomplete wetting of carbon layers on the pore walls to form the constrictions inside the cylindrical pores. A comparison of two subloops implies that the pores of SBA-15 synthesized with a SiO2/P123 ratio of 75 consist of an assembly of connecting domains of different diameters; that is, the pores are highly corrugated. For SBA-15 synthesized with a SiO2/P123 ratio of 60, the amplitude of the pore corrugation is significantly decreased by the prolonged hydrothermal treatment at 373 K. On the other hand, for SBA-15 synthesized with a SiO2/P123 ratio of 45, the amplitude of the corrugation is negligibly small, although the cylindrical pores are interconnected through narrow necks with each other. It is found that the smaller the amplitude of the pore corrugation, the smaller the width of the hysteresis loop.

  4. Composite corrugated structures for morphing wing skin applications

    International Nuclear Information System (INIS)

    Thill, C; Etches, J A; Bond, I P; Potter, K D; Weaver, P M

    2010-01-01

    Composite corrugated structures are known for their anisotropic properties. They exhibit relatively high stiffness parallel (longitudinal) to the corrugation direction and are relatively compliant in the direction perpendicular (transverse) to the corrugation. Thus, they offer a potential solution for morphing skin panels (MSPs) in the trailing edge region of a wing as a morphing control surface. In this paper, an overview of the work carried out by the present authors over the last few years on corrugated structures for morphing skin applications is first given. The second part of the paper presents recent work on the application of corrugated sandwich structures. Panels made from multiple unit cells of corrugated sandwich structures are used as MSPs in the trailing edge region of a scaled morphing aerofoil section. The aerofoil section features an internal actuation mechanism that allows chordwise length and camber change of the trailing edge region (aft 35% chord). Wind tunnel testing was carried out to demonstrate the MSP concept but also to explore its limitations. Suggestions for improvements arising from this study were deduced, one of which includes an investigation of a segmented skin. The overall results of this study show that the MSP concept exploiting corrugated sandwich structures offers a potential solution for local morphing wing skins for low speed and small air vehicles

  5. Work Hard / Play Hard

    OpenAIRE

    Burrows, J.; Johnson, V.; Henckel, D.

    2016-01-01

    Work Hard / Play Hard was a participatory performance/workshop or CPD experience hosted by interdisciplinary arts atelier WeAreCodeX, in association with AntiUniversity.org. As a socially/economically engaged arts practice, Work Hard / Play Hard challenged employees/players to get playful, or go to work. 'The game changes you, you never change the game'. Employee PLAYER A 'The faster the better.' Employer PLAYER B

  6. Experimental Study of Slat Noise from 30P30N Three-Element High-Lift Airfoil in JAXA Hard-Wall Low-Speed Wind Tunnel

    Science.gov (United States)

    Murayama, Mitsuhiro; Nakakita, Kazuyuki; Yamamoto, Kazuomi; Ura, Hiroki; Ito, Yasushi; Choudhari, Meelan M.

    2014-01-01

    Aeroacoustic measurements associated with noise radiation from the leading edge slat of the canonical, unswept 30P30N three-element high-lift airfoil configuration have been obtained in a 2 m x 2 m hard-wall wind tunnel at the Japan Aerospace Exploration Agency (JAXA). Performed as part of a collaborative effort on airframe noise between JAXA and the National Aeronautics and Space Administration (NASA), the model geometry and majority of instrumentation details are identical to a NASA model with the exception of a larger span. For an angle of attack up to 10 degrees, the mean surface Cp distributions agree well with free-air computational fluid dynamics predictions corresponding to a corrected angle of attack. After employing suitable acoustic treatment for the brackets and end-wall effects, an approximately 2D noise source map is obtained from microphone array measurements, thus supporting the feasibility of generating a measurement database that can be used for comparison with free-air numerical simulations. Both surface pressure spectra obtained via KuliteTM transducers and the acoustic spectra derived from microphone array measurements display a mixture of a broad band component and narrow-band peaks (NBPs), both of which are most intense at the lower angles of attack and become progressively weaker as the angle of attack is increased. The NBPs exhibit a substantially higher spanwise coherence in comparison to the broadband portion of the spectrum and, hence, confirm the trends observed in previous numerical simulations. Somewhat surprisingly, measurements show that the presence of trip dots between the stagnation point and slat cusp enhances the NBP levels rather than mitigating them as found in a previous experiment.

  7. CONTRIBUTIONS ON THE DESIGN OF UNCONVENTIONAL CORRUGATED BOARD STRUCTURES

    Directory of Open Access Journals (Sweden)

    NEIDONI Nadina

    2015-06-01

    Full Text Available The paper depicts a few contributions on the design of several unconventional corrugated board structures. In general, cardboard and corrugated cardboard is strongly linked to packaging. However, limiting these materials to their primary use does nothing else but to restrict the possibilities of using them in other interesting areas. Consequently, new structures built from cardboard have been imagined and in the paper there are presented a few unconventional uses of the corrugated fiberboard, namely as furniture elements, along with the technology used in the design and the manufacturing process.

  8. Optical properties of nonimaging concentrators with corrugated reflectors

    Science.gov (United States)

    Roennelid, Mats; Perers, Bengt; Karlsson, Bjorn

    1994-09-01

    A ray tracing study has been performed on the optical properties of cylindrical nonimaging concentrators with linear corrugated reflectors. The corrugations are assumed to be V-formed and to have an extension parallel to the meridian plane of the concentrators. It is shown that the acceptance angle for radiation incident in the meridian plane can be increased for moderate corrugations. This increased acceptance is balanced by a decreased acceptance of radiation from other directions. Calculations of angular acceptance for a 2X compound parabolic concentrator is presented. It is shown that the annual irradiation on a solar collector with booster reflector can be increased if corrugated reflectors are used instead of smooth reflectors.

  9. Theoretical prediction on corrugated sandwich panels under bending loads

    Science.gov (United States)

    Shu, Chengfu; Hou, Shujuan

    2018-05-01

    In this paper, an aluminum corrugated sandwich panel with triangular core under bending loads was investigated. Firstly, the equivalent material parameters of the triangular corrugated core layer, which could be considered as an orthotropic panel, were obtained by using Castigliano's theorem and equivalent homogeneous model. Secondly, contributions of the corrugated core layer and two face panels were both considered to compute the equivalent material parameters of the whole structure through the classical lamination theory, and these equivalent material parameters were compared with finite element analysis solutions. Then, based on the Mindlin orthotropic plate theory, this study obtain the closed-form solutions of the displacement for a corrugated sandwich panel under bending loads in specified boundary conditions, and parameters study and comparison by the finite element method were executed simultaneously.

  10. Stylus type MEMS texture sensor covered with corrugated diaphragm

    Science.gov (United States)

    Tsukamoto, Takashiro; Asao, Hideaki; Tanaka, Shuji

    2017-09-01

    In this paper, a stylus type MEMS texture sensor covered with a corrugated palylene diaphragm, which prevent debris from jamming into the sensor without significant degradation of sensitivity and bandwidth, was reported. A new fabrication process using a lost-foil method to make the corrugated diaphragm on a 3-axis piezoresistive force sensor at wafer level has been developed. The texture sensor could detect the surface microstructure as small as about 10 \

  11. Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations

    Science.gov (United States)

    Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.

    2016-09-01

    The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.

  12. Impact of Corrugated Paperboard Structure on Puncture Resistance

    Directory of Open Access Journals (Sweden)

    Vaidas Bivainis

    2015-03-01

    Full Text Available Thanks to its excellentprotective properties, lightness, a reasonable price, and ecology, corrugated paperboardis one of the most popular materials used in the production of packaging for variousproducts. During transportation or storage, packaging with goods can be exposedto the mass of other commodities, dropping from heights and transportationshock loads, which can lead to their puncture damage. Depending on the purposeand size of the packaging, the thickness, grammage, constituent paper layers,numbers of layers and type of fluting of corrugated paperboard used in itsproduction differ. A standard triangular prism, corrugated paperboard fixationplates and a universal tension-compression machine were used to investigate theimpact of corrugated paperboard structure and other parameters on the punctureresistance of the material. The investigation determines the maximum punctureload and estimates energy required to penetrate the corrugated paperboard. Itwas found that the greatest puncture resistance is demonstrated by paperboardwith a larger number of corrugating flutings and the board produced from harderpaper with a smaller amount of recycled paper. It was established that thegrammage of three-layered paperboard with two different fluting profiles has thegreatest impact on the level of static puncture energy.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5713

  13. Swimming behaviour and ascent paths of brook trout in a corrugated culvert

    Science.gov (United States)

    Goerig, Elsa; Bergeron, Normand E.; Castro-Santos, Theodore R.

    2017-01-01

    Culverts may restrict fish movements under some hydraulic conditions such as shallow flow depths or high velocities. Although swimming capacity imposes limits to passage performance, behaviour also plays an important role in the ability of fish to overcome velocity barriers. Corrugated metal culverts are characterized by unsteady flow and existence of low‐velocity zones, which can improve passage success. Here, we describe swimming behaviour and ascent paths of 148 wild brook trout in a 1.5‐m section of a corrugated metal culvert located in Raquette Stream, Québec, Canada. Five passage trials were conducted in mid‐August, corresponding to specific mean cross‐sectional flow velocities ranging from 0.30 to 0.63 m/s. Fish were individually introduced to the culvert and their movements recorded with a camera located above the water. Lateral and longitudinal positions were recorded at a rate of 3 Hz in order to identify ascent paths. These positions were related to the distribution of flow depths and velocities in the culvert. Brook trout selected flow velocities from 0.2 to 0.5 m/s during their ascents, which corresponded to the available flow velocities in the culvert at the low‐flow conditions. This however resulted in the use of low‐velocity zones at higher flows, mainly located along the walls of the culvert. Some fish also used the corrugations for sheltering, although the behaviour was marginal and did not occur at the highest flow condition. This study improves knowledge on fish behaviour during culvert ascents, which is an important aspect for developing reliable and accurate estimates of fish passage ability.

  14. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  15. Double wall steam generator tubing

    International Nuclear Information System (INIS)

    Padden, T.R.; Uber, C.F.

    1983-01-01

    Double-walled steam generator tubing for the steam generators of a liquid metal cooled fast breeder reactor prevents sliding between the surfaces due to a mechanical interlock. Forces resulting from differential thermal expansion between the outer tube and the inner tube are insufficient in magnitude to cause shearing of base metal. The interlock is formed by jointly drawing the tubing, with the inside wall of the outer tube being already formed with grooves. The drawing causes the outer wall of the inner tube to form corrugations locking with the grooves. (author)

  16. Numerical analysis of beam with sinusoidally corrugated webs

    Science.gov (United States)

    Górecki, Marcin; Pieńko, Michał; Łagoda, GraŻyna

    2018-01-01

    The paper presents numerical tests results of the steel beam with sinusoidally corrugated web, which were performed in the Autodesk Algor Simulation Professional 2010. The analysis was preceded by laboratory tests including the beam's work under the influence of the four point bending as well as the study of material characteristics. Significant web's thickness and use of tools available in the software allowed to analyze the behavior of the plate girder as beam, and also to observe the occurrence of stresses in the characteristic element - the corrugated web. The stress distribution observed on the both web's surfaces was analyzed.

  17. Mass transfer in corrugated-plate membrane modules. I. Hyperfiltration experiments

    NARCIS (Netherlands)

    van der Waal, M.J.; Racz, I.G.

    1989-01-01

    The application of corrugations as turbulence promoters in membrane filtration was studied. This study showed that it is possible to deform an originally flat membrane to a corrugated shape without damaging it. In hyperfiltration experiments using corrugated cellulose acetate membranes it was found

  18. Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes

    Science.gov (United States)

    Walicka, A.

    2018-02-01

    In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.

  19. Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes

    Directory of Open Access Journals (Sweden)

    Walicka A.

    2018-02-01

    Full Text Available In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.

  20. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how walls...... have encouraged architectural thinking of enclosure, materiality, construction and inhabitation in architectural history, the paper’s aim is to define new directions for the integration of LEDs in walls, challenging the thinking of inhabitation and program. This paper introduces the notion...... of “ambiguous walls” as a more “critical” approach to design [1]. The concept of ambiguous walls refers to the diffuse status a lumious and possibly responsive wall will have. Instead of confining it can open up. Instead of having a static appearance, it becomes a context over time. Instead of being hard...

  1. Aeroacoustics of the swinging corrugated tube: Voice of the Dragon

    NARCIS (Netherlands)

    Nakiboglu, G.; Rudenko, O.; Hirschberg, Abraham

    2012-01-01

    When one swings a short corrugated pipe segment around one’s head, it produces a musically interesting whistling sound. As a musical toy it is called a “Hummer” and as a musical instrument, the “Voice of the Dragon.” The fluid dynamics aspects of the instrument are addressed, corresponding to the

  2. Aeroacoustics of the swinging corrugated tube : voice of the dragon

    NARCIS (Netherlands)

    Nakiboglu, G.; Rudenko, O.; Hirschberg, A.

    2012-01-01

    When one swings a short corrugated pipe segment around one’s head, it produces a musically interesting whistling sound. As a musical toy it is called a "Hummer" and as a musical instrument, the "Voice of the Dragon." The fluid dynamics aspects of the instrument are addressed, corresponding to the

  3. Distributed feedback interband cascade lasers with top grating and corrugated sidewalls

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Feng [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Stocker, Michael [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Pham, John [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Towner, Frederick [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Shen, Kun [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Wang, Jie [Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, USA; Lascola, Kevin [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA

    2018-03-26

    Distributed feedback (DFB) interband cascade lasers (ICLs) with a 1st order top surface grating were designed and fabricated. Partially corrugated sidewalls were implemented to suppress high order lateral modes. The DFB ICLs have 4 mm long and 4.5 mu m wide ridge waveguides and are mounted epi-up on AlN submounts. We demonstrated a continuous-wave (CW) DFB ICL, from a first wafer which has a large detuning of the gain peak from the DFB wavelength, with a side mode suppression ratio of 30 dB. With proper matching of grating feedback and the gain peak wavelength for the second wafer, a DFB ICL was demonstrated with a maximum CW output power and a maximum wall plug efficiency reaching 42 mW and 2%, respectively, at 25 degrees C. The lasing wavelengths of both lasers are around 3.3 mu m at 25 degrees C. Published by AIP Publishing.

  4. Heat shrink formation of a corrugated thin film thermoelectric generator

    International Nuclear Information System (INIS)

    Sun, Tianlei; Peavey, Jennifer L.; David Shelby, M.; Ferguson, Scott; O’Connor, Brendan T.

    2015-01-01

    Highlights: • Demonstrate and characterize a thermoelectric generator with a corrugated geometry. • Employ a novel heat shrink fabrication approach compatible with low-cost processing. • Use thermal impedance modeling to explore design potential. • Corrugated design shown to be advantageous for low heat-flux density applications. - Abstract: A thin film thermoelectric (TE) generator with a corrugated architecture is demonstrated formed using a heat-shrink fabrication approach. Fabrication of the corrugated TE structure consists of depositing thin film thermoelectric elements onto a planar non-shrink polyimide substrate that is then sandwiched between two uniaxial stretch-oriented co-polyester (PET) films. The heat shrink PET films are adhered to the polyimide in select locations, such that when the structure is placed in a high temperature environment, the outer films shrink resulting in a corrugated core film and thermoelectric elements spanning between the outer PET films. The module has a cross-plane heat transfer architecture similar to a conventional bulk TE module, but with heat transfer in the plane of the thin film thermoelectric elements, which assists in maintaining a significant temperature difference across the thermoelectric junctions. In this demonstration, Ag and Ni films are used as the thermoelectric elements and a Seebeck coefficient of 14 μV K −1 is measured with a maximum power output of 0.22 nW per couple at a temperature difference of 7.0 K. We then theoretically consider the performance of this device architecture with high performance thermoelectric materials in the heat sink limited regime. The results show that the heat-shrink approach is a simple fabrication method that may be advantageous in large-area, low power density applications. The fabrication method is also compatible with simple geometric modification to achieve various form factors and power densities to customize the TE generator for a range of applications

  5. On the Fully-Developed Heat Transfer Enhancing Flow Field in Sinusoidally, Spirally Corrugated Tubes Using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Sørensen, Kim; Condra, Thomas Joseph

    2017-01-01

    A numerical study has been carried out to investigate heat transfer enhancing flow field in 28 geometrically different sinusoidally, spirally corrugated tubes. To vary the corrugation, the height of corrugation e/D and the length between two successive corrugated sections p/D are varied in the ra...

  6. Shear Behavior of Corrugated Steel Webs in H Shape Bridge Girders

    Directory of Open Access Journals (Sweden)

    Qi Cao

    2015-01-01

    Full Text Available In bridge engineering, girders with corrugated steel webs have shown good mechanical properties. With the promotion of composite bridge with corrugated steel webs, in particular steel-concrete composite girder bridge with corrugated steel webs, it is necessary to study the shear performance and buckling of the corrugated webs. In this research, by conducting experiment incorporated with finite element analysis, the stability of H shape beam welded with corrugated webs was tested and three failure modes were observed. Structural data including load-deflection, load-strain, and shear capacity of tested beam specimens were collected and compared with FEM analytical results by ANSYS software. The effects of web thickness, corrugation, and stiffening on shear capacity of corrugated webs were further discussed.

  7. The mechanism of selective corrugation removal by KOH anisotropic wet etching

    International Nuclear Information System (INIS)

    Shikida, M; Inagaki, N; Sasaki, H; Amakawa, H; Fukuzawa, K; Sato, K

    2010-01-01

    The mechanism of selective corrugation removal by anisotropic wet etching—which reduces a periodic corrugation, called 'scalloping', formed on the sidewalls of microstructures by the Bosch process in deep reactive-ion etching (D-RIE)—was investigated. In particular, the corrugation-removal mechanism was analyzed by using the etching rate distribution pattern, and two equations for predicting the corrugation-removal time by the etching were derived. A Si{1 0 0} wafer was first etched by D-RIE at a depth of 29.4 µm (60 cycles) to form the corrugation on the sidewall surface. The height and pitch of the corrugation were 196 and 494 nm, respectively. Selective removal of the corrugation by using 50% KOH (40 °C) was experimentally tried. The corrugation formed on Si{1 0 0} sidewall surfaces was gradually reduced in size as the etching progressed, and it was completely removed after 5 min of etching. Similarly, the corrugation formed on a Si{1 1 0} sidewall surface was also selectively removed by KOH etching (etching time: 3 min). The roughness value of the sidewall surface was reduced from 17.6 nm to a few nanometers by the etching. These results confirm that the corrugation-removal mechanism using anisotropic wet etching can be explained in terms of the distribution pattern of etching rate

  8. Design and manufacturing of skins based on composite corrugated laminates for morphing aerodynamic surfaces

    Science.gov (United States)

    Airoldi, Alessandro; Fournier, Stephane; Borlandelli, Elena; Bettini, Paolo; Sala, Giuseppe

    2017-04-01

    The paper discusses the approaches for the design and manufacturing of morphing skins based on rectangular-shaped composite corrugated laminates and proposes a novel solution to prevent detrimental effects of corrugation on aerodynamic performances. Additionally, more complex corrugated shapes are presented and analysed. The manufacturing issues related to the production of corrugated laminates are discussed and tests are performed to compare different solutions and to assess the validity of analytical and numerical predictions. The solution presented to develop an aerodynamically efficient skin consists in the integration of an elastomeric cover in the corrugated laminate. The related manufacturing process is presented and assessed, and a fully nonlinear numerical model is developed and characterized to study the behaviour of this skin concept in different load conditions. Finally, configurations based on combinations of individual rectangular-shaped corrugated panels are considered. Their structural properties are numerically investigated by varying geometrical parameters. Performance indices are defined to compare structural stiffness contributions in non-morphing directions with the ones of conventional panels of the same weight. Numerical studies also show that the extension of the concept to complex corrugated shapes may improve both the design flexibility and some specific performances with respect to rectangular shaped corrugations. The overall results validate the design approaches and manufacturing processes to produce corrugated laminates and indicate that the solution for the integration of an elastomeric cover is a feasible and promising method to enhance the aerodynamic efficiency of corrugated skins.

  9. Measuring autogenous strain of concrete with corrugated moulds

    DEFF Research Database (Denmark)

    Tian, Qian; Jensen, Ole Mejlhede

    2008-01-01

    A reliable technique to quantify autogenous strain is a prerequisite to numerical modeling in stress calculations for high performance concrete. The introducing of a special kind of corrugated tube mould helps to transforming volume strain measurement into liner strain measurement in horizontal...... direction for fluid concrete, which not only realizes the continuous monitoring of the autogenous shrinkage since casting, but also effectively eliminates the disturbance resulting from gravity, temperature variation and mould restraint on measuring results. Based on this measuring technique, this paper...

  10. Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study

    International Nuclear Information System (INIS)

    Burt, G.; Ronald, K.; Young, A.R.; Phelps, A.D.R.; Cross, A.W.; Konoplev, I.V.; He, W.; Thomson, J.; Whyte, C.G.; Samsonov, S.V.; Denisov, G.G.; Bratman, V.L.

    2004-01-01

    Helically corrugated waveguides have recently been studied for use in various applications such as interaction regions in gyrotron traveling-wave tubes and gyrotron backward-wave oscillators and as a dispersive medium for passive microwave pulse compression. The paper presents a summary of various methods that can be used for analysis of the wave dispersion of such waveguides. The results obtained from an analytical approach, simulations with the three-dimensional numerical code MAGIC, and cold microwave measurements are analyzed and compared

  11. Fast rail corrugation detection based on texture filtering

    Science.gov (United States)

    Xiao, Jie; Lu, Kaixia

    2018-02-01

    The condition detection of rails in high-speed railway is one of the important means to ensure the safety of railway transportation. In order to replace the traditional manual inspection, save manpower and material resources, and improve the detection speed and accuracy, it is of great significance to develop a machine vision system for locating and identifying defects on rails automatically. Rail defects exhibit different properties and are divided into various categories related to the type and position of flaws on the rail. Several kinds of interrelated factors cause rail defects such as type of rail, construction conditions, and speed and/or frequency of trains using the rail. Rail corrugation is a particular kind of defects that produce an undulatory deformation on the rail heads. In high speed train, the corrugation induces harmful vibrations on wheels and its components and reduces the lifetime of rails. This type of defects should be detected to avoid rail fractures. In this paper, a novel method for fast rail corrugation detection based on texture filtering was proposed.

  12. Theory of static friction: temperature and corrugation effects

    International Nuclear Information System (INIS)

    Franchini, A; Brigazzi, M; Santoro, G; Bortolani, V

    2008-01-01

    We present a study of the static friction, as a function of temperature, between two thick solid slabs. The upper one is formed of light particles and the substrate of heavy particles. We focus our attention on the interaction between the phonon fields of the two blocks and on the interface corrugation, among the various mechanisms responsible for the friction. To give evidence of the role played by the dynamical interaction of the substrate with the upper block, we consider both a substrate formed by fixed atoms and a substrate formed by mobile atoms. To study the effect of the corrugation, we model it by changing the range parameter σ in the Lennard-Jones interaction potential. We found that in the case of the mobile substrate there is a large momentum transfer from the substrate to the upper block. This momentum transfer increases on increasing the temperature and produces a large disorder in the upper block favouring a decrease of the static friction with respect to the case for a rigid substrate. Reducing the corrugation, we found that with a rigid substrate the upper block becomes nearly commensurate, producing an enhancement of the static friction with respect to that with a mobile substrate

  13. Direct measurement of wall slip and slip layer thickness of non-Brownian hard-sphere suspensions in rectangular channel flows

    Science.gov (United States)

    Jesinghausen, Steffen; Weiffen, Rene; Schmid, Hans-Joachim

    2016-09-01

    Wall slip is a long-known phenomenon in the field of rheology. Nevertheless, the origin and the evolution are not completely clear yet. Regarding suspensions, the effect becomes even more complicated, because different mechanisms like pure slip or slip due to particle migration have to be taken into account. Furthermore, suspensions themselves show many flow anomalies and the isolation of slip is complicated. In order to develop working physical models, further insight is necessary. In this work, we measured experimentally the wall slip velocities of different highly filled suspensions in a rectangular slit die directly with respect to the particle concentration and the particle size. The slip velocities were obtained using a particle image velocimetry (PIV) system. The suspensions consisting of a castor oil-cinnamon oil blend and PMMA particles were matched in terms of refractive indexes to appear transparent. Hereby, possible optical path lengths larger than 15 mm were achieved. The slip velocities were found to be in a quadratic relation to the wall shear stress. Furthermore, the overall flow rate as well as the particle concentration has a direct influence on the slip. Concerning the shear stress, there seem to be two regions of slip with different physical characteristics. Furthermore, we estimated the slip layer thickness directly from the velocity profiles and propose a new interpretation. The PIV technique is used to investigate the viscosity and implicit the concentration profile in the slit die. It is shown that the particle migration process is quite fast.

  14. Evaluation of Fatigue Strength Improvement by CFRP Laminates and Shot Peening onto the Tension Flanges Joining Corrugated SteelWebs

    Directory of Open Access Journals (Sweden)

    Zhi-Yu Wang

    2015-08-01

    Full Text Available Corrugated steel web with inherent high out-of-plane stiffness has a promising application in configuring large span highway bridge girders. Due to the irregularity of the configuration details, the local stress concentration poses a major fatigue problem for the welded flange plates of high strength low alloy structural steels. In this work, the methods of applying CFRP laminate and shot peening onto the surfaces of the tension flanges were employed with the purpose of improving the fatigue strength of such configuration details. The effectiveness of this method in the improvement of fatigue strength has been examined experimentally. Test results show that the shot peening significantly increases hardness and roughness in contrast to these without treatment. Also, it has beneficial effects on the fatigue strength enhancement when compared against the test data of the joints with CFRP strengthening. The stiffness degradation during the loading progress is compared with each treatment. Incorporating the stress acting on the constituent parts of the CFRP laminates, a discussion is made regarding the mechanism of the retrofit and related influencing factors such as corrosion and economic cost. This work could enhance the understanding of the CFRP and shot peening in repairing such welded details and shed light on the reinforcement design of welded joints between corrugated steel webs and flange plates.

  15. Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide

    International Nuclear Information System (INIS)

    Talebi, Nahid; Shahabadi, Mahmoud

    2010-01-01

    Using the rigorous mode-matching technique, we have investigated a periodically corrugated perfectly conducting coaxial waveguide for the possibility of propagation of localized spoof surface plasmons. To verify our results, the computed band diagram of the structure has been compared with the one obtained using the body-of-revolution finite-difference time-domain method. The obtained spoof surface plasmon modes have been shown to be highly localized and slowly propagating. Variations of the obtained modal frequencies and mode profiles as a function of the depth and width of the grooves have also been investigated.

  16. Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Talebi, Nahid; Shahabadi, Mahmoud, E-mail: n.talebi@ece.ut.ac.i [Photonics Research Laboratory, Center of Excellence for Applied Electromagnetic Systems, School of Electrical and Computer Engineering, University of Tehran, North Kargar Ave., Tehran (Iran, Islamic Republic of)

    2010-04-07

    Using the rigorous mode-matching technique, we have investigated a periodically corrugated perfectly conducting coaxial waveguide for the possibility of propagation of localized spoof surface plasmons. To verify our results, the computed band diagram of the structure has been compared with the one obtained using the body-of-revolution finite-difference time-domain method. The obtained spoof surface plasmon modes have been shown to be highly localized and slowly propagating. Variations of the obtained modal frequencies and mode profiles as a function of the depth and width of the grooves have also been investigated.

  17. Mass transfer in corrugated-plate membrane modules. II. Ultrafiltration experiments

    NARCIS (Netherlands)

    van der Waal, M.J.; Stevanovic, S.; Racz, I.G.

    1989-01-01

    The application of corrugations as turbulence promoters in membrane filtration was studied. In ultrafiltration experiments with polysulfone membranes using Dextran T70 as solute, it was found that the corrugations result in reduced energy consumption or pressure drop compared with flat membranes at

  18. Direct measurements of acoustic damping and sound amplification in corrugated pipes with flow

    NARCIS (Netherlands)

    Golliard, J.; Belfroid, S.P.C.; Vijlbrief, O.; Lunde, K.

    2015-01-01

    The flow-induced pulsations in corrugated pipes result from a feedback loop between an acoustic resonator and the noise amplification at each shear layer in the axisymmetric cavities forming the corrugations. The quality factor of the resonator is determined by the reflection coefficients at the

  19. Whistling of pipes with narrow corrugations: scale model tests and consequences for carcass design

    NARCIS (Netherlands)

    Golliard, J.; Belfroid, S.P.C.; Bendiksen, E.; Frimodt, C.

    2013-01-01

    Pipes for gas production and transport with a corrugated inner surface, as used in flexible pipes, can be subject to Flow-Induced Pulsations when the flow velocity is larger than a certain velocity. This onset velocity is dependent on the geometry of the corrugations, the operational conditions and

  20. Determination of transfer parameters in corrugated plates exchangers

    International Nuclear Information System (INIS)

    Silva Lima Filho, S. da.

    1984-01-01

    In this work is presented a experimental study about the forced convenction problem in vee-corrugated exchangers, with flow in the transversal sense, and parallel plates exchangers in which the isotermal plate is equivalent to the absobing one and the other plate is adiabatic. Global values of the transfer coefficients were experimentally obtained by application of the Naphthalene Sublimation Technique in accordance with the analogy between heat and mass transfer. The results were expressed in terms of Sh sup(-) /Sc sup(0,4) that according to the analogy is equal the Nu sup(-) / Pr sup(0,4) in function of the Reynolds number. The ratio between the lenght of the channel and the average spacing between plates L/2a was ranged in all the exchangers. Parameters of transfer to angles of 45 0 and 31 0 were determined in the corrugated plates exchangers. The experimental results obtained were analyzed and compared among them. Finally practical applications of these results are presented to heat exchangers with similars geometric characteristics. (Author) [pt

  1. Transfer of hydrogen and helium through corrugated, flexible tubes

    International Nuclear Information System (INIS)

    Schippl, K.

    2001-01-01

    The transfer of liquid gas or cold gas through corrugated tubes is an alternative to rigid systems for the use in reactor technique. Advantages: flexibility for easy installation; these tubes together with their associated terminations and hardware are assembled, leak-tested and evacuated at the factory. This permits simple and cost saving installation on site. All tubes are helium leak-tested with a sensitivity of 10E -9 mbar 1/sec. Following the leak test, the vacuum space is pumped down to the operation vacuum level and properly sealed. The vacuum integrity is guaranteed as a result of the high degree of cleanliness observed during production and from the use of a specially selected better material inside the vacuum space. Disadvantage: pressure is limited to 20 bar. To fulfil all rules of the reactor safety, different tests have to be done. Because of the longitudinal weld of the corrugated tube, a bursting test of different sizes gives the best information of the liability of this kind of tube. It can be shown that the bursting pressure of such a tube is more than 5 times higher than the max. working pressure

  2. Role of Bénard-Marangoni instabilities during solvent evaporation in polymer surface corrugations.

    Science.gov (United States)

    Bassou, N; Rharbi, Y

    2009-01-06

    Film formation through the drying of polymer solutions is a widely used process in laboratories and in many industrial applications such as coatings. One of the main goals of these applications is to control the film surface morphology. In many cases, evaporation has been found to yield corrugated patterns on the free surface of films. This has been interpreted in terms of either mechanical or hydrodynamic instabilities. In this article, we present experimental results where mesoscale 2D well-ordered surface corrugation patterns are formed during solvent evaporation from polystyrene/toluene solutions. The transformation of Benard-Marangoni instabilities into surface corrugation is studied during the entire drying process using particle tracking, 3D morphology analyses, etc. We show that the corrugation wavelength is controlled by the Benard-Marangoni instability, whereas the corrugation amplitude is controlled by a mechanism that involves a high evaporation rate.

  3. Hard rock excavation at the CSM/OCRD test site using crater theory and current United States controlled smooth wall blasting practices, June 1982

    International Nuclear Information System (INIS)

    Sperry, P.E.; Chitombo, G.P.; Hustrulid, W.A.

    1984-08-01

    This report is the fourth in a series describing experiments conducted by the Colorado School of Mines for the Office of Crystalline Repository Development (OCRD) to determine the extent of blast damage in rock surrounding an underground opening. The report describes the application of tunnel design procedures based upon crater theory and current United States controlled smooth wall blasting practices for the excavation of the CSM/OCRD test room in the Colorado School of Mines, Experimental Mine (Edgar Mine) in Idaho Springs, Colorado. Ten blast rounds were used to excavate the test room. The first seven rounds were designed with Swedish Techniques, and described in the third report in this series, and the design of rounds eight through ten used crater theory. Crater theory is described in this document along with its application to the CSM/OCRD Room excavation. Calculation for spacing, burden, number and type of holes, explosives placement, and overall powder factor are discussed. A series of single charge cratering test shots, designed to evaluate some of the input data for the blast designs, are discussed. The input data include: Strain Energy Factor E, a dimensionless factor which varies according to the explosive and rock type; Critical Depth, N, the charge depth at which the explosive begins to fracture rock at the free face; Optimum Depth Ratio Δ 0 , which is a ratio between Optimum Charge Depth, d 0 , and Critical Charge Depth, d/sub c/; and charge Weight, W. A non-linear least squared regression method to best fit the general bell-shape curve of the crater results is discussed. Both scaled weight and scaled volume criteria are reported in the analysis of results. 10 references, 17 figures, 16 tables

  4. EXPERIMENTAL INVESTIGATION OF THE CONVECTIVE HEAT TRANSFER IN A SPIRALLY COILED CORRUGATED TUBE WITH RADIANT HEATING

    Directory of Open Access Journals (Sweden)

    Milan Đorđević

    2017-12-01

    Full Text Available The Archimedean spiral coil made of a transversely corrugated tube was exposed to radiant heating in order to represent a heat absorber of the parabolic dish solar concentrator. The main advantage of the considered innovative design solution is a coupling effect of the two passive methods for heat transfer enhancement - coiling of the flow channel and changes in surface roughness. The curvature ratio of the spiral coil varies from 0.029 to 0.234, while water and a mixture of propylene glycol and water are used as heat transfer fluids. The unique focus of this study is on specific boundary conditions since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but in the axial direction as well. Instrumentation of the laboratory model of the heat absorber mounted in the radiation field includes measurement of inlet fluid flow rate, pressure drop, inlet and outlet fluid temperature and 35 type K thermocouples welded to the coil surface. A thermal analysis of the experimentally obtained data implies taking into consideration the externally applied radiation field, convective and radiative heat losses, conduction through the tube wall and convection to the internal fluid. The experimental results have shown significant enhancement of the heat transfer rate compared to spirally coiled smooth tubes, up to 240% in the turbulent flow regime.

  5. Flow around a corrugated wing over the range of dragonfly flight

    Science.gov (United States)

    Padinjattayil, Sooraj; Agrawal, Amit

    2017-11-01

    The dragonfly flight is very much affected by the corrugations on their wings. A PIV based study is conducted on a rigid corrugated wing for a range of Reynolds number 300-12000 and three different angles of attack (5°-15°) to understand the mechanism of dragonfly flight better. The study revealed that the shape of the corrugation plays a key role in generating vortices. The vortices trapped in the valleys of corrugation dictates the shape of a virtual airfoil around the corrugated wing. A fluid roller bearing effect is created over the virtual airfoil when the trapped vortices merge with each other. A travelling wave produced by the moving virtual boundary around the fluid roller bearings avoids the formation of boundary layer on the virtual surface, thereby leading to high aerodynamic performance. It is found that the lift coefficient increases as the number of vortices increases on the suction surface. Also, it is shown that the partially merged co- rotating vortices give higher lift as compared to fully merged vortices. Further, the virtual airfoil formed around the corrugated wing is compared with a superhydrophobic airfoil which exhibits slip on its surface; several similarities in their flow characteristics are observed. The corrugated airfoil performs superior to the superhydrophobic airfoil in the aerodynamic efficiency due to the virtual slip caused by the travelling wave.

  6. Modeling noncontact atomic force microscopy resolution on corrugated surfaces

    Directory of Open Access Journals (Sweden)

    Kristen M. Burson

    2012-03-01

    Full Text Available Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough surfaces, with amorphous SiO2 as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid. The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.

  7. Thin polymer films on chemically patterned, corrugated substrates

    International Nuclear Information System (INIS)

    Geoghegan, Mark; Wang Chun; Rehse, Nicolaus; Magerle, Robert; Krausch, Georg

    2005-01-01

    We study the effect of a chemical pattern on the wetting and dewetting behaviour of thin polystyrene (PS) films on regularly corrugated silicon substrates. Our results reveal that the film preparation, annealing method, and confinement play a critical role in the final film structure. On evaporating gold on both sides of the facets (such that it covered the crests of the facets, and not the troughs), we observed dewetting, which proceeded to the gold, demonstrating an enthalpic effect contrary to the outcome previously observed when gold was only evaporated on one side of the facet. We also coated the substrate with octadecyltrichlorosilane (OTS); this led to a gold and OTS striped structure. PS films several nanometres thick dewet such substrates, with a preferential direction for dewetting in the direction of the stripes forming droplets of a considerably larger size than the stripes

  8. Numerical investigation of the aerodynamic and structural characteristics of a corrugated wing

    Science.gov (United States)

    Hord, Kyle

    Previous experimental studies on static, bio-inspired corrugated wings have shown that they produce favorable aerodynamic properties such as delayed stall compared to streamlined wings and flat plates at high Reynolds numbers (Re ≥ 4x104). The majority of studies have been carried out with scaled models of dragonfly forewings from the Aeshna Cyanea in either wind tunnels or water channels. In this thesis, the aerodynamics of a corrugated airfoil was studied using computational fluid dynamics methods at a low Reynolds number of 1000. Structural analysis was also performed using the commercial software SolidWorks 2009. The flow field is described by solving the incompressible Navier-Stokes equations on an overlapping grid using the pressure-Poisson method. The equations are discretized in space with second-order accurate central differences. Time integration is achieved through the second-order Crank-Nicolson implicit method. The complex vortex structures that form in the corrugated airfoil valleys and around the corrugated airfoil are studied in detail. Comparisons are made with experimental measurements from corrugated wings and also with simulations of a flat plate. Contrary to the studies at high Reynolds numbers, our study shows that at low Reynolds numbers the wing corrugation does not provide any aerodynamic benefit compared to a smoothed flat plate. Instead, the corrugated profile generates more pressure drag which is only partially offset by the reduction of friction drag, leading to more total drag than the flat plate. Structural analysis shows that the wing corrugation can increase the resistance to bending moments on the wing structure. A smoothed structure has to be three times thicker to provide the same stiffness. It was concluded the corrugated wing has the structural benefit to provide the same resistance to bending moments with a much reduced weight.

  9. Geometrical properties of turbulent premixed flames and other corrugated interfaces

    Science.gov (United States)

    Thiesset, F.; Maurice, G.; Halter, F.; Mazellier, N.; Chauveau, C.; Gökalp, I.

    2016-01-01

    This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique. Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity, irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious. It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar

  10. Numerical Investigation of the Fully-Developed Periodic Flow Field for Optimal Heat Transfer in Spirally Corrugated Tubes

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Condra, Thomas Joseph; Sørensen, Kim

    Even though the corrugated tube is a widely used technique to enhance transfer heat, the exact heat transfer enhancing mechanism remains relatively un-documented. Most studies attribute the favourable heat transfer characteristics to a swirling flow being present at higher corrugation....... In this study, a systematic approach relying on Computational Fluid Dynamics (CFD) is used to study and compare the heat transfer characteristics with the detailed flow field in the spirally corrugated tubes. By comparing the flow in 12 different spirally corrugated tubes at a fixed Reynolds number of 5000......, this study compares the flow field with the surface averaged Nusselt number to gain valuable insight into which flow phenomena causes favourable heat transfer characteristics. While the flow at low corrugations approximates the non-corrugated tube, higher corrugations of h/D creates a significant tangential...

  11. Application of the method of integral equations to calculating the electrodynamic characteristics of periodically corrugated waveguides

    International Nuclear Information System (INIS)

    Belov, V.E.; Rodygin, L.V.; Fil'chenko, S.E.; Yunakovskii, A.D.

    1988-01-01

    A method is described for calculating the electrodynamic characteristics of periodically corrugated waveguide systems. This method is based on representing the field as the solution of the Helmholtz vector equation in the form of a simple layer potential, transformed with the use of the Floquet conditions. Systems of compound integral equations based on a weighted vector function of the simple layer potential are derived for waveguides with azimuthally symmetric and helical corrugations. A numerical realization of the Fourier method is cited for seeking the dispersion relation of azimuthally symmetric waves of a circular corrugated waveguide

  12. A corrugated perfect magnetic conductor surface supporting spoof surface magnon polaritons.

    Science.gov (United States)

    Liu, Liang-liang; Li, Zhuo; Gu, Chang-qing; Ning, Ping-ping; Xu, Bing-zheng; Niu, Zhen-yi; Zhao, Yong-jiu

    2014-05-05

    In this paper, we demonstrate that spoof surface magnon polaritons (SSMPs) can propagate along a corrugated perfect magnetic conductor (PMC) surface. From duality theorem, the existence of surface electromagnetic modes on corrugated PMC surfaces are manifest to be transverse electric (TE) mode compared with the transverse magnetic (TM) mode of spoof surface plasmon plaritons (SSPPs) excited on corrugated perfect electric conductor surfaces. Theoretical deduction through modal expansion method and simulation results clearly verify that SSMPs share the same dispersion relationship with the SSPPs. It is worth noting that this metamaterial will have more similar properties and potential applications as the SSPPs in large number of areas.

  13. Thin-walled beam tubes for the SIS. Construction and manufacturing

    International Nuclear Information System (INIS)

    Malwitz, E.

    1985-06-01

    The vacuum system of the SIS consists essentially of torus-shaped vacuum chamber with an annulus-circumference of 216 m which is composed by several beam-tube and chamber elements. In order to reach the desired final pressure of -11 mbar (5 . 10 -9 Pa) a heating of the whole vacuum system to 300 0 C is required. The beam tubes within magnets have regularly an elliptic tube cross section. Within bending magnets the beam tubes are curved in a plane through the large ellipse axis with a bending radius of 10 m. During the development work for the beam tubes within magnets to construction variants were studied until construction maturity. Generally thin-walled beam tubes with elliptic tube cross section are fabricated similarly to spring bellows as corrugated tubes. In this report however beam tubes with elliptic tube cross section are discussed the tube walls of which are smooth and stabilized against the atmospheric pressure by hard-soldered ribs. The report reproduces mainly the most important know how respectively serves as instruction for new constructions. Such beam tubes are planned for the dipole magnets and the quadrupole group consisting of two long quadrupoles, a short quadrupole, and a sextupole. (orig./HSI) [de

  14. Modeling of the plastic flow kinematics in the forming process of the lightweight flange corrugation

    Directory of Open Access Journals (Sweden)

    I. V. Fomenko

    2012-01-01

    Full Text Available The determination of the forming maximum possibilities of the flange corrugation by stretching with a free movement of the billets end in the rigid sectional matrices detachable by the flexible filler.

  15. Atom chips in the real world: the effects of wire corrugation

    Science.gov (United States)

    Schumm, T.; Estève, J.; Figl, C.; Trebbia, J.-B.; Aussibal, C.; Nguyen, H.; Mailly, D.; Bouchoule, I.; Westbrook, C. I.; Aspect, A.

    2005-02-01

    We present a detailed model describing the effects of wire corrugation on the trapping potential experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the current distribution due to corrugation and then derive the corresponding roughness in the magnetic field above the wire. Scaling laws are derived for the roughness as a function of height above a ribbon shaped wire. We also present experimental data on micro wire traps using cold atoms which complement some previously published measurements [CITE] and which demonstrate that wire corrugation can satisfactorily explain our observations of atom cloud fragmentation above electroplated gold wires. Finally, we present measurements of the corrugation of new wires fabricated by electron beam lithography and evaporation of gold. These wires appear to be substantially smoother than electroplated wires.

  16. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    Science.gov (United States)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  17. Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber

    OpenAIRE

    S. P. Sharma; Som Nath Saha

    2017-01-01

    This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heate...

  18. Numerical analysis of sandwich beam with corrugated core under three-point bending

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbeck, Leszek [Poznan University of Technology, Institute of Mathematics Piotrowo Street No. 5, 60-965 Poznan (Poland); Grygorowicz, Magdalena; Paczos, Piotr [Poznan University of Technology, Institute of Applied Mechanics Jana Pawla IIStreet No. 24, 60-965 Poznan (Poland)

    2015-03-10

    The strength problem of sandwich beam with corrugated core under three-point bending is presented.The beam are made of steel and formed by three mutually orthogonal corrugated layers. The finite element analysis (FEA) of the sandwich beam is performed with the use of the FEM system - ABAQUS. The relationship between the applied load and deflection in three-point bending is considered.

  19. Atom chips in the real world: the effects of wire corrugation

    OpenAIRE

    Schumm , Thorsten; Estève , Jérôme; Aussibal , Christine; Figl , Cristina; Trebbia , Jean-Baptiste; Nguyen , Hai; Mailly , Dominique; Bouchoule , Isabelle; Westbrook , Christoph I; Aspect , Alain

    2005-01-01

    International audience; We present a detailed model describing the effects of wire corrugation on the trapping potential experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the current distribution due to corrugation and then derive the corresponding roughness in the magnetic field above the wire. Scaling laws are derived for the roughness as a function of height above a ribbon shaped wire. We also present experimental data on micro wire traps u...

  20. Numerical and Experimental Investigations on Mechanical Behavior of Composite Corrugated Core

    Science.gov (United States)

    Dayyani, Iman; Ziaei-Rad, Saeed; Salehi, Hamid

    2012-06-01

    Tensile and flexural characteristics of corrugated laminate panels were studied using numerical and analytical methods and compared with experimental data. Prepreg laminates of glass fiber plain woven cloth were hand-laid by use of a heat gun to ease the creation of the panel. The corrugated panels were then manufactured by using a trapezoidal machined aluminium mould. First, a series of simple tension tests were performed on standard samples to evaluate the material characteristics. Next, the corrugated panels were subjected to tensile and three-point bending tests. The force-displacement graphs were recorded. Numerical and analytical solutions were proposed to simulate the mechanical behavior of the panels. In order to model the energy dissipation due to delamination phenomenon observed in tensile tests in all members of corrugated core, plastic behavior was assigned to the whole geometry, not only to the corner regions. Contrary to the literature, it is shown that the three-stage mechanical behavior of composite corrugated core is not confined to aramid reinforced corrugated laminates and can be observed in other types such as fiber glass. The results reveal that the mechanical behavior of the core in tension is sensitive to the variation of core height. In addition, for the first time, the behavior of composite corrugated core was studied and verified in bending. Finally, the analytical and numerical results were validated by comparing them with experimental data. A good degree of correlation was observed which showed the suitability of the finite element model for predicting the mechanical behavior of corrugated laminate panels.

  1. Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results

    Science.gov (United States)

    Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.

    1999-01-01

    The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.

  2. Corrugator Activity Confirms Immediate Negative Affect in Surprise

    Directory of Open Access Journals (Sweden)

    Sascha eTopolinski

    2015-02-01

    Full Text Available The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for these consequences. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by suprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low suprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect and frontalis (cultural surprise expression activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes.

  3. Waste paper recycling opportunities for government action. Vol. 4, corrugated waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.; Love, P.

    1978-01-01

    This study analyzes current and expected corrugated waste market conditions in Canada, with the objective of identifying government initiatives which could permanently increase recovery levels. Short-term, practical measures are featured. National and regional demand, generation and recovery levels are examined, along with imports and exports to the USA. Over 70% of corrugated waste is consumed in Ontario and Quebec, and most of this waste is generated in those two provinces. Average recovery rates in most major urban areas are estimated at 30-40%. Future demand, generation, and recovery are estimated, and it is suggested that there will be enough domestic demand to permit reclamation of nearly 35% of Canada's total corrugated wastes. This potential level is not expected to change significantly, and new demand opportunities appear minimal. Examination of the potential for future imports from the USA indicates that availability will tighten over the medium term, necessitating a search for new corrugated waste supply sources. Possible sources include supermakets, retail chains and large assembly manufacturing establishments; one of the most promising of these sources is shopping malls, and a study is appended which examines the feasibility of a corrugated waste source separation program within a hypothetical mall. Possible government actions are outlined to improve reclamation and recycling of corrugated waste in Canada, including the improvement of local recovery capabilities in British Columbia, Ontario and Quebec, and the reduction of freight costs for moving corrugated waste from low-recovery areas to high-demand areas. 26 refs., 9 figs., 31 tabs.

  4. Standard hardness conversion tables for metals relationship among brinell hardness, vickers hardness, rockwell hardness, superficial hardness, knoop hardness, and scleroscope hardness

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 Conversion Table 1 presents data in the Rockwell C hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.2 Conversion Table 2 presents data in the Rockwell B hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.3 Conversion Table 3 presents data on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, and Knoop hardness of nickel and high-nickel alloys (nickel content o...

  5. Hard coatings

    International Nuclear Information System (INIS)

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  6. Efficiency enhancement of flexible OLEDs by using nano-corrugated substrates and conformal Ag transparent anodes

    Science.gov (United States)

    Wang, Li; Luo, Yu; Feng, Xueming; Pei, Yuechen; Lu, Bingheng; Cheng, Shenggui

    2018-05-01

    In flexible OLEDs (FOLEDs), the traditional ITO anode has disadvantages such as refractive-index mismatches among substrate and other functional layers, leads to light loss of nearly 80%, meanwhile, its brittle nature and lack in raw materials hinder its further applications. We investigated an efficient FOLED using a semi-transparent silver (Ag) anode, whereas the device was built on a nano-corrugated flexible polycarbonate (PC) substrate prepared by thermal nanoimprint lithography. The corrugations were well preserved on each layer of the device, both the micro-cavity effect and surface plasmon polariton (SPP) modes of light loss were effectively suppressed. As a result, the current efficiency of the FOLED using a conformal corrugated Ag anode enhanced by 100% compared with a planar Ag anode device, and enhanced by 13% with conventional ITO device. In addition, owing to the quasi-periodical arrangements of the corrugations, the device achieved broad spectra and Lambertian angular emission. The Ag anode significantly improved the bending properties of the OLED as compared to the conventional ITO device, leading to a longer lifetime in practical use. The proposed manufacturing strategy will be useful for fabricating nano corrugations on plastic substrate of FOLED in a cost-effective and convenient manner.

  7. Constructive fire protection of steel corrugated beams of buildings and other structures

    Directory of Open Access Journals (Sweden)

    Ilyin Nikolay

    2017-01-01

    Full Text Available The research introduces a methodology of establishing indicators of fire safety of a building in relation to a guaranteed duration of steel fire-proof corrugated beams resistance in conditions of standard fire tests. Indicators of fire safety are also established in the assessment of design limits of steel fire-proof corrugated beams during design process, construction or maintenance of the building as well as in reducing economic costs when testing steel structures for fire resisting property. The suggested methodology introduces the system of actions aimed to design constructive fire protection of steel corrugated beams of buildings. Technological effect is achieved by conducting firing tests of steel construction by non-destructive methods; the evaluation of fire resistance of fire-proof elements of corrugated beams (corrugated web, upper and lower shelves is identified by the least fire-proof element of a welded I-beam. In this methodology fire resistance duration of the constituent elements of a welded I-beam with account of its fire protection ability is described with an analytic function taken as variables. These variables are intensity strength of stresses and the degree of fire protection of a compound element.

  8. Efficiency enhancement of flexible OLEDs by using nano-corrugated substrates and conformal Ag transparent anodes

    Directory of Open Access Journals (Sweden)

    Li Wang

    2018-05-01

    Full Text Available In flexible OLEDs (FOLEDs, the traditional ITO anode has disadvantages such as refractive-index mismatches among substrate and other functional layers, leads to light loss of nearly 80%, meanwhile, its brittle nature and lack in raw materials hinder its further applications. We investigated an efficient FOLED using a semi-transparent silver (Ag anode, whereas the device was built on a nano-corrugated flexible polycarbonate (PC substrate prepared by thermal nanoimprint lithography. The corrugations were well preserved on each layer of the device, both the micro-cavity effect and surface plasmon polariton (SPP modes of light loss were effectively suppressed. As a result, the current efficiency of the FOLED using a conformal corrugated Ag anode enhanced by 100% compared with a planar Ag anode device, and enhanced by 13% with conventional ITO device. In addition, owing to the quasi-periodical arrangements of the corrugations, the device achieved broad spectra and Lambertian angular emission. The Ag anode significantly improved the bending properties of the OLED as compared to the conventional ITO device, leading to a longer lifetime in practical use. The proposed manufacturing strategy will be useful for fabricating nano corrugations on plastic substrate of FOLED in a cost-effective and convenient manner.

  9. Experimental study on the heat transfer characteristics in corrugated and flat plate type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hun; Jeong, Yong Ki; Jeon, Chung Hwan; Chang, Young June [Busan National Univ., Busan (Korea, Republic of); Lim, Hyeok [DHT, Busan (Korea, Republic of)

    2003-07-01

    An experiment was performed to study heat transfer characteristics between corrugated heat exchanger and flat plate type one. While heat capacity(13.86kW) was provided constantly and the flow speed was varied from 2.8 to 17.9m/s, the temperature and the pressure drop were measured. Furthermore, heat transfer coefficient, Colburn factor and Nusselt number were calculated using them. With increase of the flow speed for both exchangers, the coefficient and the pressure drop increased, but Colburn factor decreased. The coefficient, pressure drop and Colburn factor of the corrugated type were all higher than those of the flat one, which is due to the flow interruption with recirculation and reattachment of the corrugated type. The empirical correlations of Nusselt number were suggested for the tested two heat exchangers.

  10. Effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2017-01-01

    Full Text Available Sandwich structure is an attractive alternative that increasingly used in the transportation and aerospace industry. Corrugated-core with trapezoidal shape allows enhancing the damage resistance to the sandwich structure, but on the other hand, it changes the structural response of the sandwich structure. The aim of this paper is to study the effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure under compression loading. The corrugated-core specimen was fabricated using press technique, following the shape of trapezoidal shape. Two different materials were used in the study, glass fibre reinforced plastic (GFRP and carbon fibre reinforced plastic (CFRP. The result shows that the mechanical properties of the core in compression loading are sensitive to the variation of a number of unit cells and the core thickness.

  11. A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals

    Science.gov (United States)

    Zhang, Lu; Fan, Ya-Xian; Liu, Huan; Han, Xu; Lu, Wen-Qiang; Tao, Zhi-Yong

    2018-04-01

    A magnetically tunable, non-Bragg defect mode (NBDM) was created in the terahertz frequency range by inserting a defect in the middle of a periodically corrugated waveguide filled with liquid crystals (LCs). In the periodic waveguide, non-Bragg gaps beyond the Bragg ones, which appear in the transmission spectra, are created by different transverse mode resonances. The transmission spectra of the waveguide containing a defect showed that a defect mode was present inside the non-Bragg gap. The NBDM has quite different features compared to the Bragg defect mode, which includes more complex, high-order guided wave modes. In our study, we filled the corrugated waveguide with LCs to realize the tunability of the NBDM. The simulated results showed that the NBDM in a corrugated waveguide filled with LCs can be used in filters, sensors, switches, and other terahertz integrated devices.

  12. [Progressive damage monitoring of corrugated composite skins by the FBG spectral characteristics].

    Science.gov (United States)

    Zhang, Yong; Wang, Bang-Feng; Lu, Ji-Yun; Gu, Li-Li; Su, Yong-Gang

    2014-03-01

    In the present paper, a method of monitoring progressive damage of composite structures by non-uniform fiber Bragg grating (FBG) reflection spectrum is proposed. Due to the finite element analysis of corrugated composite skins specimens, the failure process under tensile load and corresponding critical failure loads of corrugated composite skin was predicated. Then, the non-uniform reflection spectrum of FBG sensor could be reconstructed and the corresponding relationship between layer failure order sequence of corrugated composite skin and FBG sensor reflection spectrums was acquired. A monitoring system based on FBG non-uniform reflection spectrum, which can be used to monitor progressive damage of corrugated composite skins, was built. The corrugated composite skins were stretched under this FBG non-uniform reflection spectrum monitoring system. The results indicate that real-time spectrums acquired by FBG non-uniform reflection spectrum monitoring system show the same trend with the reconstruction reflection spectrums. The maximum error between the corresponding failure and the predictive value is 8.6%, which proves the feasibility of using FBG sensor to monitor progressive damage of corrugated composite skin. In this method, the real-time changes in the FBG non-uniform reflection spectrum within the scope of failure were acquired through the way of monitoring and predicating, and at the same time, the progressive damage extent and layer failure sequence of corru- gated composite skin was estimated, and without destroying the structure of the specimen, the method is easy and simple to operate. The measurement and transmission section of the system are completely composed of optical fiber, which provides new ideas and experimental reference for the field of dynamic monitoring of smart skin.

  13. Comparison of heat transfer in straight and corrugated minichannels with two-phase flow

    Directory of Open Access Journals (Sweden)

    Peukert P.

    2014-03-01

    Full Text Available Measurements of heat transfer rates performed with an experimental condensation heat exchanger are reported for a corrugated minichannel tube and for a straight minichannel tube. The two cases were compared at same flow regimes. The corrugation appears advantageous for relatively low steam pressures and flow rates where much higher heat transfer rates were observed close to the steam entrance, thus allowing shortening the heat exchanger with the associated advantages of costs lowering and smaller built-up space. At high steam pressures and high flow rates both tubes performed similarly.

  14. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    International Nuclear Information System (INIS)

    Liu, X. L.; Zhang, Z. M.

    2014-01-01

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  15. Squeezed-light generation in a nonlinear planar waveguide with a periodic corrugation

    International Nuclear Information System (INIS)

    Perina, Jan Jr.; Haderka, Ondrej; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael

    2007-01-01

    Two-mode nonlinear interaction (second-harmonic and second-subharmonic generation) in a planar waveguide with a small periodic corrugation at the surface is studied. Scattering of the interacting fields on the corrugation leads to constructive interference that enhances the nonlinear process provided that all the interactions are phase matched. Conditions for the overall phase matching are found. Compared with a perfectly quasi-phase-matched waveguide, better values of squeezing as well as higher intensities are reached under these conditions. Procedure for finding optimum values of parameters for squeezed-light generation is described

  16. Monotron and azimuthally corrugated: application to the high power microwaves generation

    International Nuclear Information System (INIS)

    Castro, Pedro Jose de

    2003-01-01

    The present document reports the activity of construction and initial operation of 6.7 GHz operation for high power microwave generation, the study on cylindrical resonators with azimuthally corrugated cross section, the determination of electrical conductivity of metallic materials and development of dielectric resonators for telecommunication applications

  17. Hydraulic and thermal behaviour of a corrugated plane canal. Application to plate-based heat exchangers

    International Nuclear Information System (INIS)

    Amblard, Alain

    1986-01-01

    As corrugations are often used in heat exchangers in order to promote heat exchange mechanisms through a reduction of boundary layer thickness, an increase of turbulence within the boundary layer, and an increase of exchange surface, the objectives of this research thesis are, on the one hand, to determine the influence of corrugation geometry on heat exchange and friction laws, and, on the other hand, to develop a computing software to describe the flow and heat exchange in the elementary canal. This study is limited to the case of single-phase forced convection in water. After a bibliographical overview on the hydraulic and thermal behaviour of corrugated surfaces used in heat exchangers, the author presents the different studied geometries, and the experimental installation used to determine the friction and exchange coefficient in a vertical duct formed by two corrugated plates. Experimental results are presented and compared with respect to the shape of exchange surfaces. The author then reports the use of two-dimensional code used to describe the flow in an exchanger duct [fr

  18. Pressure drop and stability of flow in Archimedean spiral tube with transverse corrugations

    Directory of Open Access Journals (Sweden)

    Đorđević Milan

    2016-01-01

    Full Text Available Isothermal pressure drop experiments were carried out for the steady Newtonian fluid flow in Archimedean spiral tube with transverse corrugations. Pressure drop correlations and stability criteria for distinguishing the flow regimes have been obtained in a continuous Reynolds number range from 150 to 15 000. The characterizing geometrical groups which take into account all the geometrical parameters of Archimedean spiral and corrugated pipe has been acquired. Before performing experiments over the Archimedean spiral, the corrugated straight pipe having high relative roughness e/d = 0.129 of approximately sinusoidal type was tested in order to obtain correlations for the Darcy friction factor. Insight into the magnitude of pressure loss in the proposed geometry of spiral solar receiver for different flow rates is important because of its effect upon the efficiency of the receiver. Although flow in spiral and corrugated geometries has the advantages of compactness and high heat transfer rates, the disadvantage of greater pressure drops makes hydrodynamic studies relevant. [Projekat Ministarstva nauke Republike Srbije, br. III 42006 i br. TR 33015

  19. Quantifying wave propagation over a corrugated metal using 5 dBi antennas

    CSIR Research Space (South Africa)

    Nkosi, MC

    2015-09-01

    Full Text Available corrugated metal of a shipping container and also in a free space. The free space measurement is used as a reference point to study the influence of the metal on the wave propagation. The transmission coefficient measured over the shipping container...

  20. Design of Ultra-Wideband Tapered Slot Antenna by Using Binomial Transformer with Corrugation

    Science.gov (United States)

    Chareonsiri, Yosita; Thaiwirot, Wanwisa; Akkaraekthalin, Prayoot

    2017-05-01

    In this paper, the tapered slot antenna (TSA) with corrugation is proposed for UWB applications. The multi-section binomial transformer is used to design taper profile of the proposed TSA that does not involve using time consuming optimization. A step-by-step procedure for synthesis of the step impedance values related with step slot widths of taper profile is presented. The smooth taper can be achieved by fitting the smoothing curve to the entire step slot. The design of TSA based on this method yields results with a quite flat gain and wide impedance bandwidth covering UWB spectrum from 3.1 GHz to 10.6 GHz. To further improve the radiation characteristics, the corrugation is added on the both edges of the proposed TSA. The effects of different corrugation shapes on the improvement of antenna gain and front-to-back ratio (F-to-B ratio) are investigated. To demonstrate the validity of the design, the prototypes of TSA without and with corrugation are fabricated and measured. The results show good agreement between simulation and measurement.

  1. Measurement with corrugated tubes of early-age autogenous shrinkage of cement-based material

    DEFF Research Database (Denmark)

    Tian, Qian; Jensen, Ole Mejlhede

    2009-01-01

    The use of a special corrugated mould enables transformation of volume strain into horizontal, linear strain measurement in the fluid stage. This allows continuous measurement of the autogenous shrinkage of cement-based materials since casting, and also effectively eliminates unwanted influence...

  2. Design and Realization Aspects of 1-THz Cascade Backward Wave Amplifier Based on Double Corrugated Waveguide

    DEFF Research Database (Denmark)

    Paoloni, Claudio; Di Carlo, Aldo; Bouamrane, Fayçal

    2013-01-01

    The design and fabrication challenges in the first ever attempt to realize a 1-THz vacuum tube amplifier are described. Implementation of innovative solutions including a slow-wave structure in the form of a double corrugated waveguide, lateral tapered input and output couplers, deep X-ray LIGA f...

  3. Self-standing corrugated Ag and Au-nanorods for plasmonic applications

    DEFF Research Database (Denmark)

    Habouti, S.; Mátéfi-Tempfli, M.; Solterbeck, C.-H.

    2011-01-01

    We use home-made Si-supported anodized alumina thin film templates for the electrodeposition of large area self-standing Ag- and Au-nanorod (Au-NR) arrays. The deposition conditions chosen, i.e. electrolyte composition and deposition voltage, lead to a corrugated rod morphology, particularly for Au...

  4. Squeezing Molecularly thin Lubricant Films between curved Corrugated Surfaces with long range Elasticity

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    2010-01-01

    3H8, C4H10, C8H18, C9H20, C10H22, C14H30 and C16H34, confined between corrugated gold surfaces. Well defined molecular layers develop in the lubricant film when the width is of the order of a few atomic diameters. An external squeezing pressure induces discontinuous, thermally activated changes...

  5. Corrugation in the nitrogen-graphite potential probed by inelastic neutron scattering

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Frank, V. L. P.; Taub, H.

    1990-01-01

    -center energy gap of ∼0.4 THz in the acoustic-phonon branches is a factor of 2 larger than calculated from central atom-atom potentials. We conclude that current models of the corrugation in the adatom substrate potential greatly underestimate the lateral restoring forces in this relatively simple molecular...

  6. Study of turbulent flows loaded with particles. Application to the particulate fouling of corrugated plate heat exchangers

    International Nuclear Information System (INIS)

    Kouidri, Frederic

    1997-01-01

    This work is a numerical and experimental study of the behaviour of a turbulent flow loaded with solid particles. It involves the particulate fouling of plate heat exchangers used in industrial field. Visual observation and LDA measurements inside a mock-up show the presence of large coherent vortices and confirm the tight link between particulate deposition and flow field. The vortices participate to the creation of preferential areas where the particles are in contact with the wall, and they shape the deposit according to a precise mechanism. Two processes of deposit removal have also been shown. Hydraulic phenomena and particles behaviours pointed out in the experiment are compared to different typical samples in a bibliographic survey. The use of the a software for computational fluid dynamics (TRIO developed at the Commissariat a l'Energie Atomique) completed the experimental results by predicting the particles behaviour into the turbulent flow. The approach is based on a connection between a pseudo-direct simulation of the turbulent flow and a Lagrangian model for particles paths. The results show good agreements, qualitatively speaking, between numerical predictions and experimental measurement. The arrangement of the deposit onto the corrugated surface is globally well described by numerical simulation. The influence of some parameters on deposition process such as the flow (corresponding to Re=5000 or Re=10000), the horizontal or vertical position of the channel or the particles diameter (d p =100 μm or d p =25 μm) has been studied. (author) [fr

  7. Numerical study on the flow and heat transfer characteristics of slush nitrogen in a corrugated pipe

    Science.gov (United States)

    Li, Y. J.; Wu, S. Q.; Jin, T.

    2017-12-01

    Slush nitrogen has lower temperature, higher density and higher heat capacity than that of liquid nitrogen at normal boiling point. It is considered to be a potential coolant for high-temperature superconductive cables (HTS) that would decrease nitrogen consumption and storage cost. The corrugated pipe can help with the enhancement of heat transfer and flexibility of the coolants for HTS cables. In this paper, a 3-D Euler-Euler two-fluid model has been developed to study the flow and heat transfer characteristics of slush nitrogen in a horizontal helically corrugated pipe. By comparing with the empirical formula for pressure drop, the numerical model is confirmed to be effective for the prediction of slush nitrogen flow in corrugated pipes. The flow and heat transfer characteristics of slush nitrogen in a horizontal pipe at various working conditions (inlet solid fraction of 0-20%, inlet velocity of 0-3 m/s, heat flux of 0-12 kW/m2) have been analyzed. The friction factor of slush nitrogen is lower than that of subcooled liquid nitrogen when the slush Reynolds number is higher than 4.2×104. Moreover, the heat transfer coefficient of slush nitrogen flow in the corrugated pipe is higher than that of subcooled liquid nitrogen at velocities which is higher than that 1.76 m/s, 0.91 m/s and 0.55 m/s for slush nitrogen with solid fraction of 5%, 10% and 20%, respectively. The slush nitrogen has been confirmed to have better heat transfer performance and lower pressure drop instead of using liquid nitrogen flowing through a helically corrugated pipe.

  8. Research on a 170 GHz, 2 MW coaxial cavity gyrotron with inner-outer corrugation

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shenyong, E-mail: houshenyong@sohu.com [Yangtze Normal University, Chongqing, 408001 (China); Yu, Sheng; Li, Hongfu [University of Electronics Science and Technology of China, Chengdu 610054 (China)

    2015-03-15

    In this paper, a coaxial cavity gyrotron with inner-outer corrugation is researched. The electron kineto-equations and the first order transmission line equations of the gyrotron are derived from Lorentz force equation and the transmission line theory, respectively. And then, a 2 MW, 170 GHz coaxial cavity gyrotron with inner-outer corrugation is designed. By means of numerical calculation, the beam-wave interaction of the coaxial cavity gyrotron with inner-outer corrugation is investigated. Results show that the efficient and the outpower of the gyrotron are 42.3% and 2.38 MW, respectively.

  9. Simulations of water nano-confined between corrugated planes

    Science.gov (United States)

    Zubeltzu, Jon; Artacho, Emilio

    2017-11-01

    Water confined to nanoscale widths in two dimensions between ideal planar walls has been the subject of ample study, aiming at understanding the intrinsic response of water to confinement, avoiding the consideration of the chemistry of actual confining materials. In this work, we study the response of such nanoconfined water to the imposition of a periodicity in the confinement by means of computer simulations, both using empirical potentials and from first-principles. For that we propose a periodic confining potential emulating the atomistic oscillation of the confining walls, which allows varying the lattice parameter and amplitude of the oscillation. We do it for a triangular lattice, with several values of the lattice parameter: one which is ideal for commensuration with layers of Ih ice and other values that would correspond to more realistic substrates. For the former, the phase diagram shows an overall rise of the melting temperature. The liquid maintains a bi-layer triangular structure, however, despite the fact that it is not favoured by the external periodicity. The first-principles liquid is significantly affected by the modulation in its layering and stacking even at relatively small amplitudes of the confinement modulation. Beyond some critical modulation amplitude, the hexatic phase present in flat confinement is replaced by a trilayer crystalline phase unlike any of the phases encountered for flat confinement. For more realistic lattice parameters, the liquid does not display higher tendency to freeze, but it clearly shows inhomogeneous behaviour as the strength of the rugosity increases. In spite of this expected inhomogeneity, the structural and dynamical response of the liquid is surprisingly insensitive to the external modulation. Although the first-principles calculations give a more triangular liquid than the one observed with empirical potentials (TIP4P/2005), both agree remarkably well for the main conclusions of the study.

  10. Shear evaluation of tapered bridge girder panels with steel corrugated webs near the supports of continuous bridges

    OpenAIRE

    Zevallos, E.; Hassanein, M.F.; Real Saladrigas, Esther; Mirambell Arrizabalaga, Enrique

    2016-01-01

    Because of public construction budgets were cut over the last few years, new bridge girders with corrugated webs to reduce the construction costs have become more widely studied and used. In spite that tapered bridge girders with corrugated webs (BGCWs) are used in modern bridges, their shear strength and behaviour rarely exists in literature. Based on available literature, the web of the linearly tapered BGCWs may be divided into three typologies with different structural response to shear f...

  11. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    Energy Technology Data Exchange (ETDEWEB)

    Qingbang, Han; Ling, Chen; Changping, Zhu [Changzhou Key Laboratory of Sensor Networks and Environmental Sensing, College of IOT, Hohai University Changzhou, Jiangsu, 213022 (China)

    2014-02-18

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain, the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.

  12. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    International Nuclear Information System (INIS)

    Qingbang, Han; Ling, Chen; Changping, Zhu

    2014-01-01

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain, the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency

  13. Impact of substrate corrugation on the sliding friction levels of adsorbed films.

    Science.gov (United States)

    Coffey, T; Krim, J

    2005-08-12

    We report a quartz crystal microbalance (QCM) study of sliding friction for solid xenon monolayers at 77 K on Cu(111), Ni(111), graphene/Ni(111), and C(60) substrates. Simulations have predicted a strong dependence of phononic friction coefficient (eta) on surface corrugation in systems with similar lattice spacing, eta approximately U(2)(0), but this has never before been shown experimentally. In order to make direct comparisons with theory, substrates with similar lattice spacing but varying amplitudes of surface corrugation were studied. QCM data reveal friction levels proportional to U(2)(0), validating current theoretical and numerical predictions. Measurements of Xe/C(60) are also included for comparison purposes.

  14. Stark effect of excitons in corrugated lateral surface superlattices: effect of centre-of-mass quantization

    International Nuclear Information System (INIS)

    Hong Sun

    1998-11-01

    The quantum confined Stark effect (QCSE) of excitons in GaAs/AlAs corrugated lateral surface superlattices (CLSSLs) is calculated. Blue and red shifts in the exciton energies are predicted for the heavy- and light-excitons in the CLSSLs, respectively, comparing with those in the unmodulated quantum well due to the different effective hole masses in the parallel direction. Sensitive dependence of the QCSE on the hole effective mass in the parallel direction is expected because of the ''centre-of-mass'' quantization (CMQ) induced by the periodic corrugated interfaces of the CLSSLs. The effect of the CMQ on the exciton mini-bands and the localization of the excitons in the CLSSLs is discussed. (author)

  15. SELF-TRAPPING OF DISKOSEISMIC CORRUGATION MODES IN NEUTRON STAR SPACETIMES

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, David [Center for Theory and Computation, Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Pappas, George [Department of Physics and Astronomy, The University of Mississippi, University, MS 38677 (United States)

    2016-02-10

    We examine the effects of higher-order multipole contributions of rotating neutron star (NS) spacetimes on the propagation of corrugation (c-)modes within a thin accretion disk. We find that the Lense–Thirring precession frequency, which determines the propagation region of the low-frequency fundamental corrugation modes, can experience a turnover allowing for c-modes to become self-trapped for sufficiently high dimensionless spin j and quadrupole rotational deformability α. If such self-trapping c-modes can be detected, e.g., through phase-resolved spectroscopy of the iron line for a high-spin low-mass accreting neutron star, this could potentially constrain the spin-induced NS quadrupole and the NS equation of state.

  16. Self-Trapping of Diskoseismic Corrugation Modes in Neutron Star Spacetimes

    Science.gov (United States)

    Tsang, David; Pappas, George

    2016-02-01

    We examine the effects of higher-order multipole contributions of rotating neutron star (NS) spacetimes on the propagation of corrugation (c-)modes within a thin accretion disk. We find that the Lense-Thirring precession frequency, which determines the propagation region of the low-frequency fundamental corrugation modes, can experience a turnover allowing for c-modes to become self-trapped for sufficiently high dimensionless spin j and quadrupole rotational deformability α. If such self-trapping c-modes can be detected, e.g., through phase-resolved spectroscopy of the iron line for a high-spin low-mass accreting neutron star, this could potentially constrain the spin-induced NS quadrupole and the NS equation of state.

  17. Corrugated structure insertion for extending the SASE bandwidth up to 3% at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Zagorodnov, I.; Feng, G.; Limberg, T.

    2016-07-15

    The usage of X-ray free electron laser (XFEL) in femtosecond nanocrystallography involves sequential illumination of many small crystals of arbitrary orientation. Hence a wide radiation bandwidth will be useful in order to obtain and to index a larger number of Bragg peaks used for determination of the crystal orientation. Considering the baseline configuration of the European XFEL in Hamburg, and based on beam dynamics simulations, we demonstrate here that the usage of corrugated structures allows for a considerable increase in radiation bandwidth. Data collection with a 3% bandwidth, a few microjoule radiation pulse energy, a few femtosecond pulse duration, and a photon energy of 5.4 keV is possible. For this study we have developed an analytical modal representation of the short-range wake function of the flat corrugated structures for arbitrary offsets of the source and the witness particles.

  18. Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps

    Science.gov (United States)

    Polzin, A.-E.; Kabelac, S.; de Vries, B.

    2016-09-01

    Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.

  19. Corrugated structure insertion for extending the SASE bandwidth up to 3% at the European XFEL

    International Nuclear Information System (INIS)

    Zagorodnov, I.; Feng, G.; Limberg, T.

    2016-07-01

    The usage of X-ray free electron laser (XFEL) in femtosecond nanocrystallography involves sequential illumination of many small crystals of arbitrary orientation. Hence a wide radiation bandwidth will be useful in order to obtain and to index a larger number of Bragg peaks used for determination of the crystal orientation. Considering the baseline configuration of the European XFEL in Hamburg, and based on beam dynamics simulations, we demonstrate here that the usage of corrugated structures allows for a considerable increase in radiation bandwidth. Data collection with a 3% bandwidth, a few microjoule radiation pulse energy, a few femtosecond pulse duration, and a photon energy of 5.4 keV is possible. For this study we have developed an analytical modal representation of the short-range wake function of the flat corrugated structures for arbitrary offsets of the source and the witness particles.

  20. Coupled-Mode Theory for Complex-Index, Corrugated Multilayer Stacks

    DEFF Research Database (Denmark)

    Lüder, Hannes; Gerken, Martina; Adam, Jost

    , and by choosing a bi-orthogonal basis, obtained by solving the corresponding adjoint problem. With the once found modal solutions of the unperturbed waveguide, we can calculate the coupling coefficients, which describe the mode coupling caused by the introduced periodic corrugation. [1] C. Kluge et al., Opt......We present a coupled-mode theory (CMT) approach for modelling the modal behaviour of multi- layer thinfilm devices with complex material parameters and periodic corrugations. Our method provides fast computation and extended physical insight as compared to standard numerical methods...... to be non-Hermitian, introducing two major consequences. First, the eigenvalues (i. e. the mode neff) have to be found in the complex plane (Fig. 2). Second, the classical mode orthogonality is no longer valid. We address both challenges by a combination of three complex-root solving algorithms...

  1. Lamb wave band gaps in one-dimensional radial phononic crystal plates with periodic double-sided corrugations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinggang [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); School of Transportation, Wuhan University of Technology, Wuhan 430070 (China); Chen, Tianning [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); Wang, Xiaopeng, E-mail: xpwang@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); Li, Suobin [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China)

    2015-11-01

    In this paper, we present the theoretical investigation of Lamb wave propagation in one-dimensional radial phononic crystal (RPC) plates with periodic double-sided corrugations. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite element method based on two-dimensional axial symmetry models in cylindrical coordinates. Numerical results show that the proposed RPC plates with periodic double-sided corrugations can yield several band gaps with a variable bandwidth for Lamb waves. The formation mechanism of band gaps in the double-sided RPC plates is attributed to the coupling between the Lamb modes and the in-phase and out-phases resonant eigenmodes of the double-sided corrugations. We investigate the evolution of band gaps in the double-sided RPC plates with the corrugation heights on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Significantly, with the introduction of symmetric double-sided corrugations, the antisymmetric Lamb mode is suppressed by the in-phase resonant eigenmodes of the double-sided corrugations, resulting in the disappearance of the lowest band gap. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically.

  2. Variable stiffness corrugated composite structure with shape memory polymer for morphing skin applications

    Science.gov (United States)

    Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju

    2017-03-01

    This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.

  3. Uses of four-fold coaxial corrugated piping in low temperature technology

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A; Rohner, P [Kabel- und Metallwerke Gutehoffnungshuette A.G., Hannover (Germany, F.R.)

    1978-06-01

    The increasing uses of superconducting equipment in various areas of research and technology, including even medicine, create an increasing demand for suitable transfer lines for liquid helium which still remains practically the only suitable coolant. This paper reports on flexible four-fold coaxial corrugated piping lines which can combine a forword flow and a return flow channel for the coolant and which can be designed for various operating conditions. The mechanical and thermal properties of such piping lines are discussed.

  4. Psychometric properties of startle and corrugator response in NPU, affective picture viewing, and resting state tasks.

    Science.gov (United States)

    Kaye, Jesse T; Bradford, Daniel E; Curtin, John J

    2016-08-01

    The current study provides a comprehensive evaluation of critical psychometric properties of commonly used psychophysiology laboratory tasks/measures within the NIMH RDoC. Participants (N = 128) completed the no-shock, predictable shock, unpredictable shock (NPU) task, affective picture viewing task, and resting state task at two study visits separated by 1 week. We examined potentiation/modulation scores in NPU (predictable or unpredictable shock vs. no-shock) and affective picture viewing tasks (pleasant or unpleasant vs. neutral pictures) for startle and corrugator responses with two commonly used quantification methods. We quantified startle potentiation/modulation scores with raw and standardized responses. We quantified corrugator potentiation/modulation in the time and frequency domains. We quantified general startle reactivity in the resting state task as the mean raw startle response during the task. For these three tasks, two measures, and two quantification methods, we evaluated effect size robustness and stability, internal consistency (i.e., split-half reliability), and 1-week temporal stability. The psychometric properties of startle potentiation in the NPU task were good, but concerns were noted for corrugator potentiation in this task. Some concerns also were noted for the psychometric properties of both startle and corrugator modulation in the affective picture viewing task, in particular, for pleasant picture modulation. Psychometric properties of general startle reactivity in the resting state task were good. Some salient differences in the psychometric properties of the NPU and affective picture viewing tasks were observed within and across quantification methods. © 2016 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  5. Flow Regimes of Air-Water Counterflow Through Cross Corrugated Parallel Plates

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, V.F.

    2000-06-07

    Heretofore unknown flow regimes of air-water counterflow through a pair of transparent vertical parallel cross corrugated plates were observed via high-speed video. Air flows upward driven by pressure gradient and water, downward driven by gravity. The crimp geometry of the corrugations was drawn from typical corrugated sheets used as filling material in modern structured packed towers. Four regimes were featured, namely, rivulet, bicontinuous, flooding fronts, and flooding waves. It is conceivable that the regimes observed might constitute the basis for understanding how gas and liquid phases contend for available space in the interstices of structured packings in packed towers. Flow regime transitions were expressed in terms of liquid load (liquid superficial velocity) and gas flow factor parameters commonly used in pressure drop and capacity curves. We have carefully examined the range of parameters equivalent to the ill-understood high-liquid-flow operation in packed towers. More importantly, our findings should prove valuable in validating improved first-principles modeling of gas-liquid flows in these industrially important devices.

  6. Improvement of formability for fabricating thin continuously corrugated structures in sheet metal forming process

    International Nuclear Information System (INIS)

    Choi, Sung Woo; Park, Sang Hu; Park, Seong Hun; Ha, Man Yeong; Jeong, Ho Seung; Cho, Jong Rae

    2012-01-01

    A stamping process is widely used for fabricating various sheet metal parts for vehicles, airplanes, and electronic devices by the merit of low processing cost and high productivity. Recently, the use of thin sheets with a corrugated structure for sheet metal parts has rapidly increased for use in energy management devices, such as heat exchangers, separators in fuel cells, and many others. However, it is not easy to make thin corrugated structures directly using a single step stamping process due to their geometrical complexity and very thin thickness. To solve this problem, a multi step stamping (MSS) process that includes a heat treatment process to improve formability is proposed in this work: the sequential process is the initial stamping, heat treatment, and final shaping. By the proposed method, we achieved successful results in fabricating thin corrugated structures with an average thickness of 75μm and increased formability of about 31% compared to the single step stamping process. Such structures can be used in a plate-type heat exchanger requiring low weight and a compact shape

  7. Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell

    KAUST Repository

    Bahabry, Rabab R.

    2018-01-02

    Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large-scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon-based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor-based integration strategy where corrugation architecture enables ultraflexible and low-cost solar cell modules from bulk monocrystalline large-scale (127 × 127 cm) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 μm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon-based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 μm of the back contacts is shown that carries the solar cells segments.

  8. Soda-Anthraquinone Durian (Durio Zibethinus Murr.) Rind Linerboard and Corrugated Medium Paper: A Preliminary Test

    Science.gov (United States)

    Rizal Masrol, Shaiful; Irwan Ibrahim, Mohd Halim; Adnan, Sharmiza; Mubarak Sa'adon, Amir; Ika Sukarno, Khairil; Fadrol Hisham Yusoff, Mohd

    2017-08-01

    A preliminary test was conducted to investigate the characteristics of linerboard and corrugated medium paper made from durian rind waste. Naturally dried durian rinds were pulped according to Soda-Anthraquinone (Soda-AQ) pulping process with a condition of 20% active alkali, 0.1% AQ, 7:1 liquor to material ratio, 120 minutes cooking time and 170°C cooking temperature. The linerboard and corrugated medium paper with a basis weight of 120 gsm were prepared and evaluated according to Malaysian International Organization for Standardization (MS ISO) and Technical Association of the Pulp and Paper Industry (TAPPI). The results indicate that the characteristics of durian rind linerboard are comparable with other wood or non-wood based paper and current commercial paper. However, low CMT value for corrugated medium and water absorptiveness quality for linerboard could be improved in future. Based on the bulk density (0.672 g/cm3), burst index (3.12 kPa.m2/g) and RCT (2.00 N.m2/g), the durian rind has shown a good potential and suitable as an alternative raw material source for linerboard industry.

  9. Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell

    KAUST Repository

    Bahabry, Rabab R.; Kutbee, Arwa T.; Khan, Sherjeel M.; Sepulveda, Adrian C.; Wicaksono, Irmandy; Nour, Maha A.; Wehbe, Nimer; Almislem, Amani Saleh Saad; Ghoneim, Mohamed T.; Sevilla, Galo T.; Syed, Ahad; Shaikh, Sohail F.; Hussain, Muhammad Mustafa

    2018-01-01

    Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large-scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon-based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor-based integration strategy where corrugation architecture enables ultraflexible and low-cost solar cell modules from bulk monocrystalline large-scale (127 × 127 cm) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 μm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon-based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 μm of the back contacts is shown that carries the solar cells segments.

  10. Compact Elliptically Tapered Slot Antenna with Non-uniform Corrugations for Ultra-wideband Applications

    Directory of Open Access Journals (Sweden)

    F. G. Zhu

    2013-04-01

    Full Text Available A small size elliptically tapered slot antenna (ETSA fed by coplanar waveguide (CPW for ultra-wideband (UWB applications is proposed. It is printed on an FR4 substrate and occupies a size of 37×34×0.8 mm^3. A pair of quarter circular shapes is etched on the radiator to reduce the size. To overcome the limitation of uniform corrugation, non-uniform corrugation is utilized to reduce the cross-polarization level. A parametric study is carried out to investigate the effects of circular cut and corrugations. In order to validate the design, a prototype is fabricated and measured. Both simulated and measured results confirm that the proposed antenna achieves a good performance of a reflection coefficient below -10 dB from 3.1 GHz to 10.6 GHz, including a maximum antenna gain of 8.1dBi, directional patterns in the end-fire direction, low cross-polarization level below -20 dB and linear phase response. The antenna is promising for applications in UWB impulse radar imaging.

  11. Modeling and experimental study of a corrugated wick type solar still: Comparative study with a simple basin type

    International Nuclear Information System (INIS)

    Matrawy, K.K.; Alosaimy, A.S.; Mahrous, A.-F.

    2015-01-01

    Highlights: • Performance of corrugated wick type solar still is compared with simple type. • Corrugated porous surface contributes by about 75% of the total productivity. • Productivity of corrugated solar still was 34% more than that for simple type. - Abstract: In the present work, the productivity of a solar still is modified by forming the evaporative surface as a corrugated shape as well as by decreasing the heat capacity with the use of a porous material. This target has been achieved by using black clothes in a corrugated shape that are immersed in water where the clothes absorbs water and get saturated by capillary effect. Along with the proposed corrugated wick type solar still, a simple basin still type was fabricated and tested to compare the enhancement accomplished by the developed solar still. Inclined reflectors were used to augment the solar radiation incident on the plane of the developed solar stills. The energy balance in the developed mathematical models takes into consideration the glass covers, the porous material, along with the portion of water exposed to the transmitted solar radiation as well as the portion of water shaded by the corrugated surface. The developed mathematical model was validated by fabricating and testing two models for the proposed and simple basin solar stills under the same conditions. Good agreement between the simulated and experimental results has been detected. It has been found that an improvement of about 34% in the productivity for the proposed wick type solar still is gained as compared to the simple basin case. Also, the best tilt angle for the inclined reflector has been found to be about 30° with respect to the vertical direction of the setup under consideration.

  12. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how wall...

  13. Multi-objective shape optimization of double pipe heat exchanger with inner corrugated tube using RSM method

    International Nuclear Information System (INIS)

    Han, Huai-Zhi; Li, Bing-Xi; Wu, Hao; Shao, Wei

    2015-01-01

    Integrated a fully developing three-dimensional heat transfer and flow model, a multi-objective optimization aims to fulfill the geometric design for double-tube heat exchangers with inner corrugated tube is investigated in this work with RSM. Dimensionless corrugation pitch (p/D), dimensionless corrugation height (H/D), dimensionless corrugation radius (r/D) and Reynolds number (Re) are considered as four design parameters. Considering the process parameters, the characteristic numbers involving heat transfer characteristic, resistance characteristic and overall heat transfer performance calculated by CFD, and are served as objective functions to the RSM (Nu c , f c , Nu c /Nu s , f c /f s and h in this paper). The results of optimal designs are a set of multiple optimum solutions, called 'Pareto optimal solutions'. It reveals the identical tendency of Nu c /Nu s and f c /f s reflecting the conflict between them that means augmenting the heat transfer performance with various design parameters in the optimal situation inevitably sacrificed the increase of flow resistance. According to the Pareto optimal curves, the optimum designing parameters of double pipe heat exchanger with inner corrugated tube under the constrains of Nu c /Nu s ≥1.2 are found to be P/D = 0.82, H/D = 0.22, r/D = 0.23, Re = 26,263, corresponding to the maximum value of η = 1.12. (authors)

  14. Improving indoor air quality by using the new generation of corrugated cardboard-based filters.

    Science.gov (United States)

    Candiani, Gabriele; Del Curto, Barbara; Cigada, Alberto

    2012-09-27

    Indoor Air Quality (IAQ) is strictly affected by the concentration of total suspended particulate matter (TSP). Air filtration is by far the most feasible suggestion to improve IAQ. Unfortunately, highly effective HEPA filters also have a few major weaknesses that have hindered their widespread use. There is therefore a renewed interest in developing novel, cost-effective filtration systems. We have recently reported the development of cardboard-based filters for bacterial removal that were further implemented and tested herein. A parallelepiped filter manufactured by aligning strips of corrugated cardboard and surrounded by a cardboard frame was specifically designed with an internal pocket holding a partially cut antistatic pleated fabric (HP). This filter, together with its parent version (CTRL) and a commercially sourced specimen (CAF), were assessed comparatively in a long-time test to assess their effectiveness on TSP removal. We found that the TSP abatement efficiency (E%) of the HP filter was relatively high and invariable over the 93 days of test and the pressure drop (PD%) decrease because of filter clogging was moderate. Most important, the HP filter was the most effective if assessed in terms of overall yield (Y%) and its performance was quite constant over the entire period considered. This work disclosed this novel class of corrugated cardboard-based filters as promising tools to ameliorate IAQ in light of their good TSP removal properties that endure over time. Moreover, cardboard is a lightweight, inexpensive, and eco-friendly material and corrugated cardboard-based air filters are very easy to shape and mount on and/or replace in existing ventilation systems.

  15. Spoof surface plasmon modes on doubly corrugated metal surfaces at terahertz frequencies

    International Nuclear Information System (INIS)

    Liu, Yong-Qiang; Kong, Ling-Bao; Du, Chao-Hai; Liu, Pu-Kun

    2016-01-01

    Spoof surface plasmons (SSPs) have many potential applications such as imaging and sensing, communications, innovative leaky wave antenna and many other passive devices in the microwave and terahertz (THz) spectrum. The extraordinary properties of SSPs (e.g. extremely strong near field, enhanced beam–wave interaction) make them especially attractive for developing novel THz electronic sources. SSP modes on doubly corrugated metal surfaces are investigated and analyzed both theoretically and numerically in this paper. The analytical SSP dispersion expressions of symmetric and anti-symmetric modes are obtained with a simplified modal field expansion method; the results are also verified by the finite integration method. Additionally, the propagation losses are also considered for real copper surfaces with a limited constant conductivity in a THz regime. It is shown that the asymptotical frequency of the symmetric mode at the Brillouin boundary decreases along with the decreased gap size between these two corrugated metal surfaces while the asymptotical frequency increases for the anti-symmetric mode. The anti-symmetric mode demonstrates larger propagation losses than the symmetric mode. Further, the losses for both symmetric and anti-symmetric modes decrease when this gap size enlarges. By decreasing groove depth, the asymptotical frequency increases for both the symmetric and the anti-symmetric mode, but the variation of propagation losses is more complicated. Propagation losses increase along with the increased period. Our studies on the dispersion characteristics and propagation losses of SSP modes on this doubly corrugated metallic structure with various parameters is instructive for numerous applications such as waveguides, circuitry systems with high integration, filters and powerful electronic sources in the THz regime. (paper)

  16. Long-Term Performance of Primary and Secondary Electroactive Biofilms Using Layered Corrugated Carbon Electrodes

    International Nuclear Information System (INIS)

    Baudler, André; Riedl, Sebastian; Schröder, Uwe

    2014-01-01

    The performance of primary and secondary electroactive biofilms grown on layered corrugated carbon (LCC) electrodes was studied over a period of several months. With an average projected current density of 6.7 mA cm −2 , the studied secondary electroactive biofilms outperformed the primary biofilms (3.0 mA cm −2 ) over the entire experimental period. At the same time, both, primary and secondary biofilms, exhibited a constant Coulomb efficiency of about 89%. The study further illustrates that three-dimensional electrodes such as LCC allow a sustained long-term performance without significant decrease in electrode performance.

  17. Ohmic losses in coaxial resonators with longitudinal inner-outer corrugation

    Energy Technology Data Exchange (ETDEWEB)

    Shenyong Hou, A. [Terahertz Science and Technology Research Center, University of Electronics Science and Technology of China, Chengdu 610054 (China); Yangtze Normal University, Chongqing 408001 (China); Sheng Yu, B.; Hongfu Li, C.; Qixiang Zhao, D. [Terahertz Science and Technology Research Center, University of Electronics Science and Technology of China, Chengdu 610054 (China); Xiang Li, E. [Terahertz Science and Technology Research Center, University of Electronics Science and Technology of China, Chengdu 610054 (China); Queen Mary University of London, London E1 4NS (United Kingdom)

    2013-05-15

    In this paper, a coaxial resonator with longitudinal inner-outer corrugation is introduced. Its eigen-equation and expression of ohmic losses are derived. Ohmic losses in the cavity are investigated. Results show that ohmic losses in the outer and inner conductors share a similar variation trend, while the former is larger than the later. What's more, changes of the inner and outer slot depth and width induce different variations of ohmic losses on the surface of the inner and outer conductors.

  18. Thermal-Hydraulic Performance of a Corrugated Cooling Fin with Louvered Surfaces

    DEFF Research Database (Denmark)

    Sønderby, Simon Kaltoft; Hosseini, Seyed Mojtaba Mir; Rezaniakolaei, Alireza

    2017-01-01

    The main objective of the article is to investigate thermal-hydraulic performance of a corrugated cooling fin with louvered surfaces. The investigation is carried out using the fin geometry of one most commonly used liquid-to-air heat exchangers. The investigation was carried out by numerically...... simulating the airflow with louvered fin geometry. The simulation model was verified by comparing simulated j- and f-factors with the corresponding values of several experimental correlations. The j-factors deviated less than 10.7 % from two of the experimental correlations, whereas deviations ranging...

  19. Theory and Monte-Carlo simulation of adsorbates on corrugated surfaces

    DEFF Research Database (Denmark)

    Vives, E.; Lindgård, P.-A.

    1993-01-01

    -phase between the commensurate and incommensurate phase stabilized by defects. Special attention has been given to the study of the epitaxial rotation angles of the different phases. Available experimental data is in agreement with the simulations and with a general theory for the epitaxial rotation which takes......Phase transitions in systems of adsorbed molecules on corrugated surfaces are studied by means of Monte Carlo simulation. Particularly, we have studied the phase diagram of D2 on graphite as a function of coverage and temperature. We have demonstrated the existence of an intermediate gamma...

  20. Numerical simulation study of gas-liquid reactive mass transfer along corrugated sheets with interface tracking

    International Nuclear Information System (INIS)

    Haroun, Y.

    2008-11-01

    This work is done within the framework of gas treatment and CO 2 capture process development. The main objective of the present work is to fill the gap between classical experiments and industrial conditions by the use of Computational Fluid Dynamics (CFD). The physical problem considered corresponds to the liquid film flow down a corrugate surface under gravity in present of a gas phase. The chemical species in the gas phase absorb in the liquid phase and react. Numerical calculations are carried out in order to determine the impact of physical and geometrical properties on reactive mass transfer in industrial operating conditions. (author)

  1. Optimization of a Conical Corrugated Antenna Using Multiobjective Heuristics for Radio-Astronomy Applications

    OpenAIRE

    López-Ruiz, S.; Sánchez Montero, R.; Tercero-Martínez, F.; López-Espí, P. L.; López-Fernandez, J. A.

    2016-01-01

    This paper presents the design of a tree sections corrugated horn antenna with a modified linear profile, using NURBS, suitable for radio-astronomy applications. The operating band ranges from 4.5 to 8.8 GHz. The aperture efficiency is higher than 84% and the return losses are greater than 20 dB in the whole bandwidth. The antenna optimization has been carried out with multiobjective versions of an evolutionary algorithm (EA) and a particle swarm optimization (PSO) algorithm. We show that bot...

  2. Long-Term Performance of Primary and Secondary Electroactive Biofilms Using Layered Corrugated Carbon Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Baudler, André; Riedl, Sebastian; Schröder, Uwe, E-mail: uwe.schroeder@tu-bs.de [Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Braunschweig (Germany)

    2014-07-30

    The performance of primary and secondary electroactive biofilms grown on layered corrugated carbon (LCC) electrodes was studied over a period of several months. With an average projected current density of 6.7 mA cm{sup −2}, the studied secondary electroactive biofilms outperformed the primary biofilms (3.0 mA cm{sup −2}) over the entire experimental period. At the same time, both, primary and secondary biofilms, exhibited a constant Coulomb efficiency of about 89%. The study further illustrates that three-dimensional electrodes such as LCC allow a sustained long-term performance without significant decrease in electrode performance.

  3. Analytical and Numerical Study of Foam-Filled Corrugated Core Sandwich Panels under Low Velocity Impact

    Directory of Open Access Journals (Sweden)

    Mohammad Nouri Damghani

    2016-05-01

    Full Text Available Analytical and finite element simulations are used to predict the effect of core density on the energy absorption of composite sandwich panels under low-velocity impact. The composite sandwich panel contains two facesheets and a foam-filled corrugated core. Analytical model is defined as a two degree-of-freedom system based on equivalent mass, spring, and dashpot to predict the local and global deformation response of a simply supported panel. The results signify a good agreement between analytical and numerical predictions.

  4. Dual nature of localization in guiding systems with randomly corrugated boundaries: Anderson-type versus entropic

    International Nuclear Information System (INIS)

    Tarasov, Yu.V.; Shostenko, L.D.

    2015-01-01

    A unified theory for the conductance of an infinitely long multimode quantum wire whose finite segment has randomly rough lateral boundaries is developed. It enables one to rigorously take account of all feasible mechanisms of wave scattering, both related to boundary roughness and to contacts between the wire rough section and the perfect leads within the same technical frameworks. The rough part of the conducting wire is shown to act as a mode-specific randomly modulated effective potential barrier whose height is governed essentially by the asperity slope. The mean height of the barrier, which is proportional to the average slope squared, specifies the number of conducting channels. Under relatively small asperity amplitude this number can take on arbitrary small, up to zero, values if the asperities are sufficiently sharp. The consecutive channel cut-off that arises when the asperity sharpness increases can be regarded as a kind of localization, which is not related to the disorder per se but rather is of entropic or (equivalently) geometric origin. The fluctuating part of the effective barrier results in two fundamentally different types of guided wave scattering, viz., inter- and intramode scattering. The intermode scattering is shown to be for the most part very strong except in the cases of (a) extremely smooth asperities, (b) excessively small length of the corrugated segment, and (c) the asperities sharp enough for only one conducting channel to remain in the wire. Under strong intermode scattering, a new set of conducting channels develops in the corrugated waveguide, which have the form of asymptotically decoupled extended modes subject to individual solely intramode random potentials. In view of this fact, two transport regimes only are realizable in randomly corrugated multimode waveguides, specifically, the ballistic and the localized regime, the latter characteristic of one-dimensional random systems. Two kinds of localization are thus shown to

  5. Wall Turbulence.

    Science.gov (United States)

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  6. Seismic loads in modularized and unmodularized large pools located on hard or intermediate hard sites

    Energy Technology Data Exchange (ETDEWEB)

    Dong, R G [California Univ., Livermore (USA). Lawrence Livermore Lab.

    1977-12-01

    To augment the present capacity of pools for storing spent nuclear fuel elements, pools larger than those in current use are being planned. These pools may or may not be modularized into cells. Because of the large size of the pools, seismic loads are of significant interest. In particular, the effects of modularization and site hardness are of concern. The study presented in this paper reveals that modularization is generally unfavourable, because it creates the option of leaving one or more cells empty which in turn results in higher structural loads. The wall which separates a filled cell from an empty cell, or the wall which bears against earth on one side and faces an empty cell on the other, becomes very highly stressed. For the particular pool geometries examined, a hard site is generally preferred over an intermediate hard site in terms of structural loads.

  7. Inkjet printing of UHF antennas on corrugated cardboards for packaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Enrico, E-mail: enrico.sowade@mb.tu-chemnitz.de [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Göthel, Frank [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Zichner, Ralf [Department Printed Functionalities, Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz (Germany); Baumann, Reinhard R. [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Department Printed Functionalities, Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz (Germany)

    2015-03-30

    Highlights: • Inkjet printing of UHF antennas on cardboard substrates. • Development of primer layer to compensate the absorptiveness of the cardboard and the rough surface. • Manufacturing of UHF antennas in a fully digital manner for packaging applications. - Abstract: In this study, a method based on inkjet printing has been established to develop UHF antennas on a corrugated cardboard for packaging applications. The use of such a standardized, paper-based packaging substrate as material for printing electronics is challenging in terms of its high surface roughness and high ink absorption rate, especially when depositing very thin films with inkjet printing technology. However, we could obtain well-defined silver layers on the cardboard substrates due to a primer layer approach. The primer layer is based on a UV-curable ink formulation and deposited as well as the silver ink with inkjet printing technology. Industrial relevant printheads were chosen for the deposition of the materials. The usage of inkjet printing allows highest flexibility in terms of pattern design. The primer layer was proven to optimize the surface characteristics of the substrate, mainly reducing the surface roughness and water absorptiveness. Thanks to the primer layer approach, ultra-high-frequency (UHF) radio-frequency identification (RFID) antennas were deposited by inkjet printing on the corrugated cardboards. Along with the characterization and interpretation of electrical properties of the established conductive antenna patterns, the performance of the printed antennas were analyzed in detail by measuring the scattering parameter S{sub 11} and the antenna gain.

  8. Numerical Simulation of Turbulent Half-corrugated Channel Flow by Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    M. R. Rastan

    2018-03-01

    Full Text Available In the first part of the present study, a two dimensional half-corrugated channel flow is simulated at Reynolds number of 104, in no-slip condition (hydrophilic surfaces( using various low Reynolds turbulence models as well as standard k-ε model; and an appropriate turbulence model (k-ω 1998 model( is proposed. Then, in order to evaluate the proposed solution method in simulation of flow adjacent to hydrophobic surfaces, turbulent flow is simulated in simple channel and the results are compared with the literature. Finally, two dimensional half-corrugated channel flow at Reynolds number of 104 is simulated again in vicinity of hydrophobic surfaces for varoius slip lengths. The results show that this method is capable of drag reduction in such a way that an increase of 200 μm in slip length leads to a massive drag reduction up to 38%. In addition, to access a significant drag reduction in turbulent flows, the non-dimensionalized slip length should be larger than the minimum.

  9. Performance analysis of solar air heater with jet impingement on corrugated absorber plate

    Directory of Open Access Journals (Sweden)

    Alsanossi M. Aboghrara

    2017-09-01

    Full Text Available This paper deals with the experimental investigation outlet temperature and efficiency, of Solar Air heater (SAH. The experimental test set up designed and fabricated to study the effect of jet impingement on the corrugated absorber plate, through circular jets in a duct flow of solar air heater, and compared with conventional solar air heater on flat plat absorber. Under effect of mass flow rate (ṁ of air and solar radiation on outlet air temperature, and efficiency, are analyzed. Results show the flow jet impingement on corrugated plat absorber is a strong function of heat transfer enhancement. The present investigation concludes that the mass flow rate of air substantially influences the heat transfer on solar air heaters. And the thermal efficiency of proposed design duct is observed almost 14% more as compare to the smooth duct. At solar radiation 500–1000 (W/M2, 308 K ambient temperature and 0.01–0.03 (Kg/S mass flow rate

  10. Removal of VOCs from air stream with corrugated sheet as adsorbent

    Directory of Open Access Journals (Sweden)

    Rabia Arshad

    2016-10-01

    Full Text Available A large proportional of volatile organic compounds (VOCs are released into the environment from various industrial processes. The current study elucidates an application of a simple adsorption phenomenon for removal of three main types of VOCs, i.e., benzene, xylene and toluene, from an air stream. Two kinds of adsorbents namely acid digested adsorbent and activated carbon are prepared to assess the removal efficiency of each adsorbent in the indoor workplace environment. The results illustrate that the adsorbents prepared from corrugated sheets were remarkably effective for the removal of each pollutant type. Nevertheless, activated carbon showed high potential of adsorbing the targeted VOC compared to the acid digested adsorbent. The uptake by the adsorbents was in the following order: benzene > xylene > toluene. Moreover, maximum adsorption of benzene, toluene and xylene occurred at 20 °C and 1.5 cm/s for both adsorbents whereas minimum success was attained at 30 °C and 1.0 cm/s. However, adsorption pattern are found to be similar for each of the the three aromatic hydrocarbons. It is concluded that the corrugated sheets waste can be a considered as a successful and cost-effective solution towards effective removal of targeted pollutants in the air stream.

  11. Corrugation of Phase-Separated Lipid Bilayers Supported by Nanoporous Silica Xerogel Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Goksu, E I; Nellis, B A; Lin, W; Satcher Jr., J H; Groves, J T; Risbud, S H; Longo, M L

    2008-10-30

    Lipid bilayers supported by substrates with nanometer-scale surface corrugations holds interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g. porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, diffusion, and lipid density in comparison to mica-supported lipid bilayers were characterized by AFM, FRAP, FCS, and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of lipids on xerogel ({approx}1.7 {micro}m{sup 2}/s) is predictably lower than on mica ({approx}4.1 {micro}m{sup 2}/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase bilayer that penetrates approximately midway into the first layer of {approx}50 nm xerogel beads.

  12. Mass transport enhancement in redox flow batteries with corrugated fluidic networks

    Science.gov (United States)

    Lisboa, Kleber Marques; Marschewski, Julian; Ebejer, Neil; Ruch, Patrick; Cotta, Renato Machado; Michel, Bruno; Poulikakos, Dimos

    2017-08-01

    We propose a facile, novel concept of mass transfer enhancement in flow batteries based on electrolyte guidance in rationally designed corrugated channel systems. The proposed fluidic networks employ periodic throttling of the flow to optimally deflect the electrolytes into the porous electrode, targeting enhancement of the electrolyte-electrode interaction. Theoretical analysis is conducted with channels in the form of trapezoidal waves, confirming and detailing the mass transport enhancement mechanism. In dilute concentration experiments with an alkaline quinone redox chemistry, a scaling of the limiting current with Re0.74 is identified, which compares favourably against the Re0.33 scaling typical of diffusion-limited laminar processes. Experimental IR-corrected polarization curves are presented for high concentration conditions, and a significant performance improvement is observed with the narrowing of the nozzles. The adverse effects of periodic throttling on the pumping power are compared with the benefits in terms of power density, and an improvement of up to 102% in net power density is obtained in comparison with the flow-by case employing straight parallel channels. The proposed novel concept of corrugated fluidic networks comes with facile fabrication and contributes to the improvement of the transport characteristics and overall performance of redox flow battery systems.

  13. Characterization of low-frequency acoustic wave propagation through a periodic corrugated waveguide

    Science.gov (United States)

    Jiang, Changyong; Huang, Lixi

    2018-03-01

    In this paper, a periodic corrugated waveguide structure is proposed, and its unit-cell is analyzed by the wave finite element method. In low-frequency range, the unit-cell is treated as an equivalent fluid through a homogenization process, and the equivalent acoustic parameters are obtained, which are validated by finite structure simulations and experiments. The proposed structure is shown to add tortuosity to the waveguide, hence higher equivalent fluid density is achieved, while the system elastic modulus remains unchanged. As a result, the equivalent speed of sound is smaller than normal air. The application of such change of speed of sound is demonstrated in the classic quarter-wavelength resonator based on the corrugated waveguide, which gives a lower resonance frequency with the same side branch length. When the waveguide is filled with porous materials, the added tortuosity enhances the broadband, low-frequency sound absorption by increasing the equivalent mass without bringing in excess damping, the latter being partly responsible for the poor performance of usual porous materials in the low-frequency region. Therefore, the proposed structure provides another dimension for the design and optimization of porous sound absorption materials.

  14. Hierarchical synthesis of corrugated photocatalytic TiO{sub 2} microsphere architectures on natural pollen surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Erdogan, Deniz Altunoz; Ozensoy, Emrah, E-mail: ozensoy@fen.bilkent.edu.tr

    2017-05-01

    Highlights: • Biotemplate-based photocatalytic material was synthesized in the form of corrugated TiO{sub 2} microspheres. • Characterization of photocatalysts as a function of temperature. • Photocatalytic activities studied in the gas and solution phases. - Abstract: Biomaterials are challenging, yet vastly promising templates for engineering unusual inorganic materials with unprecedented surface and structural properties. In the current work, a novel biotemplate-based photocatalytic material was synthesized in the form of corrugated TiO{sub 2} microspheres by utilizing a sol-gel methodology where Ambrosia trifida (Ab, Giant ragweed) pollen was exploited as the initial biological support surface. Hierarchically synthesized TiO{sub 2} microspheres were structurally characterized in detail via SEM-EDX, Raman spectroscopy, XRD and BET techniques in order to shed light on the surface chemistry, crystal structure, chemical composition and morphology of these novel material architectures. Photocatalytic functionality of the synthesized materials was demonstrated both in gas phase as well as in liquid phase. Along these lines, air and water purification capabilities of the synthesized TiO{sub 2} microspheres were established by performing photocatalytic oxidative NOx(g) storage and Rhodamine B(aq) degradation experiments; respectively. The synthetic approach presented herein offers new opportunities to design and create sophisticated functional materials that can be used in micro reactor systems, adsorbents, drug delivery systems, catalytic processes, and sensor technologies.

  15. Anomalous structural transition of confined hard squares.

    Science.gov (United States)

    Gurin, Péter; Varga, Szabolcs; Odriozola, Gerardo

    2016-11-01

    Structural transitions are examined in quasi-one-dimensional systems of freely rotating hard squares, which are confined between two parallel walls. We find two competing phases: one is a fluid where the squares have two sides parallel to the walls, while the second one is a solidlike structure with a zigzag arrangement of the squares. Using transfer matrix method we show that the configuration space consists of subspaces of fluidlike and solidlike phases, which are connected with low probability microstates of mixed structures. The existence of these connecting states makes the thermodynamic quantities continuous and precludes the possibility of a true phase transition. However, thermodynamic functions indicate strong tendency for the phase transition and our replica exchange Monte Carlo simulation study detects several important markers of the first order phase transition. The distinction of a phase transition from a structural change is practically impossible with simulations and experiments in such systems like the confined hard squares.

  16. Comprehensive hard materials

    CERN Document Server

    2014-01-01

    Comprehensive Hard Materials deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued res...

  17. A Multifrequency Notch Filter for Millimeter Wave Plasma Diagnostics based on Photonic Bandgaps in Corrugated Circular Waveguides

    Directory of Open Access Journals (Sweden)

    Wagner D.

    2015-01-01

    Full Text Available Sensitive millimeter wave diagnostics need often to be protected against unwanted radiation like, for example, stray radiation from high power Electron Cyclotron Heating applied in nuclear fusion plasmas. A notch filter based on a waveguide Bragg reflector (photonic band-gap may provide several stop bands of defined width within up to two standard waveguide frequency bands. A Bragg reflector that reflects an incident fundamental TE11 into a TM1n mode close to cutoff is combined with two waveguide tapers to fundamental waveguide diameter. Here the fundamental TE11 mode is the only propagating mode at both ends of the reflector. The incident TE11 mode couples through the taper and is converted to the high order TM1n mode by the Bragg structure at the specific Bragg resonances. The TM1n mode is trapped in the oversized waveguide section by the tapers. Once reflected at the input taper it will be converted back into the TE11 mode which then can pass through the taper. Therefore at higher order Bragg resonances, the filter acts as a reflector for the incoming TE11 mode. Outside of the Bragg resonances the TE11 mode can propagate through the oversized waveguide structure with only very small Ohmic attenuation compared to propagating in a fundamental waveguide. Coupling to other modes is negligible in the non-resonant case due to the small corrugation amplitude (typically 0.05·λ0, where λ0 is the free space wavelength. A Bragg reflector for 105 and 140 GHz was optimized by mode matching (scattering matrix simulations and manufactured by SWISSto12 SA, where the required mechanical accuracy of ± 5 μm could be achieved by stacking stainless steel rings, manufactured by micro-machining, in a high precision guiding pipe. The two smooth-wall tapers were fabricated by electroforming. Several measurements were performed using vector network analyzers from Agilent (E8362B, ABmm (MVNA 8-350 and Rohde&Schwarz (ZVA24 together with frequency multipliers. The

  18. U-rans model for the prediction of the acoustic sound power generated in a whistling corrugated pipe

    NARCIS (Netherlands)

    Golliard, J.; González Díez, N.; Belfroid, S.P.C.; Nakiboǧlu, G.; Hirschberg, A.

    2013-01-01

    Corrugated pipes, as used in flexible risers for gas production or in domestic appliances, can whistle when a flow is imposed through the pipe. Nakiboglu et al [1, 2] have developed a method to compute the acoustic source term for axi-symmetric cavities. The method is based on the resolution of

  19. Impact of interfacial imperfection on transverse wave in a functionally graded piezoelectric material structure with corrugated boundaries

    Science.gov (United States)

    Kumar Singh, Abhishek; Kumar, Santan; Kumari, Richa

    2018-03-01

    The propagation behavior of Love-type wave in a corrugated functionally graded piezoelectric material layered structure has been taken into account. Concretely, the layered structure incorporates a corrugated functionally graded piezoelectric material layer imperfectly bonded to a functionally graded piezoelectric material half-space. An analytical treatment has been employed to determine the dispersion relation for both cases of electrically open condition and electrically short condition. The phase velocity of the Love-type wave has been computed numerically and its dependence on the wave number has been depicted graphically for a specific type of corrugated boundary surfaces for both said conditions. The crux of the study lies in the fact that the imperfect bonding of the interface, the corrugated boundaries present in the layer, and the material properties of the layer and the half-space strongly influence the phase velocity of the Love-type wave. It can be remarkably noted that the imperfect bonding of the interface reduces the phase velocity of the Love-type wave significantly. As a special case of the problem, it is noticed that the procured dispersion relation for both cases of electrically open and electrically short conditions is in accordance with the classical Love wave equation.

  20. Growth of InP directly on Si by corrugated epitaxial lateral overgrowth

    International Nuclear Information System (INIS)

    Metaferia, Wondwosen; Kataria, Himanshu; Sun, Yan-Ting; Lourdudoss, Sebastian

    2015-01-01

    In an attempt to achieve an InP–Si heterointerface, a new and generic method, the corrugated epitaxial lateral overgrowth (CELOG) technique in a hydride vapor phase epitaxy reactor, was studied. An InP seed layer on Si (0 0 1) was patterned into closely spaced etched mesa stripes, revealing the Si surface in between them. The surface with the mesa stripes resembles a corrugated surface. The top and sidewalls of the mesa stripes were then covered by a SiO 2 mask after which the line openings on top of the mesa stripes were patterned. Growth of InP was performed on this corrugated surface. It is shown that growth of InP emerges selectively from the openings and not on the exposed silicon surface, but gradually spreads laterally to create a direct interface with the silicon, hence the name CELOG. We study the growth behavior using growth parameters. The lateral growth is bounded by high index boundary planes of {3 3 1} and {2 1 1}. The atomic arrangement of these planes, crystallographic orientation dependent dopant incorporation and gas phase supersaturation are shown to affect the extent of lateral growth. A lateral to vertical growth rate ratio as large as 3.6 is achieved. X-ray diffraction studies confirm substantial crystalline quality improvement of the CELOG InP compared to the InP seed layer. Transmission electron microscopy studies reveal the formation of a direct InP–Si heterointerface by CELOG without threading dislocations. While CELOG is shown to avoid dislocations that could arise due to the large lattice mismatch (8%) between InP and Si, staking faults could be seen in the layer. These are probably created by the surface roughness of the Si surface or SiO 2 mask which in turn would have been a consequence of the initial process treatments. The direct InP–Si heterointerface can find applications in high efficiency and cost-effective Si based III–V semiconductor multijunction solar cells and optoelectronics integration. (paper)

  1. Fabrication of 20 nm half-pitch gratings by corrugation-directed self-assembly

    International Nuclear Information System (INIS)

    Kim, Ho-Cheol; Rettner, Charles T; Sundstroem, Linnea

    2008-01-01

    The evolution of the scaling of modern semiconductor devices is governed by the ability to create scalable high-resolution patterns on substrates. Since it is becoming increasingly difficult and expensive to extend to smaller dimensions using optical lithography, there is a great deal of interest in alternative patterning methods. The self-assembly of block copolymers in thin films, which provides periodic patterns of 10-50 nm length scales, has been recognized as a promising candidate for such patterning. To be practical, however, this approach must provide control over the orientation and lateral placement of the microdomains. We report here our discovery of the controlled alignment of the lamellar microdomains of a block copolymer containing hybrid material using topographic pre-patterns on substrates. We find that this hybrid material forms lamellae with a half-pitch of approximately 20 nm perpendicular to the lines of a surface corrugation

  2. Particular treatments in Eddy current technique. Application to the control of corrugated tubes

    International Nuclear Information System (INIS)

    1982-11-01

    When the testing of a given product shows that, owing to a particular shape of this product or to its environment, disturbing effects can hide the presence of harmful defects, use must be made of testing artifices or particular treatments enabling an efficient examination to be made. On this score, many eddy current problems are solved by means of the following processes: - use of specific sensors adapted to the geometry of the product, - spectral analysis of the analog results of analyses, - combination of the results of analyses obtained simultaneously at different frequencies (multifrequency techniques). An example of an application is given for corrugated tubes achieved by hollow and helical milling of smooth tubes [fr

  3. Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Urrios, D., E-mail: daniel.navarrourrios@nano.cnr.it [Catalan Institute of Nanoscience and Nanotechnology, Campus UAB, Edifici ICN2, 08193 Bellaterra (Spain); NEST, Istituto Nanoscienze – CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, I-56127 (Italy); Gomis-Bresco, J.; Alzina, F. [Catalan Institute of Nanoscience and Nanotechnology, Campus UAB, Edifici ICN2, 08193 Bellaterra (Spain); El-Jallal, S. [IEMN, Universite de Lille 1, Villeneuve d’Ascq (France); PRILM, Université Moulay Ismail, Faculté des sciences, Meknès (Morocco); Oudich, M.; Pennec, Y.; Djafari-Rouhani, B. [IEMN, Universite de Lille 1, Villeneuve d’Ascq (France); Pitanti, A. [NEST, Istituto Nanoscienze – CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, I-56127 (Italy); Capuj, N. [Depto. Física, Universidad de la Laguna, 38206 (Spain); Tredicucci, A. [NEST, Istituto Nanoscienze – CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, I-56127 (Italy); Dipartimento di Fisica, Universita di Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Griol, A.; Martínez, A. [Nanophotonics Technology Center, Universitat Politècnica de València, Valencia (Spain); Sotomayor Torres, C. M. [Catalan Institute of Nanoscience and Nanotechnology, Campus UAB, Edifici ICN2, 08193 Bellaterra (Spain); Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona (Spain)

    2014-12-15

    We report on the optomechanical properties of a breathing mechanical mode oscillating at 5.5 GHz in a 1D corrugated Si nanobeam. This mode has an experimental single-particle optomechanical coupling rate of |g{sub o,OM}| = 1.8 MHz (|g{sub o,OM}|/2π = 0.3 MHz) and shows strong dynamical back-action effects at room temperature. The geometrical flexibility of the unit-cell would lend itself to further engineering of the cavity region to localize the mode within the full phononic band-gap present at 4 GHz while keeping high g{sub o,OM} values. This would lead to longer lifetimes at cryogenic temperatures, due to the suppression of acoustic leakage.

  4. SPREADING OF A FLUID JET ON THE CORRUGATED SURFACE OF THE STRUCTURED PACKING OF WET SCRUBBERS

    Directory of Open Access Journals (Sweden)

    Gorodilov A.A.

    2014-08-01

    Full Text Available The new packing for wet scrubbers for cooling exhaust gases of furnaces is presented. Spreading features of the fluid jet on the corrugated surface of the proposed packing have been studied. Flow rate of the liquid flowing through slits to the opposite side of the packing element was determined. Several regimes of a fluid flow on the surface of the proposed structured packing were determined. An optimal range of rational flow rates for more intense cooling of exhaust gases is proposed. It was discovered that the range of optimum flow rates may be extended if the surface of the packing element is pre-wetted. The way of increasing the rate of effective interfacial surface area for gas-liquid contact per unit volume of the packing of the scrubber is presented.

  5. Asymptotic freeze-out of the perturbations generated inside a corrugated rarefaction wave

    International Nuclear Information System (INIS)

    Wouchuk, J.G.; Serrano Rodrigo, A.D.

    2004-01-01

    Based on previous work [J. G. Wouchuk and R. Carretero, Phys. Plasmas 10, 4237 (2003)], the conditions of asymptotic freeze-out of the ripples at the tail of a corrugated rarefaction wave are analyzed. The precise location of the freezing-out regions in the space of preshock parameters is tried, and an efficient algorithm for their determination is given. It is seen that asymptotic freeze-out can only happen for gases that have an isentropic exponent γ cr ≅2.2913hellip. It is shown that the late time freeze-out of the ripple perturbations is correlated to the initial tangential velocity profile (at t=0+) inside the expansion fan

  6. Optimization of a Conical Corrugated Antenna Using Multiobjective Heuristics for Radio-Astronomy Applications

    Directory of Open Access Journals (Sweden)

    S. López-Ruiz

    2016-01-01

    Full Text Available This paper presents the design of a tree sections corrugated horn antenna with a modified linear profile, using NURBS, suitable for radio-astronomy applications. The operating band ranges from 4.5 to 8.8 GHz. The aperture efficiency is higher than 84% and the return losses are greater than 20 dB in the whole bandwidth. The antenna optimization has been carried out with multiobjective versions of an evolutionary algorithm (EA and a particle swarm optimization (PSO algorithm. We show that both techniques provide good antenna design, but the experience carried out shows that the results of the evolutionary algorithm outperform the particle swarm results.

  7. ANALYSIS OF LOGISTICS AND SUPPLY CHAIN MANAGEMENT AGILITY IN CORRUGATED BOX INDUSTRY

    Directory of Open Access Journals (Sweden)

    Yosef Daryanto

    2016-04-01

    Full Text Available Several analyses were performed in this case study including the analysis of the business environments and the current supply chain system, which than followed by measurement and comparison of supply chain agility performance indicator. As corrugated box industry work in make/engineer to order system and by considering their competitive situation and uncertain business environment it was concluded that they need agility in their supply chain. The main problem was the unbalance power position with paper supplier that resulting low inbound inventory turns. Focusing on this weakness, two solutions were proposed; those are building higher collaboration with paper suppliers and performing better inventory management by set different inventory control and policy for each inventory class

  8. Theory of the corrugation instability of a piston-driven shock wave.

    Science.gov (United States)

    Bates, J W

    2015-01-01

    We analyze the two-dimensional stability of a shock wave driven by a steadily moving corrugated piston in an inviscid fluid with an arbitrary equation of state. For h≤-1 or h>h(c), where h is the D'yakov parameter and h(c) is the Kontorovich limit, we find that small perturbations on the shock front are unstable and grow--at first quadratically and later linearly--with time. Such instabilities are associated with nonequilibrium fluid states and imply a nonunique solution to the hydrodynamic equations. The above criteria are consistent with instability limits observed in shock-tube experiments involving ionizing and dissociating gases and may have important implications for driven shocks in laser-fusion, astrophysical, and/or detonation studies.

  9. The peeling behaviour of a graphene sheet on a nano-scale corrugated surface

    International Nuclear Information System (INIS)

    Chen, Hao; Chen, Shaohua

    2013-01-01

    The peeling process and average peeling force of a graphene (GE) sheet on a corrugated surface are investigated using molecular dynamics simulation. It is found that the peeling behaviour varies with the substrate surface roughness and the peeling angle. Three kinds of typically peeling behaviours include (a) GE sheet directly passing the valley of the substrate roughness; (b) bouncing off from the substrate; and (c) continuously peeling off similarly to that on a flat substrate. As a result, the average peeling force is strongly dependent of the peeling behaviours. Furthermore, some interesting phenomena are caught, such as partial detaching and partial sliding of GE sheet in the valley of the substrate roughness, which are mainly due to the effects of pre-tension in GE sheet and the reduction of friction resistance. The results in this paper should be useful for the design of nano-film/substrate systems. (paper)

  10. Induced spherococcoid hard wheat

    International Nuclear Information System (INIS)

    Yanev, Sh.

    1981-01-01

    A mutant has been obtained - a spheroccocoid line -through irradiation of hard wheat seed with fast neutrons. It is distinguished by semispherical glumes and smaller grain; the plants have low stem with erect leaves but with shorter spikes and with lesser number of spikelets than those of the initial cultivar. Good productive tillering and resistance to lodging contributed to 23.5% higher yield. The line was superior to the standard and the initial cultivars by 14.2% as regards protein content, and by up to 22.8% - as to flour gluten. It has been successfully used in hybridization producing high-yielding hard wheat lines resistant to lodging, with good technological and other indicators. The possibility stated is of obtaining a spherococcoid mutant in tetraploid (hard) wheat out of the D-genome as well as its being suited to hard wheat breeding to enhance protein content, resistance to lodging, etc. (author)

  11. Hard probes 2006 Asilomar

    CERN Multimedia

    2006-01-01

    "The second international conference on hard and electromagnetic probes of high-energy nuclear collisions was held June 9 to 16, 2006 at the Asilomar Conference grounds in Pacific Grove, California" (photo and 1/2 page)

  12. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  13. Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures

    Directory of Open Access Journals (Sweden)

    Mao-Kuo Wei

    2010-04-01

    Full Text Available In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode.

  14. Effects of corrugation shape on frequency band-gaps for longitudinal wave motion in a periodic elastic layer

    DEFF Research Database (Denmark)

    Sorokin, Vladislav

    2016-01-01

    The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic waveguide. The waveguide may be considered either as an elastic layer with variable thickness or as a rod with variable cross section. As a result, widths and locations of all frequency band-gaps are det......The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic waveguide. The waveguide may be considered either as an elastic layer with variable thickness or as a rod with variable cross section. As a result, widths and locations of all frequency band......, harmonic in the corrugation series. The revealed insights into the mechanism of band-gap formation can be used to predict locations and widths of all frequency band-gaps featured by any corrugation shape. These insights are general and can be valid also for other types of wave motion in periodic structures...

  15. Soft and hard pomerons

    International Nuclear Information System (INIS)

    Maor, Uri; Tel Aviv Univ.

    1995-09-01

    The role of s-channel unitarity screening corrections, calculated in the eikonal approximation, is investigated for soft Pomeron exchange responsible for elastic and diffractive hadron scattering in the high energy limit. We examine the differences between our results and those obtained from the supercritical Pomeron-Regge model with no such corrections. It is shown that screening saturation is attained at different scales for different channels. We then proceed to discuss the new HERA data on hard (PQCD) Pomeron diffractive channels and discuss the relationship between the soft and hard Pomerons and the relevance of our analysis to this problem. (author). 18 refs, 9 figs, 1 tab

  16. Hard exclusive QCD processes

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, W.

    2007-01-15

    Hard exclusive processes in high energy electron proton scattering offer the opportunity to get access to a new generation of parton distributions, the so-called generalized parton distributions (GPDs). This functions provide more detailed informations about the structure of the nucleon than the usual PDFs obtained from DIS. In this work we present a detailed analysis of exclusive processes, especially of hard exclusive meson production. We investigated the influence of exclusive produced mesons on the semi-inclusive production of mesons at fixed target experiments like HERMES. Further we give a detailed analysis of higher order corrections (NLO) for the exclusive production of mesons in a very broad range of kinematics. (orig.)

  17. Hard-hat day

    CERN Multimedia

    2003-01-01

    CERN will be organizing a special information day on Friday, 27th June, designed to promote the wearing of hard hats and ensure that they are worn correctly. A new prevention campaign will also be launched.The event will take place in the hall of the Main Building from 11.30 a.m. to 2.00 p.m., when you will be able to come and try on various models of hard hat, including some of the very latest innovative designs, ask questions and pass on any comments and suggestions.

  18. Three dimensional corrugated organic photovoltaics for building integration; improving the efficiency, oblique angle and diffuse performance of solar cells

    OpenAIRE

    Kettle, Jeff; Bristow, Noel; Sweet, Tracy K. N.; Jenkins, Nick; Benatto, Gisele Alves dos Reis; Jørgensen, Mikkel; Krebs, Frederik C

    2015-01-01

    The lamination of OPV modules to corrugated roof cladding has been undertaken. The 3-dimensional form of the cladding provides three advantages for outdoor OPV deployment; firstly the ‘footprint’ of the solar cell is reduced, which leads to B10% improved power conversion (PCE) efficiency per unit area. Secondly, the oblique angle performance is enhanced, leading to increased output in the early morning and evening. Indoor characterisation showed a 9-fold enhancement in efficiency was obtainab...

  19. Experimental evaluation of the performances of cellulosic pads made out of Kraft and NSSC corrugated papers as evaporative media

    International Nuclear Information System (INIS)

    Barzegar, Mahsa; Layeghi, Mohammad; Ebrahimi, Ghanbar; Hamzeh, Yahya; Khorasani, Manouchehr

    2012-01-01

    Highlights: ► We experimentally evaluated the performances of cellulosic pads. ► A number of experiments have been done in a wind tunnel. ► The results showed that cooling efficiency improves with decrease of air velocity and flute size. ► Water consumption increases with the increase of air velocity. ► Cooling efficiency of various pads was also compared. - Abstract: The purpose of this study was to evaluate the performances of cellulosic pads made out of Kraft and NSSC corrugated papers in three flute sizes, experimentally. A number of experiments have been done in a wind tunnel in order to evaluate the cooling efficiency and water consumption as a function of air velocity. The tests were carried out at three levels of air velocity (1.8, 2.25, and 2.67 ms −1 ) for three flute sizes of Kraft and NSSC corrugated papers (2.5, 3.5, and 4.5 mm). Analysis of the results indicated that cooling efficiency improves with decrease of air velocity and flute size of corrugated papers; however, water consumption increases with the increase of air velocity. The results were compared with each other and it was shown that the cellulosic pad made out of Kraft paper with 2.5 mm flute size has the highest performance (92%) at 1.8 ms −1 air velocity in comparison with the other cellulosic pads.

  20. Trend extraction of rail corrugation measured dynamically based on the relevant low-frequency principal components reconstruction

    International Nuclear Information System (INIS)

    Li, Yanfu; Liu, Hongli; Ma, Ziji

    2016-01-01

    Rail corrugation dynamic measurement techniques are critical to guarantee transport security and guide rail maintenance. During the inspection process, low-frequency trends caused by rail fluctuation are usually superimposed on rail corrugation and seriously affect the assessment of rail maintenance quality. In order to extract and remove the nonlinear and non-stationary trends from original mixed signals, a hybrid model based ensemble empirical mode decomposition (EEMD) and modified principal component analysis (MPCA) is proposed in this paper. Compared with the existing de-trending methods based on EMD, this method first considers low-frequency intrinsic mode functions (IMFs) thought to be underlying trend components that maybe contain some unrelated components, such as white noise and low-frequency signal itself, and proposes to use PCA to accurately extract the pure trends from the IMFs containing multiple components. On the other hand, due to the energy contribution ratio between trends and mixed signals is prior unknown, and the principal components (PCs) decomposed by PCA are arranged in order of energy reduction without considering frequency distribution, the proposed method modifies traditional PCA and just selects relevant low-frequency PCs to reconstruct the trends based on the zero-crossing numbers (ZCN) of each PC. Extensive tests are presented to illustrate the effectiveness of the proposed method. The results show the proposed EEMD-PCA-ZCN is an effective tool for trend extraction of rail corrugation measured dynamically. (paper)

  1. Hard times; Schwere Zeiten

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Markus

    2012-10-02

    The prices of silicon and solar wafers keep dropping. According to market research specialist IMS research, this is the result of weak traditional solar markets and global overcapacities. While many manufacturers are facing hard times, big producers of silicon are continuing to expand.

  2. Hardness of Clustering

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Hardness of Clustering. Both k-means and k-medians intractable (when n and d are both inputs even for k =2). The best known deterministic algorithms. are based on Voronoi partitioning that. takes about time. Need for approximation – “close” to optimal.

  3. Rock-hard coatings

    OpenAIRE

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  4. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  5. Hardness and excitation energy

    Indian Academy of Sciences (India)

    It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the ...

  6. Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.; Zalewski, Bart F; Beck, Benjamin S.

    2014-01-01

    The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power.

  7. Material selection for elastic energy absorption in origami-inspired compliant corrugations

    International Nuclear Information System (INIS)

    Tolman, Sean S; Delimont, Isaac L; Howell, Larry L; Fullwood, David T

    2014-01-01

    Elastic absorption of kinetic energy and distribution of impact forces are required in many applications. Recent attention to the potential for using origami in engineering may provide new methods for energy absorption and force distribution. A three-stage strategy is presented for selecting materials for such origami-inspired designs that can deform to achieve a desired motion without yielding, absorb elastic strain energy, and be lightweight or cost effective. Two material indices are derived to meet these requirements based on compliant mechanism theory. Finite element analysis is used to investigate the effects of the material stiffness in the Miura-ori tessellation on its energy absorption and force distribution characteristics compared with a triangular wave corrugation. An example is presented of how the method can be used to select a material for a general energy absorption application of the Miura-ori. Whereas the focus of this study is the Miura-ori tessellation, the methods developed can be applied to other tessellated patterns used in energy absorbing or force distribution applications. (paper)

  8. Disinfection of corrugated tubing by ozone and ultrasound in mechanically ventilated tracheostomized patients.

    Science.gov (United States)

    Lopes, M S; Ferreira, J R F; da Silva, K B; de Oliveira Bacelar Simplício, I; de Lima, C J; Fernandes, A B

    2015-08-01

    Medical equipment coming into contact with non-intact skin or mucous membranes is classified as semi-critical material. This equipment requires at least high-level disinfection, as the major risk in all invasive procedures is the introduction of pathogenic microbes causing hospital-associated infections. To evaluate the capacity of ozone gas and ultrasound to disinfect semi-critical, thermally sensitive material. Used corrugated tubing from mechanically ventilated tracheostomized patients in the intensive care unit was obtained. Enzymatic detergent was applied for 15min before different disinfection techniques were evaluated as follows: Group A (0.2% peracetic acid); Group B (ultrasound for 60min); Group C (application of ozone gas at a concentration of 33mg/L for 15min); Group D (ultrasound for 30min and ozone for 15min); Group E (ultrasound for 60min and ozone for 15min). Application of ultrasound for 60min reduced the level of microbial contamination by 4 log10, whereas ozone alone and the other two combined techniques (ultrasound and ozone) and the peracetic acid reduced the level of microbial contamination by 5 log10. Ozone was the most advantageous technique taking into consideration processing time, ease of use, effectiveness, and cost. The use of ozone gas to disinfect semi-critical material proved to be technically feasible and extremely promising. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  9. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    International Nuclear Information System (INIS)

    Ginzburg, N. S.; Zaslavsky, V. Yu.; Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-01-01

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam

  10. High-power corrugates waveguide components for mm-wave fusion heating systems

    International Nuclear Information System (INIS)

    Olstad, R.A.; Doane, J.L.; Moeller, C.P.; O'Neill, R.C.; Di Martino, M.

    1996-10-01

    Considerable progress has been made over the last year in the U.S., Japan, Russia, and Europe in developing high power long pulse gyrotrons for fusion plasma heating and current drive. These advanced gyrotrons typically operate at a frequency in the range 82 GHz to 170 GHz at nearly megawatt power levels for pulse lengths up to 5 s. To take advantage of these new microwave sources for fusion research, new and improved transmission line components are needed to reliably transmit microwave power to plasmas with minimal losses. Over the last year, General Atomics and collaborating companies (Spinner GmbH in Europe and Toshiba Corporation in Japan) have developed a wide variety of new components which meet the demanding power, pulse length, frequency, and vacuum requirements for effective utilization of the new generation of gyrotrons. These components include low-loss straight corrugated waveguides, miter bends, miter bend polarizers, power monitors, waveguide bellows, de breaks, waveguide switches, dummy loads, and distributed windows. These components have been developed with several different waveguide diameters (32, 64, and 89 mm) and frequency ranges (82 GHz to 170 GHz). This paper describes the design requirements of selected components and their calculated and measured performance characteristics

  11. Spontaneous acoustic emission of a corrugated shock wave in the presence of a reflecting surface

    International Nuclear Information System (INIS)

    Wouchuk, J.G.; Lopez Cavada, J.

    2004-01-01

    An analytic model to study perturbation evolution in the space between a corrugated shock and a piston surface is presented. The conditions for stable oscillation patterns are obtained by looking at the poles of the exact Laplace transform. It is seen that besides the standard D'yakov-Kontorovich (DK) mode of oscillation, the shock surface can exhibit an additional finite set of discrete frequencies, due to the interaction with the piston which reflects sound waves from behind. The additional eigenmodes are excited when the shock is launched at t=0 + . The first eigenmode (the DK mode) is always present, if the Hugoniot curve has the correct slope in the V-p plane. However, the additional frequencies could be excited for strong enough shocks. The predictions of the model are verified for particular cases by studying a van der Waals gas, as in the work of Bates and Montgomery [Phys. Fluids 11, 462 (1999); Phys. Rev. Lett. 84, 1180 (2000)]. Only acoustic emission modes are considered

  12. The Fluid-Solid Interaction Dynamics between Underwater Explosion Bubble and Corrugated Sandwich Plate

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2016-01-01

    Full Text Available Lightweight sandwich structures with highly porous 2D cores or 3D (three-dimensional periodic cores can effectively withstand underwater explosion load. In most of the previous studies of sandwich structure antiblast dynamics, the underwater explosion (UNDEX bubble phase was neglected. As the UNDEX bubble load is one of the severest damage sources that may lead to structure large plastic deformation and crevasses failure, the failure mechanisms of sandwich structures might not be accurate if only shock wave is considered. In this paper, detailed 3D finite element (FE numerical models of UNDEX bubble-LCSP (lightweight corrugated sandwich plates interaction are developed by using MSC.Dytran. Upon the validated FE model, the bubble shape, impact pressure, and fluid field velocities for different stand-off distances are studied. Based on numerical results, the failure modes of LCSP and the whole damage process are obtained. It is demonstrated that the UNDEX bubble collapse jet local load plays a more significant role than the UNDEX shock wave load especially in near-field underwater explosion.

  13. Quasi-phase-matched acceleration of electrons in a corrugated plasma channel

    Directory of Open Access Journals (Sweden)

    S. J. Yoon

    2012-08-01

    Full Text Available A laser pulse propagating in a corrugated plasma channel is composed of spatial harmonics whose phase velocities can be subluminal. The phase velocity of a spatial harmonic can be matched to the speed of a relativistic electron resulting in direct acceleration by the guided laser field in a plasma waveguide and linear energy gain over the interaction length. Here we examine the fully self-consistent interaction of the laser pulse and electron beam using particle-in-cell (PIC simulations. For low electron beam densities, we find that the ponderomotive force of the laser pulse pushes plasma channel electrons towards the propagation axis, which deflects the beam electrons. When the beam density is high, the space charge force of the beam drives the channel electrons off axis, providing collimation of the beam. In addition, we consider a ramped density profile for lowering the threshold energy for trapping in a subluminal spatial harmonic. By using a density ramp, the trapping energy for a normalized vector potential of a_{0}=0.1 is reduced from a relativistic factor γ_{0}=170 to γ_{0}=20.

  14. Natural Fiber Reinforced Composites: A Review on Potential for Corrugated Core of Sandwich Structures

    Directory of Open Access Journals (Sweden)

    Jusoh A.F.

    2016-01-01

    Full Text Available Natural fibers, characterized by sustainability, have gained a considerable attention in recent years, due to their advantages of environmental acceptability and commercial viability. In this paper, the characterization of natural fibers including the mechanical properties and alkalization of fibers is presented. Most recent study had gone through the mercerization process to improve the toughness of natural fibers; which is a well-known hydrophilic material. Traditional reinforcement method was commonly used to fabricate a natural fiber composite such as hand lay-up and mold press due to its convenience in terms of time and cost. Also, different kind of matrix material used in different kind of natural fibers gave high impact on the tensile and flexural test result. By selecting appropriate chemical treatment, matrix material and fabrication method, the tensile and flexural test gives different results and findings. As most researchers tend to use metals to create corrugated cores for sandwich structure, it is possible to develop this structure using natural fibers such as kenaf, wood dust, and other natural fibers.

  15. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.

    Science.gov (United States)

    Copic, Davor; Hart, A John

    2015-04-22

    High performance active materials are of rapidly growing interest for applications including soft robotics, microfluidic systems, and morphing composites. In particular, paraffin wax has been used to actuate miniature pumps, solenoid valves, and composite fibers, yet its deployment is typically limited by the need for external volume constraint. We demonstrate that compact, high-performance paraffin actuators can be made by confining paraffin within vertically aligned carbon nanotube (CNT) films. This large-stroke vertical actuation is enabled by strong capillary interaction between paraffin and CNTs and by engineering the CNT morphology by mechanical compression before capillary-driven infiltration of the molten paraffin. The maximum actuation strain of the corrugated CNT-paraffin films (∼0.02-0.2) is comparable to natural muscle, yet the maximum stress is limited to ∼10 kPa by collapse of the CNT network. We also show how a CNT-paraffin film can serve as a self-activating thermal interface that closes a gap when it is heated. These new CNT-paraffin film actuators could be produced by large-area CNT growth, infiltration, and lamination methods, and are attractive for use in miniature systems due to their self-contained design.

  16. A Study of Aerodynamics in Kevlar-Wall Test Sections

    OpenAIRE

    Brown, Kenneth Alexander

    2014-01-01

    This study is undertaken to characterize the aerodynamic behavior of Kevlar-wall test sections and specifically those containing two-dimensional, lifting models. The performance of the Kevlar-wall test section can be evaluated against the standard of the hard-wall test section, which in the case of the Stability Wind Tunnel (SWT) at Virginia Tech can be alternately installed or replaced by the Kevlar-wall test section. As a first step towards the evaluation of the Kevlar-wall test section aer...

  17. Hard Copy Market Overview

    Science.gov (United States)

    Testan, Peter R.

    1987-04-01

    A number of Color Hard Copy (CHC) market drivers are currently indicating strong growth in the use of CHC technologies for the business graphics marketplace. These market drivers relate to product, software, color monitors and color copiers. The use of color in business graphics allows more information to be relayed than is normally the case in a monochrome format. The communicative powers of full-color computer generated output in the business graphics application area will continue to induce end users to desire and require color in their future applications. A number of color hard copy technologies will be utilized in the presentation graphics arena. Thermal transfer, ink jet, photographic and electrophotographic technologies are all expected to be utilized in the business graphics presentation application area in the future. Since the end of 1984, the availability of color application software packages has grown significantly. Sales revenue generated by business graphics software is expected to grow at a compound annual growth rate of just over 40 percent to 1990. Increased availability of packages to allow the integration of text and graphics is expected. Currently, the latest versions of page description languages such as Postscript, Interpress and DDL all support color output. The use of color monitors will also drive the demand for color hard copy in the business graphics market place. The availability of higher resolution screens is allowing color monitors to be easily used for both text and graphics applications in the office environment. During 1987, the sales of color monitors are expected to surpass the sales of monochrome monitors. Another major color hard copy market driver will be the color copier. In order to take advantage of the communications power of computer generated color output, multiple copies are required for distribution. Product introductions of a new generation of color copiers is now underway with additional introductions expected

  18. Hard Electromagnetic Processes

    International Nuclear Information System (INIS)

    Richard, F.

    1987-09-01

    Among hard electromagnetic processes, I will use the most recent data and focus on quantitative test of QCD. More specifically, I will retain two items: - hadroproduction of direct photons, - Drell-Yan. In addition, I will briefly discuss a recent analysis of ISR data obtained with AFS (Axial Field Spectrometer) which sheds a new light on the e/π puzzle at low P T

  19. First wall

    International Nuclear Information System (INIS)

    Omori, Junji.

    1991-01-01

    Graphite and C/C composite are used recently for the first wall of a thermonuclear device since materials with small atom number have great impurity allowable capacity for plasmas. Among them, those materials having high thermal conduction are generally anisotropic and have an upper limit for the thickness upon production. Then, anisotropic materials are used for a heat receiving plate, such that the surfaces of the heat receiving plate on the side of lower heat conductivity are brought into contact with each other, and the side of higher thermal conductivity is arranged in parallel with small radius direction and the toroidal direction of the thermonuclear device. As a result, the incident heat on an edge portion can be transferred rapidly to the heat receiving plate, which can suppress the temperature elevation at the surface to thereby reduce the amount of abrasion. Since the heat expansion coefficient of the anisotropic materials is great in the direction of the lower heat conductivity and small in the direction of the higher heat conductivity, the gradient of a thermal load distribution in the direction of the higher heat expansion coefficient is small, and occurrence of thermal stresses due to temperature difference is reduced, to improve the reliability. (N.H.)

  20. Falling walls

    CERN Multimedia

    It was 20 years ago this week that the Berlin wall was opened for the first time since its construction began in 1961. Although the signs of a thaw had been in the air for some time, few predicted the speed of the change that would ensue. As members of the scientific community, we can take a moment to reflect on the role our field played in bringing East and West together. CERN’s collaboration with the East, primarily through links with the Joint Institute for Nuclear Research, JINR, in Dubna, Russia, is well documented. Less well known, however, is the role CERN played in bringing the scientists of East and West Germany together. As the Iron curtain was going up, particle physicists on both sides were already creating the conditions that would allow it to be torn down. Cold war historian Thomas Stange tells the story in his 2002 CERN Courier article. It was my privilege to be in Berlin on Monday, the anniversary of the wall’s opening, to take part in a conference entitled &lsquo...

  1. An air-based corrugated cavity-receiver for solar parabolic trough concentrators

    International Nuclear Information System (INIS)

    Bader, Roman; Pedretti, Andrea; Barbato, Maurizio; Steinfeld, Aldo

    2015-01-01

    Highlights: • We analyze a novel tubular cavity-receiver for solar parabolic trough collectors. • Four-fold solar concentration ratio is reached compared to conventional receivers. • Efficient operation at up to 500 °C is possible. • The pumping power requirement is found to be acceptably low. - Abstract: A tubular cavity-receiver that uses air as the heat transfer fluid is evaluated numerically using a validated heat transfer model. The receiver is designed for use on a large-span (9 m net concentrator aperture width) solar parabolic trough concentrator. Through the combination of a parabolic primary concentrator with a nonimaging secondary concentrator, the collector reaches a solar concentration ratio of 97.5. Four different receiver configurations are considered, with smooth or V-corrugated absorber tube and single- or double-glazed aperture window. The collector’s performance is characterized by its optical efficiency and heat loss. The optical efficiency is determined with the Monte Carlo ray-tracing method. Radiative heat exchange inside the receiver is calculated with the net radiation method. The 2D steady-state energy equation, which couples conductive, convective, and radiative heat transfer, is solved for the solid domains of the receiver cross-section, using finite-volume techniques. Simulations for Sevilla/Spain at the summer solstice at solar noon (direct normal solar irradiance: 847 W m −2 , solar incidence angle: 13.9°) yield collector efficiencies between 60% and 65% at a heat transfer fluid temperature of 125 °C and between 37% and 42% at 500 °C, depending on the receiver configuration. The optical losses amount to more than 30% of the incident solar radiation and constitute the largest source of energy loss. For a 200 m long collector module operated between 300 and 500 °C, the isentropic pumping power required to pump the HTF through the receiver is between 11 and 17 kW

  2. An InP/Si heterojunction photodiode fabricated by self-aligned corrugated epitaxial lateral overgrowth

    International Nuclear Information System (INIS)

    Sun, Y. T.; Omanakuttan, G.; Lourdudoss, S.

    2015-01-01

    An n-InP/p-Si heterojunction photodiode fabricated by corrugated epitaxial lateral overgrowth (CELOG) method is presented. N-InP/p-Si heterojunction has been achieved from a suitable pattern containing circular shaped openings in a triangular lattice on the InP seed layer on p-Si substrate and subsequent CELOG of completely coalesced n-InP. To avoid current path through the seed layer in the final photodiode, semi-insulating InP:Fe was grown with adequate thickness prior to n-InP growth in a low pressure hydride vapor phase epitaxy reactor. The n-InP/p-Si heterointerface was analyzed by scanning electron microscopy and Raman spectroscopy. Room temperature cross-sectional photoluminescence (PL) mapping illustrates the defect reduction effect in InP grown on Si by CELOG method. The InP PL intensity measured above the InP/Si heterojunction is comparable to that of InP grown on a native planar substrate indicating low interface defect density of CELOG InP despite of 8% lattice mismatch with Si. The processed n-InP/p-Si heterojunction photodiodes show diode characteristics from the current-voltage (I-V) measurements with a dark current density of 0.324 mA/cm 2 at a reverse voltage of −1 V. Under the illumination of AM1.5 conditions, the InP/Si heterojunction photodiode exhibited photovoltaic effect with an open circuit voltage of 180 mV, a short circuit current density of 1.89 mA/cm 2 , an external quantum efficiency of 4.3%, and an internal quantum efficiency of 6.4%. This demonstration of epitaxially grown InP/Si heterojunction photodiode will open the door for low cost and high efficiency solar cells and photonic integration of III-Vs on silicon

  3. White-Light Emission and Structural Distortion in New Corrugated Two-Dimensional Lead Bromide Perovskites.

    Science.gov (United States)

    Mao, Lingling; Wu, Yilei; Stoumpos, Constantinos C; Wasielewski, Michael R; Kanatzidis, Mercouri G

    2017-03-29

    Hybrid inorganic-organic perovskites are developing rapidly as high performance semiconductors. Recently, two-dimensional (2D) perovskites were found to have white-light, broadband emission in the visible range that was attributed mainly to the role of self-trapped excitons (STEs). Here, we describe three new 2D lead bromide perovskites incorporating a series of bifunctional ammonium dications as templates which also emit white light: (1) α-(DMEN)PbBr 4 (DMEN = 2-(dimethylamino)ethylamine), which adopts a unique corrugated layered structure in space group Pbca with unit cell a = 18.901(4) Å, b = 11.782(2) Å, and c = 23.680(5) Å; (2) (DMAPA)PbBr 4 (DMAPA = 3-(dimethylamino)-1-propylamine), which crystallizes in P2 1 /c with a = 10.717(2) Å, b = 11.735(2) Å, c = 12.127(2) Å, and β = 111.53(3)°; and (3) (DMABA)PbBr 4 (DMABA = 4-dimethylaminobutylamine), which adopts Aba2 with a = 41.685(8) Å, b = 23.962(5) Å, and c = 12.000(2) Å. Photoluminescence (PL) studies show a correlation between the distortion of the "PbBr 6 " octahedron in the 2D layer and the broadening of PL emission, with the most distorted structure having the broadest emission (183 nm full width at half-maximum) and longest lifetime (τ avg = 1.39 ns). The most distorted member α-(DMEN)PbBr 4 exhibits white-light emission with a color rendering index (CRI) of 73 which is similar to a fluorescent light source and correlated color temperature (CCT) of 7863 K, producing "cold" white light.

  4. Theory of potentiostatic current transients for coupled catalytic reaction at random corrugated fractal electrode

    International Nuclear Information System (INIS)

    Jha, Shailendra K.; Kant, Rama

    2010-01-01

    We developed a mathematical model for the first order homogeneous catalytic chemical reaction coupled with an electron transfer (EC') on a rough working electrode. Results are obtained for the various roughness models of electrode corrugations, viz., (i) roughness as an exact periodic function, (ii) roughness as a random function with known statistical properties, and (iii) roughness as a random function with statistical self-affine fractality over a finite range of length scales. Method of Green's function is used in the formulation to obtain second-order perturbation (in roughness profile) expressions for the concentration, the local current density and the current transients. A general operator structure between these quantities and arbitrary roughness profile is emphasized. The statistically averaged (randomly rough) electrode response is obtained by an ensemble averaging over all possible surface configurations. An elegant mathematical formula between the average electrochemical current transient and surface structure factor or power-spectrum of roughness is obtained. This formula is used to obtain an explicit equation for the current on an approximately self-affine (or realistic) fractal electrode with a limited range of length scales of irregularities. This description of realistic fractal is obtained by cutoff power law power-spectrum of roughness. The realistic fractal power-spectrum consists of four physical characteristics, viz., the fractal dimension (D H ), lower (l) and upper (L) cutoff length scales of fractality and a proportionality factor (μ), which is related to the topothesy or strength of fractality. Numerical calculations are performed on final results to understand the effect of catalytic reaction and fractal morphological characteristics on potentiostatic current transients.

  5. Reversal of neuromuscular block with sugammadex: a comparison of the corrugator supercilii and adductor pollicis muscles in a randomized dose-response study.

    Science.gov (United States)

    Yamamoto, S; Yamamoto, Y; Kitajima, O; Maeda, T; Suzuki, T

    2015-08-01

    Neuromuscular monitoring using the corrugator supercilii muscle is associated with a number of challenges. The aim of this study was to assess reversal of a rocuronium-induced neuromuscular blockade with sugammadex according to monitoring either using the corrugator supercilii muscle or the adductor pollicis muscle. We hypothesized that a larger dose of sugammadex would be required to obtain a train-of-four (TOF) ratio of 1.0 with the corrugator supercilii muscle than with the adductor pollicis muscle. Forty patients aged 20-60 years and 40 patients aged ≥ 70 years were enrolled. After induction of anesthesia, we recorded the corrugator supercilii muscle response to facial nerve stimulation and the adductor pollicis muscle response to ulnar nerve stimulation using acceleromyography. All patients received 1 mg/kg rocuronium. When the first twitch (T1) of TOF recovered to 10% of control values at the corrugator supercilii, rocuronium infusion was commenced to maintain a T1 of 10% of the control at the corrugator supercilii. Immediately after discontinuation of rocuronium infusion, 2 mg/kg or 4 mg/kg of sugammadex was administered. The time for recovery to a TOF ratio of 1.0 and the number of patients not reaching a TOF ratio of 1.0 by 5 min at each dose and muscle was recorded. When neuromuscular block at the corrugator supercilii was maintained at a T1 of 10% of control, that at the adductor pollicis was deep (post-tetanic count ≤ 5). Sugammadex 4 mg/kg completely antagonized neuromuscular block at both muscles within 5 min. The time to a TOF ratio of 1.0 at the adductor pollicis was significantly longer in the group ≥ 70 years than the group 20-60 years (mean (SD): 178 (42.8) s vs. 120 (9.4) s, P sugammadex reversed neuromuscular blockade at the corrugator supercilii but not at the adductor pollicis, with 10 patients in the group 20-60 years and 8 patients in the group ≥ 70 years requiring an additional sugammadex (P

  6. KEMAMPUAN GENTENG PLASTIK BERGELOMBANG (CORRUGATED PLASTIC SEBAGAI BIOFILTER PARTIKEL AMONIAK DAN BAHAN ORGANIK DI MEDIA BUDIDAYA DAN LIMBAH CAIR BUDIDAYA IKAN (Performance of Corrugated Plastic as Biofilter of Ammonia Particle and Organic Material

    Directory of Open Access Journals (Sweden)

    Muslim Muslim

    2010-07-01

    Full Text Available ABSTRAK Pertumbuhan budidaya ikan dalam beberapa dekade ini berkembang sangat pesat, hal ini karena permintaan akan ikan meningkat. Meningkatnya kegiatan budidaya ikan selalu diiringi dengan meningkatnya limbah yang dihasilkan. Hal ini akan sangat cepat berpengaruh bila sistem budidaya yang dipakai adalah semi intesif atau intensif. Limbah tersebut harus segera dihilangkan atau dikurangi, karena akan berdampak pada ikan yang dibudidaya dan lingkungan seperti sungai dan laut. Tujuan penelitian ini adalah ingin mengetahui kemampuan genteng plastik bergelombang mengurangi limbah yang dihasilkan budidaya ikan yaitu Total Suspended Sediment (TSS, Suspended Sediment (SS, amoniak dan bahan organik (COD. Dari hasil penelitian diperoleh bahwa air limbah budidaya ikan yang mengandung TSS, SS, amoniak dan bahan organik setelah dilewatkan dengan genteng plastik bergelombang konsentrasinya menurun dengan tingkat efisiensi pengurangan yang terjadi di dalam kolam ikan dan di luar kolam ikan adalah sebagai berikut: 74,51% dan 54,42% (TSS; 39,20% dan 49,12% (SS; 19,82% dan 14,2% (amoniak; dan 24,82% dan 22,47% (COD. Ternyata genteng plastik bergelombang mempunyai tingkat pengurangan (g/m3/hr dan tingkat pengurangan spesifik (mg/m2/hr terhadap kandungan amoniak lebih efektif bila dibandingkan dengan material lain seperti plastic rolls, scrub pads, pipa PVC dan lain sebagainya.   ABSTRACT Aquaculture has been developing rapidly during the last few decades; it is due to the increase of fish demand. Increasing aquaculture activities especially with semi-intensive and intensive system have significant effect on waste production, which has to be removed or to be reduced quickly because will effect on fish in rearing tank and environment when through away to environment such as river and sea. The objectives of this study were to know the capability of corrugated plastic to remove or to reduce wastes content produced by aquaculture activities, i.e, Total Suspended

  7. Domain wall engineering through exchange bias

    International Nuclear Information System (INIS)

    Albisetti, E.; Petti, D.

    2016-01-01

    The control of the structure and position of magnetic domain walls is at the basis of the development of different magnetic devices and architectures. Several nanofabrication techniques have been proposed to geometrically confine and shape domain wall structures; however, a fine tuning of the position and micromagnetic configuration is hardly achieved, especially in continuous films. This work shows that, by controlling the unidirectional anisotropy of a continuous ferromagnetic film through exchange bias, domain walls whose spin arrangement is generally not favored by dipolar and exchange interactions can be created. Micromagnetic simulations reveal that the domain wall width, position and profile can be tuned by establishing an abrupt change in the direction and magnitude of the exchange bias field set in the system. - Highlights: • Micromagnetic simulations study domain walls in exchange biased thin films. • Novel domain wall configurations can be stabilized via exchange bias. • Domain walls nucleate at the boundary of regions with different exchange bias. • Domain wall width and spin profile are controlled by tuning the exchange bias.

  8. Flexible Engineering Structures from the Corrugated Metal Sheets - Comparison of Costs of Solutions used in the Road Building

    Science.gov (United States)

    Ołdakowska, E.

    2017-11-01

    The flexible structures from the corrugated metal sheets are used in particular in the road building, especially as passages for animals. Easy and quick assembly, as well as lower realization costs when compared to the traditional solutions increase interest in such structures. Availability and variety of systems allows for searching for solutions which are the best and optimal in the economical range. The article presents the comparison of costs of the basic materials used in various systems of flexible structures from the corrugated metal sheets. In order to determine the costs of the material solutions the data for two systems used in Poland (for construction of the upper passages for animals) since 2008 have been used. The cost estimation for the basic materials required for realization of 1 m2 of the flexible structure from the corrugated steel sheets have been prepared with use of prices obtained directly from the Polish contractors and manufacturers, as well as process included in the quarterly information (Sekocenbud). The difference of prices of materials available on the market allows the investor for selecting the structure depending on the needs and financial possibilities, as well as for achieving some savings. The savings in case of purchasing sheets of identical parameters (thickness, profile characteristics) are from approx. 4% to 8% per 1 m2 of sheet. The connectors in form of bolts M20 cl. 8.8 of various lengths are an expense from 3.00 PLN to 3.50 PLN. Those values may seem low, but taking into consideration amounts connected with construction of many square meters of structure they may become very important factor in the total investment costs.

  9. Revisiting the definition of local hardness and hardness kernel.

    Science.gov (United States)

    Polanco-Ramírez, Carlos A; Franco-Pérez, Marco; Carmona-Espíndola, Javier; Gázquez, José L; Ayers, Paul W

    2017-05-17

    An analysis of the hardness kernel and local hardness is performed to propose new definitions for these quantities that follow a similar pattern to the one that characterizes the quantities associated with softness, that is, we have derived new definitions for which the integral of the hardness kernel over the whole space of one of the variables leads to local hardness, and the integral of local hardness over the whole space leads to global hardness. A basic aspect of the present approach is that global hardness keeps its identity as the second derivative of energy with respect to the number of electrons. Local hardness thus obtained depends on the first and second derivatives of energy and electron density with respect to the number of electrons. When these derivatives are approximated by a smooth quadratic interpolation of energy, the expression for local hardness reduces to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba. However, when one combines the first directional derivatives with smooth second derivatives one finds additional terms that allow one to differentiate local hardness for electrophilic attack from the one for nucleophilic attack. Numerical results related to electrophilic attacks on substituted pyridines, substituted benzenes and substituted ethenes are presented to show the overall performance of the new definition.

  10. Hard and Soft Governance

    DEFF Research Database (Denmark)

    Moos, Lejf

    2009-01-01

    of Denmark, and finally the third layer: the leadership used in Danish schools. The use of 'soft governance' is shifting the focus of governance and leadership from decisions towards influence and power and thus shifting the focus of the processes from the decision-making itself towards more focus......The governance and leadership at transnational, national and school level seem to be converging into a number of isomorphic forms as we see a tendency towards substituting 'hard' forms of governance, that are legally binding, with 'soft' forms based on persuasion and advice. This article analyses...... and discusses governance forms at several levels. The first layer is the global: the methods of 'soft governance' that are being utilised by transnational agencies. The second layer is the national and local: the shift in national and local governance seen in many countries, but here demonstrated in the case...

  11. Zirconium nitride hard coatings

    International Nuclear Information System (INIS)

    Roman, Daiane; Amorim, Cintia Lugnani Gomes de; Soares, Gabriel Vieira; Figueroa, Carlos Alejandro; Baumvol, Israel Jacob Rabin; Basso, Rodrigo Leonardo de Oliveira

    2010-01-01

    Zirconium nitride (ZrN) nanometric films were deposited onto different substrates, in order to study the surface crystalline microstructure and also to investigate the electrochemical behavior to obtain a better composition that minimizes corrosion reactions. The coatings were produced by physical vapor deposition (PVD). The influence of the nitrogen partial pressure, deposition time and temperature over the surface properties was studied. Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and corrosion experiments were performed to characterize the ZrN hard coatings. The ZrN films properties and microstructure changes according to the deposition parameters. The corrosion resistance increases with temperature used in the films deposition. Corrosion tests show that ZrN coating deposited by PVD onto titanium substrate can improve the corrosion resistance. (author)

  12. Experimental investigation of laminar flow of viscous oil through a circular tube having integral axial corrugation roughness and fitted with twisted tapes with oblique teeth

    Science.gov (United States)

    Pal, Sagnik; Saha, Sujoy Kumar

    2015-08-01

    The experimental friction factor and Nusselt number data for laminar flow of viscous oil through a circular duct having integral axial corrugation roughness and fitted with twisted tapes with oblique teeth have been presented. Predictive friction factor and Nusselt number correlations have also been presented. The thermohydraulic performance has been evaluated. The major findings of this experimental investigation are that the twisted tapes with oblique teeth in combination with integral axial corrugation roughness perform significantly better than the individual enhancement technique acting alone for laminar flow through a circular duct up to a certain value of fin parameter.

  13. Reflection and refraction of elastic waves at a corrugated interface in a bi-material transversely isotropic full-space

    International Nuclear Information System (INIS)

    Shad-Manamen, N.; Eskandari-Ghadi, M.

    2008-01-01

    The existing theory for wave propagation through a soil layer are not compatible with the real soil layers because in the theory the layers are flat and the sub-layers are parallel, while in real the soil layers are not flat and they may not be parallel. Thus, wave propagations through a corrugated interface are so important. In this paper, a two dimensional SH-wave propagation through a corrugated interface between two linear transversely isotropic half-spaces is assessed. In order to do this, Lord Rayleigh's method is accepted to express the non-flat surface by a Fourier series. In this way, the amplitude of the reflected and transmitted waves is analytically determined in terms of the incident SH-wave amplitude. It is shown that except for the regular reflected and refracted waves, some irregular reflected and refracted waves are exist, and the amplitudes of these waves vary in terms of the angle and frequency of incident wave, equation of surface, and the material properties of the domains. The numerical computations for some cases of different amplitude/wave-length ratio of the interface are done. This work is an extension of Asano's paper (1960) for a more complicated interface, where more non-zero coefficients are considered in expressing the equation of surface in the form of Fourier series. The analytical results for some simpler case of isotropic domain are collapsed on Asano's results (1960). In addition, the numerical evaluation is in good agreement with Asano's.

  14. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    Science.gov (United States)

    Irshad, Wasim

    detail and have proved pivotal to this work. The second part of the dissertation focuses on the Liquid Metal Droplet RF-MEMS. A novel tunable RF MEMS resonator that is based upon electrostatic control over the morphology of a liquid metal droplet (LMD) is conceived. We demonstrate an LMD evanescent-mode cavity resonator that simultaneously achieves wide analog tuning from 12 to 18 GHz with a measured quality factor of 1400-1840. A droplet of 250-mum diameter is utilized and the applied bias is limited to 100 V. This device operates on a principle called Electro-Wetting On Dielectric (EWOD). The liquid metal employed is a non-toxic eutectic alloy of Gallium, Indium and Tin known as Galinstan. This device also exploits interfacial surface energy and viscous body forces that dominate at nanoliter scale. We then apply our Liquid Metal Droplet (LMD) RF-MEMS architecture to demonstrate a continuously tunable electrostatic Ku-Band Filter. A 2-pole bandpass filter with measured insertion loss of less than 0.4dB and 3dB FBW of 3.4% is achieved using a Galinstan droplet of 250mum diameter and bias limited to 100V. We demonstrate that the LMD is insensitive to gravity by performing inversion and tilt experiments. In addition, we study its thermal tolerance by subjecting the LMD up to 150° C. The third part of the dissertation is dedicated to the Micro-Corrugated Diaphragm (MCD) RF-MEMS. We present an evanescent-mode cavity bandpass filter with state-of-the-art RF performance metrics like 4:1 tuning ratio from 5 to 20 GHz with less than 2dB insertion loss and 2-6% 3dB bandwidth. Micro-Corrugated Diaphragm (MCD) is a novel electrostatic MEMS design specifically engineered to provide large-scale analog deflections necessary for such continuous and wide tunable filtering with very high quality factor. We demonstrate a 1.25mm radius and 2mum thick Gold MCD which provides 30mum total deflection with nearly 60% analog range. We also present a detailed and systematic MCD design

  15. Effect of cell wall characteristics on algae nutrient digestibility in Nile tilapia (Oreochromis niloticus) and African catfish (Clarus gariepinus)

    NARCIS (Netherlands)

    Teuling, Emma; Schrama, Johan W.; Gruppen, Harry; Wierenga, Peter A.

    2017-01-01

    This study aimed to assess the effect of cell wall hardness and fish species on digestibility of unicellular sources. The gross composition, and the composition and cell wall hardness of the sources were determined for four sources. These were 3 microalgae species (Chlorella vulgaris, Scenedesmus

  16. Janka hardness using nonstandard specimens

    Science.gov (United States)

    David W. Green; Marshall Begel; William Nelson

    2006-01-01

    Janka hardness determined on 1.5- by 3.5-in. specimens (2×4s) was found to be equivalent to that determined using the 2- by 2-in. specimen specified in ASTM D 143. Data are presented on the relationship between Janka hardness and the strength of clear wood. Analysis of historical data determined using standard specimens indicated no difference between side hardness...

  17. 2TB hard disk drive

    CERN Multimedia

    This particular object was used up until 2012 in the Data Centre. It slots into one of the Disk Server trays. Hard disks were invented in the 1950s. They started as large disks up to 20 inches in diameter holding just a few megabytes (link is external). They were originally called "fixed disks" or "Winchesters" (a code name used for a popular IBM product). They later became known as "hard disks" to distinguish them from "floppy disks (link is external)." Hard disks have a hard platter that holds the magnetic medium, as opposed to the flexible plastic film found in tapes and floppies.

  18. Hard processes. Vol. 1

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Khoze, V.A.; Lipatov, L.N.

    1984-01-01

    Deep inelastic (hard) processes are now at the epicenter of modern high-energy physics. These processes are governed by short-distance dynamics, which reveals the intrinsic structure of elementary particles. The theory of deep inelastic processes is now sufficiently well settled. The authors' aim was to give an effective tool to theoreticians and experimentalists who are engaged in high-energy physics. This book is intended primarily for physicists who are only beginning to study the field. To read the book, one should be acquainted with the Feynman diagram technique and with some particular topics from elementary particle theory (symmetries, dispersion relations, Regge pole theory, etc.). Theoretical consideration of deep inelastic processes is now based on quantum chromodynamics (QCD). At the same time, analysis of relevant physical phenomena demands a synthesis of QCD notions (quarks, gluons) with certain empirical characteristics. Therefore, the phenomenological approaches presented are a necessary stage in a study of this range of phenomena which should undoubtedly be followed by a detailed description based on QCD and electroweak theory. The authors were naturally unable to dwell on experimental data accumulated during the past decade of intensive investigations. Priority was given to results which allow a direct comparison with theoretical predictions. (Auth.)

  19. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V. (GVSt), Herne (Germany)

    2015-07-01

    International the coal market in 2014 was the first time in a long time in a period of stagnation. In Germany, the coal consumption decreased even significantly, mainly due to the decrease in power generation. Here the national energy transition has now been noticable affected negative for coal use. The political guidances can expect a further significant downward movement for the future. In the present phase-out process of the German hard coal industry with still three active mines there was in 2014 no decommissioning. But the next is at the end of 2015, and the plans for the time after mining have been continued. [German] International war der Markt fuer Steinkohle 2014 erstmals seit langem wieder von einer Stagnation gekennzeichnet. In Deutschland ging der Steinkohlenverbrauch sogar deutlich zurueck, vor allem wegen des Rueckgangs in der Stromerzeugung. Hier hat sich die nationale Energiewende nun spuerbar und fuer die Steinkohlennutzung negativ ausgewirkt. Die politischen Weichenstellungen lassen fuer die Zukunft eine weitere erhebliche Abwaertsbewegung erwarten. Bei dem im Auslaufprozess befindlichen deutschen Steinkohlenbergbau mit noch drei aktiven Bergwerken gab es 2014 keine Stilllegung. Doch die naechste steht zum Jahresende 2015 an, und die Planungen fuer die Zeit nach dem Bergbau sind fortgefuehrt worden.

  20. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  1. Heat transfer and pressure drop studies of TiO2/DI water nanofluids in helically corrugated tubes using spiraled rod inserts

    Science.gov (United States)

    Anbu, S.; Venkatachalapathy, S.; Suresh, S.

    2018-05-01

    An experimental study on the convective heat transfer and friction factor characteristics of TiO2/DI water nanofluids in uniformly heated plain and helically corrugated tubes (HCT) with and without spiraled rod inserts (SRI) under laminar flow regime is presented in this paper. TiO2 nanoparticles with an average size of 32 nm are dispersed in deionized (DI) water to form stable suspensions containing 0.1, 0.15, 0.2, and 0.25% volume concentrations of nanoparticles. It is found that the inclusion of nanoparticles to DI water ameliorated Nusselt number which increased with nanoparticles concentration upto 0.2%. Two spiraled rod inserts made of copper with different pitches (pi = 50 mm and 30 mm) are inserted in both plain and corrugated tubes and it is found that the addition of these inserts increased the Nusselt number substantially. For Helically corrugated tube with lower pitch and maximum height of corrugation (pc = 8 mm, hc = 1 mm) with 0.2% volume concentration of nanoparticles, a maximum enhancement of 15% in Nusselt number is found without insert and with insert having lower pitch (pi = 30 mm) the enhancement is 34% when compared to DI water in plain tube. The results on friction factor show a maximum penalty of about 53.56% for the above HCT.

  2. Monotron and azimuthally corrugated: application to the high power microwaves generation; Monotron e cavidades azimutalmente corrugadas: aplicacao a geracao de microondas de alta potencia

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Pedro Jose de

    2003-07-01

    The present document reports the activity of construction and initial operation of 6.7 GHz operation for high power microwave generation, the study on cylindrical resonators with azimuthally corrugated cross section, the determination of electrical conductivity of metallic materials and development of dielectric resonators for telecommunication applications.

  3. New insights into the short pitch corrugation development enigma based on 3D-FE dynamic vehicle-track coupled modelling in frictional rolling contact

    NARCIS (Netherlands)

    Li, S.; Li, Z.; Nunez Vicencio, Alfredo; Dollevoet, R.P.B.J.

    2017-01-01

    A three-dimensional (3D) finite element (FE) dynamic frictional rolling contact model is presented for the study of short pitch corrugation that considers direct and instantaneous coupling between the contact mechanics and the structural dynamics in a vehicle-track system. In this study, we examine

  4. Three dimensional corrugated organic photovoltaics for building integration; improving the efficiency, oblique angle and diffuse performance of solar cells

    DEFF Research Database (Denmark)

    Kettle, Jeff; Bristow, Noel; Sweet, Tracy K. N.

    2015-01-01

    The lamination of OPV modules to corrugated roof cladding has been undertaken. The 3-dimensional form of the cladding provides three advantages for outdoor OPV deployment; firstly the ‘footprint’ of the solar cell is reduced, which leads to B10% improved power conversion (PCE) efficiency per unit...... area. Secondly, the oblique angle performance is enhanced, leading to increased output in the early morning and evening. Indoor characterisation showed a 9-fold enhancement in efficiency was obtainable, when compared to a flat module. Thirdly, an improvement in performance under diffuse lighting...... conditions was measured, when compared to a flat module. The average daily yield of the 3D module was 17–29% higher than a flat module, with higher relative enhancements observed on cloudier days. Geographically, the 3D module appears to be well-suited to countries with a high latitude, due to the enhanced...

  5. Alkali reduction of graphene oxide in molten halide salts: production of corrugated graphene derivatives for high-performance supercapacitors.

    Science.gov (United States)

    Abdelkader, Amr M; Vallés, Cristina; Cooper, Adam J; Kinloch, Ian A; Dryfe, Robert A W

    2014-11-25

    Herein we present a green and facile approach to the successful reduction of graphene oxide (GO) materials using molten halide flux at 370 °C. GO materials have been synthesized using a modified Hummers method and subsequently reduced for periods of up to 8 h. Reduced GO (rGO) flakes have been characterized using X-ray-diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR), all indicating a significantly reduced amount of oxygen-containing functionalities on the rGO materials. Furthermore, impressive electrical conductivities and electrochemical capacitances have been measured for the rGO flakes, which, along with the morphology determined from scanning electron microscopy, highlight the role of surface corrugation in these rGO materials.

  6. Methods to introduce sub-micrometer, symmetry-breaking surface corrugation to silicon substrates to increase light trapping

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Eon; Hoard, Brittany R.; Han, Sang M.; Ghosh, Swapnadip

    2018-04-10

    Provided is a method for fabricating a nanopatterned surface. The method includes forming a mask on a substrate, patterning the substrate to include a plurality of symmetry-breaking surface corrugations, and removing the mask. The mask includes a pattern defined by mask material portions that cover first surface portions of the substrate and a plurality of mask space portions that expose second surface portions of the substrate, wherein the plurality of mask space portions are arranged in a lattice arrangement having a row and column, and the row is not oriented parallel to a [110] direction of the substrate. The patterning the substrate includes anisotropically removing portions of the substrate exposed by the plurality of spaces.

  7. Broadband Amplification of Low-Terahertz Signals Using Axis-Encircling Electrons in a Helically Corrugated Interaction Region

    Science.gov (United States)

    He, W.; Donaldson, C. R.; Zhang, L.; Ronald, K.; Phelps, A. D. R.; Cross, A. W.

    2017-11-01

    Experimental results are presented of a broadband, high power, gyrotron traveling wave amplifier (gyro-TWA) operating in the (75-110)-GHz frequency band and based on a helically corrugated interaction region. The second harmonic cyclotron mode of a 55-keV, 1.5-A, axis-encircling electron beam is used to resonantly interact with a traveling TE21 -like eigenwave achieving broadband amplification. The gyro-TWA demonstrates a 3-dB gain bandwidth of at least 5.5 GHz in the experimental measurement with 9 GHz predicted for a wideband drive source with a measured unsaturated output power of 3.4 kW and gain of 36-38 dB. The approach may allow a gyro-TWA to operate at 1 THz.

  8. A Comparative Study of Dispersion Characteristics Determination of a Trapezoidally Corrugated Slow Wave Structure Using Different Techniques

    International Nuclear Information System (INIS)

    Saber, Md. Ghulam; Sagor, Rakibul Hasan; Amin, Md. Ruhul

    2016-01-01

    The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency range. The dispersion relation is solved by utilizing the Rayleigh–Fourier method by expressing the radial function in terms of the Fourier series. A highly accurate synthetic technique is also applied to determine the complete dispersion characteristics from experimentally measured resonances (cold test). Periodic structures resonate at specific frequencies when the terminals are shorted appropriately. The dispersion characteristics obtained from numerical calculation, synthetic technique and cold test are compared, and an excellent agreement is achieved. (paper)

  9. Hardness variability in commercial technologies

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Winokur, P.S.; Meisenheimer, T.L.; Sexton, F.W.; Roeske, S.B.; Knoll, M.G.

    1994-01-01

    The radiation hardness of commercial Floating Gate 256K E 2 PROMs from a single diffusion lot was observed to vary between 5 to 25 krad(Si) when irradiated at a low dose rate of 64 mrad(Si)/s. Additional variations in E 2 PROM hardness were found to depend on bias condition and failure mode (i.e., inability to read or write the memory), as well as the foundry at which the part was manufactured. This variability is related to system requirements, and it is shown that hardness level and variability affect the allowable mode of operation for E 2 PROMs in space applications. The radiation hardness of commercial 1-Mbit CMOS SRAMs from Micron, Hitachi, and Sony irradiated at 147 rad(Si)/s was approximately 12, 13, and 19 krad(Si), respectively. These failure levels appear to be related to increases in leakage current during irradiation. Hardness of SRAMs from each manufacturer varied by less than 20%, but differences between manufacturers are significant. The Qualified Manufacturer's List approach to radiation hardness assurance is suggested as a way to reduce variability and to improve the hardness level of commercial technologies

  10. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es [Instituto de Física Fundamental (CSIC), Serrano 123, E-28006 Madrid (Spain); Fernández-Perea, Ricardo [Instituto de Estructura de la Materia (CSIC), Serrano 123, E-28006 Madrid (Spain); Madzharova, Fani; Voloshina, Elena, E-mail: elena.voloshina@hu-berlin.de [Humboldt-Universität zu Berlin, Institut für Chemie, Unter den Linden 6, 10099 Berlin (Germany)

    2016-06-28

    The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet this challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He–Mg pair potentials is also presented, as an improvement of the approximation using isolated He–Mg pairs.

  11. On scale dependence of hardness

    International Nuclear Information System (INIS)

    Shorshorov, M.Kh.; Alekhin, V.P.; Bulychev, S.I.

    1977-01-01

    The concept of hardness as a structure-sensitive characteristic of a material is considered. It is shown that in conditions of a decreasing stress field under the inventor the hardness function is determined by the average distance, Lsub(a), between the stops (fixed and sessile dislocations, segregation particles, etc.). In the general case, Lsub(a) depends on the size of the impression and explains the great diversity of hardness functions. The concept of average true deformation rate on depression is introduced

  12. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  13. Abdominal wall fat pad biopsy

    Science.gov (United States)

    Amyloidosis - abdominal wall fat pad biopsy; Abdominal wall biopsy; Biopsy - abdominal wall fat pad ... is the most common method of taking an abdominal wall fat pad biopsy . The health care provider cleans the ...

  14. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  15. Energy efficient residential house wall system

    International Nuclear Information System (INIS)

    Aldawi, Fayez; Date, Abhijit; Alam, Firoz; Khan, Iftekhar; Alghamdi, Mohammed

    2013-01-01

    The energy consumption and greenhouse gas emission by the residential housing sector are considered to be one of the largest in economically developed countries. The larger energy consumption and greenhouse gas emission not only put additional pressure on finite fossil fuel resources but also cause global warming and climate change. Additionally, the residential housing sector will be consuming more energy as the house demand and average house floor area are progressively increasing. With currently used residential house wall systems, it is hard to reduce energy consumption for ongoing house space heating and cooling. A smart house wall envelope with optimal thermal masses and insulation materials is vital for reducing our increasing energy consumption. The major aim of this study is to investigate thermal performance and energy saving potential of a new house wall system for variable climate conditions. The thermal performance modelling was carried out using commercially developed software AccuRate ® . The findings indicate that a notable energy savings can be accomplished if a smart house wall system is used. -- Highlights: • Smart house wall system. • Thermal performance modelling and star energy rating. • Energy savings and greenhouse gas reduction

  16. Chest wall tuberculosis simulating breast carcinoma: Imaging appearance

    International Nuclear Information System (INIS)

    Goyal, M.; Sharma, R.; Sharma, A.; Swahney, S.; Berry, M.; Chumber, S.

    1998-01-01

    Tuberculosis of the breast is a rare disease. Tubercular abscesses predominantly affecting the soft tissues are also very infrequent. A case of chest wall tuberculosis secondarily involving the breast presenting as a hard, fixed lump simulating mammary carcinoma is presented here. There was no evidence of pleural or pulmonary tuberculosis. Copyright (1998) Blackwell Science Pty Ltd

  17. Improvement of heat transfer by the use of corrugated surfaces; Amelioration du transfert de chaleur par l'emploi de surfaces corruguees

    Energy Technology Data Exchange (ETDEWEB)

    Gargaud, J; Paumard, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    This experimental work is designed to determine the friction coefficient and the Margoulis number of internally or externally corrugated cans cooled by air or CO{sub 2} under forced convection, when the Reynolds' number is between 1.5 * 10{sup 4} and 3.5 * 10{sup 6} Different corrugation profiles have been examined; they are made up of variously shaped threading, of rings, of transverse fins, of very small 'herring-bone fins, of undulations. Two types of test have been carried out: 1. tests in annular spaces using CO{sub 2} or air, where the gas circulates between an electrically heated corrugated nucleus having a constant flux and a smooth exterior channel. 2. tests on internally corrugated tubes heated by an external water current and cooled by an internal current of pressurized CO{sub 2}. The first type of test requires probe-measurement of the speeds and the temperatures in the fluid in order to obtain a friction coefficient and a Margoulis' number which are characteristic of the corrugated surface. These coefficients, on the other hand, are given directly by the second, type of test. This work shows the role and the importance of the various geometric and aerodynamic parameters such as relative roughness, the reduced pitch (ratio of the pitches at the height of the corrugation) and the Reynolds' number. (authors) [French] Ce travail experimental a pour objet la determination du coefficient de frottement et du nombre de Margoulis de gaines corruguees exterieurement ou interieurement, refroidies par de l'air ou du CO{sub 2} en convection forcee turbulente, pour des nombres de Reynolds compris entre 1,5.10{sup 4} et 3,5.10{sup 6}. Divers profils de corrugations ont ete examines; ils comprennent des filetages de formes variees, des anneaux, des ailettes transversales et des ailettes en chevrons de tres petites dimensions, des ondulations. Deux types d'essais ont ete realises: 1. des essais en espace annulaire, au CO{sub 2} ou a l'air, ou le gaz circule entre un

  18. Local study of flow and low Reynolds thermal-hydraulic performance of a corrugated plane duct: application to plate heat exchangers

    International Nuclear Information System (INIS)

    Hugonnot, Patrick

    1989-01-01

    This research thesis addresses the local study of a flow in a corrugated plane duct by using experimental and numerical approaches on the one hand, and the experimental determination of thermal-hydraulic performance at low Reynolds number of different plate heat exchanger ducts on the other hand. Experimental visualisations of the local flow allowed regime transitions in 2D and 3D geometries to be determined. As far as the 2D duct is concerned, a wave profile optimisation is proposed, and the numerical study performed by using the TRIO software is in good agreement with experimental results. The optimised duct configuration can thus be envisaged for an industrial development. The determination of the friction coefficient and of the global heat exchange coefficient of different corrugated ducts allows plate exchangers to be sized on a wide range of Reynolds numbers. The respective influences of natural convection and of fluid thermal dependency on heat exchange have been studied [fr

  19. Influence of the interface corrugation on the subband dispersions and the optical properties of (113)-oriented GaAs/AlAs superlattices

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Lüerssen, D.; Kalt, H.

    1996-01-01

    We report on the influence of the interface corrugation in (113)-grown GaAs/AlAs superlattices on their band-edge optical properties both in theory and experiment. We calculate the subband dispersions and the optical anisotropies in a multiband k . p formalism. The dominating contribution...... to the optical anisotropies is found to be due to the intrinsic properties of the valence-band structure. The corrugation modifies the density of states only slightly, giving no evidence of a quantum-win behavior. By comparing the calculation with the experimental optical anisotropy, we can estimate...... of the localized type-I states at the band-edge show an enhanced optical anisotropy in comparison to the luminescence of the extended states, revealing the anisotropic nature of their localization sites. In type-II samples, deeply localized, isolated type-I states (Gamma quantum boxes) dominate the luminescence...

  20. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu

    2018-01-12

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  1. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu; Yanfeng, Li; Chunxiu, Tian; Jiaguang, Han; Quan, Xu; Xueqian, Zhang; Xixiang, Zhang; Ying, Zhang; Weili, Zhang

    2018-01-01

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  2. Mitigation of biofilm formation on corrugated cardboard fresh produce packaging surfaces using a novel thiazolidinedione derivative integrated in acrylic emulsion polymers

    OpenAIRE

    Michael eBrandwein; Abed eAl-Quntar; Abed eAl-Quntar; Hila eGoldberg; Gregory eMosheyev; Moshe eGoffer; Fulgencio eMarin-Iniesta; Antonio eLopez-Gomez; Doron eSteinberg

    2016-01-01

    Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analogue cardboard packaging using high throughput seq...

  3. Mitigation of Biofilm Formation on Corrugated Cardboard Fresh Produce Packaging Surfaces Using a Novel Thiazolidinedione Derivative Integrated in Acrylic Emulsion Polymers

    OpenAIRE

    Brandwein, Michael; Al-Quntar, Abed; Goldberg, Hila; Mosheyev, Gregory; Goffer, Moshe; Marin-Iniesta, Fulgencio; L?pez-G?mez, Antonio; Steinberg, Doron

    2016-01-01

    Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analog cardboard packaging using high throughput seque...

  4. Hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Brandt, A.

    1995-09-01

    The field of hard diffraction, which studies events with a rapidity gap and a hard scattering, has expanded dramatically recently. A review of new results from CDF, D OE, H1 and ZEUS will be given. These results include diffractive jet production, deep-inelastic scattering in large rapidity gap events, rapidity gaps between high transverse energy jets, and a search for diffractive W-boson production. The combination of these results gives new insight into the exchanged object, believed to be the pomeron. The results axe consistent with factorization and with a hard pomeron that contains both quarks and gluons. There is also evidence for the exchange of a strongly interacting color singlet in high momentum transfer (36 2 ) events

  5. Initiative hard coal; Initiative Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, J.

    2007-08-02

    In order to decrease the import dependence of hard coal in the European Union, the author has submitted suggestions to the director of conventional sources of energy (directorate general for energy and transport) of the European community, which found a positive resonance. These suggestions are summarized in an elaboration 'Initiative Hard Coal'. After clarifying the starting situation and defining the target the presupposition for a better use of hard coal deposits as raw material in the European Union are pointed out. On that basis concrete suggestions for measures are made. Apart from the conditions of the deposits it concerns thereby also new mining techniques and mining-economical developments, connected with tasks for the mining-machine industry. (orig.)

  6. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  7. ΔM/sub j/ transitions in homonuclear molecule scattering off corrugated surfaces. Square and rectangular lattice symmetry and purely repulsive interaction

    International Nuclear Information System (INIS)

    Proctor, T.R.; Kouri, D.J.; Gerber, R.B.

    1984-01-01

    In this paper, we present the first formal and computational studies of Δm/sub j/ transitions occurring in homonuclear molecule-corrugated surface collisions. The model potential is a pairwise additive one which correctly incorporates the fact that Δm/sub j/ transitions occur only for corrugated surfaces (provided the quantization axis is chosen to be the average surface normal). The principal results are: (a) Δm/sub j/ transitions are extremely sensitive to lattice symmetry; (b) strong selection rules obtain for specular scattering; (c) the magnitude of Δm/sub j/ -transition probabilities are strongly sensitive to surface corrugation; (d) the Δm/sub j/ transitions depend strongly on diffraction peak; (e) the ratio of molecular length to lattice dimension (r/a) has a strong influence on the magnitude of Δm/sub j/ -transition probabilities [with the probabilities increasing as (r/a) increases]; (f) Δm/sub j/ rainbows are predicted to occur as a function of the (r/a) ratio increases; (g) Δm/sub j/ transitions and the Δm/sub j/ rainbow are expected to accompany Δj-rotational rainbows; (h) such magnetic transition rainbows accompanying Δj rainbows are suggested as an explanation of recent experimental observations of quenching of NO polarization for larger Δj transitions in NO/Ag(111) scattering

  8. Parametric Study on the Thermal Performance and Optimal Design Elements of Solar Air Heater Enhanced with Jet Impingement on a Corrugated Absorber Plate

    Directory of Open Access Journals (Sweden)

    Alsanossi M. Aboghrara

    2018-01-01

    Full Text Available Previous works revealed that cross-corrugated absorber plate design and jet impingement on a flat absorber plate resulted in a significant increase in the performance of a solar air heater (SAH. Involving these two designs into one continuous design to improve the SAH performance remains absent in the literature. This study aimed to evaluate the achieved enhancement on performance parameters of a SAH with jet impingement on a corrugated absorber plate. An energy balance model was developed to compare the performance parameters of the proposed SAH with the other two SAHs. At a clear sky day and a mass flow rate of 0.04 kg/s, the hourly results revealed that the max fluid outlet temperatures for the proposed SAH, jet-to-flat plate SAH, and cross-corrugated plate SAH are 321, 317, and 313 K, respectively; the max absorber plate temperatures are 323.5, 326.5, and 328 K, respectively; the maximum temperature differences between the absorber plate and fluid outlet are ~3, 9, and 15 K, respectively; the max efficiencies are 65.7, 64.8, and 60%, respectively. Statistical t-test results confirmed significant differences between the mean efficiency of the proposed SAH and SAH with jet-to-flat plate. Hence, the proposed design is considered superior in improving the performance parameters of SAH compared to other designs.

  9. Mitigation of biofilm formation on corrugated cardboard fresh produce packaging surfaces using a novel thiazolidinedione derivative integrated in acrylic emulsion polymers

    Directory of Open Access Journals (Sweden)

    Michael eBrandwein

    2016-02-01

    Full Text Available Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analogue cardboard packaging using high throughput sequencing technology. We further developed an anti-biofilm polymer meant to coat corrugated cardboard surfaces and mediate bacterial biofilm growth on said surfaces. Integration of a novel thiazolidinedione derivative into the acrylic emulsion polymers was assessed using Energy Dispersive X-ray Spectrometry analysis and surface topography was visualized and quantified on corrugated cardboard surfaces. Biofilm growth was measured using q-PCR targeting the gene encoding 16s rRNA. Additionally, architectural structure of the biofilm was observed using SEM. The uniform integration of the thiazolidinedione derivative TZD-6 was confirmed, and it was determined via q-PCR to reduce biofilm growth by ~80% on tested surfaces. A novel and effective method for reducing microbial load and preventing contamination on food packaging is thereby proposed.

  10. Mitigation of Biofilm Formation on Corrugated Cardboard Fresh Produce Packaging Surfaces Using a Novel Thiazolidinedione Derivative Integrated in Acrylic Emulsion Polymers.

    Science.gov (United States)

    Brandwein, Michael; Al-Quntar, Abed; Goldberg, Hila; Mosheyev, Gregory; Goffer, Moshe; Marin-Iniesta, Fulgencio; López-Gómez, Antonio; Steinberg, Doron

    2016-01-01

    Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analog cardboard packaging using high throughput sequencing technology. We further developed an anti-biofilm polymer meant to coat corrugated cardboard surfaces and mediate bacterial biofilm growth on said surfaces. Integration of a novel thiazolidinedione derivative into the acrylic emulsion polymers was assessed using Energy Dispersive X-ray Spectrometry (EDS) analysis and surface topography was visualized and quantified on corrugated cardboard surfaces. Biofilm growth was measured using q-PCR targeting the gene encoding 16s rRNA. Additionally, architectural structure of the biofilm was observed using SEM. The uniform integration of the thiazolidinedione derivative TZD-6 was confirmed, and it was determined via q-PCR to reduce biofilm growth by ~80% on tested surfaces. A novel and effective method for reducing microbial load and preventing contamination on food packaging is thereby proposed.

  11. Evaluation of hard fossil fuel

    International Nuclear Information System (INIS)

    Zivkovic, S.; Nuic, J.

    1999-01-01

    Because of its inexhaustible supplies hard fossil fuel will represent the pillar of the power systems of the 21st century. Only high-calorie fossil fuels have the market value and participate in the world trade. Low-calorie fossil fuels ((brown coal and lignite) are fuels spent on the spot and their value is indirectly expressed through manufactured kWh. For the purpose of determining the real value of a tonne of low-calorie coal, the criteria that help in establishing the value of a tonne of hard coal have to be corrected and thus evaluated and assessed at the market. (author)

  12. Calorimeter triggers for hard collisions

    International Nuclear Information System (INIS)

    Landshoff, P.V.; Polkinghorne, J.C.

    1978-01-01

    We discuss the use of a forward calorimeter to trigger on hard hadron-hadron collisions. We give a derivation in the covariant parton model of the Ochs-Stodolsky scaling law for single-hard-scattering processes, and investigate the conditions when instead a multiple- scattering mechanism might dominate. With a proton beam, this mechanism results in six transverse jets, with a total average multiplicity about twice that seen in ordinary events. We estimate that its cross section is likely to be experimentally accessible at avalues of the beam energy in the region of 100 GeV/c

  13. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  14. Mechanical response of wall-patterned GaAs surface

    International Nuclear Information System (INIS)

    Le Bourhis, E.; Patriarche, G.

    2005-01-01

    Wall-patterned GaAs surfaces have been elaborated by photolithography and dry etching. Different surfaces were produced in order to change the aspect ratio of the walls formed at the substrate surface. The mechanical behaviour of individual walls was investigated by nanoindentation and the responses were compared to that of a standard bulk reference (flat surface). Deviation from the bulk response is detected in a load range of 1-25 mN depending on the aspect ratio of the walls. A central plastic zone criterion is proposed in view of transmission electron microscopy images of indented walls and allows the prediction of the response deviation of a given wall if its width is known. The mechanical response of the different types of walls is further investigated in terms of stiffness, total penetration of indenter and apparent hardness, and is scanned in relation to the proximity of a wall side. Overall results show that contact stiffness remains almost unaffected by aspect ratio, while penetration drastically increases because of the free sides of the wall as compared to a flat surface (bulk substrate). The application of substrate patterning for optoelectronic devices is discussed in the perspective of eliminating residual dislocations appearing in mismatched structures

  15. Manipulating single second mode transparency in a corrugated waveguide via the thickness of sputtered gold

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dan [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Fan, Ya-Xian, E-mail: yxfan@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Tao, Zhi-Yong, E-mail: zytao@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China)

    2016-03-11

    We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.

  16. Manipulating single second mode transparency in a corrugated waveguide via the thickness of sputtered gold

    International Nuclear Information System (INIS)

    Xu, Dan; Fan, Ya-Xian; Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha; Tao, Zhi-Yong

    2016-01-01

    We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.

  17. Chemical hardness and density functional theory

    Indian Academy of Sciences (India)

    Unknown

    RALPH G PEARSON. Chemistry Department, University of California, Santa Barbara, CA 93106, USA. Abstract. The concept of chemical hardness is reviewed from a personal point of view. Keywords. Hardness; softness; hard & soft acids bases (HSAB); principle of maximum hardness. (PMH) density functional theory (DFT) ...

  18. Wall Finishes; Carpentry: 901895.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course outline is designed to provide instruction in selecting, preparing, and installing wall finishing materials. Prerequisites for the course include mastery of building construction plans, foundations and walls, and basic mathematics. Intended for use in grades 11 and 12, the course contains five blocks of study totaling 135 hours of…

  19. Wall Construction; Carpentry: 901892.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The curriculum guide outlines a course designed to provide instruction in floor and wall layout, and in the diverse methods and construction of walls. Upon completion of this course the students should have acquired a knowledge of construction plans and structural foundations in addition to a basic knowledge of mathematics. The course consists of…

  20. International Divider Walls

    NARCIS (Netherlands)

    Kruis, A.; Sneller, Lineke

    2013-01-01

    The subject of this teaching case is the Enterprise Resource Planning (ERP) system implementation at International Divider Walls, the world market leader in design, production, and sales of divider walls. The implementation in one of the divisions of this multinational company had been successful,

  1. Supersymmetric domain walls

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio

    2012-01-01

    We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of

  2. Reply to "Domain-growth kinetics of systems with soft walls''

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Præstgaard, Eigil

    1988-01-01

    On the basis of computer-simulation results for three different models with soft domain walls it is argued that the zero-temperature domain-growth kinetics falls in a separate universality class characterized by a kinetic growth exponent n≃0.25. However, for finite temperatures there is a distinct...... crossover to Lifshitz-Allen-Cahn kinetics n=0.50, thus suggesting that the soft-wall and hard-wall universality classes become identical at finite temperatures....

  3. Review of melting and evaporation of fusion-reactor first walls

    International Nuclear Information System (INIS)

    Fillo, J.A.; Makowitz, H.

    1981-01-01

    The most severe thermal loading on the first wall will occur when the plasma becomes unstable resulting in a hard plasma disruption or at the end of a discharge when the plasma is dumped on the wall in a very short period of time. Hard plasma disruptions are of particular concern in future fusion reactors where the thermal energy of the plasma may reach values on the order of 300 MJ. Sufficiently high heating rates can occur to melt the first wall surface, and the temperature can increase resulting in vaporization. Thermal models are reviewed which treat these problems

  4. Moiré superlattice-level stick-slip instability originated from geometrically corrugated graphene on a strongly interacting substrate

    Science.gov (United States)

    Shi, Ruoyu; Gao, Lei; Lu, Hongliang; Li, Qunyang; Ma, Tian-Bao; Guo, Hui; Du, Shixuan; Feng, Xi-Qiao; Zhang, Shuai; Liu, Yanmin; Cheng, Peng; Hu, Yuan-Zhong; Gao, Hong-Jun; Luo, Jianbin

    2017-06-01

    Two dimensional (2D) materials often exhibit novel properties due to various coupling effects with their supporting substrates. Here, using friction force microscopy (FFM), we report an unusual moiré superlattice-level stick-slip instability on monolayer graphene epitaxially grown on Ru(0 0 0 1) substrate. Instead of smooth friction modulation, a significant long-range stick-slip sawtooth modulation emerges with a period coinciding with the moiré superlattice structure, which is robust against high external loads and leads to an additional channel of energy dissipation. In contrast, the long-range stick-slip instability reduces to smooth friction modulation on graphene/Ir(1 1 1) substrate. The moiré superlattice-level slip instability could be attributed to the large sliding energy barrier, which arises from the morphological corrugation of graphene on Ru(0 0 0 1) surface as indicated by density functional theory (DFT) calculations. The locally steep humps acting as obstacles opposing the tip sliding, originates from the strong interfacial electronic interaction between graphene and Ru(0 0 0 1). This study opens an avenue for modulating friction by tuning the interfacial atomic interaction between 2D materials and their substrates.

  5. Performance of LiCl Impregnated Mesoporous Material Coating over Corrugated Heat Exchangers in a Solid Sorption Chiller

    Directory of Open Access Journals (Sweden)

    Hongzhi Liu

    2018-06-01

    Full Text Available The composite material made by impregnating 40 wt. % lithium chloride (LiCl into the mesopores of a kind of natural porous rock (Wakkanai Siliceous Shale: WSS micropowders (short for “WSS + 40 wt. % LiCl” had been developed previously, and can be regenerated below 100 °C with a cooling coefficient of performance (COP of approximately 0.3 when adopted as a sorbent in a sorption cooler. In this study, experiments have been carried out on an intermittent solid sorption chiller with the WSS + 40 wt. % LiCl coating over two aluminum corrugated heat exchangers. Based on the experimental condition (regeneration temperature of 80 °C, condensation temperature of 30 °C in the desorption process; sorption temperature of 30 °C and evaporation temperature of 12 °C in the sorption process, the water sorption amount changes from 20 wt. % to 70 wt. % in one sorption cooling cycle. Moreover, a specific cooling power (SCP of 86 W/kg, a volumetric specific cooling power (VSCP of 42 W/dm3, and a specific sorption power of 170 W/kg can be achieved with a total sorption and desorption time of 20 min. The obtained cooling COP is approximately 0.16.

  6. Quantitative Photochemical Immobilization of Biomolecules on Planar and Corrugated Substrates: A Versatile Strategy for Creating Functional Biointerfaces

    Science.gov (United States)

    Martin, Teresa A.; Herman, Christine T.; Limpoco, Francis T.; Michael, Madeline C.; Potts, Gregory K.; Bailey, Ryan C.

    2014-01-01

    Methods for the generation of substrates presenting biomolecules in a spatially controlled manner are enabling tools for applications in biosensor systems, microarray technologies, fundamental biological studies and biointerface science. We have implemented a method to create biomolecular patterns by using light to control the direct covalent immobilization of biomolecules onto benzophenone-modified glass substrates. We have generated substrates presenting up to three different biomolecules patterned in sequence, and demonstrate biomolecular photopatterning on corrugated substrates. The chemistry of the underlying monolayer was optimized to incorporate poly(ethylene glycol) to enable adhesive cell adhesion onto patterned extracellular matrix proteins. Substrates were characterized with contact angle goniometry, AFM, and immunofluorescence microscopy. Importantly, radioimmunoassays were performed to quantify the site density of immobilized biomolecules on photopatterned substrates. Retention of function of photopatterned proteins was demonstrated both by native ligand recognition and cell adhesion to photopatterned substrates, revealing that substrates generated with this method are suitable for probing specific cell receptor-ligand interactions. This molecularly general photochemical patterning method is an enabling tool that will allow the creation of substrates presenting both biochemical and topographical variation, which is an important feature of many native biointerfaces. PMID:21793535

  7. Seismic signals hard clipping overcoming

    Science.gov (United States)

    Olszowa, Paula; Sokolowski, Jakub

    2018-01-01

    In signal processing the clipping is understand as the phenomenon of limiting the signal beyond certain threshold. It is often related to overloading of a sensor. Two particular types of clipping are being recognized: soft and hard. Beyond the limiting value soft clipping reduces the signal real gain while the hard clipping stiffly sets the signal values at the limit. In both cases certain amount of signal information is lost. Obviously if one possess the model which describes the considered signal and the threshold value (which might be slightly more difficult to obtain in the soft clipping case), the attempt of restoring the signal can be made. Commonly it is assumed that the seismic signals take form of an impulse response of some specific system. This may lead to belief that the sine wave may be the most appropriate to fit in the clipping period. However, this should be tested. In this paper the possibility of overcoming the hard clipping in seismic signals originating from a geoseismic station belonging to an underground mine is considered. A set of raw signals will be hard-clipped manually and then couple different functions will be fitted and compared in terms of least squares. The results will be then analysed.

  8. Hard equality constrained integer knapsacks

    NARCIS (Netherlands)

    Aardal, K.I.; Lenstra, A.K.; Cook, W.J.; Schulz, A.S.

    2002-01-01

    We consider the following integer feasibility problem: "Given positive integer numbers a 0, a 1,..., a n, with gcd(a 1,..., a n) = 1 and a = (a 1,..., a n), does there exist a nonnegative integer vector x satisfying ax = a 0?" Some instances of this type have been found to be extremely hard to solve

  9. Stress in hard metal films

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Kamminga, J.D.

    2004-01-01

    In the absence of thermal stress, tensile stress in hard metal films is caused by grain boundary shrinkage and compressive stress is caused by ion peening. It is shown that the two contributions are additive. Moreover tensile stress generated at the grain boundaries does not relax by ion

  10. The Enskog Equation for Confined Elastic Hard Spheres

    Science.gov (United States)

    Maynar, P.; García de Soria, M. I.; Brey, J. Javier

    2018-03-01

    A kinetic equation for a system of elastic hard spheres or disks confined by a hard wall of arbitrary shape is derived. It is a generalization of the modified Enskog equation in which the effects of the confinement are taken into account and it is supposed to be valid up to moderate densities. From the equation, balance equations for the hydrodynamic fields are derived, identifying the collisional transfer contributions to the pressure tensor and heat flux. A Lyapunov functional, H[f], is identified. For any solution of the kinetic equation, H decays monotonically in time until the system reaches the inhomogeneous equilibrium distribution, that is a Maxwellian distribution with a density field consistent with equilibrium statistical mechanics.

  11. Solar Walls in tsbi3

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne

    tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building....... This version, C, of tsbi3 is capable of simulating five types of solar walls say: mass-walls, Trombe-walls, double Trombe-walls, internally ventilated walls and solar walls for preheating ventilation air. The user's guide gives a description of the capabilities and how to simulate solar walls in tsbi3....

  12. Hard processes in hadronic interactions

    International Nuclear Information System (INIS)

    Satz, H.; Wang, X.N.

    1995-01-01

    Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks' duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley

  13. The automation of the "making safe" process in South African hard-rock underground mine

    CSIR Research Space (South Africa)

    Teleka, SR

    2011-07-01

    Full Text Available In South African hard-rock mines, best practice dictates that the hanging-walls be inspected after blasting. This process is known as ‘making safe’ and although intended to save lives, it is laborious and subjective. Pressure is placed on the barrer...

  14. Plasma-wall interactions

    International Nuclear Information System (INIS)

    Behrisch, Rainer

    1978-01-01

    The plasma wall interactions for two extreme cases, the 'vacuum model' and the 'cold gas blanket' are outlined. As a first step for understanding the plasma wall interactions the elementary interaction processes at the first wall are identified. These are energetic ion and neutral particle trapping and release, ion and neutral backscattering, ion sputtering, desorption by ions, photons and electrons and evaporation. These processes have only recently been started to be investigated in the parameter range of interest for fusion research. The few measured data and their extrapolation into regions not yet investigated are reviewed

  15. Advanced walling systems

    CSIR Research Space (South Africa)

    De Villiers, A

    2010-01-01

    Full Text Available The question addressed by this chapter is: How should advanced walling systems be planned, designed, built, refurbished, and end their useful lives, to classify as smart, sustainable, green or eco-building environments?...

  16. Fusion: first wall problems

    International Nuclear Information System (INIS)

    Behrisch, R.

    1976-01-01

    Some of the relevant elementary atomic processes which are expected to be of significance to the first wall of a fusion reactor are reviewed. Up to the present, most investigations have been performed at relatively high ion energies, typically E greater than 5 keV, and even in this range the available data are very poor. If the plasma wall interaction takes place at energies of E greater than 1 keV the impurity introduction and first wall erosion which will take place predominantly by sputtering, will be large and may severely limit the burning time of the plasma. The wall bombardment and surface erosion will presumably not decrease substantially by introducing a divertor. The erosion can only be kept low if the energy of the bombarding ions and neutrals can be kept below the threshold for sputtering of 1 to 10 eV. 93 refs

  17. Hard-to-fill vacancies.

    Science.gov (United States)

    Williams, Ruth

    2010-09-29

    Skills for Health has launched a set of resources to help healthcare employers tackle hard-to-fill entry-level vacancies and provide sustainable employment for local unemployed people. The Sector Employability Toolkit aims to reduce recruitment and retention costs for entry-level posts and repare people for employment through pre-job training programmes, and support employers to develop local partnerships to gain access to wider pools of candidates and funding streams.

  18. Pushing hard on the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-09-15

    The quest for new techniques to drive future generations of particle accelerators has been pushed hard in recent years, efforts having been highlighted by workshops in Europe, organized by the European Committee for Future Accelerators, and in the US. The latest ECFA Workshop on New Developments in Particle Acceleration Techniques, held at Orsay from 29 June to 4 July, showed how the initial frantic search for innovation is now maturing.

  19. CMS results on hard diffraction

    CERN Document Server

    INSPIRE-00107098

    2013-01-01

    In these proceedings we present CMS results on hard diffraction. Diffractive dijet production in pp collisions at $\\sqrt{s}$=7 TeV is discussed. The cross section for dijet production is presented as a function of $\\tilde{\\xi}$, representing the fractional momentum loss of the scattered proton in single-diffractive events. The observation of W and Z boson production in events with a large pseudo-rapidity gap is also presented.

  20. Plasma-wall interaction

    International Nuclear Information System (INIS)

    Reichle, R.

    2004-01-01

    This document gathers the 43 slides presented in the framework of the week long lecture 'hot plasmas 2004' and dedicated to plasma-wall interaction in a tokamak. This document is divided into 4 parts: 1) thermal load on the wall, power extraction and particle recovery, 2) basic edge plasma physics, 3) processes that drive the plasma-solid interaction, and 4) material conditioning (surface treatment...) for ITER

  1. Dynamic wall demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsui, L.; Mayhew, W.

    1990-12-01

    The dynamic wall concept is a ventilation strategy that can be applied to a single family dwelling. With suitable construction, outside air can be admitted through the exterior walls of the house to the interior space to function as ventilation air. The construction and performance monitoring of a demonstration house built to test the dynamic wall concept in Sherwood Park, Alberta, is described. The project had the objectives of demonstrating and assessing the construction methods; determining the cost-effectiveness of the concept in Alberta; analyzing the operation of the dynamic wall system; and determining how other components and systems in the house interact with the dynamic wall. The exterior wall construction consisted of vinyl siding, spun-bonded polyolefin-backed (SBPO) rigid fiberglass sheathing, 38 mm by 89 mm framing, fiberglass batt insulation and 12.7 mm drywall. The mechanical system was designed to operate in the dynamic (negative pressure) mode, however flexibility was provided to allow operation in the static (balanced pressure) mode to permit monitoring of the walls as if they were in a conventional house. The house was monitored by an extensive computerized monitoring system. Dynamic wall operation was dependent on pressure and temperature differentials between indoor and outdoor as well as wind speed and direction. The degree of heat gain was found to be ca 74% of the indoor-outdoor temperature differential. Temperature of incoming dynamic air was significantly affected by solar radiation and measurement of indoor air pollutants found no significant levels. 4 refs., 34 figs., 11 tabs.

  2. Playing Moderately Hard to Get

    Directory of Open Access Journals (Sweden)

    Stephen Reysen

    2013-12-01

    Full Text Available In two studies, we examined the effect of different degrees of attraction reciprocation on ratings of attraction toward a potential romantic partner. Undergraduate college student participants imagined a potential romantic partner who reciprocated a low (reciprocating attraction one day a week, moderate (reciprocating attraction three days a week, high (reciprocating attraction five days a week, or unspecified degree of attraction (no mention of reciprocation. Participants then rated their degree of attraction toward the potential partner. The results of Study 1 provided only partial support for Brehm’s emotion intensity theory. However, after revising the high reciprocation condition vignette in Study 2, supporting Brehm’s emotion intensity theory, results show that a potential partners’ display of reciprocation of attraction acted as a deterrent to participants’ intensity of experienced attraction to the potential partner. The results support the notion that playing moderately hard to get elicits more intense feelings of attraction from potential suitors than playing too easy or too hard to get. Discussion of previous research examining playing hard to get is also re-examined through an emotion intensity theory theoretical lens.

  3. CMOS optimization for radiation hardness

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Fossum, J.G.

    1975-01-01

    Several approaches to the attainment of radiation-hardened MOS circuits have been investigated in the last few years. These have included implanting the SiO 2 gate insulator with aluminum, using chrome-aluminum layered gate metallization, using Al 2 O 3 as the gate insulator, and optimizing the MOS fabrication process. Earlier process optimization studies were restricted primarily to p-channel devices operating with negative gate biases. Since knowledge of the hardness dependence upon processing and design parameters is essential in producing hardened integrated circuits, a comprehensive investigation of the effects of both process and design optimization on radiation-hardened CMOS integrated circuits was undertaken. The goals are to define and establish a radiation-hardened processing sequence for CMOS integrated circuits and to formulate quantitative relationships between process and design parameters and the radiation hardness. Using these equations, the basic CMOS design can then be optimized for radiation hardness and some understanding of the basic physics responsible for the radiation damage can be gained. Results are presented

  4. Orbital wall fractures

    International Nuclear Information System (INIS)

    Iinuma, Toshitaka; Ishio, Ken-ichirou; Yoshinami, Hiroyoshi; Kuriyama, Jun-ichi; Hirota, Yoshiharu.

    1993-01-01

    A total of 59 cases of mild facial fractures (simple orbital wall fractures, 34 cases, other facial fractures, 25 cases) with the clinical suspects of orbital wall fractures were evaluated both by conventional views (Waters' and Caldwell views) and coronal CT scans. Conventional views were obtained, as an average, after 4 days and CT after 7 days of injuries. Both the medial wall and the floor were evaluated at two sites, i.e., anterior and posterior. The ethmoid-maxillary plate was also included in the study. The degree of fractures was classified as, no fractures, fractures of discontinuity, dislocation and fragmentation. The coronal CT images in bone window condition was used as reference and the findings were compared between conventional views and CT. The correct diagnosis was obtained as follows: orbital floor (anterior, 78%, posterior, 73%), medial orbital wall (anterior, 72%, posterior, 72%) and ethmoid-maxillary plate (64%). The false positive diagnosis was as follows: orbital floor (anterior only, 13%), medial orbital wall (anterior only, 7%) and ethmoid-maxillary plate (11%). The false negative diagnosis was as follows: orbital floor (anterior, 9%, posterior, 10%), medial orbital wall (anterior, 21%, posterior, 28%) and ethmoid-maxillary plate (21%). The results were compared with those of others in the past. (author)

  5. KETERASINGAN DALAM FILM WALL-E

    Directory of Open Access Journals (Sweden)

    Rahmadya Putra Nugraha

    2017-05-01

    Full Text Available Modern society nowadays technological advances at first create efficiency in human life. Further development of the technology thus drown human in a routine and automation of work created. The State is to be one of the causes of man separated from fellow or the outside world and eventually experiencing alienation. The movie as a mass media function to obtain the movie and entertainment can be informative or educative function is contained, even persuasive. The purpose of this research was conducted to find out the alienation in the movie Wall E. The concepts used to analyze the movie Wall E this is communication, movie, and alienation. The concept of alienation of human alienation from covering its own products of human alienation from its activities, the human alienation from nature of his humanity and human alienation from each other. Paradigm used is a critical paradigm with type a descriptive research with qualitative approach. The method used is the analysis of semiotics Roland Barthes to interpretation the scope of social alienation and fellow humans in the movie.This writing research results found that alienation of humans with other humans influenced the development of the technology and how the human it self represented of technology, not from our fellow human beings. Masyarakat modern saat ini kemajuan teknologi pada awalnya membuat efisiensi dalam kehidupan manusia. Perkembangan selanjutnya teknologi justru menenggelamkan manusia dalam suatu rutinitas dan otomatisasi kerja yang diciptakan. Keadaan itulah yang menjadi salah satu penyebab manusia terpisah dari sesama atau dunia luar dan akhirnya mengalami keterasingan. Film sebagai media massa berfungsi untuk memperoleh hiburan dan dalam film dapat terkandung fungsi informatif maupun edukatif, bahkan persuasif. Tujuan Penelitian ini dilakukan untuk mengetahui Keterasingan dalam film Wall E. Konsep-konsep yang digunakan untuk menganalisis film Wall E ini adalah komunikasi, film, dan

  6. Impact of aging on radiation hardness

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Winokur, P.S.; Fleetwood, D.M.

    1997-01-01

    Burn-in effects are used to demonstrate the potential impact of thermally activated aging effects on functional and parametric radiation hardness. These results have implications on hardness assurance testing. Techniques for characterizing aging effects are proposed

  7. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... Quitting drugs is hard because addiction is a brain disease. Your brain is like a control tower that sends out ... and choices. Addiction changes the signals in your brain and makes it hard to feel OK without ...

  8. Beyond the Wall: Typography from the German Democratic Republic

    OpenAIRE

    Carruthers, Grant; Yee, Joyce

    2004-01-01

    1989: The German Democratic Republic (GDR) still existed and the Berlin Wall was still standing. Communism was alive in Europe. Hard to believe now, yet only fifteen years ago, a reality. By 1990 the GDR was gone, but it lingers on in the memory of many people now as a dull, repressive, unimaginative place full of cheap plastic, grey concrete, goosestepping soldiers, sports stars with mullets, the dreaded Stasi secret police and of course, the Wall.\\ud \\ud These memories illustrate common Wes...

  9. The hard problem of cooperation.

    Directory of Open Access Journals (Sweden)

    Kimmo Eriksson

    Full Text Available Based on individual variation in cooperative inclinations, we define the "hard problem of cooperation" as that of achieving high levels of cooperation in a group of non-cooperative types. Can the hard problem be solved by institutions with monitoring and sanctions? In a laboratory experiment we find that the answer is affirmative if the institution is imposed on the group but negative if development of the institution is left to the group to vote on. In the experiment, participants were divided into groups of either cooperative types or non-cooperative types depending on their behavior in a public goods game. In these homogeneous groups they repeatedly played a public goods game regulated by an institution that incorporated several of the key properties identified by Ostrom: operational rules, monitoring, rewards, punishments, and (in one condition change of rules. When change of rules was not possible and punishments were set to be high, groups of both types generally abided by operational rules demanding high contributions to the common good, and thereby achieved high levels of payoffs. Under less severe rules, both types of groups did worse but non-cooperative types did worst. Thus, non-cooperative groups profited the most from being governed by an institution demanding high contributions and employing high punishments. Nevertheless, in a condition where change of rules through voting was made possible, development of the institution in this direction was more often voted down in groups of non-cooperative types. We discuss the relevance of the hard problem and fit our results into a bigger picture of institutional and individual determinants of cooperative behavior.

  10. The hard problem of cooperation.

    Science.gov (United States)

    Eriksson, Kimmo; Strimling, Pontus

    2012-01-01

    Based on individual variation in cooperative inclinations, we define the "hard problem of cooperation" as that of achieving high levels of cooperation in a group of non-cooperative types. Can the hard problem be solved by institutions with monitoring and sanctions? In a laboratory experiment we find that the answer is affirmative if the institution is imposed on the group but negative if development of the institution is left to the group to vote on. In the experiment, participants were divided into groups of either cooperative types or non-cooperative types depending on their behavior in a public goods game. In these homogeneous groups they repeatedly played a public goods game regulated by an institution that incorporated several of the key properties identified by Ostrom: operational rules, monitoring, rewards, punishments, and (in one condition) change of rules. When change of rules was not possible and punishments were set to be high, groups of both types generally abided by operational rules demanding high contributions to the common good, and thereby achieved high levels of payoffs. Under less severe rules, both types of groups did worse but non-cooperative types did worst. Thus, non-cooperative groups profited the most from being governed by an institution demanding high contributions and employing high punishments. Nevertheless, in a condition where change of rules through voting was made possible, development of the institution in this direction was more often voted down in groups of non-cooperative types. We discuss the relevance of the hard problem and fit our results into a bigger picture of institutional and individual determinants of cooperative behavior.

  11. Effects on the structure of monolayer and submonolayer fluid nitrogen films by the corrugation in the holding potential of nitrogen molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing

    2001-01-01

    of interactions were indicated by the comparison of the calculated and measured isosteric heats of adsorption in fluid films of nitrogen molecules on graphite. The melting temperatures were lowered by 7K and a region of liquid-gas coexistence was observed for films on the smooth graphite surface indicating......The effects of corrugation in the holding potential of nitrogen molecules on the structure of fluid monolayer and submonolayer films of the molecules on a solid substrate was studied using molecular dynamics simulation. Including McLachlan mediation of the intermolecular potential in a model...

  12. Hard electroproduction of hybrid mesons

    International Nuclear Information System (INIS)

    Anikin, I.V.; LPT Universite Paris-Sud, Orsay; Szymanowski, L.; Teryaev, O.V.; ); Wallon, S.

    2005-01-01

    We estimate the sizeable cross section for deep exclusive electroproduction of an exotic J PC = 1 -+ hybrid meson in the Bjorken regime. The production amplitude scales like the one for usual meson electroproduction, i.e. as 1/Q 2 . This is due to the non-vanishing leading twist distribution amplitude for the hybrid meson, which may be normalized thanks to its relation to the energy momentum tensor and to the QCD sum rules technique. The hard amplitude is considered up to next-to-leading order in as and we explore the consequences of fixing the renormalization scale ambiguity through the BLM procedure. (author)

  13. Hard Identity and Soft Identity

    Directory of Open Access Journals (Sweden)

    Hassan Rachik

    2006-04-01

    Full Text Available Often collective identities are classified depending on their contents and rarely depending on their forms. Differentiation between soft identity and hard identity is applied to diverse collective identities: religious, political, national, tribal ones, etc. This classification is made following the principal dimensions of collective identities: type of classification (univocal and exclusive or relative and contextual, the absence or presence of conflictsof loyalty, selective or totalitarian, objective or subjective conception, among others. The different characteristics analysed contribute to outlining an increasingly frequent type of identity: the authoritarian identity.

  14. Cryopreserved human aortic root allografts arterial wall: Structural changes occurring during thawing.

    Directory of Open Access Journals (Sweden)

    Robert Novotny

    Full Text Available The aim of our experimental work was to assess morphological changes of arterial wall that arise during different thawing protocols of a cryopreserved human aortic root allograft (CHARA arterial wall.The experiment was performed on CHARAs. Two thawing protocols were tested: 1, CHARAs were thawed at a room temperature at +23°C; 2, CHARAs were placed directly into a water bath at +37°C.After fixation, all samples were washed in distilled water for 5 min, and dehydrated in a graded ethanol series (70, 85, 95, and 100% for 5 min at each level. The tissue samples were then immersed in 100% hexamethyldisilazane for 10 minutes and air dried in an exhaust hood at room temperature. Processed samples were mounted on stainless steel stubs, coated with gold.Thawing protocol 1: All 6 (100% samples showed loss of the endothelium and damage to the subendothelial layers with randomly dispersed circular defects and micro-fractures without smooth muscle cells contractions in the tunica media. Thawing protocol 2: All 6 (100% samples showed loss of endothelium from the luminal surface, longitudinal corrugations in the direction of blood flow caused by smooth muscle cells contractions in the tunica media with frequent fractures in the subendothelial layer.All the samples thawed at the room temperature showed smaller structural damage to the CHARA arterial wall with no smooth muscle cell contraction in tunica media when compared to the samples thawed in a water bath.

  15. Kinetic wall from Israel

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1985-05-01

    An unusual solar mass wall is described. At the turn of a handle it can change from a solar energy collector to a heat-blocker. An appropriate name for it might be the rotating prism wall. An example of the moving wall is at work in an adobe test home in Sede Boqer. Behind a large south-facing window stand four large adobe columns that are triangular in plan. One face of each of them is painted black to absorb sunlight, a second is covered with panels of polystyrene insulation, and a third is painted to match the room decor. These columns can rotate. On winter nights, the insulated side faces the glass, keeping heat losses down. The same scheme works in summer to keep heat out of the house. Small windows provide ventilation.

  16. Timber frame walls

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2010-01-01

    A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding....... It was found that the specific damages made to the vapour barrier as part of the test did not have any provable effect on the moisture content. In general elements with an intact vapour barrier did not show a critical moisture content at the wind barrier after four years of exposure....

  17. Aespoe hard rock laboratory Sweden

    International Nuclear Information System (INIS)

    1992-01-01

    The aim of the new Aespoe hard rock laboratory is to demonstrate state of the art of technology and evaluation methods before the start of actual construction work on the planned deep repository for spent nuclear fuel. The nine country OECD/NEA project in the Stripa mine in Sweden has been an excellent example of high quality international research co-operation. In Sweden the new Aespoe hard rock laboratory will gradually take over and finalize this work. SKB very much appreciates the continued international participation in Aespoe which is of great value for the quality efficiency, and confidence in this kind of work. We have invited a number of leading experts to this first international seminar to summarize the current state of a number of key questions. The contributions show the great progress that has taken place during the years. The results show that there is a solid scientific basis for using this knowledge on site specific preparation and work on actual repositories. (au)

  18. Structure and Interfacial Tension of a Hard-Rod Fluid in Planar Confinement.

    Science.gov (United States)

    Brumby, Paul E; Wensink, Henricus H; Haslam, Andrew J; Jackson, George

    2017-10-24

    The structural properties and interfacial tension of a fluid of rodlike hard-spherocylinder particles in contact with hard structureless flat walls are studied by means of Monte Carlo simulation. The calculated surface tension between the rod fluid and the substrate is characterized by a nonmonotonic trend as a function of the bulk concentration (density) over the range of isotropic bulk concentrations. As suggested by earlier theoretical studies, a surface-ordering scenario is confirmed by our simulations: the local orientational order close to the wall changes from uniaxial to biaxial nematic when the bulk concentration reaches about 85% of the value at the onset of the isotropic-nematic phase transition. The surface ordering coincides with a wetting transition whereby the hard wall is wetted by a nematic film. Accurate values of the fluid-solid surface tension, the adsorption, and the average particle-wall contact distance are reported (over a broad range of densities into the dense nematic region for the first time), which can serve as a useful benchmark for future theoretical and experimental studies on confined rod fluids. The simulation data are supplemented with predictions from second-virial density functional theory, which are in good qualitative agreement with the simulation results.

  19. eWALL

    DEFF Research Database (Denmark)

    Kyriazakos, Sofoklis; Mihaylov, Mihail; Anggorojati, Bayu

    2016-01-01

    challenge with impact in multiple sectors. In this paper we present an innovative ICT solution, named eWALL, that aims to address these challenges by means of an advanced ICT infrastructure and home sensing environment; thus differentiating from existing eHealth and eCare solutions. The system of e...

  20. Abdominal wall surgery

    Science.gov (United States)

    ... as liposuction , which is another way to remove fat. But, abdominal wall surgery is sometimes combined with liposuction. ... from the middle and lower sections of your abdomen to make it firmer ... removes excess fat and skin (love handles) from the sides of ...

  1. Occupy Wall Street

    DEFF Research Database (Denmark)

    Jensen, Michael J.; Bang, Henrik

    2013-01-01

    This article analyzes the political form of Occupy Wall Street on Twitter. Drawing on evidence contained within the profiles of over 50,000 Twitter users, political identities of participants are characterized using natural language processing. The results find evidence of a traditional...

  2. Endometriosis Abdominal wall

    International Nuclear Information System (INIS)

    Alvarez, M.; Carriquiry, L.

    2003-01-01

    Endometriosis of abdominal wall is a rare entity wi ch frequently appears after gynecological surgery. Case history includes three cases of parietal endometriosis wi ch were treated in Maciel Hospital of Montevideo. The report refers to etiological diagnostic aspects and highlights the importance of total resection in order to achieve definitive healing

  3. Industrial fabrication of an optical security device for document protection using plasmon resonant transmission through a thin corrugated metallic film embedded on a plastic foil

    Science.gov (United States)

    Sauvage-Vincent, Jean; Jourlin, Yves; Tonchev, Svetlen; Veillas, Colette; Claude, Pedri; Parriaux, Olivier

    2012-06-01

    Known since a long time in polymer banknotes and presented in the few years in paper banknotes, the principle of windowed documents has been currently extended to ID documents. We present an innovative solution which combines resonant transmission and Zero Order Device technologies and which is dedicated to improve windows in terms of the overt security level. With this R&D program, Hologram Industries targeted to obtain an overt visual security device that should be readily checked in transmission in the same manner as the established paper watermark. The proposed solution is based on the propagation of resonant modes in a thin continuous corrugated metallic layer embedded (encapsulated) between two dielectric layers of near equal refractive index. The mode of most interest is the Long Range Plasmon Mode. The coupling condition to the Long Range Mode is principally related to the corrugation, the metal layer thickness and the index of the two dielectric layers. If the condition of the mode excitation through the grating is fulfilled, a predetermined wavelength will be coupled to the Long Range Plasmon Mode. This mode will propagate at each metal/dielectric interface with a low loss and will concentrate the electric field inside the metal layer. This effect of coupling enables the transmission of a peak at this wavelength through the metallic layer. It defines the so called "extraordinary resonant transmission".

  4. The steady-state tangential contact problem for a falling drop type of contact area on corrugated rail by simplified theory of rolling contact

    Science.gov (United States)

    Piotrowski, Jerzy

    1991-10-01

    Investigation of contact mechanical nonlinearities of a mathematical model of corrugation revealed that the typical shape of contact patch resembles a falling drop of water. A contact patch of that shape was approximated with a figure composed of two parts of ellipses with different eccentricities. The contact pressure distribution was assumed as a smoothing ensemble of two paraboloidal distributions. The description of a general case of double half elliptical contact area was given but a special case of double half elliptical contact is more interesting as it possesses some Hertzian properties. It was shown how three geometrical parameters of double half elliptical contact can be chosen when actual, non-Hertzian contact is known. A linear theory was written which indicates that the lateral vibrations of the rail may be excited only due to shape variation on corrugation even if any other cause for these vibrations does not exist. For nonlinear theory a computer program, based on FASTSIM algorithm by Kalker, was written. The aim is to calculate the creep forces and frictional power density distribution over the contact area. Also, a graphic program visualizing the solution was written. Numerical results are not provided; unattended and unsolved problems relevant for this type of contact are listed.

  5. Chronic Abdominal Wall Pain.

    Science.gov (United States)

    Koop, Herbert; Koprdova, Simona; Schürmann, Christine

    2016-01-29

    Chronic abdominal wall pain is a poorly recognized clinical problem despite being an important element in the differential diagnosis of abdominal pain. This review is based on pertinent articles that were retrieved by a selective search in PubMed and EMBASE employing the terms "abdominal wall pain" and "cutaneous nerve entrapment syndrome," as well as on the authors' clinical experience. In 2% to 3% of patients with chronic abdominal pain, the pain arises from the abdominal wall; in patients with previously diagnosed chronic abdominal pain who have no demonstrable pathological abnormality, this likelihood can rise as high as 30% . There have only been a small number of clinical trials of treatment for this condition. The diagnosis is made on clinical grounds, with the aid of Carnett's test. The characteristic clinical feature is strictly localized pain in the anterior abdominal wall, which is often mischaracterized as a "functional" complaint. In one study, injection of local anesthesia combined with steroids into the painful area was found to relieve pain for 4 weeks in 95% of patients. The injection of lidocaine alone brought about improvement in 83-91% of patients. Long-term pain relief ensued after a single lidocaine injection in 20-30% of patients, after repeated injections in 40-50% , and after combined lidocaine and steroid injections in up to 80% . Pain that persists despite these treatments can be treated with surgery (neurectomy). Chronic abdominal wall pain is easily diagnosed on physical examination and can often be rapidly treated. Any physician treating patients with abdominal pain should be aware of this condition. Further comparative treatment trials will be needed before a validated treatment algorithm can be established.

  6. Development of radiation hard scintillators

    International Nuclear Information System (INIS)

    Markley, F.; Woods, D.; Pla-Dalmau, A.; Foster, G.; Blackburn, R.

    1992-05-01

    Substantial improvements have been made in the radiation hardness of plastic scintillators. Cylinders of scintillating materials 2.2 cm in diameter and 1 cm thick have been exposed to 10 Mrads of gamma rays at a dose rate of 1 Mrad/h in a nitrogen atmosphere. One of the formulations tested showed an immediate decrease in pulse height of only 4% and has remained stable for 12 days while annealing in air. By comparison a commercial PVT scintillator showed an immediate decrease of 58% and after 43 days of annealing in air it improved to a 14% loss. The formulated sample consisted of 70 parts by weight of Dow polystyrene, 30 pbw of pentaphenyltrimethyltrisiloxane (Dow Corning DC 705 oil), 2 pbw of p-terphenyl, 0.2 pbw of tetraphenylbutadiene, and 0.5 pbw of UVASIL299LM from Ferro

  7. Wind tunnels with adapted walls for reducing wall interference

    Science.gov (United States)

    Ganzer, U.

    1979-01-01

    The basic principle of adaptable wind tunnel walls is explained. First results of an investigation carried out at the Aero-Space Institute of Berlin Technical University are presented for two dimensional flexible walls and a NACA 0012 airfoil. With five examples exhibiting very different flow conditions it is demonstrated that it is possible to reduce wall interference and to avoid blockage at transonic speeds by wall adaptation.

  8. Rising damp in building walls: the wall base ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, A.S.; Delgado, J.M.P.Q.; Freitas, V.P. de [Faculdade de Engenharia da Universidade do Porto, Laboratorio de Fisica das Construcoes (LFC), Departamento de Engenharia Civil, Porto (Portugal)

    2012-12-15

    This work intends to validate a new system for treating rising damp in historic buildings walls. The results of laboratory experiments show that an efficient way of treating rising damp is by ventilating the wall base, using the HUMIVENT technique. The analytical model presented describes very well the observed features of rising damp in walls, verified by laboratory tests, who contributed for a simple sizing of the wall base ventilation system that will be implemented in historic buildings. (orig.)

  9. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  10. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Kochkin, V. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  11. Soft And Hard Skills of Social Worker

    OpenAIRE

    HANTOVÁ, Libuše

    2011-01-01

    The work deals with soft and hard skills relevant to the profession of social worker. The theoretical part at first evaluates and analyzes important soft and hard skills necessary for people working in the field of social work. Then these skills are compared. The practical part illustrates the use of soft and hard skills in practice by means of model scenes and deals with the preferences in three groups of people ? students of social work, social workers and people outside the sphere, namely ...

  12. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1995-06-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). (orig.)

  13. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1996-01-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). copyright 1996 American Institute of Physics

  14. Advances in hard nucleus cataract surgery

    Directory of Open Access Journals (Sweden)

    Wei Cui

    2013-11-01

    Full Text Available Security and perfect vision and fewer complications are our goals in cataract surgery, and hard-nucleus cataract surgery is always a difficulty one. Many new studies indicate that micro-incision phacoemulsification in treating hard nucleus cataract is obviously effective. This article reviews the evolution process of hard nuclear cataract surgery, the new progress in the research of artificial intraocular lens for microincision, and analyse advantages and disadvantages of various surgical methods.

  15. Material and structural mechanical modelling and reliability of thin-walled bellows at cryogenic temperatures. Application to LHC compensation system

    CERN Document Server

    Garion, Cédric; Skoczen, Blazej

    The present thesis is dedicated to the behaviour of austenitic stainless steels at cryogenic temperatures. The plastic strain induced martensitic transformation and ductile damage are taken into account in an elastic-plastic material modelling. The kinetic law of →’ transformation and the evolution laws of kinematic/isotropic mixed hardening are established. Damage issue is analysed by different ways: mesoscopic isotropic or orthotropic model and a microscopic approach. The material parameters are measured from 316L fine gauge sheet at three levels of temperature: 293 K, 77 K and 4.2 K. The model is applied to thin-walled corrugated shell, used in the LHC interconnections. The influence of the material properties on the stability is studied by a modal analysis. The reliability of the components, defined by the Weibull distribution law, is analysed from fatigue tests. The impact on reliability of geometrical imperfections and thermo-mechanical loads is also analysed.

  16. Wall insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Kostek, P.T.

    1987-08-11

    In a channel specially designed to fasten semi-rigid mineral fibre insulation to masonry walls, it is known to be constructed from 20 gauge galvanized steel or other suitable material. The channel is designed to have pre-punched holes along its length for fastening of the channel to the drywall screw. The unique feature of the channel is the teeth running along its length which are pressed into the surface of the butted together sections of the insulation providing a strong grip between the two adjacent pieces of insulation. Of prime importance to the success of this system is the recent technological advancements of the mineral fibre itself which allow the teeth of the channel to engage the insulation fully and hold without mechanical support, rather than be repelled or pushed back by the inherent nature of the insulation material. After the insulation is secured to the masonry wall by concrete nail fastening systems, the drywall is screwed to the channel.

  17. Shadows on the wall

    International Nuclear Information System (INIS)

    Swift, Diana.

    1984-01-01

    Canadian antinuclear groups, because of their shifting stances and fluid overlapping membership, are compared with shadows on a wall. They can be roughly classified as environmental, pacifist, concerned with energy, religious, or dedicated to nuclear responsibility. The author considers that such groups, despite their arguably unrealistic attitudes, have raised public awareness of the ethical, practical and financial aspects of power development in Canada and the world

  18. Scalable Resolution Display Walls

    KAUST Repository

    Leigh, Jason; Johnson, Andrew; Renambot, Luc; Peterka, Tom; Jeong, Byungil; Sandin, Daniel J.; Talandis, Jonas; Jagodic, Ratko; Nam, Sungwon; Hur, Hyejung; Sun, Yiwen

    2013-01-01

    This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.

  19. Light shining through walls

    International Nuclear Information System (INIS)

    Redondo, Javier; Ringwald, Andreas

    2010-11-01

    Shining light through walls? At first glance this sounds crazy. However, very feeble gravitational and electroweak effects allow for this exotic possibility. Unfortunately, with present and near future technologies the opportunity to observe light shining through walls via these effects is completely out of question. Nevertheless there are quite a number of experimental collaborations around the globe involved in this quest. Why are they doing it? Are there additional ways of sending photons through opaque matter? Indeed, various extensions of the standard model of particle physics predict the existence of new particles called WISPs - extremely weakly interacting slim particles. Photons can convert into these hypothetical particles, which have no problems to penetrate very dense materials, and these can reconvert into photons after their passage - as if light was effectively traversing walls. We review this exciting field of research, describing the most important WISPs, the present and future experiments, the indirect hints from astrophysics and cosmology pointing to the existence of WISPs, and finally outlining the consequences that the discovery of WISPs would have. (orig.)

  20. Light shining through walls

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    Shining light through walls? At first glance this sounds crazy. However, very feeble gravitational and electroweak effects allow for this exotic possibility. Unfortunately, with present and near future technologies the opportunity to observe light shining through walls via these effects is completely out of question. Nevertheless there are quite a number of experimental collaborations around the globe involved in this quest. Why are they doing it? Are there additional ways of sending photons through opaque matter? Indeed, various extensions of the standard model of particle physics predict the existence of new particles called WISPs - extremely weakly interacting slim particles. Photons can convert into these hypothetical particles, which have no problems to penetrate very dense materials, and these can reconvert into photons after their passage - as if light was effectively traversing walls. We review this exciting field of research, describing the most important WISPs, the present and future experiments, the indirect hints from astrophysics and cosmology pointing to the existence of WISPs, and finally outlining the consequences that the discovery of WISPs would have. (orig.)

  1. Microfluidics with fluid walls.

    Science.gov (United States)

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  2. Semiflexible polymers confined in a slit pore with attractive walls: two-dimensional liquid crystalline order versus capillary nematization.

    Science.gov (United States)

    Milchev, Andrey; Egorov, Sergei A; Binder, Kurt

    2017-03-01

    Semiflexible polymers under good solvent conditions interacting with attractive planar surfaces are investigated by Molecular Dynamics (MD) simulations and classical Density Functional Theory (DFT). A bead-spring type potential complemented by a bending potential is used, allowing variation of chain stiffness from completely flexible coils to rod-like polymers whose persistence length by far exceeds their contour length. Solvent is only implicitly included, monomer-monomer interactions being purely repulsive, while two types of attractive wall-monomer interactions are considered: (i) a strongly attractive Mie-type potential, appropriate for a strictly structureless wall, and (ii) a corrugated wall formed by Lennard-Jones particles arranged on a square lattice. It is found that in dilute solutions the former case leads to the formation of a strongly adsorbed surface layer, and the profile of density and orientational order in the z-direction perpendicular to the wall is predicted by DFT in nice agreement with MD. While for very low bulk densities a Kosterlitz-Thouless type transition from the isotropic phase to a phase with power-law decay of nematic correlations is suggested to occur in the strongly adsorbed layer, for larger densities a smectic-C phase in the surface layer is detected. No "capillary nematization" effect at higher bulk densities is found in this system, unlike systems with repulsive walls. This finding is attributed to the reduction of the bulk density (in the center of the slit pore) due to polymer adsorption on the attractive wall, for a system studied in the canonical ensemble. Consequently in a system with two attractive walls nematic order in the slit pore can occur only at a higher density than for a bulk system.

  3. Wall Street som kreationistisk forkynder

    DEFF Research Database (Denmark)

    Ekman, Susanne

    2016-01-01

    Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong......Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong...

  4. Hadronization at the AdS wall

    International Nuclear Information System (INIS)

    Evans, Nick; French, James; Threlfall, Ed; Jensen, Kristan

    2010-01-01

    We describe hadronization events, using the AdS/CFT Correspondence, which display many of the qualitative features expected in QCD. In particular we study the motion of strings with separating end points in a back-reacted hard wall geometry. The solutions show the development of a linear QCD-like string. The end points oscillate in the absence of string breaking. We introduce string breaking by hand and evolve the new state forward in time to observe the separation of two string segments. A kink associated with this breaking evolves to the end points of the string inducing rho meson production. We explicitly compute the rho meson production at the end point.

  5. Build an Interactive Word Wall

    Science.gov (United States)

    Jackson, Julie

    2018-01-01

    Word walls visually display important vocabulary covered during class. Although teachers have often been encouraged to post word walls in their classrooms, little information is available to guide them. This article describes steps science teachers can follow to transform traditional word walls into interactive teaching tools. It also describes a…

  6. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  7. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  8. Hard disks with SCSI interface

    CERN Document Server

    Denisov, O Yu

    1999-01-01

    The testing of 20 models of hard SCSI-disks is carried out: the Fujitsu MAE3091LP; the IBM DDRS-39130, DGHS-318220, DNES-318350, DRHS-36V and DRVS-18V; the Quantum Atlas VI 18.2; the Viking 11 9.1; the Seagate ST118202LW, ST118273LW, ST118273W, ST318203LW, ST318275LW, ST34520W, ST39140LW and ST39173W; and the Western Digital WDE9100-0007, WDE9100-AV0016, WDE9100-AV0030 and WDE9180-0048. All tests ran under the Windows NT 4.0 workstation operating system with Service Pack 4, under video mode with 1024*768 pixel resolution, 32- bit colour depth and V-frequency equal to 85 Hz. The detailed description and characteristics of SCSI stores are presented. Test results (ZD Winstone 99 and ZD WinBench 99 tests) are given in both table and diagram (disk transfer rate) forms. (0 refs).

  9. Development of a hard microcontroller

    International Nuclear Information System (INIS)

    Measel, P.R.; Sivo, L.L.; Quilitz, W.E.; Davidson, T.K.

    1976-01-01

    The applicability of commercially available microprocessors to certain systems requiring radiation survival was assessed. A microcontroller was designed and built to perform a monitor and control function of military operational ground equipment, and demonstrated to exceed the radiation hardness goal. The preparation of the microcontroller module required hardware and software design, selection of LSI and other piece part types, development of piece part and module electrical and radiation test techniques, and the performance of radiation tests on the LSI piece parts and the completed module. The microcontroller has a 16-bit central processor unit, a 4096 word read only memory, and a 256 word read-write memory. The module has circumvention circuitry, including a PIN diode radiation detector. The processor device used was the MMI 6701 T 2 L Schottky bipolar 4-bit slice. Electrical exerciser circuits were developed for in-situ electrical testing of microprocessors and memories during irradiation. A test program was developed for a Terradyne J283 microcircuit tester for more complete electrical characterization of the MMI 6701 microprocessor. A simple self-test algorithm was used in the microcontroller for performance testing during irradiation. For the operational demonstration of the microcontroller a TI 960A minicomputer was used to provide the required complex inputs to the module and verify the module outputs

  10. Improvement activities to soil stabilization near Bolivia-Brazil gas pipeline crossing through an embankment over a corrugated drainage pipe, at Km 247 in Mato Grosso do Sul, Brazil; Melhorias para estabilidade do gasoduto Bolivia-Brasil em cruzamento de aterro sobre tubo de drenagem tipo ARMCO, no km 247 em Mato Grosso do Sul

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, Kemal Vieira [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil); Costa, Cesar Augusto [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Campo Grande, MS (Brazil). Gerencia Regional Centro Oeste (CRGO)

    2005-07-01

    A hundred and seventy kilometers from Campo Grande city, on Mato Grosso do Sul State, the Brasil-Bolivia Gas Pipeline crosses a 8,5 meters high landfill, over a drainage systems made of a 2,8 meters of diameter corrugated pipe. This drainage pipe was installed to allow the drainage of the valley, and the landfill above it was built so the Gas pipeline could cross easier the 80 meters deep and 30 degree vertices valley. This paper illustrates the work tasks and solutions taken to monitor and guarantee the integrity of the drainage and landfill structures, as well as the integrity of the Gas Pipeline. Some of the work tasks illustrated are the investigation of the support conditions of the Gas Pipeline, the analysis of a drainage system under the pipeline, on a rocky soil, the analysis of the stability of the landfill, the construction of a gravity retaining walls and the monitoring of the deformations on the drainage pipe. (author)

  11. Apparatus and process for deposition of hard carbon films

    Science.gov (United States)

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-03

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  12. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    International Nuclear Information System (INIS)

    Gustafsson, Jaana; Gustafsson, Christer

    2010-01-01

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  13. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jaana; Gustafsson, Christer (Malaa Geoscience AB (Sweden))

    2010-01-15

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  14. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption

    NARCIS (Netherlands)

    Nolte, Tom M.; Hartmann, Nanna B.; Kleijn, Mieke; Garnæs, Jørgen; Meent, van de Dik; Jan Hendriks, A.; Baun, Anders

    2017-01-01

    To investigate processes possibly underlying accumulation and ecological effects of plastic nano-particles we have characterized their interaction with the cell wall of green algae. More specifically, we have investigated the influence of particle surface functionality and water hardness (Ca2+

  15. Complex technique for materials hardness measurement

    Energy Technology Data Exchange (ETDEWEB)

    Krashchenko, V P; Oksametnaya, O B

    1984-01-01

    A review of existing methods of measurement of material hardness in national and foreign practice has been made. A necessity of improving the technique of material hardness measurement in a wide temperature range and insuring load change with indenting, continuity of imprint application, smooth changing of temperatures along a sample length, and deformation rate control has been noted.

  16. Hard scattering and a diffractive trigger

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-02-01

    Conclusions concerning the properties of hard scattering in diffractively produced systems are summarized. One motivation for studying diffractive hard scattering is to investigate the interface between Regge theory and perturbative QCD. Another is to see whether diffractive triggering can result in an improvement in the signal-to-background ratio of measurements of production of very heavy quarks. 5 refs

  17. ERRATUM: Work smart, wear your hard hat

    CERN Multimedia

    2003-01-01

    An error appeared in the article «Work smart, wear your hard hat» published in Weekly Bulletin 27/2003, page 5. The impact which pierced a hole in the hard hat worn by Gerd Fetchenhauer was the equivalent of a box weighing 5 kg and not 50 kg.

  18. 7 CFR 201.57 - Hard seeds.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS Germination Tests in the Administration of the Act § 201.57 Hard seeds. Seeds which remain hard at the end of the prescribed test because they have not absorbed water, due to an impermeable seed coat... percentage of germination. For flatpea, continue the swollen seed in test for 14 days when germinating at 15...

  19. Regulation of cell wall biosynthesis.

    Science.gov (United States)

    Zhong, Ruiqin; Ye, Zheng-Hua

    2007-12-01

    Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.

  20. Thermal spray coatings replace hard chrome

    International Nuclear Information System (INIS)

    Schroeder, M.; Unger, R.

    1997-01-01

    Hard chrome plating provides good wear and erosion resistance, as well as good corrosion protection and fine surface finishes. Until a few years ago, it could also be applied at a reasonable cost. However, because of the many environmental and financial sanctions that have been imposed on the process over the past several years, cost has been on a consistent upward trend, and is projected to continue to escalate. Therefore, it is very important to find a coating or a process that offers the same characteristics as hard chrome plating, but without the consequent risks. This article lists the benefits and limitations of hard chrome plating, and describes the performance of two thermal spray coatings (tungsten carbide and chromium carbide) that compared favorably with hard chrome plating in a series of tests. It also lists three criteria to determine whether plasma spray or hard chrome plating should be selected

  1. Correlating particle hardness with powder compaction performance.

    Science.gov (United States)

    Cao, Xiaoping; Morganti, Mikayla; Hancock, Bruno C; Masterson, Victoria M

    2010-10-01

    Assessing particle mechanical properties of pharmaceutical materials quickly and with little material can be very important to early stages of pharmaceutical research. In this study, a wide range of pharmaceutical materials were studied using atomic force microscopy (AFM) nanoindentation. A significant amount of particle hardness and elastic modulus data were provided. Moreover, powder compact mechanical properties of these materials were investigated in order to build correlation between the particle hardness and powder compaction performance. It was found that the materials with very low or high particle hardness most likely exhibit poor compaction performance while the materials with medium particle hardness usually have good compaction behavior. Additionally, the results from this study enriched Hiestand's special case concept on particle hardness and powder compaction performance. This study suggests that the use of AFM nanoindentation can help to screen mechanical properties of pharmaceutical materials at early development stages of pharmaceutical research.

  2. Electroweak bubble wall speed limit

    Energy Technology Data Exchange (ETDEWEB)

    Bödeker, Dietrich [Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld (Germany); Moore, Guy D., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: guymoore@ikp.physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany)

    2017-05-01

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can 'run away,' that is, achieve extreme ultrarelativistic velocities γ ∼ 10{sup 14}. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ∼ 1/α. Though the bubble walls can move at almost the speed of light, they carry an infinitesimal share of the plasma's energy.

  3. 3D visualization of subcellular structures of Schizosaccharomyces pombe by hard X-ray tomography.

    Science.gov (United States)

    Yang, Y; Li, W; Liu, G; Zhang, X; Chen, J; Wu, W; Guan, Y; Xiong, Y; Tian, Y; Wu, Z

    2010-10-01

    Cellular structures of the fission yeast, Schizosaccharomyces pombe, were examined by using hard X-ray tomography. Since cells are nearly transparent to hard X-rays, Zernike phase contrast and heavy metal staining were introduced to improve image contrast. Through using such methods, images taken at 8 keV displayed sufficient contrast for observing cellular structures. The cell wall, the intracellular organelles and the entire structural organization of the whole cells were visualized in three-dimensional at a resolution better than 100 nm. Comparison between phase contrast and absorption contrast was also made, indicating the obvious advantage of phase contrast for cellular imaging at this energy. Our results demonstrate that hard X-ray tomography with Zernike phase contrast is suitable for cellular imaging. Its unique abilities make it have potential to become a useful tool for revealing structural information from cells, especially thick eukaryotic cells. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  4. Investigation of ultrashort-pulsed laser on dental hard tissue

    Science.gov (United States)

    Uchizono, Takeyuki; Awazu, Kunio; Igarashi, Akihiro; Kato, Junji; Hirai, Yoshito

    2007-02-01

    Ultrashort-pulsed laser (USPL) can ablate various materials with precious less thermal effect. In laser dentistry, to solve the problem that were the generation of crack and carbonized layer by irradiating with conventional laser such as Er:YAG and CO II laser, USPL has been studied to ablate dental hard tissues by several researchers. We investigated the effectiveness of ablation on dental hard tissues by USPL. In this study, Ti:sapphire laser as USPL was used. The laser parameter had the pulse duration of 130 fsec, 800nm wavelength, 1KHz of repetition rate and the average power density of 90~360W/cm2. Bovine root dentin plates and crown enamel plates were irradiated with USPL at 1mm/sec using moving stage. The irradiated samples were analyzed by SEM, EDX, FTIR and roughness meter. In all irradiated samples, the cavity margin and wall were sharp and steep, extremely. In irradiated dentin samples, the surface showed the opened dentin tubules and no smear layer. The Ca/P ratio by EDX measurement and the optical spectrum by FTIR measurement had no change on comparison irradiated samples and non-irradiated samples. These results confirmed that USPL could ablate dental hard tissue, precisely and non-thermally. In addition, the ablation depths of samples were 10μm, 20μm, and 60μm at 90 W/cm2, 180 W/cm2, and 360 W/cm2, approximately. Therefore, ablation depth by USPL depends on the average power density. USPL has the possibility that can control the precision and non-thermal ablation with depth direction by adjusting the irradiated average power density.

  5. Enhanced wall pumping in JET

    International Nuclear Information System (INIS)

    Ehrenberg, J.; Harbour, P.J.

    1991-01-01

    The enhanced wall pumping phenomenon in JET is observed for hydrogen or deuterium plasmas which are moved from the outer (larger major radius) limiter position either to the inner wall or to the top/bottom wall of the vacuum vessel. This phenomenon is analysed by employing a particle recycling model which combines plasma particle transport with particle re-emission from and retention within material surfaces. The model calculates the important experimentally observable quantities, such as particle fluxes, global particle confinement time, plasma density and density profile. Good qualitative agreement is found and, within the uncertainties, the agreement is quantitative if the wall pumping is assumed to be caused by two simultaneously occurring effects: (1) Neutral particle screening at the inner wall and the top/bottom wall is larger than that at the outer limiter because of different magnetic topologies at different poloidal positions; and (2) although most of the particles (≥ 90%) impacting on the wall can be promptly re-emitted, a small fraction (≤ 10%) of them must be retained in the wall for a period of time which is similar to or larger than the global plasma particle confinement time. However, the wall particle retention time need not be different from that of the outer limiter, i.e. pumping can occur when there is no difference between the material properties of the limiter and those of the wall. (author). 45 refs, 18 figs

  6. Characteristics of wall pressure over wall with permeable coating

    Energy Technology Data Exchange (ETDEWEB)

    Song, Woo Seog; Shin, Seungyeol; Lee, Seungbae [Inha Univ., Incheon (Korea, Republic of)

    2012-11-15

    Fluctuating wall pressures were measured using an array of 16 piezoelectric transducers beneath a turbulent boundary layer. The coating used in this experiment was an open cell, urethane type foam with a porosity of approximately 50 ppi. The ultimate objective of the coating is to provide a mechanical filter to reduce the wall pressure fluctuations. The ultimate objective of the coating is to provide a mechanical filter to reduce the wall pressure fluctuations. The boundary layer on the flat plate was measured by using a hot wire probe, and the CPM method was used to determine the skin friction coefficient. The wall pressure autospectra and streamwise wavenumber frequency spectra were compared to assess the attenuation of the wall pressure field by the coating. The coating is shown to attenuate the convective wall pressure energy. However, the relatively rough surface of the coating in this investigation resulted in a higher mean wall shear stress, thicker boundary layer, and higher low frequency wall pressure spectral levels compared to a smooth wall.

  7. Compression effects in helium-like atoms (Z=1,...,5) constrained by hard spherical walls

    International Nuclear Information System (INIS)

    Flores-Riveros, A.; Rodriguez-Contreras, A.

    2008-01-01

    Ground and lowest triplet S state energies and other properties are obtained for confined helium-like atoms {Z=1,...} spherically enclosed by impenetrable boxes of varying size. Wave functions are variationally optimized within generalized Hylleraas bases fulfilling appropriate boundary conditions. For all systems, enhanced confinement leads to increased total energies and singlet-triplet energy splittings

  8. Construction of Hydrophobic Wood Surface and Mechanical Property of Wood Cell Wall on Nanoscale Modified by Dimethyldichlorosilane

    Science.gov (United States)

    Yang, Rui; Wang, Siqun; Zhou, Dingguo; Zhang, Jie; Lan, Ping; Jia, Chong

    2018-01-01

    Dimethyldichlorosilane was used to improve the hydrophobicity of wood surface. The water contact angle of the treated wood surface increased from 85° to 143°, which indicated increased hydrophobicity. The nanomechanical properties of the wood cell wall were evaluated using a nanoindentation test to analyse the hydrophobic mechanism on the nano scale. The elastic modulus of the cell wall was significantly affected by the concentration but the influence of treatment time is insignificant. The hardness of the cell wall for treated samples was significantly affected by both treatment time and concentration. The interaction between treatment time and concentration was extremely significant for the elastic modulus of the wood cell wall.

  9. Analysis of Hard Thin Film Coating

    Science.gov (United States)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  10. Abdominal wall blocks in adults

    DEFF Research Database (Denmark)

    Børglum, Jens; Gögenür, Ismail; Bendtsen, Thomas F

    2016-01-01

    been introduced with success. Future research should also investigate the effect of specific abdominal wall blocks on neuroendocrine and inflammatory stress response after surgery.  Summary USG abdominal wall blocks in adults are commonplace techniques today. Most abdominal wall blocks are assigned......Purpose of review Abdominal wall blocks in adults have evolved much during the last decade; that is, particularly with the introduction of ultrasound-guided (USG) blocks. This review highlights recent advances of block techniques within this field and proposes directions for future research.......  Recent findings Ultrasound guidance is now considered the golden standard for abdominal wall blocks in adults, even though some landmark-based blocks are still being investigated. The efficiency of USG transversus abdominis plane blocks in relation to many surgical procedures involving the abdominal wall...

  11. Effects of Moat Wall Impact on the Seismic Response of Base Isolated Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Kim, Jung Han; Mosqueda, Gilberto; Sarebanhab, Alireza

    2015-01-01

    The objectives of this study are to examine the effects of impact on the response of seismically isolated NPPs and identify characteristics of the isolation hardware and hard stop that minimize these effects. Considering variable distances to the hard stop and properties of the moat wall, the amplification in response is reported for acceleration and floor spectral accelerations at different points along the height of a NPP containment structure. Base isolation can be an effective strategy to protect critical facilities such as Nuclear Power Plants (NPPs) from the damaging effects of horizontal earthquake ground shaking. To be effective in reducing accelerations and deformations of the structure above, the seismic isolation bearings can be subjected to large displacements. In the case of an extreme earthquake, bearing displacements need to be limited by a hard stop in order to prevent failure of the bearings. Impact to the hard stop, which is often the moat wall at the basement level, is also of significant concern due to the potential for increased transfer of forces and amplification in response of the structural system, piping and other contents. However, the consequences of impact or factors important to mitigate its effects are not very well understood. The main findings of this study are related to modeling of NPP with moat wall in OpenSees and LSDyna as well as observations resulting from the parametric study of the performance of the NPP under different intensity levels of seismic excitations for different properties of the moat wall and bearings. • Variation in the isolator properties should be considered when examining seismic pounding. For BDBE even, 58.5 % cases result to the impact for lower bound properties while this value was 5.5 % for upper bound properties. Since the impact results are dependent to the assumed bearing properties, a better range of properties can be obtained from experimental testing of the bearing under large shear strains.

  12. Radiation shielding wall structure

    International Nuclear Information System (INIS)

    Nishimura, Yoshitaka; Oka, Shinji; Kan, Toshihiko; Misato, Takeshi.

    1990-01-01

    A space between a pair of vertical steel plates laterally disposed in parallel at an optional distance has a structure of a plurality of vertically extending tranks partitioned laterally by vertically placed steel plates. Then, cements are grouted to the tranks. Strip-like steel plates each having a thickness greater than the gap between the each of the vertically placed steel plates and the cement are bonded each at the surface for each of the vertically placed steel plates opposing to the cements. A protrusion of a strip width having radiation shielding performance substantially identical with that by the thickness of the cement is disposed in the strip-like steel plates. With such a constitution, a safety radiation shielding wall structure with no worry of radiation intrusion to gaps, if formed, between the steel plates and the grouted cements due to shrinkage of the cements. (I.N.)

  13. Observations on resistive wall modes

    International Nuclear Information System (INIS)

    Gerwin, R.A.; Finn, J.M.

    1996-01-01

    Several results on resistive wall modes and their application to tokamaks are presented. First, it is observed that in the presence of collisional parallel dynamics there is an exact cancellation to lowest order of the dissipative and sound wave effects for an ideal Ohm's law. This is easily traced to the fact that the parallel dynamics occurs along the perturbed magnetic field lines for such electromagnetic modes. Such a cancellation does not occur in the resistive layer of a tearing-like mode. The relevance to models for resistive wall modes using an electrostatic Hammett-Perkins type operator to model Landau damping will be discussed. Second, we observe that with an ideal Ohm's law, resistive wall modes can be destabilized by rotation in that part of parameter space in which the ideal MHD modes are stable with the wall at infinity. This effect can easily be explained by interpreting the resistive wall instability in terms of mode coupling between the backward stable MHD mode and a stable mode locked into the wall. Such an effect can occur for very small rotation for tearing-resistive wall modes in which inertia dominates viscosity in the layer, but the mode is stabilized by further rotation. For modes for which viscosity dominates in the layer, rotation is purely stabilizing. For both tearing models, a somewhat higher rotation frequency gives stability essentially whenever the tearing mode is stable with a perfectly conducting wall. These tearing/resistive wall results axe also simply explained in terms of mode coupling. It has been shown that resonant external ideal modes can be stabilized in the presence of resistive wall and resistive plasma with rotation of order the nominal tearing mode growth rate. We show that these modes behave as resistive wall tearing modes in the sense above. This strengthens the suggestion that rotational stabilization of the external kink with a resistive wall is due to the presence of resistive layers, even for ideal modes

  14. Stability of ideal and resistive modes in cylindrical plasmas with resistive walls and plasma rotation

    International Nuclear Information System (INIS)

    Bondeson, A.; Xie, H.X.

    1996-01-01

    The stabilization of cylindrical plasmas by resistive walls combined with plasma rotation is analyzed. Perturbations with a single mode rational surface q=m/n in a finitely conducting plasma are treated by the resistive kink dispersion relation of Coppi. The possibilities for stabilization of ideal and resistive instabilities are explored systematically in different regions of parameter space. The study confirms that an ideal instability can be stabilized by a close-fitting wall and a rotation velocity of the order of resistive growth rate. However, the region in parameter space where such stabilization occurs is very small and appears to be difficult to exploit in experiments. The overall conclusion from the cylindrical plasma model is that resistive modes can readily be wall stabilized, whereas complete wall stabilization is hard to achieve for plasmas that are ideally unstable with the wall at infinity. 26 refs, 5 figs

  15. Domain wall networks on solitons

    International Nuclear Information System (INIS)

    Sutcliffe, Paul

    2003-01-01

    Domain wall networks on the surface of a soliton are studied in a simple theory. It consists of two complex scalar fields, in 3+1 dimensions, with a global U(1)xZ n symmetry, where n>2. Solutions are computed numerically in which one of the fields forms a Q ball and the other field forms a network of domain walls localized on the surface of the Q ball. Examples are presented in which the domain walls lie along the edges of a spherical polyhedron, forming junctions at its vertices. It is explained why only a small restricted class of polyhedra can arise as domain wall networks

  16. Double hard scattering without double counting

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [VU Univ. Amsterdam (Netherlands). NIKHEF Theory Group; Schoenwald, Kay [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-02-15

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  17. Hard X-ray Photoelectric Polarimeter

    Data.gov (United States)

    National Aeronautics and Space Administration — Our objective is to determine the gas mixtures and pressures that would enable a sensitive, hard X-ray polarimeter using existing flight components with the goal of...

  18. Methane in German hard coal mining

    International Nuclear Information System (INIS)

    Martens, P.N.; Den Drijver, J.

    1995-01-01

    Worldwide, hard coal mining is being carried out at ever increasing depth, and has, therefore, to cope with correspondingly increasing methane emissions are caused by coal mining. Beside carbon dioxide, chloro-fluoro-carbons (CFCs) and nitrogen oxides, methane is one of the most significant 'greenhouse' gases. It is mainly through the release of such trace gases that the greenhouse effect is brought about. Reducing methane emissions is therefore an important problem to be solved by the coal mining industry. This paper begins by highlighting some of the fundamental principles of methane in hard coal mining. The methane problem in German hard coal mining and the industry's efforts to reduce methane emissions are presented. The future development in German hard coal mining is illustrated by an example which shows how large methane volumes can be managed, while still maintaining high outputs at increasing depth. (author). 7 tabs., 10 figs., 20 refs

  19. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... it free Find out why Close Why Are Drugs So Hard to Quit? National Institute on Drug Abuse (NIDA/NIH) Loading... Unsubscribe from National Institute on Drug Abuse (NIDA/NIH)? Cancel Unsubscribe Working... Subscribe Subscribed ...

  20. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... YouTube Red. Working... Not now Try it free Find out why Close Why Are Drugs So Hard ... hotline to help you or a loved one find treatment. For more information, visit http://www.easyread. ...

  1. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... So Hard to Quit? National Institute on Drug Abuse (NIDA/NIH) Loading... Unsubscribe from National Institute on Drug Abuse (NIDA/NIH)? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe ...

  2. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... Feb 7, 2012 Quitting drugs is hard because addiction is a brain disease. Your brain is like ... out signals to direct your actions and choices. Addiction changes the signals in your brain and makes ...

  3. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... Drugs So Hard to Quit? National Institute on Drug Abuse (NIDA/NIH) Loading... Unsubscribe from National Institute on Drug Abuse (NIDA/NIH)? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe ...

  4. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... in your brain and makes it hard to feel OK without the drug. This video from NIDA ... Advertise Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign in to ...

  5. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... has been rented. This feature is not available right now. Please try again later. Published on Feb 7, 2012 Quitting drugs is hard because addiction is a brain disease. Your brain is like a control tower ...

  6. A theoretical overview on single hard diffraction

    International Nuclear Information System (INIS)

    Wuesthoff, M.

    1996-01-01

    The concept of the Pomeron structure function and its application in Single Hard Diffraction at hadron colliders and in diffractive Deep Inelastic Scattering is critically reviewed. Some alternative approaches are briefly surveyed with a focus on QCD inspired models

  7. Double hard scattering without double counting

    International Nuclear Information System (INIS)

    Diehl, Markus; Gaunt, Jonathan R.

    2017-02-01

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  8. Hard scattering and gauge/string duality

    International Nuclear Information System (INIS)

    Polchinski, Joseph; Strassler, Matthew J.

    2002-01-01

    We consider high-energy fixed-angle scattering of glueballs in confining gauge theories that have supergravity duals. Although the effective description is in terms of the scattering of strings, we find that the amplitudes are hard (power law). This is a consequence of the warped geometry of the dual theory, which has the effect that in an inertial frame the string process is never in the soft regime. At small angle we find hard and Regge behaviors in different kinematic regions

  9. Soft skills, hard skills, and individual innovativeness

    DEFF Research Database (Denmark)

    Hendarman, Achmad Fajar; Cantner, Uwe

    2018-01-01

    of Indonesian firms from different industries are used from an online survey on manager and worker perceptions related to individual innovation performance on the one hand and individual skills on the other hand. The results show that soft skills and hard skills are significantly and positively associated...... with individual level innovativeness. However, no complementarity (positive interaction effect) is found between soft skills and hard skills....

  10. Hard template synthesis of metal nanowires

    OpenAIRE

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production o...

  11. Radiation-Hard Quartz Cerenkov Calorimeters

    International Nuclear Information System (INIS)

    Akgun, U.; Onel, Y.

    2006-01-01

    New generation hadron colliders are going to reach unprecedented energies and radiation levels. Quartz has been identified as a radiation-hard material that can be used for Cerenkov calorimeters of the future experiments. We report from the radiation hardness tests performed on quartz fibers, as well as the characteristics of the quartz fiber and plate Cerenkov calorimeters that have been built, designed, and proposed for the CMS experiment

  12. Radiation hard memory cell and array thereof

    International Nuclear Information System (INIS)

    Gunckel, T.L. II; Rovell, A.; Nielsen, R.L.

    1978-01-01

    A memory cell configuration that is implemented to be relatively hard to the adverse effects of a nuclear event is discussed. The presently disclosed memory cell can be interconnected with other like memory cells to form a high speed radiation hard register file. Information is selectively written into and read out of a memory cell comprising the register file, which memory cell preserves previously stored data without alteration in the event of exposure to high levels of nuclear radiation

  13. Standard test methods for rockwell hardness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These test methods cover the determination of the Rockwell hardness and the Rockwell superficial hardness of metallic materials by the Rockwell indentation hardness principle. This standard provides the requirements for Rockwell hardness machines and the procedures for performing Rockwell hardness tests. 1.2 This standard includes additional requirements in annexes: Verification of Rockwell Hardness Testing Machines Annex A1 Rockwell Hardness Standardizing Machines Annex A2 Standardization of Rockwell Indenters Annex A3 Standardization of Rockwell Hardness Test Blocks Annex A4 Guidelines for Determining the Minimum Thickness of a Test Piece Annex A5 Hardness Value Corrections When Testing on Convex Cylindrical Surfaces Annex A6 1.3 This standard includes nonmandatory information in appendixes which relates to the Rockwell hardness test. List of ASTM Standards Giving Hardness Values Corresponding to Tensile Strength Appendix X1 Examples of Procedures for Determining Rockwell Hardness Uncertainty Appendix X...

  14. Standard test methods for rockwell hardness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover the determination of the Rockwell hardness and the Rockwell superficial hardness of metallic materials by the Rockwell indentation hardness principle. This standard provides the requirements for Rockwell hardness machines and the procedures for performing Rockwell hardness tests. 1.2 This standard includes additional requirements in annexes: Verification of Rockwell Hardness Testing Machines Annex A1 Rockwell Hardness Standardizing Machines Annex A2 Standardization of Rockwell Indenters Annex A3 Standardization of Rockwell Hardness Test Blocks Annex A4 Guidelines for Determining the Minimum Thickness of a Test Piece Annex A5 Hardness Value Corrections When Testing on Convex Cylindrical Surfaces Annex A6 1.3 This standard includes nonmandatory information in appendixes which relates to the Rockwell hardness test. List of ASTM Standards Giving Hardness Values Corresponding to Tensile Strength Appendix X1 Examples of Procedures for Determining Rockwell Hardness Uncertainty Appendix X...

  15. The "Brick Wall" Graphic Organizer

    Science.gov (United States)

    Matteson, Shirley M.

    2016-01-01

    A brick wall provides a fitting description of what happens when teachers try to teach a concept for which students are unprepared. When students are unsuccessful academically, their foundational knowledge may be missing, incomplete, or incorrect. As a result, students "hit a brick wall," and their academic progress stops because they do…

  16. Control of Wall Mounting Robot

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Pedersen, Rasmus

    2017-01-01

    This paper presents a method for designing controllers for trajectory tracking with actuator constraints. In particular, we consider a joystick-controlled wall mounting robot called WallMo. In contrast to previous works, a model-free approach is taken to the control problem, where the path...

  17. Topological domain walls in helimagnets

    Science.gov (United States)

    Schoenherr, P.; Müller, J.; Köhler, L.; Rosch, A.; Kanazawa, N.; Tokura, Y.; Garst, M.; Meier, D.

    2018-05-01

    Domain walls naturally arise whenever a symmetry is spontaneously broken. They interconnect regions with different realizations of the broken symmetry, promoting structure formation from cosmological length scales to the atomic level1,2. In ferroelectric and ferromagnetic materials, domain walls with unique functionalities emerge, holding great promise for nanoelectronics and spintronics applications3-5. These walls are usually of Ising, Bloch or Néel type and separate homogeneously ordered domains. Here we demonstrate that a wide variety of new domain walls occurs in the presence of spatially modulated domain states. Using magnetic force microscopy and micromagnetic simulations, we show three fundamental classes of domain walls to arise in the near-room-temperature helimagnet iron germanium. In contrast to conventional ferroics, the domain walls exhibit a well-defined inner structure, which—analogous to cholesteric liquid crystals—consists of topological disclination and dislocation defects. Similar to the magnetic skyrmions that form in the same material6,7, the domain walls can carry a finite topological charge, permitting an efficient coupling to spin currents and contributions to a topological Hall effect. Our study establishes a new family of magnetic nano-objects with non-trivial topology, opening the door to innovative device concepts based on helimagnetic domain walls.

  18. Gas from the wall socket

    International Nuclear Information System (INIS)

    Vermeer, B.

    1997-01-01

    A Dutch public utility (Obragas) introduces a new way to supply gas for their household clients in Helmond, Netherlands: the gas wall socket. The use of gas wall sockets must prevent the decrease of the market share for natural gas compared to the market share of electricity for households

  19. Diplopia and Orbital Wall Fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  20. Diplopia and orbital wall fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  1. Moisture Research - Optimizing Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.; Mantha, P.

    2013-05-01

    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  2. Anisotropy of domain wall resistance

    Science.gov (United States)

    Viret; Samson; Warin; Marty; Ott; Sondergard; Klein; Fermon

    2000-10-30

    The resistive effect of domain walls in FePd films with perpendicular anisotropy was studied experimentally as a function of field and temperature. The films were grown directly on MgO substrates, which induces an unusual virgin magnetic configuration composed of 60 nm wide parallel stripe domains. This allowed us to carry out the first measurements of the anisotropy of domain wall resistivity in the two configurations of current perpendicular and parallel to the walls. At 18 K, we find 8.2% and 1.3% for the domain wall magnetoresistance normalized to the wall width (8 nm) in these two respective configurations. These values are consistent with the predictions of Levy and Zhang.

  3. Ultrasonography of chest wall lesion

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol Min; Kim, C. H.; Cha, I. H.; Chung, K. B.; Ser, W. H.; Choi, Y. H. [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1989-12-15

    Thirty-one patients with chest wall diseases were studied with ultrasound to evaluate its role in chest wall lesions. There were eight infectious conditions, 9 benign tumors, 11 malignant lesions and 3 miscellaneous cases. Diffuse chest wall thickening with heterogeneous echogenicity and obliteration of subcutaneous fat layer are findings of acute infection. In cases of tuberculous smpyema necessitates, pleural abnormality extended to the chest wall through intercostal space. Benign tumors were well demarcated, except in 4 cases of lipoma/lipomatosis. Malignant lesions showed irregular soft tissue masses, bone destruction, pleural effusion and subcutaneous invasion. Multiple enlarged lymph nodes were also shown. Ultrasound can demonstrate te internal structure, extent, depth and associated findings such as pleural effusion, bone destruction and peripheral lung involvement. Ultrasound is not only safe, non-invasive and an effective diagnostic imaging modality for chest wall disease, but can also guide aspiration or biopsy for pathologic diagnosis

  4. Ultrasonography of chest wall lesion

    International Nuclear Information System (INIS)

    Park, Cheol Min; Kim, C. H.; Cha, I. H.; Chung, K. B.; Ser, W. H.; Choi, Y. H.

    1989-01-01

    Thirty-one patients with chest wall diseases were studied with ultrasound to evaluate its role in chest wall lesions. There were eight infectious conditions, 9 benign tumors, 11 malignant lesions and 3 miscellaneous cases. Diffuse chest wall thickening with heterogeneous echogenicity and obliteration of subcutaneous fat layer are findings of acute infection. In cases of tuberculous smpyema necessitates, pleural abnormality extended to the chest wall through intercostal space. Benign tumors were well demarcated, except in 4 cases of lipoma/lipomatosis. Malignant lesions showed irregular soft tissue masses, bone destruction, pleural effusion and subcutaneous invasion. Multiple enlarged lymph nodes were also shown. Ultrasound can demonstrate te internal structure, extent, depth and associated findings such as pleural effusion, bone destruction and peripheral lung involvement. Ultrasound is not only safe, non-invasive and an effective diagnostic imaging modality for chest wall disease, but can also guide aspiration or biopsy for pathologic diagnosis

  5. Dry wall Kras 2011

    Directory of Open Access Journals (Sweden)

    Domen Zupančič

    2012-01-01

    Full Text Available Despite the modesty of hiska, they show a simple understanding of corbelling technique. One could say they are all examples of human landscape cultivation. Although there is no evident common line when comparing all types of hiska, the cunning eye may observe one shared feature: the positioning of the entrance. More or less all the documented shelters have south or south-western facing entrances. The burja is a cold northerly wind; from the south (Adriatic Sea the winds are warmer. When resting, the setting sun is taken as a sign of the ending of the working day and a reward for the whole day’s efforts. Entrances are the only openings to these structures, and they should serve as well as possible - to watch over the crops, to wait when hunting, to enjoy the calm of evening light, to breathe the sea wind.The syntax of the architectural language of layering stone and shaping the pattern of the landscape remain an inventive realisation of spatial ideas from the past until today. Not only ideas of shaping space - these ideas are basic interventions in the natural habitat which contribute to survival. Culture and an awareness of its values are the origins of local development and reasonable heritage preservation. The next step are tutorial days with workshops on how to build dry stone structures, walls and other stone architecture, as the DSWA organisation in the UK is doing.

  6. Plasma-Wall Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Li, J; Chen, J L [Institute of Plasma Physics, Chinese Academy of Sciences (China); Guo, H Y [Tri Alpha Energy (United States); Institute of Plasma Physics, Chinese Academy of Sciences (China); McCracken, G M [Culham Science Centre, UKAEA, Abingdon (United Kingdom)

    2012-09-15

    The problem of impurities in fusion plasmas has been recognized since the beginning of the fusion programme. Early experiments in glass vacuum vessels released gas from the wall to such an extent that the radiation from the impurities prevented the plasma from being heated above about 50 eV. The radiative power loss is principally due to line radiation from partially stripped ions, which is particularly a problem during the plasma startup phase. Another problem is fuel dilution, which arises because impurity atoms produce many electrons and, for a given plasma pressure, these electrons take the place of fuel particles. Impurities can also lead to disruptions, as a result of edge cooling and consequent current profile modification. The fractional impurity level which radiates 10% of the total thermonuclear power for a 10 keV plasma is 50% for helium, 7% for carbon, and less than 0.1% for molybdenum. Clearly, impurities of low atomic number are a much less serious problem than those of high atomic number. (author)

  7. Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion

    International Nuclear Information System (INIS)

    Tomasello, R; Puliafito, V; Martinez, E; Manchon, A; Ricci, M; Carpentieri, M; Finocchio, G

    2017-01-01

    A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study of the performance of synthetic antiferromagnetic (SAF) racetrack memory in terms of velocity and sensitivity to defects by using experimental parameters. We find that, to stabilize a SAF skyrmion, the Dzyaloshinskii–Moriya interaction in the top and the bottom ferromagnet should have an opposite sign. The velocity of SAF skyrmions and SAF Néel domain walls are of the same order and can reach values larger than 1200 m s −1 if a spin–orbit torque from the spin-Hall effect with opposite sign is applied to both ferromagnets. The presence of disordered anisotropy in the form of randomly distributed grains introduces a threshold current for both SAF skyrmions and SAF domain walls motions. (paper)

  8. Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion

    KAUST Repository

    Tomasello, R

    2017-06-20

    A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study of the performance of synthetic antiferromagnetic (SAF) racetrack memory in terms of velocity and sensitivity to defects by using experimental parameters. We find that, to stabilize a SAF skyrmion, the Dzyaloshinskii–Moriya interaction in the top and the bottom ferromagnet should have an opposite sign. The velocity of SAF skyrmions and SAF Néel domain walls are of the same order and can reach values larger than 1200 m s−1 if a spin–orbit torque from the spin-Hall effect with opposite sign is applied to both ferromagnets. The presence of disordered anisotropy in the form of randomly distributed grains introduces a threshold current for both SAF skyrmions and SAF domain walls motions.

  9. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption

    DEFF Research Database (Denmark)

    Nolte, Tom M.; Hartmann, Nanna B.; Kleijn, J. Mieke

    2017-01-01

    To investigate processes possibly underlying accumulation and ecological effects of plastic nano-particles we have characterized their interaction with the cell wall of green algae. More specifically, we have investigated the influence of particle surface functionality and water hardness (Ca2......+ concentration) on particle adsorption to algae cell walls. Polystyrene nanoparticles with different functional groups (non-functionalized, −COOH and −NH2) as well as coated (starch and PEG) gold nanoparticles were applied in these studies. Depletion measurements and atomic force microscopy (AFM) showed...... that adsorption of neutral and positively charged plastic nanoparticles onto the cell wall of P. subcapitata was stronger than that of negatively charged plastic particles. Results indicated that binding affinity is a function of both inter-particle and particle-cell wall interactions which are in turn influenced...

  10. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    Science.gov (United States)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  11. Novel hard compositions and methods of preparation

    Science.gov (United States)

    Sheinberg, H.

    1983-08-23

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated. 3 figs.

  12. Decay constants in soft wall AdS/QCD revisited

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Nelson R.F., E-mail: braga@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Diles, Saulo, E-mail: smdiles@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Contreras, M.A. Martin, E-mail: ma.martin41@uniandes.edu.co [High Energy Group, Department of Physics, Universidad de los Andes, Carrera 1, No 18A-10, Bloque Ip, ZIP 111711, Bogotá (Colombia)

    2016-12-10

    Phenomenological AdS/QCD models, like hard wall and soft wall, provide hadronic mass spectra in reasonable consistency with experimental and (or) lattice results. These simple models are inspired in the AdS/CFT correspondence and assume that gauge/gravity duality holds in a scenario where conformal invariance is broken through the introduction of an energy scale. Another important property of hadrons: the decay constant, can also be obtained from these models. However, a consistent formulation of an AdS/QCD model that reproduces the observed behavior of decay constants of vector meson excited states is still lacking. In particular: for radially excited states of heavy vector mesons, the experimental data lead to decay constants that decrease with the radial excitation level. We show here that a modified framework of soft wall AdS/QCD involving an additional dimensionfull parameter, associated with an ultraviolet energy scale, provides decay constants decreasing with radial excitation level. In this version of the soft wall model the two point function of gauge theory operators is calculated at a finite position of the anti-de Sitter space radial coordinate.

  13. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, C.; Pourshahab, B.; Rasouli, H. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of); Hosseini Pooya, S. M.; Orouji, T. [Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  14. The role of concavo-convex walls of a nanopore on the density profile, adsorption, solvation force, and capillary condensation of confined fluids: A DFT study

    International Nuclear Information System (INIS)

    Helmi, Abbas; Keshavarzi, Ezat

    2014-01-01

    Highlights: • The effect of concavo-convex walls of nanopores on the density profile was studied. • For HS fluids the contact density at concave wall is greater than for convex wall. • For Yukawa fluid the contact density at concave wall can be less than convex wall. • Capillary condensation was observed for Yukawa fluids in the homocentric pores. - Abstract: We investigate the effects of concavo-convex walls of a nanopore on the structure and certain thermodynamic properties of confined fluids. Adsorption, solvation force, and capillary condensation in a nanopore formed between two homocentric spheres will be determined using the MFMT. For hard sphere fluids, contact density is greater at the concave wall than it is at the convex wall. In Yukawa fluids, for the thermodynamic state in which the energy effect is the dominant factor, contact density at a concave wall is less than that at a convex wall; this will be reversed for the thermodynamic state in which the entropy effect is the dominant factor. It is possible to find thermodynamic states in which contact densities at concave and convex walls become identical. The adsorption and solvation force of hard sphere fluid show an oscillatory behavior versus H. Capillary condensation is in certain cases observed for Yukawa fluids

  15. First wall of thermonuclear device

    International Nuclear Information System (INIS)

    Kizawa, Makoto; Koizumi, Makoto; Nishihara, Yoshihiro.

    1990-01-01

    The first wall of a thermonuclear device is constituted with inner wall tiles, e.g. made of graphite and metal substrates for fixing them. However, since the heat expansion coefficient is different between the metal substrates and intermediate metal members, thermal stresses are caused to deteriorate the endurance of the inner wall tiles. In view of the above, low melting metals are disposed at the portion of contact between the inner wall tiles and the metal substrates and, further, a heat pipe structure is incorporated into the metal substrates. Under the thermal load, for example, during operation of the thermonuclear device, the low melting metals at the portion of contact are melted into liquid metals to enhance the state of contact between the inner wall tiles and the metal substrate to reduce the heat resistance and improve the heat conductivity. Even if there is a difference in the heat expansion coefficient between the inner wall tiles and the metal substrates, neither sharing stresses not thermal stresses are caused. Further, since the heat pipe structure is incorporated into the metal substrates, the lateral unevenness of the temperature in the metal substrates can be eliminated. Thus, the durability of the inner wall tiles can be improved. (N.H.)

  16. Shielding wall for thermonuclear device

    International Nuclear Information System (INIS)

    Uchida, Takaho.

    1989-01-01

    This invention concerns shielding walls opposing to plasmas of a thermonuclear device and it is an object thereof to conduct reactor operation with no troubles even if a portion of shielding wall tiles should be damaged. That is, the shielding wall tiles are constituted as a dual layer structure in which the lower base tiles are connected by means of bolts to first walls. Further, the upper surface tiles are bolt-connected to the layer base tiles. In this structure, the plasma thermal loads are directly received by the surface layer tiles and heat is conducted by means of conduction and radiation to the underlying base tiles and the first walls. Even upon occurrence of destruction accidents to the surface layer tiles caused by incident heat or electromagnetic force upon elimination of plasmas, since the underlying base tiles remain as they are, the first walls constituted with stainless steels, etc. are not directly exposed to the plasmas. Accordingly, the integrity of the first walls having cooling channels can be maintained and sputtering intrusion of atoms of high atom number into the plasmas can be prevented. (I.S.)

  17. Implementing Green Walls in Schools.

    Science.gov (United States)

    McCullough, Michael B; Martin, Michael D; Sajady, Mollika A

    2018-01-01

    Numerous studies in applied pedagogical design have shown that, at all educational levels, direct exposure to the natural environment can enhance learning by improving student attention and behaviors. Implementing green walls-a "vertical garden," or "living wall" interior wall that typically includes greenery, a growing medium (soil or substrate) and a water delivery system-provides environmental health benefits, but also provides a practical application within classrooms for minimizing directed attention fatigue in students by connecting them to "outdoor nature" within the indoor environment. Hands-on "project-based" learning is another pedagogical strategy that has proved to be effective across the spectrum of educational levels and across subject areas. Green walls have the potential to inspire critical thinking through a combination of project-based learning strategies and environmental education. The authors have outlined a curriculum involving the implementation of an indoor living wall system within a classroom-learning environment, incorporating project-based learning modules that interact with the wall. In conjunction with the passive health benefits of a green wall, project-based curriculum models can connect students interactively with indoor nature and have the potential to inspire real-world thinking related to science, technology, engineering, art, and mathematics fields within the indoor learning environment. Through a combination of these passive and interactive modes, students are connected to nature in the indoor environment regardless of weather conditions outdoors. Future research direction could include post-construction studies of the effectiveness of project-based curricula related to living walls, and the long-term impacts of implementing green walls in classrooms on school achievement and student behaviors.

  18. Structure, production and properties of high-melting compounds and systems (hard materials and hard metals)

    International Nuclear Information System (INIS)

    Holleck, H.; Thuemmler, F.

    1979-07-01

    The report contains contributions by various authors to the research project on the production, structure, and physical properties of high-melting compounds and systems (hard metals and hard materials), in particular WC-, TaC-, and MoC-base materials. (GSCH) [de

  19. Analytical Modeling of Hard-Coating Cantilever Composite Plate considering the Material Nonlinearity of Hard Coating

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the expression of equivalent strain of composite plate was derived. Then, the analytical model of hard-coating composite plate was created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphson method to solve the vibration response and resonant frequencies of composite plate and a specific calculation procedure was also proposed. Finally, a cantilever plate coated with MgO + Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies of composite plate were calculated using the proposed method. The calculation results were compared with the experiment and general linear calculation, and the correctness of the created model was verified. The study shows the proposed method can still maintain an acceptable precision when the material nonlinearity of hard coating is stronger.

  20. Erosion testing of hard materials and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2005-04-29

    Erosion is the process by which unconstrained particles, usually hard, impact a surface, creating damage that leads to material removal and component failure. These particles are usually very small and entrained in fluid of some type, typically air. The damage that occurs as a result of erosion depends on the size of the particles, their physical characteristics, the velocity of the particle/fluid stream, and their angle of impact on the surface of interest. This talk will discuss the basics of jet erosion testing of hard materials, composites and coatings. The standard test methods will be discussed as well as alternative approaches to determining the erosion rate of materials. The damage that occurs will be characterized in genera1 terms, and examples will be presented for the erosion behavior of hard materials and coatings (both thick and thin).

  1. Aespoe Hard Rock Laboratory. Annual Report 1993

    International Nuclear Information System (INIS)

    1994-06-01

    The Aespoe Hard Rock Laboratory is being constructed in preparation for the deep geological repository of spent fuel in Sweden. This Annual Report 1993 for the Aespoe Hard Rock Laboratory contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of the detailed investigation methodology. Construction of the facility and investigation of the bedrock are carried out in parallel. As of December 1993, 2760 m of the tunnel had been excavated to a depth of 370 m below the surface. An important and integral part of the work is further refinement of conceptual and numerical models for groundwater flow and radionuclide migration. Detailed plans have been prepared for several experiments to be conducted after the end of the construction work. Eight organizations from seven countries are now participating in the work at the Aespoe Hard Rock Laboratory and are contributing in different ways to the results being achieved

  2. Hard template synthesis of metal nanowires

    Directory of Open Access Journals (Sweden)

    Go eKawamura

    2014-11-01

    Full Text Available Metal nanowires (NWs have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  3. Hard template synthesis of metal nanowires

    Science.gov (United States)

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-11-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  4. Economics of abdominal wall reconstruction.

    Science.gov (United States)

    Bower, Curtis; Roth, J Scott

    2013-10-01

    The economic aspects of abdominal wall reconstruction are frequently overlooked, although understandings of the financial implications are essential in providing cost-efficient health care. Ventral hernia repairs are frequently performed surgical procedures with significant economic ramifications for employers, insurers, providers, and patients because of the volume of procedures, complication rates, the significant rate of recurrence, and escalating costs. Because biological mesh materials add significant expense to the costs of treating complex abdominal wall hernias, the role of such costly materials needs to be better defined to ensure the most cost-efficient and effective treatments for ventral abdominal wall hernias. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Transition from reversible to irreversible magnetic exchange-spring processes in antiferromagnetically exchange-coupled hard/soft/hard trilayer structures

    International Nuclear Information System (INIS)

    Wang Xiguang; Guo Guanghua; Zhang Guangfu

    2011-01-01

    The demagnetization processes of antiferromagnetically exchange-coupled hard/soft/hard trilayer structures have been studied based on the discrete one-dimensional atomic chain model and the linear partial domain-wall model. It is found that, when the magnetic anisotropy of soft layer is taken into account, the changes of the soft layer thickness and the interfacial exchange coupling strength may lead a transition of demagnetization process in soft layer from the reversible to the irreversible magnetic exchange-spring process. For the trilayer structures with very thin soft layer, the demagnetization process exhibits typical reversible exchange-spring behavior. However, as the thickness of soft layer is increased, there is a crossover point t c , after which the process becomes irreversible. Similarly, there is also a critical interfacial exchange coupling constant A sh c , above which the exchange-spring process is reversible. When A sh sh c , the irreversible exchange-spring process is achieved. The phase diagram of reversible and irreversible exchange-spring processes is mapped in the plane of the interfacial exchange coupling A sh and soft layer thickness N s . - Research highlights: → A differing magnetic exchange-spring process is found in antiferromagnetically exchange-coupled hard/soft/hard trilayers if the magnetic anisotropy of the soft layers is taken into account. → The change of the soft layer thickness may lead to a transition of demagnetization process in soft layer from the reversible to the irreversible exchange-spring process. → The change of the soft-hard interfacial exchange coupling strength may lead a transition of demagnetization process in soft layer from the reversible to the irreversible exchange-spring process. → The phase diagram of reversible and irreversible exchange-spring processes is mapped in the plane of the interfacial exchange coupling and soft layer thickness.

  6. Liquid agents for dispersion of hard alloys

    International Nuclear Information System (INIS)

    Putintseva, M.N.

    2006-01-01

    Effects of dispersant properties on granulometric, chemical, and phase composition of the products of WC hard alloy electroerosion are considered. It is established that an increase of liquid dispersant permittivity results in enhanced powder dispersity, and an increase of boiling temperature and kinematic viscosity of a hydrocarbon liquid promotes a carbon loss from WC and intensifies pyrolysis of the liquid.On electroerosion of WC base hard alloy in oil a powder particle consists of b-WC+W 2 C phases, in kerosine - of a-WC+b-WC, in distilled water - of W+W 2 C. The viscosity of liquid dispersants practically has no effect on powder particle size [ru

  7. Induction surface hardening of hard coated steels

    DEFF Research Database (Denmark)

    Pantleon, Karen; Kessler, Olaf; Hoffmann, Franz

    1999-01-01

    The deposition of hard coatings with CVD-processes is commonly used to improve the wear resistance e.g. of tool steels in forming. The advantages of CVD are undisputed (high deposition rates with simple equipment, excellent coating properties). Nevertheless, the disadvantage of the CVD-process is......The deposition of hard coatings with CVD-processes is commonly used to improve the wear resistance e.g. of tool steels in forming. The advantages of CVD are undisputed (high deposition rates with simple equipment, excellent coating properties). Nevertheless, the disadvantage of the CVD...

  8. Rad Hard Active Media For Calorimeters

    CERN Document Server

    Norbeck, E; Möller, A; Onel, Y

    2006-01-01

    Zero-degree calorimeters have limited space and extreme levels of radiation. A simple, low cost, radiation hard design uses tungstenmetal as the absorber and a suitable liquid as the ˇCerenkov radiator. In other applications a PPAC (Parallel Plate Avalanche Counter) operatingwith a suitable atmosphericpressure gas is an attractive active material for a calorimeter. It can be made radiation hard and has sufficient gain in the gas that no electronic components are needed near the detector. It works well even with the highest concentration of shower particles. For this pressure range, R134A (used in auto air conditioners) has many desirable features.

  9. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja

    2009-01-01

    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...... by varying the temperature of heat treatment. The predominant crystalline phase in the glass was identified as augite. It was found that the hardness of the glass phase decreased slightly with an increase in the degree of crystallisation, while that of the augite phase drastically decreased....

  10. Effects of explosions in hard rocks

    International Nuclear Information System (INIS)

    Heuze, F.E.; Walton, O.R.; Maddix, D.M.; Shaffer, R.J.; Butkovich, T.R.

    1993-01-01

    This work relates to explosions in hard rocks (ex: basalt, granite, limestone...). Hard rock masses typically have a blocky structure created by the existence of geologic discontinuities such as bedding contacts, faults, and joints. At very high pressure - hundreds of kilobars and above - these discontinuities do not act separately, and the rock appears to be an equivalent continuous medium. At stress of a few tens of kilobars and below, the geologic discontinuities control the kinematics of the rock masses. Hence, the simulation of rock dynamics, anywhere but in the very-near source region, should account for those kinematics

  11. Novel Aspects of Hard Diffraction in QCD

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2005-01-01

    Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, and nuclear shadowing and antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency

  12. Radiation hardness of undoped BGO crystals

    International Nuclear Information System (INIS)

    Sahu, S.K.; Peng, K.C.; Huang, H.C.; Wang, C.H.; Chang, Y.H.; Hou, W.S.; Ueno, K.; Chou, F.I.; Wei, Y.Y.

    1997-01-01

    We measured the radiation hardness of undoped BGO crystals from two different manufacturers. Such crystals are proposed to be used in a small-angle calorimeter of the BELLE detector of the KEK B-factory. Transparency and scintillation light output of the crystals were monitored to see the effect of radiation damage. The crystals show considerable radiation hardness up to 10.2 Mrad equivalent dose, which is much higher than the maximum expected dosage of 500 krad per year of running at BELLE. (orig.)

  13. Hardness of carbides, nitrides, and borides

    International Nuclear Information System (INIS)

    Schroeter, W.

    1981-01-01

    Intermetallic compounds of metals with non-metals such as C, N, and B show different hardness. Wagner's interaction parameter characterizes manner and extent of the interaction between the atoms of the substance dissolved and the additional elements in metallic mixed phases. An attempt has been made to correlate the hardness of carbides, nitrides, and borides (data taken from literature) with certain interaction parameters and associated thermodynamic quantities (ΔH, ΔG). For some metals of periods 4, 5, and 6 corresponding relations were found between microhardness, interaction parameters, heat of formation, and atomic number

  14. Diffusion corrections to the hard pomeron

    CERN Document Server

    Ciafaloni, Marcello; Müller, A H; Ciafaloni, Marcello; Taiuti, Martina

    2001-01-01

    The high-energy behaviour of two-scale hard processes is investigated in the framework of small-x models with running coupling, having the Airy diffusion model as prototype. We show that, in some intermediate high-energy regime, the perturbative hard Pomeron exponent determines the energy dependence, and we prove that diffusion corrections have the form hinted at before in particular cases. We also discuss the breakdown of such regime at very large energies, and the onset of the non-perturbative Pomeron behaviour.

  15. Effects of hot electron emission on a low-conductivity tetracyanoethylene polymer layer including studies of the corrugation of the film surface

    International Nuclear Information System (INIS)

    Lorenz, K.L.; Mousa, M.S.

    2003-01-01

    The effect of strong field electron emission (FEE) on a tetracyanoethylene (TCNE) polymer layer was studied by Field Ion Microscopy (FIM) using TCNE and Ne as the imaging gases. The TCNE polymer was formed on each tungsten tip by radical polymerisation before FEE. The FIM images show field emission spots all over the surface of the tip. The FEM images show a random distribution of several field emission areas at the onset of FEE. After sometime at a current of about 1 μA, there is a transition to higher currents at the same voltage, in which the electron emission pattern changes to have only one emitting area. After this transition, two different types of FIM images were observed, depending on the imaging gas that was used. Neon FIM images at low tip voltages show spots in the areas where the electron emission current was greatest, and at much higher voltages these images show emission from other areas with lower surface corrugation. However, the FIM images with TCNE as the imaging gas do not show any differences between the areas with and without electron emission. The FIM images remain as before FEE, which can be explained by the formation of a new polymer by the reaction of the surface layer with the imaging gas. It is assumed that chemically reactive fragments at the polymer/vacuum interface, which are needed for the polymerisation reaction, are formed by pyrolysis and sputtering processes during FEE

  16. An experimental study on the application of polyalcohol solid-solid phase change materials in solar drying with cross-corrugated solar air collectors

    Science.gov (United States)

    Gao, W. F.; Lin, W. X.; Liu, T.; Li, M.

    2017-11-01

    In this paper, two identical solar driers with the same cross-corrugated solar air collectors and drying chamber were developed, one with phase-change materials (PCMs) and the other without PCMs. These two solar drying systems were tested in typical sunny and cloudy days in Kunming and their thermal performances were analyzed. The experimental results show that the temperature changing is smoother in the collector with the PCMs, which is beneficial for the drying as the useful drying time was prolonged. The same trend was also found in the chamber with the PCMs. The PCMs in solar drying system was found to play a role in temperature regulating. There were several cycles of heat charging-discharging in a cloudy testing day while the temperatures on collectors and in chambers with the polyalcohol PCMs is higher than each phase-change temperature. Nevertheless, there was only one cycle of heat charging-discharging in a sunny testing day. The collector with PCMs has higher daily useful heat gain than the collector without PCMs.

  17. Plant cell walls to ethanol.

    Science.gov (United States)

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  18. Restrained shrinkage of masonry walls

    NARCIS (Netherlands)

    Zijl, G.P.A.G. van; Rots, J.G.

    1998-01-01

    State of the art computational rnechanics, in combination with experimental programmes have a lot to offer in providing insight, characterization of total behaviour and predictive ability of structural masonry. Here numerical research towards rationalizing masonry wall movement joint positioning and

  19. A study of the native cell wall structures of the marine alga Ventricaria ventricosa (Siphonocladales, Chlorophyceae) using atomic force microscopy.

    Science.gov (United States)

    Eslick, Enid M; Beilby, Mary J; Moon, Anthony R

    2014-04-01

    A substantial proportion of the architecture of the plant cell wall remains unknown with a few cell wall models being proposed. Moreover, even less is known about the green algal cell wall. Techniques that allow direct visualization of the cell wall in as near to its native state are of importance in unravelling the spatial arrangement of cell wall structures and hence in the development of cell wall models. Atomic force microscopy (AFM) was used to image the native cell wall of living cells of Ventricaria ventricosa (V. ventricosa) at high resolution under physiological conditions. The cell wall polymers were identified mainly qualitatively via their structural appearance. The cellulose microfibrils (CMFs) were easily recognizable and the imaging results indicate that the V. ventricosa cell wall has a cross-fibrillar structure throughout. We found the native wall to be abundant in matrix polysaccharides existing in different curing states. The soft phase matrix polysaccharides susceptible by the AFM scanning tip existed as a glutinous fibrillar meshwork, possibly incorporating both the pectic- and hemicellulosic-type substances. The hard phase matrix producing clearer images, revealed coiled fibrillar structures associated with CMFs, sometimes being resolved as globular structures by the AFM tip. The coiling fibrillar structures were also seen in the images of isolated cell wall fragments. The mucilaginous component of the wall was discernible from the gelatinous cell wall matrix as it formed microstructural domains over the surface. AFM has been successful in imaging the native cell wall and revealing novel findings such as the 'coiling fibrillar structures' and cell wall components which have previously not been seen, that is, the gelatinous matrix phase.

  20. Gravity and domain wall problem

    International Nuclear Information System (INIS)

    Rai, B.; Senjanovic, G.

    1992-11-01

    It is well known that the spontaneous breaking of discrete symmetries may lead to conflict with big-bang cosmology. This is due to formation of domain walls which give unacceptable contribution to the energy density of the universe. On the other hand, it is expected that gravity breaks global symmetries explicitly. In this work we propose that this could provide a natural solution to the domain-wall problem. (author). 17 refs

  1. Duct having oscillatory side wall

    Science.gov (United States)

    Sprouse, Kenneth M.

    2018-04-03

    A pump system includes a particulate consolidator pump that has a pump outlet. A duct is coupled to the pump outlet. The duct has a wall that is coupled with an oscillator. The oscillator is operable to oscillate the wall at a controlled frequency. The controlled frequency is selected with respect to breaking static bridging of particulate in the duct due, at least in part, to consolidation of the particulate from a downstream check valve.

  2. Dressed Domain Walls and holography

    International Nuclear Information System (INIS)

    Grisa, Luca; Pujolas, Oriol

    2008-01-01

    The cutoff version of the AdS/CFT correspondence states that the Randall Sundrum scenario is dual to a Conformal Field Theory (CFT) coupled to gravity in four dimensions. The gravitational field produced by relativistic Domain Walls can be exactly solved in both sides of the correspondence, and thus provides one further check of it. We show in the two sides that for the most symmetric case, the wall motion does not lead to particle production of the CFT fields. Still, there are nontrivial effects. Due to the trace anomaly, the CFT effectively renormalizes the Domain Wall tension. On the five dimensional side, the wall is a codimension 2 brane localized on the Randall-Sundrum brane, which pulls the wall in a uniform acceleration. This is perceived from the brane as a Domain Wall with a tension slightly larger than its bare value. In both cases, the deviation from General Relativity appears at nonlinear level in the source, and the leading corrections match to the numerical factors.

  3. Analysis of the development and performance of hard disks

    OpenAIRE

    Novak, Davorin

    2010-01-01

    With the emergence of new technologies in the field of hard drives we can witness a significant increase of surface density and transfer rate of interfaces which, as a result, enables greater performance and reliability of hard disks. The reason for this are increasing needs for higher capacities and data transfer rate to or from the hard disk. This thesis presents the structure of hard drives, features, performance and reliability of hard drives and alternative data storage technologies. Par...

  4. The precision cutting control research of automotive stainless steel thin wall pipe

    Directory of Open Access Journals (Sweden)

    Jin Lihong

    2015-01-01

    Full Text Available Stainless steel thin-walled tube are widely used in automobile industry at present, but as a result of thin wall pipe is poor strength and poor rigidity,which lead to deformation, shaped differencer and other problems in the process, it is hard to ensure the processing quality of parts. This paper proposes a method of thin stainless steel thin wall pipe cutting process in vehicle, greatly improved the problems and technical difficulties in the traditional process, the main research is about the cutting system and the hydraulic fixture design, obtained under low cost circumstances, it can realize high precision stainless steel pipes, high degree of automation to automatic cutting,simplified operation steps at the same time, increased the applicability of the system, provided a kind of advanced stainless steel thin wall pipe cutting device for the small and medium-sized enterprises.

  5. Possible connections between hard and soft processes

    International Nuclear Information System (INIS)

    Blankenbecler, R.

    1977-10-01

    Three topics in constituent hadron models are reviewed: the connection between fixed angle and Regge behavior, the validity of the hard scattering expansion and restrictions on the effects of the transverse momentum of constituents, and the x distribution in the fragmentation region at low transverse momentum. 6 figures

  6. Parallel Narrative Structure in Paul Harding's "Tinkers"

    Science.gov (United States)

    Çirakli, Mustafa Zeki

    2014-01-01

    The present paper explores the implications of parallel narrative structure in Paul Harding's "Tinkers" (2009). Besides primarily recounting the two sets of parallel narratives, "Tinkers" also comprises of seemingly unrelated fragments such as excerpts from clock repair manuals and diaries. The main stories, however, told…

  7. Registration of 'Prevail' hard red spring wheat

    Science.gov (United States)

    Grower and end-user acceptance of new Hard Red Spring Wheat (HRSW; Triticum aestivum L.) cultivars is largely contingent upon satisfactory agronomic performance, end-use quality potential, and disease resistance levels. Additional characteristics, such as desirable plant height, can also contribute...

  8. Hard x-ray telescope mission

    DEFF Research Database (Denmark)

    Gorenstein, P.; Worrall, D.; Joensen, K.D.

    1996-01-01

    The Hard X-Ray Telescope was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity...

  9. Systematic hardness studies on lithium niobate crystals

    Indian Academy of Sciences (India)

    Unknown

    crystals with different growth origins, and a Fe-doped sample. The problem of load ... The true hardness of LiNbO3 is found to be 630 ± 30 kg/mm2. .... Experimental. Pure lithium ... the index of d strikes at this simple and meaningful defini-.

  10. "Work smart, wear your hard hat"

    CERN Multimedia

    2003-01-01

    Falling objects and collisions are frequent occurrences in work sites and hazardous areas. Hard hats can help prevent many types of accident and can even save lives. Just imagine an 800 g spanner falling from a 13 m high scaffold onto the head of someone standing below - a nightmare scenario! The impact to the head is equivalent to that of a 5 kg weight falling from 2 metres. That is just what happened to Gerd Fetchenhauer when he was working on the UA1 experiment. Fortunately, he was wearing a hard hat at the time. "That hat saved my life," he explains. "It punched a hole right through the hat and I was a bit dazed for a couple of hours but otherwise I was OK." Since that day, Gerd Fetchenhauer, now working on CMS, is never seen on a work site without his hard hat on. Work sites have proliferated at CERN with the construction of the LHC and its detectors, and the wearing of hard hats is compulsory (not to mention life-saving). In the underground caverns and experiment halls, where gantry cranes and other h...

  11. Cobalt allergy in hard metal workers

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, T; Rystedt, I

    1983-03-01

    Hard metal contains about 10% cobalt. 853 hard metal workers were examined and patch tested with substances from their environment. Initial patch tests with 1% cobalt chloride showed 62 positive reactions. By means of secondary serial dilution tests, allergic reactions to cobalt were reproduced in 9 men and 30 women. Weak reactions could not normally be reproduced. A history of hand eczema was found in 36 of the 39 individuals with reproducible positive test reactions to cobalt, while 21 of 23 with a positive initial patch test but negative serial dilution test had never had any skin problems. Hand etching and hand grinding, mainly female activities and traumatic to the hands, were found to involve the greatest risk of cobalt sensitization. 24 individuals had an isolated cobalt allergy. They had probably been sensitized by hard metal work, while the individuals, all women, who had simultaneous nickel allergy had probably been sensitized to nickel before their employment and then became sensitized to cobalt by hard metal work. A traumatic occupation, which causes irritant contact dermatitis and/or a previous contact allergy or atopy is probably a prerequisite for the development of cobalt allergy.

  12. Sustaining Transformation: "Resiliency in Hard Times"

    Science.gov (United States)

    Guarasci, Richard; Lieberman, Devorah

    2009-01-01

    The strategic, systemic, and encompassing evolution of a college or university spans a number of years, and the vagaries of economic cycles inevitably catch transforming institutions in mid-voyage. "Sustaining Transformation: Resiliency in Hard Times" presents a study of Wagner College as it moves into its second decade of purposeful…

  13. Induction surface hardening of hard coated steels

    Energy Technology Data Exchange (ETDEWEB)

    Pantleon, K.; Kessler, O.; Hoffann, F.; Mayr, P. [Stiftung Inst. fuer Werkstofftechnik, Bremen (Germany)

    1999-11-01

    The properties of hard coatings deposited using CVD processes are usually excellent. However, high deposition temperatures negatively influence the substrate properties, especially in the case of low alloyed steels. Therefore, a subsequent heat treatment is necessary to restore the properties of steel substrates. Here, induction surface hardening is used as a method of heat treatment after the deposition of TiN hard coatings on AISI 4140 (DIN42CrMo4) substrates. The influences of the heat treatment on both the coating and the substrate properties are discussed in relation to the parameters of induction heating. Thereby, the heating time, heating atmosphere and the power input into the coating-substrate compounds are varied. As a result of induction surface hardening, the properties of the substrates are improved without losing good coating properties. High hardness values in the substrate near the interface allow the AISI 4140 substrates to support TiN hard coatings very well. Consequently, higher critical loads are measured in scratch tests after the heat treatment. Also, compressive residual stresses in the substrate are generated. In addition, only a very low distortion appears. (orig.)

  14. Hard scattering in γp interactions

    International Nuclear Information System (INIS)

    Ahmed, T.; Andreev, V.; Andrieu, B.

    1992-10-01

    We report on the investigation of the final state in interactions of quasi-real photons with protons. The data were taken with the H1 detector at the HERA ep collider. Evidence for hard interactions is seen in both single particle spectra and jet formation. The data can best be described by inclusion of resolved photon processes as predicted by QCD. (orig.)

  15. Soft gluon contributions to hard processes

    International Nuclear Information System (INIS)

    Ciafaloni, M.

    1981-10-01

    The main concern of this paper is in trying to elucidate the origin of large QCD perturbative corrections and explain how to deal with them to all orders. They come essentially from the phase space regions close to the kinematical boundary of a hard process, in which one or many gluons become soft

  16. Hard Pseudocompact Spaces | Ghosh | Quaestiones Mathematicae

    African Journals Online (AJOL)

    ... which was absent in the literature. Finally, under smallness restrictions on hyper-real remainder of the Stone Cech compactification of a Tychonoff space we have achieved in producing a representation for hard pseudocompact space. Keywords: Compactification, Hewitt realcompactification, pseudocompact, realcompact

  17. Diffractive hard scattering and the SSC

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-01-01

    Events in high energy hadron collisions are discussed that contain a hard scattering, in the sense that very heavy quarks or high P/sub T/ jets are produced, yet are diffractive, in the sense that one of the incident hadrons is scattered with only a small energy loss. 12 refs., 6 figs

  18. Effect of gum hardness on chewing pattern.

    Science.gov (United States)

    Plesh, O; Bishop, B; McCall, W

    1986-06-01

    Chewing rhythms are set by a putative central pattern generator whose output is influenced by sensory feedback. In this study we assessed how an altered feedback imposed by changing the hardness of a gum bolus modifies the timing of chewing, the maximal gape, and the activity in the masseter muscle on the chewing side. Ten adult subjects with no orofacial dysfunction chewed a standard piece of soft or hard gum for at least 3 min in random order. Vertical jaw movements were recorded with a kinesiograph and activity of the masseter muscle was recorded and integrated from surface EMG electrodes. The subjects sat in a dental chair and viewed a video lecture to distract their attention from chewing; they were instructed to chew on the right molars. Cycle-by-cycle analysis showed that 9 of the 10 subjects chewed the hard gum more slowly than the soft with no significant change in gape. The increases in cycle duration were due to changes in the duration of the opening and occlusal phases. The duration of closing was not significantly changed even though the duration and level of masseter activity were both significantly increased. We conclude that gum hardness by altering proprioceptive feedback modifies the output of the masticatory central pattern generator in such a way that the temporal aspects of chewing and the output of the masseteric motor pool are affected.

  19. Decision-theoretic troubleshooting: Hardness of approximation

    Czech Academy of Sciences Publication Activity Database

    Lín, Václav

    2014-01-01

    Roč. 55, č. 4 (2014), s. 977-988 ISSN 0888-613X R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Decision-theoretic troubleshooting * Hardness of approximation * NP-completeness Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.451, year: 2014

  20. In Situ Observation of Hard Surrounding Rock Displacement at 2400-m-Deep Tunnels

    Science.gov (United States)

    Feng, Xia-Ting; Yao, Zhi-Bin; Li, Shao-Jun; Wu, Shi-Yong; Yang, Cheng-Xiang; Guo, Hao-Sen; Zhong, Shan

    2018-03-01

    This paper presents the results of in situ investigation of the internal displacement of hard surrounding rock masses within deep tunnels at China's Jinping Underground Laboratory Phase II. The displacement evolution of the surrounding rock during the entire excavation processes was monitored continuously using pre-installed continuous-recording multi-point extensometers. The evolution of excavation-damaged zones and fractures in rock masses were also observed using acoustic velocity testing and digital borehole cameras, respectively. The results show four kinds of displacement behaviours of the hard surrounding rock masses during the excavation process. The displacement in the inner region of the surrounding rock was found to be greater than that of the rock masses near the tunnel's side walls in some excavation stages. This leads to a multi-modal distribution characteristic of internal displacement for hard surrounding rock masses within deep tunnels. A further analysis of the evolution information on the damages and fractures inside the surrounding rock masses reveals the effects of excavation disturbances and local geological conditions. This recognition can be used as the reference for excavation and supporting design and stability evaluations of hard-rock tunnels under high-stress conditions.

  1. Remember Hard but Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions

    Directory of Open Access Journals (Sweden)

    Jiushu Xie

    2016-09-01

    Full Text Available Previous studies have found that bodily stimulation, such as hardness, biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between hard and rigid and between soft and flexible in Chinese, to investigate whether the experience of hardness affected cognitive functions requiring either rigidity (memory or flexibility (creativity. In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition than a cushioned one (the soft condition. In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity and flexibility. They support the embodiment proposition that cognitive functions and representations could be grounded via metaphorical association in bodily states.

  2. Effect of electrical and mechanical poling history on domain orientation and piezoelectric properties of soft and hard PZT ceramics

    International Nuclear Information System (INIS)

    Marsilius, Mie; Granzow, Torsten; Jones, Jacob L

    2011-01-01

    The superior piezoelectric properties of all polycrystalline ferroelectrics are based on the extent of non-180 0 domain wall motion under electrical and mechanical poling loads. To distinguish between 180 0 and non-180 0 domain wall motion in a soft-doped and a hard-doped lead zirconate titanate (PZT) ceramic, domain texture measurements were performed using x-ray and neutron diffraction after different loading procedures. Comparing the results to measurements of the remanent strain and piezoelectric coefficient allowed the differentiation between different microstructural contributions to the macroscopic parameters. Both types of ceramic showed similar behavior under electric field, but the hard-doped material was more susceptible to mechanical load. A considerable fraction of the piezoelectric coefficient originated from poling by the preferred orientation of 180 0 domains.

  3. Effect of electrical and mechanical poling history on domain orientation and piezoelectric properties of soft and hard PZT ceramics

    Science.gov (United States)

    Marsilius, Mie; Granzow, Torsten; Jones, Jacob L.

    2011-02-01

    The superior piezoelectric properties of all polycrystalline ferroelectrics are based on the extent of non-180° domain wall motion under electrical and mechanical poling loads. To distinguish between 180° and non-180° domain wall motion in a soft-doped and a hard-doped lead zirconate titanate (PZT) ceramic, domain texture measurements were performed using x-ray and neutron diffraction after different loading procedures. Comparing the results to measurements of the remanent strain and piezoelectric coefficient allowed the differentiation between different microstructural contributions to the macroscopic parameters. Both types of ceramic showed similar behavior under electric field, but the hard-doped material was more susceptible to mechanical load. A considerable fraction of the piezoelectric coefficient originated from poling by the preferred orientation of 180° domains.

  4. Beyond the single-file fluid limit using transfer matrix method: Exact results for confined parallel hard squares

    International Nuclear Information System (INIS)

    Gurin, Péter; Varga, Szabolcs

    2015-01-01

    We extend the transfer matrix method of one-dimensional hard core fluids placed between confining walls for that case where the particles can pass each other and at most two layers can form. We derive an eigenvalue equation for a quasi-one-dimensional system of hard squares confined between two parallel walls, where the pore width is between σ and 3σ (σ is the side length of the square). The exact equation of state and the nearest neighbor distribution functions show three different structures: a fluid phase with one layer, a fluid phase with two layers, and a solid-like structure where the fluid layers are strongly correlated. The structural transition between differently ordered fluids develops continuously with increasing density, i.e., no thermodynamic phase transition occurs. The high density structure of the system consists of clusters with two layers which are broken with particles staying in the middle of the pore

  5. Hard Distraction and Deep Inelastic Scattering

    International Nuclear Information System (INIS)

    BJORKEN, J.D.

    1994-01-01

    Since the advent of hard-collision physics, the study of diffractive processes- 'shadow physics' - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word 'diffraction' is sometimes used by high-energy physicists in a loose way. So I here begin by defining what I mean by the term: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the 'lego' phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width Δη does not have a power-law decrease with increasing sub energy Δη, but behaves at most like some power of pseudorapidity Δη∼ logs. The term 'hard diffraction' shall simply refer to those diffractive processes which have jets in the final-state phase-space. We may also distinguish, if desired, two subclasses, as suggested by Ingelman i) Diffractive hard processes have jets on only one side of the rapidity gap. ii) Hard diffractive processes have jets on both sides of the rapidity gap

  6. The Effect of Multi Wall Carbon Nanotubes on Some Physical Properties of Epoxy Matrix

    Science.gov (United States)

    Al-Saadi, Tagreed M.; hammed Aleabi, Suad; Al-Obodi, Entisar E.; Abdul-Jabbar Abbas, Hadeel

    2018-05-01

    This research involves using epoxy resin as a matrix for making a composite material, while the multi wall carbon nanotubes (MWNCTs) is used as a reinforcing material with different fractions (0.0,0.02, 0.04, 0.06) of the matrix weight. The mechanical ( hardness ), electrical ( dielectric constant, dielectric loss factor, dielectric strength, electrical conductivity ), and thermal properties (thermal conductivity ) were studied. The results showed the increase of hardness, thermal conductivity, electrical conductivity and break down strength with the increase of MWCNT concentration, but the behavior of dielectric loss factor and dielectric constant is opposite that.

  7. Hard-sphere fluid adsorbed in an annular wedge: The depletion force of hard-body colloidal physics

    Science.gov (United States)

    Herring, A. R.; Henderson, J. R.

    2007-01-01

    Many important issues of colloidal physics can be expressed in the context of inhomogeneous fluid phenomena. When two large colloids approach one another in solvent, they interact at least partly by the response of the solvent to finding itself adsorbed in the annular wedge formed between the two colloids. At shortest range, this fluid mediated interaction is known as the depletion force/interaction because solvent is squeezed out of the wedge when the colloids approach closer than the diameter of a solvent molecule. An equivalent situation arises when a single colloid approaches a substrate/wall. Accurate treatment of this interaction is essential for any theory developed to model the phase diagrams of homogeneous and inhomogeneous colloidal systems. The aim of our paper is a test of whether or not we possess sufficient knowledge of statistical mechanics that can be trusted when applied to systems of large size asymmetry and the depletion force in particular. When the colloid particles are much larger than a solvent diameter, the depletion force is dominated by the effective two-body interaction experienced by a pair of solvated colloids. This low concentration limit of the depletion force has therefore received considerable attention. One route, which can be rigorously based on statistical mechanical sum rules, leads to an analytic result for the depletion force when evaluated by a key theoretical tool of colloidal science known as the Derjaguin approximation. A rival approach has been based on the assumption that modern density functional theories (DFT) can be trusted for systems of large size asymmetry. Unfortunately, these two theoretical predictions differ qualitatively for hard sphere models, as soon as the solvent density is higher than about 2/3 that at freezing. Recent theoretical attempts to understand this dramatic disagreement have led to the proposal that the Derjaguin and DFT routes represent opposite limiting behavior, for very large size asymmetry

  8. Aespoe hard rock laboratory. Annual report 2000

    International Nuclear Information System (INIS)

    2001-06-01

    The Aespoe Hard Rock Laboratory constitutes an important component of SKB's work to design, construct, and implement a deep geological repository for spent nuclear fuel and to develop and test methods for characterisation of selected repository sites. The retention effect of the rock has been studied by tracer tests in the Tracer Retention Understanding Experiments (TRUE) and the TRUE Block Scale (TRUE BS). These tests are supplemented by the new Long Term Diffusion Experiment (LTDE). During year 2000 the field experiments of TRUE BS (50 m scale) were completed and preparations made for the LTDE (migration through a fracture wall and into the rock), including boring of approximately 10 m deep hole with 300 mm diameter. Laboratory investigations have difficulties in simulating natural conditions and need supplementary field studies to support validation exercises. A special borehole probe, CHEMLAB, has therefore been designed for different kinds of validation experiments where data can be obtained representative for the in-situ properties of groundwater at repository depth. During 2000 migration experiments were made with actinides (Am, Np and Pu) in CHEMLAB 2, the simplified supplement to CHEMLAB 1. Colloids of nuclides as well as of bentonite might affect the migration of released radionuclides and a separate project was planned during 2000 to assess the existence, stability and mobility of colloids. The development of numerical modelling tools continues with the general objective to improve the numerical models in terms of flow and transport and to update the site-scale and laboratory scale models for the Aespoe HRL. The Matrix Fluid Chemistry project aims at determining the origin and age of matrix fluids and the experiment has been designed to sample matrix fluids from predetermined, isolated borehole sections by specialised equipment. The Aespoe HRL also has the task to demonstrate and perform full scale tests of the function of different components of the

  9. Aespoe hard rock laboratory. Annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    The Aespoe Hard Rock Laboratory constitutes an important component of SKB's work to design, construct, and implement a deep geological repository for spent nuclear fuel and to develop and test methods for characterisation of selected repository sites. The retention effect of the rock has been studied by tracer tests in the Tracer Retention Understanding Experiments (TRUE) and the TRUE Block Scale (TRUE BS). These tests are supplemented by the new Long Term Diffusion Experiment (LTDE). During year 2000 the field experiments of TRUE BS (50 m scale) were completed and preparations made for the LTDE (migration through a fracture wall and into the rock), including boring of approximately 10 m deep hole with 300 mm diameter. Laboratory investigations have difficulties in simulating natural conditions and need supplementary field studies to support validation exercises. A special borehole probe, CHEMLAB, has therefore been designed for different kinds of validation experiments where data can be obtained representative for the in-situ properties of groundwater at repository depth. During 2000 migration experiments were made with actinides (Am, Np and Pu) in CHEMLAB 2, the simplified supplement to CHEMLAB 1. Colloids of nuclides as well as of bentonite might affect the migration of released radionuclides and a separate project was planned during 2000 to assess the existence, stability and mobility of colloids. The development of numerical modelling tools continues with the general objective to improve the numerical models in terms of flow and transport and to update the site-scale and laboratory scale models for the Aespoe HRL. The Matrix Fluid Chemistry project aims at determining the origin and age of matrix fluids and the experiment has been designed to sample matrix fluids from predetermined, isolated borehole sections by specialised equipment. The Aespoe HRL also has the task to demonstrate and perform full scale tests of the function of different components of

  10. Implementing Green Walls in Schools

    Directory of Open Access Journals (Sweden)

    Michael B. McCullough

    2018-06-01

    Full Text Available Numerous studies in applied pedagogical design have shown that, at all educational levels, direct exposure to the natural environment can enhance learning by improving student attention and behaviors. Implementing green walls—a “vertical garden,” or “living wall” interior wall that typically includes greenery, a growing medium (soil or substrate and a water delivery system—provides environmental health benefits, but also provides a practical application within classrooms for minimizing directed attention fatigue in students by connecting them to “outdoor nature” within the indoor environment. Hands-on “project-based” learning is another pedagogical strategy that has proved to be effective across the spectrum of educational levels and across subject areas. Green walls have the potential to inspire critical thinking through a combination of project-based learning strategies and environmental education. The authors have outlined a curriculum involving the implementation of an indoor living wall system within a classroom-learning environment, incorporating project-based learning modules that interact with the wall. In conjunction with the passive health benefits of a green wall, project-based curriculum models can connect students interactively with indoor nature and have the potential to inspire real-world thinking related to science, technology, engineering, art, and mathematics fields within the indoor learning environment. Through a combination of these passive and interactive modes, students are connected to nature in the indoor environment regardless of weather conditions outdoors. Future research direction could include post-construction studies of the effectiveness of project-based curricula related to living walls, and the long-term impacts of implementing green walls in classrooms on school achievement and student behaviors.

  11. Thermodynamic perturbation theory for fused hard-sphere and hard-disk chain fluids

    International Nuclear Information System (INIS)

    Zhou, Y.; Hall, C.K.; Stell, G.

    1995-01-01

    We find that first-order thermodynamic perturbation theory (TPT1) which incorporates the reference monomer fluid used in the generalized Flory--AB (GF--AB) theory yields an equation of state for fused hard-sphere (FHS) chain fluids that has accuracy comparable to the GF--AB and GF--dimer--AC theories. The new TPT1 equation of state is significantly more accurate than other extensions of the TPT1 theory to FHS chain fluids. The TPT1 is also extended to two-dimensional fused hard-disk chain fluids. For the fused hard-disk dimer fluid, the extended TPT1 equation of state is found to be more accurate than the Boublik hard-disk dimer equation of state. copyright 1995 American Institute of Physics

  12. Hard diffraction and small-x

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In the United States, phrases such as ''small-x evolution'', ''the BFKL Pomeron'', ''deep-inelastic rapiditygap events'' and ''hard-diffraction'' do not generate the same intensity of discussion amongst high-energy physicists that they do in Europe. However, for three days in the fall such discussion filled the air at Fermilab. The ''2nd Workshop on Small-x and Diffractive Physics at the Tevatron'' was a review of the rapid theoretical and experimental progress taking place in this field. Although Quantum Chromo-dynamics (QCD) has been established as the theory of strong interactions for twenty years, as yet neither perturbative high-energy calculations nor low-energy non-perturbative techniques have been successfully extended to the mixture of high energy and low transverse momenta which characterize traditional ''soft'' diffractive processes. The simplest soft diffractive process is elastic scattering. In this case it is easiest to accept that there is an exchanged ''pomeron'', which can be pictured as a virtual entity with no electric charge or strong charge (colour), perhaps like an excitation of the vacuum. The same pomeron is expected to appear in all diffractive processes. Understanding the pomeron in QCD is a fundamental theoretical and experimental challenge. In the last two or three years the ''frontier'' in this challenging area of QCD has been pushed back significantly in both theory and experiment. Progress has been achieved by studying the evolution of hard collisions to relatively smaller constituent momenta (small x) and by studying ''hard'' diffractive collisions containing simultaneous signatures of diffraction and hard perturbative processes. The hard processes have included high transverse momentum jet production, deep inelastic lepton scattering, and (most recently) W

  13. Dynamics of strings between walls

    International Nuclear Information System (INIS)

    Eto, Minoru; Fujimori, Toshiaki; Nagashima, Takayuki; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke

    2009-01-01

    Configurations of vortex strings stretched between or ending on domain walls were previously found to be 1/4 Bogomol'nyi-Prasad-Sommerfield (BPS) states in N=2 supersymmetric gauge theories in 3+1 dimensions. Among zero modes of string positions, the center of mass of strings in each region between two adjacent domain walls is shown to be non-normalizable whereas the rests are normalizable. We study dynamics of vortex strings stretched between separated domain walls by using two methods, the moduli space (geodesic) approximation of full 1/4 BPS states and the charged particle approximation for string end points in the wall effective action. In the first method we explicitly obtain the effective Lagrangian in the strong coupling limit, which is written in terms of hypergeometric functions, and find the 90 deg. scattering for head-on collision. In the second method the domain wall effective action is assumed to be U(1) N gauge theory, and we find a good agreement between two methods for well-separated strings.

  14. Isolation of the Cell Wall.

    Science.gov (United States)

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth

    2017-01-01

    This chapter describes a method allowing the purification of the cell wall for studying both polysaccharides and proteins. The plant primary cell wall is mainly composed of polysaccharides (90-95 % in mass) and of proteins (5-10 %). At the end of growth, specialized cells may synthesize a lignified secondary wall composed of polysaccharides (about 65 %) and lignin (about 35 %). Due to its composition, the cell wall is the cellular compartment having the highest density and this property is used for its purification. It plays critical roles during plant development and in response to environmental constraints. It is largely used in the food and textile industries as well as for the production of bioenergy. All these characteristics and uses explain why its study as a true cell compartment is of high interest. The proposed method of purification can be used for large amount of material but can also be downscaled to 500 mg of fresh material. Tools for checking the quality of the cell wall preparation, such as protein analysis and microscopy observation, are also provided.

  15. Modeling of shear wall buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A K [North Carolina State Univ., Raleigh (USA). Dept. of Civil Engineering

    1984-05-01

    Many nuclear power plant buildings, for example, the auxiliary building, have reinforced concrete shear walls as the primary lateral load resisting system. Typically, these walls have low height to length ratio, often less than unity. Such walls exhibit marked shear lag phenomenon which would affect their bending stiffness and the overall stress distribution in the building. The deformation and the stress distribution in walls have been studied which is applicable to both the short and the tall buildings. The behavior of the wall is divided into two parts: the symmetric flange action and the antisymmetry web action. The latter has two parts: the web shear and the web bending. Appropriate stiffness equations have been derived for all the three actions. These actions can be synthesized to solve any nonlinear cross-section. Two specific problems, that of lateral and torsional loadings of a rectangular box, have been studied. It is found that in short buildings shear lag plays a very important role. Any beam type formulation which either ignores shear lag or includes it in an idealized form is likely to lead to erroneous results. On the other hand a rigidity type approach with some modifications to the standard procedures would yield nearly accurate answers.

  16. Microbiological quality of soft, semi-hard and hard cheeses during the shelf-life

    Directory of Open Access Journals (Sweden)

    Josip Vrdoljak

    2016-03-01

    Full Text Available Cheeses as ready-to-eat food should be considered as a potential source of foodborne pathogens, primarily Listeria monocytogenes. The aim of present study was to determine the microbiological quality of soft, semi-hard and hard cheeses during the shelf-life, with particular reference to L. monocytogenes. Five types of cheeses were sampled at different timepoints during the cold storage and analyzed for presence of Salmonella and L. monocytogenes, as well as lactic acid bacteria, Escherichia coli, coagulase-positive staphylococci, yeasts, molds, sulfite-reducing clostridia and L. monocytogenes counts. Water activity, pH and NaCl content were monitored in order to evaluate the possibility of L. monocytogenes growth. Challenge test for L. monocytogenes was performed in soft whey cheese, to determine the growth potential of pathogen during the shelf-life of product. All analyzed cheeses were compliant with microbiological criteria during the shelf-life. In soft cheeses, lactic acid bacteria increased in the course of the shelf-life period (1.2-2.6 log increase, while in semi-hard and hard cheeses it decreased (1.6 and 5.2 log decrease, respectively. Soft cheeses support the growth of L. monocytogenes according to determined pH values (5.8-6.5, water activity (0.99-0.94, and NaCl content (0.3-1.2%. Challenge test showed that L. monocytogenes growth potential in selected soft cheese was 0.43 log10 cfu/g during 8 days at 4°C. Water activity in semi-hard and hard cheeses was a limiting factor for Listeria growth during the shelf-life. Soft, semi-hard and hard cheeses were microbiologically stable during their defined shelf-life. Good manufacturing and hygienic practices must be strictly followed in the production of soft cheeses as Listeria-supporting food and be focused on preventing (recontamination.

  17. Bond-orientational analysis of hard-disk and hard-sphere structures.

    Science.gov (United States)

    Senthil Kumar, V; Kumaran, V

    2006-05-28

    We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.

  18. Remember Hard But Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions

    Science.gov (United States)

    Xie, Jiushu; Lu, Zhi; Wang, Ruiming; Cai, Zhenguang G.

    2016-01-01

    Previous studies have found that bodily stimulation, such as hardness biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between “hard” and “rigid” and between “soft” and “flexible” in Chinese, to investigate whether the experience of hardness affects cognitive functions whose performance depends prospectively on rigidity (memory) and flexibility (creativity). In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition) than a cushioned one (the soft condition). In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity or flexibility. They support the embodiment proposition that cognitive functions and representations can be grounded in bodily states via metaphorical associations. PMID:27672373

  19. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  20. Turbine airfoil with outer wall thickness indicators

    Science.gov (United States)

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.