Collinear Singularities and Running Coupling Corrections to Gluon Production in CGC
Kovchegov, Yuri V
2007-01-01
We analyze the structure of running coupling corrections to the gluon production cross section in the projectile-nucleus collisions calculated in the Color Glass Condensate (CGC) framework. We argue that for the gluon production cross section (and for gluon transverse momentum spectra and multiplicity) the inclusion of running coupling corrections brings in collinear singularities due to final state splittings completely unaffected by CGC resummations. Hence, despite the saturation/CGC dynamics, the gluon production cross section is not infrared-safe. As usual, regularizing the singularities requires an infrared cutoff Lambda_coll that defines a resolution scale for gluons. We specifically show that the cutoff enters the gluon production cross section in the argument of the strong coupling constant alpha_s(Lambda_coll^2). We argue that for hadron production calculations one should be able to absorb the collinear divergence into a fragmentation function. The singular collinear terms in the gluon production cro...
All-order results for soft and collinear gluons
Lorenzo Magnea
2009-01-01
Some general features and some recent developments concerning the resummation of long-distance singularities in QCD and in more general non-Abelian gauge theories are reviewed. The field-theoretical tools of the trade are emphasized, with the focus mostly on the exponentiation of infra-red and collinear divergences in amplitudes, which underlies the resummation of large logarithms in the corresponding cross-sections. Some recent results concerning the conformal limit, notably the case of = 4 superymmetric Yang–Mills theory are also described.
Hard photon production from unsaturated quark-gluon plasma at two-loop level
Dutta, D. E-mail: ddutta@apsara.barc.ernet.in; Sastry, S.V.S.; Mohanty, A.K.; Kumar, K
2002-11-18
The hard photon production from bremsstrahlung and annihilation with scattering that arise at two-loop level are estimated for a chemically non-equilibrated quark-gluon plasma in the framework of Hard Thermal Loop (HTL) resummed effective field theory. The rate of photon production is found to be suppressed due to unsaturated phase space compared to equilibrated plasma. For an unsaturated plasma, unlike the effective one-loop case, the reduction in the effective two-loop processes is found to be independent of gluon fugacity, due to an additional collinear enhancement arising from the decrease in thermal quark mass but strongly depends on quark and antiquark fugacities. It is also found that the photon production is dominated by bremsstrahlung mechanism, since the phase space suppression is higher for annihilation with scattering, in contrast to the equilibrated plasma where annihilation with scattering dominates the photon production.
Hard Photon production from unsaturated quark gluon plasma at two loop level
Dutta, D; Mohanty, A K; Kumar, K; Choudhury, R K
2002-01-01
The hard photon productions from bremsstrahlung and annihilation with scattering that arise at two loop level are estimated from a chemically non-equilibrated quark gluon plasma using the frame work of thermal field theory. Although, the rate of photon production is suppressed due to unsaturated phase space, the above suppression is relatively smaller than expected due to an additional collinear enhancement (arise due to decrease in thermal quark mass) as compared to it's equilibrium counterpart. Interestingly, unlike the one loop case, the reduction in the two loop processes are found to be independent of gluon chemical poential, but strongly depends on quark fugacity. It is also found that, since the phase space suppression is highest for annihilation with scattering, the photon production is entirely dominated by bremsstrahlung mechanism at all energies. This is to be contrasted with the case of the equilibrated plasma where annihilation with scattering dominates the photon production particularly at highe...
Gardi, E; Gardi, Einan; Rathsman, Johan
2001-01-01
The thrust distribution in e+e- annihilation is calculated exploiting its exponentiation property in the two-jet region t = 1-T << 1. We present a general method (DGE) to calculate a large class of logarithmically enhanced terms, using the dispersive approach in renormalon calculus. Dressed Gluon Exponentiation is based on the fact that the exponentiation kernel is associated primarily with a single gluon emission, and therefore the exponent is naturally represented as an integral over the running coupling. Fixing the definition of Lambda is enough to guarantee consistency with the exact exponent to next-to-leading logarithmic accuracy. Renormalization scale dependence is avoided by keeping all the logs. Sub-leading logs, that are usually neglected, are factorially enhanced and are therefore important. Renormalization-group invariance as well as infrared renormalon divergence are recovered in the sum of all the logs. The logarithmically enhanced cross-section is evaluated by Borel summation. Renormalon ...
Transverse spin observables in hard-scattering hadronic processes within collinear factorization
Pitonyak, D
2016-01-01
We review what is currently known about the transverse spin structure of hadrons, in particular from observables that can be analyzed within a collinear framework. These effects have been around for 40 years and represent a critical test of perturbative QCD. We look at both proton-proton and lepton-nucleon collisions for various final states. While the main focus is on transverse single-spin asymmetries, we also discuss how longitudinal-transverse spin asymmetries offer a complimentary, yet equally important, source of information on the quark-gluon content of hadrons. We also summarize some recent progress in solidifying the theoretical formalism behind these observables and give an outlook on future directions of research.
Significance of non-perturbative input to TMD gluon density for hard processes at LHC
Grinyuk, A A; Lykasov, G I; Zotov, N P
2015-01-01
We study the role of the non-perturbative input to the transverse momentum dependent (TMD) gluon density in hard processes at the LHC. We derive the input TMD gluon distribution at low scale mu0^2 ~ 1 GeV^2 from the fit of the inclusive hadron spectra measured at low transverse momenta in pp collisions at the LHC and demonstrate that the best description of these spectra for larger hadron transverse momenta can be achieved by matching the derived TMD gluon distribution with the exact solution of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation obtained at low x and small gluon transverse momenta outside the saturation region. Then, we extend the input TMD gluon density to higher mu^2 numerically using the Catani-Ciafoloni-Fiorani-Marchesini (CCFM) gluon evolution equation. A special attention is put to the phenomenological applications of obtained TMD gluon density to some LHC processes, which are sensitive to the gluon content of a proton.
Grinyuk, A. A.; Lipatov, A. V.; Lykasov, G. I.; Zotov, N. P.
2016-01-01
We study the role of the nonperturbative input to the transverse momentum dependent (TMD) gluon density in hard processes at the LHC. We derive the input TMD gluon distribution at a low scale μ02˜1 GeV2 from a fit of inclusive hadron spectra measured at low transverse momenta in p p collisions at the LHC and demonstrate that the best description of these spectra for larger hadron transverse momenta can be achieved by matching the derived TMD gluon distribution with the exact solution of the Balitsky-Fadin-Kuraev-Lipatov equation obtained at low x and small gluon transverse momenta outside the saturation region. Then, we extend the input TMD gluon density to higher μ2 numerically using the Catani-Ciafoloni-Fiorani-Marchesini gluon evolution equation. Special attention is paid to phenomenological applications of the obtained TMD gluon density to some LHC processes, which are sensitive to the gluon content of a proton.
Hard scale dependent gluon density, saturation and forward-forward dijet production at the LHC
Kutak, Krzysztof
2014-01-01
We propose a method to introduce Sudakov effects to unintegrated gluon density promoting it to be hard scale dependent. The advantage of proposed approach is that it guarantees that the gluon density is positive definite and that on integrated level the Sudakov effects cancel. Besides that the method to introduce the Sudakov effects is convenient since it does not need evaluation of cross section in the process of imposing the effects. As a case study we apply the method to calculate angular correlations in production of forward-forward dijet and $R_{pA}$ ratio for p+p vs. p+Pb collision.
On the QCD dipole content of hard photon and gluon probes
Peschanski, R
2000-01-01
A gluon forward jet playing the role of a deep probe in high energy scattering, we analyze its infinite momentum QCD wave function in terms of dipole (color-singlet quark-antiquark) configurations using k_T-factorization properties. The comparison is made with virtual photon quark-antiquark configurations. Some implications for hard processes with forward jets at Hera and Tevatron are suggested.
Gluon Radiation off Hard Quarks in a Nuclear Environment Opacity Expansion
Wiedemann, Urs Achim
2000-01-01
We study the relation between the Baier-Dokshitzer-Mueller-Peigne-Schiff (BDMPS) and Zakharov formalisms for medium-induced gluon radiation off hard quarks, and the radiation off very few scattering centers. Based on the non-abelian Furry approximation for the motion of hard partons in a spatially extended colour field, we derive a compact diagrammatic and explicitly colour trivial expression for the N-th order term of the kt-differential gluon radiation cross section in an expansion in the opacity of the medium. Resumming this quantity to all orders in opacity, we obtain Zakharov's path-integral expression (supplemented with a regularization prescription). This provides a new proof of the equivalence of the BDMPS and Zakharov formalisms which extends previous arguments to the kt-differential cross section. We give explicit analytical results up to third order in opacity for both the gluon radiation cross section of free incoming and of in-medium produced quarks. The N-th order term in the opacity expansion o...
Non-equilibrium QCD Interplay of hard and soft dynamics in high-energy multi-gluon beams
Kinder-Geiger, Klaus
1997-01-01
A quantum-kinetic formulation of the dynamical evolution of a high-energy non-equilibrium gluon system at finite density is developed, to study the interplay between quantum fluctuations of high-momentum (hard) gluons and the low-momentum (soft) mean color-field that is induced by the collective motion of the hard particles. From the exact field-equations of motion of QCD, a self-consistent set of approximate quantum-kinetic equations are derived by separating hard and soft dynamics and choosing a convenient axial-type gauge. This set of master equations describes the momentum space evolution of the individual hard quanta, the space-time development of the ensemble of hard gluons, and the generation of the soft mean-field by the current of the hard particles. The quantum-kinetic equations are approximately solved to order g^2 (1+gA) for a specific example, namely the scenario of a high-energy gluon beam along the lightcone, demonstrating the practical applicability of the approach.
Cohen, Timothy; Larkoski, Andrew J
2016-01-01
This letter provides a superfield based approach to constructing a collinear slice of $\\mathcal{N}$ = 1 superspace. The strategy is analogous to integrating out anti-collinear fermionic degrees-of-freedom as was developed in the context of soft-collinear effective theory. The resulting Lagrangian can be understood as an integral over collinear superspace, where half the supercoordinates have been integrated out. The application to $\\mathcal{N}$ = 1 super Yang-Mills is presented. Collinear superspace provides the foundation for future explorations of supersymmetric soft-collinear effective theory.
Collinear limits beyond the leading order from the scattering equations
Nandan, Dhritiman; Wormsbecher, Wadim
2016-01-01
The structure of tree-level scattering amplitudes for collinear massless bosons is studied beyond their leading splitting function behavior. These near-collinear limits at sub-leading order are best studied using the Cachazo-He-Yuan (CHY) formulation of the S-matrix based on the scattering equations. We compute the collinear limits for gluons, gravitons and scalars. It is shown that the CHY integrand for an n-particle gluon scattering amplitude in the collinear limit at sub-leading order is expressed as a convolution of an (n-1)-particle gluon integrand and a collinear kernel integrand, which is universal. Our representation is shown to obey recently proposed amplitude relations in which the collinear gluons of same helicity are replaced by a single graviton. Finally, we extend our analysis to effective field theories and study the collinear limit of the non-linear sigma model, Einstein-Maxwell-Scalar and Yang-Mills-Scalar theory.
Collinear limits beyond the leading order from the scattering equations
Nandan, Dhritiman; Plefka, Jan; Wormsbecher, Wadim
2017-02-01
The structure of tree-level scattering amplitudes for collinear massless bosons is studied beyond their leading splitting function behavior. These near-collinear limits at sub-leading order are best studied using the Cachazo-He-Yuan (CHY) formulation of the S-matrix based on the scattering equations. We compute the collinear limits for gluons, gravitons and scalars. It is shown that the CHY integrand for an n-particle gluon scattering amplitude in the collinear limit at sub-leading order is expressed as a convolution of an ( n - 1)-particle gluon integrand and a collinear kernel integrand, which is universal. Our representation is shown to obey recently proposed amplitude relations in which the collinear gluons of same helicity are replaced by a single graviton. Finally, we extend our analysis to effective field theories and study the collinear limit of the non-linear sigma model, Einstein-Maxwell-Scalar and Yang-Mills-Scalar theory.
Hard probes (and soft ones) to test the quark-gluon soup
Preuss, Paul
2006-01-01
"We need the hardest probes of all to study the hot, dense state of matter that exists when two heavy nuclei like gold collide with enough energy to temporarily free the quarks and gluons in their constituent protons and neutrons." (3 pages)
What have hard probes taught us about the quark–gluon plasma as measured in CMS?
Velkovska, Julia, E-mail: julia.velkovska@vanderbilt.edu
2014-12-15
This paper reviews recent CMS measurements from hard probes and their implications in assessing the properties of the QGP. Results from pPb collisions are compared and contrasted to measurements in PbPb collisions. The role of pPb collisions as a “control experiment” separating initial from final state effects is discussed.
Bridging soft-hard transport properties of quark-gluon plasmas with CUJET3.0
Xu, Jiechen [Department of Physics, Columbia University,538 West 120th Street, New York, NY 10027 (United States); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University,2401 North Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Brookhaven National Laboratory,Building 510A, Upton, NY 11973 (United States); Gyulassy, Miklos [Department of Physics, Columbia University,538 West 120th Street, New York, NY 10027 (United States)
2016-02-25
A new model (CUJET3.0) of jet quenching in nuclear collisions coupled to bulk data constrained (VISH2+1D) viscous hydrodynamic backgrounds is constructed by generalizing the perturbative QCD based (CUJET2.0) model to include two complementary non-perturbative chromodynamical features of the QCD confinement cross-over phase transition near T{sub c}≈160 MeV: (1) the suppression of quark and gluon chromo-electric-charged (cec) degrees of freedom and (2) the emergence of chromo-magnetic-monopole (cmm) degrees of freedom. Such a semi Quark Gluon Monopole Plasma (sQGMP) microscopic scenario is tested by comparing predictions of the leading hadron nuclear modification factors, R{sub AA}{sup h}(p{sub T}>10GeV/c,√s), and their azimuthal elliptic asymmetry v{sub 2}{sup h}(p{sub T}>10GeV/c,√s) with available data on h=π,D,B jet fragments from nuclear collisions at RHIC(√s=0.2 ATeV) and LHC(√s=2.76 ATeV). The cmm degrees of freedom in the sQGMP model near T{sub c} are shown to solve robustly the long standing R{sub AA} vs v{sub 2} puzzle by predicting a maximum of the jet quenching parameter field q̂(E,T)/T{sup 3} near T{sub c}. The robustness of CUJET3.0 model to a number of theoretical uncertainties is critically tested. Moreover the consistency of jet quenching with observed bulk perfect fluidity is demonstrated by extrapolating the sQGMP q̂ down to thermal energy E∼3T scales and showing that the sQGMP shear viscosity to entropy density ratio η/s≈T{sup 3}/q̂ falls close to the unitarity bound, 1/4π, in the range (1−2)T{sub c}. Detailed comparisons of the CUJET2.0 and CUJET3.0 models reveal the fact that remarkably different q̂(T) dependence could be consistent with the same R{sub AA} data and could only be distinguished by anisotropy observables. These findings demonstrate clearly the inadequacy of focusing on the jet path averaged quantity 〈q̂〉 as the only relevant medium property to characterize jet quenching, and point to the crucial roles of
Some Applications of Hard Thermal Loop Perturbation Theory in Quark Gluon Plasma
Haque, Najmul
2014-01-01
This thesis is mainly devoted to the study of thermodynamics for quantum Chromodynamics. In this thesis I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to study the thermodynamics of QCD in leading-order, next-to-leading-order and next-to-next-to-leading order at finite temperature and finite chemical potential. I also discuss about various order diagonal and off-diagonale quark number susceptibilities in leading order as well as beyond leading order. For all the observables, I compare our results with available lattice QCD data and we find good agreement. Along-with the computation of thermodynamic quantities of hot and dense matter, I also discuss about low mass dilepton rate from hot and dense medium using both perturbative and non-perturbative models and compare them with those from lattice gauge theory and in-medium hadron gas.
LONG Jia-Li; HE Ze-Jun; MA Yu-Gang
2006-01-01
@@ We investigate hard photon production of the near-collinear bremsstrahlung and a new process called the inelastic pair annihilation, fully including the LPM effect, in a chemically equilibrating quark-gluon plasma at finite baryon density, and find that the effect of the system evolution on the photon production and large contribution of the bremsstrahlung make the total photon yield of the two processes as a strongly increasing function of the initial quark chemical potential.
One-loop triple collinear splitting amplitudes in QCD
Badger, Simon; Peraro, Tiziano
2015-01-01
We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus four partons amplitudes. We present compact results for primitive helicity splitting amplitudes making use of super-symmetric decompositions. The universality of the collinear factorisation is checked numerically against the full colour six parton squared matrix elements.
Higgs boson gluon-fusion production beyond threshold in N$^3$LO QCD
Anastasiou, Charalampos; Dulat, Falko; Furlan, Elisabetta; Gehrmann, Thomas; Herzog, Franz; Mistlberger, Bernhard
2015-01-01
In this article, we compute the gluon fusion Higgs boson cross-section at N3LO through the second term in the threshold expansion. This calculation constitutes a major milestone towards the full N3LO cross section. Our result has the best formal accuracy in the threshold expansion currently available, and includes contributions from collinear regions besides subleading corrections from soft and hard regions, as well as certain logarithmically enhanced contributions for general kinematics. We use our results to perform a critical appraisal of the validity of the threshold approximation at N3LO in perturbative QCD.
Collinearly improved JIMWLK evolution in Langevin form
Hatta, Yoshitaka
2016-01-01
The high-energy evolution of Wilson line operators, which at leading order is described by the Balitsky-JIMWLK equations, receives large radiative corrections enhanced by single and double collinear logarithms at next-to-leading order and beyond. We propose a method for resumming such logarithmic corrections to all orders, at the level of the Langevin formulation of the JIMWLK equation. The ensuing, collinearly-improved Langevin equation features generalized Wilson line operators, which depend not only upon rapidity (the logarithm of the longitudinal momentum), but also upon the transverse size of the color neutral projectile to which the Wilson lines belong. This additional scale dependence is built up during the evolution, via the condition that the successive emissions of soft gluons be ordered in time. The presence of this transverse scale in the Langevin equation furthermore allows for the resummation of the one-loop running coupling corrections.
Gilani, A H S
2004-01-01
It is claimed that only one gluon is massless and the other seven gluons are massive. Out of eight gluons, six are colored and two are neutral. Among neutral gluons, one is massless and other one is massive. Massive neutral gluon is heavier than the colored gluons. Gluons can only be predicted by set theory but not by SU(3).
Cohen, Timothy; Larkoski, Andrew J
2016-01-01
Soft-Collinear Effective Theory (SCET) is a framework for modeling the infrared structure of theories whose long distance behavior is dominated by soft and collinear divergences. This paper demonstrates that SCET can be made compatible with supersymmetry (SUSY). Explicitly, the effective theory for $\\mathcal{N} = 1$ SUSY Yang-Mills is constructed and shown to be consistent. For contrast, arguments are given that chiral SUSY theories with Yukawa couplings, specifically the single flavor Wess-Zumino model, are incompatible with the collinear expansion. SCET is formulated by expanding fields along a light-like direction and then subsequently integrating out degrees-of-freedom that are away from the light-cone. Defining the theory with respect to a specific frame obfuscates Lorentz invariance -- given that SUSY is a space-time symmetry, this presents a possible obstruction. The cleanest language with which to expose the congruence between SUSY and SCET requires exploring two novel formalisms: collinear fermions a...
Soft-collinear factorization in B decays
Beneke, M
2015-01-01
The combination of collinear factorization with effective field theory originally developed for soft interactions of heavy quarks provides the foundations of the theory of exclusive and semi-inclusive B decays. In this article I summarize some of the later conceptual developments of the so-called QCD factorization approach that make use of soft-collinear effective theory. Then I discuss the status and results of the calculation of the hard-scattering functions at the next order, and review very briefly some of the phenomenology, covering aspects of charmless, electroweak penguin and radiative (semi-leptonic) decays.
Cohen, Timothy; Elor, Gilly; Larkoski, Andrew J.
2017-03-01
Soft-Collinear Effective Theory (SCET) is a framework for modeling the infrared structure of theories whose long distance behavior is dominated by soft and collinear divergences. This paper demonstrates that SCET can be made compatible with super-symmetry (SUSY). Explicitly, the effective Lagrangian for N=1 SUSY Yang-Mills is cconstructed and shown to be a complete description for the infrared of this model. For contrast, we also construct the effective Lagrangian for chiral SUSY theories with Yukawa couplings, specifically the single flavor Wess-Zumino model. Only a subset of the infrared divergences are reproduced by the Lagrangian — to account for the complete low energy description requires the inclusion of local operators. SCET is formulated by expanding fields along a light-like direction and then subsequently integrating out degrees-of-freedom that are away from the light-cone. Defining the theory with respect to a specific frame obfuscates Lorentz invariance — given that SUSY is a space-time symmetry, this presents a possible obstruction. The cleanest language with which to expose the congruence be-tween SUSY and SCET requires exploring two novel formalisms: collinear fermions as two-component Weyl spinors, and SCET in light-cone gauge. By expressing SUSY Yang-Mills in "collinear superspace", a slice of superspace derived by integrating out half the fermionic coordinates, the light-cone gauge SUSY SCET theory can be written in terms of superfields. As a byproduct, bootstrapping up to the full theory yields the first algorithmic approach for determining the SUSY Yang-Mills on-shell superspace action. This work paves the way toward discovering the effective theory for the collinear limit of N=4 SUSY Yang-Mills.
Ayala, A.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica][Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica; Ducati, M.B.G. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, E.M. [Fermi National Accelerator Lab., Batavia, IL (United States)][Nuclear Physics Inst., St. Petersburg (Russian Federation)
1996-10-01
In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.
Gluon transverse momentum dependent correlators in polarized high energy processes
Boer, Daniel; van Daal, Tom; Mulders, Piet J; Signori, Andrea; Zhou, Yajin
2016-01-01
We investigate the gluon transverse momentum dependent correlators as Fourier transform of matrix elements of nonlocal operator combinations. At the operator level these correlators include both field strength operators and gauge links bridging the nonlocality. In contrast to the collinear PDFs, the gauge links are no longer unique for transverse momentum dependent PDFs (TMDs) and also Wilson loops lead to nontrivial effects. We look at gluon TMDs for unpolarized, vector and tensor polarized targets. In particular a single Wilson loop operators become important when one considers the small-x limit of gluon TMDs.
Theory of hard probes in PbPb collisions
Chien, Yang-Ting
2016-01-01
The jet quenching phenomenon in heavy ion collisions provides a strong evidence of the modification of parton shower in the quark-gluon plasma. This contribution focuses on the hard probes of QGP using jets and summarizes the new theoretical progress of jet substructure modification studies using effective field theory techniques. We emphasize the important role of jet substructure observables as they probe various aspects of the jet formation mechanism and allow us to study the medium properties in great details. The precise calculations require the systematic resummation and consistently including medium modifications. Specifically, we discuss the calculations of jet shapes and cross sections in proton-proton and lead-lead collisions at the LHC using soft-collinear effective theory, with Glauber gluon interactions in the medium. In the end we present the comparison between our calculations and the recent measurements at the LHC with very good agreement. We conclude that precise jet modification studies in h...
The Evolution of Soft Collinear Effective Theory
Lee, Christopher
2014-01-01
Soft Collinear Effective Theory (SCET) is an effective field theory of Quantum Chromodynamics (QCD) for processes where there are energetic, nearly lightlike degrees of freedom interacting with one another via soft radiation. SCET has found many applications in high-energy and nuclear physics, especially in recent years the physics of hadronic jets in $e^+e^-$, lepton-hadron, hadron-hadron, and heavy-ion collisions. SCET can be used to factorize multi-scale cross sections in these processes into single-scale hard, collinear, and soft functions, and to evolve these through the renormalization group to resum large logarithms of ratios of the scales that appear in the QCD perturbative expansion, as well as to study properties of nonperturbative effects. We overview the elementary concepts of SCET and describe how they can be applied in high-energy and nuclear physics.
Two-Loop Gluon to Gluon-Gluon Splitting Amplitudes in QCD
Bern, Z.
2004-04-30
Splitting amplitudes are universal functions governing the collinear behavior of scattering amplitudes for massless particles. We compute the two-loop g {yields} gg splitting amplitudes in QCD, N = 1, and N = 4 super-Yang-Mills theories, which describe the limits of two-loop n-point amplitudes where two gluon momenta become parallel. They also represent an ingredient in a direct x-space computation of DGLAP evolution kernels at next-to-next-to-leading order. To obtain the splitting amplitudes, we use the unitarity sewing method. In contrast to the usual light-cone gauge treatment, our calculation does not rely on the principal-value or Mandelstam-Leibbrandt prescriptions, even though the loop integrals contain some of the denominators typically encountered in light-cone gauge. We reduce the integrals to a set of 13 master integrals using integration-by-parts and Lorentz invariance identities. The master integrals are computed with the aid of differential equations in the splitting momentum fraction z. The {epsilon}-poles of the splitting amplitudes are consistent with a formula due to Catani for the infrared singularities of two-loop scattering amplitudes. This consistency essentially provides an inductive proof of Catani's formula, as well as an ansatz for previously-unknown 1/{epsilon} pole terms having non-trivial color structure. Finite terms in the splitting amplitudes determine the collinear behavior of finite remainders in this formula.
Universality of Unintegrated Gluon Distributions at small x
Dominguez, Fabio; Marquet, Cyrille; Xiao, Bowen; Yuan, Feng
2011-01-04
We systematically study dijet production in various processes in the small-x limit and establish an effective kt-factorization for hard processes in a system with dilute probes scattering on a dense target. In the large-Nc limit, the unintegrated gluon distributions involved in different processes are shown to be related to two widely proposed ones: the Weizsacker-Williams gluon distribution and the dipole gluon distribution.
Introduction to soft-collinear effective theory
Becher, Thomas; Ferroglia, Andrea
2015-01-01
Among resummation techniques for perturbative QCD in the context of collider and flavor physics, soft-collinear effective theory (SCET) has emerged as both a powerful and versatile tool, having been applied to a large variety of processes, from B-meson decays to jet production at the LHC. This book provides a concise, pedagogical introduction to this technique. It discusses the expansion of Feynman diagrams around the high-energy limit, followed by the explicit construction of the effective Lagrangian - first for a scalar theory, then for QCD. The underlying concepts are illustrated with the quark vector form factor at large momentum transfer, and the formalism is applied to compute soft-gluon resummation and to perform transverse-momentum resummation for the Drell-Yan process utilizing renormalization group evolution in SCET. Finally, the infrared structure of n-point gauge-theory amplitudes is analyzed by relating them to effective-theory operators. This text is suitable for graduate students and non-spe...
Jet-Medium Interactions at NLO in a Weakly-Coupled Quark-Gluon Plasma
Ghiglieri, Jacopo; Teaney, Derek
2015-01-01
We present an extension to next-to-leading order in the strong coupling constant $g$ of the AMY effective kinetic approach to the energy loss of high momentum particles in the quark-gluon plasma. At leading order, the transport of jet-like particles is determined by elastic scattering with the thermal constituents, and by inelastic collinear splittings induced by the medium. We reorganize this description into collinear splittings, high-momentum-transfer scatterings, drag and diffusion, and particle conversions (momentum-preserving identity-changing processes). We show that this reorganized description remains valid to NLO in $g$, and compute the appropriate modifications of the drag, diffusion, particle conversion, and inelastic splitting coefficients. In addition, a new kinematic regime opens at NLO for wider-angle collinear bremsstrahlung. These semi-collinear emissions smoothly interpolate between the leading order high-momentum-transfer scatterings and collinear splittings. To organize the calculation, w...
Sugano, K.
1986-09-01
The properties of gluon jets are reviewed from an experimental point of view. The measured characteristics are compared to theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, there are remarkable agreements and also intriguing disagreements between experiment and theory. Since much interesting data have begun to emerge from various experiments and the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on our understanding of QCD. Finally, the future prospects are discussed.
Ordering multiple soft gluon emissions
Ángeles-Martínez, René; Seymour, Michael H
2016-01-01
We present an expression for the QCD amplitude for a general hard scattering process with any number of soft gluon emissions, to one-loop accuracy. The amplitude is written in two different but equivalent ways: as a product of operators ordered in dipole transverse momentum and as a product of loop-expanded currents. We hope that these results will help in the development of an all-orders algorithm for multiple emissions that includes the full colour structure and both the real and imaginary contributions to the amplitude.
Transverse momentum dependence in gluon distribution and fragmentation functions
Mulders, P J
2001-01-01
We investigate the twist two gluon distribution functions for spin 1/2 hadrons, emphasizing intrinsic transverse momentum of the gluons. These functions are relevant in leading order in the inverse hard scale in scattering processes such as inclusive leptoproduction or Drell-Yan scattering, or more general in hard processes in which at least two hadrons are involved. They show up in azimuthal asymmetries. For future estimates of such observables, we discuss specific bounds on these functions.
Soft-Collinear Effective Theory
CERN. Geneva
2017-01-01
I will review the basic principles about Soft-Collinear Effective Theory. I will focus on how it can be used to understand factorization properties and how one can resum large logarithms arising from infrared physics using the renormalization group evolution.
Unintegrated gluon distributions in D{sup *{+-}} and dijet associated photoproduction at HERA
Lipatov, A.V.; Zotov, N.P. [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki
2005-12-01
We consider the photoproduction of D{sup *{+-}} mesons associated with two hadron jets at HERA collider in the framework of the k{sub T}-factorization approach. The unintegrated gluon densities in a proton are obtained from the full CCFM, from unified BFKL-DGLAP evolution equations as well as from the Kimber-Martin-Ryskin prescription. Resolved photon contributions are reproduced by the initial-state gluon radiation. We investigate different production rates and make comparison with the recent experimental data taken by the ZEUS collaboration. Special attention is put on the specific dijet correlations which can provide unique information about non-collinear gluon evolution dynamics. (orig.)
Unintegrated gluon distributions in D{sup *{+-}} and dijet associated photoproduction at HERA
Lipatov, A.V.; Zotov, N.P. [M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation)
2006-09-15
We consider the photoproduction of D{sup *{+-}} mesons associated with two hadron jets at HERA collider in the framework of the k{sub T}-factorization approach. The unintegrated gluon densities in a proton are obtained from the full CCFM, from unified BFKL-DGLAP evolution equations as well as from the Kimber-Martin-Ryskin prescription. Resolved photon contributions are reproduced by the initial-state gluon radiation. We investigate different production rates and make a comparison with the recent experimental data taken by the ZEUS collaboration. Special attention is given to the specific dijet correlations which can provide unique information about non-collinear gluon evolution dynamics. (orig.)
Silva, P J; Dudal, D; Bicudo, P; Cardoso, N
2016-01-01
The gluon propagator is investigated at finite temperature via lattice simulations. In particular, we discuss its interpretation as a massive-type bosonic propagator. Moreover, we compute the corresponding spectral density and study the violation of spectral positivity. Finally, we explore the dependence of the gluon propagator on the phase of the Polyakov loop.
Dai, Lingyun [Indiana University , Bloomington, IN; Prokudin, Alexei [Jefferson Lab, Newport News, VA; Kang, Zhong-Bo [Los Alamos National Laboratory, Los Alamos, NM 87545; Vitev, Ivan [Los Alamos National Laboratory, Los Alamos
2015-09-01
We study the three-gluon correlation function contribution to the Sivers asymmetry in semi-inclusive deep inelastic scattering. We first establish the matching between the usual twist-3 collinear factorization approach and transverse momentum dependent factorization formalism for the moderate transverse momentum region. We then derive the so-called coefficient functions used in the usual TMD evolution formalism. Finally, we perform the next-to-leading order calculation for the transverse-momentum-weighted spin-dependent differential cross section, from which we identify the QCD collinear evolution of the twist-3 Qiu-Sterman function: the off-diagonal contribution from the three-gluon correlation functions.
Boosted Top Quark Pair Production in Soft Collinear Effective Theory
Ferroglia, Andrea; Pecjak, Ben D; Yang, Li Lin
2014-01-01
We review a Soft Collinear Effective Theory approach to the study of factorization and resummation of QCD effects in top-quark pair production. In particular, we consider differential cross sections such as the top-quark pair invariant mass distribution and the top-quark transverse momentum and rapidity distributions. Furthermore, we focus our attention on the large invariant mass and large transverse momentum kinematic regions, characteristic of boosted top quarks. We discuss the factorization of the differential cross section in the double soft gluon emission and small top-quark mass limit, both in Pair Invariant Mass (PIM) and One Particle Inclusive (1PI) kinematics. The factorization formulas can be employed in order to implement the simultaneous resummation of soft emission and small mass effects up to next-to-next-to-leading logarithmic accuracy. The results are also used to construct improved next-to-next-to-leading order approximations for the differential cross sections.
From Color Fields to Quark Gluon Plasma
Fries, R J; Li, Y; Fries, Rainer J.; Kapusta, Joseph I.; Li, Yang
2006-01-01
We discuss a model for the energy distribution and the early space-time evolution of a heavy ion collision. We estimate the gluon field generated in the wake of hard processes and through primordial fluctuations of the color charges in the nuclei. Without specifying the dynamical mechanism of thermalization we calculate the energy momentum tensor of the following plasma phase. The results of this model can be used as initial conditions for a further hydrodynamic evolution.
Ayala, A P; Levin, E M
1996-01-01
In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus - nucleus cascade.
Fleming, Sean
2014-01-01
In soft collinear effective theory (SCET) the interaction between high energy quarks moving in opposite directions involving momentum transfer much smaller than the center-of-mass energy is described by the Glauber interaction operator which has two-dimensional Coulomb-like behavior. Here, we determine this $n$-$\\bar{n}$ collinear Glauber interaction operator and consider its renormalization properties at one loop. At this order a rapidity divergence appears which gives rise to an infrared divergent (IR) rapidity anomalous dimension commonly called the gluon Regge trajectory. We then go on to consider the forward quark scattering cross section in SCET. The emission of real soft gluons from the Glauber interaction gives rise to the Lipatov vertex. Squaring and adding the real and virtual amplitudes results in a cancelation of IR divergences, however the rapidity divergence remains. We introduce a rapidity counterterm to cancel the rapidity divergence, and derive a rapidity renormalization group equation which ...
Non-collinear magnetism in multiferroic perovskites.
Bousquet, Eric; Cano, Andrés
2016-03-31
We present an overview of the current interest in non-collinear magnetism in multiferroic perovskite crystals. We first describe the different microscopic mechanisms giving rise to the non-collinearity of spins in this class of materials. We discuss, in particular, the interplay between non-collinear magnetism and ferroelectric and antiferrodistortive distortions of the perovskite structure, and how this can promote magnetoelectric responses. We then provide a literature survey on non-collinear multiferroic perovskites. We discuss numerous examples of spin cantings driving weak ferromagnetism in transition metal perovskites, and of spin-induced ferroelectricity as observed in the rare-earth based perovskites. These examples are chosen to best illustrate the fundamental role of non-collinear magnetism in the design of multiferroicity.
Boer Daniël
2016-01-01
Full Text Available A high-energy Electron-Ion Collider (EIC would offer a most promising tool to study in detail the transverse momentum distributions of gluons inside hadrons. This applies to unpolarized as well as linearly polarized gluons inside unpolarized protons, and to left-right asymmetric distributions of gluons inside transversely polarized protons, the so-called gluon Sivers effect. The inherent process dependence of these distributions can be studied by comparing to similar, but often complementary observables at LHC.
QCD collinear factorization, its extensions and the partonic distributions
Szymanowski, Lech
2012-01-01
I review the basics of the collinear factorization theorem applied primarily to deep inelastic scattering (DIS) involving forward parton distributions (PDFs) and the extensions of this theorem for exclusive processes probing non-forward parton distributions (GPDs), the generalized distribution amplitudes (GDAs) and the transition distribution amplitudes (TDAs). These QCD factorization theorem is an important tool in the description of hard processes in QCD. Whenever valid, it permits to represent the cross section or the scattering amplitude for such a process as a convolution in partonic momenta of a perturbatively calculable part (the coefficient function, CF) which involves the hard scale of the process with non-perturbative (soft) distributions of active partons inside the hadrons involved in a process. The reliability of the perturbatively determined hard part together with high precision experimental data on relevant observables gives a hope for the possibility to uncover fine details of interpartonic i...
C P Singh
2000-04-01
Recent trends in the research of quark gluon plasma (QGP) are surveyed and the current experimental and theoretical status regarding the properties and signals of QGP is reported. We hope that the experiments commencing at relativistic heavy-ion collider (RHIC) in 2000 will provide a glimpse of the QGP formation.
Resonance model for non-perturbative inputs to gluon distributions in the hadrons
Ermolaev, B I; Troyan, S I
2015-01-01
We construct non-perturbative inputs for the elastic gluon-hadron scattering amplitudes in the forward kinematic region for both polarized and non-polarized hadrons. We use the optical theorem to relate invariant scattering amplitudes to the gluon distributions in the hadrons. By analyzing the structure of the UV and IR divergences, we can determine theoretical conditions on the non-perturbative inputs, and use these to construct the results in a generalized Basic Factorization framework using a simple Resonance Model. These results can then be related to the K_T and Collinear Factorization expressions, and the corresponding constrains can be extracted.
Renormalization of Subleading Dijet Operators in Soft-Collinear Effective Theory
Freedman, Simon M
2014-01-01
We calculate the anomalous dimensions of the next-to-leading order dijet operators in soft-collinear effective theory (SCET). We use a formulation of SCET where the Lagrangian is multiple copies of QCD and the interactions between sectors occur through light-like Wilson lines in external currents. We introduce a small gluon mass to regulate the infrared divergences of the individual loop diagrams in order to properly extract the ultraviolet divergences. We discuss this choice of infrared regulator and contrast it with the $\\delta$-regulator. Our results can be used to increase the theoretical precision of the thrust distribution.
I.V. Anikin
2015-12-01
Full Text Available In this letter, we revise the QED gauge invariance for the hadron tensor of Drell–Yan type processes with the transversely polarized hadron. We perform our analysis within the Feynman gauge for gluons and make a comparison with the results obtained within the light-cone gauge. We demonstrate that QED gauge invariance leads, first, to the need of a non-standard diagram and, second, to the absence of gluon poles in the correlators 〈ψ¯γ⊥A+ψ〉 related traditionally to dT(x,x/dx. As a result, these terms disappear from the final QED gauge invariant hadron tensor. We also verify the absence of such poles by analyzing the corresponding light-cone Dirac algebra.
Nayak, Tapan; Sarkar, Sourav
2014-01-01
At extremely high temperatures and densities, protons and neutrons may dissolve into a "soup" of quarks and gluons, called the Quark-Gluon Plasma (QGP). For a few microseconds, shortly after the Big Bang, the Universe was filled with the QGP matter. The search and study of Quark-Gluon Plasma (QGP) is one of the most fundamental research topics of our times. The QGP matter has been probed by colliding heavy ions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, New York and the Large Hadron Collider at CERN, Geneva. By colliding heavy-ions at a speed close to that of light, scientists aim to obtain - albeit over a tiny volume of the size of a nucleus and for an infinitesimally short instant - a QGP state. This QGP state can be observed by dedicated experiments, as it reverts to hadronic matter through expansion and cooling. This volume presents some of the current theoretical and experimental understandings in the field of QGP.
Magnetization dynamics of imprinted non-collinear spin textures
Streubel, Robert, E-mail: r.streubel@ifw-dresden.de; Kopte, Martin; Makarov, Denys, E-mail: d.makarov@ifw-dresden.de [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Fischer, Peter [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, UC Santa Cruz, Santa Cruz, California 95064 (United States); Schmidt, Oliver G. [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz (Germany)
2015-09-14
We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics are described using the Thiele equation supported by the full scale micromagnetic simulations by taking into account an enlarged core size of the donut states compared to magnetic vortices.
Some applications of thermal field theory to quark-gluon plasma
Munshi G Mustafa
2006-04-01
We briefly introduce the thermal field theory within imaginary time formalism, the hard thermal loop perturbation theory and some of its applications to the physics of the quark-gluon plasma, possibly created in relativistic heavy-ion collisions.
Peshier, Andre
2015-01-01
We put forward the idea that the quark-gluon plasma might exist way below the usual confinement temperature $T_c$. Our argument rests on the possibility that the plasma produced in heavy-ion collisions could reach a transient quasi-equilibrium with `over-occupied' gluon density, as advocated by Blaizot et al. Taking further into account that gluons acquire an effective mass by interaction effects, they can have a positive chemical potential and therefore behave similarly to non-relativistic bosons. Relevant properties of this dense state of interacting gluons, which we dub serried glue, can then be inferred on rather general grounds from Maxwell's relation.
Ducati, M B G
1993-01-01
A QCD-Pomeron composed by two non-perturbative gluons with a dynamically generated mass, is constructed in a gauge invariant way. The gluon propagator is infrared-finite. The model properly describes data on elastic scattering, exclusive $\\rho$ production in deep inelastic scattering (DIS) and the $J/\\Psi$-nucleon total cross-section in terms of a single gluon mass $m_g\\simeq0.37$~GeV. The total cross sections of hadrons with small radii, such as $J/\\Psi$, are very sensitive on the effective gluon mass.
Weinzierl, Stefan
2016-01-01
These lectures are centred around tree-level scattering amplitudes in pure Yang-Mills theories, the most prominent example is given by the tree-level gluon amplitudes of QCD. I will discuss several ways of computing these amplitudes, illustrating in this way recent developments in perturbative quantum field theory. Topics covered in these lectures include colour decomposition, spinor and twistor methods, off- and on-shell recursion, MHV amplitudes and MHV expansion, the Grassmannian and the amplituhedron, the scattering equations and the CHY representation. At the end of these lectures there will be an outlook on the relation between pure Yang-Mills amplitudes and scattering amplitudes in perturbative quantum gravity.
Quark and Gluon Relaxation in Quark-Gluon Plasmas
Heiselberg, H.; Pethick, C. J.
1993-01-01
The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.
Quark and Gluon Relaxation in Quark-Gluon Plasmas
Heiselberg, H.; Pethick, C. J.
1993-01-01
The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.
Universality of soft and collinear factors in hard scattering factorization
Collins, J C; Collins, John C.; Metz, Andreas
2004-01-01
Universality in QCD factorization of parton densities, fragmentation functions, and soft factors is endangered by the process dependence of the directions of Wilson lines in their definitions. We find a choice of directions that is consistent with factorization and that gives universality between e^+e^- annihilation, semi-inclusive deep-inelastic scattering, and Drell-Yan. Universality is only modified by a time-reversal transformation of the soft function and parton densities between Drell-Yan and the other processes, whose only effect is the known reversal of sign for T-odd parton densities like the Sivers function. The modifications of the definitions needed to remove rapidity divergences with light-like Wilson lines do not affect the results.
Factorization and Resummation in Soft-Collinear Effective Theory
Gao, Y; Liu, J J; Gao, Yang; Li, Chong Sheng; Liu, Jian Jun
2005-01-01
We review soft-collinear effective theory (SCET), and apply it to discuss quark electromagnetic form factor, then present the resumed transverse momentum distribution of Higgs-boson production via gluon fusion under this framework, where we derive a relatively full differential formula in transverse momentum $Q_T$ space like one which have been obtained by Dokshitzer-D'Yanov-Troyan (DDT) in perturbative Quantum Chromodynamics (pQCD). Furthermore, our above result can be generalized to even higher order. Comparing our formula with the integral formula of Collins-Soper-Sterman (CSS) in impact parameter $b$ space, we establish the relationship between the anomalous dimension of operator together with matching coefficients in SCET and the well-known coefficients A, B and C in pQCD, which also provides a relative natural and convenient method to treat the similar questions as ones of CSS, such as the matching in nonperturbative region. Finally, the joint resummation method in SCET is briefly discussed.
The role of three-gluon correlation functions in the single spin asymmetry
Beppu Hiroo
2015-01-01
Full Text Available We study the twist-3 three-gluon contribution to the single spin asymmetry in the light-hadron production in pp collision in the framework of the collinear factorization. We derive the corresponding cross section formula in the leading order with respect to the QCD coupling constant. We also present a numerical calculation of the asymmetry at the RHIC energy, using a model for the three-gluon correlation functions suggested by the asymmetry for the D-meson production at RHIC. We found that the asymmetries for the light-hadron and the jet productions are very useful to constrain the magnitude and form of the correlation functions. Since the three-gluon correlation functions shift the asymmetry for all kinds of hadrons in the same direction, it is unlikely that they become a main source of the asymmetry.
Soft gluon resummation in the infrared region and the Froissart bound
Pancheri, Giulia; Godbole, Rohini M; Srivastava, Yogendra N
2010-01-01
We describe the taming effect induced by soft gluon $k_t$-resummation on the rapid rise of QCD mini-jet contributions to the total cross-sections.This results from an eikonal model in which the rise of the total cross-section is due to mini-jet contribution. We perform the calculation with current Parton Density Functions (PDFs). The impact parameter distribution we use is obtained as the Fourier transform of the resummed $k_t$-distribution of soft gluons emitted from the initial state during the collision.The emission, which is energy dependent, destroys the initial collinearity of partons.In this model, the strong power-like rise due to the increasing number of low-x gluon collisions is tamed by the acollinearity induced by soft gluon kt-resummation down to zero gluon momenta. It explicitly links a singular soft gluon coupling in the infrared region to the behaviour dictated by the Froissart bound for the total cross-section. The model describes well both proton and photon processes at present accelerator e...
Gaining (Mutual) Information about Quark/Gluon Discrimination
Larkoski, Andrew J; Waalewijn, Wouter J
2014-01-01
Discriminating quark jets from gluon jets is an important but challenging problem in jet substructure. In this paper, we use the concept of mutual information to illuminate the physics of quark/gluon tagging. Ideal quark/gluon separation requires only one bit of truth information, so even if two discriminant variables are largely uncorrelated, they can still share the same "truth overlap". Mutual information can be used to diagnose such situations, and thus determine which discriminant variables are redundant and which can be combined to improve performance. Using both parton showers and analytic resummation, we study a two-parameter family of generalized angularities, which includes familiar infrared and collinear (IRC) safe observables like thrust and broadening, as well as IRC unsafe variants like $p_T^D$ and hadron multiplicity. At leading-logarithmic (LL) order, the bulk of these variables exhibit Casimir scaling, such that their truth overlap is a universal function of the color factor ratio $C_A/C_F$. ...
Non-perturbative inputs for gluon distributions in the hadrons
Ermolaev, B. I.; Troyan, S. I.
2017-03-01
Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K_T-and collinear factorizations.
Zaraket, H
2000-06-01
This work is devoted to photon and dilepton production in a quark gluon plasma. The theoretical framework in which the study is carried out is Thermal Field Theory, more precisely the hard thermal loop effective theory. Several features of the observables preclude a straightforward application of the effective theory and new tools had to be developed such as the counter term method to avoid double counting. The first part of my study concerns static virtual photon production where I show that important physical contributions are missing in the effective theory at one loop level and hence a two loop calculation is indispensable. Furthermore I give an analytic leading logarithmic estimate of this two loop result showing clearly the insufficiency of the effective theory. The second part of the work focuses on real and quasi real photon production. Again, important contributions arise at two loop level due to collinear divergences. For high mass dilepton the two loop calculation is sufficient. On the other hand, near the light cone photon production rate is non perturbative. Getting closer to the light cone coherent scattering effects (Landau-Pomeranchuk-Migdal effect) arise, which imply the resummation of an infinite series of diagrams. Still nearer the light cone we found a dependence on the non perturbative magnetic mass due to infrared singularities. (author)
Boer, Daniël
2016-01-01
A high-energy Electron-Ion Collider (EIC) would offer a most promising tool to study in detail the transverse momentum distributions of gluons inside hadrons. This applies to unpolarized as well as linearly polarized gluons inside unpolarized protons, and to left-right asymmetric distributions of gl
Gluon propagator with dynamical quarks
Papavassiliou, Joannis
2014-01-01
We review recent work on the effects of quark loops on the gluon propagator in the Landau gauge, relying mainly on the Schwinger-Dyson equations that describe the two-point sector of QCD. Particularly important in this context is the detailed study of how the standard gluon mass generation mechanism, which is responsible for the infrared finiteness of the quenched gluon propagator, is affected by the inclusions of dynamical quarks. This issue is especially relevant and timely, given the qualitative picture that emerges from recent unquenched lattice simulations. Our results demonstrate clearly that the gluon mass generation persists, and that the corresponding saturation points of the unquenched gluon propagators are progressively suppressed, as the number of quark flavors increases.
Elliptic flow in small systems due to elliptic gluon distributions?
Hagiwara, Yoshikazu; Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng
2017-08-01
We investigate the contributions from the so-called elliptic gluon Wigner distributions to the rapidity and azimuthal correlations of particles produced in high energy pp and pA collisions by applying the double parton scattering mechanism. We compute the 'elliptic flow' parameter v2 as a function of the transverse momentum and rapidity, and find qualitative agreement with experimental observations. This shall encourage further developments with more rigorous studies of the elliptic gluon distributions and their applications in hard scattering processes in pp and pA collisions.
Gluon TMDs in Quarkonium Production
Boer, Daniël
2017-03-01
Quarkonium production offers good possibilities to study gluon TMDs. In this proceedings contribution this topic is explored for the linearly polarized gluons inside unpolarized hadrons and unpolarized gluons inside transversely polarized hadrons. It is argued that χ _{b0/2} and η _b production at LHC are best to study the effects of linearly polarized gluons in hadronic collisions, by means of angular independent ratios of ratios of cross sections. This can be directly compared to cos 2φ asymmetries in heavy quark pair and dijet production in DIS at a future high-energy Electron-Ion Collider (EIC), which probe the same TMDs. In the small- x limit this corresponds to the Weizsäcker-Williams (WW) gluon distributions, which should show a change in behavior for transverse momenta around the saturation scale. Together with investigations of the dipole (DP) gluon distributions, this can provide valuable information about the polarization of the Color Glass Condensate if sufficiently small x-values are reached. Quarkonia can also be useful in the study of single transverse spin asymmetries. For transversely polarized hadrons the gluon distribution can be asymmetric, which is referred to as the Sivers effect. It leads to single spin asymmetries in for instance J{/}ψ (pair) production at AFTER@LHC, which probe the WW or f-type gluon Sivers TMD. It allows for a test of a sign-change relation w.r.t. the gluon Sivers TMD probed at an EIC in open heavy quark pair production. Single spin asymmetries in backward inclusive C-odd quarkonium production, such as J{/}ψ production, may offer probes of the DP or d-type gluon Sivers TMD at small x-values in the polarized proton, which in that limit corresponds to a correlator of a single Wilson loop, describing the spin-dependent odderon.
The PLUTO experiment at DORIS (DESY) and the discovery of the gluon (A recollection)
Stella, Bruno R. [Rome-3 Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Rome (Italy); Meyer, Hans-Juergen
2010-08-15
With the aim of determining the contribution of the PLUTO experiment at the DORIS e{sup +}e{sup -} storage ring to the discovery of the gluon, as members of this former collaboration we have reconsidered all the scientific material produced by PLUTO in 1978 and the first half of 1979. It is clear that the experiment demonstrated the main decay of the Y(9.46 GeV) resonance to be mediated by 3 gluons, by providing evidence for the agreement of this hypothesis with average values and differential distributions of all possible experimental variables and by excluding all other possible alternative models. Moreover PLUTO measured in June 1979 the matrix element of the 3-gluon decay to be quantitatively as expected by QCD (even after hadronization) and, having checked the possibility to correctly trace the gluons' directions, demonstrated the spin 1 nature of the gluon by excluding spin 0 and spin 1/2. The hadronization of the gluon like a quark jet, hypothesized in the 3-gluon jet Monte Carlo simulation, was compatible with the topological data at this energy and was shown to be an approximation at 10% level for the multiplicity ({approx} < p {sub vertical} {sub stroke} {sub vertical} {sub stroke} {sub >}{sup -1}); the right expected gluon fragmentation was needed for the inclusive distributions; this was the first experimental study of (identified) gluon jets. In the following measurements at the PETRA storage ring, these results were confirmed by PLUTO and by three contemporaneous experiments by evidencing at higher energies the gluon radiation (''bremsstrahlung''), the softer one, by jet broadening, and the hard one, by the emission of (now clearly visible) gluon jets by quarks. The gluon's spin 1 particle nature was also confirmed. The PLUTO results on Y decays had been confirmed both by contemporaneous experiments at DORIS (partially) and later (also partially) were confirmed by more sophisticated detectors. (orig.)
Benic, Sanjin; Garcia-Montero, Oscar; Venugopalan, Raju
2016-01-01
We compute the cross section for photons emitted from sea quarks in proton-nucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the result obtained is formally at next-to-leading order in the CGC power counting, it provides the dominant contribution for central rapidities. We observe that the inclusive photon cross section is proportional to all-twist Wilson line correlators in the nucleus. These correlators also appear in quark-pair production; unlike the latter, photon production is insensitive to hadronization uncertainties and therefore more sensitive to multi-parton correlations in the gluon saturation regime of QCD. We demonstrate that $k_\\perp$ and collinear factorized expressions for inclusive photon production are obtained as leading twist approximations to our result. In particular, the collinearly factorized expression is directly sensitive to the nuclear gluon distribution at smal...
The Higgs transverse momentum distribution in gluon fusion as a multiscale problem
Bagnaschi, Emanuele
2015-01-01
We consider Higgs production in gluon fusion and in particular the prediction of the Higgs transverse momentum distribution. We discuss the ambiguities affecting the matching procedure between fixed order matrix elements and the resummation to all orders of the terms enhanced by $\\log(p_T^H/m_H)$ factors. Following a recent proposal (Grazzini et al., hep-ph/1306.4581), we argue that the gluon fusion process, computed considering two active quark flavors, is a multiscale problem from the point of view of the resummation of the collinear singular terms. We perform an analysis at parton level of the collinear behavior of the real emission amplitudes and we derive an upper limit to the range of transverse momenta where the collinear approximation is valid. This scale is then used as the value of the resummation scale in the analytic resummation framework or as the value of the $h$ parameter in the POWHEG-BOX code. Finally, we provide a phenomenological analysis in the Standard Model, in the Two Higgs Doublet Mode...
Gluon TMDs in quarkonium production
Boer, Daniël
2016-01-01
Quarkonium production offers good possibilities to study gluon TMDs. In this proceedings contribution this topic is explored for the linearly polarized gluons inside unpolarized hadrons and unpolarized gluons inside transversely polarized hadrons. It is argued that $\\chi_{b0/2}$ and $\\eta_b$ production at LHC are best to study the effects of linearly polarized gluons in hadronic collisions, by means of angular independent ratios of ratios of cross sections. This can be directly compared to $\\cos 2\\phi$ asymmetries in heavy quark pair and dijet production in DIS at a future high-energy Electron-Ion Collider (EIC), which probe the same TMDs. In the small-$x$ limit this corresponds to the Weizs\\"acker-Williams (WW) gluon distributions, which should show a change in behavior for transverse momenta around the saturation scale. Together with investigations of the dipole (DP) gluon distributions, this can provide valuable information about the polarization of the Color Glass Condensate if sufficiently small $x$ are ...
Bootstrapping quarks and gluons
Chew, G.F.
1979-04-01
Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces.
Chien, Yang-Ting
2016-01-01
The jet quenching phenomenon in heavy ion collisions provides a strong evidence of the modification of parton shower in the quark-gluon plasma (QGP). Jet substructure observables can probe various aspects of the jet formation mechanism. They contain useful information about the QGP and allow us to study the medium properties in great details. Here we present theoretical calculations of jet shapes and cross sections in proton-proton and lead-lead collisions at the LHC using soft-collinear effective theory, with Glauber gluon interactions in the medium. We find that resumming large logarithms in the jet substructure calculation is necessary for precise theoretical predictions. The resummation is performed using renormalization group evolution between characteristic jet scales. We also find that the medium induces power corrections to jet shapes. In the end we present the comparison between our calculations with the recent measurements at the LHC with very good agreement. Our calculations help initiate precise j...
Higgs production via gluon fusion with K{sub T} factorization
Lipatov, A.V.; Zotov, N.P. [Moscow State Univ., SINP, Moscow (Russian Federation)
2005-07-01
We consider the Higgs boson production at high energy hadron colliders in the framework of the k{sub T}-factorization approach. The attention is focused on the dominant gluon-gluon fusion subprocess. We show that the k{sub T}-factorization gives a possibility to investigate the associated Higgs boson and jets production. The predictions in the K{sub T}-factorization approach are very close to the next-to-next-to-leading order (NNLO) pQCD results for inclusive Higgs production at LHC, since the main part of high-order collinear pQCD corrections is already included in the K{sub T}-factorization. In the K{sub T}-factorization approach the calculation of the associated Higgs+ jets production is much simpler than in the collinear factorization approach. However, the large scale dependence of our calculations (of the order of 20 - 50%) probably indicates the sensitivity to the unintegrated gluon distribution.
Gelis, Francois [Savoie Univ., 73 - Chambery (France)
1998-12-01
The general framework of this work is thermal field theory, and more precisely the perturbative calculation of thermal Green`s functions. In a first part, I consider the problems closely related to the formalism itself. After two introductory chapters devoted to set up the framework and the notations used afterwards, a chapter is dedicated to a clarification of certain aspects of the justification of the Feynman rules of the real time formalism. Then, I consider in the chapter 4 the problem of cutting rules in the real time formalisms. In particular, after solving a controversy on this subject, I generalize these cutting rules to the `retarded-advanced` version of this formalism. Finally, the last problem considered in this part is that of the pion decay into two photons in a thermal bath. I show that the discrepancies found in the literature are due to peculiarities of the analytical properties of the thermal Green`s functions. The second part deals with the calculations of the photons or dilepton (virtual photon) production rate by a quark gluon plasma. The framework of this study is the effective theory based on the resummation of hard thermal loops. The first aspects of this study is related to the production of virtual photons, where we show that important contributions arise at two loops, completing the result already known at one loop. In the case of real photon production, we show that extremely strong collinear singularities make two loop contributions dominant compared to one loop ones. In both cases, the importance of two loop contributions can be interpreted as weaknesses of the hard thermal loop approximation. (author) 366 refs., 109 figs.
The analytic structure of non-global logarithms: convergence of the dressed gluon expansion
Larkoski, Andrew J.; Moult, Ian; Neill, Duff
2016-11-01
Non-global logarithms (NGLs) are the leading manifestation of correlations between distinct phase space regions in QCD and gauge theories and have proven a challenge to understand using traditional resummation techniques. Recently, the dressed gluon ex-pansion was introduced that enables an expansion of the NGL series in terms of a "dressed gluon" building block, defined by an all-orders factorization theorem. Here, we clarify the nature of the dressed gluon expansion, and prove that it has an infinite radius of convergence as a solution to the leading logarithmic and large- N c master equation for NGLs, the Banfi-Marchesini-Smye (BMS) equation. The dressed gluon expansion therefore provides an expansion of the NGL series that can be truncated at any order, with reliable uncertainty estimates. In contrast, manifest in the results of the fixed-order expansion of the BMS equation up to 12-loops is a breakdown of convergence at a finite value of α s log. We explain this finite radius of convergence using the dressed gluon expansion, showing how the dynamics of the buffer region, a region of phase space near the boundary of the jet that was identified in early studies of NGLs, leads to large contributions to the fixed order expansion. We also use the dressed gluon expansion to discuss the convergence of the next-to-leading NGL series, and the role of collinear logarithms that appear at this order. Finally, we show how an understanding of the analytic behavior obtained from the dressed gluon expansion allows us to improve the fixed order NGL series using conformal transformations to extend the domain of analyticity. This allows us to calculate the NGL distribution for all values of α s log from the coefficients of the fixed order expansion.
Triple collinear emissions in parton showers
Höche, Stefan [SLAC; Prestel, Stefan [Fermilab
2017-05-01
A framework to include triple collinear splitting functions into parton showers is presented, and the implementation of flavor-changing NLO splitting kernels is discussed as a first application. The correspondence between the Monte-Carlo integration and the analytic computation of NLO DGLAP evolution kernels is made explicit for both timelike and spacelike parton evolution. Numerical simulation results are obtained with two independent implementations of the new algorithm, using the two independent event generation frameworks Pythia and Sherpa.
Charmonium states in quark-gluon plasma
Su Houng Lee; Kenji Morita
2009-01-01
We discuss how the spectral changes of quarkonia at c can reflect the `critical' behaviour of QCD phase transition. Starting from the temperature dependencies of the energy density and pressure from lattice QCD calculation, we extract the temperature dependencies of the scalar and spin-2 gluon condensates near c . We also parametrize these changes into the electric and magnetic condensate near c. While the magnetic condensate hardly changes across c, we find that the electric condensate increases abruptly above c. Similar abrupt change is also seen in the scalar condensate. Using the QCD second-order Stark effect and QCD sum rules, we show that these sudden changes induce equally abrupt changes in the mass and width of /, both of which are larger than 100 MeV at slightly above c.
Soft and Collinear Radiation and Factorization in Perturbation Theory and Beyond
Gardi, Einan
2002-01-01
Power corrections to differential cross sections near a kinematic threshold are analysed by Dressed Gluon Exponentiation. Exploiting the factorization property of soft and collinear radiation, the dominant radiative corrections in the threshold region are resummed, yielding a renormalization-scale-invariant expression for the Sudakov exponent. The interplay between Sudakov logs and renormalons is clarified, and the necessity to resum the latter whenever power corrections are non-negligible is emphasized. The presence of power-suppressed ambiguities in the exponentiation kernel suggests that power corrections exponentiate as well. This leads to a non-perturbative factorization formula with non-trivial predictions on the structure of power corrections, which can be contrasted with the OPE. Two examples are discussed. The first is event-shape distributions in the two-jet region, where a wealth of precise data provides a strong motivation for the improved perturbative technique and an ideal situation to study had...
Scale evolution of gluon TMDPDFs
Echevarria Miguel G.
2015-01-01
Full Text Available By applying the effective field theory machinery we factorize the transverse momentum spectrum of Higgs boson production, where the main hadronic quantities are the gluon transverse momentum dependent parton distribution functions (TMDPDFs. We properly define those quantities, showing explicitly, in the case of an unpolarized hadron, that they are free from rapidity divergences, and extract their evolution properties. It turns out that the evolution for all eight (un-polarized leading-twist gluon TMDPDFs is driven by the same evolution kernel, for which we derive the necessary ingredients to obtain a resummation of large logarithms at next-tonext-to-leading-logarithmic accuracy. We make predictions for the contribution of linearly polarized gluons to the Higgs boson qT -spectrum.
Collinear cluster tri-partition: Kinematics constraints and stability of collinearity
Holmvall, P.; Köster, U.; Heinz, A.; Nilsson, T.
2017-01-01
Background: A new mode of nuclear fission has been proposed by the FOBOS Collaboration, called collinear cluster tri-partition (CCT), and suggests that three heavy fission fragments can be emitted perfectly collinearly in low-energy fission. This claim is based on indirect observations via missing-energy events using the 2 v 2 E method. This proposed CCT seems to be an extraordinary new aspect of nuclear fission. It is surprising that CCT escaped observation for so long given the relatively high reported yield of roughly 0.5 % relative to binary fission. These claims call for an independent verification with a different experimental technique. Purpose: Verification experiments based on direct observation of CCT fragments with fission-fragment spectrometers require guidance with respect to the allowed kinetic-energy range, which we present in this paper. Furthermore, we discuss corresponding model calculations which, if CCT is found in such verification experiments, could indicate how the breakups proceed. Since CCT refers to collinear emission, we also study the intrinsic stability of collinearity. Methods: Three different decay models are used that together span the timescales of three-body fission. These models are used to calculate the possible kinetic-energy ranges of CCT fragments by varying fragment mass splits, excitation energies, neutron multiplicities, and scission-point configurations. Calculations are presented for the systems 235U(nth,f ) and 252Cf(s f ) , and the fission fragments previously reported for CCT; namely, isotopes of the elements Ni, Si, Ca, and Sn. In addition, we use semiclassical trajectory calculations with a Monte Carlo method to study the intrinsic stability of collinearity. Results: CCT has a high net Q value but, in a sequential decay, the intermediate steps are energetically and geometrically unfavorable or even forbidden. Moreover, perfect collinearity is extremely unstable, and broken by the slightest perturbation. Conclusions
Multiplicity description by gluon model
Kokoulina, E S
2015-01-01
Study of high multiplicity events in proton-proton interactions is carried out at the U-70 accelerator (IHEP, Protvino). These events are extremely rare. Usually, Monte Carlo codes underestimate topological cross sections in this region. The gluon dominance model (GDM) was offered to describe them. It is based on QCD and a phenomenological scheme of a hadronization stage. This model indicates a recombination mechanism of hadronization and a gluon fission. Future program of the SVD Collaboration is aimed at studying a long-standing puzzle of excess soft photon yield and its connection with high multiplicity at the U-70 and Nuclotron facility at JINR, Dubna.
Equilibration in quark gluon plasma
Das, S. K.; Alam, J.; Mohanty, P.
2011-07-01
The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more realistic EoS keep the partons closer to the equilibrium.
Equilibration in Quark Gluon Plasma
Das, Santosh K.; Alam, Jan-e; Mohanty, Payal
2009-01-01
The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more real...
Equilibration in Quark Gluon Plasma
Das, Santosh K; Mohanty, Payal
2009-01-01
The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more realistic EoS keep the partons closer to the equilibrium.
2016-01-01
This is the fifth volume in the series on the subject of quark-gluon plasma, a unique phase created in heavy-ion collisions at high energy. It contains review articles by the world experts on various aspects of quark-gluon plasma taking into account the advances driven by the latest experimental data collected at both the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC). The articles are pedagogical and comprehensive which can be helpful for both new researchers entering the field as well as the experienced physicists working on the subject.
Exclusive $J/\\psi$ process tamed to probe the low $x$ gluon
Jones, S P; Ryskin, M G; Teubner, T
2016-01-01
We address the question as to whether data for J/\\psi mesons produced exclusively in the forward direction at the LHC can be used in global parton analyses (based on collinear factorization) to pin down the low x gluon PDF. We show that it may be possible to overcome the problems that (i) the process is described by a skewed or Generalized Parton Distribution (GPD), (ii) it is very sensitive to the choice of factorization scale and (iii) there is bad LO, NLO,... perturbative stability to the predictions. However, we start by briefly explaining how the alternative k_T factorization approach has been used to describe the process.
The QCD gluon ladders and HERA structure function
Lengyel, A I
2002-01-01
We report on the extension of the data fitting considering the QCD inspired model based on the summation of gluon ladders applied to the $ep$ scattering. In lines of a two Pomeron approach, the structure function $F_2$ has a hard piece given by the model and the remaining soft contribution: a soft Pomeron and non-singlet content. In this contribution, we carefully estimate the relative role of the hard and the soft pieces from a global fit in a large span of $x$ and $Q^2$.
Non-collinearity in high energy processes
P J Mulders
2009-01-01
We discuss the treatment of intrinsic transverse momenta in high energy scattering processes. Within the field theoretical framework of QCD, the process is described in terms of correlators containing quark and gluon fields. The correlators, parametrized in terms of distribution and fragmentation functions, contain matrix elements of nonlo-cal field configurations requiring a careful treatment to assure colour gauge invariance. It leads to nontrivial gauge links connecting the parton fields. For the transverse momentum- dependent correlators the gauge links give rise to time reversal odd phenomena, showing up as single spin and azimuthal asymmetries. The gauge links, arising from multi-gluon initial and final state interactions, depend on the colour flow in the process, challenging universality.
Lansberg, Jean-Philippe
2017-01-01
We propose a simple and model-independent procedure to account for the impact of the nuclear modification of the gluon density as encoded in nuclear collinear PDF sets on two-to-two partonic hard processes in proton-nucleus collisions. This applies to a good approximation to quarkonium, D and B meson production, generically referred to H. Our procedure consists in parametrising the square of the parton scattering amplitude, A_{gg -> H X} and constraining it from the proton-proton data. Doing so, we have been able to compute the corresponding nuclear modification factors for J/psi, Upsilon and D^0 as a function of y and P_T at sqrt(s_NN)=5 and 8 TeV in the kinematics of the various LHC experiments in a model independent way. It is of course justified since the most important ingredient in such evaluations is the probability of each kinematical configuration. Our computations for D mesons can also be extended to B meson production. To further illustrate the potentiality of the tool, we provide --for the first t...
Lansberg, Jean-Philippe
2016-12-27
We propose a simple and model-independent procedure to account for the impact of the nuclear modification of the gluon density as encoded in nuclear collinear PDF sets on two-to-two partonic hard processes in proton-nucleus collisions. This applies to a good approximation to quarkonium, D and B meson production, generically referred to H. Our procedure consists in parametrising the square of the parton scattering amplitude, A_{gg -> H X} and constraining it from the proton-proton data. Doing so, we have been able to compute the corresponding nuclear modification factors for J/psi, Upsilon and D^0 as a function of y and P_T at sqrt(s_NN)=5 and 8 TeV in the kinematics of the various LHC experiments in a model independent way. It is of course justified since the most important ingredient in such evaluations is the probability of each kinematical configuration. Our computations for D mesons can also be extended to B meson production. To further illustrate the potentiality of the tool, we provide --for the first t...
Lansberg, Jean-Philippe
2016-01-01
We propose a simple and model-independent procedure to account for the impact of the nuclear modification of the gluon density as encoded in nuclear collinear PDF sets on two-to-two partonic hard processes in proton-nucleus collisions. This applies to a good approximation to quarkonium, D and B meson production, generically referred to H. Our procedure consists in parametrising the square of the parton scattering amplitude, A_{gg -> H X} and constraining it from the proton-proton data. Doing so, we have been able to compute the corresponding nuclear modification factors for J/psi, Upsilon and D^0 as a function of y and P_T at sqrt(s_NN)=5 and 8 TeV in the kinematics of the various LHC experiments in a model independent way. It is of course justified since the most important ingredient in such evaluations is the probability of each kinematical configuration. Our computations for D mesons can also be extended to B meson production. To further illustrate the potentiality of the tool, we provide --for the first t...
Lansberg, Jean-Philippe; Shao, Hua-Sheng
2017-01-01
We propose a simple and model-independent procedure to account for the impact of the nuclear modification of the gluon density as encoded in nuclear collinear PDF sets on two-to-two partonic hard processes in proton-nucleus collisions. This applies to a good approximation to quarkonium, D and B meson production, generically referred to H. Our procedure consists in parametrising the square of the parton scattering amplitude, A_{gg → HX} and constraining it from the proton-proton data. Doing so, we have been able to compute the corresponding nuclear modification factors for J/ψ , Υ and D^0 as a function of y and P_T at √{s_NN}=5 and 8 TeV in the kinematics of the various LHC experiments in a model independent way. It is of course justified since the most important ingredient in such evaluations is the probability of each kinematical configuration. Our computations for D mesons can also be extended to B meson production. To further illustrate the potentiality of the tool, we provide - for the first time - predictions for the nuclear modification factor for η _c production in pPb collisions at the LHC.
Gluon induced contributions to WZ and W gamma production at NNLO
Adamson, K L; Signer, A
2002-01-01
We calculate the contribution of the partonic processes gg->WZ q\\bar{q} and gg -> W gamma q\\bar{q} to WZ and W gamma pair production at hadron colliders, including anomalous triple gauge-boson couplings. We use the helicity method and include the decay of the W and Z-boson into leptons in the narrow-width approximation. In order to integrate over the q\\bar{q} final state phase space we use an extended version of the subtraction method to NNLO and remove collinear singularities explicitly. Due to the large gluon density at low x, the gluon induced terms of vector-boson pair production are expected to be the dominant NNLO QCD correction, relevant at LHC energies. However, we show that due to a cancellation they turn out to provide a rather small contribution, anticipating good stability for the perturbative expansion.
Quark ACM with topologically generated gluon mass
Choudhury, Ishita Dutta
2016-01-01
We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment of quarks (ACM) by perturbative calculations at one loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field $B_{\\mu \
Thermal single-gluon exchange potential for heavy quarkonium in the static limit
Zhu, Jia-Qing; Ma, Zhi-Lei; Shi, Chao-Yi; Li, Yun-De, E-mail: yndxlyd@163.com
2015-10-15
The calculations of thermal single-gluon exchange potential for heavy quarkonium in Feynman and Coulomb gauges are presented, and the comparisons between them and the hard thermal loop approximation ones which were first calculated by Laine et al. are illustrated. The numerical results show that the hard thermal loop thermal single-gluon exchange potential (especially its imaginary part) which used in many researches make some errors in the practical calculations at the temperature range accessible in the present experiment, and the problem of gauge dependent cannot be avoided when the complete self energy is used in the derivation of potential.
Abrikosov Gluon Vortices in Color Superconductors
Ferrer, Efrain J
2010-01-01
In this talk I will discuss how the in-medium magnetic field can influence the gluon dynamics in a three-flavor color superconductor. It will be shown how at field strengths comparable to the charged gluon Meissner mass a new phase can be realized, giving rise to Abrikosov's vortices of charged gluons. In that phase, the inhomogeneous gluon condensate anti-screens the magnetic field due to the anomalous magnetic moment of these spin-1 particles. This paramagnetic effect can be of interest for astrophysics, since due to the gluon vortex antiscreening mechanism, compact stars with color superconducting cores could have larger magnetic fields than neutron stars made up entirely of nuclear matter. I will also discuss a second gluon condensation phenomenon connected to the Meissner instability attained at moderate densities by two-flavor color superconductors. In this situation, an inhomogeneous condensate of charged gluons emerges to remove the chromomagnetic instability created by the pairing mismatch, and as a ...
Thermalization of mini-jets in a quark-gluon plasma
Iancu Edmond
2016-01-01
Full Text Available We present the complete physical picture for the evolution of a high-energy jet propagating through a weakly-coupled quark-gluon plasma (QGP by analytical and numerical investigation of thermalization of the soft components of the jet. Our results support the following physical picture: the leading particle emits a significant number of mini-jets which promptly evolve via multiple branching and thus degrade into a myriad of soft gluons, with energies of the order of the medium temperature T. Via elastic collisions with the medium constituents, these soft gluons relax to local thermal equilibrium with the plasma over a time scale which is considerably shorter than the typical lifetime of the mini-jet. The thermalized gluons form a tail which lags behind the hard components of the jet. Together with the background QGP, they behave hydrodynamically.
Thermalization of mini-jets in a quark–gluon plasma
Iancu, Edmond, E-mail: edmond.iancu@cea.fr; Wu, Bin, E-mail: bin.wu.phys@gmail.com [Institut de Physique Théorique, CEA Saclay, CNRS UMR 3681, F-91191 Gif-sur-Yvette (France); Department of Physics, The Ohio State University, Columbus, OH 43210 (United States)
2016-12-15
We present the complete physical picture for the evolution of a high-energy jet propagating through a weakly-coupled quark-gluon plasma (QGP) by analytical and numerical investigation of thermalization of the soft components of the jet. Our results support the following physical picture: the leading particle emits a significant number of mini-jets which promptly evolve via multiple branching and thus degrade into a myriad of soft gluons, with energies of the order of the medium temperature T. Via elastic collisions with the medium constituents, these soft gluons relax to local thermal equilibrium with the plasma over a time scale which is considerably shorter than the typical lifetime of the mini-jet. The thermalized gluons form a tail which lags behind the hard components of the jet. Together with the background QGP, they behave hydrodynamically.
Thermalization of mini-jets in a quark-gluon plasma
Iancu, Edmond; Wu, Bin
2016-12-01
We present the complete physical picture for the evolution of a high-energy jet propagating through a weakly-coupled quark-gluon plasma (QGP) by analytical and numerical investigation of thermalization of the soft components of the jet. Our results support the following physical picture: the leading particle emits a significant number of mini-jets which promptly evolve via multiple branching and thus degrade into a myriad of soft gluons, with energies of the order of the medium temperature T. Via elastic collisions with the medium constituents, these soft gluons relax to local thermal equilibrium with the plasma over a time scale which is considerably shorter than the typical lifetime of the mini-jet. The thermalized gluons form a tail which lags behind the hard components of the jet. Together with the background QGP, they behave hydrodynamically.
The sound produced by a fast parton in the quark-gluon plasma is a "crescendo"
Neufeld, R B
2009-01-01
We calculate the total energy deposited into the medium per unit length by fast partons traversing a quark-gluon plasma. The medium excitation due to collisions is taken to be given by the well known expression for the collisional drag force. The radiative energy loss of the parton contributes to the energy deposition because each radiated gluon acts as an additional source of collisional energy loss in the medium. We derive a differential equation which governs how the spectrum of radiated gluons is modified when this energy loss is taken into account. This modified spectrum is then used to calculate the additional energy deposition due to the interactions of radiated gluons with the medium. Numerical results are presented for the medium response for the case of two energetic back-to-back partons created in a hard interaction.
Sound Produced by a Fast Parton in the Quark-Gluon Plasma is a ``Crescendo''
Neufeld, R. B.; Müller, B.
2009-07-01
We calculate the total energy deposited into the medium per unit length by fast partons traversing a quark-gluon plasma. The medium excitation due to collisions is taken to be given by the well-known expression for the collisional drag force. The radiative energy loss of the parton contributes to the energy deposition because each radiated gluon acts as an additional source of collisional energy loss in the medium. We derive a differential equation which governs how the spectrum of radiated gluons is modified when this energy loss is taken into account. This modified spectrum is then used to calculate the additional energy deposition due to the interactions of radiated gluons with the medium. Numerical results are presented for the medium response for the case of two energetic back-to-back partons created in a hard interaction.
Sound produced by a fast parton in the quark-gluon plasma is a "crescendo".
Neufeld, R B; Müller, B
2009-07-24
We calculate the total energy deposited into the medium per unit length by fast partons traversing a quark-gluon plasma. The medium excitation due to collisions is taken to be given by the well-known expression for the collisional drag force. The radiative energy loss of the parton contributes to the energy deposition because each radiated gluon acts as an additional source of collisional energy loss in the medium. We derive a differential equation which governs how the spectrum of radiated gluons is modified when this energy loss is taken into account. This modified spectrum is then used to calculate the additional energy deposition due to the interactions of radiated gluons with the medium. Numerical results are presented for the medium response for the case of two energetic back-to-back partons created in a hard interaction.
Physics of the quark - gluon plasma
NONE
2001-09-01
This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p{sub T} physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B {yields} J/{psi} production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation.
Gluon TMDs in quarkonium production
Signori, Andrea
2016-01-01
I report on our investigations into the impact of (un)polarized transverse momentum dependent parton distribution functions (TMD PDFs or TMDs) for gluons at hadron colliders, especially at A Fixed Target Experiment at the LHC (AFTER@LHC). In the context of high energy proton-proton collisions, we look at final states with low mass (e.g. $\\eta_b$) in order to investigate the nonperturbative part of TMD PDFs. We study the factorization theorem for the $q_T$ spectrum of $\\eta_b$ produced in proton-proton collisions relying on the effective field theory approach, defining the tools to perform phenomenological investigations at next-to-next-to-leading log (NNLL) and next-to-leading order (NLO) accuracy in the perturbation theory. We provide predictions for the unpolarized cross section and comment on the possibility of extracting nonperturbative information about the gluon content of the proton once data at low transverse momentum are available.
Gluon TMDs in Quarkonium Production
Signori, Andrea
2016-08-01
I report on our investigations into the impact of (un)polarized transverse momentum dependent parton distribution functions (TMD PDFs or TMDs) for gluons at hadron colliders, especially at A Fixed Target Experiment at the LHC (AFTER@LHC). In the context of high energy proton-proton collisions, we look at final states with low mass (e.g. η _b) in order to investigate the nonperturbative part of TMD PDFs. We study the factorization theorem for the q_T spectrum of η _b produced in proton-proton collisions relying on the effective field theory approach, defining the tools to perform phenomenological investigations at next-to-next-to-leading log and next-to-leading order accuracy in the perturbation theory. We provide predictions for the unpolarized cross section and comment on the possibility of extracting nonperturbative information about the gluon content of the proton once data at low transverse momentum are available.
Collinearity, convergence and cancelling infrared divergences
Lavelle, M; Lavelle, Martin; Mullan, David Mc
2006-01-01
The Lee-Nauenberg theorem is a fundamental quantum mechanical result which provides the standard theoretical response to the problem of collinear and infrared divergences. Its argument, that the divergences due to massless charged particles can be removed by summing over degenerate states, has been successfully applied to systems with final state degeneracies such as LEP processes. If there are massless particles in both the initial and final states, as will be the case at the LHC, the theorem requires the incorporation of disconnected diagrams which produce connected interference effects at the level of the cross-section. However, this aspect of the theory has never been fully tested in the calculation of a cross-section. We show through explicit examples that in such cases the theorem introduces a divergent series of diagrams and hence fails to cancel the infrared divergences. It is also demonstrated that the widespread practice of treating soft infrared divergences by the Bloch-Nordsieck method and handlin...
On Multiple Gluon Exchange Webs
Harley, Mark
2015-01-01
I present an overview of the study of infrared singularities through the eikonal approximation and the concept of webs. Our work reveals the interesting structure of an infinite subclass of webs, Multiple Gluon Exchange Webs. We find that they can be expressed as sums of products of functions depending upon only a single cusp angle, spanned by a simple basis of functions, and conjecture that this structure will hold to all orders.
Hard Exclusive Production of Tensor Mesons
Braun, V M
2001-01-01
We point out that hard exclusive production of tensor mesons $f_2(1270)$ with helicity $\\lambda=\\pm 2$ is dominated by the gluon component in the meson wave function and can be used to determine gluon admixture in tensor mesons in a theoretically clean manner. We present a detailed analysis of the tensor meson distribution amplitudes and calculate the transition form factor $\\gamma+\\gamma^*\\to f_2(1270)$ for one real and one virtual photon.
Unquenched Gluon Propagator in Landau Gauge
2004-01-01
Using lattice quantum chromodynamics (QCD) we perform an unquenched calculation of the gluon propagator in Landau gauge. We use configurations generated with the AsqTad quark action by the MILC collaboration for the dynamical quarks and compare the gluon propagator of quenched QCD (i.e., the pure Yang-Mills gluon propagator) with that of 2+1 flavor QCD. The effects of the dynamical quarks are clearly visible and lead to a significant reduction of the nonperturbative infrared enhancement relat...
Rats and humans differ in processing collinear visual features
Philip M Meier
2013-12-01
Full Text Available Behavioral studies in humans and rats demonstrate that visual detection of a target stimulus is sensitive to surrounding spatial patterns. In both species, the detection of an oriented visual target is affected when the surrounding region contains flanking stimuli that are collinear to the target. In many studies, collinear flankers have been shown to improve performance in humans, both absolutely (compared to performance with no flankers and relative to non-collinear flankers. More recently, collinear flankers have been shown to impair performance in rats both absolutely and relative to non-collinear flankers. However, these observations spanned different experimental paradigms. Past studies in humans have shown that the magnitude and even sign of flanker effects can depend critically on the details of stimulus and task design. Therefore either task differences or species could explain the opposite findings. Here we provide a direct comparison of behavioral data between species and show that these differences persist -- collinear flankers improve performance in humans, and impair performance in rats -- in spite of controls that match stimuli, experimental paradigm, and learning procedure. There is evidence that the contrasts of the target and the flankers could affect whether surround processing is suppressive or faciliatory. In a second experiment, we explored a range of contrast conditions in the rat, to determine if contrast could explain the lack of collinear facilitation. Using different pairs of target and flanker contrast, the rat’s collinear impairment was confirmed to be robust across a range of contrast conditions. We conclude that processing of collinear features is indeed different between rats and humans. We speculate that the observed difference between rat and human is caused by the combined impact of differences in the statistics in natural retinal images, the representational capacity of neurons in visual cortex, and
Long Range Azimuthal Correlations of Multiple Gluons in Gluon Saturation Limit
Ozonder, Sener
2016-01-01
We calculate the inclusive gluon correlation function for arbitrary number of gluons with full rapidity and transverse momentum dependence for the initial glasma state of the p-p, p-A and A-A collisions. The formula we derive via superdiagrams generates cumulants for any number of gluons. Higher order cumulants contain information on correlations between multiple gluons, and they are necessary for calculations of higher dimensional ridges as well as flow coefficients from multi-particle correlations.
Introduction to the Quark-Gluon Plasma session in RJC 2014
Maire, Antonin
2015-01-01
This contribution is a brief introduction to the physics of Quark-Gluon Plasma (QGP); the intention is to set the stage for the corresponding session proceedings of the "Rencontre Jeunes Chercheurs 2014". The text consists in a description of the Bjorken scenario of a heavy-ion collision followed by the introduction of the notion of hard probe for QGP studies.
Photons from a Chemically Equilibrating Quark-Gluon Plasma at Finite Baryon Density
HE Ze-Jun; LONG Jia-Li; MA Yu-Gang; MA Guo-Liang
2005-01-01
@@ We study hard photon production in a chemically equilibrating quark-gluon plasma at finite baryon density based on the Jüttner distribution of partons of the system. We find that the photon yield is a strongly increasing function of the initial quark chemical potential.
Quark ACM with topologically generated gluon mass
Choudhury, Ishita Dutta; Lahiri, Amitabha
2016-03-01
We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment (ACM) of quarks by perturbative calculations at one-loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field Bμν. For a small gluon mass ( ACM at momentum transfer q2 = -M Z2. We compare those with the ACM calculated for the gluon mass arising from a Proca mass term. We find that the ACM of up, down, strange and charm quarks vary significantly with the gluon mass, while the ACM of top and bottom quarks show negligible gluon mass dependence. The mechanism of gluon mass generation is most important for the strange quarks ACM, but not so much for the other quarks. We also show the results at q2 = -m t2. We find that the dependence on gluon mass at q2 = -m t2 is much less than at q2 = -M Z2 for all quarks.
Asymptocic Freedom of Gluons in Hamiltonian Dynamics
Gómez-Rocha, María; Głazek, Stanisław D.
2016-07-01
We derive asymptotic freedom of gluons in terms of the renormalized SU(3) Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of g up to third order. The resulting three-gluon vertex is a function of the scale parameter s that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian {β} -function coincides with the one obtained in an earlier calculation using a different generator.
Surface Emission of Quark Gluon Plasma at RHIC and LHC
XIANG Wen-Chang; WAN Ren-Zhuo; ZHOU Dai-Cui
2008-01-01
Within the framework of a factorization model, we study the behaviour of nuclear modification factor in Au-Au collisions at RHIC and Pb-Pb collisions at LHC. We find that the nuclear modification factor is inversely proportional to the radius of the quark-gluon plasma and is dominated by the surface emission of hard jets. We predict the nuclear modification factor RLHCAA～0.15 in central Pb-Pb collisions at LHC. The study shows that the factorization model can be used to describe the centrality dependence of nuclear modification factor of the high transverse momentum particles produced in heavy ion collisions at both RHIC and LHC.
Two-gluon and trigluon glueballs from dynamical holography QCD
Chen, Yi-dian; Huang, Mei
2016-12-01
We study the scalar, vector and tensor two-gluon and trigluon glueball spectra in the framework of the 5-dimension dynamical holographic QCD model, where the metric structure is deformed self-consistently by the dilaton field. For comparison, the glueball spectra are also calculated in the hard-wall and soft-wall holographic QCD models. In order to distinguish glueballs with even and odd parities, we introduce a positive and negative coupling between the dilaton field and glueballs, and for higher spin glueballs, we introduce a deformed 5-dimension mass. With this set-up, there is only one free parameter from the quadratic dilaton profile in the dynamical holographic QCD model, which is fixed by the scalar glueball spectra. It is found that the two-gluon glueball spectra produced in the dynamical holographic QCD model are in good agreement with lattice data. Among six trigluon glueballs, the produced masses for 1±- and 2-- are in good agreement with lattice data, and the produced masses for 0--, 0+- and 2+- are around 1.5 GeV lighter than lattice results. This result might indicate that the three trigluon glueballs of 0--, 0+- and 2+- are dominated by the three-gluon condensate contribution. Supported by the NSFC (11175251, 11621131001), DFG and NSFC (CRC 110), CAS Key Project KJCX2-EW-N01, K.C.Wong Education Foundation, and Youth Innovation Promotion Association of CAS
Caron-Huot, Simon [Niels Bohr International Academy and Discovery Center,Blegdamsvej 17, Copenhagen 2100 (Denmark); School of Natural Sciences, Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States)
2015-05-19
We propose the eikonal approximation as a simple and reliable tool to analyze relativistic high-energy processes, provided that the necessary subtleties are accounted for. An important subtlety is the need to include eikonal phases for a rapidity-dependent collection of particles, as embodied by the Balitsky-JIMWLK rapidity evolution equation. In the first part of this paper, we review how the phenomenon of gluon reggeization and the BFKL equations can be understood simply (but not too simply) in the eikonal approach. We also work out some previously overlooked implications of BFKL dynamics, including the observation that starting from four loops it is incompatible with a recent conjecture regarding the structure of infrared divergences. In the second part of this paper, we propose that in the strict planar limit the theory can be developed to all orders in the coupling with no reference at all to the concept of “reggeized gluon.” Rather, one can work directly with a finite, process-dependent, number of Wilson lines. We demonstrate consistency of this proposal by an exact computation in N=4 super Yang-Mills, which shows that in processes mediated with two Wilson lines the reggeized gluon appears in the weak coupling limit as a resonance whose width is proportional to the coupling. We also provide a precise operator definition of Lipatov’s integrable spin chain, which is manifestly integrable at any value of the coupling as a result of the duality between scattering amplitudes and Wilson loops in this theory.
Hamieh, Salah; Letessier, Jean; Rafelski, Johann
2000-01-01
Lattice-QCD results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the properties of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the...
Collinear laser spectroscopy of atomic cadmium
Frömmgen, Nadja; Bissell, Mark L; Bieroń, Jacek; Blaum, Klaus; Cheal, Bradley; Flanagan, Kieran; Fritzsche, Stephan; Geppert, Christopher; Hammen, Michael; Kowalska, Magdalena; Kreim, Kim; Krieger, Andreas; Neugart, Rainer; Neyens, Gerda; Rajabali, Mustafa M; Nörtershäuser, Wilfried; Papuga, Jasna; Yordanov, Deyan T
2015-01-01
Hyperfine structure $A$ and $B$ factors of the atomic $5s\\,5p\\,\\; ^3\\rm{P}_2 \\rightarrow 5s\\,6s\\,\\; ^3\\rm{S}_1$ transition are determined from collinear laser spectroscopy data of $^{107-123}$Cd and $^{111m-123m}$Cd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with $s_{1/2}$ and $d_{5/2}$ nuclear ground states and isomeric $h_{11/2}$ states is evaluated and a linear relationship is observed for all nuclear states except $s_{1/2}$. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic $5s\\,5p\\,\\; ^3\\mathrm{P}_2$ level is derived from multi-configuration Dirac-Hartree-Fock calculatio...
Collinear resonance ionization spectroscopy of radium ions
We propose to study the neutron-deficient radium isotopes with high-resolution collinear resonance ionization spectroscopy. Probing the hyperfine structure of the $7{s}\\,^2\\!{S}\\!_{1/2}\\,\\rightarrow\\,7{p}\\,^{2}\\!{P}\\!_{1/2}$ and $7{s}\\,^{2}\\!{S}\\!_{1/2}\\,\\rightarrow\\,7{p}\\,^{2}\\!{P}\\!_{3/2}$ transitions in Ra II will provide atomic-structure measurements that have not been achieved for $^{{A}<208}$Ra. Measurement of the $7{s}\\,^{2}\\!{S}\\!_{1/2}\\,\\rightarrow\\,7{p}\\,^{2}\\!{P}\\!_{3/2}$ transition in $^{{A}<214}$Ra will allow the spectroscopic quadrupole moments to be directly measured for the first time. In addition, the technique will allow tentative spin assignments to be confirmed and the magnetic dipole moments measured for $^{\\textit{A}<208}$Ra. Measurement of the hyperfine structure (in particular the isotope shifts) of the neutron-deficient radium will provide information to further constrain the nuclear models away from the N=126 shell closure.
Diffraction of collinear correlated photon pairs by an ultrasonic wave
Kwiek, Piotr
2013-01-01
The phenomenon of collinear photon pairs diffraction by an ultrasonic wave is investigated for Bragg incidence. A BBO crystal was used for producing collinear correlated photon pairs via type-I spontaneous parametric down-conversion. The experimental setup for diffraction of collinear correlated photon pairs was tested based on Malus' law for pairs of photons. The obtained results do not support the L. B. Deng's theory of 2012, presented in his work entitled "Diffraction of entangled photon pairs by ultrasonic waves" [Front. Phys. 7, 239 (2012)] . An alternative simple theoretical description of interaction of collinear photon pairs with ultrasonic waves is shown in the present paper which reveals very good agreement with corresponding experimental data.
Exclusive J/ψ and ϒ photoproduction and the low x gluon
Jones, S. P.; Martin, A. D.; Ryskin, M. G.; Teubner, T.
2016-04-01
We study exclusive vector meson photoproduction, γ p\\to V+p with V=J/\\psi or ϒ, at next-to-leading order (NLO) in collinear factorisation, in order to examine what may be learnt about the gluon distribution at very low x. We examine the factorisation scale dependence of the predictions. We argue that, using knowledge of the NLO corrections, terms enhanced by a large {ln}(1/ξ ) can be reabsorbed in the LO part by a choice of the factorisation scale. (In these exclusive processes ξ takes the role of Bjorken-x.) Then, the scale dependence coming from the remaining NLO contributions has no {ln}(1/ξ ) enhancements. As a result, we find that predictions for the amplitude of ϒ production are stable to within about ±15%. This will allow data for the exclusive process {pp}\\to p{{\\Upsilon }}p at the Large Hadron Collider (LHC), particularly from LHCb, to be included in global parton analyses to constrain the gluon parton distribution function (PDF) down to x∼ {10}-5. Moreover, the study of exclusive J/\\psi photoproduction indicates that the gluon density found in the recent global PDF analyses is too small at low x and low scales.
Consequences Of Fully Dressing Quark-Gluon Vertex Function With Two-Point Gluon Lines
Matevosyan, Hrayr H; Tandy, Peter C
2007-01-01
We extend recent studies of the effects of quark-gluon vertex dressing upon the solutions of the Dyson-Schwinger equation for the quark propagator. A momentum delta function is used to represent the dominant infrared strength of the effective gluon propagator so that the resulting integral equations become algebraic. The quark-gluon vertex is constructed from the complete set of diagrams involving only 2-point gluon lines. The additional diagrams, including those with crossed gluon lines, are shown to make an important contribution to the DSE solutions for the quark propagator, because of their large color factors and the rapid growth in their number.
Saari's Conjecture for the Collinear $n$-Body Problem
Diacu, Florin; Santoprete, Manuele
2009-01-01
In 1970 Don Saari conjectured that the only solutions of the Newtonian $n$-body problem that have constant moment of inertia are the relative equilibria. We prove this conjecture in the collinear case for any potential that involves only the mutual distances. Furthermore, in the case of homogeneous potentials, we show that the only collinear and non-zero angular momentum solutions are homographic motions with central configurations.
Gluon polarization and higher twist effects
Leader, Elliot; Stamenov, Dimiter
2008-01-01
We examine the influence of the recent CLAS and COMPASS experiments on our understanding of higher twist (HT) effects and the gluon polarization, and show how EIC could discriminate between negative and positive gluon polarizations. We comment on the issue of HT and the recent DSSV analysis.
A consistent collinear triad approximation for operational wave models
Salmon, J. E.; Smit, P. B.; Janssen, T. T.; Holthuijsen, L. H.
2016-08-01
In shallow water, the spectral evolution associated with energy transfers due to three-wave (or triad) interactions is important for the prediction of nearshore wave propagation and wave-driven dynamics. The numerical evaluation of these nonlinear interactions involves the evaluation of a weighted convolution integral in both frequency and directional space for each frequency-direction component in the wave field. For reasons of efficiency, operational wave models often rely on a so-called collinear approximation that assumes that energy is only exchanged between wave components travelling in the same direction (collinear propagation) to eliminate the directional convolution. In this work, we show that the collinear approximation as presently implemented in operational models is inconsistent. This causes energy transfers to become unbounded in the limit of unidirectional waves (narrow aperture), and results in the underestimation of energy transfers in short-crested wave conditions. We propose a modification to the collinear approximation to remove this inconsistency and to make it physically more realistic. Through comparison with laboratory observations and results from Monte Carlo simulations, we demonstrate that the proposed modified collinear model is consistent, remains bounded, smoothly converges to the unidirectional limit, and is numerically more robust. Our results show that the modifications proposed here result in a consistent collinear approximation, which remains bounded and can provide an efficient approximation to model nonlinear triad effects in operational wave models.
Quarkonium states in an anisotropic quark-gluon plasma
Guo Yun
2009-09-10
In this work we study the properties of quarkonium states in a quark-gluon plasma which, due to expansion and non-zero viscosity, exhibits a local anisotropy in momentum space. We determine the hard-loop resummed gluon propagator in an anisotropic QCD plasma in general linear gauges and define a potential between heavy quarks from the Fourier transform of its static limit. This potential which arises due to one-gluon exchange describes the force between a quark and anti-quark at short distances. It is closer to the vacuum potential as compared to the isotropic Debye screened potential which indicates the reduced screening in an anisotropic QCD plasma. In addition, angular dependence appears in the potential; we find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment. The potential at long distances, however, is non-perturbative and modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is non-zero and inversely proportional to the temperature. With a phenomenological potential model which incorporates the different behaviors at short and long distances, we solve the three-dimensional Schroedinger equation. Our numerical results show that quarkonium binding is stronger at non-vanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states. Furthermore, we determine viscosity corrections to the imaginary part of the heavy-quark potential in the weak-coupling hard-loop approximation. The imaginary part is found to be smaller (in magnitude) than at vanishing viscosity. This implies a smaller decay width of quarkonium bound states in an anisotropic plasma. (orig.)
HUNTING THE QUARK GLUON PLASMA.
LUDLAM, T.; ARONSON, S.
2005-04-11
The U.S. Department of Energy's Relativistic Heavy Ion Collider (RHIC) construction project was completed at BNL in 1999, with the first data-taking runs in the summer of 2000. Since then the early measurements at RHIC have yielded a wealth of data, from four independent detectors, each with its international collaboration of scientists: BRAHMS, PHENIX, PHOBOS, and STAR [1]. For the first time, collisions of heavy nuclei have been carried out at colliding-beam energies that have previously been accessible only for high-energy physics experiments with collisions of ''elementary'' particles such as protons and electrons. It is at these high energies that the predictions of quantum chromodynamics (QCD), the fundamental theory that describes the role of quarks and gluons in nuclear matter, come into play, and new phenomena are sought that may illuminate our view of the basic structure of matter on the sub-atomic scale, with important implications for the origins of matter on the cosmic scale. The RHIC experiments have recorded data from collisions of gold nuclei at the highest energies ever achieved in man-made particle accelerators. These collisions, of which hundreds of millions have now been examined, result in final states of unprecedented complexity, with thousands of produced particles radiating from the nuclear collision. All four of the RHIC experiments have moved quickly to analyze these data, and have begun to understand the phenomena that unfold from the moment of collision as these particles are produced. In order to provide benchmarks of simpler interactions against which to compare the gold-gold collisions, the experiments have gathered comparable samples of data from collisions of a very light nucleus (deuterium) with gold nuclei, as well as proton-proton collisions, all with identical beam energies and experimental apparatus. The early measurements have revealed compelling evidence for the existence of a new form of nuclear
Hamieh, Salah; Letessier, Jean; Rafelski, Johann
2000-12-01
Lattice quantum chromodynamics results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the properties of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the properties of the fireball formed in early stages of nuclear collision, and argue that QGP formation must be expected down to 40A GeV in central Pb-Pb interactions.
Cipriano, P.; Dooling, S.; Grebenyuk, A.; Gunnellini, P.; Katsas, P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hautmann, F. [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Oxford Univ. (United Kingdom). Dept. of Physics; Jung, H. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysica
2013-08-15
In the forthcoming high-luminosity phase at the LHC many of the most interesting QCD measurements so far become prohibitively difficult due to the high pile-up. We suggest a program of QCD measurements based on the observed Higgs boson which can be started now and can be carried through also in the large pile-up environment at high luminosity. It focuses on gluonic processes at high mass scales, and their distinctive QCD features compared to classic probes such as Drell-Yan. It explores the strong-interaction sector of the Standard Model both at high transverse momenta and at low transverse momenta, by investigating issues on gluon fusion processes which have never been addressed experimentally before. We discuss a few specific examples and present results of Monte Carlo simulations.
Soft gluons are heavy and rowdy
Alkofer, R; Cotanch, S R; Fischer, C S; Llanes-Estrada, F J; Alkofer, Reinhard; Bicudo, Pedro; Cotanch, Stephen R.; Fischer, Christian S.; Llanes-Estrada, Felipe J.
2006-01-01
We study dynamical mass generation in pure Yang-Mills theory and report on a recently developed ansatz that exactly solves the tower of Dyson-Schwinger equations in Landau gauge at low Euclidean momentum, featuring enhanced gluon-gluon vertices, a finite ghost-gluon vertex in agreement with an old argument of Taylor, and an IR suppressed gluon propagator. This ansatz reinforces arguments in favor of the concept of a gluon mass gap at low momentum (although the minimum of the gluon's dispersion relation is not at zero momentum). As an application, we have computed the spectrum of oddballs, three-gluon glueballs with negative parity and C-parity. The three body problem is variationally solved employing the color density-density interaction of Coulomb gauge QCD with a static Cornell potential. Like their even glueball counterparts, oddballs fall on Regge trajectories with similar slope to the pomeron. However their intercept at t=0 is smaller than the omega Regge trajectory and therefore the odderon may only be ...
Thermo-magnetic behavior of the of the quark-gluon vertex
Ayala, Alejandro; Loewe, M; Tejeda-Yeomans, Maria Elena; Zamora, R
2015-01-01
The thermo-magnetic corrections to the quark-gluon vertex in the presence of a weak magnetic field are calculated in the frame of the Hard Thermal Loop approximation. The vertex satisfies a QED-like Ward identity with the quark self-energy calculated within the same approximation. It turns out that only the longitudinal vertex components get modified. The calculation provides a first principles result for the quark anomalous magnetic moment at high temperature in a weak magnetic field. The effective thermo-magnetic quark-gluon coupling shows a decreasing behavior as function of the field strength. This result supports the observation that the behavior of the effective quark-gluon coupling in the presence of a magnetic field is an important ingredient in order to understand the inverse magnetic catalysis phenomenon recently observed in the lattice QCD simulations.
The sound generated by a fast parton in the quark-gluon plasma is a crescendo
Neufeld, R B
2009-01-01
The total energy deposited into the medium per unit length by a fast parton traversing a quark-gluon plasma is calculated. We take the medium excitation due to collisions to be given by the well known expression for the collisional drag force. The parton's radiative energy loss contributes to the energy deposition because each radiated gluon acts as an additional source of collisional energy loss in the medium. In our model, this leads to a length dependence on the differential energy loss due to the interactions of radiated gluons with the medium. The final result, which is a sum of the primary and the secondary contributions, is then treated as the coefficient of a local hydrodynamic source term. Results are presented for energy density wave induced by two fast, back-to-back partons created in an initial hard interaction.
Classical Higgs fields on gauge gluon bundles
Palese Marcella
2016-01-01
Full Text Available Classical Higgs fields and related canonical conserved quantities are defined by invariant variational problems on suitably defined gauge gluon bundles. We consider Lagrangian field theories which are assumed to be invariant with respect to the action of a gauge-natural group. As an illustrative example we exploit the ‘gluon Lagrangian’, i.e. a Yang-Mills Lagrangian on the (1, 1-order gauge-natural bundle of SU(3-principal connections. The kernel of the gauge-natural Jacobi morphism for such a Lagrangian, by inducing a reductive split structure, canonically defines a ‘gluon classical Higgs field’.
Dynamical gluon mass in QCD processes
Ducati, M.B. Gay; Sauter, W. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Fisica. Grupo de Fenomenologia de Particulas de Altas Energias (GFPAE)
2007-06-15
We perform phenomenological applications of modified gluon propagators and running coupling constants in scattering processes in Quantum Chromodynamics (QCD). The modified forms of propagators and running coupling constant are obtained by non-perturbative methods. The processes investigated includes the diffractive ones - proton-proton elastic scattering, light vector meson photo-production and double vector meson production in gamma-gamma scattering - as well as the pion and kaon meson form factors. The results are compared with experimental data (if available), showing a good agreement with a gluon with dynamical mass but do not indicate the correct gluon propagator functional form. (author)
Hydrodynamics of anisotropic quark and gluon fluids
Florkowski, Wojciech; Maj, Radoslaw; Ryblewski, Radoslaw; Strickland, Michael
2013-03-01
The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory, with the collisional kernel treated in the relaxation-time approximation, allowing for different relaxation times for quarks and gluons. Baryon number conservation is enforced in the quark and antiquark components of the fluid, but overall parton number nonconservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.
Gluon and Ghost Dynamics from Lattice QCD
Oliveira, O; Dudal, D; Silva, P J
2016-01-01
The two point gluon and ghost correlation functions and the three gluon vertex are investigated, in the Landau gauge, using lattice simulations. For the two point functions, we discuss the approach to the continuum limit looking at the dependence on the lattice spacing and volume. The analytical structure of the propagators is also investigated by computing the corresponding spectral functions using an implementation of the Tikhonov regularisation to solve the integral equation. For the three point function we report results when the momentum of one of the gluon lines is set to zero and discuss its implications.
Gluon and Ghost Dynamics from Lattice QCD
Oliveira, O.; Duarte, A. G.; Dudal, D.; Silva, P. J.
2017-03-01
The two point gluon and ghost correlation functions and the three gluon vertex are investigated, in the Landau gauge, using lattice simulations. For the two point functions, we discuss the approach to the continuum limit looking at the dependence on the lattice spacing and volume. The analytical structure of the propagators is also investigated by computing the corresponding spectral functions using an implementation of the Tikhonov regularisation to solve the integral equation. For the three point function we report results when the momentum of one of the gluon lines is set to zero and discuss its implications.
Graviton and gluon scattering from first principles
Boels, Rutger H
2016-01-01
Graviton and gluon scattering are studied from minimal physical assumptions such as Poincare and gauge symmetry as well as unitarity. The assumptions lead to an interesting and surprisingly restrictive set of linear equations. This shows gluon and graviton scattering to be related in many field and string theories, explaining and extending several known results. By systematic analysis exceptional graviton scattering amplitudes are derived which in general dimensions can not be related to gluon amplitudes. The simplicity of the formalism guarantees wide further applicability to gauge and gravity theories.
First measurement of the Sivers asymmetry for gluons using SIDIS data
Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Dreisbach, Ch.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; Du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giarra, J.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Horikawa, N.; D'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O. M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G. V.; Meyer, M.; Meyer, W.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rogacheva, N. S.; Ryabchikov, D. I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Thiel, A.; Tosello, F.; Tskhay, V.; Uhl, S.; Vauth, A.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; Ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.; Compass Collaboration
2017-09-01
The Sivers function describes the correlation between the transverse spin of a nucleon and the transverse motion of its partons. For quarks, it was studied in previous measurements of the azimuthal asymmetry of hadrons produced in semi-inclusive deep inelastic scattering of leptons off transversely polarised nucleon targets, and it was found to be non-zero. In this letter the evaluation of the Sivers asymmetry for gluons is presented. The contribution of the photon-gluon fusion subprocess is enhanced by requiring two high transverse-momentum hadrons. The analysis method is based on a Monte Carlo simulation that includes three hard processes: photon-gluon fusion, QCD Compton scattering and the leading-order virtual-photon absorption process. The Sivers asymmetries of the three processes are simultaneously extracted using the LEPTO event generator and a neural network approach. The method is applied to samples of events containing at least two hadrons with large transverse momentum from the COMPASS data taken with a 160 GeV/c muon beam scattered off transversely polarised deuterons and protons. With a significance of about two standard deviations, a negative value is obtained for the gluon Sivers asymmetry. The result of a similar analysis for a Collins-like asymmetry for gluons is consistent with zero.
Soft gluon resummation for gluon-induced Higgs Strahlung
Harlander, Robert V; Theeuwes, Vincent; Zirke, Tom
2014-01-01
We study the effect of soft gluon emission on the total cross section predictions for the $gg\\to HZ$ associated Higgs production process at the LHC. To this end, we perform resummation of threshold corrections at the NLL accuracy in the absolute threshold production limit and in the threshold limit for production of a $ZH$ system with a given invariant mass. Analytical results and numerical predictions for various possible LHC collision energies are presented. The perturbative stability of the results is verified by including universal NNLL effects. We find that resummation significantly reduces the scale uncertainty of the $gg\\to HZ$ contribution, which is the dominant source of perturbative uncertainty to $ZH$ production. We use our results to evaluate updated numbers for the total inclusive cross section of associated $pp \\to ZH$ production at the LHC. The reduced scale uncertainty of the $gg\\to HZ$ component translates into a decrease of the overall scale error by about a factor of two.
The Perfect Quark-Gluon Vertex Function
Orginos, K; Brower, Richard C; Chandrasekharan, S; Wiese, U J
1998-01-01
We evaluate a perfect quark-gluon vertex function for QCD in coordinate space and truncate it to a short range. We present preliminary results for the charmonium spectrum using this quasi-perfect action.
Asymptocic Freedom of Gluons in Hamiltonian Dynamics
Gómez-Rocha, María
2016-01-01
We derive asymptotic freedom of gluons in terms of the renormalized $SU(3)$ Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles (RGPEP) to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of $g$ up to third order. The resulting three-gluon vertex is a function of the scale parameter $s$ that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian $\\beta$-function coincides with the one obtained in an earlier calculation using a different generator.
Systematics of quark/gluon tagging
Gras, Philippe; Höche, Stefan; Kar, Deepak; Larkoski, Andrew; Lönnblad, Leif; Plätzer, Simon; Siódmok, Andrzej; Skands, Peter; Soyez, Gregory; Thaler, Jesse
2017-07-01
By measuring the substructure of a jet, one can assign it a "quark" or "gluon" tag. In the eikonal (double-logarithmic) limit, quark/gluon discrimination is determined solely by the color factor of the initiating parton ( C F versus C A ). In this paper, we confront the challenges faced when going beyond this leading-order understanding, using both parton-shower generators and first-principles calculations to assess the impact of higher-order perturbative and nonperturbative physics. Working in the idealized context of electron-positron collisions, where one can define a proxy for quark and gluon jets based on the Lorentz structure of the production vertex, we find a fascinating interplay between perturbative shower effects and nonperturbative hadronization effects. Turning to proton-proton collisions, we highlight a core set of measurements that would constrain current uncertainties in quark/gluon tagging and improve the overall modeling of jets at the Large Hadron Collider.
Ward identities for amplitudes with reggeized gluons
Bartles, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute (Russian Federation); Vacca, G.P. [INFN, Sezione di Bologna (Italy)
2012-05-15
Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.
Hadrons and Quark-Gluon Plasma
Letessier, Jean; Rafelski, Johann
2002-06-01
Before matter as we know it emerged, the universe was filled with the primordial state of hadronic matter called quark gluon plasma. This hot soup of quarks and gluon is effectively an inescapable consequence of our current knowledge about the fundamental hadronic interactions, quantum chromodynamics. This book covers the ongoing search to verify this prediction experimentally and discusses the physical properties of this novel form of matter.
High Gluon Densities in Heavy Ions Collisions
Blaizot, Jean-Paul
2016-01-01
The early stages of heavy ion collisions are dominated by high density systems of gluons that carry each a small fraction $x$ of the momenta of the colliding nucleons. A distinguishing feature of such systems is the phenomenon of "saturation" which tames the expected growth of the gluon density as the energy of the collision increases. The onset of saturation occurs at a particular transverse momentum scale, the "saturation momentum", that emerges dynamically and that marks the onset of non-linear gluon interactions. At high energy, and for large nuclei, the saturation momentum is large compared to the typical hadronic scale, making high density gluons amenable to a description with weak coupling techniques. This paper reviews some of the challenges faced in the study of such dense systems of small $x$ gluons, and of the progress made in addressing them. The focus is on conceptual issues, and the presentation is both pedagogical, and critical. Examples where high gluon density could play a visible role in hea...
Carrington, M. E.; Hansson, T. H.; Yamagishi, H.; Zahed, I.
1989-03-01
We reexamine the various schemes for calculating the linear response (the retarded Green's function) of a hot gluon plasma. The problems related to gauge invariance are discussed in detail, and results in different gauges are compared. We also point out some issues related to the very definition of a thermal ensemble in the presence of unphysical degrees of freedom. By culculating the retarded Green's function directly in real time, we explicitly study the effects of unphysical degrees of freedom in different gauges. Although there appears to be no unique way to define the response function, we find that several schemes can be questioned on formal grounds and that use of the background-field gauge (BFG) is the most satisfactory in this respect. We discuss two proposals to fix the gauge parameter (α) dependence in the BFG response function, the Vilkovisky-DeWitt effective action corresponding to the choice α = 0 (background Landau gauge), and the "gauge-invariant propagator" of Cornwall et al. corresponding to α = 1 (background Feynman gauge).
Gluon Wavefunctions and Amplitudes on the Light-Front
Cruz-Santiago, Christian A
2013-01-01
We investigate the tree level multi-gluon components of the gluon light cone wavefunctions in the light cone gauge keeping the exact kinematics of the gluon emissions. We focus on the components with all helicities identical to the helicity of the incoming gluon. The recurrence relations for the gluon wavefunctions are derived. In the case when the virtuality of the incoming gluon is neglected the exact form of the multi-gluon wavefunction as well as the fragmentation function is obtained. Furthermore we analyze the 2 to N tree-level gluon scattering in the framework of light-front perturbation theory and we demonstrate that the amplitude for this process can be obtained from the 1 to N+1 gluon wavefunction. Finally, we demonstrate that our results for selected helicity configurations are equivalent to the Parke-Taylor amplitudes.
All possible ternary fragmentations of Cf252 in collinear configuration
Manimaran, K.; Balasubramaniam, M.
2011-03-01
All possible ternary fragmentations in fission of Cf252 are studied in collinear configuration within a spherical approximation using the recently proposed “three cluster model.” The potential energy surface of collinear configuration exhibits a strong valley around Ca48 and its neighboring nuclei Ca50, Ti54, and Cr60. Such strong minima are not seen in the potential energy surface of an equatorial configuration. As a consequence of strong minima in the potential, the overall relative yield is higher for the ternary fragmentation with Ca48, Ca50, Ti54, Cr60, and Ge82 as the third fragment. The results of potential energy and relative yield calculations reveal that collinear configuration increases the probability of emission of heavy fragments like Ca48 (doubly magic nucleus) and its neighboring nuclei as the third fragment. The obtained results indicate that the collinear configuration is the preferred configuration for intermediate nuclei (Ca48, Ca50, Ti54, and Cr60) as the third fragment in particle accompanied fission while the equatorial configuration may be a preferred configuration for light nuclei (He4, Be10) as the third fragment.
Magnetic phase diagrams from non-collinear canonical band theory
Shallcross, Sam; Nordstrom, L.; Sharma, S.
2007-01-01
A canonical band theory of non-collinear magnetism is developed and applied to the close packed fcc and bcc crystal structures. This is a parameter-free theory where the crystal and magnetic symmetry and exchange splitting uniquely determine the electronic bands. In this way, we are able...
Graviton amplitudes from collinear limits of gauge amplitudes
Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Taylor, Tomasz R. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)
2015-05-11
We express all tree-level graviton amplitudes in Einstein's gravity as the collinear limits of a linear combination of pure Yang–Mills amplitudes in which each graviton is represented by two gauge bosons, each of them carrying exactly one half of graviton's momentum and helicity.
Complete basis for power suppressed collinear-ultrasoft operators
Pirjol, Dan; Stewart, Iain W.
2003-05-01
We construct operators that describe power corrections in mixed collinear-ultrasoft processes in QCD. We treat the ultrasoft-collinear Lagrangian to O(λ2) and heavy-to-light currents involving collinear quarks to O(λ), including new three body currents. A complete gauge invariant basis is derived which has a full reduction in Dirac structures and is valid for matching at any order in αs. The full set of reparametrization invariance (RPI) constraints is included, and is found to restrict the number of parameters appearing in Wilson coefficients and to rule out some classes of operators. The QCD ultrasoft-collinear Lagrangian has two O(λ2) operators in its gauge invariant form. For the O(λ) heavy-to-light currents there are (4,4,14,14,21) subleading (scalar, pseudoscalar, vector, axial-vector, tensor) currents, where (1,1,4,4,7) have coefficients that are not determined by RPI. In a frame where v⊥=0 and nṡv=1 the total number of currents reduces to (2,2,8,8,13), but the number of undetermined coefficients is the same. The role of these operators and universality of jet functions in the factorization theorem for heavy-to-light form factors is discussed.
A collinearity diagnosis of the GNSS geocenter determination
Rebischung, Paul; Altamimi, Zuheir; Springer, Tim
2014-01-01
The problem of observing geocenter motion from global navigation satellite system (GNSS) solutions through the network shift approach is addressed from the perspective of collinearity (or multicollinearity) among the parameters of a least-squares regression. A collinearity diagnosis, based on the notion of variance inflation factor, is therefore developed and allows handling several peculiarities of the GNSS geocenter determination problem. Its application reveals that the determination of all three components of geocenter motion with GNSS suffers from serious collinearity issues, with a comparable level as in the problem of determining the terrestrial scale simultaneously with the GNSS satellite phase center offsets. The inability of current GNSS, as opposed to satellite laser ranging, to properly sense geocenter motion is mostly explained by the estimation, in the GNSS case, of epoch-wise station and satellite clock offsets simultaneously with tropospheric parameters. The empirical satellite accelerations, as estimated by most Analysis Centers of the International GNSS Service, slightly amplify the collinearity of the geocenter coordinate, but their role remains secondary.
Hard electronics; Hard electronics
NONE
1997-03-01
Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.
Resummation of Jet Shapes and Extracting Properties of the Quark-Gluon Plasma
Chien, Yang-Ting
2014-01-01
Understanding the properties of the quark-gluon plasma (QGP) that is produced in ultra-relativistic nucleus-nucleus collisions has been one of the top priorities of the heavy ion program at the LHC. Energetic jets are produced and subsequently quenched in the collisions. Such jet quenching phenomena provide promising tools to probe the medium properties by studying the modification of jets due to the medium interactions. Significant modifications of jet shapes have been measured. In this talk we focus on the calculation of jet shapes in both proton-proton and lead-lead collisions using soft-collinear effective theory (SCET), with Glauber gluon interactions in the medium. Large logarithms in jet shapes are resummed at next-to-leading logarithmic (NLL) accuracy by the renormalization-group evolution between hierarchical jet scales. The medium interactions contribute as power corrections, and we calculate the modification of jet shapes at leading order in opacity with the static QGP model. Preliminary results ar...
Exclusive $J/\\psi$ and $\\Upsilon$ photoproduction and the low $x$ gluon
Jones, S P; Ryskin, M G; Teubner, T
2015-01-01
We study exclusive vector meson photoproduction, $\\gamma p \\to V + p$ with $V=J/\\psi$ or $\\Upsilon$, at NLO in collinear factorisation, in order to examine what may be learnt about the gluon distribution at very low $x$. We examine the factorisation scale dependence of the predictions. We argue that, using knowledge of the NLO corrections, terms enhanced by a large $\\ln(1/\\xi)$ can be reabsorbed in the LO part by a choice of the factorisation scale. (In these exclusive processes $\\xi$ takes the role of Bjorken-$x$.) Then, the scale dependence coming from the remaining NLO contributions has no $\\ln(1/\\xi)$ enhancements. As a result, we find that predictions for the amplitude of $\\Upsilon$ production are stable to within about $\\pm 15\\%$. This will allow data for the exclusive process $p p \\to p\\Upsilon p$ at the LHC, particularly from LHCb, to be included in global parton analyses to constrain the gluon PDF down to $x\\sim 10^{-5}$. Moreover, the study of exclusive $J/\\psi$ photoproduction indicates that the gl...
Phenomenological review on Quark-Gluon Plasma: concepts vs observations
Pasechnik, Roman
2016-01-01
In this review, we present an up-to-date phenomenological summary of research developments in physics of the Quark-Gluon Plasma (QGP). A short historical perspective and theoretical motivation for this rapidly developing field of contemporary Particle Physics is provided. In addition, we introduce and discuss the role of the QCD ground state, non-perturbative and lattice QCD results on the QGP properties as well as the transport models used to make a connection between theory and experiment. The experimental part presents the selected results on bulk observables, hard and penetrating probes obtained in the ultra-relativistic heavy-ion experiments carried out at BNL RHIC, CERN SPS and LHC accelerators. We also give a brief overview of new developments related to the ongoing searches of the QCD critical point and to the collectivity in small ($p+p$ and $p+A$) systems.
Goncalves, V.P. [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden); Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Pelotas, RS (Brazil); Martins, L.A.S.; Sauter, W.K. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Pelotas, RS (Brazil)
2016-02-15
The current uncertainty on the gluon density extracted from the global parton analysis is large in the kinematical range of small values of the Bjorken-x variable and low values of the hard scale Q{sup 2}. An alternative to reduces this uncertainty is the analysis of the exclusive vector meson photoproduction in photon-hadron and hadron-hadron collisions. This process offers a unique opportunity to constrain the gluon density of the proton, since its cross section is proportional to the gluon density squared. In this paper we consider current parametrisations for the gluon distribution and estimate the exclusive vector meson photoproduction cross section at HERA and LHC using the leading logarithmic formalism. We perform a fit of the normalisation of the γh cross section and the value of the hard scale for the process and demonstrate that the current LHCb experimental data are better described by models that assume a slow increasing of the gluon distribution at small x and low Q{sup 2}. (orig.)
Phenomenological aspects of an anisotropic quark-gluon plasma
Martinez Guerrero, Mauricio
2010-04-30
In this work we investigate phenomenological aspects of an anisotropic quark-gluon plasma. In the first part of this thesis, we formulate phenomenologicalmodels that take into account the momentumspace anisotropy of the system developed during the expansion of the fireball at early-times. By including the proper-time dependence of the parton hard momentum scale, p{sub hard}({tau}), and the plasma anisotropy parameter, {xi}({tau}), the proposed models allow us to interpolate from 0+1 pre-equilibrated expansion at early-times to 0+1 ideal hydrodynamics at late times. We study dilepton production as a valuable observable to experimentally determine the isotropization time of the system as well as the degree of anisotropy developed at early-times. We generalize our interpolating models to include the rapidity dependence of p{sub hard} and consider its impact on forward dileptons. Next, we discuss how to constrain the onset of hydrodynamics by demanding two requirements of the solutions to the equations of motion of viscous hydrodynamics. We show this explicitly for 0+1 dimensional 2nd-order conformal viscous hydrodynamics and find that the initial conditions are non-trivially constrained. Finally, we demonstrate how to match the initial conditions for 0+1 dimensional viscous hydrodynamics from pre-equilibrated expansion. We analyze the dependence of the entropy production on the pre-equilibrium phase and discuss limitations of the standard definitions of the non-equilibrium entropy in kinetic theory. (orig.)
Quark vs Gluon Jet Tagging at ATLAS
Rubbo, Francesco; The ATLAS collaboration
2017-01-01
Distinguishing quark-initiated from gluon-initiated jets is useful for many measurements and searches at the LHC. We present a quark-initiated versus gluon-initiated jet tagger from the ATLAS experiment using the number of reconstructed charged particles inside the jet. The measurement of the charged-particle multiplicity inside jets from Run 1 is used to derive uncertainties on the tagger performance for Run 2. With an efficiency of 60% to select quark-initiated jets, the efficiency to select gluon-initiated jets is between 10 and 20% across a wide range in jet pT up to 1.5 TeV with about an absolute 5% systematic uncertainty on the efficiencies. In addition, we also present preliminary studies on a tagger for the ATLAS experiment using the full radiation pattern inside a jet processed as images in deep neural network classifiers.
Constituent gluons and the static quark potential
Greensite, Jeff
2015-01-01
We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated, in Coulomb gauge, by "lattice-improved" tree diagrams; i.e. tree diagram contributions with dressed ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements can be applied to a variational treatment of hadronic states which include constituent gluons. As an illustration and first application of this hybrid approach, we derive a variational estimate of the heavy quark potential for distances up to 2.5 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of four times greater than the asymptotic string tension. In our variational approach, using for simplicity a single variational parameter, we can reduce this overshoot by nearly the factor required. The building blocks of our approach are Coulomb gauge propagators, and in this connection we present new lattice results for the ghost and transverse gluon propagators in position space.
Constituent gluons and the static quark potential
Greensite, Jeff [San Francisco State Univ., CA (United States); Szczepaniak, Adam P. [Indiana Univ., Bloomington, IN (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated, in Coulomb gauge, by "lattice-improved" tree diagrams; i.e. tree diagram contributions with dressed ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements can be applied to a variational treatment of hadronic states which include constituent gluons. As an illustration and first application of this hybrid approach, we derive a variational estimate of the heavy quark potential for distances up to 2.5 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of four times greater than the asymptotic string tension. In our variational approach, using for simplicity a single variational parameter, we can reduce this overshoot by nearly the factor required. The building blocks of our approach are Coulomb gauge propagators, and in this connection we present new lattice results for the ghost and transverse gluon propagators in position space.
Surdutovich, Y
1998-01-01
We study the dynamics of quantum fluctuations which take place during the earliest stage of high-energy collision processes and the conditions under which the data from e– p deep- inelastic scattering(DIS) may serve as a guide for computing the initial data for heavy- ion collisions at high energies. Our method is essentially based on the space-time picture of these seemingly different phenomena. We analyze the inclusive quantum-mechanical measurements, in both cases, and derive the main results relying on causality. The main result is that the transition from the initial- state composite nuclei to the final-state dense system of quark-gluon fields, i.e. quark-gluon plasma, is possible only as a single quantum transition. We prove that the ultra-violet renormalization of virtual loops does not bring any scale into the problem. The scale appears only in connection with real processes of emission of quark and gluon fields and reveals itself through the collinear cut-off in the evolution equations. Thi...
Gluon scattering amplitudes at strong coupling
Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)
2007-06-15
We describe how to compute planar gluon scattering amplitudes at strong coupling in N = 4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.
Shear Viscosity in a Gluon Gas
Xu, Zhe; Greiner, Carsten
2007-01-01
The relation of the shear viscosity coefficient to the recently introduced transport rate is derived within relativistic kinetic theory. We calculate the shear viscosity over entropy ratio \\eta/s for a gluon gas, which involves elastic gg-> gg perturbative QCD (PQCD) scatterings as well as inelastic ggggg PQCD bremsstrahlung. For \\alpha_s=0.3 we find \\eta/s=0.13 and for \\alpha_s=0.6, \\eta/s=0.076. The small \\eta/s values, which suggest strongly coupled systems, are due to the gluon bremsstrah...
Hydrodynamics of anisotropic quark and gluon fluids
Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael
2012-01-01
The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory with the collisional kernel treated in the relaxation-time approximation. Baryon number conservation is enforced in the quark and anti-quark components of the fluid, but overall parton number non-conservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.
Hard electronics; Hard electronics
NONE
1998-03-01
In the fields of power conversion devices and broadcasting/communication amplifiers, high power, high frequency and low losses are desirable. Further, for electronic elements in aerospace/aeronautical/geothermal surveys, etc., heat resistance to 500degC is required. Devices which respond to such hard specifications are called hard electronic devices. However, with Si which is at the core of the present electronics, the specifications cannot fully be fulfilled because of the restrictions arising from physical values. Accordingly, taking up new device materials/structures necessary to construct hard electronics, technologies to develop these to a level of IC were examined and studied. They are a technology to make devices/IC of new semiconductors such as SiC, diamond, etc. which can handle higher temperature, higher power and higher frequency than Si and also is possible of reducing losses, a technology to make devices of hard semiconducter materials such as a vacuum microelectronics technology using ultra-micro/high-luminance electronic emitter using negative electron affinity which diamond, etc. have, a technology to make devices of oxides which have various electric properties, etc. 321 refs., 194 figs., 8 tabs.
On-shell two-loop three-gluon vertex
Davydychev, A I
1999-01-01
The two-loop three-gluon vertex is calculated in an arbitrary covariant gauge, in the limit when two of the gluons are on the mass shell. The corresponding two-loop results for the ghost-gluon vertex are also obtained. It is shown that the results are consistent with the Ward-Slavnov-Taylor identities.
The Gluon Sivers Distribution : Status and Future Prospects
Boer, Daniel; Lorce, Cedric; Pisano, Cristian; Zhou, Jian
2015-01-01
We review what is currently known about the gluon Sivers distribution and what are the opportunities to learn more about it. Because single transverse spin asymmetries in p up arrow p -> pi X provide only indirect information about the gluon Sivers function through the relation with the quark-gluon
Is gadolinium a helical antiferromagnet or a collinear ferromagnet?
S N Kaul
2003-03-01
Controversial issues concerning the nature of magnetic ordering in gadolinium are brieﬂy reviewed. The recent experimental results are shown to resolve most of such issues in that they rule out the possibility of a helical spin structure in Gd and clearly bring out the role of long-range dipolar interactions in stabilising collinear ferromagnetic order for temperatures between the spin-reorientation temperature and the Curie point.
Infrared Divergences from Soft and Collinear Gauge Bosons
Jameson, Paul
2007-01-01
I review the Lee-Nauenberg thereom and discuss its inclusion of photons which are disconnected at the level of the S-matrix but connected at the level of the cross-section when there are initial and final state charged particles. I then expose a new set of soft collinear divergences in massless gauge theories which are omitted in the standard Lee-Nauenberg approach. It seems that highly questionable assumptions are needed to obtain finite cross-sections.
A station-keeping strategy for collinear libration point orbits
无
2011-01-01
Spacecrafts in periodic or quasi-periodic orbits near the collinear libration points are proved to be excellent platforms for scientific investigations of various phenomena.Since such periodic or quasi-periodic orbits are exponentially unstable,the station-keeping maneuver is needed. A station-keeping strategy which is found by an analytical method is presented to eradicate the dominant unstable component of the libration point trajectories.The inhibit force transforms the unstable component to a stable ...
Towards Resolving the Enigma of HOX Gene Collinearity
Papageorgiou, Spyros
2014-12-01
The development of normal patterns along the primary and secondary vertebrate axes depends on the regularity of the early HOX gene expressions. During the initial developmental stages these expressions form a sequential pattern of partially overlapping domains along the anterior-posterior axis of the embryo in coincidence with the 3' to 5' order of the genes in the chromosome (spatial collinearity). In addition, the HOX genes are activated one after the other in the same 3' to 5' order (temporal collinearity). Genetic engineering experiments were performed in order explore the mechanism responsible for these remarkable collinearity phenomena. Several biomolecular models were proposed explaining some of the experimental findings. A biophysical model has been also proposed which is based on the hypothesis that physical forces are created which act on the Hox cluster. This cluster is initially inactive, located inside the chromosome territory. The physical forces translocate sequentially the Hox genes one after the other from inside the chromosome territory towards the interchromosome domain where they are activated in the area of the transcription factories. The above biophysical model mechanism has been strongly supported by recent experimental evidence and some evolutionary considerations. In this model realization, pulling forces are created between the `negatively' charged Hox cluster and its `positively' charged chromatin environment.
High density collinear holographic data storage system (Conference Presentation)
Tan, Xiaodi; Horimai, Hideyoshi; Arai, Ryo; Ikeda, Junichi; Inoue, Mitsuteru; Lin, Xiao; Xu, Ke; Liu, Jinpeng; Huang, Yong
2016-09-01
Collinear holography has been good candidate for a volumetric recording technology of holographic data storage system (HDSS), because of there are not only large storage capacities, high transfer rates, but also the unique configuration, in which the information and reference beams are modulated co-axially by the same spatial light modulator, as a new read/write method for HDSS are very promising. The optical pickup can be designed as small as DVDs, and can be placed on one side of the recording media (disc). In the disc structure, the preformatted reflective layer is used for the focus/tracking servo and reading address information, and a dichroic mirror layer is used for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increase recording density. As servo technologies are being introduced to control the objective lens to be maintained precisely to the disc in the recording and reconstructing process, a vibration isolator is no longer necessary. In this paper, we introduced the principle of the collinear holography and its media structure of disc. Some results of experimental and theoretical studies suggest that it is a very effective method. We also discussed some methods to increase the recording density and data transfer rates of collinear holography using phase modulated page data format.
First Measurement of the Fraction of Top Quark Pair Production Through Gluon-Gluon Fusion
Aaltonen, T; Akimoto, T; Albrow, M G; Alvarez-Gonzalez, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrerar, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillol, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerritop, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenarr, C; Cuevaso, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdeckerd, G; De Lorenzo, G; Dell'Orso, Mauro; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; García, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopoloua, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokarisa, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraesda Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hillc, C S; Hirschbuehl, D; Höcker, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Le Compte, T; Lee, J; Lee, J; Lee, Y J; Leeq, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Mäki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakisa, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martinj, V; Martínez, M; Martinez-Ballarin, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNultyi, R; Mehta, A; Mehtälä, P; Menzemerk, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Müller, T; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsenf, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohosh, F; Punzi, G; Pursley, J; Rademackerc, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojiman, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffarde, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thomg, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; Van Remortel, N; Varganov, A; Vataga, E; Vazquezl, F; Velev, G; Vellidisa, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouevq, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whitesone, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittichg, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yangm, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhengb, Y; Zucchelli, S
2007-01-01
We present the first measurement of the fraction of top quark pair production through gluon-gluon fusion. We use 0.96/fb of s*(1/2)=1.96 TeV p-pbar collision data recorded with the CDF II detector at Fermilab. We identify theE candidate t-tbar events with a high-energy charged lepton, a neutrino candidate, and four or more jets with at least one identified as originating from a b quark. Using charged particles with low transverse momentum in t-tbar events, we find the fraction of top quark pair production through gluon-gluon fusion to be 0.07 +/- 0.14(stat) +/- 0.07(syst), in agreement with the standard model NLO prediction of 0.15 +/- 0.05.
Gluons and the spin of the proton
Kubelskyi, Oleksandr
2010-12-23
The structure of the proton and the origin of the proton spin has been a puzzle for many years. The EMC collaboration at CERN provided the first experimental data on the spin structure of the proton. The result was almost zero net contribution from quarks. Over the past 20 years new measurements of polarized parton distributions became available. The present value of the quark contribution to the proton spin is one third. The remaining 60 percent of the proton spin come from the gluons and orbital angular momentum of quarks and gluons. We investigate how the spin of the proton originates from the spin of its constituents. We study the proton using the phenomenologically accessible parameters such as distribution functions for quarks and gluons. The basic understanding of the proton structure (and in particular its spin structure) is important for interpreting the results of the LHC, which in turn can be used to refine the present knowledge. The proton spin structure gives a detailed information about the dynamical structure of the proton. Based on the present experimental data we suggest that the gluons and quarks play equally important role in the structure of the proton. (orig.)
Exploring Quarks, Gluons and the Higgs Boson
Johansson, K. Erik
2013-01-01
With real particle collision data available on the web, the amazing dynamics of the fundamental particles of the standard model can be explored in classrooms. Complementing the events from the ATLAS experiment with animations of the fundamental processes on the quark and gluon level makes it possible to better understand the invisible world of…
Smilga, A V
1997-01-01
In this lecture, we give a brief review of what theorists now know, understand, or guess about static and kinetic properties of quark--gluon plasma. A particular attention is payed to the problem of physical observability, i.e. the physical meaningfulne ss of various characteristics of QGP discussed in the literature.
Renormalization of dimension 6 gluon operators
HyungJoo Kim
2015-09-01
Full Text Available We identify the independent dimension 6 twist 4 gluon operators and calculate their renormalization in the pure gauge theory. By constructing the renormalization group invariant combinations, we find the scale invariant condensates that can be estimated in nonperturbative calculations and used in QCD sum rules for heavy quark systems in medium.
Exploring Quarks, Gluons and the Higgs Boson
Johansson, K. Erik
2013-01-01
With real particle collision data available on the web, the amazing dynamics of the fundamental particles of the standard model can be explored in classrooms. Complementing the events from the ATLAS experiment with animations of the fundamental processes on the quark and gluon level makes it possible to better understand the invisible world of…
Quark-gluon separation at the LHC
Rauco, Giorgia
2017-01-01
Studies focused on the discrimination between gluon- and quark-like jets at the LHC are presented. The results here discussed are obtained with proton collisions collected by the ATLAS experiment at 8 TeV and by the CMS experiment at 13 TeV.
On Gauge Invariant Descriptions of Gluon Polarization
Guo, Zhi-Qiang
2012-01-01
We propose methods to construct gauge invariant decompositions of nucleon spin, especially gauge invariant descriptions of gluon polarization. We show that gauge invariant decompositions of nucleon spin can be derived naturally from the conserved current of a generalized Lorentzian transformation by Noether theorem. We also examine the problem of gauge dependence with a gauge invariant extension of the Chern-Simons current.
Baryon Ratios in Quark-Gluon Plasma
MA Zhong-Biao; MIAO Hong; GAO Chong-Shou
2003-01-01
A way to calculate ratios of baryon produced from quark gluon plasma in relativistic heavyion collisionsis presented. It is assumed that at the beginning of the hadronization there are diquarks and anti-diquarks in the quarkmatter. The number of three-quark states is distributed between the corresponding multiplets, and hadronic decays aretaken into account. The results are shown at last.
Recent COMPASS results on the gluon polarization
Quintans, Catarina
2009-01-01
The spin structure of the nucleon is studied in the COMPASS experiment at CERN/SPS, from the collisions of 160 GeV polarized muon beam with a $^{6}$LiD target. The data collected from 2002 to 2006 provide an accurate measurement of longitudinal double spin cross-section asymmetries. The latest results on the gluon polarization, accessed from two independent analyses of photon-gluon fusion selected events, are presented. The study of the open-charm production allows to extract the gluon polarization (in LO QCD) from the measurement of the asymmetry, the value obtained being $\\Delta g/g = -$ 0.49 $\\pm$ 0.27($stat$) $\\pm$ 0.11($syst$), at an average $x_{g} =$ 0.11$^{+0.11}_{-0.05}$ and a scale $\\langle\\mu^{2}\\rangle =$ 13 (GeV/c)$^{2}$. An alternative and independent way to study the gluon polarization, by studying the high transverse momentum hadron pairs produced, leads to a value $\\Delta g/g =$ 0.08 $\\pm$ 0.10($stat$) $\\pm$ 0.05($syst$), at $x^{av}_{g} =$ 0.082$^{+0.041}_{-0.027}$ and $\\langle\\mu^{2}\\rangle =...
Nonperturbative study of the four gluon vertex
Binosi, D; Papavassiliou, J
2014-01-01
In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where "one-loop" diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale $p$ is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergen...
Impact Factors for Reggeon-Gluon Transitions
Fadin, V S
2015-01-01
General expressions for the impact factors up to terms vanishing at the space-time dimension $D\\rightarrow 4$ are presented. Their infrared behaviour is analysed and calculation of exact in $D\\rightarrow 4$ asymptotics at small momenta of Reggeized gluons is discussed.
Gluon Sivers function in a light-cone spectator model
Lu, Zhun
2016-01-01
We calculate the gluon Sivers function of the proton in the valence-$x$ region using a light-cone spectator model with the presence of the gluon degree of freedom. We obtain the values of the parameters by fitting the model resulting gluon density distribution to the known parametrization. We find that our results agree with the recent phenomenological extraction of the gluon Sivers function after considering the evolution effect. We also estimate the mean transverse momentum of the gluon in a transversely polarized proton and find that it is within the range implied by the Burkardt sum rule.
Gluon chains and the quark-antiquark potential
Greensite, J
2009-01-01
The flux tube between a quark and an antiquark in Coulomb gauge is imagined in the gluon-chain model as a sequence of constituent gluons bound together by Coulombic nearest-neighbor interactions. We diagonalize the transfer matrix in SU(2) lattice gauge theory in a finite basis of states containing a static quark-antiquark pair together with zero, one, and two gluons in Coulomb gauge. We show that while the string tension of the color-Coulomb potential (obtained from the zero-gluon to zero-gluon element of the transfer matrix) overshoots the true asymptotic string tension by a factor of about three, the inclusion of a few states with constituent gluons reduces the discrepancy considerably. The minimal energy eigenstate of the transfer matrix in the zero-, one-, and two-gluon basis exhibits a linearly rising potential with the string tension only about 1.4 times larger than the asymptotic one.
Virtualities of quark and gluon in QCD vacuum
2008-01-01
The non-local vacuum condensates of quantum chromodynamics (QCD) describe the distributions of quarks and gluons in the non-perturbative QCD vacuum state. Physically, this means that vacuum quarks and gluons have a nonzero mean-squared momentum in the vacuum, called virtuality. The quark virtuality is given by the ratio of the local quark-gluon mixed vacuum condensate to the quark local vacuum condensate. The gluon virtuality is expressed by gluon vacuum condensates and four-quark vacuum condensates. We study the two virtualities by solving Dyson-Schwinger Equations and calculating quark and gluon vacuum condensates. Our theoretical results for quark virtuality are in good agreement with many other theoretical model predictions such as QCD sum rules and lattice QCD calculations. Our calculation on gluon virtuality is initial and the results are quite interesting.
The sound generated by a fast parton in the quark-gluon plasma is a crescendo
Neufeld, R. B.; Müller, B.
2009-11-01
The total energy deposited into the medium per unit length by a fast parton traversing a quarkgluon plasma is calculated. We take the medium excitation due to collisions to be given by the well known expression for the collisional drag force. The parton's radiative energy loss contributes to the energy deposition because each radiated gluon acts as an additional source of collisional energy loss in the medium. In our model, this leads to a length dependence on the differential energy loss due to the interactions of radiated gluons with the medium. The final result, which is a sum of the primary and the secondary contributions, is then treated as the coefficient of a local hydrodynamic source term. Results are presented for energy density wave induced by two fast, back-to-back partons created in an initial hard interaction.
The sound generated by a fast parton in the quark-gluon plasma is a crescendo
Neufeld, R.B.; Mueller, B. [Department of Physics, Duke University, Durham, NC 27708 (United States)
2009-11-01
The total energy deposited into the medium per unit length by a fast parton traversing a quarkgluon plasma is calculated. We take the medium excitation due to collisions to be given by the well known expression for the collisional drag force. The parton's radiative energy loss contributes to the energy deposition because each radiated gluon acts as an additional source of collisional energy loss in the medium. In our model, this leads to a length dependence on the differential energy loss due to the interactions of radiated gluons with the medium. The final result, which is a sum of the primary and the secondary contributions, is then treated as the coefficient of a local hydrodynamic source term. Results are presented for energy density wave induced by two fast, back-to-back partons created in an initial hard interaction.
Colliding solitary waves in quark gluon plasmas
Rafiei, Azam; Javidan, Kurosh
2016-09-01
We study the head-on collision of propagating waves due to perturbations in quark gluon plasmas. We use the Massachusetts Institute of Technology bag model, hydrodynamics equation, and suitable equation of state for describing the time evolution of such localized waves. A nonlinear differential equation is derived for the propagation of small amplitude localized waves using the reductive perturbation method. We show that these waves are unstable and amplitude of the left-moving (right-moving) wave increases (decreases) after the collision, and so they reach the borders of a quark gluon plasma fireball with different amplitudes. Indeed we show that such arrangements are created because of the geometrical symmetries of the medium.
Recent gluon polarization results from COMPASS
Quintans, C
2007-01-01
One of the main goals of the COMPASS experiment at CERN is the measurement of the gluon polarization in the nucleon, $\\Delta G$, by scattering of 160 GeV/c polarized muons on a polarized $^{6}$LiD target. This quantity is experimentally accessible via the photon-gluon fusion process, tagged either by charmed mesons production or by high $p_{T}$ hadron pairs production. The status of these two analyses is presented. Preliminary results obtained from the 2002/03 data samples on the $D^{0}$ and the $D^{*\\pm}$ channels are shown. The high $p_{T}$ hadron pairs, produced at $Q^{2}\\lessgtr$ 1 (GeV/c)$^{2}$, were also analysed, and the measured $\\Delta G/G$ values are presented here.
Higgs production in gluon fusion beyond NNLO
Ball, Richard D; Forte, Stefano; Marzani, Simone; Ridolfi, Giovanni
2013-01-01
We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N3LO) in alpha_s with finite top mass. We argue that an accurate approximationcan be constructed by exploiting the analiticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N3LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result.
Strongly Coupled Quark Gluon Plasma (SCQGP)
Bannur, V M
2006-01-01
We propose that the reason for the non-ideal behavior seen in lattice simulation of quark gluon plasma (QGP) and relativistic heavy ion collisions (URHICs) experiments is that the QGP near T_c and above is strongly coupled plasma (SCP), i.e., strongly coupled quark gluon plasma (SCQGP). It is remarkable that the widely used equation of state (EoS) of SCP in QED (quantum electrodynamics) very nicely fits lattice results on all QGP systems, with proper modifications to include color degrees of freedom and running coupling constant. Results on pressure in pure gauge, 2-flavors and 3-flavors QGP, are all can be explained by treating QGP as SCQGP as demonstated here.Energy density and speed of sound are also presented for all three systems.
Plasmons in Anisotropic Quark-Gluon Plasma
Carrington, Margaret E; Mrowczynski, Stanislaw
2014-01-01
Plasmons of quark-gluon plasma - gluon collective modes - are systematically studied. The plasma is, in general, non-equilibrium but homogeneous. We consider anisotropic momentum distributions of plasma constituents which are obtained from the isotropic one by stretching or squeezing in one direction. This leads to prolate or oblate distributions, respectively. We study all possible degrees of one dimensional deformation from the extremely prolate case, when the momentum distribution is infinitely elongated in one direction, to the extremely oblate distribution, which is infinitely squeezed in the same direction. In between these extremes we discuss arbitrarily prolate, weakly prolate, isotropic, weakly oblate and arbitrarily oblate distributions. For each case, the number of modes is determined using a Nyquist analysis and the complete spectrum of plasmons is found analytically if possible, and numerically when not. Unstable modes are shown to exist in all cases except that of isotropic plasma. We derive con...
Effective "Gluon" Dynamics in a Stochastic Vacuum
Magpantay, J A
2002-01-01
Using the new scalar and vector degrees of freedom derived from the non-linear gauge condition (grad-dot-D)(grad-dot-A)=0, we show that the effective dynamics of the vector fields (identified as ``gluons'') in the stochastic vacuum defined by the scalars result in the vector fields acquiring a mass. We also find the vector fields losing their self-interactions.
Tracing the pressure of the gluon plasma
Jackson, G
2016-01-01
Being interested in how a strongly coupled system approaches asymptotic freedom, we re-examine existing precision lattice QCD results for thermodynamic properties of the gluon plasma in a large temperature range. We discuss and thoroughly test the applicability of perturbative results, on which grounds we then infer that the pressure and other bulk properties approach the free limit somewhat slower than previously thought. We also revise the value of the first non-perturbative coefficient in the weak-coupling expansion.
Energy Density in Quark-Gluon Plasma
马忠彪; 苗洪; 高崇寿
2003-01-01
We study the energy density in quark-gluon plasma. At the very high temperature, the quark matter is a hot and dense matter in the colour deconfinement condition, and quarks can coalescent diquarks. Energy density of this system is worked out and compared with the energy density in the other two kinds of situations. Possible energy density is about eo ≈ 2.4 GeV/fm3 according to our estimation for quark matter including diquarks,
On the quark-gluon plasma search
Hamieh, S. D.
2004-01-01
We report on the effect of the quantum statistics on the two-proton spin correlation (SC) in cold and thermal nuclear matter. We have found that two nucleons SC function can be well approximated by a guassian with correlations length $\\sigma\\sim1.2$ fm. We have proposed SC measurement on low protons energy as test of the quark-gluon plasma formation in relativistic heavy ions collisions.
Landau gauge gluon vertices from Lattice QCD
Duarte, Anthony G; Silva, Paulo J
2016-01-01
In lattice QCD the computation of one-particle irreducible (1PI) Green's functions with a large number (> 2) of legs is a challenging task. Besides tuning the lattice spacing and volume to reduce finite size effects, the problems associated with the estimation of higher order moments via Monte Carlo methods and the extraction of 1PI from complete Green's functions are limitations of the method. Herein, we address these problems revisiting the calculation of the three gluon 1PI Green's function.
Gluon saturation beyond (naive) leading logs
Beuf, Guillaume
2014-12-15
An improved version of the Balitsky–Kovchegov equation is presented, with a consistent treatment of kinematics. That improvement allows to resum the most severe of the large higher order corrections which plague the conventional versions of high-energy evolution equations, with approximate kinematics. This result represents a further step towards having high-energy QCD scattering processes under control beyond strict Leading Logarithmic accuracy and with gluon saturation effects.
Effective gluon interactions from superstring disk amplitudes
Oprisa, D.
2006-05-15
In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)
Acousto-optic collinear filter with optoelectronic feedback
Mantsevich, S. N.; Balakshy, V. I.; Kuznetsov, Yu. I.
2017-04-01
A spectral optoelectronic system combining a collinear acousto-optic cell fabricated of calcium molybdate single crystal and a positive electronic feedback is proposed first and examined theoretically and experimentally. The feedback signal is formed at the cell output due to the optical heterodyning effect with the use of an unconventional regime of cell operation. It is shown that the feedback enables controlling spectral characteristics of the acousto-optic cell, resulting in enhancing the spectral resolution and the accuracy of optical wavelength determination. In the experiment, maximal filter passband narrowing was as great as 37 times.
H atom transfer of collinear OH…O system
WU, Tao(吴韬); CHEN, Xian-Yang(陈先阳); PENG, Jian-Bo(彭建波); JU, Guan-Zhi(居冠之); JU, Guan-Zhi(居冠之)
2000-01-01
A quantum mechanical calculation was performed to study the hydrogen atom transfer of collinear OH…O/OD…O system,for which Delves ' coordinates and R-matrix propagation method were applied in a Melius-Blint potential energy surface. The calculation result showed that the state-state H atom transfer probability comported strong oscillation phenomena and collision delay time of the title system was in the fs-ps time scale. The kinetic isotope effect was calculated in this work too.
Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes
Flanagan, K T; Ruiz, R F Garcia; Budincevic, I; Procter, T J; Fedosseev, V N; Lynch, K M; Cocolios, T E; Marsh, B A; Neyens, G; Strashnov, I; Stroke, H H; Rossel, R E; Heylen, H; Billowes, J; Rothe, S; Bissell, M L; Wendt, K D A; de Groote, R P; De Schepper, S
2013-01-01
The magnetic moments and isotope shifts of the neutron-deficient francium isotopes Fr202-205 were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1\\% was measured for Fr-202. The background from nonresonant and collisional ionization was maintained below one ion in 10(5) beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to Fr-205, with a departure observed in Fr-203 (N = 116).
Collinear Equilibrium Solutions of Four-body Problem
Muhammad Shoaib; Ibrahima Faye
2011-09-01
We discuss the equilibrium solutions of four different types of collinear four-body problems having two pairs of equal masses. Two of these four-body models are symmetric about the center-of-mass while the other two are non-symmetric.We define two mass ratios as 1 = 1/T and 2 = 2/MT, where 1 and 2 are the two unequal masses and T is the total mass of the system. We discuss the existence of continuous family of equilibrium solutions for all the four types of four-body problems.
BUNDLE ADJUSTMENTS CCD CAMERA CALIBRATION BASED ON COLLINEARITY EQUATION
Liu Changying; Yu Zhijing; Che Rensheng; Ye Dong; Huang Qingcheng; Yang Dingning
2004-01-01
The solid template CCD camera calibration method of bundle adjustments based on collinearity equation is presented considering the characteristics of space large-dimension on-line measurement. In the method, a more comprehensive camera model is adopted which is based on the pinhole model extended with distortions corrections. In the process of calibration, calibration precision is improved by imaging at different locations in the whole measurement space, multi-imaging at the same location and bundle adjustments optimization. The calibration experiment proves that the calibration method is able to fulfill calibration requirement of CCD camera applied to vision measurement.
Quantum-optical coherence tomography with collinear entangled photons.
Lopez-Mago, Dorilian; Novotny, Lukas
2012-10-01
Quantum-optical coherence tomography (QOCT) combines the principles of classical OCT with the correlation properties of entangled photon pairs [Phys. Rev. A 65, 053817 (2002)]. The standard QOCT configuration is based on the Hong-Ou-Mandel interferometer, which uses entangled photons propagating in separate interferometer arms. This noncollinear configuration imposes practical limitations, e.g., misalignment due to drift and low signal-to-noise. Here, we introduce and implement QOCT based on collinear entangled photons. It makes use of a two-photon Michelson interferometer and offers several advantages, such as simplicity, robustness, and adaptability.
Graviton as a pair of collinear gauge bosons
Stephan Stieberger
2014-12-01
Full Text Available We show that the mixed gravitational/gauge superstring amplitudes describing decays of massless closed strings – gravitons or dilatons – into a number of gauge bosons, can be written at the tree (disk level as linear combinations of pure open string amplitudes in which the graviton (or dilaton is replaced by a pair of collinear gauge bosons. Each of the constituent gauge bosons carry exactly one half of the original closed string momentum, while their ±1 helicities add up to ±2 for the graviton or to 0 for the dilaton.
Graviton as a pair of collinear gauge bosons
Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Taylor, Tomasz R. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)
2014-12-12
We show that the mixed gravitational/gauge superstring amplitudes describing decays of massless closed strings – gravitons or dilatons – into a number of gauge bosons, can be written at the tree (disk) level as linear combinations of pure open string amplitudes in which the graviton (or dilaton) is replaced by a pair of collinear gauge bosons. Each of the constituent gauge bosons carry exactly one half of the original closed string momentum, while their ±1 helicities add up to ±2 for the graviton or to 0 for the dilaton.
Stumpf, H.
1987-03-01
The model is defined by a selfregularizing nonlinear preon field equation and all observable (elementary and non-elementary) particles are assumed to be bound (quantum) states of the fermionic preon fields. In particular electroweak gauge bosons are two-particle composites, leptons and quarks are three-particle composites, and gluons are six-particle composites. Electroweak gauge bosons, leptons and quarks and their effective interactions etc. were studied in preceding papers. In this paper gluons and their effective dynamics are discussed. Due to the complications of a six-particle bound state dynamics the formation of gluons is performed in two steps: First the effective dynamics of three-particle composites (quarks) is derived, and secondly gluons are fusioned from two quarks respectively. The resulting effective gluon dynamics is a non-abelian SU(3) dynamics, i.e. this local gauge dynamics is produced by the properties of the composites and need not be introduced in the original preon field equation. Mathematically these results are achieved by the application of functional quantum theory to the model under consideration and subsequent evaluation of weak mapping procedures, both introduced in preceding papers. PACS 11.10 Field theory. PACS 12.10 Unified field theories and models. PACS 12.35 Composite models of particles.
Gluon Propagator in Fractional Analytic Perturbation Theory
Allendes, Pedro; Cvetič, Gorazd
2014-01-01
We consider the gluon propagator in the Landau gauge at low spacelike momenta and with the dressing function $Z(Q^2)$ at the two-loop order. We incorporate the nonperturbative effects by making the (noninteger) powers of the QCD coupling in the dressing function $Z(Q^2)$ analytic (holomorphic) via the Fractional Analytic Perturbation Theory (FAPT) model, and simultaneously introducing the gluon dynamical mass in the propagator as motivated by the previous analyses of the Dyson-Schwinger equations. The obtained propagator has behavior compatible with the unquenched lattice data ($N_f=2+1$) at low spacelike momenta $0.4 \\ {\\rm GeV} < Q \\lesssim 10$ GeV. We conclude that the removal of the unphysical Landau singularities of the powers of the coupling via the (F)APT prescription, in conjunction with the introduction of the dynamical mass $M \\approx 0.62$ GeV of the gluon, leads to an acceptable behavior of the propagator in the infrared regime.
The Gluon Sivers Distribution: Status and Future Prospects
Daniël Boer
2015-01-01
Full Text Available We review what is currently known about the gluon Sivers distribution and what are the opportunities to learn more about it. Because single transverse spin asymmetries in p↑p→πX provide only indirect information about the gluon Sivers function through the relation with the quark-gluon and tri-gluon Qiu-Sterman functions, current data from hadronic collisions at RHIC have not yet been translated into a solid constraint on the gluon Sivers function. SIDIS data, including the COMPASS deuteron data, allow for a gluon Sivers contribution of natural size expected from large Nc arguments, which is O(1/Nc times the nonsinglet quark Sivers contribution. Several very promising processes to measure the gluon Sivers effect directly have been suggested, which besides RHIC investigations, would strongly favor experiments at AFTER@LHC and a possible future Electron-Ion Collider. Due to the inherent process dependence of TMDs, the gluon Sivers TMD probed in the various processes are different linear combinations of two universal gluon Sivers functions that have different behavior under charge conjugation and that therefore satisfy different theoretical constraints. For this reason both hadronic and DIS type of collisions are essential in the study of the role of gluons in transversely polarized protons.
Chien, Yang-Ting
2015-01-01
We calculate the jet shape and the jet cross section in heavy ion collisions using soft-collinear effective theory (SCET) and its extension with Glauber gluon interactions in the medium (SCET$_{\\rm G}$). We use the previously developed framework to systematically resum the jet shape at next-to-leading logarithmic accuracy, and we consistently include the medium modification by incorporating the leading order medium-induced splitting functions. The calculation provides, for the first time, a quantitative understanding of the jet shape modification measurement in lead-lead collisions at $\\sqrt{s_{\\rm NN}}=2.76$ TeV at the LHC. The inclusive jet suppression is also calculated within the same framework beyond the traditional concept of parton energy loss, and the dependence on the centrality, the jet radius and the jet kinematics is examined. In the end we present predictions for the anticipated jet shape and cross section measurements in lead-lead collisions at $\\sqrt{s_{\\rm NN}}\\approx5.1$ TeV at the LHC.
Ternary fission of 260No in collinear configuration
Ismail, M.; Seif, W. M.; Hashem, A. S.; Botros, M. M.; Abdul-Magead, I. A. M.
2016-09-01
We investigate the collinear ternary fission of the 260No isotope. The calculations are performed in the framework of the three cluster model for all possible accompanied light particles of even mass numbers A = 4 - 52. The folding nuclear and Coulomb interaction potentials are used, based on the M3Y-Reid nucleon-nucleon force for the nuclear part. The deformation of the involved fragments and their relative orientations with respect to each other inside the fissioning nuclei are considered. Among all possible fragmentation channels, the suggested most probable channels are indicated as the ones showing a peak in the Q-value and a local minimum in the fragmentation potential, with respect to the mass and charge asymmetries. The indicated favored fragmentation channels from the approximate spherical calculations and those obtained after considering the deformations of the produced fragments are discussed in detail. In addition to the preferred heavy fragments of closed shells, favored prolate ones of high deformations appear when the nuclear deformations are taken into account. Among indicated fifty six favored channels, a collinear ternary fission of the 260No isotope is indicated to be most favored through the fragmentation channels of 15058Ce+410Be+40100Zr,60152Nd+412Be+3896Sr,58150Ce+614C+3896Sr,58148Ce+616C+3896Sr,54140Xe+822O+4098Zr,42106Mo+1848Ar+42106Mo and 41104Nb+2052Ca+41104Nb.
Collinearly-improved BK evolution meets the HERA data
E. Iancu
2015-11-01
Full Text Available In a previous publication, we have established a collinearly-improved version of the Balitsky–Kovchegov (BK equation, which resums to all orders the radiative corrections enhanced by large double transverse logarithms. Here, we study the relevance of this equation as a tool for phenomenology, by confronting it to the HERA data. To that aim, we first improve the perturbative accuracy of our resummation, by including two classes of single-logarithmic corrections: those generated by the first non-singular terms in the DGLAP splitting functions and those expressing the one-loop running of the QCD coupling. The equation thus obtained includes all the next-to-leading order corrections to the BK equation which are enhanced by (single or double collinear logarithms. We then use numerical solutions to this equation to fit the HERA data for the electron–proton reduced cross-section at small Bjorken x. We obtain good quality fits for physically acceptable initial conditions. Our best fit, which shows a good stability up to virtualities as large as Q2=400 GeV2 for the exchanged photon, uses as an initial condition the running-coupling version of the McLerran–Venugopalan model, with the QCD coupling running according to the smallest dipole prescription.
Computing collinear 4-Body Problem central configurations with given masses
Piña, E
2011-01-01
An interesting description of a collinear configuration of four particles is found in terms of two spherical coordinates. An algorithm to compute the four coordinates of particles of a collinear Four-Body central configuration is presented by using an orthocentric tetrahedron, which edge lengths are function of given masses. Each mass is placed at the corresponding vertex of the tetrahedron. The center of mass (and orthocenter) of the tetrahedron is at the origin of coordinates. The initial position of the tetrahedron is placed with two pairs of vertices each in a coordinate plan, the lines joining any pair of them parallel to a coordinate axis, the center of masses of each and the center of mass of the four on one coordinate axis. From this original position the tetrahedron is rotated by two angles around the center of mass until the direction of configuration coincides with one axis of coordinates. The four coordinates of the vertices of the tetrahedron along this direction determine the central configurati...
Diphoton excess at 750 GeV: gluon-gluon fusion or quark-antiquark annihilation?
Gao, Jun [Argonne National Laboratory, High Energy Physics Division, Argonne, IL (United States); Zhang, Hao [University of California, Santa Barbara, Department of Physics, Santa Barbara, CA (United States); Zhu, Hua Xing [Massachusetts Institute of Technology, Center for Theoretical Physics, Cambridge, MA (United States)
2016-06-15
Recently, ATLAS and CMS collaborations reported an excess in the measurement of diphoton events, which can be explained by a new resonance with a mass around 750 GeV. In this work, we explored the possibility of identifying if the hypothetical new resonance is produced through gluon-gluon fusion or quark-antiquark annihilation, or tagging the beam. Three different observables for beam tagging, namely the rapidity and transverse-momentum distribution of the diphoton, and one tagged bottom-jet cross section, are proposed. Combining the information gained from these observables, a clear distinction of the production mechanism for the diphoton resonance is promising. (orig.)
Classical gluon production amplitude in heavy-ion collisions
Chirilli Giovanni Antonio
2016-01-01
Full Text Available The distribution of quarks and gluons produced in the initial stages of nuclear collisions, known as the initial condition of the Quark-Gluon Plasma formation, is the fundamental building block of heavy-ion theory. I will present the scattering amplitude, beyond the leading order, of the classical gluon produced in heavy-ion collisions. The result is obtained in the framework of saturation physics and Wilson lines formalism.
The refractive index in the viscous quark-gluon plasma
Jiang, Bing-feng; Li, Jia-rong; Gao, Yan-Jun
2013-01-01
Under the framework of the viscous chromohydrodynamics, the gluon self-energy is derived for the quark-gluon plasma with shear viscosity. The viscous electric permittivity and magnetic permeability are evaluated from the gluon self-energy, through which the refraction index %in the %viscous quark-gluon plasma is investigated. The numerical analysis indicates that the refractive index becomes negative in some frequency range. The start point for that frequency range is around the electric permittivity pole, and the magnetic permeability pole determines the end point. As the increase of $\\eta/s$, the frequency range for the negative refraction becomes wider.
From Running Gluon Mass to Chiral Symmetry Breaking
Oliveira, Orlando; Dudal, D; Frederico, T; de Paula, W; Vandersickel, N
2011-01-01
The gluon propagator is one of the fundamental Green's functions of QCD. It is an essential ingredient in, for example, the modeling of the Schwinger-Dyson equation used to describe hadronic phenomenology. From the Landau gauge gluon propagator, computed with lattice QCD methods, we discuss its interpretation as a massive propagator and measure the gluon mass as a function of the momenta. Special attention is given to the mass at infrared scales. In the last part of the talk, the gluon mass and chiral symmetry breaking are related via an effective model for QCD.
Dependence of Quark Effective Mass on Gluon Propagators
HE Xiao-Rong; ZHOU Li-Juan; MA Wei-Xing
2005-01-01
Based on Dyson-Schwinger Equations (DSEs) in the "rainbow" approximation, the dependence of quark effective mass on gluon propagator is investigated by use of three different phenomenological gluon propagators with two parameters, the strength parameter x and range parameter △. Our theoretical calculations for the quark effective mass Mf(p2), defined by the self-energy functions Af(p2) and Bf(p2) of the DSEs, show that the dynamically running quark effective mass is strongly dependent on gluon propagator. Therefore, because gluon propagator is completely unknown,the quark effective mass cannot be exactly determined theoretically.
Soft Gluon Radiation off Heavy Quarks beyond Eikonal Approximation
Trambak Bhattacharyya
2016-01-01
Full Text Available We calculate the soft gluon radiation spectrum off heavy quarks (HQs interacting with light quarks (LQs beyond small angle scattering (eikonality approximation and thus generalize the dead-cone formula of heavy quarks extensively used in the literatures of Quark-Gluon Plasma (QGP phenomenology to the large scattering angle regime which may be important in the energy loss of energetic heavy quarks in the deconfined Quark-Gluon Plasma medium. In the proper limits, we reproduce all the relevant existing formulae for the gluon radiation distribution off energetic quarks, heavy or light, used in the QGP phenomenology.
Heavy-Quark Diffusion Dynamics in Quark-Gluon Plasma under Strong Magnetic Fields
Hattori, Koichi; Yee, Ho-Ung; Yin, Yi
2016-01-01
We discuss heavy-quark dynamics in the quark-gluon plasma under a strong magnetic field induced by colliding nuclei. By the use of the diagrammatic resummation techniques for Hard Thermal Loop and the external magnetic field, we show analytic results of heavy-quark diffusion coefficient and drag force which become anisotropic due to the preferred spatial orientation in the magnetic field. We argue that the anisotropic diffusion coefficient gives rise to an enhancement/suppression of the heavy-quark elliptic flow depending on the transverse momentum.
Effect of optoelectronic feedback on the characteristics of acousto-optical collinear filtering
Balakshy, V I; Kuznetsov, Yu I; Mantsevich, S N [Department of Physics, M.V. Lomonosov Moscow State University (Russian Federation)
2016-02-28
The first results of the theoretical and experimental studies of an acousto-optical system with feedback based on a collinear cell made of a calcium molybdate crystal are presented. It is shown that the positive electronic feedback allows essential sharpening of the instrument function of the acousto-optical collinear filter, thus increasing the precision of measuring the optical radiation wavelength. (acoustooptics)
Adolph, C.; Akhunzyanov, R.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badelek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Chang, W.C.; Chiosso, M.; Choi, I.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F.H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Jorg, P.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kramer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; J.Matou s; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.C.; Pereira, F.; M. Pe s; Peshekhonov, D.V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Weisrock, T.; Wilfert, M.; Wolbeek, J. ter; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.
2016-01-01
Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality $Q^2>1~({\\rm GeV}/c)^2$. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/$c$ polarised muon beam impinging on a polarised $^6$LiD target. By analysing the full range in hadron transverse momentum $p_T$, the different $p_T$-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation $\\Delta g/g$ is evaluated at leading order in pQCD at a hard scale of $\\mu^2 = \\langle Q^2\\rangle = 3(GeV=c)^2$. It is determined in three intervals of the nucleon momentum fraction carried by gluons, $x_g$, covering the range $0.04 \\!<\\! x_{ \\rm g}\\! <\\! 0.28$ . and does not exhibit a significant dependence on $x_{\\rm g}$. Average...
The Dimension Six Triple Gluon Operator in Higgs+Jet Observables
Ghosh, Diptimoy
2014-01-01
Recently a lot of progress has been made towards a full classification of new physics effects in Higgs observables by means of effective dimension six operators. Specifically, Higgs production in association with a high transverse momentum jet has been suggested as a way to discriminate between operators that modify the Higgs-top coupling and operators that induce an effective Higgs-gluon coupling---a distinction that is hard to achieve with signal strength measurements alone. With this article we would like to draw attention to another source of new physics in Higgs+jet observables: the triple gluon operator $O_{3g}$ (consisting of three factors of the gluon field strength tensor). We compute the distortions of kinematic distributions in Higgs+jet production at a 14 TeV LHC due to $O_{3g}$ and compare them with the distortions due to dimension six operators involving the Higgs doublet. We find that the transverse momentum, the jet rapidity and the difference between the Higgs and jet rapidity are well suited...
Adolph, C.; Akhunzyanov, R.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badelek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Chang, W.C.; Chiosso, M.; Choi, I.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F.H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Jorg, P.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kramer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; J.Matou s; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.C.; Pereira, F.; M. Pe s; Peshekhonov, D.V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Weisrock, T.; Wilfert, M.; Wolbeek, J. ter; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.
2017-01-01
Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality $Q^2>1~({\\rm GeV}/c)^2$. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/$c$ polarised muon beam impinging on a polarised $^6$LiD target. By analysing the full range in hadron transverse momentum $p_T$, the different $p_T$-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation $\\Delta g/g$ is evaluated at leading order in pQCD at a hard scale of $\\mu^2 = \\langle Q^2\\rangle = 3(GeV=c)^2$. It is determined in three intervals of the nucleon momentum fraction carried by gluons, $x_g$, covering the range $0.04 \\!<\\! x_{ \\rm g}\\! <\\! 0.28$ . and does not exhibit a significant dependence on $x_{\\rm g}$. Average...
Phenomenological Review on Quark–Gluon Plasma: Concepts vs. Observations
Roman Pasechnik
2017-01-01
Full Text Available In this review, we present an up-to-date phenomenological summary of research developments in the physics of the Quark–Gluon Plasma (QGP. A short historical perspective and theoretical motivation for this rapidly developing field of contemporary particle physics is provided. In addition, we introduce and discuss the role of the quantum chromodynamics (QCD ground state, non-perturbative and lattice QCD results on the QGP properties, as well as the transport models used to make a connection between theory and experiment. The experimental part presents the selected results on bulk observables, hard and penetrating probes obtained in the ultra-relativistic heavy-ion experiments carried out at the Brookhaven National Laboratory Relativistic Heavy Ion Collider (BNL RHIC and CERN Super Proton Synchrotron (SPS and Large Hadron Collider (LHC accelerators. We also give a brief overview of new developments related to the ongoing searches of the QCD critical point and to the collectivity in small (p + p and p + A systems.
Evolution to the quark–gluon plasma
Fukushima, Kenji
2017-02-01
Theoretical studies on the early-time dynamics in the ultra-relativistic heavy-ion collisions are reviewed, including pedagogical introductions on the initial condition with small-\\text{x} gluons treated as a color glass condensate, the bottom–up thermalization scenario, plasma/glasma instabilities, basics of some formulations such as the kinetic equations and the classical statistical simulation. More detailed discussions follow to make an overview of recent developments on the fast isotropization, the onset of hydrodynamics, and the transient behavior of momentum spectral cascades.
Electromagnetic signals of quark gluon plasma
Bikash Sinha
2000-04-01
Successive equilibration of quark degrees of freedom and its effects on electromagnetic signals of quark gluon plasma are discussed. The effects of the variation of vector meson masses and decay widths on photon production from hot strongly interacting matter formed after Pb + Pb and S + Au collisions at CERN SPS energies are considered. It has been shown that the present photon spectra measured by WA80 and WA98 Collaborations can not distinguish between the formation of quark matter and hadronic matter in the initial state.
Gluon Green functions free of Quantum fluctuations
Athenodorou, A; De Soto, F; Rodríguez-Quintero, J; Zafeiropoulos, S
2016-01-01
This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum fluctuations of 2- and 3-gluon Green functions, removes the $\\Lambda_{\\rm QCD}$ scale and destroys the transition from the confining non-perturbative to the asymptotically-free perturbative sector. After the Wilson flow, the behavior of the Green functions with momenta can be described in terms of the quasi-classical instanton background. The same behavior also occurs, before the Wilson flow, at low-momenta. This last result permits applications as, for instance, the detection of instanton phenomenological properties or a cheap lattice calibration.
Evolution to the Quark-Gluon Plasma
Fukushima, Kenji
2016-01-01
Theoretical studies on the early-time dynamics in the ultra-relativistic heavy-ion collisions are reviewed including pedagogical introductions on the initial condition with small-x gluons treated as a color glass condensate, the bottom-up thermalization scenario, plasma/glasma instabilities, basics of some formulations such as the kinetic equations and the classical statistical simulation. More detailed discussions follow to make an overview of recent developments on the fast isotropization, the onset of hydrodynamics, and the transient behavior of momentum spectral cascades.
The Theory of Quark and Gluon Interactions
Ynduráin, Francisco J
2006-01-01
F. J. Ynduráin's book on Quantum Chromodynamics has become a classic among advanced textbooks. First published in 1983, and translated into Russian in 1986, it now sees its fourth edition. It addresses readers with basic knowledge of field theory and particle phenomenology. The author presents the basic facts of quark and gluon physics in pedagogical form. Theory is always confronted with experimental findings. The reader will learn enough to be able to follow modern research articles. This fourth edition presents a new section on heavy quark effective theories, more material on lattice QCD and on chiral perturbation theory.
Arezoo Bagheri
2012-01-01
Full Text Available There is strong evidence indicating that the existing measures which are designed to detect a single high leverage collinearity-reducing observation are not effective in the presence of multiple high leverage collinearity-reducing observations. In this paper, we propose a cutoff point for a newly developed high leverage collinearity-influential measure and two existing measures ( and to identify high leverage collinearity-reducing observations, the high leverage points which hide multicollinearity in a data set. It is important to detect these observations as they are responsible for the misleading inferences about the fitting of the regression model. The merit of our proposed measure and cutoff point in detecting high leverage collinearity-reducing observations is investigated by using engineering data and Monte Carlo simulations.
Nuclear shell effect and collinear tripartition of nuclei
Nasirov, A K; Tashkhodjaev, R B
2014-01-01
A possibility of formation of the three reaction products having comparable masses at the spontaneous fission of $^{252}$Cf is theoretically explored. This work is aimed to study the mechanism leading to observation of the reaction products with masses $M_1=$136---140 and $M_2=$68---72 in coincidence by the FOBOS group in JINR. The same type of ternary fission decay has been observed in the reaction $^{235}$U(n$_{\\rm th}$,fff). The potential energy surface for the ternary system forming a collinear nuclear chain is calculated for the wide range of mass and charge numbers of constituent nuclei. The results of the PES for the tripartition of $^{252}$Cf(sf,fff) shows, that we have favorable dynamical conditions for the formation of fragments with mass combinations of clusters $^{68-70}$Ni with $^{130-132}$Sn and with missing cluster $^{48-52}$Ca.
Non-Collinearity in Small Magnetic Cobalt-Benzene Molecules
González, J W; Delgado, F; Aguilera-Granja, F; Ayuela, A
2016-01-01
Cobalt clusters covered with benzene in the form of rice-ball structures have recently been synthesized using laser ablation. Here, we investigate the types of magnetic order such clusters have, and whether they retain any magnetic order at all. We use different density functional theory (DFT) methods to study the experimentally relevant three cobalt atoms surrounded by benzene rings. We found that the benzene rings induce a ground state with non-collinear magnetization, with the magnetic moments localized on the cobalt centers and lying on the plane formed by the three cobalt atoms. This is surprising because nanostructures and small clusters based on pure cobalt typically have a predominantly ferromagnetic order, and additional organic ligands such as benzene tend to remove the magnetization. We analyze the magnetism of such a cluster using an anisotropic Heisenberg model where the involved parameters are obtained by a comparison with the DFT results. Moreover, we propose electron paramagnetic resonance as ...
A preliminary design of the collinear dielectric wakefield accelerator
Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J.G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I. [ANL, Argonne, IL 60439 (United States); Jing, C.; Kanareykin, A.; Li, Y. [Euclid Techlabs LLC, Solon, OH 44139 (United States); Gao, Q. [Tsinghua University, Beijing (China); Shchegolkov, D.Y.; Simakov, E.I. [LANL, Los Alamos, NM 87545 (United States)
2016-09-01
A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from ~0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.
Nuclear shell effect and collinear tripartition of nuclei
Avazbek K Nasirov; Wolfram von Oertzen; Rustam B Tashkhodjaev
2015-08-01
A possibility for the formation of three reaction products having comparable masses at the spontaneous fission of 252Cf is theoretically explored. This work is aimed to study the mechanism leading to the observation of the reaction products with masses $M_{1}$ = 136–140 and $M_{2}$ = 68–72 in coincidence with the FOBOS group in JINR. The same type of ternary fission decay has been observed in the 235U(nth, fff) reaction. The potential energy surface (PES) for the ternary system forming a collinear nuclear chain is calculated for a wide range of masses and charge numbers of the constituent nuclei. The results of the PES for the tripartition of 252Cf(sf, fff) allows us to establish dynamical conditions leading to the formation of fragments with mass combinations of clusters 68−70Ni with 130−132Sn and with the missing cluster 48−52Ca.
Measurement of nuclear moments and radii by collinear laser spectroscopy
Geithner, W R; Lievens, P; Kotrotsios, G; Silverans, R; Kappertz, S
2002-01-01
%IS304 %title\\\\ \\\\Collinear laser spectroscopy on a fast beam has proven to be a widely applicable and very efficient tool for measurements of changes in mean square nuclear charge radii, nuclear spins, magnetic dipole and electric quadrupole moments. Recent developments of extremely sensitive non-optical detection schemes enabled for some elements the extension of the measurements towards the very short-lived isotopes in the far wings of the ISOLDE production curves. The gain in sensitivity opens up new perspectives, particularly for measurements on lighter nuclei whose ground-state properties can be interpreted by large scale microscopic calculations instead of the more phenomenologic models used for heavier nuclei.\\\\ \\\\ For the sequence of argon isotopes $^{32-40}$Ar and $^{46}$Ar isotope shifts and nuclear moments were measured by optical pumping followed by state selective collisional ionization and detection of the $\\beta$-decay. Similarly, the low-background $\\alpha$-detection was used to extend earlie...
Ultrafast collinear scattering and carrier multiplication in graphene.
Brida, D; Tomadin, A; Manzoni, C; Kim, Y J; Lombardo, A; Milana, S; Nair, R R; Novoselov, K S; Ferrari, A C; Cerullo, G; Polini, M
2013-01-01
Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic and nanophotonic materials. The interaction of light with charge carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools emitting phonons. Although the slower relaxation mechanisms have been extensively investigated, the initial stages still pose a challenge. Experimentally, they defy the resolution of most pump-probe setups, due to the extremely fast sub-100 fs carrier dynamics. Theoretically, massless Dirac fermions represent a novel many-body problem, fundamentally different from Schrödinger fermions. Here we combine pump-probe spectroscopy with a microscopic theory to investigate electron-electron interactions during the early stages of relaxation. We identify the mechanisms controlling the ultrafast dynamics, in particular the role of collinear scattering. This gives rise to Auger processes, including charge multiplication, which is key in photovoltage generation and photodetectors.
COMPLIS: COllinear spectroscopy Measurements using a Pulsed Laser Ion Source
2002-01-01
A Pulsed Laser spectroscopy experiment has been installed for the study of hyperfine structure and isotope shift of refractory and daughter elements from ISOLDE beams. It includes decelerated ion-implantation, element-selective laser ionization, magnetic and time-of-flight mass separation. The laser spectroscopy has been performed on the desorbed atoms in a set-up at ISOLDE-3 but later on high resolution laser collinear spectroscopy with the secondary pulsed ion beam is planned for the Booster ISOLDE set-up. During the first operation time of ISOLDE-3 we restricted our experiments to Doppler-limited resonant ionization laser and $\\gamma$-$\\gamma$ nuclear spectroscopy on neutron deficient platinum isotopes of even mass number down to A~=~186 and A~=~179 respectively. These isotopes have been produced by implantation of radioactive Hg and their subsequent $\\beta$-decay.
Principles and calibration of collinear photofragmentation and atomic absorption spectroscopy
Sorvajärvi, Tapio; Toivonen, Juha
2014-06-01
The kinetics of signal formation in collinear photofragmentation and atomic absorption spectroscopy (CPFAAS) are discussed, and theoretical equations describing the relation between the concentration of the target molecule and the detected atomic absorption in case of pure and impure samples are derived. The validity of the equation for pure samples is studied experimentally by comparing measured target molecule concentrations to concentrations determined using two other independent techniques. Our study shows that CPFAAS is capable of measuring target molecule concentrations from parts per billion (ppb) to hundreds of parts per million (ppm) in microsecond timescale. Moreover, the possibility to extend the dynamic range to cover eight orders of magnitude with a proper selection of fragmentation light source is discussed. The maximum deviation between the CPFAAS technique and a reference measurement technique is found to be less than 5 %. In this study, potassium chloride vapor and atomic potassium are used as a target molecule and a probed atom, respectively.
Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Zink, A. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Aghasyan, M.; Birsa, R.; Dalla Torre, S.; Levorato, S.; Santos, C.; Sozzi, F.; Tessaro, S.; Tessarotto, F. [INFN, Trieste (Italy); Akhunzyanov, R.; Alexeev, G.D.; Anfimov, N.V.; Anosov, V.; Efremov, A.; Gavrichtchouk, O.P.; Guskov, A.; Ivanshin, Yu.; Kisselev, Yu.; Kouznetsov, O.M.; Kroumchtein, Z.V.; Meshcheryakov, G.V.; Nagaytsev, A.; Olshevsky, A.G.; Orlov, I.; Peshekhonov, D.V.; Rossiyskaya, N.S.; Rybnikov, A.; Savin, I.A.; Selyunin, A.; Shevchenko, O.Yu.; Slunecka, M.; Smolik, J.; Tasevsky, M.; Zavada, P.; Zemlyanichkina, E. [Joint Institute for Nuclear Research, Dubna, Moscow region (Russian Federation); Alexeev, M.G. [University of Turin, Department of Physics, Turin (Italy); Amoroso, A.; Balestra, F.; Chiosso, M.; Gnesi, I.; Grasso, A.; Ivanov, A.; Kotzinian, A.M.; Longo, R.; Parsamyan, B.; Takekawa, S. [University of Turin, Department of Physics, Turin (Italy); INFN, Turin (Italy); Andrieux, V.; Boer, M.; Curiel, Q.; Ferrero, A.; Fuchey, E.; Hose, N. d'
2017-04-15
Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality Q{sup 2} > 1 (GeV/c){sup 2}. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon beam impinging on a polarised {sup 6}LiD target. By analysing the full range in hadron transverse momentum p{sub T}, the different p{sub T}-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation Δg/g is evaluated at leading order in pQCD at a hard scale of μ{sup 2} = left angle Q{sup 2} right angle = 3 (GeV/c){sup 2}. It is determined in three intervals of the nucleon momentum fraction carried by gluons, x{sub g}, covering the range 0.04 < x{sub g} < 0.28 and does not exhibit a significant dependence on x{sub g}. The average over the three intervals, left angle Δg/g right angle = 0.113 ± 0.038{sub (stat.)} ± 0.036{sub (syst.)} at left angle x{sub g} right angle ∼ 0.10, suggests that the gluon polarisation is positive in the measured x{sub g} range. (orig.)
Gluon Shadowing in DIS off Nuclei
Kopeliovich, B Z; Potashnikova, I K; Schmidt, I
2008-01-01
Within a light-cone quantum-chromodynamics dipole formalism based on the Green function technique, we study nuclear shadowing in deep-inelastic scattering at small Bjorken xB 0.0001, when a variation of the transverse size of the \\bar{q}q Fock component must be taken into account. The eikonal approximation, used so far in most other models, can be applied only at high energies, when xB < 0.0001 and the transverse size of the \\bar{q}q Fock component is "frozen" during propagation through the nuclear matter. At xB < 0.01 we find quite a large contribution of gluon suppression to nuclear shadowing, as a shadowing correction for the higher Fock states containing gluons. Numerical results for nuclear shadowing are compared with the available data from the E665 and NMC collaborations. Nuclear shadowing is also predicted at very small xB corresponding to LHC kinematical range. Finally the model predictions are compared and discussed with the results obtained from other models.
Linearly Polarized Gluons and the Higgs Transverse Momentum Distribution
Boer, Daniel; den Dunnen, Wilco J.; Pisano, Cristian; Schlegel, Marc; Vogelsang, Werner
2012-01-01
We study how gluons carrying linear polarization inside an unpolarized hadron contribute to the transverse momentum distribution of Higgs bosons produced in hadronic collisions. They modify the distribution produced by unpolarized gluons in a characteristic way that could be used to determine whethe
The gluon Sivers distribution: status and future prospects
Boer, Daniël; Pisano, Cristian; Zhou, Jian
2015-01-01
This is a review of what is currently known about the gluon Sivers distribution and of what are the opportunities to learn more about it. Because single transverse spin asymmetries in $p^\\uparrow \\, p \\to \\pi \\, X$ provide only indirect information about the gluon Sivers function through the relation with the quark-gluon and tri-gluon Qiu-Sterman functions, current data from hadronic collisions at RHIC have not yet been translated into a solid constraint on the gluon Sivers function. SIDIS data, including the COMPASS deuteron data, allow for a gluon Sivers contribution that is of the natural size expected from large $N_c$ arguments, which is ${\\cal O}(1/N_c)$ times the nonsinglet quark Sivers contribution. Several very promising processes to measure the gluon Sivers effect directly have been put forward, which apart from ongoing and future investigations at RHIC, would strongly favor experiments at AFTER@LHC and a possible future Electron-Ion Collider. Due to the inherent process dependence of TMDs, the gluon...
Accessing the distribution of linearly polarized gluons in unpolarized hadrons
Boer, Daniël; Brodsky, Stanley J.; Mulders, Piet J.; Pisano, Cristian
2011-01-01
Gluons inside unpolarized hadrons can be linearly polarized provided they have a nonzero transverse momentum. The simplest and theoretically safest way to probe this distribution of linearly polarized gluons is through cos(2 phi) asymmetries in heavy quark pair or dijet production in electron-hadron
Dilepton Production in a Chemically Equilibrating Quark-Gluon Matter
贺泽君; 蒋维洲; 张家驹; 张伟; 刘波
2002-01-01
We have studied dilepton production in a chemically equilibrating quark-gluon matter produced at RHIC energies.We find that the dilepton yield is no longer a monotonically decreasing function of the initial quark chemicalpotential. Therefore, the dilepton suppression may not be useful as a signature for quark-gluon matter formation.
Unquenching the three-gluon vertex: A status report
Blum, Adrian L; Huber, Markus Q; Windisch, Andreas
2015-01-01
We discuss unquenching of the three-gluon vertex via its Dyson-Schwinger equation. We review the role of Furry's theorem and present first results for the quark triangle diagrams using non-perturbatively calculated dressing functions for the quark propagator and the quark-gluon vertex.
Virtual photon impact factors with exact gluon kinematic
Bialas, A; Peschanski, R
2001-01-01
An explicit analytic formula for the transverse and longitudinal impact factors S_{T,L}(N,\\gamma) of the photon using k_T factorization with exact gluon kinematics is given. Applications to the QCD dipole model and the extraction of the unintegrated gluon structure function from data are proposed.
Soft-gluon effects in nonleptonic decays of charmed mesons
Shizuya, Ken-ichi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
1981-03-19
In this paper, soft-gluon effects in nonleptonic decays of D and F mesons are studied nonperturbatively by use of a QCD multipole expansion. Finally, for reasonable values of D-meson bound-state parameters, the soft-gluon effects lead to a significant difference in the lifetimes of the D^{0} and D^{+} mesons.
Castro, Antonio Soares de
1990-05-01
A potential which incorporates the concepts of confinement and asymptotic freedom, previously utilized in the description of the spectroscopy of mesons and baryons, is extended to the gluon sector. The mass spectroscopy of glueballs and hybrids is analyzed considering only pairwise potentials and massive constituent gluons. The mass spectrum of the color octet two-gluon system is adopted as a suitable description of the intermediate states of hadronic transitions, within the framework of the multipole expansion for quantum chromodynamics. The spin-dependent effects in the gluonium spectrum, associated with the Coulombian potential, are calculated through the inverted first Born approximation for the gluon-gluon scattering. (author). 102 refs, 1 fig, 13 tabs.
From gluon topology to chiral anomaly: Emergent phenomena in quark-gluon plasma
Liao, Jinfeng
2016-01-01
Heavy-ion collision experiments at RHIC and the LHC have found a new emergent phase of QCD, a strongly coupled quark-gluon plasma (sQGP) that is distinctively different from either the low temperature hadron phase or the very high temperature weakly coupled plasma phase. Highly nontrivial emergent phenomena occur in such sQGP and two examples will be discussed in this contribution: the magnetic component of sQGP that stems from topologically nontrivial configurations in the gluon sector; and the anomalous chiral transport that arises as macroscopic manifestation of microscopic chiral anomaly in the quark sector. For both examples, their important roles in explaining pertinent heavy-ion data will be emphasized.
From gluon topology to chiral anomaly: Emergent phenomena in quark-gluon plasma
Liao, Jinfeng
2017-01-01
Heavy-ion collision experiments at RHIC and the LHC have found a new emergent phase of QCD, a strongly coupled quark-gluon plasma (sQGP) that is distinctively different from either the low temperature hadron phase or the very high temperature weakly coupled plasma phase. Highly nontrivial emergent phenomena occur in such sQGP and two examples will be discussed in this contribution: the magnetic component of sQGP that stems from topologically nontrivial configurations in the gluon sector; and the anomalous chiral transport that arises as macroscopic manifestation of microscopic chiral anomaly in the quark sector. For both examples, their important roles in explaining pertinent heavy-ion data will be emphasized.
Prompt photon hadroproduction at high energies in off-shell gluon-gluon fusion
Baranov, S P; Zotov, N P
2007-01-01
The amplitude for production of a single photon associated with quark pair in the fusion of two off-shell gluons is calculated. The matrix element found is applied to the inclusive prompt photon hadroproduction at high energies in the framework of kt-factorization QCD approach. The total and differential cross sections are calculated in both central and forward pseudo-rapidity regions. The conservative error analisys is performed. We used the unintegrated gluon distributions in a proton which were obtained from the full CCFM evolution equation as well as from the Kimber-Martin-Ryskin prescription. Theoretical results were compared with recent experimental data taken by the D0 and CDF collaborations at Fermilab Tevatron. Theoretical predictions for LHC energies are given.
Very boosted Higgs in gluon fusion
Grojean, C. [Univ. Autonoma de Barcelona, Bellaterra (Spain). ICREA at IFAE; Salvioni, E. [California Univ., Davis, CA (United States). Dept. of Physics; European Organization for Nuclear Research (CERN), Geneva (Switzerland); Padova Univ. (Italy). Dipt. di Fisica e Astronomica; INFN, Sezione di Padova (Italy); Schlaffer, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Weiler, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-12-15
The Higgs production and decay rates offer a new way to probe new physics beyond the Standard Model. While dynamics aiming at alleviating the hierarchy problem generically predict deviations in the Higgs rates, the current experimental analyses cannot resolve the long- and short-distance contributions to the gluon fusion process and thus cannot access directly the coupling between the Higgs and the top quark. We investigate the production of a boosted Higgs in association with a high-transverse momentum jet as an alternative to the t anti th channel to pin down this crucial coupling. Presented rst in the context of an effective field theory, our analysis is then applied to models of partial compositeness at the TeV scale and of natural supersymmetry.
Gluon Green functions free of quantum fluctuations
A. Athenodorou
2016-09-01
Full Text Available This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum fluctuations of 2- and 3-gluon Green functions, remove the ΛQCD scale and destroy the transition from the confining non-perturbative to the asymptotically-free perturbative sector. After the Wilson flow, the behavior of the Green functions with momenta can be described in terms of the quasi-classical instanton background. The same behavior also occurs, before the Wilson flow, at low-momenta. This last result permits applications as, for instance, the detection of instanton phenomenological properties or a determination of the lattice spacing only from the gauge sector of the theory.
Exploding Quark-Gluon Plasma Fireball
Hamieh, S; Rafelski, Johann; Hamieh, Salah; Letessier, Jean; Rafelski, Johann
2000-01-01
Lattice-QCD results provide an opportunity to model and extrapolate to finite baryon density the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data the properties of resulting QGP equations of state (EoS) are developed. An exploding dense matter fireball formed in heavy ion collision experiments at CERN-SPS is considered, and we show that its physical properties are well described by the QGP-EoS we presented. We quantitatively determine the conditions of sudden breakup of the fireball, and show that this instability point is consistent with with the hadronization condition derived from the hadronic particle production data. We further estimate the properties of the fireball as it is formed just after nuclear collision is completed and show that QGP formation must be expected down to 40$A$ GeV central Pb--Pb interactions.
Very boosted Higgs in gluon fusion
Grojean, C. [ICREA at IFAE, Universitat Autónoma de Barcelona,E-08193 Bellaterra (Spain); Salvioni, E. [Department of Physics, University of California,Davis, CA 95616 (United States); Theory Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Dipartimento di Fisica e Astronomia, Università di Padova and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Schlaffer, M. [DESY,Notkestrasse 85, D-22607 Hamburg (Germany); Weiler, A. [Theory Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); DESY,Notkestrasse 85, D-22607 Hamburg (Germany)
2014-05-06
The Higgs production and decay rates offer a new way to probe new physics beyond the Standard Model. While dynamics aiming at alleviating the hierarchy problem generically predict deviations in the Higgs rates, the current experimental analyses cannot resolve the long- and short-distance contributions to the gluon fusion process and thus cannot access directly the coupling between the Higgs and the top quark. We investigate the production of a boosted Higgs in association with a high-transverse momentum jet as an alternative to the tt-macronh channel to pin down this crucial coupling. Presented first in the context of an effective field theory, our analysis is then applied to models of partial compositeness at the TeV scale and of natural supersymmetry.
Associated production of prompt photons and heavy quarks in off-shell gluon-gluon fusion
Baranov, S.P. [P.N. Lebedev Physics Institute, Moscow (Russian Federation); Lipatov, A.V.; Zotov, N.P. [M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation)
2008-08-15
In the framework of the k{sub T}-factorization approach, we study the production of prompt photons associated with heavy (charm and beauty) quarks in hadron-hadron collisions at high energies. Our consideration is based on the amplitude for the production of a single photon associated with a quark pair in the fusion of two off-shell gluons. The total and differential cross sections are presented and the conservative error analysis is performed. Two sets of unintegrated gluon distributions in the proton have been used in numerical calculation: the one obtained from Ciafaloni-Catani-Fiorani-Marchesini evolution equation and the other from Kimber-Martin-Ryskin prescription. The theoretical results are compared with recent experimental data taken by the CDF collaboration at the Fermilab Tevatron. Our analysis extends to specific angular correlations between the produced prompt photons and muons originating from semileptonic decays of the final charmed or beauty quarks. We point out the importance of such observables, which can serve as a crucial test for the unintegrated gluon densities in a proton. Finally, we extrapolate the theoretical predictions to the CERN LHC energies. (orig.)
Nested soft-collinear subtractions in NNLO QCD computations
Caola, Fabrizio [CERN, Theoretical Physics Department, Geneva (Switzerland); IPPP, Durham University, Durham (United Kingdom); Melnikov, Kirill; Roentsch, Raoul [Institute for Theoretical Particle Physics, KIT, Karlsruhe (Germany)
2017-04-15
We discuss a modification of the next-to-next-to-leading order (NNLO) subtraction scheme based on the residue-improved sector decomposition that reduces the number of double-real emission sectors from five to four. In particular, a sector where energies and angles of unresolved particles vanish in a correlated fashion is redundant and can be discarded. This simple observation allows us to formulate a transparent iterative subtraction procedure for double-real emission contributions, to demonstrate the cancellation of soft and collinear singularities in an explicit and (almost) process-independent way and to write the result of a NNLO calculation in terms of quantities that can be computed in four space-time dimensions. We illustrate this procedure explicitly in the simple case of O(α{sub s}{sup 2}) gluonic corrections to the Drell-Yan process of q anti q annihilation into a lepton pair. We show that this framework leads to fast and numerically stable computation of QCD corrections. (orig.)
Collinear resonant ionization laser spectroscopy of rare francium isotopes
Neyens, G; Flanagan, K; Rajabali, M M; Le blanc, F M; Ware, T; Procter, T J
2008-01-01
We propose a programme of collinear resonant ionization spectroscopy (CRIS) of the francium isotopes up to and including $^{201}$Fr and $^{218,219}$Fr. This work aims at answering questions on the ordering of quantum states, and effect of the ($\\pi s_{1/2}^{-1}$)1/2$^{+}$ intruder state, which is currently believed to be the ground state of $^{199}$Fr. This work will also study the edge of the region of reflection asymmetry through measurement of the moments and radii of $^{218,219}$Fr. This proposal forms the first part of a series of experiments that will study nuclei in this region of the nuclear chart. Based on the success of this initial proposal it is the intention of the collaboration to perform high resolution measurements on the isotopes of radium and radon that surround $^{201}$Fr and $^{218}$Fr and thus providing a comprehensive description of the ground state properties of this region of the nuclear chart. Recent in-source spectroscopy measurements of lead, bismuth and polonium have demonstrated a...
Non-collinear antiferromagnets and the anomalous Hall effect
Kübler, J.; Felser, C.
2014-12-01
The anomalous Hall effect is investigated theoretically by employing density functional calculations for the non-collinear antiferromagnetic order of the hexagonal compounds Mn3Ge and Mn3Sn using various planar triangular magnetic configurations as well as unexpected non-planar configurations. The former give rise to anomalous Hall conductivities (AHC) that are found to be extremely anisotropic. For the planar cases the AHC is connected with Weyl points in the energy-band structure. If this case were observable in Mn3Ge, a large AHC of about σzx≈ 900 (Ω \\text{cm})-1 should be expected. However, in Mn3Ge it is the non-planar configuration that is energetically favored, in which case it gives rise to an AHC of σxy≈ 100 (Ω \\text{cm})-1 . The non-planar configuration allows a quantitative evaluation of the topological Hall effect that is seen to determine this value of σxy to a large extent. For Mn3Sn it is the planar configurations that are predicted to be observable. In this case the AHC can be as large as σyz≈250 (Ω \\text{cm})-1 .
Classical Mechanics of Collinear Positron-Hydrogen Scattering
Lee, Min-Ho; Moon, Jin-Sung; Choi, Nark Nyul; Kim, Dae-Soung
2015-01-01
We study the classical dynamics of the collinear positron-hydrogen scattering system below the three-body breakup threshold. Observing the chaotic behavior of scattering time signals, we in- troduce a code system appropriate to a coarse grained description of the dynamics. And, for the purpose of systematic analysis of the phase space structure, a surface of section is introduced being chosen to match the code system. Partition of the surface of section leads us to a surprising conjec- ture that the topological structure of the phase space of the system is invariant under exchange of the dynamical variables of proton with those of positron. It is also found that there is a finite set of forbidden patterns of symbol sequences. And the shortest periodic orbit is found to be stable, around which invariant tori form an island of stability in the chaotic sea. Finally we discuss a possible quantum manifestation of the classical phase space structure relevant to resonances in scattering cross sections.
Identified Charged Particles in Quark and Gluon Jets
Abreu, P.; Adye, T.; Adzic, P.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, D.Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Beilliere, P.; Belokopytov, Yu.; Belous, K.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Bigi, M.; Bilenky, Mikhail S.; Bizouard, M.A.; Bloch, D.; Blom, H.M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borgland, A.W.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bourdarios, C.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buran, T.; Buschbeck, B.; Buschmann, P.; Cabrera, S.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Chabaud, V.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Shlyapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Crawley, H.B.; Crennell, D.; Crepe-Renaudin, Sabine; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.A.; Demaria, N.; De Angelis, A.; de Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Dolbeau, J.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Duperrin, A.; Durand, J.D.; Eigen, G.; Ekelof, T.; Ekspong, G.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Fayot, J.; Feindt, M.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Fichet, S.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Geralis, T.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Guz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Gris, P.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hansen, J.; Harris, F.J.; Hauler, F.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Hessing, T.L.; Heuser, J.M.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Huber, M.; Huet, K.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.A.; Khomenko, B.A.; Khovanskii, N.N.; Kiiskinen, A.; King, B.J.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Klein, Hansjorg; Kluit, P.; Kokkinias, P.; Kostyukhin, V.; Kourkoumelis, C.; Kuznetsov, O.; Krammer, M.; Kriznic, E.; Krumshtein, Z.; Kubinec, P.; Kurowska, J.; Kurvinen, K.; Lamsa, J.W.; Lane, D.W.; Lapin, V.; Laugier, J.P.; Lauhakangas, R.; Leder, G.; Ledroit, Fabienne; Lefebure, V.; Leinonen, L.; Leisos, A.; Leitner, R.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Loerstad, B.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Malmgren, T.G.M.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Martinez-Vidal, F.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjornmark, U.; Moa, T.; Moch, M.; Moller, Rasmus; Monig, Klaus; Monge, M.R.; Moraes, D.; Moreau, X.; Morettini, P.; Morton, G.; Muller, U.; Muenich, K.; Mulders, M.; Mulet-Marquis, C.; Muresan, R.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Naraghi, F.; Nassiakou, M.; Navarria, F.L.; Navas, Sergio; Nawrocki, K.; Negri, P.; Neufeld, N.; Nicolaidou, R.; Nielsen, B.S.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.F.; Olshevskii, A.G.; Onofre, A.; Orava, R.; Orazi, G.; Osterberg, K.; Ouraou, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Pavel, T.; Pegoraro, M.; Peralta, L.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdnyakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rames, J.; Ratoff, P.N.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Rohne, O.; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Royon, C.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovskii, A.; Sajot, G.; Salt, J.; Sampsonidis, D.; Sannino, M.; Schwemling, P.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Seager, P.; Sedykh, Yu.; Seemann, F.; Segar, A.M.; Seibert, N.; Sekulin, R.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnova, O.; Smith, G.R.; Solovianov, A.; Sopczak, A.; Sosnowski, R.; Spassoff, Tz.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanic, S.; Stanitzki, M.; Stevenson, K.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli de Fatis, T.; Taffard, A.; Chikilev, O.; Tegenfeldt, F.; Terranova, F.; Thomas, J.; Timmermans, Jan; Tinti, N.; Tkatchev, L.G.; Tobin, M.; Todorova, S.; Tomaradze, A.G.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Transtromer, G.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Van Dam, Piet; Vanden Boeck, W.; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Walck, C.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zintchenko, A.; Zoller, P.; Zucchelli, G.C.; Zumerle, G.
2000-01-01
A sample of 2.2 million hadronic \\z decays, selected fythe {\\sc Delphi} detector at {\\sc Lep} during 1994-199nimprovedmeasurement of inclusive distributions of \\pie, \\kp anrantiparticles in gluon and quark jets. The production l identified particles were found to be softer in gluon kjets, with a higher multiplicity in gluon jets as obseecharged particles. A significant proton enhancement indindicating that baryon production proceeds directly fr.The maxima, $\\xi^*$, of the $\\xi$-distributions for kakjets are observed to be different. The study of isoscanshows no indication of an excess of $\\phi(1020)$ produ.
A solution of the DGLAP equation for gluon at low
D K Choudhury; P K Sahariah
2002-04-01
We obtain a solution of the DGLAP equation for the gluon at low ﬁrst by expanding the gluon in a Taylor series and then using the method of characteristics. We test its validity by comparing it with that of Glück, Reya and Vogt. The convergence criteria of the approximation used are also discussed. We also calculate 2(,2)/ ln 2 using its approximate relations with the gluon distribution at low . The predictions are then compared with the HERA data.
Quark vs Gluon jets in Heavy Ion Collisions
Drauksas, Simonas
2017-01-01
The project concerned quark and gluon jets which are often used as probes of Quantum Chromodynamics(QCD) matter created in nuclear collisions at collider energies. The goal is to look for differences between quark and gluon jets, study their substructure, look for distinguishing features in unquenched (pp collisions) and quenched (heavy ion collisions) jets by using multi-variate analysis which was carried out with the help of ROOT's \\href{https://root.cern.ch/tmva}{TMVA} tool. Mapping out the modification of jets due to medium interactions could give valuable input to constraining the time evolution of the Quark Gluon Plasma created in heavy ion collisions.
Collinear and noncollinear emission of anti-stokes and second order stokes Raman radiation
Aussenegg, F. R.; Lippitsch, M. E.; Brandmüller, J.; Nitsch, W.
1981-04-01
Generating higher order stimulated Raman scattering in benzene, apart from phase-matched anti-Stokes radiation a collinear anti-Stokes emission is observed, which is explained by parametric four-photon processes under mismatch condition.
Magnon spintronics in non-collinear magnetic insulator/metal heterostructures
Aqeel, Aisha
2017-01-01
The research presented in this thesis focuses on the growth of complex magnetic materials with unique magnetic properties and experimental investigation of fundamental spintronics phenomena in these magnetic insulators with magnetic orders varying from collinear to noncollinear chiral spin structure
Improved hard-thermal-loop effective action for hot QED and QCD
Flechsig, F; Flechsig, Fritjof; Rebhan, Anton K
1995-01-01
The conventional results for hard thermal loops, which are the building blocks of resummed perturbation theory in thermal field theories, have collinear singularities when external momenta are light-like. It is shown that by taking into account asymptotic thermal masses these singularities are removed. The thus improved hard thermal loops can be summarized by compact gauge-invariant effective actions, generalizing the ones found by Taylor and Wong, and by Braaten and Pisarski.
Sharma, Neetika [Indian Institute of Science Education and Research Mohali, Mohali (India)
2016-04-15
We incorporate the perturbative evolution effects in the generalized parton distributions (GPDs) calculated in effective light-front quark model for the nucleon. The perturbative effects enter into formalism through the evolution of GPDs according to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-like (DGLAP) equation. We obtain the evolved GPDs in the momentum space and transverse impact parameter space. We observe that combining the light-front quark model with the perturbative evolution effects, give the effective model for studying the phenomenological GPDs. (orig.)
Proton-deuteron breakup cross sections in collinear geometry at 28. 6 MeV
Birchall, J.; Svenne, J.P.; de Jong, M.S.; McKee, J.S.C.; Ramsay, W.D.; Al-Ghazi, M.S.A.L.; Videla, N.
1979-10-01
Deuteron breakup cross sections induced by 28.6 MeV protons have been measured in collinear and noncollinear geometry and the results compared with an exact three-body calculation using the Doleschall code. This calculation includes two-body interactions in S and P waves and, in addition, a tensor force. The agreement with experiment in all cases is excellent. No evidence is seen for a collinearity enhancement.
Non-collinear Generation of Angularly Isolated Circularly Polarized High Harmonics
2015-09-21
the electromagnetic field propagator49. The target (gas jet) was discretized into elementary radiators and propagated the emitted field Ej(rd,t) to...harmonic generation using analytical descriptions in both the photon and wave models. Advanced numerical simulations indicate that this non-collinear mixing...collinear HHG using both intuitive physical models as well as advanced numerical calculations. In the photon picture (Fig. 1b), we show that the NCP
Hard diffraction and the nature of the Pomeron
Lamouroux, J; Royon, C; Schoeffel, L
2003-01-01
We ask the question whether the quark and gluon distributions in the Pomeron obtained from QCD fits to hard diffraction processes at HERA can be dynamically generated from a state made of ``valence-like'' gluons and sea quarks as input. By a method combining backward Q^2-evolution for data exploration and forward Q^2-evolution for a best fit determination, we find that the diffractive structure functions published by the H1 collaboration at HERA can be described by a simple ``valence-like'' input at an initial scale of order mu^2 ~ 2.3-2.7 GeV^2. The parton number sum rules at the initial scale mu^2 for the H1 fit gives 2.1\\pm .1\\pm .1 and .13\\pm .01 \\pm .02 for gluon and sea quarks respectively, corresponding to an initial Pomeron state made of (almost) only two gluons. It has flat gluon density leading to a plausible interpretation in terms of a gluonium state.
The LPM effect in sequential bremsstrahlung: 4-gluon vertices
Arnold, Peter; Iqbal, Shahin
2016-01-01
The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. In this paper, we continue study of the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD), avoiding soft-gluon approximations. In particular, this paper completes the calculation of the rate for real double gluon bremsstrahlung from an initial gluon with various simplifying assumptions (thick media; $\\hat q$ approximation; and large $N_c$) by now including processes involving 4-gluon vertices.
One-Loop Corrections to Five-Gluon Amplitudes
Bern, Z; Kosower, D A
1993-01-01
We present the one-loop helicity amplitudes with five external gluons. The computation employs string-based methods, new techniques for performing tensor integrals, and improvements in the spinor helicity method.
Effective degrees of freedom of the quark-gluon plasma
Castorina, P. [Dipartimento di Fisica, Universita di Catania, and INFN Sezione di Catania, Via Santa Sofia 64, I-95100 Catania (Italy); Mannarelli, M. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)]. E-mail: massimo@lns.mit.edu
2007-01-25
The effective degrees of freedom of the quark-gluon plasma are studied in the temperature range {approx}(1-2)T{sub c}. We show that including light bosonic states one can reproduce the pressure and energy density of the quark-gluon plasma obtained by lattice simulations. The number of the bosonic states required is at most of the order of 20, consistent with the number of light mesonic states and in disagreement with a recently proposed picture of the quark-gluon plasma as a system populated with exotic bound states. We also constrain the quark quasiparticle chiral invariant mass to be {approx}300 MeV. Some remarks regarding the role of the gluon condensation and the baryon number-strangeness correlation are also presented.
Quark Gluon Condensate,Virtuality and Susceptibility of QCD Vacuum
ZHOU Li-Juan; WU Qing; MA Wei-Xing
2008-01-01
We study vacuum of QCD in this work.The structure of non-local quark vacuum condensate,values of various local quark and gluon vacuum condensates,quark-gluon mixed vacuum condensate,quark and gluon virtuality in QCD vacuum state,quark dynamical mass and susceptibility of QCD vacuum state to external field are predicted by use of the solutions of Dyson-Schwinger equations in "rainbow" approximation with a modeling gluon propagator and three different sets of quark-quark interaction parameters.Our theoretical predictions are in good agreement with the correspondent empirical values used widely in literature,and many other theoretical calculations.The quark propagator and self-energy functions are also obtained from the numerical solutions of Dyson-Schwinger equations.This work is centrally important for studying non-perturbative QCD,and has many important applications both in particle and nuclear physics.
Gluon number fluctuations with heavy quarks at HERA
ZHU Xiang-Rong; ZHOU Dai-Cui
2011-01-01
We study the effect of gluon number fluctuations (Pomeron loops) on the proton structure function at HERA.It is shown that the description of charm and bottom quarks and longitudinal structure functions are improved,with x2/d.o.f=0.803 (fluctuations) as compared with x2/d.o.f=0.908 (without fluctuations),once the gluon number fluctuations are included.We find that in the gluon number fluctuation case the heavy quarks do not play an important role in the proton structure function as the saturation model.The successful description of the HERA data indicates that the gluon number fluctuation could be one of the key mechanisms to describe the proton structure function at HERA energies.
LHC soft physics and TMD gluon density at low x
Lipatov, A V; Zotov, N P
2014-01-01
We study the unintegrated, or transverse momentum dependent (TMD) gluon distribution obtained from the best description of the LHC data on the inclusive spectra of hadrons produced in the mid-rapidity region and low transverse momenta at starting scale Q0^2 = 1 GeV^2. To extend this gluon density at higher Q^2 we apply the Catani-Ciafoloni-Fiorani-Marchesini (CCFM) evolution equation. The influence of the initial (starting) non-perturbative gluon distribution is studied. The application of the obtained gluon density to the analysis of the ep deep inelastic scattering allows us to get the results which describe reasonably well the H1 and ZEUS data on the longitudinal proton structure function FL(x,Q^2). So, the connection between the soft processes at LHC and small x physics at HERA has been confirmed and extended to a wide kinematical region.
The gluon condensation at high energy hadron collisions
Wei Zhu
2017-03-01
Full Text Available We report that the saturation/CGC model of gluon distribution is unstable under action of the chaotic solution in a nonlinear QCD evolution equation, and it evolves to the distribution with a sharp peak at the critical momentum. We find that this gluon condensation is caused by a new kind of shadowing–antishadowing effects, and it leads to a series of unexpected effects in high energy hadron collisions including astrophysical events. For example, the extremely intense fluctuations in the transverse-momentum and rapidity distributions of the gluon jets present the gluon-jet bursts; a sudden increase of the proton–proton cross sections may fill the GZK suppression; the blocking QCD evolution will restrict the maximum available energy of the hadron–hadron colliders.
Evolution of gluon TMD at low and moderate x
Balitsky, I
2014-01-01
We study how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at small $x\\ll 1$ to linear double-logarithmic evolution at moderate $x\\sim 1$.
The gluon condensation at high energy hadron collisions
Zhu, Wei, E-mail: weizhu@mail.ecnu.edu.cn [Department of Physics, East China Normal University, Shanghai 200241 (China); Lan, Jiangshan [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
2017-03-15
We report that the saturation/CGC model of gluon distribution is unstable under action of the chaotic solution in a nonlinear QCD evolution equation, and it evolves to the distribution with a sharp peak at the critical momentum. We find that this gluon condensation is caused by a new kind of shadowing–antishadowing effects, and it leads to a series of unexpected effects in high energy hadron collisions including astrophysical events. For example, the extremely intense fluctuations in the transverse-momentum and rapidity distributions of the gluon jets present the gluon-jet bursts; a sudden increase of the proton–proton cross sections may fill the GZK suppression; the blocking QCD evolution will restrict the maximum available energy of the hadron–hadron colliders.
Tetraquarks Production in Quark-Gluon Plasma with Diquarks
MA Zhong-Biao; GAO Chong-Shou
2006-01-01
@@ We present a way to calculate tetraquarks ratios for quark-gluon plasma with diquarks. The ratios of tetraquarks over baryons produced from quark matter are high than hadronic gas model limits. It is a better way to search for four-quark states in relativistic heavy ion collisions. It may become a criterion to judge whether quark-gluon plasma has formed to search for four-quark states in relativistic heavy ion collisions.
The five gluon amplitude and one-loop integrals
Bern, Zvi; Kosower, David A.
1992-01-01
We review the conventional field theory description of the string motivated technique. This technique is applied to the one-loop five-gluon amplitude. To evaluate the amplitude a general method for computing dimensionally regulated one-loop integrals is outlined including results for one-loop integrals required for the pentagon diagram and beyond. Finally, two five-gluon helicity amplitudes are given.
Massive quark-gluon scattering amplitudes at tree level
Hall, Anthony
2008-01-01
Results for four-, five-, and six-parton tree amplitudes for massive quark-antiquark scattering with gluons are calculated using the recursion relations of Britto, Cachazo, Feng, and Witten. The required diagrams are generated using shifts of the momenta of a pair of massless legs to complex values. Checks verifying the calculations are described, and a simple formula for the shifted spinors of an internal gluon is presented.
Strangeness Production in a Chemically Equilibrating Quark-Gluon Plasma
HE Ze-Jun; LONG Jia-Li; MA Yu-Gang; MA Guo-Liang
2004-01-01
@@ We study the strangeness of a chemically equilibrating quark-gluon plasma at finite baryon density based on the and will accelerate with the change of the initial system from a chemically non-equilibrated to an equilibrated system. We also find that the calculated strangeness is very different from the one in the thermodynamic equilibrium system. This study may be helpful to understand the formation of quark-gluon plasma via a chemically non-equilibrated evolution framework.
Unquenching effects in the quark and gluon propagator
Kamleh, Waseem; Bowman, Patrick O.; Leinweber, Derek B.; Williams, Anthony G.; Zhang, Jianbo
2007-11-01
In this work we examine the fat-link irrelevant clover (FLIC) overlap quark propagator and the gluon propagator on both dynamical and quenched lattices. The tadpole-improved Luscher-Weisz gauge action is used in both cases. The dynamical gauge fields use the FLIC fermion action for the sea quark contribution. We observe that the presence of sea quarks causes a suppression of the mass function, quark renormalization function, and gluon dressing function in the infrared. The ultraviolet physics is unaffected.
Hard processes in hadronic interactions
Satz, H. [CERN, Geneva (Switzerland)]|[Universitat Bielefeld (Germany); Wang, X.N. [Lawrence Berkeley Lab., CA (United States)
1995-07-01
Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks` duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley.
Investigation of the splitting of quark and gluon jets
Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Bates, M J; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozovic, I; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Brown, R; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerruti, C; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Duperrin, A; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frodesen, A G; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Ghodbane, N; Glege, F; Gokieli, R; Golob, B; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Heising, S; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Konoplyannikov, A K; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Niss, P; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Silvestre, R; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnova, O G; Smith, G R; Sokolov, A; Solovyanov, O; Sopczak, André; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vincent, P; Vitale, L; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Wolf, G; Yi, J; Yushchenko, O P; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G
1998-01-01
The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays L with the {\\sc Delphi} detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation $C_A/C_F$. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution $y$, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is $2.77\\pm0.11\\pm0.10$. Due to non-perturbative effects, the data are below the expectation at small $y$. The transition from the perturbative to the non-perturbative domain appears at smaller $y$ for quark ...
Gluon fragmentation functions in the Nambu-Jona-Lasinio model
Yang, Dong-Jing
2016-01-01
We derive gluon fragmentation functions in the Nambu-Jona-Lasinio (NJL) model by treating a gluon as a pair of color lines formed by fictitious quark and anti-quark ($q\\bar q$). Gluon elementary fragmentation functions are obtained from the quark and anti-quark elementary fragmentation functions for emitting specific mesons in the NJL model under the requirement that the $q\\bar q$ pair maintains in the flavor-singlet state after meson emissions. An integral equation, which iterates the gluon elementary fragmentation functions to all orders, is then solved to yield the gluon fragmentation functions at a model scale. It is observed that these solutions are stable with respect to variation of relevant model parameters, especially after QCD evolution to a higher scale is implemented. We show that the inclusion of the gluon fragmentation functions into the theoretical predictions from only the quark fragmentation functions greatly improves the agreement with the SLD data for the pion and kaon productions in $e^+e^...
Collective Flow signals the Quark Gluon Plasma
Bratkovskaya, E. L.; Bleicher, M.; Greiner, C.; Muronga, A.; Paech, K.; Reiter, M.; Scherer, S.; Soff, S.; Xu, Z.; Zeeb, G.; Zschiesche, D.; Tavares, B.; Portugal, L.; Aguiar, C.; Kodama, T.; Grassi, F.; Hama, Y.; Osada, T.; Sokolowski, O.; Werner, K.; Gallmeister, K.; Cassing, W.; Stöcker, H.
2004-12-01
A critical discussion of the present status of the CERN experiments on charm dynamics and hadron collective flow is given. We emphasize the importance of the flow excitation function from 1 to 50 AṡGeV: here the hydrodynamic model has predicted the collapse of the v1-flow and of the v2-flow at ˜ 10 AṡGeV; at 40 AṡGeV it has been recently observed by the NA49 collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy we interpret this observation as potential evidence for a first order phase transition at high baryon density ρB. A detailed discussion of the collective flow as a barometer for the equation of state (EoS) of hot dense matter at RHIC follows. Additionally, detailed transport studies show that the away-side jet suppression can only partially (QGP formed at RHIC — can give further information on the equation of state (EoS) and transport coefficients of the Quark Gluon Plasma (QGP).
Modeling Quark Gluon Plasma Using CHIMERA
Abelev, Betty
2011-09-01
We attempt to model Quark Gluon Plasma (QGP) evolution from the initial Heavy Ion collision to the final hadronic gas state by combining the Glauber model initial state conditions with eccentricity fluctuations, pre-equilibrium flow, UVH2+1 viscous hydrodynamics with lattice QCD Equation of State (EoS), a modified Cooper-Frye freeze-out and the UrQMD hadronic cascade. We then evaluate the model parameters using a comprehensive analytical framework which together with the described model we call CHIMERA. Within our framework, the initial state parameters, such as the initial temperature (Tinit), presence or absence of initial flow, viscosity over entropy density (η/S) and different Equations of State (EoS), are varied and then compared simultaneously to several experimental data observables: HBT radii, particle spectra and particle flow. χ2/nds values from comparison to the experimental data for each set of initial parameters will then used to find the optimal description of the QGP with parameters that are difficult to obtain experimentally, but are crucial to understanding of the matter produced.
Modeling Quark Gluon Plasma Using CHIMERA
Abelev, Betty B I
2011-01-01
We attempt to model Quark Gluon Plasma (QGP) evolution from the initial Heavy Ion collision to the final hadronic gas state by combining the Glauber model initial state conditions with eccentricity fluctuations, pre-equilibrium flow, UVH2+1 viscous hydrodynamics with lattice QCD Equation of State (EoS), a modified Cooper-Frye freeze-out and the UrQMD hadronic cascade. We then evaluate the model parameters using a comprehensive analytical framework which together with the described model we call CHIMERA. Within our framework, the initial state parameters, such as the initial temperature (T$_{\\mathrm{init}}$), presence or absence of initial flow, viscosity over entropy density ($\\eta$/s) and different Equations of State (EoS), are varied and then compared simultaneously to several experimental data observables: HBT radii, particle spectra and particle flow. $\\chi^2$/nds values from comparison to the experimental data for each set of initial parameters will then used to find the optimal description of the QGP wi...
Inflating metastable quark-gluon plasma universe.
Jenkovszky, L.
The cosmic evolution of our universe before and after the assumed confinement phase transition is studied within the homogeneous, isotropic and spatially flat model. The Friedmann equation, describing its evolution is appended by an equation of state (EOS) of the quark-gluon plasma. A specifically interesting feature of this EOS, derived both in the content of the quark model (and quantum chromodynamics) and the S-matrix formulation of statistical mechanics is the presence of a local minimum in the pressure vs. temperature dependence, that may be the origin of the exponential expansion of our universe, called inflation. The conditions necessary for the deep supercooling, accompanied by nucleation in a first-order phase transition, have been investigated. The nucleation rate (and consequently the probability of the deep supercooling indispensable for the inflation) are shown to depend essentially on the surface tension of the created bubbles. The possibility of a "nuclear inflation" - the analogue of the above scenario in heavy ion collisions - is also discussed.
Dissecting the influence of the collinear and flanking bars in White's effect.
Blakeslee, Barbara; Padmanabhan, Ganesh; McCourt, Mark E
2016-10-01
In White's effect equiluminant test patches placed on the black and white bars of a square-wave grating appear different in brightness. The illusion has generated intense interest because the direction of the brightness effect does not correlate with the amount of black or white border in contact with the test patch, or in its general vicinity. Therefore, unlike brightness induction effects such as simultaneous contrast, White's effect is not consistent with explanations based on contrast or assimilation that depend solely on the relative amounts of black and white surrounding the test patches. We independently manipulated the luminance of the collinear and flanking bars to investigate their influence on test patch matching luminance (brightness). The inducing grating was a 0.5c/d square-wave and test patches measured 1.0° in width and either 0.5° or 3.0° in height. Test patches measuring 0.5° in height had more extensive contact with the collinear bars and test patches measuring 3.0° in height had more extensive contact with the flanking bars. The luminance of the collinear (or flanking) bars assumed twenty values from 3.2 to 124.8cd/m(2), while the luminance of the flanking (or collinear) bars remained white (124.8cd/m(2)) or black (3.2cd/m(2)). Under these conditions the influence of the collinear and flanking bars was found to be purely in the direction of contrast. The effect was dominated by contrast from the collinear bars (which results in White's effect), however, the influence of the flanking bars was also in the contrast direction. The data elucidate the luminance relationships between the collinear and flanking bars which produce the behavior associated with White's effect as well as that associated with "the inverted White effect" which is akin to simultaneous contrast.
Kaluza-Klein gluon + jets associated production at the Large Hadron Collider
Iyer, A.M.; Manglani, N.; Sridhar, K.
2016-01-01
The Kaluza-Klein excitations of gluons offer the exciting possibility of probing bulk Randall-Sundrum (RS) models. In these bulk models either a custodial symmetry or a deformation of the metric away from AdS is invoked in order to deal with electroweak precision tests. Addressing both these models, we suggest a new channel in which to study the production of KK-gluons ($g_{KK}$): one where it is produced in association with one or more hard jets. The cross-section for the $g_{KK}+$ jets channel is significant because of several contributing sub-processes. In particular, the 1-jet and the 2-jet associated processes are important because at these orders in QCD the $qg$ and the $gg$ initial states respectively come into play. We have performed a hadron-level simulation of the signal and present strategies to effectively extract the signal from what could potentially be a huge background. We present results for the kinematic reach of the LHC Run-II for different $g_{KK}$ masses in bulk-RS models.
Kaluza–Klein gluon + jets associated production at the Large Hadron Collider
A.M. Iyer
2016-08-01
Full Text Available The Kaluza–Klein excitations of gluons offer the exciting possibility of probing bulk Randall–Sundrum (RS models. In these bulk models either a custodial symmetry or a deformation of the metric away from AdS is invoked in order to deal with electroweak precision tests. Addressing both these models, we suggest a new channel in which to study the production of KK-gluons (gKK: one where it is produced in association with one or more hard jets. The cross-section for the gKK + jets channel is significant because of several contributing sub-processes. In particular, the 1-jet and the 2-jet associated processes are important because at these orders in QCD the qg and the gg initial states respectively come into play. We have performed a hadron-level simulation of the signal and present strategies to effectively extract the signal from what could potentially be a huge background. We present results for the kinematic reach of the LHC Run-II for different gKK masses in bulk-RS models.
Long wavelength perfect fluidity from short distance jet transport in quark-gluon plasmas
Xu, Jiechen; Gyulassy, Miklos
2015-01-01
We build a new phenomenological framework that bridges the long wavelength bulk viscous transport properties of the strongly-coupled quark-gluon plasma (sQGP) and short distance hard jet transport properties in the QGP. The full nonperturbative chromo-electric (E) and chromo-magnetic (M) structure of the near "perfect fluid" like sQGP in the critical transition region are integrated into a semi-Quark-Gluon-Monopole Plasma (sQGMP) model lattice-compatibly and implemented into the new CUJET3.0 jet quenching framework. All observables computed from CUJET3.0 are found to be consistent with available data at RHIC and LHC simultaneously. A quantitative connection between the shear viscosity and jet transport parameter is rigorously established within this framework. We deduce the $T=160-600$ MeV dependence of the QGP's $\\eta/s$: its near vanishing value in the near $T_c$ regime is determined by the composition of E and M charges, it increases as $T$ rises, and its high $T$ limit is fixed by color screening scales.
First measurement of the Sivers asymmetry for gluons from SIDIS data
Adolph, C; Akhunzyanov, R.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Dreisbach, Ch.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giarra, J.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F.H.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, M.; Meyer, W.; Mikhailov, Yu.V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D.V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rogacheva, N.S.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Thiel, A.; Tosello, F.; Tskhay, V.; Uhl, S.; Vauth, A.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.
2017-01-01
The Sivers function describes the correlation between the transverse spin of a nucleon and the transverse motion of its partons. It was extracted from measurements of the azimuthal asymmetry of hadrons produced in semi-inclusive deep inelastic scattering of leptons off transversely polarised nucleon targets, and it turned out to be non-zero for quarks. In this letter the evaluation of the Sivers asymmetry for gluons in the same process is presented. The analysis method is based on a Monte Carlo simulation that includes three hard processes: photon-gluon fusion, QCD Compton scattering and leading-order virtual-photon absorption process. The Sivers asymmetries of the three processes are simultaneously extracted using the LEPTO event generator and a neural network approach. The method is applied to samples of events containing at least two hadrons with large transverse momentum from the COMPASS data taken with a 160 GeV/$c$ muon beam scattered off transversely polarised deuterons and protons. With a significance...
Associated jet and subjet rates in light-quark and gluon jet discrimination
Bhattacherjee, Biplob; Nojiri, Mihoko M; Sakaki, Yasuhito; Webber, Bryan R
2015-01-01
We show that in studies of light quark- and gluon-initiated jet discrimination, it is important to include the information on softer reconstructed jets (associated jets) around a primary hard jet. This is particularly relevant while adopting a small radius parameter for reconstructing hadronic jets. The probability of having an associated jet as a function of the primary jet transverse momentum ($p_T$) and radius, the minimum associated jet $p_T$ and the association radius is computed upto next-to-double logarithmic accuracy (NDLA), and the predictions are compared with results from Herwig++, Pythia6 and Pythia8 Monte Carlos (MC). We demonstrate the improvement in quark-gluon discrimination on using the associated jet rate variable with the help of a multivariate analysis. The associated jet rates are found to be only mildly sensitive to the choice of parton shower and hadronization algorithms, as well as to the effects of initial state radiation and underlying event. In addition, the number of $k_T$ subjets ...
High energy resummation of transverse momentum distributions:Higgs in gluon fusion
Forte, Stefano
2015-01-01
We derive a general resummation formula for transverse-momentum distributions of hard processes at the leading logarithmic level in the high-energy limit, to all orders in the strong coupling. Our result is based on a suitable generalization of high-energy factorization theorems, whereby all-order resummation is reduced to the determination of the Born-level process but with incoming off-shell gluons. We validate our formula by applying it to Higgs production in gluon fusion in the infinite top mass limit. We check our result up to next-to-leading order by comparison to the high energy limit of the exact expression and to next-to-next-to leading by comparison to NNLL order trasverse momentum (Sudakov) resummation, and we predict the high-energy behaviour at next$^3$-to-leading order. We also show that the structure of the result in the small transverse momentum limit agrees to all orders with general constraints from Sudakov resummation.
Long wavelength perfect fluidity from short distance jet transport in quark-gluon plasmas
Xu, Jiechen; Liao, Jinfeng; Gyulassy, Miklos
2016-12-01
We build a new phenomenological framework that bridges the long wavelength bulk viscous transport properties of the strongly-coupled quark-gluon plasma (sQGP) and short distance hard jet transport properties in the QGP. The full nonperturbative chromo-electric (E) and chromo-magnetic (M) structure of the near "perfect fluid" like sQGP in the critical transition region are integrated into a semi-Quark-Gluon-Monopole Plasma (sQGMP) model lattice-compatibly and implemented into the new CUJET3.0 jet quenching framework. All observables computed from CUJET3.0 are found to be consistent with available data at RHIC and LHC simultaneously. A quantitative connection between the shear viscosity and jet transport parameter is rigorously established within this framework. We deduce the T = 160 - 600 MeV dependence of the QGP's η / s: its near vanishing value in the near Tc regime is determined by the composition of E and M charges, it increases as T rises, and its high T limit is fixed by color screening scales.
Kaluza-Klein gluon + jets associated production at the Large Hadron Collider
Iyer, A. M.; Mahmoudi, F.; Manglani, N.; Sridhar, K.
2016-08-01
The Kaluza-Klein excitations of gluons offer the exciting possibility of probing bulk Randall-Sundrum (RS) models. In these bulk models either a custodial symmetry or a deformation of the metric away from AdS is invoked in order to deal with electroweak precision tests. Addressing both these models, we suggest a new channel in which to study the production of KK-gluons (gKK): one where it is produced in association with one or more hard jets. The cross-section for the gKK + jets channel is significant because of several contributing sub-processes. In particular, the 1-jet and the 2-jet associated processes are important because at these orders in QCD the qg and the gg initial states respectively come into play. We have performed a hadron-level simulation of the signal and present strategies to effectively extract the signal from what could potentially be a huge background. We present results for the kinematic reach of the LHC Run-II for different gKK masses in bulk-RS models.
Subleading terms in the collinear limit of Yang–Mills amplitudes
Stephan Stieberger
2015-11-01
Full Text Available For two massless particles i and j, the collinear limit is a special kinematic configuration in which the particles propagate with parallel four-momentum vectors, with the total momentum P distributed as pi=xP and pj=(1−xP, so that sij≡(pi+pj2=P2=0. In Yang–Mills theory, if i and j are among N gauge bosons participating in a scattering process, it is well known that the partial amplitudes associated to the (single trace group factors with adjacent i and j are singular in the collinear limit and factorize at the leading order into (N−1-particle amplitudes times the universal, x-dependent Altarelli–Parisi factors. We give a precise definition of the collinear limit and show that at the tree level, the subleading, non-singular terms are related to the amplitudes with a single graviton inserted instead of two collinear gauge bosons. To that end, we argue that in one-graviton Einstein–Yang–Mills amplitudes, the graviton with momentum P can be replaced by a pair of collinear gauge bosons carrying arbitrary momentum fractions xP and (1−xP.
Exploring dynamical gluon mass generation in three dimensions
Cornwall, John M
2015-01-01
In the d=3 gluon mass problem in pure-glue non-Abelian $SU(N)$ gauge theory we pay particular attention to the observed (in Landau gauge) violation of positivity for the spectral function of the gluon propagator. This causes a large bulge in the propagator at small momentum. Mass is defined through $m^{-2}=\\Delta (p=0)$, where $\\Delta(p)$ is the scalar function for the gluon propagator in some chosen gauge, it is not a pole mass and is generally gauge-dependent, except in the gauge-invariant Pinch Technique (PT). We truncate the PT equations with a new method called the vertex paradigm that automatically satisfies the QED-like Ward identity relating the 3-gluon PT vertex function with the PT propagator. The mass is determined by a homogeneous Bethe-Salpeter equation involving this vertex and propagator. This gap equation also encapsulates the Bethe-Salpeter equation for the massless scalar excitations, essentially Nambu-Goldstone fields, that necessarily accompany gauge-invariant gluon mass. The problem is to...
Gluon TMDs in the small-$x$ limit
van Daal, Tom
2016-01-01
In high-energy scattering processes involving two or more hadrons one can measure observables that are sensitive to partonic transverse momentum, which is encoded in so-called transverse momentum dependent (TMD) parton distribution functions (PDFs), also called TMDs. These functions correspond to Fourier transforms of matrix elements that contain process-dependent gauge links. As the energy associated to the collision process increases, one becomes more sensitive to the small-$x$ region which is dominated by gluon rather than quark TMDs. In this paper we study the leading-twist gluon TMDs in the small-$x$ limit for the dipole-type gauge link structure, for both unpolarized and vector polarized hadrons. In the limit $x\\to0$, the gluon-gluon correlator reduces to a correlator that consists of a single Wilson loop. This is used to obtain a simple description of gluon TMDs in the small-$x$ region: some of the functions vanish, while others become proportional to each other.
Measurements of the structure of quark and gluon jets in hadronic Z decays
Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Merle, E; Minard, M N; Nief, J Y; Pietrzyk, B; Alemany, R; Boix, G; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Becker, U; Bright-Thomas, P G; Casper, David William; Cattaneo, M; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Cerutti, F; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Halley, A W; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Williams, M I; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Etienne, F; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Kroha, H; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Zobernig, G
2000-01-01
An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for tests of QCD over a wide range of transverse momentum scales. The observables include distributions of jet-shape variables, the mean and standard deviation of the subjet multiplicity distribution and the fragmentation function for charged particles. The data are compared with predictions of perturbative QCD as well as QCD-based Monte Carlo models. In certain kinematic regions the measurements are sensitive mainly to perturbatively calculable effects, allowing for a test of QCD. The comparisons are also extended into regions where nonperturbative effects become large, and in this way the transition from hard to soft QCD is investigated. It is found that by including leading and next-to-leading logarithmic contributions in the QCD predictions, the agreement with the data can be extended to lower transverse momentum sca...
American Society for Testing and Materials. Philadelphia
2007-01-01
1.1 Conversion Table 1 presents data in the Rockwell C hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.2 Conversion Table 2 presents data in the Rockwell B hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.3 Conversion Table 3 presents data on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, and Knoop hardness of nickel and high-nickel alloys (nickel content o...
Non-collinear upconversion of incoherent light: designing infrared spectrometers and imaging systems
Dam, Jeppe Seidelin; Hu, Qi; Pedersen, Christian
2014-01-01
for each angle of propagation. Non-collinear phase matching has been an area of limited attention for many years due to inherent incompatibility with tightly focused laser beams typically used for most second order processes in order to achieve acceptable conversion efficiency. The development......Upconversion of incoherent mid-infrared radiation to near visible wavelengths, offers very attractive sensitivity compared to conventional means of infrared detection. Incoherent light, focused into a nonlinear crystal, results in noncollinear phase matching of a narrow range of wavelengths...... of periodically poled crystals have allowed for non-critical collinear phase matching of most wavelengths, virtually eliminating the need for non-collinear phase matching. When considering upconversion of thermal light, spectral radiance is limited due to the finite temperature of the Planck radiation source...
Probing the spinor nature of electronic states in nanosize non-collinear magnets
Fischer, Jeison A.; Sandratskii, Leonid M.; Phark, Soo-Hyon; Ouazi, Safia; Pasa, André A.; Sander, Dirk; Parkin, Stuart S. P.
2016-01-01
Non-collinear magnetization textures provide a route to novel device concepts in spintronics. These applications require laterally confined non-collinear magnets (NCM). A crucial aspect for potential applications is how the spatial proximity between the NCM and vacuum or another material impacts the magnetization texture on the nanoscale. We focus on a prototypical exchange-driven NCM given by the helical spin order of bilayer Fe on Cu(111). Spin-polarized scanning tunnelling spectroscopy and density functional theory reveal a nanosize- and proximity-driven modification of the electronic and magnetic structure of the NCM in interfacial contact with a ferromagnet or with vacuum. An intriguing non-collinearity between the local magnetization in the sample and the electronic magnetization probed above its surface results. It is a direct consequence of the spinor nature of electronic states in NCM. Our findings provide a possible route for advanced control of nanoscale spin textures by confinement. PMID:27721384
Gaiero, Paola; van de Belt, José; Vilaró, Francisco; Schranz, M Eric; Speranza, Pablo; de Jong, Hans
2017-03-01
A major bottleneck to introgressive hybridization is the lack of genome collinearity between the donor (alien) genome and the recipient crop genome. Structural differences between the homeologs may create unbalanced segregation of chromosomes or cause linkage drag. To assess large-scale collinearity between potato and two of its wild relatives (Solanum commersonii and Solanum chacoense), we used BAC-FISH mapping of sequences with known positions on the RH potato map. BAC probes could successfully be hybridized to the S. commersonii and S. chachoense pachytene chromosomes, confirming their correspondence with linkage groups in RH potato. Our study shows that the order of BAC signals is conserved. Distances between BAC signals were quantified and compared; some differences found suggest either small-scale rearrangements or reduction/amplification of repeats. We conclude that S. commersonii and S. chacoense are collinear with cultivated Solanum tuberosum on the whole chromosome scale, making these amenable species for efficient introgressive hybridization breeding.
Collective phenomena in the non-equilibrium quark-gluon plasma
Schenke, Bjoern Peter
2008-07-03
In this work we study the non-equilibrium dynamics of a quark-gluon plasma, as created in heavy-ion collisions. We investigate how big of a role plasma instabilities can play in the isotropization and equilibration of a quark-gluon plasma. In particular, we determine, among other things, how much collisions between the particles can reduce the growth rate of unstable modes. This is done both in a model calculation using the hard-loop approximation, as well as in a real-time lattice simulation combining both classical Yang-Mills-fields as well as inter-particle collisions. The new extended version of the simulation is also used to investigate jet transport in isotropic media, leading to a cutoff-independent result for the transport coefficient q. The precise determination of such transport coefficients is essential, since they can provide important information about the medium created in heavy ion collisions. In anisotropic media, the effect of instabilities on jet transport is studied, leading to a possible explanation for the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity than in azimuth. The investigation of collective modes in the hard-loop limit is extended to fermionic modes, which are shown to be all stable. Finally, we study the possibility of using high energy photon production as a tool to experimentally determine the anisotropy of the created system. Knowledge of the degree of local momentum-space anisotropy reached in a heavy-ion collision is essential for the study of instabilities and their role for isotropization and thermalization, because their growth rate depends strongly on the anisotropy. (orig.)
Ashida, T; Sato, Y; Nozaki, T; Sahashi, M
2013-05-07
In this study, we fabricated a Cr2O3 (0001) film without and with a Pt buffer layer and investigated its effect on perpendicular exchange coupling in a Cr2O3/Co3Pt interface. The results showed that the exchange bias field (μ0Hex) and blocking temperature (TB) of a Cr2O3 film without and with Pt were very different. The Cr2O3 film without Pt had a lower μ0Hex of 176 Oe and a lower TB of 75 K, whereas that with Pt had a higher μ0Hex of 436 Oe and a higher TB of 150 K. We discussed this difference in μ0Hex and TB values based on collinear/non-collinear coupling in a ferromagnetic and antiferromagnetic interface using Meiklejohn and Bean's exchange anisotropy model.
Worldline calculation of the three-gluon vertex
Ahmadiniaz, N.; Schubert, C. [Dipartimento di Fisica, Universita di Bologna and INFN Sezione di Bologna Via Irnerio 46, I-40126 Bologna (Italy); Instituto de Fisica y Matematicas Universidad Michoacana de San Nicolas de Hidalgo Apdo. Postal 2-82 C.P. 58040, Morelia, Michoacan (Mexico)
2012-10-23
The three-gluon vertex is a basic object of interest in nonabelian gauge theory. At the one-loop level, it has been calculated and analyzed by a number of authors. Here we use the worldline formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in terms of field strength tensors. We verify its equivalence with previously obtained representations, and explain the relation of its structure to the low-energy effective action. The sum rule found by Binger and Brodsky for the scalar, spinor and gluon loop contributions in the present approach relates to worldline supersymmetry.
YFS MC Approach to QCD Soft Gluon Exponentiation
Ward, B F L
2002-01-01
We present two things in this discussion. First, we develop and prove the theory of the extension of the YFS Monte Carlo approach to higher order SU_{2L} x U_1 radiative corrections to the analogous higher order QCD radiative corrections. Contact is made with other pioneering soft gluon resummation theories in the literature. Second, semi-analytical results and preliminary explicit Monte Carlo data are presented for the specific example of the processes p-bar p -> t-bar t +n(G)+X at FNAL energies, where G is a soft gluon and the respective event generator, ttp1.0, features realistic, event-by-event simulation of multiple, soft, finite p_T gluon effects in which the infrared singularities are canceled to all orders in alpha_s. We comment briefly on the implications of our results on the CDF/D0 observations and on their possible applications to RHIC physics and to LHC physics.
Improved LO extraction of the gluon polarisation using COMPASS data
Wilfert, Malte [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Collaboration: COMPASS collaboration
2015-07-01
The COMPASS experiment at the M2 beamline of the CERN SPS has taken data with a polarised muon beam (E=160 GeV) scattering of a polarised LiD target from 2002 to 2006. The events in the DIS region are re-analysed to extract simultaneously the gluon polarisation Δg/g and the leading process asymmetry from the same data using a Neural Network approach. The new method of extracting Δg/g is presented. The main feature of this method is a reduction of both the systematic and the statistical uncertainty of the gluon polarisation obtained in LO. The new result is in good agreement with the already published one in PLB 718 (2013) 922 and is presented in three bins of gluon momentum fraction x{sub g}.
Holographic Multiquarks in the Quark-Gluon Plasma: A Review
Piyabut Burikham
2011-01-01
Full Text Available We review the holographic multiquark states in the deconfined quark-gluon plasma. Nuclear matter can become deconfined by extremely high temperature and/or density. In the deconfined nuclear medium, bound states with colour degrees of freedom are allowed to exist. Using holographic approach, the binding energy and the screening length of the multiquarks can be calculated. Using the deconfined Sakai-Sugimoto model, the phase diagram of the multiquark phase, the vacuum phase, and the chiral-symmetric quark-gluon plasma can be obtained. Then we review the magnetic properties of the multiquarks and their phase diagrams. The multiquark phase is compared with the pure pion gradient, the magnetized vacuum, and the chiral-symmetric quark-gluon plasma phases. For moderate temperature and sufficiently large density at a fixed magnetic field, the mixed phase of multiquark and pion gradient is the most energetically preferred phase.
Soft Gluon Radiation off Heavy Quarks beyond Eikonal Approximation
Bhattacharyya, Trambak; Abir, Raktim
2016-01-01
It is known that gluon bremsstrahlung emission off heavy flavor jet is suppressed in the forward direction compared to that of light quark due to the mass effect ($`$dead cone effect'). Most of the models that address jet quenching generally assume that a jet always travels in straight eikonal path. However, once the eikonal approximation of propagation is called off and jet is allowed to bend, additional gluons pop-up within the so called `depopulated' region deluging the dead cone. This color synchrotron by color charge, once wound in an ambiance of color field, seems to be very apt for better understanding of jet quenching in hot and dense deconfined quark-gluon medium.
Anomalous Viscosity of the Quark-Gluon Plasma
Hong, Juhee
2013-01-01
The shear viscosity of the quark-gluon plasma is predicted to be lower than the collisional viscosity for weak coupling. The estimated ratio of the shear viscosity to entropy density is rather close to the ratio calculated by N = 4 super Yang-Mills theory for strong coupling, which indicates that the quark-gluon plasma might be strongly coupled. However, in presence of momentum anisotropy, the Weibel instability can arise and affect transport properties. Shear viscosity can be lowered by enhanced collisionality due to turbulence, but the decorrelation time and its relation to underlying dynamics and color-magnetic fields have not been calculated self-consistently. In this paper, we use resonance broadening theory for strong turbulence to calculate the anomalous viscosity of the quark-gluon plasma for nonequilibrium. For saturated Weibel instability, we estimate the scalings of the decorrelation rate and viscosity and compare these with collisional transport. This calculation yields an explicit connection betw...
Quark and gluon tagging in dijet mass resonance search
Kellermann, Edgar
2013-01-01
Several models beyond the Standard Model predict new phenomena in particle physics, which would appear as resonant signals in dijet mass distributions. An example for such a resonance is the excited quark q, which is a consequence of Compositeness Models postulating that quarks and leptons are build by more fundamental particles. The main signature of an excited quark would be a dijet event, originated from the radiation of a gluon from the original excited quark when going back to its non-excited state, leading to a quark and a gluon in the final state (with a branching ratio of 83%) . Other examples are the heavy vector bosonsW0 decaying to two quarks and colour octet scalar S8 decaying to two gluons.
High-Order Harmonic Generation by Two Non-collinear Coherent Femtosecond Laser Pulses
陆伟新; 刘婷婷; 杨宏; 孙騊亨; 龚旗煌
2003-01-01
We have studied the high-order harmonic generated by two coherent pulses in argon gas produced by a gas jet. A loop in the relationship of the harmonic intensity versus the absolute values of relative phase difference was observed for non-collinear arrangement. Compared with the collinear arrangement, increase of 10 times of the conversion efficiency for 17th-order harmonic generation at an appropriate relative phase difference was obtained. The calculation of the intensity and phase for the laser field near the focus gives a simple reason for these phenomena.
Collinear two colour Kerr effect based time-gate for ballistic imaging
Purwar, Harsh; Rozé, Claude; Blaisot, Jean-Bernard
2015-01-01
A novel setup is presented for ballistic imaging using an efficient ultrafast Kerr effect based optical time-gate with gating times of the order of ~0.8 picoseconds. At first, the major drawbacks of the classical non-collinear optical setup are discussed. Then, the new collinear arrangement is proposed, which overcomes these issues and improves the achievable imaging spatial resolution and gate timings. Few preliminary results for ballistic imaging of liquid sprays/jets are presented for this arrangement. It is shown that using a solid state Kerr medium (GGG crystal), instead of the classical liquid CS$_2$, allows reduction in the opening time of the optical gate.
Target mass corrections for spin-dependent structure functions in collinear factorization
Accardi, A
2008-01-01
We derive target mass corrections (TMC) for the spin-dependent nucleon structure function g1 and polarization asymmetry A1 in collinear factorization at leading twist. The TMCs are found to be significant for g1 at large xB, even at relatively high Q^2 values, but largely cancel in A1. A comparison of TMCs obtained from collinear factorization and from the operator product expansion shows that at low Q^2 the corrections drive the proton A1 in opposite directions.
Gao Zhiwen, E-mail: gaozhw@lzu.edu.c [Key Laboratory of Mechanics on Western Disaster and Environment, Ministry of Education (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); School of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Zhou Youhe [Key Laboratory of Mechanics on Western Disaster and Environment, Ministry of Education (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Lee, Kang Yong, E-mail: KYL2813@yonsei.ac.k [School of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)
2010-08-01
The interaction of two collinear cracks is obtained for a type-II superconducting under electromagnetic force. Fracture analysis is performed by means of finite element method and the magnetic behavior of superconductor is described by the critical-state Bean model. The stress intensity factors at the crack tips can be obtained and discussed for decreasing field after zero-field cooling. It is revealed that the stress intensity factor decreases as applied field increases. The crack-tip stress intensity factors decrease when the distance between the two collinear cracks increases and the superconductors with smaller crack has more remarkable shielding effect than those with larger cracks.
Evidence for gluon interference in hadronic Z decays
Acciarri, M.; Adam, A.; Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Alpat, B.; Alcaraz, J.; Allaby, J.; Aloisio, A.; Alverson, G.; Alviggi, M. G.; Ambrosi, G.; An, Q.; Anderhub, H.; Andreev, V. P.; Angelescu, T.; Antreasyan, D.; Arefiev, A.; Azemoon, T.; Aziz, T.; Baba, P. V. K. S.; Bagnaia, P.; Baksay, L.; Ball, R. C.; Banerjee, S.; Banicz, K.; Barillère, R.; Barone, L.; Bartalini, P.; Baschirotto, A.; Basile, M.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bencze, Gy. L.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biland, A.; Bilei, G. M.; Bizzarri, R.; Blaising, J. J.; Bobbink, G. J.; Bock, R.; Böhm, A.; Borgia, B.; Boucham, A.; Bourilkov, D.; Bourquin, M.; Boutigny, D.; Bouwens, B.; Brambilla, E.; Branson, J. G.; Brigljevic, V.; Brock, I. C.; Bujak, A.; Burger, J. D.; Burger, W. J.; Burgos, C.; Busenitz, J.; Buytenhuijs, A.; Cai, X. D.; Capell, M.; Cara Romeo, G.; Caria, M.; Carlino, G.; Cartacci, A. M.; Casaus, J.; Castellini, G.; Castello, R.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chan, A.; Chang, Y. H.; Chaturvedi, U. K.; Chemarin, M.; Chen, A.; Chen, C.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chen, M.; Chiefari, G.; Chien, C. Y.; Choi, M. T.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coan, T. E.; Cohn, H. O.; Coignet, G.; Colino, N.; Commichau, V.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Cui, X. T.; Cui, X. Y.; Dai, T. S.; D'Alessandro, R.; de Asmundis, R.; De Boeck, H.; Degré, A.; Deiters, K.; Dénes, E.; Denes, P.; DeNotaristefani, F.; DiBitonto, D.; Diemoz, M.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dorne, I.; Dova, M. T.; Drago, E.; Duchesneau, D.; Duinker, P.; Duran, I.; Dutta, S.; Easo, S.; Efremenko, Yu.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Erné, F. C.; Ernenwein, J. P.; Extermann, P.; Fabbretti, R.; Fabre, M.; Faccini, R.; Falciano, S.; Favara, A.; Fay, J.; Felcini, M.; Ferguson, T.; Fernandez, D.; Fernandez, G.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Forconi, G.; Fredj, L.; Freudenreich, K.; Gailloud, M.; Galaktionov, Yu.; Ganguli, S. N.; Garcia-Abia, P.; Gau, S. S.; Gentile, S.; Gerald, J.; Gheordanescu, N.; Giagu, S.; Goldfarb, S.; Goldstein, J.; Gong, Z. F.; Gonzalez, E.; Gougas, A.; Goujon, D.; Gratta, G.; Gruenewald, M. W.; Gu, C.; Guanziroli, M.; Gupta, V. K.; Gurtu, A.; Gustafson, H. R.; Gutay, L. J.; Hartmann, B.; Hasan, A.; He, J. T.; Hebbeker, T.; Hervé, A.; Hilgers, K.; van Hoek, W. C.; Hofer, H.; Hoorani, H.; Hou, S. R.; Hu, G.; Ilyas, M. M.; Innocente, V.; Janssen, H.; Jin, B. N.; Jones, L. W.; de Jong, P.; Josa-Mutuberria, I.; Kasser, A.; Khan, R. A.; Kamyshkov, Yu.; Kapinos, P.; Kapustinsky, J. S.; Karyotakis, Y.; Kaur, M.; Khokhar, S.; Kienzle-Focacci, M. N.; Kim, D.; Kim, J. K.; Kim, S. C.; Kim, Y. G.; Kinnison, W. W.; Kirkby, A.; Kirkby, D.; Kirkby, J.; Kirsch, S.; Kittel, W.; Klimentov, A.; König, A. C.; Koffeman, E.; Kornadt, O.; Koutsenko, V.; Koulbardis, A.; Kraemer, R. W.; Kramer, T.; Krenz, W.; Kuijten, H.; Kunin, A.; Ladron de Guevara, P.; Landi, G.; Lapoint, C.; Lassila-Perini, K.; Laurikainen, P.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, J.; Lecoq, P.; Le Coultre, P.; Lee, J. S.; Lee, K. Y.; Leggett, C.; Le Goff, J. M.; Leiste, R.; Lenti, M.; Leonardi, E.; Levtchenko, P.; Li, C.; Lieb, E.; Lin, W. T.; Linde, F. L.; Lindemann, B.; Lista, L.; Liu, Y.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, W.; Lu, Y. S.; Lübelsmeyer, K.; Luci, L.; Luckey, D.; Ludovici, L.; Luminari, L.; Lustermann, W.; Ma, W. G.; Macchiolo, A.; Maity, M.; Malgeri, L.; Malik, R.; Malinin, A.; Maña, C.; Mangla, S.; Maolinbay, M.; Marchesini, P.; Marin, A.; Martin, J. P.; Marzano, F.; Massaro, G. G. G.; Mazumdar, K.; McNally, D.; Mele, S.; Merk, M.; Merola, L.; Meschini, M.; Wetzger, W. J.; Mi, Y.; Mihul, A.; van Mil, A. J. W.; Mir, Y.; Mirabelli, G.; Mnich, J.; Möller, M.; Monaco, V.; Monteleoni, B.; Moore, R.; Morand, R.; Morganti, S.; Moulai, N. E.; Mount, R.; Müller, S.; Nagy, E.; Nahn, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niaz, M. A.; Nippe, A.; Nowak, H.; Organtini, G.; Ostonen, R.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Pascale, G.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pei, Y. J.; Pensotti, S.; Perret-Gallix, D.; Pevsner, A.; Piccolo, D.; Pieri, M.; Pinto, J. C.; Piroué, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Produit, N.; Qureshi, K. N.; Raghavan, R.; Rahal-Callot, G.; Rancoita, P. G.; Rattaggi, M.; Raven, G.; Razis, P.; Read, K.; Redaelli, M.; Ren, D.; Ren, Z.; Rescigno, M.; Reucroft, S.; Ricker, A.; Riemann, S.; Riemers, B. C.; Riles, K.; Rind, O.; Rizvi, H. A.; Ro, S.; Robohm, A.; Rodin, J.; Rodriguez, F. J.; Roe, B. P.; Röhner, M.; Röhner, S.; Romero, L.; Rosier-Lees, S.; Rosselet, Ph.; van Rossum, W.; Roth, S.; Rubio, J. A.; Rykaczewski, H.; Salicio, J.; Salicio, J. M.; Sanchez, E.; Santocchia, A.; Sarakinos, M. E.; Sarkar, S.; Sartorelli, G.; Sassowsky, M.; Sauvage, G.; Schäfer, C.; Schegelsky, V.; Schmitz, D.; Schmitz, P.; Schneegans, M.; Schoeneich, B.; Scholz, N.; Schopper, H.; Schotanus, D. J.; Schulte, R.; Schultze, K.; Schwenke, J.; Schwering, G.; Sciacca, C.; Sehgal, R.; Seiler, P. G.; Sens, J. C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shukla, J.; Shumilov, E.; Son, D.; Sopczak, A.; Soulimov, V.; Smith, B.; Spickermann, T.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Sticozzi, F.; Stone, H.; Stoyanov, B.; Strauch, K.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Susinno, G. F.; Suter, H.; Swain, J. D.; Syed, A. A.; Tang, X. W.; Taylor, L.; Timellini, R.; Ting, Samuel C. C.; Ting, S. M.; Toker, O.; Tonutti, M.; Tonwar, S. C.; Tóth, J.; Tsaregorodtsev, A.; Tsipolitis, G.; Tully, C.; Tuchscherer, H.; Ulbricht, J.; Urbán, L.; Uwer, U.; Valente, E.; Van de Walle, R. T.; Vetlitsky, I.; Viertel, G.; Vikas, P.; Vikas, U.; Vivargent, M.; Voelkert, R.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Vorobyov, An. A.; Vuilleumier, L.; Wadhwa, M.; Wallraff, W.; Wang, J. C.; Wang, X. L.; Wang, Y. F.; Wang, Z. M.; Weber, A.; Weill, R.; Willmott, C.; Wittgenstein, F.; Wu, S. X.; Wynhoff, S.; Xu, J.; Xu, Z. Z.; Yang, B. Z.; Yang, C. G.; Yang, G.; Yao, X. Y.; Ye, C. H.; Ye, J. B.; Ye, Q.; Yeh, S. C.; You, J. M.; Yunus, N.; Yzerman, M.; Zaccardelli, C.; Zalite, An.; Zemp, P.; Zeng, J. Y.; Zeng, M.; Zeng, Y.; Zhang, Z.; Zhang, Z. P.; Zhou, B.; Zhou, G. J.; Zhou, J. F.; Zhou, Y.; Zhu, G. Y.; Zhu, R. Y.; Zichichi, A.; van der Zwaan, B. C. C.; L3 Collaboration
1995-02-01
We present evidence for soft gluon interference, as required by QCD. This interference is expected to manifest itself in an angular ordering of the gluons radiated within a jet. Using hadronic decays of the Z boson in the L3 detector at LEP, we compare variables sensitive to such an angular ordering, namely the energy-energy correlation asymmetry and the newly introduced particle-particle correlation asymmetry, with the predictions of various parton shower models. Only those models which incorporate the expected interference agree with the data.
Nonperturbative effects in a rapidly expanding quark gluon plasma
Mohanty, A K; Gleiser, Marcello; 10.1103/PhysRevC.65.034908
2002-01-01
Within first-order phase transitions, we investigate pretransitional effects due to the nonperturbative, large-amplitude thermal fluctuations which can promote phase mixing before the critical temperature is reached from above. In contrast with the cosmological quark-hadron transition, we find that the rapid cooling typical of the relativistic heavy ion collider and large hadron collider experiments and the fact that the quark-gluon plasma is chemically unsaturated suppress the role of nonperturbative effects at current collider energies. Significant supercooling is possible in a (nearly) homogeneous state of quark gluon plasma. (24 refs).
Probing the quark–gluon interaction with hadrons
Sanchis-Alepuz, Hèlios, E-mail: helios.sanchis-alepuz@physik.uni-giessen.de; Williams, Richard, E-mail: richard.williams@physik.uni-giessen.de
2015-10-07
We present a unified picture of mesons and baryons in the Dyson–Schwinger/Bethe–Salpeter approach, wherein the quark–gluon and quark–(anti)quark interactions follow from a systematic truncation of the QCD effective action and include all its tensor structures. The masses of some of the ground-state mesons and baryons are found to be in reasonable agreement with the expectations of a ‘quark-core calculation’, suggesting a partial insensitivity to the details of the quark–gluon interaction. However, discrepancies remain in the meson sector, and for excited baryons, that suggest higher order corrections are relevant and should be investigated following the methods outlined herein.
Further evidence for zero crossing on the three gluon vertex
Duarte, Anthony G.; Oliveira, Orlando; Silva, Paulo J.
2016-10-01
The three gluon one particle irreducible function is investigated using lattice QCD simulations over a large region of momentum in the Landau gauge for four-dimensional pure Yang-Mills equations and the SU(3) gauge group. The results favor a zero crossing of the gluon form factor for momenta in the range 220-260 MeV. This zero crossing is required to happen in order to have a properly defined set of Dyson-Schwinger equations. It is also shown that in the high momentum region the lattice results are compatible with the predictions of renormalization group improved perturbation theory.
Further Evidence For Zero Crossing On The Three Gluon Vertex
Duarte, Anthony G; Silva, Paulo J
2016-01-01
The three gluon one particle irreducible function is investigated using lattice QCD simulations over a large region of momentum in the Landau gauge for four dimensional pure Yang-Mills equations and the SU(3) gauge group. The results favor a zero crossing of the gluon form factor for momenta in the range $220 - 260$ MeV. This zero crossing is required to happen in order to have a properly defined set of Dyson-Schwinger equations. It is also shown that in the high momentum region the lattice results are compatible with the predictions of renormalisation group improved perturbation theory.
QCD Factorization, Wilson Loop Space and Unintegrated Gluon Distributions
Cherednikov, Igor O.
2017-03-01
Currently available operator definitions of gauge-invariant unintegrated (transverse momentum dependent) gluon density function available are briefly overviewed, with emphasis on the structure of the associated Wilson lines. A gauge-invariant generating function with maximal path-dependence is proposed, which, as distinct from the common methodology, is based on arbitrary Wilson loops with no reference to any factorization scheme. After the local area differentiation defined in the Wilson loop space, this object can be used to define fully unintegrated gluon distribution functions in a way potentially suitable for the lattice simulations.
Direct probes of linearly polarized gluons inside unpolarized hadrons.
Boer, Daniël; Brodsky, Stanley J; Mulders, Piet J; Pisano, Cristian
2011-04-01
We show that linearly polarized gluons inside unpolarized hadrons can be directly probed in jet or heavy quark pair production in electron-hadron collisions. We discuss the simplest cos2ϕ asymmetries and estimate their maximal value, concluding that measurements of the unknown linearly polarized gluon distribution in the proton should be feasible in future Electron-Ion Collider or Large Hadron electron Collider experiments. Analogous asymmetries in hadron-hadron collisions suffer from factorization breaking contributions and would allow us to quantify the importance of initial- and final-state interactions.
Quark-gluon vertex in arbitrary gauge and dimension
Davydychev, A I; Saks, L
2001-01-01
One-loop off-shell contributions to the quark-gluon vertex are calculated, in an arbitrary covariant gauge and in arbitrary space-time dimension, including quark-mass effects. It is shown how one can get results for all on-shell limits of interest directly from the off-shell expressions. In order to demonstrate that the Ward-Slavnov-Taylor identity for the quark-gluon vertex is satisfied, we have also calculated the corresponding one-loop contribution involving the quark-quark-ghost-ghost vertex.
Soft Gluon kt-Resummation and the Froissart bound
Grau, A; Pancheri, G; Srivastava, Y N
2009-01-01
We study soft gluon kt-resummation and the relevance of zero momentum gluons for the energy dependence of total hadronic cross-sections. We discuss a model in which consistency of the energy dependence of the cross-section with the limitation of the Froissart bound, is directly related to the behaviour of the strong coupling constant in the infrared region. Our predictions for the asymptotic behaviour are shown to be related to the ansatz that the infrared behaviour of the QCD strong coupling constant follows an inverse power law.
Study of gluon fragmentation and colour octet neutralization in DELPHI
Buschbeck, Brigitte
2002-01-01
Using the full statistics of the DELPHI experiment at $\\sqrt{s}=91 GeV$ 3-jet events are selected and gluon respectively quark jet enriched subsamples are defined. The leading systems of the two kinds of jets are determined using rapidity gaps. The sum of charges of the leading systems is studied. It is found that for gluon-jets there is a significant excess of leading systems with total charge zero when compared to Monte Carlo simulations with JETSET. The corresponding leading systems of quark-jets do not exhibit such an excess. The mass spectra of the leading systems with total charge zero are studied.
Lattice Landau gauge quark propagator and the quark-gluon vertex
Oliveira, Orlando; Silva, Paulo J; Skullerud, Jon-Ivar; Sternbeck, Andre; Williams, Anthony G
2016-01-01
We report preliminary results of our ongoing lattice computation of the Landau gauge quark propagator and the soft gluon limit of the quark-gluon vertex with 2 flavors of dynamical O(a) improved Wilson fermions.
B→KK Decays with the Soft-Gluon Corrections%B→KK衰变中的软胶子修正
李琳; 吴向尧; 黄涛
2003-01-01
We analyze the B→KK decays with the soft-gluon corrections by using the QCD light-cone sum rules(LCSR) .Although one can calculate the leading order factorization parts and the radiative corrections from hard-gluon exchanges at αs order in QCD factorization approach,it is worthwhile to estimate the nonfactorizable soft-gluon contributions from all the tree and penguin diagrams systematically.Our results show that the soft-gluon effects always decrease the branching ratios and give a few percentage corrections at most in the B→KK decays.%应用光维QCD求和规则研究了B→KK衰变的软胶子交换修正.虽然QCD因子化方法已经计算了领头阶的因子化和硬胶子交换的αs阶辐射修正部分,然而系统地估算所有树图和企鹅图的非因子化软胶子贡献是有价值的.我们的结果表明在B→KK衰变中软胶子效应总是使分支比值减小,约为几个百分点.
J/ψ Dissociation in QGP via Multi-gluon Absorption
DING Yi-Bing; LI Xue-Qian; ZHANG Feng
2003-01-01
We propose that the suppression of J/ψ production in relativistic heavy ion collisions may be explained by that J/ψ dissociates via absorbing multi-gluons in the environment of quark-gluon-plasma (QGP) where abundance of gluons is expected.
J／Φ Dissociation in QGP via Multi-gluon Absorption
DINGYi-Bing; LIXue-Qian; ZHANGFeng
2003-01-01
We propose that the suppression of J/Φ production in relativistic heavy ion collisions may be explained by that J/Φ dissociates via absorbing multi-gluons in the environment of quark-gluon-plasma (QGP) where abundance of gluons is expected.
Intermediate mass dilepton production in a chemically equilibrating quark-gluon matter
无
2003-01-01
We find that in a chemically equilibrating baryon-rich quark-gluon matter, due to the slow cooling rate, high initial temperature, large gluon density as well as large fusion cross section ofin the intermediate mass region, the gluon fusion provides a dominant contribution to dileptons with intermediate masses, resulting in the significant enhancement of intermediate mass dileptons.
First measurement of radioisotopes by collinear laser spectroscopy at an ion-guide separator
Cooke, JL; Billowes, J; Campbell, P; Cochrane, ECA; Cooper, TG; Dendooven, P; Evans, DE; Griffith, JAR; Grant, IS; Honkanen, A; Huhta, M; Levins, JMG; Oinonen, M; Pearson, MR; Penttila, H; Persson, B.L.; Richardson, DS; Tungate, G; Wheeler, PD; Zybert, L; Aysto, J
1997-01-01
The first successful application of an ion-guide separator (IGISOL) for collinear laser spectroscopy of radioisotopes has achieved an efficiency comparable with the best obtained with catcher-ionizer facilities. The ion beam energy spread was determined to be less than 6 eV, allowing laser fluoresce
First collinear laser spectroscopy measurements of radioisotopes from an IGISOL ion source
Billowes, J; Campbell, P; Cochrane, ECA; Cooke, JL; Dendooven, P; Evans, DE; Grant, IS; Griffith, JAR; Honkanen, A; Huhta, M; Levins, JMG; Liukkonen, E; Oinonen, M; Pearson, MR; Penttila, H; Persson, B.L.; Richardson, DS; Tungate, G; Wheeler, P; Zybert, L; Aysto, J
1997-01-01
The standard Doppler-free technique of collinear laser spectroscopy has been successfully applied to radioisotopes from the ion-guide isotope separator (IGISOL) at the Universiry of Jyvaskyla. The laser resonance fluorescence signals for the Ba-140.142,Ba-144 radioisotopes show that the ion beam ene
A comparison of various methods for multivariate regression with highly collinear variables
Kiers, Henk A.L.; Smilde, Age K.
2007-01-01
Regression tends to give very unstable and unreliable regression weights when predictors are highly collinear. Several methods have been proposed to counter this problem. A subset of these do so by finding components that summarize the information in the predictors and the criterion variables. The p
Electromagnons and instabilities in magnetoelectric materials with non-collinear spin orders
van der Vegte, Marcus; Mostovoy, Maxim; van der Vegte, Niels
2009-01-01
We show that strong electromagnon peaks can be found in absorption spectra of non-collinear magnets exhibiting a linear magnetoelectric effect. The frequencies of these peaks coincide with the frequencies of antiferromagnetic resonances and the ratio of the spectral weights of the electromagnon and
Phase-matching loci and angular acceptance of non-collinear optical parametric amplification.
Trophème, Benoît; Boulanger, Benoit; Mennerat, Gabriel
2012-11-19
A general study of phase-matching loci and associated angular acceptances is performed in the case of non-collinear parametric amplification. Numerical and analytical calculations, as well as measurements, are described for the uniaxial BBO crystal and the biaxial LBO crystal.
Non-collinear wave mixing for non-linear ultrasonic detection of physical ageing in PVC
Demcenko, A.; Akkerman, Remko; Nagy, P.B.; Loendersloot, Richard
2012-01-01
This work considers the characterization of linear PVC acoustic properties using a linear ultrasonic measurement technique and the non-collinear ultrasonic wave mixing technique for measurement of the physical ageing state in PVC. The immersion pulse-echo measurements were used to evaluate phase
Goussev, Arseni; Schubert, Roman; Waalkens, Holger; Wiggins, Stephen
2009-01-01
The quantum normal form approach to quantum transition state theory is used to compute the cumulative reaction probability for collinear exchange reactions. It is shown that for heavy-atom systems such as the nitrogen-exchange reaction, the quantum normal form approach gives excellent results and
Tests of Mediation: Paradoxical Decline in Statistical Power as a Function of Mediator Collinearity
Beasley, T. Mark
2014-01-01
Increasing the correlation between the independent variable and the mediator ("a" coefficient) increases the effect size ("ab") for mediation analysis; however, increasing a by definition increases collinearity in mediation models. As a result, the standard error of product tests increase. The variance inflation caused by…
Large topological Hall effect in the non-collinear phase of an antiferromagnet.
Sürgers, Christoph; Fischer, Gerda; Winkel, Patrick; Löhneysen, Hilbert V
2014-03-05
Non-trivial spin arrangements in magnetic materials give rise to the topological Hall effect observed in compounds with a non-centrosymmetric cubic structure hosting a skyrmion lattice, in double-exchange ferromagnets and magnetically frustrated systems. The topological Hall effect has been proposed to appear also in presence of non-coplanar spin configurations and thus might occur in an antiferromagnetic material with a highly non-collinear and non-coplanar spin structure. Particularly interesting is a material where the non-collinearity develops not immediately at the onset of antiferromagnetic order but deep in the antiferromagnetic phase. This unusual situation arises in non-cubic antiferromagnetic Mn5Si3. Here we show that a large topological Hall effect develops well below the Néel temperature as soon as the spin arrangement changes from collinear to non-collinear with decreasing temperature. We further demonstrate that the effect is not observed when the material is turned ferromagnetic by carbon doping without changing its crystal structure.
Magnetic tunnel junctions with non-collinear anisotropy axes for sensor applications
Grigorenko, A N
2003-01-01
Magnetic tunnel junctions (MTJ) with non-collinear anisotropy axes of magnetic layers have been fabricated for reading head and sensor applications. It is shown that crossed anisotropies of magnetic layers improve sensor sensitivity and time-response compared to the conventional case of aligned anisotropies. The developed micromagnetic model is in good agreement with magnetoresistive properties of fabricated junctions.
Can, Seda; van de Schoot, Rens; Hox, Joop
2015-01-01
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation…
Can, Seda; van de Schoot, Rens; Hox, Joop
2014-01-01
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influ
A comparison of various methods for multivariate regression with highly collinear variables
Kiers, Henk A.L.; Smilde, Age K.
2007-01-01
Regression tends to give very unstable and unreliable regression weights when predictors are highly collinear. Several methods have been proposed to counter this problem. A subset of these do so by finding components that summarize the information in the predictors and the criterion variables. The p
Diffractive hard photoproduction at HERA and evidence for the gluon content of the pomeron
Derrick, Malcolm; Magill, S; Mikunas, D; Musgrave, B; Repond, J; Stanek, R; Talaga, R L; Zhang, H; Ayad, R; Bari, G; Basile, M; Bellagamba, L; Boscherini, D; Bruni, A; Bruni, G; Bruni, P; Cara Romeo, G; Castellini, G; Chiarini, M; Cifarelli, Luisa; Cindolo, F; Contin, A; Corradi, M; Gialas, I; Giusti, P; Iacobucci, G; Laurenti, G; Levi, G; Margotti, A; Massam, Thomas; Nania, R; Nemoz, C; Palmonari, F; Polini, A; Sartorelli, G; Timellini, R; Zamora-Garcia, Yu E; Zichichi, Antonino; Bargende, A; Crittenden, James Arthur; Desch, Klaus; Diekmann, B; Doeker, T; Eckert, M; Feld, L; Frey, A; Geerts, M; Geitz, G; Grothe, M; Haas, T; Hartmann, H; Haun, D; Heinloth, K; Hilger, E; Jakob, H P; Katz, U F; Mari, S M; Mass, A; Mengel, S; Mollen, J; Paul, E; Rembser, C; Schattevoy, R; Schramm, D; Stamm, J; Wedemeyer, R; Campbell-Robson, S; Cassidy, A; Dyce, N; Foster, B; George, S; Gilmore, R; Heath, G P; Heath, H F; Llewellyn, T J; Morgado, C J S; Norman, D J P; O'Mara, J A; Tapper, R J; Wilson, S S; Yoshida, R; Rau, R R; Arneodo, M; Iannotti, L; Schioppa, M; Susinno, G; Bernstein, A M; Caldwell, A; Cartiglia, N; Parsons, J A; Ritz, S; Sciulli, F; Straub, P B; Wai, L; Yang, S; Zhu, Q; Borzemski, P; Chwastowski, J; Eskreys, Andrzej; Piotrzkowski, K; Zachara, M; Zawiejski, L; Adamczyk, L; Bednarek, B; Jelen, K; Kisielewska, D; Kowalski, T; Rulikowska-Zarebska, E; Suszycki, L; Zajac, J; Kotanski, Andrzej; Przybycien, M B; Bauerdick, L A T; Behrens, U; Beier, H; Bienlein, J K; Coldewey, C; Deppe, O; Desler, K; Drews, G; Flasinski, M; Gilkinson, D J; Glasman, C; Göttlicher, P; Grosse-Knetter, J; Gutjahr, B; Hain, W; Hasell, D; Hessling, H; Hultschig, H; Iga, Y; Joos, P; Kasemann, M; Klanner, Robert; Koch, W; Köpke, L; Kötz, U; Kowalski, H; Labs, J; Ladage, A; Löhr, B; Loewe, M; Lüke, D; Manczak, O; Ng, J S T; Nickel, S; Notz, D; Ohrenberg, K; Roco, M T; Rohde, M; Roldán, J; Schneekloth, U; Schulz, W; Selonke, F; Stiliaris, E; Surrow, B; Voss, T; Westphal, D; Wolf, G; Youngman, C; Zhou, J F; Grabosch, H J; Kharchilava, A I; Leich, A; Mattingly, M C K; Meyer, A; Schlenstedt, S; Wulff, N; Barbagli, G; Pelfer, P G; Anzivino, Giuseppina; Maccarrone, G D; De Pasquale, S; Votano, L; Bamberger, Andreas; Eisenhardt, S; Freidhof, A; Söldner-Rembold, S; Schröder, J; Trefzger, T M; Brook, N H; Bussey, Peter J; Doyle, A T; Fleck, I; Saxon, D H; Utley, M L; Wilson, A S; Dannemann, A; Holm, U; Horstmann, D; Neumann, T; Sinkus, R; Wick, K; Badura, E; Burow, B D; Hagge, L; Lohrmann, E; Mainusch, J; Milewski, J; Nakahata, M; Pavel, N; Poelz, G; Schott, W; Zetsche, F; Bacon, Trevor C; Butterworth, Ian; Gallo, E; Harris, V L; Hung, B Y H; Long, K R; Miller, D B; Morawitz, P P O; Prinias, A; Sedgbeer, J K; Whitfield, A F; Mallik, U; McCliment, E; Wang, M Z; Wang, S M; Wu, J T; Zhang, Y; Cloth, P; Filges, D; An Shiz Hong; Hong, S M; Nam, S W; Park, S K; Suh, M H; Yon, S H; Imlay, R; Kartik, S; Kim, H J; McNeil, R R; Metcalf, W; Nadendla, V K; Barreiro, F; Cases, G; Graciani, R; Hernández, J M; Hervás, L; Labarga, L; Del Peso, J; Puga, J; Terrón, J; De Trocóniz, J F; Smith, G R; Corriveau, F; Hanna, D S; Hartmann, J; Hung, L W; Lim, J N; Matthews, C G; Patel, P M; Sinclair, L E; Stairs, D G; Saint-Laurent, M G; Ullmann, R T; Zacek, G; Bashkirov, V; Dolgoshein, B A; Stifutkin, A; Bashindzhagian, G L; Ermolov, P F; Gladilin, L K; Golubkov, Yu A; Kobrin, V D; Kuzmin, V A; Proskuryakov, A S; Savin, A A; Shcheglova, L M; Solomin, A N; Zotov, N P; Botje, M; Chlebana, F S; Dake, A P; Engelen, J; De Kamps, M; Kooijman, P M; Kruse, A; Tiecke, H G; Verkerke, W; Vreeswijk, M; Wiggers, L; De Wolf, E; Van Woudenberg, R; Acosta, D; Bylsma, B G; Durkin, L S; Honscheid, K; Li Chuan; Ling, T Y; McLean, K W; Murray, W N; Park, I H; Romanowsky, T A; Seidlein, R; Bailey, D S; Blair, G A; Byrne, A; Cashmore, Roger J; Cooper-Sarkar, A M; Daniels, D C; Devenish, R C E; Harnew, N; Lancaster, M; Luffman, P; Lindemann, L; McFall, J D; Nath, C; Noyes, V A; Quadt, A; Uijterwaal, H; Walczak, R; Wilson, F F; Yip, T; Abbiendi, G; Bertolin, A; Brugnera, R; Carlin, R; Dal Corso, F; De Giorgi, M; Dosselli, U; Limentani, S; Morandin, M; Posocco, M; Stanco, L; Stroili, R; Voci, C; Bulmahn, J; Butterworth, J M; Feild, R G; Oh, B Y; Whitmore, J; D'Agostini, Giulio; Marini, G; Nigro, A; Tassi, E; Hart, J C; McCubbin, N A; Prytz, K; Shah, T P; Short, T L; Barberis, E; Dubbs, T; Heusch, C A; Van Hook, M; Hubbard, B; Lockman, W; Rahn, J T; Sadrozinski, H F W; Seiden, A; Biltzinger, J; Seifert, R J; Walenta, Albert H; Zech, G; Abramowicz, H; Briskin, G M; Dagan, S; Levy, A; Hasegawa, T; Hazumi, M; Ishii, T; Kuze, M; Mine, S; Nagasawa, Y; Nakao, M; Susuki, I; Tokushuku, K; Yamada, S; Yamazaki, Y; Chiba, M; Hamatsu, R; Hirose, T; Homma, K; Kitamura, S; Nakamitsu, Y; Yamauchi, K; Cirio, R; Costa, M; Ferrero, M I; Lamberti, L; Maselli, S; Peroni, C; Sacchi, R; Solano, A; Staiano, A; Dardo, M; Bailey, D C; Bandyopadhyay, D; Bénard, F; Brkic, M; Crombie, M B; Gingrich, D M; Hartner, G F; Joo, K K; Levman, G M; Martin, J F; Orr, R S; Sampson, C R; Teuscher, R; Catterall, C D; Jones, T W; Kaziewicz, P B; Lane, J B; Saunders, R L; Shulman, J; Blankenship, K; Kochocki, J A; Lu, B; Mo, L W; Bogusz, W; Charchula, K; Ciborowski, J; Gajewski, J; Grzelak, G; Kasprzak, M; Krzyzanowski, M; Muchorowski, K; Nowak, R J; Pawlak, J M; Tymieniecka, T; Wróblewski, A K; Zakrzewski, J A; Zarnecki, A F; Adamus, M; Eisenberg, Y; Karshon, U; Revel, D; Zer-Zion, D; Ali, I; Badgett, W F; Behrens, B H; Dasu, S; Fordham, C; Foudas, C; Goussiou, A; Loveless, R J; Reeder, D D; Silverstein, S; Smith, W H; Vaiciulis, A W; Wodarczyk, M; Tsurugai, T; Bhadra, S; Cardy, M L; Fagerstroem, C P; Frisken, W R; Furutani, K M; Khakzad, M; Schmidke, W B
1995-01-01
Inclusive jet cross sections for events with a large rapidity gap with respect to the proton direction from the reaction ep \\rightarrow jet \\; + \\; X with quasi-real photons have been measured with the ZEUS detector. The cross sections refer to jets with transverse energies E_T^{jet}>8~GeV. The data show the characteristics of a diffractive process mediated by pomeron exchange. Assuming that the Wodarczy
Gluon, Quark and Hadron Masses from a Modified Perturbative QCD
Rigol, M
2000-01-01
The development of a Modified Perturbation Theory for QCD, introduced in previous works, is continued. The gluon propagator is modified as consequence of a soft gluon pairs condensate in the vacuum. The modified Feynman rules for $\\alpha=1$ are shown, and some physical magnitudes calculated with them. The mean value of $G^{2}$, gluon masses and the effective potential are calculated up to the $g^2$ order, improving previous calculations. In connection with the gluon self-energy it follows that the gluonic mass shell becomes tachyonic in the considered approximation. The constituent quarks masses, produced by the influence of the condensate, are also calculated. Results of the order of 1/3 of the nucleon mass, are obtained for the constituent masses of the up and down quarks. In addition, the predicted flavour dependence of the calculated quarks masses turns out to be the appropriate to reproduce the spectrum of the ground states within the various groups of hadronic resonances, through the simple addition of ...
Can gluon condensate in pulsar cores explain pulsar glitches ?
Ray, R D
1998-01-01
Making use of the possibility that gluon condensate can be formed in neutron star core, we study the vortex pinning force between the crust and the interior of the neutron star. Our estimations indicate an increase in pinning strength with the age of the neutron star. This helps in explaining observed pulsar glitches and removes some difficulties faced by vortex creep model.
The quark gluon plasma: Lattice computations put to experimental test
Sourendu Gupta
2003-11-01
I describe how lattice computations are being used to extract experimentally relevant features of the quark gluon plasma. I deal speciﬁcally with relaxation times, photon emissivity, strangeness yields, event-by-event ﬂuctuations of conserved quantities and hydrodynamic ﬂow. Finally I give evidence that the plasma is rather liquid-like in some ways.
Canonical derivation of the gluon propagator in the temporal gauge
Girotti, Horacio Oscar; Rothe, Heinz J.
1986-01-01
We reexamine the problem of obtaining, within the operator approach, an unambiguous expression for the longitudinal gluon propagator in the temporal gauge. A regularization procedure respecting Gauss's law and the Hermiticity of the gauge fields is proposed. We thereby obtain a definite expression for the longitudinal propagator which agrees with that proposed by Caracciolo, Curci, and Menotti.
Search for b-->s.gluon in B meson decays
Albrecht, H.; Gläser, R.; Harder, G.; Krüger, A.; Nippe, A.; Oest, T.; Reidenbach, M.; Schäfer, M.; Schmidt-Parzefall, W.; Schröder, H.; Schulz, H. D.; Sefkow, F.; Wurth, R.; Appuhn, R. D.; Drescher, A.; Hast, C.; Herrera, G.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Scheck, H.; Schweda, G.; Spaan, B.; Walther, A.; Wegener, D.; Paulini, M.; Reim, K.; Volland, U.; Wegener, H.; Funk, W.; Stiewe, J.; Werner, S.; Ball, S.; Gabriel, J. C.; Geyer, C.; Hölscher, A.; Hofmann, W.; Holzer, B.; Khan, S.; Spengler, J.; Charlesworth, C. E. K.; Edwards, K. W.; Frisken, W. R.; Kapitza, H.; Krieger, P.; Kutschke, R.; Macfarlane, D. B.; McLean, K. W.; Orr, R. S.; Parsons, J. A.; Patel, P. M.; Prentice, J. D.; Seidel, S. C.; Swain, J. D.; Tsipolitis, G.; Yoon, T.-S.; Davis, R.; Ruf, T.; Schael, S.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Boštjančič, B.; Kernel, G.; Križan, P.; Križnič, E.; Pleško, M.; Cronström, H. I.; Jönsson, L.; Nilsson, A. W.; Babaev, A.; Danilov, M.; Fominykh, B.; Golutvin, A.; Gorelov, I.; Lubimov, V.; Rostovtsev, A.; Semenov, A.; Semenov, S.; Shevchenko, V.; Soloshenko, V.; Tchistilin, V.; Tichomirov, I.; Zaitsev, Yu.; Childers, R.; Darden, C. W.; Argus Collaboration
1991-01-01
Using the ARGUS detector at the e +e - storage ring DORIS II at DESY, a search for penguin decays of B mesons involving b→s gluon has been performed. No evidence for the penguin mechanism was found and a number of upper limits are quoted.
Testing OPE for ghosts, gluons and $\\alpha_s$
Blossier, Benoit; Brinet, Mariane; Morenas, vincent; Pene, Olivier; Petrov, Konstantin; Rodriguez-Quinteiro, Jose; de Soto, Feliciano
2013-01-01
We present here our results on extracting Wilson coefficients from different quantities such as ghost and gluon propagators which are calculated by means of Lattice QCD. The results confirm the validity of our method for the calculation of the strong coupling constant as well as allow to estimate the range of momenta where OPE is applicable.
Nonlinear Landau damping in quark-gluon plasma
Xiaofei, Zhang; Jiarong, Li
1995-08-01
The semiclassical kinetic equations for the quark-gluon plasma (QGP) are discussed by the multiple time-scale method. The mechanism of nonlinear Landau damping owing to non-Abelian and nonlinear wave-particle interactions in QGP is investigated, and the nonlinear Landau damping rate for the longitudinal color eigenwaves in the long-wavelength limit is calculated.
Non-linear BFKL dynamics: color screening vs. gluon fusion
Fiore, R; Zoller, V R
2012-01-01
A feasible mechanism of unitarization of amplitudes of deep inelastic scattering at small values of Bjorken $x$ is the gluon fusion. However, its efficiency depends crucially on the vacuum color screening effect which accompanies the multiplication and the diffusion of BFKL gluons from small to large distances. From the fits to lattice data on field strength correlators the propagation length of perturbative gluons is $R_c\\simeq 0.2-0.3$ fermi. The probability to find a perturbative gluon with short propagation length at large distances is suppressed exponentially. It changes the pattern of (dif)fusion dramatically. The magnitude of the fusion effect appears to be controlled by the new dimensionless parameter $\\sim R_c^2/8B$, with the diffraction cone slope $B$ standing for the characteristic size of the interaction region. It should slowly $\\propto 1/\\ln Q^2$ decrease at large $Q^2$. Smallness of the ratio $R_c^2/8B$ makes the non-linear effects rather weak even at lowest Bjorken $x$ available at HERA. We re...
Investigation of Dilaton-Gluon Coupling Potential in Charmonium Family
PING Rong-Gang; CHEN Hong; PING Rong-Xiang
2006-01-01
The behaviour of dilaton-gluon coupling (DGC) potential is investigated by studying charmonium spectra,annihilation rates and E1 transition rates systematically.We find that in the non-relativistic quantum chromodynamics approximation,the charmonium properties can be described by the DGC potential.
Direct Probes of Linearly Polarized Gluons inside Unpolarized Hadrons
Boer, Daniel; Brodsky, Stanley J.; Mulders, Piet J.; Pisano, Cristian
2011-01-01
We show that linearly polarized gluons inside unpolarized hadrons can be directly probed in jet or heavy quark pair production in electron-hadron collisions. We discuss the simplest cos2 phi asymmetries and estimate their maximal value, concluding that measurements of the unknown linearly polarized
Linear polarization of gluons and photons in unpolarized collider experiments
Pisano, Cristian; Boer, Daniel; Brodsky, Stanley J.; Buffing, Maarten G. A.; Mulders, Piet J.
2013-01-01
We study azimuthal asymmetries in heavy quark pair production in unpolarized electron-proton and proton-proton collisions, where the asymmetries originate from the linear polarization of gluons inside unpolarized hadrons. We provide cross section expressions and study the maximal asymmetries allowed
Holographic Wilson loops in anisotropic quark-gluon plasma.
Ageev, Dmitry
2016-10-01
The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.
Holographic Wilson loops in anisotropic quark-gluon plasma.
Ageev Dmitry
2016-01-01
Full Text Available The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.
Two-Loop Gluon Regge Trajectory from Lipatov's Effective Action
Chachamis, Grigorios; Madrigal, José Daniel; Vera, Agustín Sabio
2012-01-01
Lipatov's high-energy effective action is a useful tool for computations in the Regge limit beyond leading order. Recently, a regularisation/subtraction prescription has been proposed that allows to apply this formalism to calculate next-to-leading order corrections in a consistent way. We illustrate this procedure with the computation of the gluon Regge trajectory at two loops.
Creating the Primordial Quark-Gluon Plasma at the LHC
Harris, John W.
2013-04-01
Ultra-relativistic collisions of heavy ions at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) create an extremely hot system at temperatures (T) expected only within the first microseconds after the Big Bang. At these temperatures (T ˜ 2 x 10^12 K), a few hundred thousand times hotter than the sun's core, the known ``elementary'' particles cannot exist and matter ``melts'' to form a ``soup'' of quarks and gluons, called the quark-gluon plasma (QGP). This ``soup'' flows easily, with extremely low viscosity, suggesting a nearly perfect hot liquid of quarks and gluons. Furthermore, the liquid is dense, highly interacting and opaque to energetic probes (fast quarks or gluons). RHIC has been in operation for twelve years and has established an impressive set of findings. Recent results from heavy ion collisions at the LHC extend the study of the QGP to higher temperatures and harder probes, such as jets (energetic clusters of particles), particles with extremely large transverse momenta and those containing heavy quarks. I will present a motivation for physics in the field and an overview of the new LHC heavy ion results in relation to results from RHIC.
Gluon transport equations with condensate in the small angle approximation
Blaizot, Jean-Paul [Institut de Physique Théorique (IPhT), CNRS/URA2306, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)
2016-05-15
We derive the set of kinetic equations that control the evolution of gluons in the presence of a condensate. We show that the dominant singularities remain logarithmic when the scattering involves particles in the condensate. This allows us to define a consistent small angle approximation.
Study of Leading Hadrons in Gluon and Quark Fragmentation
Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G J; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brunet, J M; Brückman, P; Buschbeck, B; Buschmann, P; Bérat, C; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, P; Checchia, P; Chierici, R; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Da Silva, T; Da Silva, W; Dalmau, J; De Angelis, A; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L; Della Ricca, G; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Föth, H; Gandelman, M; García, C; Gavillet, P; Gazis, E; Gokieli, R; Golob, B; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Gómez-Ceballos, G; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E; Kernel, G; Kersevan, B P; Kerzel, U; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Krumshtein, Z; Kucharczyk, M; Kuznetsov, O; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; Loukas, D; Lutz, P; Lyons, L; López, J M; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Maréchal, B; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Mönig, K; Müller, U; Münich, K; Nassiakou, M; Navarria, F; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Rídky, J; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Sekulin, R L; Shlyapnikov, P; Siebel, M; Sisakian, A; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; Van Eldik, J; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M; de Boer, Wim; van Dam, P; Åsman, B; Österberg, K
2006-01-01
The study of quark jets in e+e- reactions at LEP has demonstrated that the hadronisation process is reproduced well by the Lund string model. However, our understanding of gluon fragmentation is less complete. In this study enriched quark and gluon jet samples of different purities are selected in three-jet events from hadronic decays of the Z collected by the DELPHI experiment in the LEP runs during 1994 and 1995. The leading systems of the two kinds of jets are defined by requiring a rapidity gap and their sum of charges is studied. An excess of leading systems with total charge zero is found for gluon jets in all cases, when compared to Monte Carlo Simulations with JETSET (with and without Bose-Einstein correlations included) and ARIADNE. The corresponding leading systems of quark jets do not exhibit such an excess. The influence of the gap size and of the gluon purity on the effect is studied and a concentration of the excess of neutral leading systems at low invariant masses (<~ 2 GeV/c^2) is observed...
Asymptotic freedom of gluons in the Fock space
Głazek, Stanisław D
2015-01-01
Asymptotic freedom of gluons is described in terms of a family of scale-dependent renormalized Hamiltonian operators acting in the Fock space. The Hamiltonians are obtained by applying the renormalization group procedure for effective particles to quantum Yang-Mills theory.
Bounds on the gluon mass from nucleon decay
Avila, M.A. [Universidad Autonoma del Estado de Morelos, Morelos (Mexico)
2001-04-01
Permanent confinement of quarks is assumed to hold in QCD. However, if the gluon has a small mass it is possible to produce-quarks in hadron decays, high-energy reactions or in the early-universe. This situation is modelled by a quark-diquark potential composed of a linear (or harmonic) plus a Yukawa term. We compare our prediction for the proton decay with the experimental lower bound on its life-time, and obtain an upper bound on the gluon mass. [Spanish] Se supone se cumple el confinamiento permanente de quarks en cromodinamica cuantica. Si el gluon tiene masa pequena es posible producir quarks libres en decaimiento hadronicos, reacciones de altas energias o en el universo temprano. Esta situacion es modelada por un potencial quark-diquark, compuesto de un termino lineal (o armonico) mas un termino Yukawa. Comparamos nuestra prediccion para el decaimiento del proton con la cota inferior experimental de su vida media y obtenemos una cota superior sobre la masa del gluon.
Positivity and unitarity constraints on dipole gluon distributions
Peschanski, Robi
2016-01-01
In the high-energy domain, gluon transverse-momentum dependent distributions in nuclei obey constraints coming from positivity and unitarity of the colorless QCD dipole distributions through Fourier-Bessel transformations. Using mathematical properties of Fourier-positive functions, we investigate the nature of these constraints which apply to dipole model building and formulation
Same sign di-lepton candles of the composite gluons
Azatov, Aleksandr; Ghosh, Diptimoy; Ray, Tirtha Sankar
2015-01-01
Composite Higgs models, where the Higgs boson is identified with the pseudo-Nambu-Goldstone-Boson (pNGB) of a strong sector, typically have light composite fermions (top partners) to account for a light Higgs. This type of models generically also predicts the existence of heavy vector fields (composite gluons) which appear as an octet of QCD. These composite gluons generically become very broad resonances once phase-space allows them to decay into two composite fermions. This makes their traditional experimental searches, which are designed to look for narrow resonances, quite ineffective. In this paper we, as an alternative, propose to utilize the impact of composite gluons on the production of top partners to constrain their parameter space. We place constraints on the parameters of the composite resonances using the 8 TeV LHC data and also assess the reach of the 14 TeV LHC. We find that the high luminosity LHC will be able to probe composite gluon masses up to $\\sim 6$ TeV, even in the broad resonance reg...
Studies of semi-inclusive and hard exclusive processes at Jlab
Harutyun Avagyan
2008-06-19
The main goal of experiments proposed for the {\\tt CLAS12} detector in conjunction with the 12-GeV CEBAF accelerator is the study of the nucleon through hard exclusive, semi-inclusive, and inclusive processes. This will provide new insights into nucleon dynamics at the elementary quark and gluon level. In this contribution we provide an overview of ongoing studies of the structure of nucleon in terms of quark and gluon degrees of freedom and future physics program planned with CLAS and {\\tt CLAS12}.
Origin of Temperature of Quark-Gluon Plasma in Heavy Ion Collisions
Xu, Xiao-Ming
2015-01-01
Initially produced quark-gluon matter at RHIC and LHC does not have a temperature. A quark-gluon plasma has a high temperature. From this quark-gluon matter to the quark-gluon plasma is the early thermalization or the rapid creation of temperature. Elastic three-parton scattering plays a key role in the process. The temperature originates from the two-parton scattering, the three-parton scattering, the four-parton scattering and so forth in quark-gluon matter.
Linking Dynamical Gluon Mass to Chiral Symmetry Breaking via a QCD Low Energy Effective Field Theory
Oliveira, O; Frederico, T
2011-01-01
A low energy effective field theory model for QCD with a scalar color octet field is discussed. The model relates the gluon mass, the constituent quark masses and the quark condensate. The gluon mass comes about $\\sqrt{N_c}\\, \\Lambda_{QCD}$ with the quark condensate being proportional to the gluon mass squared. The model suggests that the restoration of chiral symmetry and the deconfinement transition occur at the same temperature and that, near the transition, the critical exponent for the condensate is twice the gluon mass one. The model also favors the decoupling like solution for the gluon propagator.
Quark and gluon jet properties in symmetric three-jet events
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Nicod, D; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Rankin, C; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
Quark and gluon jets with the same energy, 24GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on either a track impact parameter method or a high transverse momentum lepton tag. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity. Evidence is also presented which shows that the corresponding differences between gluon and heavy flavour jets are significantly smaller.
A direct determination of the gluon density in the proton at low x
Aïd, S; Andrieu, B; Appuhn, R D; Arpagaus, M; Babaev, A; Ban, Y; Baranov, P S; Barrelet, E; Barschke, R; Bartel, Wulfrin; Barth, Monique; Bassler, U; Beck, H P; Behrend, H J; Belousov, A; Berger, C; Bernardi, G; Bernet, R; Bertrand-Coremans, G H; Besançon, M; Beyer, R; Biddulph, P; Bispham, P; Bizot, J C; Blobel, Volker; Borras, K; Botterweck, F; Boudry, V; Braemer, A; Brasse, F W; Braunschweig, W; Brisson, V; Bruncko, Dusan; Brune, C R; Buchholz, R; Buniatian, A Yu; Burke, S; Burton, M; Buschhorn, G W; Bán, J; Bähr, J; Büngener, L; Bürger, J; Büsser, F W; Campbell, A J; Carli, T; Charles, F; Charlet, M; Chernyshov, V; Clarke, D; Clegg, A B; Clerbaux, B; Colombo, M G; Contreras, J G; Cormack, C; Coughlan, J A; Courau, A; Coutures, C; Cozzika, G; Criegee, L; Cussans, D G; Cvach, J; Dagoret, S; Dainton, J B; Dau, W D; Daum, K; David, M; De Wolf, E A; Del Buono, L; Delcourt, B; Di Nezza, P; Dollfus, C; Dowell, John D; Dreis, H B; Droutskoi, A; Duboc, J; Duhm, H; Düllmann, D; Dünger, O; Ebert, J; Ebert, T R; Eckerlin, G; Efremenko, V; Egli, S; Eichenberger, S; Eichler, R; Eisele, Franz; Eisenhandler, Eric F; Ellison, R J; Elsen, E E; Erdmann, M; Erdmann, W; Erlichmann, H; Evrard, E; Favart, L; Fedotov, A; Feeken, D; Felst, R; Feltesse, Joel; Ferencei, J; Ferrarotto, F; Flamm, K; Fleischer, M; Flieser, M; Flügge, G; Fomenko, A; Fominykh, B A; Forbush, M; Formánek, J; Foster, J M; Franke, G; Fretwurst, E; Gabathuler, Erwin; Gabathuler, K; Garvey, J; Gayler, J; Gebauer, M; Gellrich, A; Genzel, H; Gerhards, R; Glazov, A; Goerlach, U; Gogitidze, N; Goldberg, M; Goldner, D; González-Pineiro, B; Gorelov, I V; Goritchev, P A; Grab, C; Greenshaw, T J; Grindhammer, G; Gruber, A; Gruber, C; Grässler, Herbert; Grässler, R; Görlich, L; Haack, J; Haidt, Dieter; Hajduk, L; Hamon, O; Hampel, M; Hapke, M; Haynes, W J; Heatherington, J; Heinzelmann, G; Henderson, R C W; Henschel, H; Herynek, I; Hess, M F; Hildesheim, W; Hill, P; Hiller, K H; Hilton, C D; Hladky, J; Hoeger, K C; Horisberger, R P; Hudgson, V L; Huet, Patrick; Hufnagel, H; Höppner, M; Hütte, M; Ibbotson, M; Itterbeck, H; Jabiol, M A; Jacholkowska, A; Jacobsson, C; Jaffré, M; Janoth, J; Jansen, T; Johnson, D P; Johnson, L; Jung, H; Jönsson, L B; Kalmus, Peter I P; Kant, D; Kaschowitz, R; Kasselmann, P; Kathage, U; Katzy, J M; Kaufmann, H H; Kazarian, S; Kenyon, Ian Richard; Kermiche, S; Keuker, C; Kiesling, C; Klein, M; Kleinwort, C; Knies, G; Ko, W; Kolanoski, H; Kole, F; Kolya, S D; Korbel, V; Korn, M; Kostka, P; Kotelnikov, S K; Krasny, M W; Krehbiel, H; Krämerkämper, T; Krücker, D; Krüger, U P; Krüner-Marquis, U; Kuhlen, M; Kurca, T; Kurzhöfer, J; Kuznik, B; Köhler, T; Köhne, J H; Küster, H; Lacour, D; Lamarche, F; Lander, R; Landon, M P J; Lange, W; Lanius, P; Laporte, J F; Lebedev, A; Lehner, F; Leverenz, C; Levonian, S; Ley, C; Lindström, G; Link, J; Linsel, F; Lipinski, J; List, B; Lobo, G; Loch, P; Lohmander, H; Lomas, J W; Lubimov, V; López, G C; Lüke, D; Magnussen, N; Malinovskii, E I; Mani, S; Maracek, R; Marage, P; Marks, J; Marshall, R; Martens, J; Martin, G; Martin, R D; Martyn, H U; Martyniak, J; Masson, S; Mavroidis, A; Maxfield, S J; McMahon, S J; Mehta, A; Meier, K; Mercer, D; Merz, T; Meyer, C A; Meyer, H; Meyer, J; Migliori, A; Mikocki, S; Milstead, D; Moreau, F; Morris, J V; Mroczko, E; Murín, P; Müller, G; Müller, K; Nagovitsin, V; Nahnhauer, R; Naroska, Beate; Naumann, T; Newman, P R; Newton, D; Neyret, D; Nguyen, H K; Nicholls, T C; Niebergall, F; Niebuhr, C B; Niedzballa, C; Nisius, R; Nowak, G; Noyes, G W; Nyberg-Werther, M; Oakden, M N; Oberlack, H; Obrock, U; Olsson, J E; Ozerov, D; Panaro, E; Panitch, A; Pascaud, C; Patel, G D; Peppel, E; Phillips, J P; Pichler, C; Pitzl, D; Pope, G; Prell, S; Prosi, R; Pérez, E; Rabbertz, K; Raupach, F; Reimer, P; Reinshagen, S; Ribarics, P; Rick, Hartmut; Riech, V; Riedlberger, J; Riess, S; Rietz, M; Rizvi, E; Robertson, S M; Robmann, P; Roloff, H E; Roosen, R; Rosenbauer, K; Rostovtsev, A A; Rouse, F; Royon, C; Rusakov, S V; Rybicki, K; Rylko, R; Rädel, G; Rüter, K; Sahlmann, N; Sankey, D P C; Schacht, P; Schiek, S; Schleif, S; Schleper, P; Schmidt, D; Schmidt, G; Schröder, V; Schuhmann, E; Schwab, B; Schöning, A; Sciacca, G F; Sefkow, F; Seidel, M; Sell, R; Semenov, A A; Shekelian, V I; Shevyakov, I; Shtarkov, L N; Siegmon, G; Siewert, U; Sirois, Y; Skillicorn, Ian O; Smirnov, P; Smith, J R; Solochenko, V; Soloviev, Yu V; Spiekermann, J; Spielman, S; Spitzer, H; Starosta, R; Steenbock, M; Steffen, P; Steinberg, R; Stella, B; Stephens, K; Stier, J; Stiewe, J; Stolze, K; Strachota, J; Straumann, U; Struczinski, W; Stösslein, U; Sutton, J P; Tapprogge, Stefan; Thiebaux, C; Thompson, G; Truöl, P; Turnau, J; Tutas, J; Uelkes, P; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Esch, P; Van Mechelen, P; Van den Plas, D; Vartapetian, A H; Vazdik, Ya A; Verrecchia, P; Villet, G; Wacker, K; Wagener, A; Wagener, M; Walther, A; Weber, G; Weber, M; Wegener, D; Wegner, A; Wellisch, H P; West, L R; Willard, S; Winde, M; Winter, G G; Wittek, C; Wright, A E; Wulff, N; Wünsch, E; Yiou, T P; Zarbock, D; Zhang, Z; Zhokin, A S; Zimmer, M; Zimmermann, W; Zomer, F; Zuber, K; Zur Nedden, M; Zácek, J; de Roeck, A; von Schlippe, W
1995-01-01
A leading order determination of the gluon density in the proton has been performed in the fractional momentum range 1.9 \\cdot 10^{-3} < x_{g/p} < 0.18 by measuring multi-jet events from boson-gluon fusion in deep-inelastic scattering with the H1 detector at the electron-proton collider HERA. This direct determination of the gluon density was performed in a kinematic region previously not accessible. The data show a considerable increase of the gluon density with decreasing fractional momenta of the gluons.
FLORIN MARIUS PAVELESCU
2010-12-01
Full Text Available In econometric models, linear regressions with three explanatory variables are widely used. As examples can be cited: Cobb-Douglas production function with three inputs (capital, labour and disembodied technical change, Kmenta function used for approximation of CES production function parameters, error-correction models, etc. In case of multiple linear regressions, estimated parameters values and some statistical tests are influenced by collinearity between explanatory variables. In fact, collinearity acts as a noise which distorts the signal (proper parameter values. This influence is emphasized by the coefficients of alignment to collinearity hazard values. The respective coefficients have some similarities with the signal to noise ratio. Consequently, it may be used when the type of collinearity is determined. For these reasons, the main purpose of this paper is to identify all the modeling factors and quantify their impact on the above-mentioned indicator values in the context of linear regression with three explanatory variables.Classification-JEL:C13,C20,C51,C52Keywords:types of collinearity, coefficient of mediated correlation, rank of explanatory variable, order of attractor of collinearity, mediated collinearity, anticollinearity.
On the Evaluation of Gluon Condensate Effects in the Holographic Approach to QCD
Cappiello, Luigi
2009-01-01
In holographic QCD the effects of gluonic condensate can be encoded in a suitable deformation of the 5D metric. We develop two different methods for the evaluation of first order perturbative corrections to masses and decay constants of vector resonances in 5D Hard-Wall models of QCD due to small deformations of the metric. They are extracted either from a novel compact form for the first order correction to the vector two-point function, or from perturbation theory for vector bound-state eigenfunctions: the equivalence of the two methods is shown. Our procedures are then applied to flat and to AdS 5D Hard-Wall models: we complement existing literature finding also some disagreement. We concentrate our attention on the effects for the Gasser-Leutwyler coefficients; though a more consolidated theoretical picture would be required in order to do a complete fit of the holographic predictions, our analysis shows that the gluon condensate improves the agreement with phenomenology.
Quark-gluon plasma in strong magnetic fields
Kalaydzhyan, Tigran
2013-04-15
One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.
The gluon mass generation mechanism: a concise primer
Aguilar, A C; Papavassiliou, J
2015-01-01
We present a pedagogical overview of the nonperturbative mechanism that endows gluons with a dynamical mass. This analysis is performed based on pure Yang-Mills theories in the Landau gauge, within the theoretical framework that emerges from the combination of the pinch technique with the background field method. In particular, we concentrate on the Schwinger-Dyson equation satisfied by the gluon propagator and examine the necessary conditions for obtaining finite solutions within the infrared region. The role of seagull diagrams receives particular attention, as do the identities that enforce the cancellation of all potential quadratic divergences. We stress the necessity of introducing nonperturbative massless poles in the fully dressed vertices of the theory in order to trigger the Schwinger mechanism, and explain in detail the instrumental role of these poles in maintaining the Becchi-Rouet-Stora-Tyutin symmetry at every step of the mass-generating procedure. The dynamical equation governing the evolution...
Momentum Imbalance Observables as a Probe of Gluon TMDs
Pisano, Cristian
2015-01-01
The unpolarized and linearly polarized gluon TMDs can be directly probed in heavy quark and jet pair production in unpolarized electron-proton collisions by looking at observables, like transverse momentum distributions and azimuthal asymmetries, depending on the momentum imbalance of the pair. Analytical expressions are presented for these observables and for analogous ones in Higgs plus jet and quarkonium plus photon production in unpolarized proton-proton scattering experiments. It is shown how the proposed measurements, to be performed at a future EIC and at the LHC, could provide important information on the size and shape of gluon TMDs, as well as on other fundamental properties such as their process and energy scale dependences.
Exploratory study of the 3-gluon vertex on the lattice
Parrinello, C
1994-01-01
We define and evaluate on the lattice the amputated 3-gluon vertex function in momentum space. We give numerical results for 16^3 \\times 40 and 24^3 \\times 40 quenched lattices at \\beta=6.0. A good numerical signal is obtained, at the price of enforcing the gauge-fixing condition with high accuracy. By comparing results from two different lattice volumes, we try to investigate the crucial issue of finite volume effects. We also outline a method for the lattice evaluation of the QCD running coupling constant as defined from the 3-gluon vertex, while being aware that a realistic calculation will require larger \\beta values and very high statistics.
Probing the quark–gluon interaction with hadrons
Hèlios Sanchis-Alepuz
2015-10-01
Full Text Available We present a unified picture of mesons and baryons in the Dyson–Schwinger/Bethe–Salpeter approach, wherein the quark–gluon and quark–(antiquark interactions follow from a systematic truncation of the QCD effective action and include all its tensor structures. The masses of some of the ground-state mesons and baryons are found to be in reasonable agreement with the expectations of a ‘quark-core calculation’, suggesting a partial insensitivity to the details of the quark–gluon interaction. However, discrepancies remain in the meson sector, and for excited baryons, that suggest higher order corrections are relevant and should be investigated following the methods outlined herein.
On the zero crossing of the three-gluon vertex
A. Athenodorou
2016-10-01
Full Text Available We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as ‘zero crossing’, the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev–Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger–Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.
On the zero crossing of the three-gluon vertex
Athenodorou, A.; Binosi, D.; Boucaud, Ph.; De Soto, F.; Papavassiliou, J.; Rodríguez-Quintero, J.; Zafeiropoulos, S.
2016-10-01
We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.
Probing nuclear gluons with heavy quarks at EIC
Chudakov, E; Hyde, Ch; Furletov, S; Furletova, Yu; Nguyen, D; Stratmann, M; Strikman, M; Weiss, C; Yoshida, R
2016-01-01
We explore the feasibility of direct measurements of nuclear gluon densities using heavy-quark production (open charm, beauty) at a future Electron-Ion Collider (EIC). We focus on the regions x > 0.3 (EMC effect) and x ~ 0.05-0.1 (antishadowing), where the nuclear modifications of the gluon density offer insight into non-nucleonic degrees of freedom and the QCD structure of nucleon-nucleon interactions. We describe the charm production rates and momentum distributions in nuclear deep-inelastic scattering (DIS) at large x_B, and comment on the possible methods for charm reconstruction using next-generation detectors at the EIC (pi/K identification, tracking, vertex detection).
Color Instabilities in the Quark-Gluon Plasma
Mrowczynski, Stanislaw; Strickland, Michael
2016-01-01
When the quark-gluon plasma (QGP) - a system of deconfined quarks and gluons - is in a nonequilibrium state, it is usually unstable with respect to color collective modes. The instabilities, which are expected to strongly influence dynamics of the QGP produced in relativistic heavy-ion collisions, are extensively discussed under the assumption that the plasma is weakly coupled. We begin by presenting the theoretical approaches to study the QGP, which include: field theory methods based on the Keldysh-Schwinger formalism, classical and kinetic theories, and fluid techniques. The dispersion equations, which give the spectrum of plasma collective excitations, are analyzed in detail. Particular attention is paid to a momentum distribution of plasma constituents which is obtained by deforming an isotropic momentum distribution. Mechanisms of chromoelectric and chromomagnetic instabilities are explained in terms of elementary physics. The Nyquist analysis, which allows one to determine the number of solutions of a ...
Nonperturbative equation of state of quark gluon plasma: Applications
Komarov, E. V.; Simonov, Yu. A.
2008-05-01
The vacuum-driven nonperturbative factors Li for quark and gluon Green's functions are shown to define the nonperturbative dynamics of QGP in the leading approximation. EoS obtained recently in the framework of this approach is compared in detail with known lattice data for μ = 0 including P/ T4, ɛ/ T4, {ɛ-3P}/{T4}. The basic role in the dynamics at T ≲ 3 Tc is played by the factors Li which are approximately equal to the modulus of Polyakov line for quark Lfund and gluon Ladj. The properties of Li are derived from field correlators and compared to lattice data, in particular the Casimir scaling property Ladj=(Lfund) follows in the Gaussian approximation valid for small vacuum correlation lengths. Resulting curves for P/ T4, ɛ/ T4, {ɛ-3P}/{T4} are in a reasonable agreement with lattice data, the remaining difference points out to an effective attraction among QGP constituents.
Quark/gluon jet discrimination: a reproducible analysis using R
CERN. Geneva
2017-01-01
The power to discriminate between light-quark jets and gluon jets would have a huge impact on many searches for new physics at CERN and beyond. This talk will present a walk-through of the development of a prototype machine learning classifier for differentiating between quark and gluon jets at experiments like those at the Large Hadron Collider at CERN. A new fast feature selection method that combines information theory and graph analytics will be outlined. This method has found new variables that promise significant improvements in discrimination power. The prototype jet tagger is simple, interpretable, parsimonious, and computationally extremely cheap, and therefore might be suitable for use in trigger systems for real-time data processing. Nested stratified k-fold cross validation was used to generate robust estimates of model performance. The data analysis was performed entirely in the R statistical programming language, and is fully reproducible. The entire analysis workflow is data-driven, automated a...
Study of multiparticle production by gluon dominance model (Part II)
Ermolov, P F; Kuraev, E A; Kutov, A V; Nikitin, V A; Pankov, A A; Roufanov, I A; Zhidkov, N K
2005-01-01
The gluon dominance model presents a description of multiparticle production in proton-proton collisions and proton-antiproton annihilation. The collective behavior of secondary particles in $pp$-interactions at 70 GeV/c and higher is studied in the project {\\bf "Thermalization"}. The obtained neutral and charged multiplicity distribution parameters explain some RHIC-data. The gluon dominance model is modified by the inclusion of intermediate quark topology for the multiplicity distribution description in the pure $p\\bar p$-annihilation at few tens GeV/c and explains behavior of the second correlative moment. This article proposes a mechanism of the soft photon production as a sign of hadronization. Excess of soft photons allows one to estimate the emission region size.
Medium-induced gluon radiation beyond the eikonal approximation
Apolinário, Liliana; Milhano, Guilherme; Salgado, Carlos A
2014-01-01
In this work we improve existing calculations of radiative energy loss by computing corrections that implement energy-momentum conservation, previously only implemented a posteriori, in a rigorous way. Using the path-integral formalism, we compute in-medium splittings allowing transverse motion of all particles in the emission process, thus relaxing the assumption that only the softest particle is permitted such movement. This work constitutes the extension of the computation carried out for x$\\rightarrow$1 in Phys. Lett. B718 (2012) 160-168, to all values of x, the momentum fraction of the energy of the parent parton carried by the emitted gluon. In order to accomplish a general description of the whole in-medium showering process, in this work we allow for arbitrary formation times for the emitted gluon. We provide general expressions and their realisation in the path integral formalism within the harmonic oscillator approximation.
On the zero crossing of the three-gluon vertex
Athenodorou, A; Boucaud, Ph; De Soto, F; Papavassiliou, J; Rodriguez-Quintero, J; Zafeiropoulos, S
2016-01-01
We report on new results on the infrared behaviour of the three-gluon vertex in quenched Quantum Chormodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.
Probing Sea Quark and Gluon Polarization at STAR
Stevens, Justin R
2014-01-01
One of the primary goals of the spin program at the Relativistic Heavy Ion Collider (RHIC) is to determine the polarization of the sea quarks and gluons in the proton. The polarization of the sea quarks is probed through the production of $W^{-(+)}$ bosons via the annihilation of $\\bar{u}+d\\,(\\bar{d}+u)$, at leading order. In this proceedings we report measurements of the single-spin asymmetry, $A_{L}$, for $W$ boson production at $\\sqrt{s} = 510$ GeV, and the new constraints these results place on the antiquark helicity distributions. Recent results on the longitudinal double-spin asymmetry, $A_{LL}$, for inclusive and di-jet production at $\\sqrt{s} = 200$ GeV are also presented. The inclusive jet results provide the first experimental indication of non-zero gluon polarization in the $x$ range probed at RHIC.
Transverse momentum dependent gluon distributions at the LHC
Pisano, Cristian
2014-01-01
Linearly polarized gluons inside an unpolarized proton contribute to the transverse momentum distributions of (pseudo)scalar particles produced in hadronic collisions, such as Higgs bosons and quarkonia with even charge conjugation ($\\eta_c$, $\\eta_b$, $\\chi_{c0}$, $\\chi_{b0}$). Moreover, they can produce azimuthal asymmetries in the associated production of a photon and a $J/\\psi$ or a $\\Upsilon$ particle, in a kinematic configuration in which they are almost back to back. These observables, which can be measured in the running experiments at the LHC, could lead to a first extraction of both the polarized and the unpolarized gluon distributions and allow for a study of their process and energy scale dependences.
Strong-coupling effects in a plasma of confining gluons
Florkowski, Wojciech; Su, Nan; Tywoniuk, Konrad
2015-01-01
The plasma consisting of confining gluons resulting from the Gribov quantization of the SU(3) Yang-Mills theory is studied using non-equilibrium fluid dynamical framework. Exploiting the Bjorken symmetry and using linear response theory a general analytic expressions for the bulk and shear viscosity coefficients are derived. It is found that the considered system exhibits a number of properties similar to the strongly-coupled theories, where the conformality is explicitly broken. In particular, it is shown that, in the large temperature limit, bulk to shear viscosity ratio, scales linearly with the difference $1/3 - c_s^2$, where $c_s$ is the speed of sound. Results obtained from the analysis are in line with the interpretation of the quark-gluon plasma as an almost perfect fluid.
The high-energy radiation pattern from BFKLex with double-log collinear contributions
Chachamis, G
2015-01-01
We study high-energy jet production in the multi-Regge limit making use of the Monte Carlo event generator BFKLex which includes collinear improvements in the form of double-log contributions as presented in [1]. Making use of the anti-kt jet algorithm in the FastJet implementation, we present results for the average transverse momentum and azimuthal angle of the produced jets when two tagged forward/backward jets are present in the final state. We also introduce a new observable which accounts for the average rapidity separation among subsequent emissions. Results are presented, for comparison, at leading order and next-to-leading order, with the resummation of collinear double logs proposed in [2].
RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes
Barquest, B. R.; Bollen, G.; Mantica, P. F.; Minamisono, K.; Ringle, R.; Schwarz, S.; Sumithrarachchi, C. S.
2017-09-01
A radiofrequency quadrupole (RFQ) ion beam cooler and buncher has been developed to deliver bunched beams with low transverse emittance, energy spread, and time spread to the BECOLA collinear laser spectroscopy system at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The beam cooler and buncher contains new features which enhance performance, especially for high count rate beams, as well as simplifying construction, maintenance, and operation. The transverse emittance, energy spread, and time spread of the bunched beam, as well as buncher efficiency are reported, showcasing the capabilities of the BECOLA facility to perform collinear laser spectroscopy measurements with bunched rare isotope beams at NSCL and at the future Facility for Rare Isotope Beams (FRIB).
Collinear laser spectroscopy of manganese isotopes using optical pumping in ISCOOL
Marsh, B A; Neyens, G; Flanagan, K; Rajabali, M M; Reponen, M; Campbell, P; Procter, T J
Recently, optical pumping of ions has been achieved inside an ion beam cooler-buncher. By illuminating the central axis of the cooler with laser light, subsequent decay populates selected ionic metastable states. This population enhancement is retained as the ion beam is delivered to an experimental station. In the case of collinear laser spectroscopy, transitions can then be excited from a preferred metastable level, rather than the ground-state. This proposal seeks to establish and develop the technique for ISCOOL. As a test of efficiency, this will be applied to the study of $^{55-66}$Mn isotopes using collinear laser spectroscopy-expanding an earlier study where the benefit of the technique was demonstrated. This will provide nuclear spins, magnetic-dipole and electric-quadrupole moments and changes in mean-square charge radii across N = 40 shell closure candidate and into a region where an onset of deformation, and a new "island of inversion" is predicted.
Spiral versus modulated collinear phases in the quantum axial next-nearest-neighbor Heisenberg model
Oitmaa, J.; Singh, R. R. P.
2016-12-01
Motivated by the discovery of spiral and modulated collinear phases in several magnetic materials, we investigate the magnetic properties of Heisenberg spin S =1 /2 antiferromagnets in two and three dimensions, with frustration arising from second-neighbor couplings in one axial direction [the axial next-nearest-neighbor Heisenberg (ANNNH) model]. Our results clearly demonstrate the presence of an incommensurate spiral phase at T =0 in two dimensions, extending to finite temperatures in three dimensions. The crossover between Néel and spiral order occurs at a value of the frustration parameter considerably above the classical value 0.25, a sign of substantial quantum fluctuations. We also investigate a possible modulated collinear phase with a wavelength of four lattice spacings and find that it has substantially higher energy and hence is not realized in the model.
Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging
Purwar, Harsh; Rozé, Claude; Sedarsky, David; Blaisot, Jean-Bernard
2015-01-01
Imaging with ultrashort exposure times is generally achieved with a crossed-beam geometry. In the usual arrangement, an off-axis gating pulse induces birefringence in a medium exhibiting a strong Kerr response (commonly carbon disulfide) which is followed by a polarizer aligned to fully attenuate the on-axis imaging beam. By properly timing the gate pulse, imaging light experiences a polarization change allowing time-dependent transmission through the polarizer to form an ultrashort image. The crossed-beam system is effective in generating short gate times, however, signal transmission through the system is complicated by the crossing angle of the gate and imaging beams. This work presents a robust ultrafast time-gated imaging scheme based on a combination of type-I frequency doubling and a collinear optical arrangement in carbon disulfide. We discuss spatial effects arising from crossed-beam Kerr gating, and examine the imaging spatial resolution and transmission timing affected by collinear activation of th...
Derivation of spin-orbit couplings in collinear linear-response TDDFT: A rigorous formulation
Franco de Carvalho, Felipe; Curchod, Basile F. E.; Penfold, Thomas J.; Tavernelli, Ivano
2014-04-01
Using an approach based upon a set of auxiliary many-electron wavefunctions we present a rigorous derivation of spin-orbit coupling (SOC) within the framework of linear-response time-dependent density functional theory (LR-TDDFT). Our method is based on a perturbative correction of the non-relativistic collinear TDDFT equations using a Breit-Pauli spin-orbit Hamiltonian. The derivation, which is performed within both the Casida and Sternheimer formulations of LR-TDDFT, is valid for any basis set. The requirement of spin noncollinearity for the treatment of spin-flip transitions is also discussed and a possible alternative solution for the description of these transitions in the collinear case is also proposed. Our results are validated by computing the SOC matrix elements between singlet and triplet states of two molecules, formaldehyde and acetone. In both cases, we find excellent agreement with benchmark calculations performed with a high level correlated wavefunction method.
Derivation of spin-orbit couplings in collinear linear-response TDDFT: A rigorous formulation
Franco de Carvalho, Felipe; Curchod, Basile F. E.; Tavernelli, Ivano, E-mail: ivano.tavernelli@epfl.ch [Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, CH-1015 (Switzerland); Penfold, Thomas J. [SwissFEL, Paul Scherrer Inst, CH-5232 Villigen (Switzerland)
2014-04-14
Using an approach based upon a set of auxiliary many-electron wavefunctions we present a rigorous derivation of spin-orbit coupling (SOC) within the framework of linear-response time-dependent density functional theory (LR-TDDFT). Our method is based on a perturbative correction of the non-relativistic collinear TDDFT equations using a Breit-Pauli spin-orbit Hamiltonian. The derivation, which is performed within both the Casida and Sternheimer formulations of LR-TDDFT, is valid for any basis set. The requirement of spin noncollinearity for the treatment of spin-flip transitions is also discussed and a possible alternative solution for the description of these transitions in the collinear case is also proposed. Our results are validated by computing the SOC matrix elements between singlet and triplet states of two molecules, formaldehyde and acetone. In both cases, we find excellent agreement with benchmark calculations performed with a high level correlated wavefunction method.
Holographic quark-gluon plasmas at finite quark density
Bigazzi, F. [Dipartimento di Fisica e Astronomia, Universita di Firenze, Sesto Fiorentino (Firenze), Pisa (Italy); INFN, Sezione di Torino (Italy); Cotrone, A. [Dipartimento di Fisica, Universita di Torino (Italy); Mas, J. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela (Spain); Instituto Galego de Fisica de Altas Enerxias (IGFAE), Santiago de Compostela (Spain); Tarrio, J. [Institute for Theoretical Physics and Spinoza Institute, Universiteit Utrecht, 3584 CE, Utrecht (Netherlands); Mayerson, D. [Institute for Theoretical Physics, University of Amsterdam (Netherlands)
2012-07-15
Gravity solutions holographically dual to strongly coupled quark-gluon plasmas with non-zero quark density are reviewed. They are motivated by the urgency of finding novel tools to explore the phase diagram of QCD-like theories at finite chemical potential. After presenting the solutions and their regime of validity, some of their physical properties are discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Radiation spectrum of a massive quark–gluon antenna
Calvo, M.R., E-mail: manoel.rodriguez@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain); Institut de Physique Théorique de Saclay, F-91191, Gif-sur-Yvette (France); Moldes, M.R., E-mail: manoel.rodriguez-moldes@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain); Centre de Physique Théorique, École Polytechnique, CNRS, 91128 Palaiseau (France); Salgado, C.A., E-mail: carlos.salgado@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain)
2014-12-15
We compute the color coherence effects for soft gluon radiation off antennas containing heavy quarks in the presence of a QCD medium. The analysis is performed resumming the multiple scattering of the partonic system with the medium. The main conclusion is that decorrelation due to color rotation is more effective in the case in which at least one of the emitters of the antenna is a heavy quark.
Evolution of gluon TMDs from small to moderate x
Tarasov, Andrey
2015-01-01
Recently we obtained an evolution equation of gluon TMDs, which addresses a problem of unification of different kinematic regimes. It describes evolution in the whole range of Bjorken $x_B$ and the whole range of transverse momentum $k_\\perp$. In this notes I study different limits of this evolution equation and show how it yields several well-known and some previously unknown results.
Gluon condensate and the vacuum structure of QCD
Mendes, R V
1998-01-01
Phenomenological evidence and analytic approximations to the QCD ground state suggest a complex gluon condensate structure. Exclusion of elementary fermion excitations by the generation of infinite mass corrections is a consequence. In addition the existence of vacuum condensates in unbroken non-abelian gauge theories, endows SU(3) and higher order groups with a non-trivial structure in the manifold of possible vacuum solutions, which is not present in SU(2). This may be related to the existence of particle generations.
Higgs Boson Production at the LHC with Soft Gluon Effects
Balázs, C
2000-01-01
We present results of QCD corrections to Higgs boson production at the CERN Large Hadron Collider. Potentially large logarithmic contributions from multiple soft-gluon emission are summed up to all order in the strong coupling. Various kinematical distributions, including the Higgs transverse momentum, are predicted with O(alpha_s^3) precision. Comparison is made to outputs of the popular Monte Carlo event generator PYTHIA.
K\\"allen-Lehman Representation and the Gluon Propagator
Frasca, Marco
2007-01-01
We exploit the Kallen-Lehman representation of the two-point Wightman function to prove that the gluon propagator cannot go to zero in the infrared limit. We are able to derive also the functional form of it. This means that current results on the lattice can be used to derive the scalar glueball spectrum to be compared both with experiments and different aimed lattice computations.
The extent of strangeness equilibration in quark gluon plasma
Dipali Pal; Abhijit Sen; Munshi Golam Mustafa; Dinesh Kumar Srivastava
2003-05-01
The evolution and production of strangeness from chemically equilibrating and transversely expanding quark gluon plasma which may be formed in the wake of relativistic heavy-ion collisions is studied with initial conditions obtained from the self screened parton cascade (SSPC) model. The extent of partonic equilibration increases almost linearly with the square of the initial energy density, which can then be scaled with the number of participants.
Quark-gluon plasma phase transition using cluster expansion method
Syam Kumar, A. M.; Prasanth, J. P.; Bannur, Vishnu M.
2015-08-01
This study investigates the phase transitions in QCD using Mayer's cluster expansion method. The inter quark potential is modified Cornell potential. The equation of state (EoS) is evaluated for a homogeneous system. The behaviour is studied by varying the temperature as well as the number of Charm Quarks. The results clearly show signs of phase transition from Hadrons to Quark-Gluon Plasma (QGP).
Evolution of gluon TMDs from small to moderate x
Tarasov, Andrey [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-05-01
Recently we obtained an evolution equation of gluon TMDs, which addresses a problem of unification of different kinematic regimes. It describes evolution in the whole range of Bjorken $x_B$ and the whole range of transverse momentum $k_\\perp$. In this notes I study different limits of this evolution equation and show how it yields several well-known and some previously unknown results.
Transport phenomena in a plasma of confining gluons
Ryblewski Radoslaw
2016-01-01
Full Text Available The plasma of confining gluons resulting from the Gribov quantization is considered. In the fluid dynamical framework the non-equilibrium properties of the system are studied. In the linear response approximation the formulas for the bulk, ζ, and shear, η, viscosities of the plasma are calculated analytically. Surprisingly, the approximate scaling of the ζ/η ratio reveals the strong-coupling properties of the system under consideration.
On the scattering of gluons in the GKP string
Bianchi, Lorenzo [Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); II. Institut für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Bianchi, Marco S. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom)
2016-02-22
We compute the one-loop S-matrix for the light bosonic excitations of the GKP string at strong coupling. These correspond, on the gauge theory side, to gluon insertions in the GKP vacuum. We perform the calculation by Feynman diagrams in the worldsheet theory and we compare the result to the integrability prediction, finding perfect agreement for the scheme independent part. For scheme dependent rational terms we test different schemes and find that a recent proposal reproduces exactly the integrability prediction.
RHIC AND THE PURSUIT OF THE QUARK-GLUON PLASMA.
MITCHELL,J.T.
2001-07-25
There is a fugitive on the loose. Its name is Quark-Gluon Plasma, alias the QGP. The QGP is a known informant with knowledge about the fundamental building blocks of nature that we wish to extract. This briefing will outline the status of the pursuit of the elusive QGP. We will cover what makes the QGP tick, its modus operandi, details on how we plan to hunt the fugitive down, and our level of success thus far.
Magnetic component of gluon plasma and its viscosity
Chernodub, M.N. [CNRS, Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Parc de Grandmont, 37200 Tours (France); Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); Verschelde, H. [Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); Zakharov, V.I. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)
2010-10-15
We discuss the role of the magnetic degrees of freedom of the gluon plasma in its viscosity. The main assumption is that motions of the magnetic component and of the rest of the plasma can be considered as independent. The magnetic component in the deconfined phase is described by a three-dimensional (Euclidean) field theory. The parameters of the theory can be estimated phenomenologically. It is not ruled out that the magnetic component is superfluid.
Shell structure and level migrations in zinc studied using collinear laser spectroscopy
Tungate, G; De rydt, M A E; Flanagan, K; Rajabali, M M; Hammen, M; Blaum, K; Froemmgen, N E; Kowalska, M; Campbell, P; Neugart, R; Kreim, K D; Stroke, H H; Krieger, A R; Procter, T J
We propose to perform collinear laser spectroscopy of zinc isotopes to measure the nuclear spin, magnetic dipole moment, electric quadrupole moment and mean-square charge radius. The yield database indicates that measurements of the isotopes $^{60-81}$Zn will be feasible. These measurements will cross the N = 50 shell closure and provide nuclear moments in a region where an inversion of ground-state spin has been identified in neighbouring chains.
The simultaneous and nearly-collinear K0 beams for experiment NA48
Biino, C; Gatignon, L; Grafström, P; Wahl, H
1998-01-01
A system of simultaneous and nearly-collinear beams of long- and short-lived neutral kaons has been installed and extensively studied. These beams form an integral part of the NA48 experiment at the C ERN SPS, which aims to study direct CP-violation. The beam splitting is achieved by a novel application of a bent silicon crystal. The principles and design of these beams, as well as their performanc e are described.
Magnetic response of magnetic molecules with non-collinear local d-tensors
J. Schnack
2009-01-01
Full Text Available Investigations of molecular magnets are driven both by prospective applications in future storage technology or quantum computing as well as by fundamental questions. Nowadays numerical simulation techniques and computer capabilities make it possible to investigate spin Hamiltonians with realistic arrangements of local anisotropy tensors. In this contribution I will discuss the magnetic response of a small spin system with special emphasis on non-collinear alignments of the local anisotropy axes.
The gluon momentum fraction of the nucleon from lattice QCD
Alexandrou, Constantia; Hadjiyiannakou, Kyriakos; Jansen, Karl; Panagopoulos, Haralambos; Wiese, Christian
2016-01-01
We perform a direct calculation of the gluon momentum fraction of the nucleon using maximally twisted mass fermion ensembles with $N_f=2+1+1$ flavors at a pion mass of about $370\\,\\mathrm{MeV}$ and a lattice spacing of $a\\approx 0.082\\,\\mathrm{fm}$ and with $N_f=2$ flavors at the physical pion mass and a lattice spacing of $a\\approx 0.093\\,\\mathrm{fm}$. In the definition of the gluon operator we employ stout smearing to obtain a statistically significant result for the bare matrix elements. In addition, we perform a lattice perturbative calculation including 2 levels of stout smearing to carry out the mixing and the renormalization of the quark and gluon operators. We find, after conversion to the $\\overline{\\mathrm{MS}}$ scheme at a scale of $2\\,\\mathrm{GeV}$: $\\langle x\\rangle^R_g {=} 0.284(23)(23)$ for pion mass of about $370\\,\\mathrm{MeV}$ and $\\langle x\\rangle^R_g {=} 0.283(23)(15)$ for the physical pion mass.
String-inspired representations of photon/gluon amplitudes
Ahmadiniaz, Naser; Villanueva, Victor M
2012-01-01
The string-based Bern-Kosower rules provide an efficient way for obtaining parameter integral representations of the one-loop N - photon/gluon amplitudes involving a scalar, spinor or gluon loop, starting from a master formula and using a certain integration-by-parts (`IBP') procedure. Strassler observed that this algorithm also relates to gauge invariance, since it leads to the absorption of polarization vectors into field strength tensors. Here we present a systematic IBP algorithm that works for arbitrary N and leads to an integrand that is not only suitable for the application of the Bern-Kosower rules but also optimized with respect to gauge invariance. In the photon case this means manifest transversality at the integrand level, in the gluon case that a form factor decomposition of the amplitude into transversal and longitudinal parts is generated naturally by the IBP, without the necessity to consider the nonabelian Ward identities. Our algorithm is valid off-shell, and provides an extremely efficient ...
Transverse-momentum-dependent gluon distributions from JIMWLK evolution
Marquet, C; Roiesnel, C
2016-01-01
Transverse-momentum-dependent (TMD) gluon distributions have different operator definitions, depending on the process under consideration. We study that aspect of TMD factorization in the small-x limit, for the various unpolarized TMD gluon distributions encountered in the literature. To do this, we consider di-jet production in hadronic collisions, since this process allows to be exhaustive with respect to the possible operator definitions, and is suitable to be investigated at small x. Indeed, for forward and nearly back-to-back jets, one can apply both the TMD factorization and Color Glass Condensate (CGC) approaches to compute the di-jet cross-section, and compare the results. Doing so, we show that both descriptions coincide, and we show how to express the various TMD gluon distributions in terms of CGC correlators of Wilson lines, while keeping Nc finite. We then proceed to evaluate them by solving the JIMWLK equation numerically. We obtain that at large transverse momentum, the process dependence essen...
Electromagnetic Radiation From An Equilibrium Quark -Gluon Plasma System
Singh, S S; Jha, Agam K.
2006-01-01
We study the electromagnetic radiation from a hot and slightly strong interacting fireball system of quark-gluon plasma using the Boltzmann distribution function for the incoming particles and Bose-Einstein distribution for gluon in first calculation of electromagnetic radiation and Fermi-Dirac distribution for quark, antiquark and Boltzmann distribution for gluon in our second calculation. The thermal photon emission rate is found that it is infrared divergent for massless quarks which are discussed by many authors and regulate this divergence using different cut-off in the qurak mass. However we remove this divergence using the same technique of Braaten and Pisarski in the thermal mass of the system by using our model calculation in the coupling parameter. Thus the production rate of the thermal photon is found to be smoothly worked by this cut-off technique of our model. The result is found to be matched with the most of the theoretical calculations and it is in the conformity with the experimental results...
Quark Gluon Plasma: Surprises from strongly coupled QCD matter
Jacak, Barbara
2017-01-01
Quantum Chromodynamics has long predicted a transition from normal hadronic matter to a phase where the quarks and gluons are no longer bound together and can move freely. Quark gluon plasma is now produced regularly in collisions of heavy nuclei at very high energy at both the Relativistic Heavy Ion Collider (RHIC) in the U.S. and at the LHC in Europe. Quark gluon plasma exhibits remarkable properties. Its vanishingly small shear viscosity to entropy density ratio means that it flows essentially without internal friction, making it one of the most ``perfect'' liquids known. It is also very opaque to transiting particles including heavy charm quarks, though the exact mechanism for this is not yet understood. Recent data suggest that even very small colliding systems may produce a droplet of plasma. The similarities to strongly coupled or correlated systems in ultra-cold atoms and condensed matter are striking, and have inspired novel theoretical descriptions growing out of string theory. It remains a mystery how this plasma emerges from cold, dense gluonic matter deep inside nuclei. I will discuss how a future electron-ion collider can help address this question.
The Bulk RS KK-gluon at the LHC
Lillie, Benjamin Huntington; Wang, L T; Lillie, Ben; Randall, Lisa; Wang, Lian-Tao
2007-01-01
We study the possibility of discovering and measuring the properties of the lightest Kaluza-Klein excitation of the gluon in a Randall-Sundrum scenario where the Standard Model matter and gauge fields propagate in the bulk. The KK-gluon decays primarily into top quarks. We discuss how to use the $t \\bar{t}$ final states to discover and probe the properties of the KK-gluon. Identification of highly energetic tops is crucial for this analysis. We show that conventional identification methods relying on well separated decay products will not work for heavy resonances but suggest alternative methods for top identification for energetic tops. We find, conservatively, that resonances with masses less than 5 TeV can be discovered if the algorithm to identify high $p_T$ tops can reject the QCD background by a factor of 10. We also find that for similar or lighter masses the spin can be determined and for lighter masses the chirality of the coupling to $t\\bar t$ can be measured. Since the energetic top pair final stat...
Collinear facilitation and contour integration in autism: evidence for atypical visual integration
Stephen eJachim
2015-03-01
Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder characterized by impaired social interaction, atypical communication and a restricted repertoire of interests and activities. Altered sensory and perceptual experiences are also common, and a notable perceptual difference between individuals with ASD and controls is their superior performance in visual tasks where it may be beneficial to ignore global context. This superiority may be the result of atypical integrative processing. To explore this claim we investigated visual integration in adults with ASD (diagnosed with Asperger’s Syndrome using two psychophysical tasks thought to rely on integrative processing - collinear facilitation and contour integration. We measured collinear facilitation at different flanker orientation offsets and contour integration for both open and closed contours. Our results indicate that compared to matched controls, ASD participants show (i reduced collinear facilitation, despite equivalent performance without flankers and (ii less benefit from closed contours in contour integration. These results indicate weaker visuospatial integration in adults with ASD and suggest that further studies using these types of paradigms would provide knowledge on how contextual processing is altered in ASD.
Collinear facilitation and contour integration in autism: evidence for atypical visual integration.
Jachim, Stephen; Warren, Paul A; McLoughlin, Niall; Gowen, Emma
2015-01-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, atypical communication and a restricted repertoire of interests and activities. Altered sensory and perceptual experiences are also common, and a notable perceptual difference between individuals with ASD and controls is their superior performance in visual tasks where it may be beneficial to ignore global context. This superiority may be the result of atypical integrative processing. To explore this claim we investigated visual integration in adults with ASD (diagnosed with Asperger's Syndrome) using two psychophysical tasks thought to rely on integrative processing-collinear facilitation and contour integration. We measured collinear facilitation at different flanker orientation offsets and contour integration for both open and closed contours. Our results indicate that compared to matched controls, ASD participants show (i) reduced collinear facilitation, despite equivalent performance without flankers; and (ii) less benefit from closed contours in contour integration. These results indicate weaker visuospatial integration in adults with ASD and suggest that further studies using these types of paradigms would provide knowledge on how contextual processing is altered in ASD.
Banani Basu
2010-06-01
Full Text Available A method based on constricted Particle Swarm Optimization (CPSO algorithm to design a non-uniformly spaced collinear array of thin dipole antennas of unequal height is proposed. This paper presents a method for computing the appropriate excitation and geometry of individual array elements to generate a pencil beam in the vertical plane with minimum Standing Wave Ratio (SWR and fixed Side Lobe Level (SLL. Coupling effect between any two collinear center-fed thin dipole antennas having sinusoidal current distributions is analyzed using induced EMF method and minimized in terms of SWR. DRR of excitation distribution is fixed at a lower value for further mitigation of the coupling effect. Phase distribution for all the elements is kept at zero degree for broadside array. Optimization results show the effectiveness of the algorithm for the design of the array. Moreover method seems very conducive for estimating the mutual impedance between any two collinear center-fed thin dipole antennas having sinusoidal current distributions.
Block Adjustment of Vehicle-borne Multi-camera Rig Images Using Extended Collinearity Equations
YIN Li
2017-04-01
Full Text Available This paper introduces the extended collinearity equations into aerial triangulation of the vehicle-borne multi-camera rig images to improve the positioning accuracy. The cameras in a multi-camera rig are rigidly fixed and the relative position and orientation parameters among the mono cameras of multi-camera rig can be calibrated accurately, so the extended collinearity equations can be used to extend the imaging unit from a mono camera image to multiple images of multi-camera rigs. Compared with the existing spherical models, including the spherical ideal model and the spherical rigorous model, the extended collinearity equations used in this paper avoid the spherical projection error and fusion error caused by the misalignment of projection centers. Experimental results show that the method omits the processing procedure of model projection and fusion of overlap areas, which avoids the precision loss and complicated processing procedure, and finally obtains more robustness triangulation net, more precise and robust position accuracy.
Selection rules for single-chain-magnet behaviour in non-collinear Ising systems
Vindigni, Alessandro [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zuerich (Switzerland); Pini, Maria Gloria [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy)], E-mail: vindigni@phys.ethz.ch
2009-06-10
The magnetic behaviour of molecular single-chain magnets is investigated in the framework of a one-dimensional Ising model with single spin-flip Glauber dynamics. Opportune modifications to the original theory are required in order to account for non-collinearity of local anisotropy axes between themselves and with respect to the crystallographic (laboratory) frame. The extension of Glauber's theory to the case of a collinear Ising ferrimagnetic chain is also discussed. Within this formalism, both the dynamics of magnetization reversal in zero field and the response of the system to a weak magnetic field, oscillating in time, are studied. Depending on the experimental geometry, selection rules are found for the occurrence of slow relaxation of the magnetization at low temperatures, as well as for resonant behaviour of the a.c. susceptibility as a function of temperature at low frequencies. The present theory applies successfully to some real systems, namely Mn-, Dy- and Co-based molecular magnetic chains, showing that single-chain-magnet behaviour is not only a feature of collinear ferro- and ferrimagnetic, but also of canted antiferromagnetic chains.
Multi-modal fission in collinear ternary cluster decay of 252Cf(sf, fff
W. von Oertzen
2015-06-01
Full Text Available We discuss the multiple decay modes of collinear fission in 252Cf(sf, fff, with three fragments as suggested by the potential energy surface (PES. Fission as a statistical decay is governed by the phase space of the different decay channels, which are suggested in the PES-landscape. The population of the fission modes is determined by the minima in the PES at the scission points and on the internal potential barriers. The ternary collinear decay proceeds as a sequential process, in two steps. The originally observed ternary decay of 252Cf(sf into three different masses (e.g. 132–140Sn, 52–48Ca, 68–72Ni, observed by the FOBOS group in the FLNR (Flerov Laboratory for Nuclear Reactions of the JINR (Dubna the collinear cluster tripartition (CCT, is one of the ternary fission modes. This kind of “true ternary fission” of heavy nuclei has often been predicted in theoretical works during the last decades. In the present note we discuss different ternary fission modes in the same system. The PES shows pronounced minima, which correspond to several modes of ternary fragmentations. These decays have very similar dynamical features as the previously observed CCT-decays. The data obtained in the experiments on CCT allow us to extract the yields for different decay modes using specific gates on the measured parameters, and to establish multiple modes of the ternary fission decay.
Sotnikov, Gennadij V.; Marshall, Thomas C.; Shchelkunov, Sergey V.; Hirshfield, Jay L.
2017-03-01
New results of studies of wakefield excitation by a ramped bunch train in a collinear, single-channel dielectriclined THz-wakefield accelerator structure that is filled with a low-temperature plasma are presented. A novel ramped train of drive bunches, together with plasma filling part of the transport channel, makes possible substantial improvement of the transformer ratio of the multimode collinear device to 6:1 while the plasma could stabilize the transverse motion of the drive and witness bunches.
Hard diffraction in the QCD dipole picture
Bialas, A
1995-01-01
Using the QCD dipole picture of the BFKL pomeron, the gluon contribution to the cross-section for single diffractive dissociation in deep-inelastic high-energy scattering is calculated. The resulting contribution to the proton diffractive structure function integrated over t is given in terms of relevant variables, x_{\\cal P}, Q^2, and \\beta = x_{Bj}/x_{\\cal P}. It factorizes into an explicit x_{\\cal P}-dependent Hard Pomeron flux factor and structure function. The flux factor is found to have substantial logarithmic corrections which may account for the recent measurements of the Pomeron intercept in this process. The triple Pomeron coupling is shown to be strongly enhanced by the resummation of leading logs. The obtained pattern of scaling violation at small \\beta is similar to that for F_2 at small x_{Bj}.
Determining the Factorizability of Hard Scattering Cross-Sections
Hornig, Andrew; Ovanesyan, Grigory
2009-01-01
The rules of soft-collinear effective theory can be used naively to write hard scattering cross-sections as convolutions of separate hard, jet, and soft functions. We describe an intuitive method to determine, at a given order in perturbation theory, whether these functions are truly infrared safe or not and, thus, whether or not the cross-sections factorize. Using angularity distributions as an illustrative example, we look for regions of integration in the sum of Feynman diagrams contributing to the jet and soft functions where the integrals become infrared divergent. Our analysis is independent of an explicit infrared regulator, and simultaneously clarifies how to distinguish infrared and ultraviolet singularities when pure dimensional regularization is used to regulate both.
Phenomenology of hard diffraction at high energies
Machado, Magno V T
2016-01-01
We present some of the topics covered in two lectures under the same title that was given at the "Summer School on High Energy Physics at the LHC: New trends in HEP" in Natal, Brazil. In this contribution we give a brief review on the application of perturbative QCD to the hard diffractive processes. Such reactions involving a hard scale can be understood in terms of quarks and gluons degrees of freedom and have become an useful tool for investigating the low-$x$ structure of the proton and the behavior of QCD in the high-density regime. We start using the information from the $ep$ collisions at HERA concerned to the inclusive diffraction to introduce the concept of diffractive parton distributions. Their interpretation in the resolved pomeron model is addressed and we discuss the limits of diffractive hard-scattering factorization for hadron-hadron collisions. Some examples of phenomenology for the diffractive production of $W/Z$, heavy $Q\\bar{Q}$ and quarkonium in hadron-hadron reactions are presented. We a...
Ghost-gluon and ghost-quark bound states and their role in BRST quartets
Alkofer, Natalia
2011-01-01
A non-perturbative version of the BRST quartet mechanism in infrared Landau gauge QCD is proposed for transverse gluons and quarks. Based on the positivity violation for transverse gluons the content of the respective non-perturbative BRST quartet is derived. To identify the gluon's BRST-daughter and second parent state, a truncated Bethe-Salpeter equation for the gluon-(anti-)ghost bound state is investigated. We comment shortly on several equivalent forms of this equation. Repeating the same construction for quarks leads to a truncated Bethe-Salpeter equation for a fundamentally charged quark-(anti-)ghost bound state. It turns out that a cardinal input to this equation is given by the fully dressed quark-gluon vertex, and that it is indispensable to dress the quark-gluon vertex in this equation in order to obtain a consistent truncation.
Numerically Solving Quark-Loop Effects on Dressed Gluon Propagator in Chiral Limit
FAN Xiao-Ying; WANG Jing; Alatancang; SHI Yuan-Mei; HOU Feng-Yao; SUN Wei-Min; ZONG Hong-Shi; PING Jia-Lun
2008-01-01
We do a numerical calculation on the quark-loop effects on the dressed gluon propagator in the chiral limit. It is found that the quark-loop effects on the dressed gluon propagator are significant in solving the quark propagator in the rainbow approximation of the Dyson-Schwinger equation. The approach we used here is quite general and can also be used to calculate both the chemical potential and current quark mass dependence of the dressed gluon propagator.
Mazumder, Surasree; Alam, Jan-e
2014-01-01
The effects of gluon radiation by charm quarks on the transport coefficients {\\it e.g.} drag, longitudinal and transverse diffusion and shear viscosity have been studied within the ambit of perturbative quantum chromodynamics (pQCD) and kinetic theory. We found that while the soft gluon radiation has substantial effects on the transport coefficients of the charm quarks in the quark gluon plasma its effects on the equilibrium distribution function is insignificant.
Intermediate mass dilepton production during the chemical equilibration of quark gluon plasma
无
2001-01-01
The production of dileptons from the chemically equilibrating quark gluon plasma in the intermediate mass region has been studied. Comparing with the calculated results based on the thermodynamic equilibrium system of quark gluon plasma, it has been found that the quark phase of the chemically equilibrating system gives rise to an even larger enhancement of the dileptons production. Therefore, such an enhancement of dilepton production may signal the formation of quark gluon plasma.
李双; 冯笙琴
2012-01-01
The net-baryon number is essentially transported by valence quarks that probe the saturation regime in the target by multiple scattering. The net-baryon distributions, nuclear stopping power and gluon saturation features in the SPS and RHIC energy regions are investigated by taking advantage of the gluon saturation model with geometric scaling. Predications are made for the net-baryon rapidity distributions, mean rapidity loss and gluon saturation features in central Pb ＋ Pb collisions at LHC.
Thermal Charmed Quark Contribution to Dileptons in Chemically Equilibrating Quark-Gluon Matter
贺泽君; 龙家丽; 卢朝辉; 马余刚; 刘波
2003-01-01
We find that in a chemically equilibrating baryon-rich quark-gluon matter, due to the slow cooling rate, high initial temperature, large gluon density as well as large fusion cross section of gg → c(c) in the intermediate mass region, the gluon fusion gg → c(c) provides a dominant contributionto dileptons with intermediate masses, resulting in the significant enhancement of intermediate mass dileptons.
Influence of Fermion Determinant on the Temperature Dependence of Gluon Condensates
LIU Jue-Ping
2000-01-01
The contribution of the fermion determinant to the gluon condensates at a finite temperature is calculated in the framework of the grand partition function for a weak-interacting instanton medium of a disordered phase. It is found that the temperature behavior of both chromomagnetic and chromoelectric gluon condensates depends sensitively on the flavor number. The more the flavors are, the faster the gluon condensates decrease. In the three-flavor case, the gluon condensates would be vanish (or the scale invariance would be restored) approximately at the temperature of 180 MeV.
Regge behaviour of distribution functions and and -evolutions of gluon distribution function at low-
U Jamil; J K Sarma
2007-08-01
In this paper, and -evolutions of gluon distribution function from Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equation in leading order (LO) at low- are presented assuming the Regge behaviour of quarks and gluons at this limit. We compare our results of gluon distribution function with MRST 2001, MRST 2004 and GRV 1998 parametrizations and show the compatibility of Regge behaviour of quark and gluon distribution functions with perturbative quantum chromodynamics (PQCD) at low-. We also discuss the limitations of Taylor series expansion method used earlier to solve DGLAP evolution equations in the Regge behaviour of distribution functions.
Transverse momentum dependent splitting functions at work: quark-to-gluon splitting
Hentschinski, M; Kutak, K
2016-01-01
Using the recently obtained Pgq splitting function we extend the low x evolution equation for gluons to account for contributions originating from quark-to-gluon splitting. In order to write down a consistent equation we resum virtual corrections coming from the gluon channel and demonstrate that this implies a suitable regularization of the Pgq singularity, corresponding to a soft emitted quark. We also note that the obtained equation is in a straightforward manner generalized to a nonlinear evolution equation which takes into account effects due to the presence of high gluon densities.
Chemical Equilibration and Dilepton Production of Quark-Gluon Plasma at RHIC Energies
龙家丽; 贺泽君; 马国亮; 马余刚; 刘波
2004-01-01
An evolution model of the chemically equilibrating quark-gluon plasma system has been established based on the Jiittner distribution function of partons. By studying the dilepton production of the system, we find that due to high initial temperature, large gluon density of the system as well as large gluon fusion gg → c(c-) cross section in the intermediate mass region, a dominant contribution to dileptons with intermediate masses is provided by quark-antiquark annihilation qq → l(l-) and, especially, thermal charmed quarks from the gluon fusion gg → c(c-) and quark-antiquark annihilation qq → c(c-).
Double-soft behavior for scalars and gluons from string theory
Vecchia, Paolo Di [The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Marotta, Raffaele [Instituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli (Italy); Mojaza, Matin [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)
2015-12-22
We compute the leading double-soft behavior for gluons and for the scalars obtained by dimensional reduction of a higher dimensional pure gauge theory, from the scattering amplitudes of gluons and scalars living in the world-volume of a Dp-brane of the bosonic string. In the case of gluons, we compute both the double-soft behavior when the two soft gluons are contiguous as well as when they are not contiguous. From our results, that are valid in string theory, one can easily get the double-soft limit in gauge field theory by sending the string tension to infinity.
Production and elliptic flow of dileptons and photons in a matrix model of the quark-gluon plasma.
Gale, Charles; Hidaka, Yoshimasa; Jeon, Sangyong; Lin, Shu; Paquet, Jean-François; Pisarski, Robert D; Satow, Daisuke; Skokov, Vladimir V; Vujanovic, Gojko
2015-02-20
We consider a nonperturbative approach to the thermal production of dileptons and photons at temperatures near the critical temperature in QCD. The suppression of colored excitations at low temperature is modeled by including a small value of the Polyakov loop, in a "semi"-quark-gluon plasma (QGP). Comparing the semi-QGP to the perturbative QGP, we find a mild enhancement of thermal dileptons. In contrast, to leading logarithmic order in weak coupling there are far fewer hard photons from the semi-QGP than the usual QGP. To illustrate the possible effects on photon and dilepton production in heavy-ion collisions, we integrate the rate with a simulation using ideal hydrodynamics. Dileptons uniformly exhibit a small flow, but the strong suppression of photons in the semi-QGP tends to weight the elliptical flow of photons to that generated in the hadronic phase.
Klapp, O.
1999-07-01
Three jet events arising from decays of the Z boson, collected by the DELPHI detector at LEP, were used to compare properties of gluon and quark jets. The charged hadron multiplicity in a cone perpendicular to the event plane of symmetric three jet events was determined. The measurement constitutes a test of the colour coherence property of QCD and of LPHD. The production spectra of the identified particles K{sup {+-}}, {pi}{sup {+-}}, p, and p were found to be softer in gluon jets compared to quark jets, with a higher multiplicity in gluon jets as observed for inclusive charged particles. (orig.)
Regge meets collinear in strongly-coupled $\\mathcal{N} = 4$ super Yang-Mills
Sprenger, Martin
2016-01-01
We revisit the calculation of the six-gluon remainder function in planar $\\mathcal{N} = 4$ super Yang-Mills theory from the strong coupling TBA in the multi-Regge limit and identify an infinite set of kinematically subleading terms. These new terms can be compared to the strong coupling limit of the finite-coupling expressions for the impact factor and the BFKL eigenvalue proposed by Basso et al. in arXiv:1407.3766, which were obtained from an analytic continuation of the Wilson loop OPE. After comparing the results order by order in those subleading terms, we show that it is possible to precisely map both formalisms onto each other. A similar calculation can be carried out for the seven-gluon amplitude, the result of which shows that the central emission vertex does not become trivial at strong coupling.
2014-12-01
The advent of finite temperature lattice QCD in 1980 confirmed that hot strongly interacting matter will be transformed into a new medium of deconfined quarks and gluons, the primordial quark-gluon plasma. It was thus natural to see if this state of the early universe could somehow still be produced today, in terrestrial laboratories. An experimental program based on high energy nuclear collisions was developed at a meeting which Maurice Jacob and I convened in Bielefeld in 1982, and in the mid-eighties the planning and construction of "heavy ion experiments" was well underway both at CERN and at Brookhaven. At the 1987 Quark Matter Meeting in Nordkirchen/Germany, the first results were reported.
Monte Carlo study of Quark Gluon Plasma using photon jet observables
Xing, Tian
2016-09-01
Relativistic heavy ion collisions create an exotic state of deconfined, nuclear matter called quark gluon plasma (QGP), providing an opportunity to study the strong interaction. In some particularly hard scattered events, a parton with high transverse momentum (pT) interacts with this medium before fragmenting into a spray of particles, called a jet. Jet properties of heavy ion collisions can be modified relative to expectations from pp collisions; this effect is called jet quenching. Measurement of the jet internal structure can provide information about this effect and about the medium itself. On the other hand, studying systems whose jets are recoiled against photons coming from an initial scattering offers a way to calibrate the momentum of the modified jet. Since photons do not carry color charge, they escape the QGP with their initial momentum intact. On this poster, results using the Monte Carlo event generators Pythia and JEWEL will be presented for fragmentation functions and jet suppression from photon-jet events, alongside experimental data from CMS and ATLAS at a center of mass energy of 2.76 TeV. Predictions are also presented for lead-lead collisions at a center of mass energy of 5.02 TeV.
Perturbative and nonperturbative aspects of jet quenching in near-critical quark-gluon plasmas
Xu, Jiechen
In this thesis, we construct two QCD based energy loss models to perform quantitative analysis of jet quenching observables in ultra-relativistic nucleus-nucleus collisions at RHIC and the LHC. We first build up a perturbative QCD based CUJET2.0 jet flavor tomography model that couples the dynamical running coupling DGLV opacity series to bulk data constrained relativistic viscous hydrodynamic backgrounds. It solves the strong heavy quark energy loss puzzle at RHIC and explains the surprising transparency of the quark-gluon plasma (QGP) at the LHC. The observed azimuthal anisotropy of hard leading hadrons requires a path dependent jet-medium coupling in CUJET2.0 that implies physics of nonperturbative origin. To explore the nonperturbative chromo-electric and chromo-magnetic structure of the strongly-coupled QGP through jet probes, we build up a new CUJET3.0 framework that includes in CUJET2.0 both Polyakov loop suppressed semi-QGP chromo-electric charges and emergent chromo-magnetic monopoles in the critical transition regime. CUJET3.0 quantitatively describes the anisotropic hadron suppression at RHIC and the LHC. More significantly, it provides a robust connection between the long wavelength ``perfect fluidity'' of the QGP and the short distance jet transport in the QGP. This framework paves the way for ``measuring'' both perturbative and nonperturbative properties of the QGP, and more importantly for probing color confinement through jet quenching.
Relativistic correction to gluon fragmentation function into pseudoscalar quarkonium
Gao, Xiangrui; Li, LiuJi; Xiong, Xiaonu
2016-01-01
Inspired by the recent measurements of the $\\eta_c$ meson production at LHC, we investigate the relativistic correction effect for the fragmentation function of the gluon into $\\eta_c$, which constitutes the crucial nonperturbative elements to understand $\\eta_c$ production at high $p_T$. Employing three distinct methods, we calculate the leading relativistic correction to the $g\\to\\eta_c$ fragmentation function in the NRQCD factorization framework, as well as verify the existing NLO result for the $c\\to \\eta_c$ fragmentation function. We also study the evolution behavior of these fragmentation functions with the aid of DGLAP equation.
Threshold region for Higgs boson production in gluon fusion.
Bonvini, Marco; Forte, Stefano; Ridolfi, Giovanni
2012-09-07
We provide a quantitative determination of the effective partonic kinematics for Higgs boson production in gluon fusion in terms of the collider energy at the LHC. We use the result to assess, as a function of the Higgs boson mass, whether the large m(t) approximation is adequate and Sudakov resummation advantageous. We argue that our results hold to all perturbative orders. Based on our results, we conclude that the full inclusion of finite top mass corrections is likely to be important for accurate phenomenology for a light Higgs boson with m(H)~125 GeV at the LHC with √s=14 TeV.
Supercooling of rapidly expanding quark-gluon plasma
Zabrodin, E E; Csernai, László P; Stöcker, H; Greiner, W
1998-01-01
We reexamine the scenario of homogeneous nucleation of the quark-gluon plasma produced in ultra-relativistic heavy ion collisions. A generalization of the standard nucleation theory to rapidly expanding system is proposed. The nucleation rate is derived via the new scaling parameter $\\lambda_Z$. It is shown that the size distribution of hadronic clusters plays an important role in the dynamics of the phase transition. The longitudinally expanding system is supercooled to about 3-6%, then it is reheated, and the hadronization is completed within 6-10 fm/c, i.e. 5-10 times faster than it was estimated earlier, in a strongly nonequilibrium way.
Gluon fragmentation into {sup 3} P{sub J} quarkonium
Ma, J.P.
1995-10-01
The functions of the gluon fragmentation into {sup 3}P{sub j} quarkonium are calculated to order {alpha}{sup 2}{sub s}. With the recent progress in analysing quarkonium systems in QCD it is possible show how the so called divergence in the limit of the zero-binding energy, which is related to P-wave quarkonia, is treated correctly in the case of fragmentation functions. The obtained fragmentation functions satisfy explicitly at the order of {alpha} {sup 2}{sub s} the Altarelli-Parisi equation and when z {yields} 0 they behave as z{sup -1} as expected. 19 refs., 7 figs.
Quark-gluon plasma and topological quantum field theory
Luo, M. J.
2017-03-01
Based on an analogy with topologically ordered new state of matter in condensed matter systems, we propose a low energy effective field theory for a parity conserving liquid-like quark-gluon plasma (QGP) around critical temperature in quantum chromodynamics (QCD) system. It shows that below a QCD gap which is expected several times of the critical temperature, the QGP behaves like topological fluid. Many exotic phenomena of QGP near the critical temperature discovered at Relativistic Heavy Ion Collision (RHIC) are more readily understood by the suggestion that QGP is a topologically ordered state.
Gluon polarisation from high transverse momentum hadron pairs production (COMPASS)
Silva, L
2010-01-01
A new preliminary result of a gluon polarisation $\\Delta G/G$ obtained selecting high transverse momentum hadron pairs in DIS events with $Q^2>1 \\ ({GeV/}c)^2$ is presented. Data has been collected by COMPASS at CERN during the 2002-2004 years. In the extraction of $\\Delta G/G$ contributions coming from the leading order $\\gamma q$ and QCD processes are taken into account. A new weighting method based on a neural network approach is used. Also a preliminary result of $\\Delta G/G$ for events with $Q^2<1 \\ ({GeV/}c)^2$ is presented.
Baryon inhomogeneities in a charged quark gluon plasma
Ray, Avijeet [Indian Institute of Technology Roorkee, Uttarakhand, 247667 (India); Sanyal, Soma, E-mail: sossp@uohyd.ernet.in [School of Physics, University of Hyderabad, Gachibowli, Hyderabad, 500046 (India)
2013-10-07
We study the generation of baryon inhomogeneities in regions of the quark gluon plasma which have a charge imbalance. We find that the overdensity in the baryon lumps for positively charged particles is different from the overdensity due to the negatively charged particles. Since quarks are charged particles, the probability of forming neutrons or protons in the lumps would thus be changed. The probability of forming hadrons having quarks of the same charges would be enhanced. This might have interesting consequences for the inhomogeneous nucleosynthesis calculations.
Automation of soft-gluon resummation in Sherpa
Ferrarese, Piero; Schumann, Steffen [II. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)
2016-07-01
We present a fully automated NLL resummation of soft-gluons in global event-shape distributions at hadron colliders, for generic QCD processes. In general, for non-additive variables, the single logarithmic piece of the resummed distribution involves integrals that are not analytically solvable. We present a new algorithm to evaluate such integral, based on Monte Carlo methods. For this purpose we employ the parton-shower formalism, as implemented in the SHERPA event generator, to efficiently generate points in the multiple emission phase space. We discuss the general layout of our approach and present exemplary results.
Linear Landau damping in strongly relativistic quark gluon plasma
Murtaza, G.; Khattak, N.A.D.; Shah, H.A. [Salam Chair in Physics, G C Univ., Lahore (Pakistan)]|[Dept. of Physics, G C Univ., Lahore (Pakistan)
2004-07-01
On the basis of semi classical kinetic Vlasov equation for Quark-Gluon plasma (QGP) and Yang-Mills equation in covariant gauge, linear Landau damping for electrostatic perturbations like Langmuir waves is investigated. For the extreme relativistic case, wherein the thermal speed of the particles exceeds the phase velocity of the perturbations, the linear Landau damping is absent. However, a departure from extreme relativistic case generates an imaginary component of the frequency giving rise to linear Landau damping effect. The relevant integral for the conductivity tensor has been evaluated and the dispersion relation for the longitudinal part of the oscillation obtained. (orig.)
Soft-gluon resolution scale in QCD evolution equations
Hautmann, F.; Jung, H.; Lelek, A.; Radescu, V.; Žlebčík, R.
2017-09-01
QCD evolution equations can be recast in terms of parton branching processes. We present a new numerical solution of the equations. We show that this parton-branching solution can be applied to analyze infrared contributions to evolution, order-by-order in the strong coupling αs, as a function of the soft-gluon resolution scale parameter. We examine the cases of transverse-momentum ordering and angular ordering. We illustrate that this approach can be used to treat distributions which depend both on longitudinal and on transverse momenta.
Unintegrated gluon distribution and soft pp collisions at LHC
Grinyuk, A A; Lykasov, G I; Lipatov, A V; Zotov, N P
2012-01-01
We found the parameterization of the unintegrated gluon distribution from the best description of the LHC data on the inclusive spectra of hadrons produced in $pp$ collisions at the mid-rapidity region and small transverse momenta. It is different from the one obtained within perturbative QCD only at low intrinsic transverse momenta $k_t$. The application of this distribution to analysis of the $e-p$ DIS allows us to get the results which do not contradict the H1 and ZEUS data on the structure functions at low $x$. So, the connection between the soft processes at LHC and low-$x$ physics at HERA is found.
Effects of magnetic fields on the quark–gluon plasma
Bali, G.S. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Bruckmann, F. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Endrődi, G., E-mail: gergely.endrodi@physik.uni-r.de [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Fodor, Z. [Eötvös University, Theoretical Physics, Pázmány P. s 1/A, H-1117, Budapest (Hungary); Bergische Universität Wuppertal, Theoretical Physics, 42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich (Germany); Katz, S.D. [Eötvös University, Theoretical Physics, Pázmány P. s 1/A, H-1117, Budapest (Hungary); MTA-ELTE Lendület Lattice Gauge Theory Research Group (Hungary); Schäfer, A. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany)
2014-11-15
In this talk, the response of the thermal QCD medium to external (electro)magnetic fields is studied using continuum extrapolated lattice results at physical quark masses. The magnetic susceptibility of QCD is calculated, revealing a strong paramagnetic response at high temperatures. This paramagnetism is shown to result in an anisotropic squeezing of the quark–gluon plasma in non-central heavy-ion collisions, implying a sizeable contribution to the elliptic flow. Another aspect is the magnetic response of topologically non-trivial domains to the magnetic field. We quantify this effect on the lattice and compare the results to a simple model estimate.
Interactions of quarks and gluons with nuclei at intermediate energies
Mueller, A.H. [Columbia Univ., New York, NY (United States)
1994-04-01
Some processes involving the interaction of medium energy quarks and gluons with nuclear matter are described. Possible mechanisms for the A-dependence of the energy loss of leading protons produced in proton-nucleus collisions are given, and an experiment which may help to distinguish these mechanisms is described. A possible color transparency experiment at CEBAF is described. Experiments to measure energy loss of quarks in nuclear matter and the formation time of hadrons are discussed along with the possibilities of measuring {sigma}{sub J}/{psi} and {sigma}{sub {psi}{prime}} at CEBAF.
Universal scaling of gluon and ghost propagators in the infrared
Siringo, Fabio
2016-01-01
A universal behavior is predicted for ghost and gluon propagators in the infrared. The universal behavior is shown to be a signature of a one-loop approximation and emerges naturally by the massive expansion that predicts universal analytical functions for the inverse dressing functions that do not depend on any parameter or color number. By a scaling of units and by adding an integration constant, all lattice data, for different color numbers (and even quark content for the ghosts), collapse on the same universal curves predicted by the massive expansion.
Universal behavior of gluon and ghost propagators in the infrared
Siringo, Fabio
2017-03-01
A universal behavior is predicted for ghost and gluon propagators in the infrared. The universal behavior is shown to be a signature of a one-loop approximation and emerges naturally by the massive expansion that predicts universal analytical functions for the inverse dressing functions that do not depend on any parameter or color number. By a scaling of units and by adding an integration constant, all lattice data, for different color numbers (and even quark content for the ghosts), collapse on the same universal curves predicted by the massive expansion.
Quark-Gluon Plasma: from accelerator experiments to early Universe
Rosnet, P
2015-01-01
In the Big Bang scenario, the early Universe is characterized by the {\\it particle era}, i.e. a Universe made of particles. This period connects both scales of fundamental physics: infinitesimally small and infinitely large. So, particle physics and in particular experimental programs at accelerators can bring valuable inputs for the understanding of the early Universe and its evolution. These proceedings discuss the impact of the Quantum ChromoDynamics phase transition experienced by the {\\it particle era} in the expanding Universe, which is connected to the study of the Quark-Gluon Plasma produced in heavy-ion physics experiments.
Eikonal gluon bremsstrahlung at finite Nc beyond two loops
Delenda, Yazid; Khelifa-Kerfa, Kamel
2016-03-01
We present a general formalism for computing the matrix-element squared for the emission of soft energy-ordered gluons beyond two loops in QCD perturbation theory at finite Nc. Our formalism is valid in the eikonal approximation. A Mathematica program has been developed for the automated calculation of all real/virtual eikonal squared amplitudes needed at a given loop order. For the purpose of illustration, we show the explicit forms of the eikonal squared amplitudes up to the fifth-loop order. In the large-Nc limit, our results coincide with those previously reported in literature.
Eikonal gluon radiation at finite-Nc beyond 2 loops
Khelifa-Kerfa, Kamel
2015-01-01
We present first calculations of QCD matrix-elements in perturbation theory at finite Nc beyond 2 loops in the eikonal approximation for e+ e- annihilation processes. For the emission of n soft energy-ordered gluons we solve both the colour and kinematic structures at a given order in perturbation theory by means of a Mathematica program that relies solely on a recently developed Mathematica code, ColorMath, that evaluates the trace of products of colour matrices. At large Nc, our squared amplitudes reduce to those already known in the literature.
Threshold resummation of soft gluons in hadronic reactions - an introduction.
Berger, E. L.
1998-02-17
The authors discuss the motivation for resummation of the effects of initial-state soft gluon radiation, to all orders in the strong coupling strength, for processes in which the near-threshold region in the partonic subenergy is important. The author summarizes the method of perturbative resummation and its application to the calculation of the total cross section for top quark production at hadron colliders. Comments are included on the differences between the treatment of subleading logarithmic terms in this method and in other approaches.
P2-10: Salient Local Targets Receive Higher Interference from Collinear Global Distractors
Ming-Chun Hua
2012-10-01
Full Text Available Salient items usually attract our attention in visual search. A target overlapping with a salient distractor should thus have benefit over that which was non-overlapping. Nevertheless, we (Jingling & Tseng, in press reported a special case where overlapping targets were more difficult to discriminate if the distractor formed a collinear global shape. One of the possibilities is that the target was not salient enough, making it subjective to interference from the global distractor. In this study we manipulated target salience by different levels of luminance contrast and tested whether a more salient target received less interference. The search display consisted of 576 gray elemental bars arranged in 21 rows × 27 columns against a dark background. One of the columns was filled by orthogonal bars, making it a salient distractor. The bars in the distractor could be vertical or horizontal, making it collinear or not, respectively. The subjects discriminated whether a target bar was brighter or darker. There were 4 luminance levels of the target bars. The target bar overlapped with the distractor at chance. We found that discriminating overlapping targets took longer than non-overlapping targets for trials with a vertical distractor, but less time for that with a horizontal distractor. Contradictory to our prediction, the interference was found especially when target contrast was higher. Our result argued against the possibility that the collinear global distractor interfered with the search because of the non-salient target. This result highlights the importance of perceptual grouping in visual search, and perhaps grouping plays a more important role than perceptual salience.
First measurement of radioisotopes by collinear laser spectroscopy at an ion-guide separator
Cooke, J.L.; Cochrane, E.C.A.; Evans, D.E.; Griffith, J.A.R.; Persson, J.R.; Richardson, D.S.; Tungate, G.; Zybert, L. [School of Physics and Space Research, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Billowes, J.; Campbell, P.; Cooper, T.G.; Grant, I.S.; Levins, J.M.G.; Pearson, M.R.; Wheeler, P.D. [Schuster Laboratory, University of Manchester, Manchester M13 9PL (United Kingdom); Dendooven, P.; Honkanen, A.; Huhta, M.; Oinonen, M.; Penttilae, H.; Aeystoe, J. [Accelerator Laboratory, University of Jyvaeskylae, PL 35, Jyvaeskylae SF - 403 51 (Finland)
1997-11-01
The first successful application of an ion-guide separator (IGISOL) for collinear laser spectroscopy of radioisotopes has achieved an efficiency comparable with the best obtained with catcher-ionizer facilities. The ion beam energy spread was determined to be less than 6 eV, allowing laser fluorescence resonance signals for the {sup 140,142,144}Ba radioisotopes to be detected with high resolution and sensitivity. Applications of this technique to measuring nuclear properties of refractory elements and short lived isomers promises to be particularly advantageous. (author). Letter-to-the-editor.
Arisholm, Gunnar
2007-05-14
Group velocity mismatch (GVM) is a major concern in the design of optical parametric amplifiers (OPAs) and generators (OPGs) for pulses shorter than a few picoseconds. By simplifying the coupled propagation equations and exploiting their scaling properties, the number of free parameters for a collinear OPA is reduced to a level where the parameter space can be studied systematically by simulations. The resulting set of figures show the combinations of material parameters and pulse lengths for which high performance can be achieved, and they can serve as a basis for a design.
Lounis, S
2014-07-01
How does magnetism behave when the physical dimension is reduced to the size of nanostructures? The multiplicity of magnetic states in these systems can be very rich, in that their properties depend on the atomic species, the cluster size, shape and symmetry or choice of the substrate. Small variations of the cluster parameters may change the properties dramatically. Research in this field has gained much by the many novel experimental methods and techniques exhibiting atomic resolution. Here we review the ab-initio approach, focusing on recent calculations on magnetic frustration and occurrence of non-collinear magnetism in antiferromagnetic nanostructures deposited on surfaces.
On the libration collinear points in the restricted three – body problem
Alzahrani F.
2017-03-01
Full Text Available In the restricted problem of three bodies when the primaries are triaxial rigid bodies, the necessary and sufficient conditions to find the locations of the three libration collinear points are stated. In addition, the Linear stability of these points is studied for the case of the Euler angles of rotational motion being θi = 0, ψi + φi = π/2, i = 1, 2 accordingly. We underline that the model studied in this paper has special importance in space dynamics when the third body moves in gravitational fields of planetary systems and particularly in a Jupiter model or a problem including an irregular asteroid.
An off-shell I.R. regularization strategy in the analysis of collinear divergences
Becchi, Carlo M
2011-01-01
We present a method for the analysis of singularities of Feynman amplitudes based on the Speer sector decomposition of the Schwinger parametric integrals combined with the Mellin-Barnes transform. The sector decomposition method is described in some details. We suggest the idea of applying the method to the analysis of collinear singularities in inclusive QCD cross sections in the mass-less limit regularizing the forward amplitudes by an off-shell choice of the initial particle momenta. It is shown how the suggested strategy works in the well known case of the one loop corrections to Deep Inelastic Scattering.
Wax, Y
1992-07-01
In epidemiologic studies, two forms of collinear relationships between the intake of major nutrients, high correlations, and the relative homogeneity of the diet, can yield unstable and not easily interpreted regression estimates for the effect of diet on disease risk. This paper presents tools for assessing the magnitude and source of the corresponding collinear relationships among the estimated coefficients for relative risk regression models. I show how to extend three tools (condition indices, variance decomposition proportions, and standard inflation factors) for diagnosing collinearity in standard regression models to likelihood and partial likelihood estimation for logistic and proportional hazards models. This extension is based on the analogue role of the information matrix in such analyses and the cross-product matrix in the standard linear model. I apply the methodology to relative risk models that relate crude intakes (on the log scale) and nutrient densities to breast cancer cases in the NHANES-I follow-up study. The three diagnostic tools provide complementary evidence of the existence of a strong collinearity in all models that is due largely to homogeneity of the population with respect to our risk scale for the crude intakes. The analysis suggests that the non-significant relative risks for the crude intakes in these models may be due to their involvement in collinear relationships, while the nonsignificant relative risks for the nutrient densities are far less affected by multicollinearity.
Strongly coupled quark-gluon plasma in heavy ion collisions
Shuryak, Edward
2017-07-01
A decade ago, a brief summary of the field of the relativistic heavy ion physics could be formulated as the discovery of strongly coupled quark-gluon plasma, sQGP for short, a near-perfect fluid with surprisingly large entropy-density-to-viscosity ratio. Since 2010, the LHC heavy ion program added excellent new data and discoveries. Significant theoretical efforts have been made to understand these phenomena. Now there is a need to consolidate what we have learned and formulate a list of issues to be studied next. Studies of angular correlations of two and more secondaries reveal higher harmonics of flow, identified as the sound waves induced by the initial state perturbations. As in cosmology, detailed measurements and calculations of these correlations helped to make our knowledge of the explosion much more quantitative. In particular, their damping had quantified the viscosity. Other kinetic coefficients—the heavy-quark diffusion constants and the jet quenching parameters—also show enhancements near the critical point T ≈Tc. Since densities of QGP quarks and gluons strongly decrease at this point, these facts indicate large role of nonperturbative mechanisms, e.g., scattering on monopoles. New studies of the p p and p A collisions at high multiplicities reveal collective explosions similar to those in heavy ion A A collisions. These "smallest drops of the sQGP" revived debates about the initial out-of-equilibrium stage of the collisions and mechanisms of subsequent equilibration.
The quark mean field model with pion and gluon corrections
Xing, Xueyong; Shen, Hong
2016-01-01
The properties of nuclear matter and finite nuclei are studied within the quark mean field (QMF) model by taking the effects of pion and gluon into account at the quark level. The nucleon is described as the combination of three constituent quarks confined by a harmonic oscillator potential. To satisfy the spirit of QCD theory, the contributions of pion and gluon on the nucleon structure are treated in second-order perturbation theory. For the nuclear many-body system, nucleons interact with each other by exchanging mesons between quarks. With different constituent quark mass, $m_q$, we determine three parameter sets about the coupling constants between mesons and quarks, named as QMF-NK1, QMF-NK2, and QMF-NK3 by fitting the ground-state properties of several closed-shell nuclei. It is found that all of the three parameter sets can give satisfactory description on properties of nuclear matter and finite nuclei, meanwhile they can also predict the larger neutron star mass around $2.3M_\\odot$ without the hypero...
Quark mean field model with pion and gluon corrections
Xing, Xueyong; Hu, Jinniu; Shen, Hong
2016-10-01
The properties of nuclear matter and finite nuclei are studied within the quark mean field (QMF) model by taking the effects of pions and gluons into account at the quark level. The nucleon is described as the combination of three constituent quarks confined by a harmonic oscillator potential. To satisfy the spirit of QCD theory, the contributions of pions and gluons on the nucleon structure are treated in second-order perturbation theory. In a nuclear many-body system, nucleons interact with each other by exchanging mesons between quarks. With different constituent quark mass, mq, we determine three parameter sets for the coupling constants between mesons and quarks, named QMF-NK1, QMF-NK2, and QMF-NK3, by fitting the ground-state properties of several closed-shell nuclei. It is found that all of the three parameter sets can give a satisfactory description of properties of nuclear matter and finite nuclei, moreover they also predict a larger neutron star mass around 2.3 M⊙ without hyperon degrees of freedom.
Medium-induced gluon radiation beyond the eikonal approximation
Apolinário, Liliana, E-mail: lilianamarisa.cunha@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Armesto, Néstor [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Milhano, Guilherme [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Physics Department, Theory Unit, CERN, CH-1211 Genéve 23 (Switzerland); Salgado, Carlos A. [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain)
2014-12-15
In this work we improve existing calculations of radiative energy loss by computing corrections that implement energy–momentum conservation, previously only implemented a posteriori, in a rigorous way. Using the path-integral formalism, we compute in-medium splittings allowing transverse motion of all particles in the emission process, thus relaxing the assumption that only the softest particle is permitted such movement. This work constitutes the extension of the computation carried out for x→1 in L. Apolinario et al. (2012) [5], to all values of x, the momentum fraction of the energy of the parent parton carried by the emitted gluon. In order to accomplish a general description of the whole in-medium showering process, in this work we allow for arbitrary formation times for the emitted gluon (the limit of small formation times was previously employed in J.-P. Blaizot et al., 2013 [6], for the g→gg splitting). We provide general expressions and their realisation in the path integral formalism within the harmonic oscillator approximation.
Gluon saturation and Feynman scaling in leading neutron production
F. Carvalho
2016-01-01
Full Text Available In this paper we extend the color dipole formalism for the study of leading neutron production in e+p→e+n+X collisions at high energies and estimate the related observables which were measured at HERA and could be analyzed in future electron–proton (ep colliders. In particular, we calculate the Feynman xF distribution of leading neutrons, which is expressed in terms of the pion flux and the photon–pion total cross section. In the color dipole formalism, the photon–pion cross section is described in terms of the dipole–pion scattering amplitude, which contains information about the QCD dynamics at high energies and gluon saturation effects. We consider different models for the scattering amplitude, which have been used to describe the inclusive and diffractive ep HERA data. Moreover, the model dependence of our predictions with the description of the pion flux is analyzed in detail. We demonstrate the recently released H1 leading neutron spectra can be described using the color dipole formalism and that these spectra could help us to observe more clearly gluon saturation effects in future ep colliders.
Quark-gluon vertex: A perturbation theory primer and beyond
Bermudez, R.; Albino, L.; Gutiérrez-Guerrero, L. X.; Tejeda-Yeomans, M. E.; Bashir, A.
2017-02-01
There has been growing evidence that the infrared enhancement of the form factors defining the full quark-gluon vertex plays an important role in realizing a dynamical breakdown of chiral symmetry in quantum chromodynamics, leading to the observed spectrum and properties of hadrons. Both the lattice and the Schwinger-Dyson communities have begun to calculate these form factors in various kinematical regimes of momenta involved. A natural consistency check for these studies is that they should match onto the perturbative predictions in the ultraviolet, where nonperturbative effects mellow down. In this article, we carry out a numerical analysis of the one-loop result for all the form factors of the quark-gluon vertex. Interestingly, even the one-loop results qualitatively encode most of the infrared enhancement features expected of their nonperturbative counter parts. We analyze various kinematical configurations of momenta: symmetric, on shell, and asymptotic. The on-shell limit enables us to compute anomalous chromomagnetic moment of quarks. The asymptotic results have implications for the multiplicative renormalizability of the quark propagator and its connection with the Landau-Khalatnikov-Fradkin transformations, allowing us to analyze and compare various Ansätze proposed so far.
New signals of quark-gluon-hadron mixed phase formation
Bugaev, K.A.; Sagun, V.V.; Ivanytskyi, A.I.; Zinovjev, G.M. [Bogolyubov Institute for Theoretical Physics, Kiev (Ukraine); Oliinychenko, D.R. [Bogolyubov Institute for Theoretical Physics, Kiev (Ukraine); Goethe University, FIAS, Frankfurt am Main (Germany); Ilgenfritz, E.M. [JINR, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Nikonov, E.G. [JINR, Laboratory for Information Technologies, Dubna (Russian Federation); Taranenko, A.V. [Moscow Engineering Physics Institute, National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation)
2016-08-15
Here we present several remarkable irregularities at chemical freeze-out which are found using an advanced version of the hadron resonance gas model. The most prominent of them are the sharp peak of the trace anomaly existing at chemical freeze-out at the center-of-mass energy 4.9 GeV and two sets of highly correlated quasi-plateaus in the collision energy dependence of the entropy per baryon, total pion number per baryon, and thermal pion number per baryon which we found at the center-of-mass energies 3.8-4.9 GeV and 7.6-10 GeV. The low-energy set of quasi-plateaus was predicted a long time ago. On the basis of the generalized shock-adiabat model we demonstrate that the low-energy correlated quasi-plateaus give evidence for the anomalous thermodynamic properties inside the quark-gluon-hadron mixed phase. It is also shown that the trace anomaly sharp peak at chemical freeze-out corresponds to the trace anomaly peak at the boundary between the mixed phase and quark gluon plasma. We argue that the high-energy correlated quasi-plateaus may correspond to a second phase transition and discuss its possible origin and location. Besides we suggest two new observables which may serve as clear signals of these phase transformations. (orig.)
Chemical Evolution of Strongly Interacting Quark-Gluon Plasma
Ying-Hua Pan
2014-01-01
Full Text Available At very initial stage of relativistic heavy ion collisions a wave of quark-gluon matter is produced from the break-up of the strong color electric field and then thermalizes at a short time scale (~1 fm/c. However, the quark-gluon plasma (QGP system is far out of chemical equilibrium, especially for the heavy quarks which are supposed to reach chemical equilibrium much late. In this paper a continuing quark production picture for strongly interacting QGP system is derived, using the quark number susceptibilities and the equation of state; both of them are from the results calculated by the Wuppertal-Budapest lattice QCD collaboration. We find that the densities of light quarks increase by 75% from the temperature T=400 MeV to T=150 MeV, while the density of strange quark annihilates by 18% in the temperature region. We also offer a discussion on how this late production of quarks affects the final charge-charge correlations.