WorldWideScience

Sample records for haptic virtual reality

  1. Haptics for Virtual Reality and Teleoperation

    CERN Document Server

    Mihelj, Matjaž

    2012-01-01

    This book covers all topics relevant for the design of haptic interfaces and teleoperation systems. The book provides the basic knowledge required for understanding more complex approaches and more importantly it introduces all issues that must be considered for designing efficient and safe haptic interfaces. Topics covered in this book provide insight into all relevant components of a haptic system. The reader is guided from understanding the virtual reality concept to the final goal of being able to design haptic interfaces for specific tasks such as nanomanipulation.  The introduction chapter positions the haptic interfaces within the virtual reality context. In order to design haptic interfaces that will comply with human capabilities at least basic understanding of human sensors-motor system is required. An overview of this topic is provided in the chapter related to human haptics. The book does not try to introduce the state-of-the-art haptic interface solutions because these tend to change quickly. On...

  2. Virtual Reality and Haptics for Product Assembly

    Directory of Open Access Journals (Sweden)

    Maria Teresa Restivo

    2012-01-01

    Full Text Available Haptics can significantly enhance the user's sense of immersion and interactivity. An industrial application of virtual reality and haptics for product assembly is described in this paper, which provides a new and low-cost approach for product assembly design, assembly task planning and assembly operation training. A demonstration of the system with haptics device interaction was available at the session of exp.at'11.

  3. Perceiving haptic feedback in virtual reality simulators.

    Science.gov (United States)

    Våpenstad, Cecilie; Hofstad, Erlend Fagertun; Langø, Thomas; Mårvik, Ronald; Chmarra, Magdalena Karolina

    2013-07-01

    To improve patient safety, training of psychomotor laparoscopic skills is often done on virtual reality (VR) simulators outside the operating room. Haptic sensations have been found to influence psychomotor performance in laparoscopy. The emulation of haptic feedback is thus an important aspect of VR simulation. Some VR simulators try to simulate these sensations with handles equipped with haptic feedback. We conducted a survey on how laparoscopic surgeons perceive handles with and without haptic feedback. Surgeons with different levels of experience in laparoscopy were asked to test two handles: Xitact IHP with haptic feedback and Xitact ITP without haptic feedback (Mentice AB, Gothenburg, Sweden), connected to the LapSim (Surgical Science AB, Sweden) VR simulator. They performed two tasks on the simulator before answering 12 questions regarding the two handles. The surgeons were not informed about the differences in the handles. A total of 85 % of the 20 surgeons who participated in the survey claimed that it is important that handles with haptic feedback feel realistic. Ninety percent of the surgeons preferred the handles without haptic feedback. The friction in the handles with haptic feedback was perceived to be as in reality (5 %) or too high (95 %). Regarding the handles without haptic feedback, the friction was perceived as in reality (45 %), too low (50 %), or too high (5 %). A total of 85 % of the surgeons thought that the handle with haptic feedback attempts to simulate the resistance offered by tissue to deformation. Ten percent thought that the handle succeeds in doing so. The surveyed surgeons believe that haptic feedback is an important feature on VR simulators; however, they preferred the handles without haptic feedback because they perceived the handles with haptic feedback to add additional friction, making them unrealistic and not mechanically transparent.

  4. Surgical virtual reality - highlights in developing a high performance surgical haptic device.

    Science.gov (United States)

    Custură-Crăciun, D; Cochior, D; Constantinoiu, S; Neagu, C

    2013-01-01

    Just like simulators are a standard in aviation and aerospace sciences, we expect for surgical simulators to soon become a standard in medical applications. These will correctly instruct future doctors in surgical techniques without there being a need for hands on patient instruction. Using virtual reality by digitally transposing surgical procedures changes surgery in are volutionary manner by offering possibilities for implementing new, much more efficient, learning methods, by allowing the practice of new surgical techniques and by improving surgeon abilities and skills. Perfecting haptic devices has opened the door to a series of opportunities in the fields of research,industry, nuclear science and medicine. Concepts purely theoretical at first, such as telerobotics, telepresence or telerepresentation,have become a practical reality as calculus techniques, telecommunications and haptic devices evolved,virtual reality taking a new leap. In the field of surgery barrier sand controversies still remain, regarding implementation and generalization of surgical virtual simulators. These obstacles remain connected to the high costs of this yet fully sufficiently developed technology, especially in the domain of haptic devices. Celsius.

  5. Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback.

    Science.gov (United States)

    Alaraj, Ali; Luciano, Cristian J; Bailey, Daniel P; Elsenousi, Abdussalam; Roitberg, Ben Z; Bernardo, Antonio; Banerjee, P Pat; Charbel, Fady T

    2015-03-01

    With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. To develop and evaluate the usefulness of a new haptic-based virtual reality simulator in the training of neurosurgical residents. A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the ImmersiveTouch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomographic angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-dimensional immersive virtual reality environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from 3 residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Residents thought that the simulation would be useful in preparing for real-life surgery. About two-thirds of the residents thought that the 3-dimensional immersive anatomic details provided a close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They thought the simulation was useful for preoperative surgical rehearsal and neurosurgical training. A third of the residents thought that the technology in its current form provided realistic haptic feedback for aneurysm surgery. Neurosurgical residents thought that the novel immersive VR simulator is helpful in their training, especially because they do not get a chance to perform aneurysm clippings until late in their residency programs.

  6. Visuo-Haptic Mixed Reality with Unobstructed Tool-Hand Integration.

    Science.gov (United States)

    Cosco, Francesco; Garre, Carlos; Bruno, Fabio; Muzzupappa, Maurizio; Otaduy, Miguel A

    2013-01-01

    Visuo-haptic mixed reality consists of adding to a real scene the ability to see and touch virtual objects. It requires the use of see-through display technology for visually mixing real and virtual objects, and haptic devices for adding haptic interaction with the virtual objects. Unfortunately, the use of commodity haptic devices poses obstruction and misalignment issues that complicate the correct integration of a virtual tool and the user's real hand in the mixed reality scene. In this work, we propose a novel mixed reality paradigm where it is possible to touch and see virtual objects in combination with a real scene, using commodity haptic devices, and with a visually consistent integration of the user's hand and the virtual tool. We discuss the visual obstruction and misalignment issues introduced by commodity haptic devices, and then propose a solution that relies on four simple technical steps: color-based segmentation of the hand, tracking-based segmentation of the haptic device, background repainting using image-based models, and misalignment-free compositing of the user's hand. We have developed a successful proof-of-concept implementation, where a user can touch virtual objects and interact with them in the context of a real scene, and we have evaluated the impact on user performance of obstruction and misalignment correction.

  7. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.

    Science.gov (United States)

    Gaffary, Yoren; Le Gouis, Benoit; Marchal, Maud; Argelaguet, Ferran; Arnaldi, Bruno; Lecuyer, Anatole

    2017-11-01

    Does it feel the same when you touch an object in Augmented Reality (AR) or in Virtual Reality (VR)? In this paper we study and compare the haptic perception of stiffness of a virtual object in two situations: (1) a purely virtual environment versus (2) a real and augmented environment. We have designed an experimental setup based on a Microsoft HoloLens and a haptic force-feedback device, enabling to press a virtual piston, and compare its stiffness successively in either Augmented Reality (the virtual piston is surrounded by several real objects all located inside a cardboard box) or in Virtual Reality (the same virtual piston is displayed in a fully virtual scene composed of the same other objects). We have conducted a psychophysical experiment with 12 participants. Our results show a surprising bias in perception between the two conditions. The virtual piston is on average perceived stiffer in the VR condition compared to the AR condition. For instance, when the piston had the same stiffness in AR and VR, participants would select the VR piston as the stiffer one in 60% of cases. This suggests a psychological effect as if objects in AR would feel "softer" than in pure VR. Taken together, our results open new perspectives on perception in AR versus VR, and pave the way to future studies aiming at characterizing potential perceptual biases.

  8. Shifty: A Weight-Shifting Dynamic Passive Haptic Proxy to Enhance Object Perception in Virtual Reality.

    Science.gov (United States)

    Zenner, Andre; Kruger, Antonio

    2017-04-01

    We define the concept of Dynamic Passive Haptic Feedback (DPHF) for virtual reality by introducing the weight-shifting physical DPHF proxy object Shifty. This concept combines actuators known from active haptics and physical proxies known from passive haptics to construct proxies that automatically adapt their passive haptic feedback. We describe the concept behind our ungrounded weight-shifting DPHF proxy Shifty and the implementation of our prototype. We then investigate how Shifty can, by automatically changing its internal weight distribution, enhance the user's perception of virtual objects interacted with in two experiments. In a first experiment, we show that Shifty can enhance the perception of virtual objects changing in shape, especially in length and thickness. Here, Shifty was shown to increase the user's fun and perceived realism significantly, compared to an equivalent passive haptic proxy. In a second experiment, Shifty is used to pick up virtual objects of different virtual weights. The results show that Shifty enhances the perception of weight and thus the perceived realism by adapting its kinesthetic feedback to the picked-up virtual object. In the same experiment, we additionally show that specific combinations of haptic, visual and auditory feedback during the pick-up interaction help to compensate for visual-haptic mismatch perceived during the shifting process.

  9. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback.

    Science.gov (United States)

    Lemole, G Michael; Banerjee, P Pat; Luciano, Cristian; Neckrysh, Sergey; Charbel, Fady T

    2007-07-01

    Mastery of the neurosurgical skill set involves many hours of supervised intraoperative training. Convergence of political, economic, and social forces has limited neurosurgical resident operative exposure. There is need to develop realistic neurosurgical simulations that reproduce the operative experience, unrestricted by time and patient safety constraints. Computer-based, virtual reality platforms offer just such a possibility. The combination of virtual reality with dynamic, three-dimensional stereoscopic visualization, and haptic feedback technologies makes realistic procedural simulation possible. Most neurosurgical procedures can be conceptualized and segmented into critical task components, which can be simulated independently or in conjunction with other modules to recreate the experience of a complex neurosurgical procedure. We use the ImmersiveTouch (ImmersiveTouch, Inc., Chicago, IL) virtual reality platform, developed at the University of Illinois at Chicago, to simulate the task of ventriculostomy catheter placement as a proof-of-concept. Computed tomographic data are used to create a virtual anatomic volume. Haptic feedback offers simulated resistance and relaxation with passage of a virtual three-dimensional ventriculostomy catheter through the brain parenchyma into the ventricle. A dynamic three-dimensional graphical interface renders changing visual perspective as the user's head moves. The simulation platform was found to have realistic visual, tactile, and handling characteristics, as assessed by neurosurgical faculty, residents, and medical students. We have developed a realistic, haptics-based virtual reality simulator for neurosurgical education. Our first module recreates a critical component of the ventriculostomy placement task. This approach to task simulation can be assembled in a modular manner to reproduce entire neurosurgical procedures.

  10. A haptic floor for interaction and diagnostics with goal based tasks during virtual reality supported balance training

    Directory of Open Access Journals (Sweden)

    Andrej Krpič

    2014-03-01

    Full Text Available Background: Balance training of patients after stroke is one of the primary tasks of physiotherapy after the hospitalization. It is based on the intensive training, which consists of simple, repetitive, goal-based tasks. The tasks are carried out by physiotherapists, who follow predefined protocols. Introduction of a standing frame and a virtual reality decrease the physical load and number of required physiotherapists. The patients benefit in terms of safety and increased motivation. Additional feedback – haptic floor can enhance the virtual reality experience, add additional level of difficulty and could be also used for generating postural perturbations. The purpose of this article is to examine whether haptic information can be used to identify specific anomalies in dynamic posturography.Methods: The performance and stability of closed-loop system of the haptic floor were tested using frequency analysis. A postural response normative was set up from data assessed in four healthy individuals who were exposed to unexpected movements of the haptic floor in eight directions. Postural responses of a patient after stroke participating in virtual reality supported balance training, where collisions resulted in floor movements, were assessed and contrasted to the normative.Results: Haptic floor system was stable and controllable up to the frequency of 1.1 Hz, sufficient for the generation of postural perturbations. Responses obtained after perturbations in two major directions for a patient after stroke demonstrated noticeable deviations from the normative.Conclusions: Haptic floor design, together with a standing frame and a virtual reality used for balance training, enables an assessment of directionally specific postural responses. The system was designed to identify postural disorders during balance training and rehabilitation progress outside specialized clinics, e.g. at patient’s home.

  11. Haptic virtual reality for skill acquisition in endodontics.

    Science.gov (United States)

    Suebnukarn, Siriwan; Haddawy, Peter; Rhienmora, Phattanapon; Gajananan, Kugamoorthy

    2010-01-01

    Haptic virtual reality (VR) has revolutionized the skill acquisition in dentistry. The strength of the haptic VR system is that it can automatically record the outcome and associated kinematic data on how each step of the task is performed, which are not available in the conventional skill training environments. The aim of this study was to assess skill acquisition in endodontics and to identify process and outcome variables for the quantification of proficiency. Twenty novices engaged in the experimental study that involved practicing the access opening task with the haptic VR system. Process (speed, force utilization, and bimanual coordination) and outcome variables were determined for assessing skill performance. These values were compared before and after training. Significant improvements were observed through training in all variables. A unique force used pattern and bimanual coordination were observed in each step of the access opening in the posttraining session. The novices also performed the tasks considerably faster with greater outcome within the first two to three training sessions. The study objectively showed that the novices could learn to perform access opening tasks faster and with more consistency, better bimanual dexterity, and better force utilization. The variables examined showed great promise as objective indicators of proficiency and skill acquisition in haptic VR.

  12. Study of Co-Located and Distant Collaboration with Symbolic Support via a Haptics-Enhanced Virtual Reality Task

    Science.gov (United States)

    Yeh, Shih-Ching; Hwang, Wu-Yuin; Wang, Jin-Liang; Zhan, Shi-Yi

    2013-01-01

    This study intends to investigate how multi-symbolic representations (text, digits, and colors) could effectively enhance the completion of co-located/distant collaborative work in a virtual reality context. Participants' perceptions and behaviors were also studied. A haptics-enhanced virtual reality task was developed to conduct…

  13. Virtual Reality Cerebral Aneurysm Clipping Simulation With Real-time Haptic Feedback

    Science.gov (United States)

    Alaraj, Ali; Luciano, Cristian J.; Bailey, Daniel P.; Elsenousi, Abdussalam; Roitberg, Ben Z.; Bernardo, Antonio; Banerjee, P. Pat; Charbel, Fady T.

    2014-01-01

    Background With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. Objective To develop and evaluate the usefulness of a new haptic-based virtual reality (VR) simulator in the training of neurosurgical residents. Methods A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the Immersive Touch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomography angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-D immersive VR environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from three residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Results Residents felt that the simulation would be useful in preparing for real-life surgery. About two thirds of the residents felt that the 3-D immersive anatomical details provided a very close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They believed the simulation is useful for preoperative surgical rehearsal and neurosurgical training. One third of the residents felt that the technology in its current form provided very realistic haptic feedback for aneurysm surgery. Conclusion Neurosurgical residents felt that the novel immersive VR simulator is helpful in their training especially since they do not get a chance to perform aneurysm clippings until very late in their residency programs. PMID:25599200

  14. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality.

    Science.gov (United States)

    Kim, Mingyu; Jeon, Changyu; Kim, Jinmo

    2017-05-17

    This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality.

  15. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality

    Science.gov (United States)

    Kim, Mingyu; Jeon, Changyu; Kim, Jinmo

    2017-01-01

    This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality. PMID:28513545

  16. Faster acquisition of laparoscopic skills in virtual reality with haptic feedback and 3D vision.

    Science.gov (United States)

    Hagelsteen, Kristine; Langegård, Anders; Lantz, Adam; Ekelund, Mikael; Anderberg, Magnus; Bergenfelz, Anders

    2017-10-01

    The study investigated whether 3D vision and haptic feedback in combination in a virtual reality environment leads to more efficient learning of laparoscopic skills in novices. Twenty novices were allocated to two groups. All completed a training course in the LapSim ® virtual reality trainer consisting of four tasks: 'instrument navigation', 'grasping', 'fine dissection' and 'suturing'. The study group performed with haptic feedback and 3D vision and the control group without. Before and after the LapSim ® course, the participants' metrics were recorded when tying a laparoscopic knot in the 2D video box trainer Simball ® Box. The study group completed the training course in 146 (100-291) minutes compared to 215 (175-489) minutes in the control group (p = .002). The number of attempts to reach proficiency was significantly lower. The study group had significantly faster learning of skills in three out of four individual tasks; instrument navigation, grasping and suturing. Using the Simball ® Box, no difference in laparoscopic knot tying after the LapSim ® course was noted when comparing the groups. Laparoscopic training in virtual reality with 3D vision and haptic feedback made training more time efficient and did not negatively affect later video box-performance in 2D. [Formula: see text].

  17. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality

    OpenAIRE

    Kim, Mingyu; Jeon, Changyu; Kim, Jinmo

    2017-01-01

    This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and hea...

  18. Augmented kinematic feedback from haptic virtual reality for dental skill acquisition.

    Science.gov (United States)

    Suebnukarn, Siriwan; Haddawy, Peter; Rhienmora, Phattanapon; Jittimanee, Pannapa; Viratket, Piyanuch

    2010-12-01

    We have developed a haptic virtual reality system for dental skill training. In this study we examined several kinds of kinematic information about the movement provided by the system supplement knowledge of results (KR) in dental skill acquisition. The kinematic variables examined involved force utilization (F) and mirror view (M). This created three experimental conditions that received augmented kinematic feedback (F, M, FM) and one control condition that did not (KR-only). Thirty-two dental students were randomly assigned to four groups. Their task was to perform access opening on the upper first molar with the haptic virtual reality system. An acquisition session consisted of two days of ten trials of practice in which augmented kinematic feedback was provided for the appropriate experimental conditions after each trial. One week after, a retention test consisting of two trials without augmented feedback was completed. The results showed that the augmented kinematic feedback groups had larger mean performance scores than the KR-only group in Day 1 of the acquisition and retention sessions (ANOVA, p0.05). The trends in acquisition and retention sessions suggest that the augmented kinematic feedback can enhance the performance earlier in the skill acquisition and retention sessions.

  19. Haptic Systems for Post-Stroke Rehabilitation: from Virtual Reality to Remote Rehabilitation

    OpenAIRE

    Daud, Omar Andres

    2011-01-01

    Haptic devices are becoming a common and significant tool in the perspective of robotic neurorehabilitation for motor learning, particularly in post-stroke patients. As a standard approach, this kind of devices are used in a local environment, where the patient interacts with a virtual environment recreated in the computer's screen. In this sense, a general framework for virtual reality based rehabilitation was developed. All the features of the framework, such as the control loop and the ext...

  20. Virtual reality haptic dissection.

    Science.gov (United States)

    Erolin, Caroline; Wilkinson, Caroline; Soames, Roger

    2011-12-01

    This project aims to create a three-dimensional digital model of the human hand and wrist which can be virtually 'dissected' through a haptic interface. Tissue properties will be added to the various anatomical structures to replicate a realistic look and feel. The project will explore the role of the medical artist, and investigate cross-discipline collaborations in the field of virtual anatomy. The software will be used to train anatomy students in dissection skills, before experience on a real cadaver. The effectiveness of the software will be evaluated and assessed both quantitatively as well as qualitatively.

  1. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review.

    Science.gov (United States)

    van der Meijden, O A J; Schijven, M P

    2009-06-01

    Virtual reality (VR) as surgical training tool has become a state-of-the-art technique in training and teaching skills for minimally invasive surgery (MIS). Although intuitively appealing, the true benefits of haptic (VR training) platforms are unknown. Many questions about haptic feedback in the different areas of surgical skills (training) need to be answered before adding costly haptic feedback in VR simulation for MIS training. This study was designed to review the current status and value of haptic feedback in conventional and robot-assisted MIS and training by using virtual reality simulation. A systematic review of the literature was undertaken using PubMed and MEDLINE. The following search terms were used: Haptic feedback OR Haptics OR Force feedback AND/OR Minimal Invasive Surgery AND/OR Minimal Access Surgery AND/OR Robotics AND/OR Robotic Surgery AND/OR Endoscopic Surgery AND/OR Virtual Reality AND/OR Simulation OR Surgical Training/Education. The results were assessed according to level of evidence as reflected by the Oxford Centre of Evidence-based Medicine Levels of Evidence. In the current literature, no firm consensus exists on the importance of haptic feedback in performing minimally invasive surgery. Although the majority of the results show positive assessment of the benefits of force feedback, results are ambivalent and not unanimous on the subject. Benefits are least disputed when related to surgery using robotics, because there is no haptic feedback in currently used robotics. The addition of haptics is believed to reduce surgical errors resulting from a lack of it, especially in knot tying. Little research has been performed in the area of robot-assisted endoscopic surgical training, but results seem promising. Concerning VR training, results indicate that haptic feedback is important during the early phase of psychomotor skill acquisition.

  2. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review

    NARCIS (Netherlands)

    van der Meijden, O. A. J.; Schijven, M. P.

    2009-01-01

    BACKGROUND: Virtual reality (VR) as surgical training tool has become a state-of-the-art technique in training and teaching skills for minimally invasive surgery (MIS). Although intuitively appealing, the true benefits of haptic (VR training) platforms are unknown. Many questions about haptic

  3. a New ER Fluid Based Haptic Actuator System for Virtual Reality

    Science.gov (United States)

    Böse, H.; Baumann, M.; Monkman, G. J.; Egersdörfer, S.; Tunayar, A.; Freimuth, H.; Ermert, H.; Khaled, W.

    The concept and some steps in the development of a new actuator system which enables the haptic perception of mechanically inhomogeneous virtual objects are introduced. The system consists of a two-dimensional planar array of actuator elements containing an electrorheological (ER) fluid. When a user presses his fingers onto the surface of the actuator array, he perceives locally variable resistance forces generated by vertical pistons which slide in the ER fluid through the gaps between electrode pairs. The voltage in each actuator element can be individually controlled by a novel sophisticated switching technology based on optoelectric gallium arsenide elements. The haptic information which is represented at the actuator array can be transferred from a corresponding sensor system based on ultrasonic elastography. The combined sensor-actuator system may serve as a technology platform for various applications in virtual reality, like telemedicine where the information on the consistency of tissue of a real patient is detected by the sensor part and recorded by the actuator part at a remote location.

  4. The development of a haptic virtual reality environment to study body image and affect.

    Science.gov (United States)

    Tremblay, Line; Bouchard, Stephane; Chebbi, Brahim; Wei, Lai; Monthuy-Blanc, Johana; Boulanger, Dominic

    2013-01-01

    We report the results of a preliminary study testing the effect of participants' mood rating on visual motor performance using a haptic device to manipulate a cartoonish human body. Our results suggest that moods involving high arousal (e.g. happiness) produce larger movements whereas mood involving low arousal (e.g. sadness) produce slower speed of performance. Our results are used for the development of a new haptic virtual reality application that we briefly present here. This application is intended to create a more interactive and motivational environment to treat body image issues and for emotional communication.

  5. Virtual reality haptic human dissection.

    Science.gov (United States)

    Needham, Caroline; Wilkinson, Caroline; Soames, Roger

    2011-01-01

    This project aims to create a three-dimensional digital model of the human hand and wrist which can be virtually 'dissected' through a haptic interface. Tissue properties will be added to the various anatomical structures to replicate a realistic look and feel. The project will explore the role of the medical artist and investigate the cross-discipline collaborations required in the field of virtual anatomy. The software will be used to train anatomy students in dissection skills before experience on a real cadaver. The effectiveness of the software will be evaluated and assessed both quantitatively as well as qualitatively.

  6. Ascending and Descending in Virtual Reality: Simple and Safe System Using Passive Haptics.

    Science.gov (United States)

    Nagao, Ryohei; Matsumoto, Keigo; Narumi, Takuji; Tanikawa, Tomohiro; Hirose, Michitaka

    2018-04-01

    This paper presents a novel interactive system that provides users with virtual reality (VR) experiences, wherein users feel as if they are ascending/descending stairs through passive haptic feedback. The passive haptic stimuli are provided by small bumps under the feet of users; these stimuli are provided to represent the edges of the stairs in the virtual environment. The visual stimuli of the stairs and shoes, provided by head-mounted displays, evoke a visuo-haptic interaction that modifies a user's perception of the floor shape. Our system enables users to experience all types of stairs, such as half-turn and spiral stairs, in a VR setting. We conducted a preliminary user study and two experiments to evaluate the proposed technique. The preliminary user study investigated the effectiveness of the basic idea associated with the proposed technique for the case of a user ascending stairs. The results demonstrated that the passive haptic feedback produced by the small bumps enhanced the user's feeling of presence and sense of ascending. We subsequently performed an experiment to investigate an improved viewpoint manipulation method and the interaction of the manipulation and haptics for both the ascending and descending cases. The experimental results demonstrated that the participants had a feeling of presence and felt a steep stair gradient under the condition of haptic feedback and viewpoint manipulation based on the characteristics of actual stair walking data. However, these results also indicated that the proposed system may not be as effective in providing a sense of descending stairs without an optimization of the haptic stimuli. We then redesigned the shape of the small bumps, and evaluated the design in a second experiment. The results indicated that the best shape to present haptic stimuli is a right triangle cross section in both the ascending and descending cases. Although it is necessary to install small protrusions in the determined direction, by

  7. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Science.gov (United States)

    Meyer, Georg F; Shao, Fei; White, Mark D; Hopkins, Carl; Robotham, Antony J

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  8. Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training.

    Science.gov (United States)

    Fang, Te-Yung; Wang, Pa-Chun; Liu, Chih-Hsien; Su, Mu-Chun; Yeh, Shih-Ching

    2014-02-01

    Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students. Copyright © 2013. Published by Elsevier Ireland Ltd.

  9. Finite Element Methods for real-time Haptic Feedback of Soft-Tissue Models in Virtual Reality Simulators

    Science.gov (United States)

    Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.

  10. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Directory of Open Access Journals (Sweden)

    Georg F Meyer

    Full Text Available Externally generated visual motion signals can cause the illusion of self-motion in space (vection and corresponding visually evoked postural responses (VEPR. These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1 visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2 real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3 visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  11. Modulation of Visually Evoked Postural Responses by Contextual Visual, Haptic and Auditory Information: A ‘Virtual Reality Check’

    Science.gov (United States)

    Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760

  12. A hitchhiker's guide to virtual reality

    CERN Document Server

    McMenemy , Karen

    2007-01-01

    A Hitchhiker's Guide to Virtual Reality brings together under one cover all the aspects of graphics, video, audio, and haptics that have to work together to make virtual reality a reality. Like any good guide, it reveals the practical things you need to know, from the viewpoint of authors who have been there. This two-part guide covers the science, technology, and mathematics of virtual reality and then details its practical implementation. The first part looks at how the interface between human senses and technology works to create virtual reality, with a focus on vision, the most important s

  13. Low cost heads-up virtual reality (HUVR) with optical tracking and haptic feedback

    KAUST Repository

    Margolis, Todd

    2011-01-23

    Researchers at the University of California, San Diego, have created a new, relatively low-cost augmented reality system that enables users to touch the virtual environment they are immersed in. The Heads-Up Virtual Reality device (HUVR) couples a consumer 3D HD flat screen TV with a half-silvered mirror to project any graphic image onto the user\\'s hands and into the space surrounding them. With his or her head position optically tracked to generate the correct perspective view, the user maneuvers a force-feedback (haptic) device to interact with the 3D image, literally \\'touching\\' the object\\'s angles and contours as if it was a tangible physical object. HUVR can be used for training and education in structural and mechanical engineering, archaeology and medicine as well as other tasks that require hand-eye coordination. One of the most unique characteristics of HUVR is that a user can place their hands inside of the virtual environment without occluding the 3D image. Built using open-source software and consumer level hardware, HUVR offers users a tactile experience in an immersive environment that is functional, affordable and scalable.

  14. Low cost heads-up virtual reality (HUVR) with optical tracking and haptic feedback

    Science.gov (United States)

    Margolis, Todd; DeFanti, Thomas A.; Dawe, Greg; Prudhomme, Andrew; Schulze, Jurgen P.; Cutchin, Steve

    2011-03-01

    Researchers at the University of California, San Diego, have created a new, relatively low-cost augmented reality system that enables users to touch the virtual environment they are immersed in. The Heads-Up Virtual Reality device (HUVR) couples a consumer 3D HD flat screen TV with a half-silvered mirror to project any graphic image onto the user's hands and into the space surrounding them. With his or her head position optically tracked to generate the correct perspective view, the user maneuvers a force-feedback (haptic) device to interact with the 3D image, literally 'touching' the object's angles and contours as if it was a tangible physical object. HUVR can be used for training and education in structural and mechanical engineering, archaeology and medicine as well as other tasks that require hand-eye coordination. One of the most unique characteristics of HUVR is that a user can place their hands inside of the virtual environment without occluding the 3D image. Built using open-source software and consumer level hardware, HUVR offers users a tactile experience in an immersive environment that is functional, affordable and scalable.

  15. Lack of transfer of skills after virtual reality simulator training with haptic feedback.

    Science.gov (United States)

    Våpenstad, Cecilie; Hofstad, Erlend Fagertun; Bø, Lars Eirik; Kuhry, Esther; Johnsen, Gjermund; Mårvik, Ronald; Langø, Thomas; Hernes, Toril Nagelhus

    2017-12-01

    Virtual reality (VR) simulators enrich surgical training and offer training possibilities outside of the operating room (OR). In this study, we created a criterion-based training program on a VR simulator with haptic feedback and tested it by comparing the performances of a simulator group against a control group. Medical students with no experience in laparoscopy were randomly assigned to a simulator group or a control group. In the simulator group, the candidates trained until they reached predefined criteria on the LapSim ® VR simulator (Surgical Science AB, Göteborg, Sweden) with haptic feedback (Xitact TM IHP, Mentice AB, Göteborg, Sweden). All candidates performed a cholecystectomy on a porcine organ model in a box trainer (the clinical setting). The performances were video rated by two surgeons blinded to subject training status. In total, 30 students performed the cholecystectomy and had their videos rated (N = 16 simulator group, N = 14 control group). The control group achieved better video rating scores than the simulator group (p training program did not transfer skills to the clinical setting. Poor mechanical performance of the simulated haptic feedback is believed to have resulted in a negative training effect.

  16. Construct validity and expert benchmarking of the haptic virtual reality dental simulator.

    Science.gov (United States)

    Suebnukarn, Siriwan; Chaisombat, Monthalee; Kongpunwijit, Thanapohn; Rhienmora, Phattanapon

    2014-10-01

    The aim of this study was to demonstrate construct validation of the haptic virtual reality (VR) dental simulator and to define expert benchmarking criteria for skills assessment. Thirty-four self-selected participants (fourteen novices, fourteen intermediates, and six experts in endodontics) at one dental school performed ten repetitions of three mode tasks of endodontic cavity preparation: easy (mandibular premolar with one canal), medium (maxillary premolar with two canals), and hard (mandibular molar with three canals). The virtual instrument's path length was registered by the simulator. The outcomes were assessed by an expert. The error scores in easy and medium modes accurately distinguished the experts from novices and intermediates at the onset of training, when there was a significant difference between groups (ANOVA, p<0.05). The trend was consistent until trial 5. From trial 6 on, the three groups achieved similar scores. No significant difference was found between groups at the end of training. Error score analysis was not able to distinguish any group at the hard level of training. Instrument path length showed a difference in performance according to groups at the onset of training (ANOVA, p<0.05). This study established construct validity for the haptic VR dental simulator by demonstrating its discriminant capabilities between that of experts and non-experts. The experts' error scores and path length were used to define benchmarking criteria for optimal performance.

  17. Effect on High versus Low Fidelity Haptic Feedback in a Virtual Reality Baseball Simulation

    DEFF Research Database (Denmark)

    Ryge, Andreas Nicolaj; Thomsen, Lui Albæk; Berthelsen, Theis

    2017-01-01

    In this paper we present a within-subjects study (n=26) comparing participants' experience of three kinds of haptic feedback (no haptic feedback, low fidelity haptic feedback and high fidelity haptic feedback) simulating the impact between a virtual baseball bat and ball. We noticed some minor ef...

  18. Development of a virtual reality haptic Veress needle insertion simulator for surgical skills training.

    Science.gov (United States)

    Okrainec, A; Farcas, M; Henao, O; Choy, I; Green, J; Fotoohi, M; Leslie, R; Wight, D; Karam, P; Gonzalez, N; Apkarian, J

    2009-01-01

    The Veress needle is the most commonly used technique for creating the pneumoperitoneum at the start of a laparoscopic surgical procedure. Inserting the Veress needle correctly is crucial since errors can cause significant harm to patients. Unfortunately, this technique can be difficult to teach since surgeons rely heavily on tactile feedback while advancing the needle through the various layers of the abdominal wall. This critical step in laparoscopy, therefore, can be challenging for novice trainees to learn without adequate opportunities to practice in a safe environment with no risk of injury to patients. To address this issue, we have successfully developed a prototype of a virtual reality haptic needle insertion simulator using the tactile feedback of 22 surgeons to set realistic haptic parameters. A survey of these surgeons concluded that our device appeared and felt realistic, and could potentially be a useful tool for teaching the proper technique of Veress needle insertion.

  19. Virtual reality training improves balance function.

    Science.gov (United States)

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-09-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  20. Virtual reality training improves balance function

    Science.gov (United States)

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651

  1. A Virtual Reality System for PTCD Simulation Using Direct Visuo-Haptic Rendering of Partially Segmented Image Data.

    Science.gov (United States)

    Fortmeier, Dirk; Mastmeyer, Andre; Schröder, Julian; Handels, Heinz

    2016-01-01

    This study presents a new visuo-haptic virtual reality (VR) training and planning system for percutaneous transhepatic cholangio-drainage (PTCD) based on partially segmented virtual patient models. We only use partially segmented image data instead of a full segmentation and circumvent the necessity of surface or volume mesh models. Haptic interaction with the virtual patient during virtual palpation, ultrasound probing and needle insertion is provided. Furthermore, the VR simulator includes X-ray and ultrasound simulation for image-guided training. The visualization techniques are GPU-accelerated by implementation in Cuda and include real-time volume deformations computed on the grid of the image data. Computation on the image grid enables straightforward integration of the deformed image data into the visualization components. To provide shorter rendering times, the performance of the volume deformation algorithm is improved by a multigrid approach. To evaluate the VR training system, a user evaluation has been performed and deformation algorithms are analyzed in terms of convergence speed with respect to a fully converged solution. The user evaluation shows positive results with increased user confidence after a training session. It is shown that using partially segmented patient data and direct volume rendering is suitable for the simulation of needle insertion procedures such as PTCD.

  2. Augmented versus virtual reality laparoscopic simulation: what is the difference? A comparison of the ProMIS augmented reality laparoscopic simulator versus LapSim virtual reality laparoscopic simulator

    NARCIS (Netherlands)

    Botden, Sanne M. B. I.; Buzink, Sonja N.; Schijven, Marlies P.; Jakimowicz, Jack J.

    2007-01-01

    BACKGROUND: Virtual reality (VR) is an emerging new modality for laparoscopic skills training; however, most simulators lack realistic haptic feedback. Augmented reality (AR) is a new laparoscopic simulation system offering a combination of physical objects and VR simulation. Laparoscopic

  3. HapTip: Displaying Haptic Shear Forces at the Fingertips for Multi-Finger Interaction in Virtual Environments

    Directory of Open Access Journals (Sweden)

    Adrien eGirard

    2016-04-01

    Full Text Available The fingertips are one of the most important and sensitive parts of our body.They are the first stimulated areas of the hand when we interact with our environment.Providing haptic feedback to the fingertips in virtual reality could thus drastically improve perception and interaction with virtual environments.In this paper, we present a modular approach called HapTip to display such haptic sensations at the level of the fingertips.This approach relies on a wearable and compact haptic device able to simulate 2 Degree of Freedom (DoF shear forces on the fingertip with a displacement range of +/- 2 mm. Several modules can be added and used jointly in order to address multi-finger and/or bimanual scenarios in virtual environments.For that purpose, we introduce several haptic rendering techniques to cover different cases of 3D interaction such as touching a rough virtual surface, or feeling the inertia or weight of a virtual object.In order to illustrate the possibilities offered by HapTip, we provide four use cases focused on touching or grasping virtual objects.To validate the efficiency of our approach, we also conducted experiments to assess the tactile perception obtained with HapTip.Our results show that participants can successfully discriminate the directions of the 2 DoF stimulation of our haptic device.We found also that participants could well perceive different weights of virtual objects simulated using two HapTip devices. We believe that HapTip could be used in numerous applications in virtual reality for which 3D manipulation and tactile sensations are often crucial, such as in virtual prototyping or virtual training.

  4. Neurosurgical tactile discrimination training with haptic-based virtual reality simulation.

    Science.gov (United States)

    Patel, Achal; Koshy, Nick; Ortega-Barnett, Juan; Chan, Hoi C; Kuo, Yong-Fan; Luciano, Cristian; Rizzi, Silvio; Matulyauskas, Martin; Kania, Patrick; Banerjee, Pat; Gasco, Jaime

    2014-12-01

    To determine if a computer-based simulation with haptic technology can help surgical trainees improve tactile discrimination using surgical instruments. Twenty junior medical students participated in the study and were randomized into two groups. Subjects in Group A participated in virtual simulation training using the ImmersiveTouch simulator (ImmersiveTouch, Inc., Chicago, IL, USA) that required differentiating the firmness of virtual spheres using tactile and kinesthetic sensation via haptic technology. Subjects in Group B did not undergo any training. With their visual fields obscured, subjects in both groups were then evaluated on their ability to use the suction and bipolar instruments to find six elastothane objects with areas ranging from 1.5 to 3.5 cm2 embedded in a urethane foam brain cavity model while relying on tactile and kinesthetic sensation only. A total of 73.3% of the subjects in Group A (simulation training) were able to find the brain cavity objects in comparison to 53.3% of the subjects in Group B (no training) (P  =  0.0183). There was a statistically significant difference in the total number of Group A subjects able to find smaller brain cavity objects (size ≤ 2.5 cm2) compared to that in Group B (72.5 vs. 40%, P  =  0.0032). On the other hand, no significant difference in the number of subjects able to detect larger objects (size ≧ 3 cm2) was found between Groups A and B (75 vs. 80%, P  =  0.7747). Virtual computer-based simulators with integrated haptic technology may improve tactile discrimination required for microsurgical technique.

  5. Virtual Reality Robotic Operation Simulations Using MEMICA Haptic System

    Science.gov (United States)

    Bar-Cohen, Y.; Mavroidis, C.; Bouzit, M.; Dolgin, B.; Harm, D. L.; Kopchok, G. E.; White, R.

    2000-01-01

    There is an increasing realization that some tasks can be performed significantly better by humans than robots but, due to associated hazards, distance, etc., only a robot can be employed. Telemedicine is one area where remotely controlled robots can have a major impact by providing urgent care at remote sites. In recent years, remotely controlled robotics has been greatly advanced. The robotic astronaut, "Robonaut," at NASA Johnson Space Center is one such example. Unfortunately, due to the unavailability of force and tactile feedback capability the operator must determine the required action using only visual feedback from the remote site, which limits the tasks that Robonaut can perform. There is a great need for dexterous, fast, accurate teleoperated robots with the operator?s ability to "feel" the environment at the robot's field. Recently, we conceived a haptic mechanism called MEMICA (Remote MEchanical MIrroring using Controlled stiffness and Actuators) that can enable the design of high dexterity, rapid response, and large workspace system. Our team is developing novel MEMICA gloves and virtual reality models to allow the simulation of telesurgery and other applications. The MEMICA gloves are designed to have a high dexterity, rapid response, and large workspace and intuitively mirror the conditions at a virtual site where a robot is simulating the presence of the human operator. The key components of MEMICA are miniature electrically controlled stiffness (ECS) elements and Electrically Controlled Force and Stiffness (ECFS) actuators that are based on the sue of Electro-Rheological Fluids (ERF). In this paper the design of the MEMICA system and initial experimental results are presented.

  6. Polymer-based actuators for virtual reality devices

    Science.gov (United States)

    Bolzmacher, Christian; Hafez, Moustapha; Benali Khoudja, Mohamed; Bernardoni, Paul; Dubowsky, Steven

    2004-07-01

    Virtual Reality (VR) is gaining more importance in our society. For many years, VR has been limited to the entertainment applications. Today, practical applications such as training and prototyping find a promising future in VR. Therefore there is an increasing demand for low-cost, lightweight haptic devices in virtual reality (VR) environment. Electroactive polymers seem to be a potential actuation technology that could satisfy these requirements. Dielectric polymers developed the past few years have shown large displacements (more than 300%). This feature makes them quite interesting for integration in haptic devices due to their muscle-like behaviour. Polymer actuators are flexible and lightweight as compared to traditional actuators. Using stacks with several layers of elatomeric film increase the force without limiting the output displacement. The paper discusses some design methods for a linear dielectric polymer actuator for VR devices. Experimental results of the actuator performance is presented.

  7. Virtual reality technology and applications

    CERN Document Server

    Mihelj, Matjaž; Beguš, Samo

    2014-01-01

    As virtual reality expands from the imaginary worlds of science fiction and pervades every corner of everyday life, it is becoming increasingly important for students and professionals alike to understand the diverse aspects of this technology. This book aims to provide a comprehensive guide to the theoretical and practical elements of virtual reality, from the mathematical and technological foundations of virtual worlds to the human factors and the applications that enrich our lives: in the fields of medicine, entertainment, education and others. After providing a brief introduction to the topic, the book describes the kinematic and dynamic mathematical models of virtual worlds. It explores the many ways a computer can track and interpret human movement, then progresses through the modalities that make up a virtual world: visual, acoustic and haptic. It explores the interaction between the actual and virtual environments, as well as design principles of the latter. The book closes with an examination of diff...

  8. Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery.

    Science.gov (United States)

    Robison, R Aaron; Liu, Charles Y; Apuzzo, Michael L J

    2011-11-01

    To review virtual reality in neurosurgery, including the history of simulation and virtual reality and some of the current implementations; to examine some of the technical challenges involved; and to propose a potential paradigm for the development of virtual reality in neurosurgery going forward. A search was made on PubMed using key words surgical simulation, virtual reality, haptics, collision detection, and volumetric modeling to assess the current status of virtual reality in neurosurgery. Based on previous results, investigators extrapolated the possible integration of existing efforts and potential future directions. Simulation has a rich history in surgical training, and there are numerous currently existing applications and systems that involve virtual reality. All existing applications are limited to specific task-oriented functions and typically sacrifice visual realism for real-time interactivity or vice versa, owing to numerous technical challenges in rendering a virtual space in real time, including graphic and tissue modeling, collision detection, and direction of the haptic interface. With ongoing technical advancements in computer hardware and graphic and physical rendering, incremental or modular development of a fully immersive, multipurpose virtual reality neurosurgical simulator is feasible. The use of virtual reality in neurosurgery is predicted to change the nature of neurosurgical education, and to play an increased role in surgical rehearsal and the continuing education and credentialing of surgical practitioners. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Preliminary assessment of faculty and student perception of a haptic virtual reality simulator for training dental manual dexterity.

    Science.gov (United States)

    Gal, Gilad Ben; Weiss, Ervin I; Gafni, Naomi; Ziv, Amitai

    2011-04-01

    Virtual reality force feedback simulators provide a haptic (sense of touch) feedback through the device being held by the user. The simulator's goal is to provide a learning experience resembling reality. A newly developed haptic simulator (IDEA Dental, Las Vegas, NV, USA) was assessed in this study. Our objectives were to assess the simulator's ability to serve as a tool for dental instruction, self-practice, and student evaluation, as well as to evaluate the sensation it provides. A total of thirty-three evaluators were divided into two groups. The first group consisted of twenty-one experienced dental educators; the second consisted of twelve fifth-year dental students. Each participant performed drilling tasks using the simulator and filled out a questionnaire regarding the simulator and potential ways of using it in dental education. The results show that experienced dental faculty members as well as advanced dental students found that the simulator could provide significant potential benefits in the teaching and self-learning of manual dental skills. Development of the simulator's tactile sensation is needed to attune it to genuine sensation. Further studies relating to aspects of the simulator's structure and its predictive validity, its scoring system, and the nature of the performed tasks should be conducted.

  10. Capturing differences in dental training using a virtual reality simulator.

    Science.gov (United States)

    Mirghani, I; Mushtaq, F; Allsop, M J; Al-Saud, L M; Tickhill, N; Potter, C; Keeling, A; Mon-Williams, M A; Manogue, M

    2018-02-01

    Virtual reality simulators are becoming increasingly popular in dental schools across the world. But to what extent do these systems reflect actual dental ability? Addressing this question of construct validity is a fundamental step that is necessary before these systems can be fully integrated into a dental school's curriculum. In this study, we examined the sensitivity of the Simodont (a haptic virtual reality dental simulator) to differences in dental training experience. Two hundred and eighty-nine participants, with 1 (n = 92), 3 (n = 79), 4 (n = 57) and 5 (n = 61) years of dental training, performed a series of tasks upon their first exposure to the simulator. We found statistically significant differences between novice (Year 1) and experienced dental trainees (operationalised as 3 or more years of training), but no differences between performance of experienced trainees with varying levels of experience. This work represents a crucial first step in understanding the value of haptic virtual reality simulators in dental education. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Wearable Vibrotactile Haptic Device for Stiffness Discrimination during Virtual Interactions

    Directory of Open Access Journals (Sweden)

    Andualem Tadesse Maereg

    2017-09-01

    Full Text Available In this paper, we discuss the development of cost effective, wireless, and wearable vibrotactile haptic device for stiffness perception during an interaction with virtual objects. Our experimental setup consists of haptic device with five vibrotactile actuators, virtual reality environment tailored in Unity 3D integrating the Oculus Rift Head Mounted Display (HMD and the Leap Motion controller. The virtual environment is able to capture touch inputs from users. Interaction forces are then rendered at 500 Hz and fed back to the wearable setup stimulating fingertips with ERM vibrotactile actuators. Amplitude and frequency of vibrations are modulated proportionally to the interaction force to simulate the stiffness of a virtual object. A quantitative and qualitative study is done to compare the discrimination of stiffness on virtual linear spring in three sensory modalities: visual only feedback, tactile only feedback, and their combination. A common psychophysics method called the Two Alternative Forced Choice (2AFC approach is used for quantitative analysis using Just Noticeable Difference (JND and Weber Fractions (WF. According to the psychometric experiment result, average Weber fraction values of 0.39 for visual only feedback was improved to 0.25 by adding the tactile feedback.

  12. Evaluation of wearable haptic systems for the fingers in Augmented Reality applications

    DEFF Research Database (Denmark)

    Chinello, Francesco

    2017-01-01

    Although Augmented Reality (AR) has been around for almost five decades, only recently we have witnessed AR systems and applications entering in our everyday life. Representative examples of this technological revolution are the smartphone games “Pok´emon GO” and “Ingress” or the Google Translate...... real-time sign interpretation app. Even if AR applications are already quite compelling and widespread, users are still not able to physically interact with the computer-generated reality. In this respect, wearable haptics can provide the compelling illusion of touching the superimposed virtual objects...

  13. Graphic and haptic simulation system for virtual laparoscopic rectum surgery.

    Science.gov (United States)

    Pan, Jun J; Chang, Jian; Yang, Xiaosong; Zhang, Jian J; Qureshi, Tahseen; Howell, Robert; Hickish, Tamas

    2011-09-01

    Medical simulators with vision and haptic feedback techniques offer a cost-effective and efficient alternative to the traditional medical trainings. They have been used to train doctors in many specialties of medicine, allowing tasks to be practised in a safe and repetitive manner. This paper describes a virtual-reality (VR) system which will help to influence surgeons' learning curves in the technically challenging field of laparoscopic surgery of the rectum. Data from MRI of the rectum and real operation videos are used to construct the virtual models. A haptic force filter based on radial basis functions is designed to offer realistic and smooth force feedback. To handle collision detection efficiently, a hybrid model is presented to compute the deformation of intestines. Finally, a real-time cutting technique based on mesh is employed to represent the incision operation. Despite numerous research efforts, fast and realistic solutions of soft tissues with large deformation, such as intestines, prove extremely challenging. This paper introduces our latest contribution to this endeavour. With this system, the user can haptically operate with the virtual rectum and simultaneously watch the soft tissue deformation. Our system has been tested by colorectal surgeons who believe that the simulated tactile and visual feedbacks are realistic. It could replace the traditional training process and effectively transfer surgical skills to novices. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Virtual haptic system for intuitive planning of bone fixation plate placement

    Directory of Open Access Journals (Sweden)

    Kup-Sze Choi

    2017-01-01

    Full Text Available Placement of pre-contoured fixation plate is a common treatment for bone fracture. Fitting of fixation plates on fractured bone can be preoperatively planned and evaluated in 3D virtual environment using virtual reality technology. However, conventional systems usually employ 2D mouse and virtual trackball as the user interface, which makes the process inconvenient and inefficient. In the paper, a preoperative planning system equipped with 3D haptic user interface is proposed to allow users to manipulate the virtual fixation plate intuitively to determine the optimal position for placement on distal medial tibia. The system provides interactive feedback forces and visual guidance based on the geometric requirements. Creation of 3D models from medical imaging data, collision detection, dynamics simulation and haptic rendering are discussed. The system was evaluated by 22 subjects. Results show that the time to achieve optimal placement using the proposed system was shorter than that by using 2D mouse and virtual trackball, and the satisfaction rating was also higher. The system shows potential to facilitate the process of fitting fixation plates on fractured bones as well as interactive fixation plate design.

  15. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.

    Science.gov (United States)

    Prasad, M S Raghu; Manivannan, Muniyandi; Manoharan, Govindan; Chandramohan, S M

    2016-01-01

    Most of the commercially available virtual reality-based laparoscopic simulators do not effectively evaluate combined psychomotor and force-based laparoscopic skills. Consequently, the lack of training on these critical skills leads to intraoperative errors. To assess the effectiveness of the novel virtual reality-based simulator, this study analyzed the combined psychomotor (i.e., motion or movement) and force skills of residents and expert surgeons. The study also examined the effectiveness of real-time visual force feedback and tool motion during training. Bimanual fundamental (i.e., probing, pulling, sweeping, grasping, and twisting) and complex tasks (i.e., tissue dissection) were evaluated. In both tasks, visual feedback on applied force and tool motion were provided. The skills of the participants while performing the early tasks were assessed with and without visual feedback. Participants performed 5 repetitions of fundamental and complex tasks. Reaction force and instrument acceleration were used as metrics. Surgical Gastroenterology, Government Stanley Medical College and Hospital; Institute of Surgical Gastroenterology, Madras Medical College and Rajiv Gandhi Government General Hospital. Residents (N = 25; postgraduates and surgeons with 4 and ≤10 years of laparoscopic surgery). Residents applied large forces compared with expert surgeons and performed abrupt tool movements (p < 0.001). However, visual + haptic feedback improved the performance of residents (p < 0.001). In complex tasks, visual + haptic feedback did not influence the applied force of expert surgeons, but influenced their tool motion (p < 0.001). Furthermore, in complex tissue sweeping task, expert surgeons applied more force, but were within the tissue damage limits. In both groups, exertion of large forces and abrupt tool motion were observed during grasping, probing or pulling, and tissue sweeping maneuvers (p < 0.001). Modern day curriculum-based training should evaluate the skills

  16. Radiofrequency ablation of hepatic tumors: simulation, planning, and contribution of virtual reality and haptics.

    Science.gov (United States)

    Villard, Caroline; Soler, Luc; Gangi, Afshin

    2005-08-01

    For radiofrequency ablation (RFA) of liver tumors, evaluation of vascular architecture, post-RFA necrosis prediction, and the choice of a suitable needle placement strategy using conventional radiological techniques remain difficult. In an attempt to enhance the safety of RFA, a 3D simulator, treatment planning, and training tool, that simulates the insertion of the needle, the necrosis of the treated area, and proposes an optimal needle placement, has been developed. The 3D scenes are automatically reconstructed from enhanced spiral CT scans. The simulator takes into account the cooling effect of local vessels greater than 3 mm in diameter, making necrosis shapes more realistic. Optimal needle positioning can be automatically generated by the software to produce complete destruction of the tumor, with maximum respect of the healthy liver and of all major structures to avoid. We also studied how the use of virtual reality and haptic devices are valuable to make simulation and training realistic and effective.

  17. Precise Haptic Device Co-Location for Visuo-Haptic Augmented Reality.

    Science.gov (United States)

    Eck, Ulrich; Pankratz, Frieder; Sandor, Christian; Klinker, Gudrun; Laga, Hamid

    2015-12-01

    Visuo-haptic augmented reality systems enable users to see and touch digital information that is embedded in the real world. PHANToM haptic devices are often employed to provide haptic feedback. Precise co-location of computer-generated graphics and the haptic stylus is necessary to provide a realistic user experience. Previous work has focused on calibration procedures that compensate the non-linear position error caused by inaccuracies in the joint angle sensors. In this article we present a more complete procedure that additionally compensates for errors in the gimbal sensors and improves position calibration. The proposed procedure further includes software-based temporal alignment of sensor data and a method for the estimation of a reference for position calibration, resulting in increased robustness against haptic device initialization and external tracker noise. We designed our procedure to require minimal user input to maximize usability. We conducted an extensive evaluation with two different PHANToMs, two different optical trackers, and a mechanical tracker. Compared to state-of-the-art calibration procedures, our approach significantly improves the co-location of the haptic stylus. This results in higher fidelity visual and haptic augmentations, which are crucial for fine-motor tasks in areas such as medical training simulators, assembly planning tools, or rapid prototyping applications.

  18. The Efficacy of a Haptic-Enhanced Virtual Reality System for Precision Grasp Acquisition in Stroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    Shih-Ching Yeh

    2017-01-01

    Full Text Available Stroke is a leading cause of long-term disability, and virtual reality- (VR- based stroke rehabilitation is effective in increasing motivation and the functional performance. Although much of the functional reach and grasp capabilities of the upper extremities were regained, the pinch movement remains impaired following stroke. In this study, we developed a haptic-enhanced VR system to simulate haptic pinch tasks to assist the recovery of upper-extremity fine motor function. We recruited 16 adults with stroke to verify the efficacy of this new VR system. Each patient received 30 min VR training sessions 3 times per week for 8 weeks. Outcome measures, Fugl-Meyer assessment (FMA, Test Evaluant les Membres superieurs des Personnes Agees (TEMPA, Wolf motor function test (WMFT, Box and Block test (BBT, and Jamar grip dynamometer, showed statistically significant progress from pretest to posttest and follow-up, indicating that the proposed system effectively promoted fine motor recovery of function. Additionally, our evidence suggests that this system was also effective under certain challenging conditions such as being in the chronic stroke phase or a coside of lesion and dominant hand (nondominant hand impaired. System usability assessment indicated that the participants strongly intended to continue using this VR-based system in rehabilitation.

  19. Virtual Reality Simulators in the Process IndustryA Review of Existing Systems and the Way Towards ETS

    OpenAIRE

    Cibulka, Jaroslav; Komulainen, Tiina M.; Mirtaheri, Peyman; Nazir, Salman; Manca, Davide

    2016-01-01

    Simulator training with Virtual Reality Simulators deeply engages the operators and improves the learning outcome. The available commercial 3D and Virtual Reality Simulator products range from generic models for laptops to specialized projection rooms with a great variety of different audiovisual, haptic, and sensory effects. However, current virtual reality simulators do not take into account the physical and psychological strain involved in field operators’ work in real process plants. Coll...

  20. Body Image and Anti-Fat Attitudes: An Experimental Study Using a Haptic Virtual Reality Environment to Replicate Human Touch.

    Science.gov (United States)

    Tremblay, Line; Roy-Vaillancourt, Mélina; Chebbi, Brahim; Bouchard, Stéphane; Daoust, Michael; Dénommée, Jessica; Thorpe, Moriah

    2016-02-01

    It is well documented that anti-fat attitudes influence the interactions individuals have with overweight people. However, testing attitudes through self-report measures is challenging. In the present study, we explore the use of a haptic virtual reality environment to physically interact with overweight virtual human (VH). We verify the hypothesis that duration and strength of virtual touch vary according to the characteristics of VH in ways similar to those encountered from interaction with real people in anti-fat attitude studies. A group of 61 participants were randomly assigned to one of the experimental conditions involving giving a virtual hug to a female or a male VH of either normal or overweight. We found significant associations between body image satisfaction and anti-fat attitudes and sex differences on these measures. We also found a significant interaction effect of the sex of the participants, sex of the VH, and the body size of the VH. Female participants hugged longer the overweight female VH than overweight male VH. Male participants hugged longer the normal-weight VH than the overweight VH. We conclude that virtual touch is a promising method of measuring attitudes, emotion and social interactions.

  1. Small-scale tactile graphics for virtual reality systems

    Science.gov (United States)

    Roberts, John W.; Slattery, Oliver T.; Swope, Brett; Min, Volker; Comstock, Tracy

    2002-05-01

    As virtual reality technology moves forward, there is a need to provide the user with options for greater realism for closer engagement to the human senses. Haptic systems use force feedback to create a large-scale sensation of physical interaction in a virtual environment. Further refinement can be created by using tactile graphics to reproduce a detailed sense of touch. For example, a haptic system might create the sensation of the weight of a virtual orange that the user picks up, and the sensation of pressure on the fingers as the user squeezes the orange. A tactile graphic system could create the texture of the orange on the user's fingertips. IN the real wold, a detailed sense of touch plays a large part in picking up and manipulating small objects. Our team is working to develop technology that can drive a high density fingertip array of tactile simulators at a rapid refresh rate, sufficient to produce a realistic sense of touch. To meet the project criteria, the mechanism must be much lower cost than existing technologies, and must be sufficiently lightweight and compact to permit portable use and to enable installation of the stimulator array in the fingertip of a tactile glove. The primary intended applications for this technology are accessibility for the blind and visually impaired, teleoperation, and virtual reality systems.

  2. Virtual Reality and Augmented Reality in Plastic Surgery: A Review.

    Science.gov (United States)

    Kim, Youngjun; Kim, Hannah; Kim, Yong Oock

    2017-05-01

    Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.

  3. Virtual Reality and Augmented Reality in Plastic Surgery: A Review

    Directory of Open Access Journals (Sweden)

    Youngjun Kim

    2017-05-01

    Full Text Available Recently, virtual reality (VR and augmented reality (AR have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.

  4. The Use of Haptic Display Technology in Education

    Science.gov (United States)

    Barfield, Woodrow

    2009-01-01

    The experience of "virtual reality" can consist of head-tracked and stereoscopic virtual worlds, spatialized sound, haptic feedback, and to a lesser extent olfactory cues. Although virtual reality systems have been proposed for numerous applications, the field of education is one particular application that seems well-suited for virtual…

  5. Virtual-Reality Simulator System for Double Interventional Cardiac Catheterization Using Fractional-Order Vascular Access Tracker and Haptic Force Producer

    Directory of Open Access Journals (Sweden)

    Guan-Chun Chen

    2015-01-01

    Full Text Available This study proposes virtual-reality (VR simulator system for double interventional cardiac catheterization (ICC using fractional-order vascular access tracker and haptic force producer. An endoscope or a catheter for diagnosis and surgery of cardiovascular disease has been commonly used in minimally invasive surgery. It needs specific skills and experiences for young surgeons or postgraduate year (PGY students to operate a Berman catheter and a pigtail catheter in the inside of the human body and requires avoiding damaging vessels. To improve the training in inserting catheters, a double-catheter mechanism is designed for the ICC procedures. A fractional-order vascular access tracker is used to trace the senior surgeons’ consoled trajectories and transmit the frictional feedback and visual feedback during the insertion of catheters. Based on the clinical feeling through the aortic arch, vein into the ventricle, or tortuous blood vessels, haptic force producer is used to mock the elasticity of the vessel wall using voice coil motors (VCMs. The VR establishment with surgeons’ consoled vessel trajectories and hand feeling is achieved, and the experimental results show the effectiveness for the double ICC procedures.

  6. A study on haptic collaborative game in shared virtual environment

    Science.gov (United States)

    Lu, Keke; Liu, Guanyang; Liu, Lingzhi

    2013-03-01

    A study on collaborative game in shared virtual environment with haptic feedback over computer networks is introduced in this paper. A collaborative task was used where the players located at remote sites and played the game together. The player can feel visual and haptic feedback in virtual environment compared to traditional networked multiplayer games. The experiment was desired in two conditions: visual feedback only and visual-haptic feedback. The goal of the experiment is to assess the impact of force feedback on collaborative task performance. Results indicate that haptic feedback is beneficial for performance enhancement for collaborative game in shared virtual environment. The outcomes of this research can have a powerful impact on the networked computer games.

  7. Haptic, Virtual Interaction and Motor Imagery: Entertainment Tools and Psychophysiological Testing

    Directory of Open Access Journals (Sweden)

    Sara Invitto

    2016-03-01

    Full Text Available In this work, the perception of affordances was analysed in terms of cognitive neuroscience during an interactive experience in a virtual reality environment. In particular, we chose a virtual reality scenario based on the Leap Motion controller: this sensor device captures the movements of the user’s hand and fingers, which are reproduced on a computer screen by the proper software applications. For our experiment, we employed a sample of 10 subjects matched by age and sex and chosen among university students. The subjects took part in motor imagery training and immersive affordance condition (a virtual training with Leap Motion and a haptic training with real objects. After each training sessions the subject performed a recognition task, in order to investigate event-related potential (ERP components. The results revealed significant differences in the attentional components during the Leap Motion training. During Leap Motion session, latencies increased in the occipital lobes, which are entrusted to visual sensory; in contrast, latencies decreased in the frontal lobe, where the brain is mainly activated for attention and action planning.

  8. Haptic, Virtual Interaction and Motor Imagery: Entertainment Tools and Psychophysiological Testing.

    Science.gov (United States)

    Invitto, Sara; Faggiano, Chiara; Sammarco, Silvia; De Luca, Valerio; De Paolis, Lucio T

    2016-03-18

    In this work, the perception of affordances was analysed in terms of cognitive neuroscience during an interactive experience in a virtual reality environment. In particular, we chose a virtual reality scenario based on the Leap Motion controller: this sensor device captures the movements of the user's hand and fingers, which are reproduced on a computer screen by the proper software applications. For our experiment, we employed a sample of 10 subjects matched by age and sex and chosen among university students. The subjects took part in motor imagery training and immersive affordance condition (a virtual training with Leap Motion and a haptic training with real objects). After each training sessions the subject performed a recognition task, in order to investigate event-related potential (ERP) components. The results revealed significant differences in the attentional components during the Leap Motion training. During Leap Motion session, latencies increased in the occipital lobes, which are entrusted to visual sensory; in contrast, latencies decreased in the frontal lobe, where the brain is mainly activated for attention and action planning.

  9. Haptic, Virtual Interaction and Motor Imagery: Entertainment Tools and Psychophysiological Testing

    Science.gov (United States)

    Invitto, Sara; Faggiano, Chiara; Sammarco, Silvia; De Luca, Valerio; De Paolis, Lucio T.

    2016-01-01

    In this work, the perception of affordances was analysed in terms of cognitive neuroscience during an interactive experience in a virtual reality environment. In particular, we chose a virtual reality scenario based on the Leap Motion controller: this sensor device captures the movements of the user’s hand and fingers, which are reproduced on a computer screen by the proper software applications. For our experiment, we employed a sample of 10 subjects matched by age and sex and chosen among university students. The subjects took part in motor imagery training and immersive affordance condition (a virtual training with Leap Motion and a haptic training with real objects). After each training sessions the subject performed a recognition task, in order to investigate event-related potential (ERP) components. The results revealed significant differences in the attentional components during the Leap Motion training. During Leap Motion session, latencies increased in the occipital lobes, which are entrusted to visual sensory; in contrast, latencies decreased in the frontal lobe, where the brain is mainly activated for attention and action planning. PMID:26999151

  10. Audio effects on haptics perception during drilling simulation

    Directory of Open Access Journals (Sweden)

    Yair Valbuena

    2017-06-01

    Full Text Available Virtual reality has provided immersion and interactions through computer generated environments attempting to reproduce real life experiences through sensorial stimuli. Realism can be achieved through multimodal interactions which can enhance the user’s presence within the computer generated world. The most notorious advances in virtual reality can be seen in computer graphics visuals, where photorealism is the norm thriving to overcome the uncanny valley. Other advances have followed related to sound, haptics, and in a lesser manner smell and taste feedback. Currently, virtual reality systems (multimodal immersion and interactions through visual-haptic-sound are being massively used in entertainment (e.g., cinema, video games, art, and in non-entertainment scenarios (e.g., social inclusion, educational, training, therapy, and tourism. Moreover, the cost reduction of virtual reality technologies has resulted in the availability at a consumer-level of various haptic, headsets, and motion tracking devices. Current consumer-level devices offer low-fidelity experiences due to the properties of the sensors, displays, and other electro-mechanical devices, that may not be suitable for high-precision or realistic experiences requiring dexterity. However, research has been conducted on how toovercome or compensate the lack of high fidelity to provide an engaging user experience using storytelling, multimodal interactions and gaming elements. Our work focuses on analyzing the possible effects of auditory perception on haptic feedback within a drilling scenario. Drilling involves multimodal interactions and it is a task with multiple applications in medicine, crafting, and construction. We compare two drilling scenarios were two groups of participants had to drill through wood while listening to contextual and non-contextual audios. We gathered their perception using a survey after the task completion. From the results, we believe that sound does

  11. Control of repulsive force in a virtual environment using an electrorheological haptic master for a surgical robot application

    Science.gov (United States)

    Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok

    2014-01-01

    This paper presents control performances of a new type of four-degrees-of-freedom (4-DOF) haptic master that can be used for robot-assisted minimally invasive surgery (RMIS). By adopting a controllable electrorheological (ER) fluid, the function of the proposed master is realized as a haptic feedback as well as remote manipulation. In order to verify the efficacy of the proposed master and method, an experiment is conducted with deformable objects featuring human organs. Since the use of real human organs is difficult for control due to high cost and moral hazard, an excellent alternative method, the virtual reality environment, is used for control in this work. In order to embody a human organ in the virtual space, the experiment adopts a volumetric deformable object represented by a shape-retaining chain linked (S-chain) model which has salient properties such as fast and realistic deformation of elastic objects. In haptic architecture for RMIS, the desired torque/force and desired position originating from the object of the virtual slave and operator of the haptic master are transferred to each other. In order to achieve the desired torque/force trajectories, a sliding mode controller (SMC) which is known to be robust to uncertainties is designed and empirically implemented. Tracking control performances for various torque/force trajectories from the virtual slave are evaluated and presented in the time domain.

  12. Control of repulsive force in a virtual environment using an electrorheological haptic master for a surgical robot application

    International Nuclear Information System (INIS)

    Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok

    2014-01-01

    This paper presents control performances of a new type of four-degrees-of-freedom (4-DOF) haptic master that can be used for robot-assisted minimally invasive surgery (RMIS). By adopting a controllable electrorheological (ER) fluid, the function of the proposed master is realized as a haptic feedback as well as remote manipulation. In order to verify the efficacy of the proposed master and method, an experiment is conducted with deformable objects featuring human organs. Since the use of real human organs is difficult for control due to high cost and moral hazard, an excellent alternative method, the virtual reality environment, is used for control in this work. In order to embody a human organ in the virtual space, the experiment adopts a volumetric deformable object represented by a shape-retaining chain linked (S-chain) model which has salient properties such as fast and realistic deformation of elastic objects. In haptic architecture for RMIS, the desired torque/force and desired position originating from the object of the virtual slave and operator of the haptic master are transferred to each other. In order to achieve the desired torque/force trajectories, a sliding mode controller (SMC) which is known to be robust to uncertainties is designed and empirically implemented. Tracking control performances for various torque/force trajectories from the virtual slave are evaluated and presented in the time domain. (paper)

  13. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface.

    Science.gov (United States)

    Aleotti, Jacopo; Micconi, Giorgio; Caselli, Stefano; Benassi, Giacomo; Zambelli, Nicola; Bettelli, Manuele; Zappettini, Andrea

    2017-09-29

    A visuo-haptic augmented reality (VHAR) interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV) equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the situation awareness of the operator. The user teleoperates the UAV using a 3DOF haptic device that provides an attractive force feedback around the location of the most intense detected radiation source. Moreover, a fixed camera on the ground observes the environment where the UAV is flying. A 3D augmented reality scene is displayed on a computer screen accessible to the operator. Multiple types of graphical overlays are shown, including sensor data acquired by the nuclear radiation detector, a virtual cursor that tracks the UAV and geographical information, such as buildings. Experiments performed in a real environment are reported using an intense nuclear source.

  14. Development of a Virtual Guitar using Haptic Device

    OpenAIRE

    田村,真晴; 山下,英生

    2009-01-01

    In recent years, a haptic device that output power as one of the computer output devices has been developed. We can get the feeling that we really touch the material through a sensor of haptic device when we touch a material simulated in a computer. In this research, a virtual guitar in which the feeling playing guitar and the sound volume are changed by adjusting power to input with a haptic device was developed. With the haptic device we feel as if we play a genuine guitar. Moreover, it see...

  15. Cortical mechanisms underlying sensorimotor enhancement promoted by walking with haptic inputs in a virtual environment.

    Science.gov (United States)

    Sangani, Samir; Lamontagne, Anouk; Fung, Joyce

    2015-01-01

    Sensorimotor integration is a complex process in the central nervous system that produces task-specific motor output based on selective and rapid integration of sensory information from multiple sources. This chapter reviews briefly the role of haptic cues in postural control during tandem stance and locomotion, focusing on sensorimotor enhancement of locomotion post stroke. The use of mixed-reality systems incorporating both haptic cues and virtual reality technology in gait rehabilitation post stroke is discussed. Over the last decade, researchers and clinicians have shown evidence of cerebral reorganization that underlies functional recovery after stroke based on results from neuroimaging techniques such as positron emission tomography and functional magnetic resonance imaging. These imaging modalities are however limited in their capacity to measure cortical changes during extensive body motions in upright stance. Functional near-infrared spectroscopy (fNIRS) on the other hand provides a unique opportunity to measure cortical activity associated with postural control during locomotion. Evidence of cortical changes associated with sensorimotor enhancement induced by haptic touch during locomotion is revealed through fNIRS in a pilot study involving healthy individuals and a case study involving a chronic stroke patient. © 2015 Elsevier B.V. All rights reserved.

  16. Haptic feedback in OP:Sense - augmented reality in telemanipulated robotic surgery.

    Science.gov (United States)

    Beyl, T; Nicolai, P; Mönnich, H; Raczkowksy, J; Wörn, H

    2012-01-01

    In current research, haptic feedback in robot assisted interventions plays an important role. However most approaches to haptic feedback only regard the mapping of the current forces at the surgical instrument to the haptic input devices, whereas surgeons demand a combination of medical imaging and telemanipulated robotic setups. In this paper we describe how this feature is integrated in our robotic research platform OP:Sense. The proposed method allows the automatic transfer of segmented imaging data to the haptic renderer and therefore allows enriching the haptic feedback with virtual fixtures based on imaging data. Anatomical structures are extracted from pre-operative generated medical images or virtual walls are defined by the surgeon inside the imaging data. Combining real forces with virtual fixtures can guide the surgeon to the regions of interest as well as helps to prevent the risk of damage to critical structures inside the patient. We believe that the combination of medical imaging and telemanipulation is a crucial step for the next generation of MIRS-systems.

  17. Advanced Maintenance Simulation by Means of Hand-Based Haptic Interfaces

    Science.gov (United States)

    Nappi, Michele; Paolino, Luca; Ricciardi, Stefano; Sebillo, Monica; Vitiello, Giuliana

    Aerospace industry has been involved in virtual simulation for design and testing since the birth of virtual reality. Today this industry is showing a growing interest in the development of haptic-based maintenance training applications, which represent the most advanced way to simulate maintenance and repair tasks within a virtual environment by means of a visual-haptic approach. The goal is to allow the trainee to experiment the service procedures not only as a workflow reproduced at a visual level but also in terms of the kinaesthetic feedback involved with the manipulation of tools and components. This study, conducted in collaboration with aerospace industry specialists, is aimed to the development of an immersive virtual capable of immerging the trainees into a virtual environment where mechanics and technicians can perform maintenance simulation or training tasks by directly manipulating 3D virtual models of aircraft parts while perceiving force feedback through the haptic interface. The proposed system is based on ViRstperson, a virtual reality engine under development at the Italian Center for Aerospace Research (CIRA) to support engineering and technical activities such as design-time maintenance procedure validation, and maintenance training. This engine has been extended to support haptic-based interaction, enabling a more complete level of interaction, also in terms of impedance control, and thus fostering the development of haptic knowledge in the user. The user’s “sense of touch” within the immersive virtual environment is simulated through an Immersion CyberForce® hand-based force-feedback device. Preliminary testing of the proposed system seems encouraging.

  18. Virtual reality training in laparoscopic surgery: A systematic review & meta-analysis.

    Science.gov (United States)

    Alaker, Medhat; Wynn, Greg R; Arulampalam, Tan

    2016-05-01

    Laparoscopic surgery requires a different and sometimes more complex skill set than does open surgery. Shortened working hours, less training times, and patient safety issues necessitates that these skills need to be acquired outside the operating room. Virtual reality simulation in laparoscopic surgery is a growing field, and many studies have been published to determine its effectiveness. This systematic review and meta-analysis aims to evaluate virtual reality simulation in laparoscopic abdominal surgery in comparison to other simulation models and to no training. A systematic literature search was carried out until January 2014 in full adherence to PRISMA guidelines. All randomised controlled studies comparing virtual reality training to other models of training or to no training were included. Only studies utilizing objective and validated assessment tools were included. Thirty one randomised controlled trials that compare virtual reality training to other models of training or to no training were included. The results of the meta-analysis showed that virtual reality simulation is significantly more effective than video trainers, and at least as good as box trainers. The use of Proficiency-based VR training, under supervision with prompt instructions and feedback, and the use of haptic feedback, has proven to be the most effective way of delivering the virtual reality training. The incorporation of virtual reality training into surgical training curricula is now necessary. A unified platform of training needs to be established. Further studies to assess the impact on patient outcomes and on hospital costs are necessary. (PROSPERO Registration number: CRD42014010030). Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Virtual Reality

    Science.gov (United States)

    1993-04-01

    until exhausted. SECURITY CLASSIFICATION OF THIS PAGE All other editions are obsolete. UNCLASSIFIED " VIRTUAL REALITY JAMES F. DAILEY, LIEUTENANT COLONEL...US" This paper reviews the exciting field of virtual reality . The author describes the basic concepts of virtual reality and finds that its numerous...potential benefits to society could revolutionize everyday life. The various components that make up a virtual reality system are described in detail

  20. Preliminary Experiment Combining Virtual Reality Haptic Shoes and Audio Synthesis

    DEFF Research Database (Denmark)

    Nordahl, Rolf; Berrezag, Amir; Dimitrov, Smilen

    2010-01-01

    We describe a system that provides combined auditory and haptic sensations to simulate walking on different grounds. It uses a physical model that drives haptic transducers embedded in sandals and headphones. The model represents walking interactions with solid surfaces that can creak, or be cove...

  1. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface

    Directory of Open Access Journals (Sweden)

    Jacopo Aleotti

    2017-09-01

    Full Text Available A visuo-haptic augmented reality (VHAR interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the situation awareness of the operator. The user teleoperates the UAV using a 3DOF haptic device that provides an attractive force feedback around the location of the most intense detected radiation source. Moreover, a fixed camera on the ground observes the environment where the UAV is flying. A 3D augmented reality scene is displayed on a computer screen accessible to the operator. Multiple types of graphical overlays are shown, including sensor data acquired by the nuclear radiation detector, a virtual cursor that tracks the UAV and geographical information, such as buildings. Experiments performed in a real environment are reported using an intense nuclear source.

  2. Identification of virtual grounds using virtual reality haptic shoes and sound synthesis

    DEFF Research Database (Denmark)

    Serafin, Stefania; Turchet, Luca; Nordahl, Rolf

    2010-01-01

    We describe a system which simulates in real-time the auditory and haptic sensation of walking on different surfaces. The system is based on physical models, that drive both the haptic and audio synthesizers, and a pair of shoes enhanced with sensors and actuators. In a discrimination experiment,...

  3. Practice on an augmented reality/haptic simulator and library of virtual brains improves residents' ability to perform a ventriculostomy.

    Science.gov (United States)

    Yudkowsky, Rachel; Luciano, Cristian; Banerjee, Pat; Schwartz, Alan; Alaraj, Ali; Lemole, G Michael; Charbel, Fady; Smith, Kelly; Rizzi, Silvio; Byrne, Richard; Bendok, Bernard; Frim, David

    2013-02-01

    Ventriculostomy is a neurosurgical procedure for providing therapeutic cerebrospinal fluid drainage. Complications may arise during repeated attempts at placing the catheter in the ventricle. We studied the impact of simulation-based practice with a library of virtual brains on neurosurgery residents' performance in simulated and live surgical ventriculostomies. Using computed tomographic scans of actual patients, we developed a library of 15 virtual brains for the ImmersiveTouch system, a head- and hand-tracked augmented reality and haptic simulator. The virtual brains represent a range of anatomies including normal, shifted, and compressed ventricles. Neurosurgery residents participated in individual simulator practice on the library of brains including visualizing the 3-dimensional location of the catheter within the brain immediately after each insertion. Performance of participants on novel brains in the simulator and during actual surgery before and after intervention was analyzed using generalized linear mixed models. Simulator cannulation success rates increased after intervention, and live procedure outcomes showed improvement in the rate of successful cannulation on the first pass. However, the incidence of deeper, contralateral (simulator) and third-ventricle (live) placements increased after intervention. Residents reported that simulations were realistic and helpful in improving procedural skills such as aiming the probe, sensing the pressure change when entering the ventricle, and estimating how far the catheter should be advanced within the ventricle. Simulator practice with a library of virtual brains representing a range of anatomies and difficulty levels may improve performance, potentially decreasing complications due to inexpert technique.

  4. Extending Virtual Reality simulation of ITER maintenance operations with dynamic effects

    International Nuclear Information System (INIS)

    Heemskerk, C.J.M.; Baar, M.R. de; Boessenkool, H.; Graafland, B.; Haye, M.J.; Koning, J.F.; Vahedi, M.; Visser, M.

    2011-01-01

    Virtual Reality (VR) simulation can be used to study, improve and verify ITER maintenance operations during preparation. VR can also improve the situational awareness of human operators during actual Remote Handling (RH) operations. Until now, VR systems use geometric models of the environment and the objects being handled and kinematic models of the manipulation systems. The addition of dynamic effects into the VR simulation was investigated. Important dynamic effects are forces due to contact transitions and the bending of beams under heavy loads. A novel dynamics simulation module was developed and introduced as an add-on to the VR4Robots VR software. Tests were performed under simplified test conditions and in the context of realistic ITER maintenance tasks on a benchmark product and on the ECRH Upper Port Launcher Plug (UPL). The introduction of dynamic effects into VR simulations was found to add realism and provide new insights in procedure development. The quality of the haptic feedback depends strongly on the haptic device used to 'display' haptic feedback to the operator. Dynamic effect simulation can also form the basis for real-time guidance support to operators during the execution of maintenance tasks (augmented reality).

  5. Evaluating Remapped Physical Reach for Hand Interactions with Passive Haptics in Virtual Reality.

    Science.gov (United States)

    Han, Dustin T; Suhail, Mohamed; Ragan, Eric D

    2018-04-01

    Virtual reality often uses motion tracking to incorporate physical hand movements into interaction techniques for selection and manipulation of virtual objects. To increase realism and allow direct hand interaction, real-world physical objects can be aligned with virtual objects to provide tactile feedback and physical grasping. However, unless a physical space is custom configured to match a specific virtual reality experience, the ability to perfectly match the physical and virtual objects is limited. Our research addresses this challenge by studying methods that allow one physical object to be mapped to multiple virtual objects that can exist at different virtual locations in an egocentric reference frame. We study two such techniques: one that introduces a static translational offset between the virtual and physical hand before a reaching action, and one that dynamically interpolates the position of the virtual hand during a reaching motion. We conducted two experiments to assess how the two methods affect reaching effectiveness, comfort, and ability to adapt to the remapping techniques when reaching for objects with different types of mismatches between physical and virtual locations. We also present a case study to demonstrate how the hand remapping techniques could be used in an immersive game application to support realistic hand interaction while optimizing usability. Overall, the translational technique performed better than the interpolated reach technique and was more robust for situations with larger mismatches between virtual and physical objects.

  6. Vertigo in virtual reality with haptics: case report.

    Science.gov (United States)

    Viirre, Erik; Ellisman, Mark

    2003-08-01

    A researcher was working with a desktop virtual environment system. The system was displaying vector fields of a cyclonic weather system, and the system incorporated a haptic display of the forces in the cyclonic field. As the subject viewed the rotating cyclone field, they would move a handle "through" the representation of the moving winds and "feel" the forces buffeting the handle as it moved. Stopping after using the system for about 10 min, the user experienced an immediate sensation of postural instability for several minutes. Several hours later, there was the onset of vertigo with head turns. This vertigo lasted several hours and was accompanied with nausea and motion illusions that exacerbated by head movements. Symptoms persisted mildly the next day and were still present the third and fourth day, but by then were only provoked by head movements. There were no accompanying symptoms or history to suggest an inner ear disorder. Physical examination of inner ear and associated neurologic function was normal. No other users of this system have reported similar symptoms. This case suggests that some individuals may be susceptible to the interaction of displays with motion and movement forces and as a result experience motion illusions. Operators of such systems should be aware of this potential and minimize exposure if vertigo occurs.

  7. Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available This paper proposes a pseudo-haptic feedback method conveying simulated soft surface stiffness information through a visual interface. The method exploits a combination of two feedback techniques, namely visual feedback of soft surface deformation and control of the indenter avatar speed, to convey stiffness information of a simulated surface of a soft object in virtual environments. The proposed method was effective in distinguishing different sizes of virtual hard nodules integrated into the simulated soft bodies. To further improve the interactive experience, the approach was extended creating a multi-point pseudo-haptic feedback system. A comparison with regards to (a nodule detection sensitivity and (b elapsed time as performance indicators in hard nodule detection experiments to a tablet computer incorporating vibration feedback was conducted. The multi-point pseudo-haptic interaction is shown to be more time-efficient than the single-point pseudo-haptic interaction. It is noted that multi-point pseudo-haptic feedback performs similarly well when compared to a vibration-based feedback method based on both performance measures elapsed time and nodule detection sensitivity. This proves that the proposed method can be used to convey detailed haptic information for virtual environmental tasks, even subtle ones, using either a computer mouse or a pressure sensitive device as an input device. This pseudo-haptic feedback method provides an opportunity for low-cost simulation of objects with soft surfaces and hard inclusions, as, for example, occurring in ever more realistic video games with increasing emphasis on interaction with the physical environment and minimally invasive surgery in the form of soft tissue organs with embedded cancer nodules. Hence, the method can be used in many low-budget applications where haptic sensation is required, such as surgeon training or video games, either using desktop computers or portable devices, showing

  8. Multimodality with Eye tracking and Haptics: A New Horizon for Serious Games?

    Directory of Open Access Journals (Sweden)

    Shujie Deng

    2014-10-01

    Full Text Available The goal of this review is to illustrate the emerging use of multimodal virtual reality that can benefit learning-based games. The review begins with an introduction to multimodal virtual reality in serious games and we provide a brief discussion of why cognitive processes involved in learning and training are enhanced under immersive virtual environments. We initially outline studies that have used eye tracking and haptic feedback independently in serious games, and then review some innovative applications that have already combined eye tracking and haptic devices in order to provide applicable multimodal frameworks for learning-based games. Finally, some general conclusions are identified and clarified in order to advance current understanding in multimodal serious game production as well as exploring possible areas for new applications.

  9. Virtual Reality and the Virtual Library.

    Science.gov (United States)

    Oppenheim, Charles

    1993-01-01

    Explains virtual reality, including proper and improper uses of the term, and suggests ways that libraries might be affected by it. Highlights include elements of virtual reality systems; possible virtual reality applications, including architecture, the chemical industry, transport planning, armed forces, and entertainment; and the virtual…

  10. Toward a comprehensive hybrid physical-virtual reality simulator of peripheral anesthesia with ultrasound and neurostimulator guidance.

    Science.gov (United States)

    Samosky, Joseph T; Allen, Pete; Boronyak, Steve; Branstetter, Barton; Hein, Steven; Juhas, Mark; Nelson, Douglas A; Orebaugh, Steven; Pinto, Rohan; Smelko, Adam; Thompson, Mitch; Weaver, Robert A

    2011-01-01

    We are developing a simulator of peripheral nerve block utilizing a mixed-reality approach: the combination of a physical model, an MRI-derived virtual model, mechatronics and spatial tracking. Our design uses tangible (physical) interfaces to simulate surface anatomy, haptic feedback during needle insertion, mechatronic display of muscle twitch corresponding to the specific nerve stimulated, and visual and haptic feedback for the injection syringe. The twitch response is calculated incorporating the sensed output of a real neurostimulator. The virtual model is isomorphic with the physical model and is derived from segmented MRI data. This model provides the subsurface anatomy and, combined with electromagnetic tracking of a sham ultrasound probe and a standard nerve block needle, supports simulated ultrasound display and measurement of needle location and proximity to nerves and vessels. The needle tracking and virtual model also support objective performance metrics of needle targeting technique.

  11. Mixed reality temporal bone surgical dissector: mechanical design.

    Science.gov (United States)

    Hochman, Jordan Brent; Sepehri, Nariman; Rampersad, Vivek; Kraut, Jay; Khazraee, Milad; Pisa, Justyn; Unger, Bertram

    2014-08-08

    The Development of a Novel Mixed Reality (MR) Simulation. An evolving training environment emphasizes the importance of simulation. Current haptic temporal bone simulators have difficulty representing realistic contact forces and while 3D printed models convincingly represent vibrational properties of bone, they cannot reproduce soft tissue. This paper introduces a mixed reality model, where the effective elements of both simulations are combined; haptic rendering of soft tissue directly interacts with a printed bone model. This paper addresses one aspect in a series of challenges, specifically the mechanical merger of a haptic device with an otic drill. This further necessitates gravity cancelation of the work assembly gripper mechanism. In this system, the haptic end-effector is replaced by a high-speed drill and the virtual contact forces need to be repositioned to the drill tip from the mid wand. Previous publications detail generation of both the requisite printed and haptic simulations. Custom software was developed to reposition the haptic interaction point to the drill tip. A custom fitting, to hold the otic drill, was developed and its weight was offset using the haptic device. The robustness of the system to disturbances and its stable performance during drilling were tested. The experiments were performed on a mixed reality model consisting of two drillable rapid-prototyped layers separated by a free-space. Within the free-space, a linear virtual force model is applied to simulate drill contact with soft tissue. Testing illustrated the effectiveness of gravity cancellation. Additionally, the system exhibited excellent performance given random inputs and during the drill's passage between real and virtual components of the model. No issues with registration at model boundaries were encountered. These tests provide a proof of concept for the initial stages in the development of a novel mixed-reality temporal bone simulator.

  12. The virtual haptic back: A simulation for training in palpatory diagnosis

    Directory of Open Access Journals (Sweden)

    Eland David C

    2008-04-01

    Full Text Available Abstract Background Models and simulations are finding increased roles in medical education. The Virtual Haptic Back (VHB is a virtual reality simulation of the mechanical properties of the human back designed as an aid to teaching clinical palpatory diagnosis. Methods Eighty-nine first year medical students of the Ohio University College of Osteopathic Medicine carried out six, 15-minute practice sessions with the VHB, plus tests before and after the sessions in order to monitor progress in identifying regions of simulated abnormal tissue compliance. Students palpated with two digits, fingers or thumbs, by placing them in gimbaled thimbles at the ends of PHANToM 3.0® haptic interface arms. The interface simulated the contours and compliance of the back surface by the action of electric motors. The motors limited the compression of the virtual tissues induced by the palpating fingers, by generating counterforces. Users could see the position of their fingers with respect to the back on a video monitor just behind the plane of the haptic back. The abnormal region varied randomly among 12 locations between trials. During the practice sessions student users received immediate feedback following each trial, indicating either a correct choice or the actual location of the abnormality if an incorrect choice had been made. This allowed the user to feel the actual abnormality before going on to the next trial. Changes in accuracy, speed and Weber fraction across practice sessions were analyzed using a repeated measures analysis of variance. Results Students improved in accuracy and speed of diagnosis with practice. The smallest difference in simulated tissue compliance users were able to detect improved from 28% (SD = 9.5% to 14% (SD = 4.4% during the practice sessions while average detection time decreased from 39 (SD = 19.8 to 17 (SD = 11.7 seconds. When asked in anonymous evaluation questionnaires if they judged the VHB practice to be helpful to

  13. Lean on Wii: physical rehabilitation with virtual reality Wii peripherals.

    Science.gov (United States)

    Anderson, Fraser; Annett, Michelle; Bischof, Walter F

    2010-01-01

    In recent years, a growing number of occupational therapists have integrated video game technologies, such as the Nintendo Wii, into rehabilitation programs. 'Wiihabilitation', or the use of the Wii in rehabilitation, has been successful in increasing patients' motivation and encouraging full body movement. The non-rehabilitative focus of Wii applications, however, presents a number of problems: games are too difficult for patients, they mainly target upper-body gross motor functions, and they lack support for task customization, grading, and quantitative measurements. To overcome these problems, we have designed a low-cost, virtual-reality based system. Our system, Virtual Wiihab, records performance and behavioral measurements, allows for activity customization, and uses auditory, visual, and haptic elements to provide extrinsic feedback and motivation to patients.

  14. Towards open-source, low-cost haptics for surgery simulation.

    Science.gov (United States)

    Suwelack, Stefan; Sander, Christian; Schill, Julian; Serf, Manuel; Danz, Marcel; Asfour, Tamim; Burger, Wolfgang; Dillmann, Rüdiger; Speidel, Stefanie

    2014-01-01

    In minimally invasive surgery (MIS), virtual reality (VR) training systems have become a promising education tool. However, the adoption of these systems in research and clinical settings is still limited by the high costs of dedicated haptics hardware for MIS. In this paper, we present ongoing research towards an open-source, low-cost haptic interface for MIS simulation. We demonstrate the basic mechanical design of the device, the sensor setup as well as its software integration.

  15. Simulating video-assisted thoracoscopic lobectomy: a virtual reality cognitive task simulation.

    Science.gov (United States)

    Solomon, Brian; Bizekis, Costas; Dellis, Sophia L; Donington, Jessica S; Oliker, Aaron; Balsam, Leora B; Zervos, Michael; Galloway, Aubrey C; Pass, Harvey; Grossi, Eugene A

    2011-01-01

    Current video-assisted thoracoscopic surgery training models rely on animals or mannequins to teach procedural skills. These approaches lack inherent teaching/testing capability and are limited by cost, anatomic variations, and single use. In response, we hypothesized that video-assisted thoracoscopic surgery right upper lobe resection could be simulated in a virtual reality environment with commercial software. An anatomy explorer (Maya [Autodesk Inc, San Rafael, Calif] models of the chest and hilar structures) and simulation engine were adapted. Design goals included freedom of port placement, incorporation of well-known anatomic variants, teaching and testing modes, haptic feedback for the dissection, ability to perform the anatomic divisions, and a portable platform. Preexisting commercial models did not provide sufficient surgical detail, and extensive modeling modifications were required. Video-assisted thoracoscopic surgery right upper lobe resection simulation is initiated with a random vein and artery variation. The trainee proceeds in a teaching or testing mode. A knowledge database currently includes 13 anatomic identifications and 20 high-yield lung cancer learning points. The "patient" is presented in the left lateral decubitus position. After initial camera port placement, the endoscopic view is displayed and the thoracoscope is manipulated via the haptic device. The thoracoscope port can be relocated; additional ports are placed using an external "operating room" view. Unrestricted endoscopic exploration of the thorax is allowed. An endo-dissector tool allows for hilar dissection, and a virtual stapling device divides structures. The trainee's performance is reported. A virtual reality cognitive task simulation can overcome the deficiencies of existing training models. Performance scoring is being validated as we assess this simulator for cognitive and technical surgical education. Copyright © 2011. Published by Mosby, Inc.

  16. Development of a Virtual Reality Simulator for Natural Orifice Translumenal Endoscopic Surgery (NOTES) Cholecystectomy Procedure.

    Science.gov (United States)

    Ahn, Woojin; Dargar, Saurabh; Halic, Tansel; Lee, Jason; Li, Baichun; Pan, Junjun; Sankaranarayanan, Ganesh; Roberts, Kurt; De, Suvranu

    2014-01-01

    The first virtual-reality-based simulator for Natural Orifice Translumenal Endoscopic Surgery (NOTES) is developed called the Virtual Translumenal Endoscopic Surgery Trainer (VTESTTM). VTESTTM aims to simulate hybrid NOTES cholecystectomy procedure using a rigid scope inserted through the vaginal port. The hardware interface is designed for accurate motion tracking of the scope and laparoscopic instruments to reproduce the unique hand-eye coordination. The haptic-enabled multimodal interactive simulation includes exposing the Calot's triangle and detaching the gall bladder while performing electrosurgery. The developed VTESTTM was demonstrated and validated at NOSCAR 2013.

  17. PROJECT HEAVEN: Preoperative Training in Virtual Reality.

    Science.gov (United States)

    Iamsakul, Kiratipath; Pavlovcik, Alexander V; Calderon, Jesus I; Sanderson, Lance M

    2017-01-01

    A cephalosomatic anastomosis (CSA; also called HEAVEN: head anastomosis venture) has been proposed as an option for patients with neurological impairments, such as spinal cord injury (SCI), and terminal medical illnesses, for which medicine is currently powerless. Protocols to prepare a patient for life after CSA do not currently exist. However, methods used in conventional neurorehabilitation can be used as a reference for developing preparatory training. Studies on virtual reality (VR) technologies have documented VR's ability to enhance rehabilitation and improve the quality of recovery in patients with neurological disabilities. VR-augmented rehabilitation resulted in increased motivation towards performing functional training and improved the biopsychosocial state of patients. In addition, VR experiences coupled with haptic feedback promote neuroplasticity, resulting in the recovery of motor functions in neurologically-impaired individuals. To prepare the recipient psychologically for life after CSA, the development of VR experiences paired with haptic feedback is proposed. This proposal aims to innovate techniques in conventional neurorehabilitation to implement preoperative psychological training for the recipient of HEAVEN. Recipient's familiarity to body movements will prevent unexpected psychological reactions from occurring after the HEAVEN procedure.

  18. Pseudo-Haptic Feedback in Teleoperation.

    Science.gov (United States)

    Neupert, Carsten; Matich, Sebastian; Scherping, Nick; Kupnik, Mario; Werthschutzky, Roland; Hatzfeld, Christian

    2016-01-01

    In this paper, we develop possible realizations of pseudo-haptic feedback in teleoperation systems based on existing works for pseudo-haptic feedback in virtual reality and the intended applications. We derive four potential factors affecting the performance of haptic feedback (calculation operator, maximum displacement, offset force, and scaling factor), which are analyzed in three compliance identification experiments. First, we analyze the principle usability of pseudo-haptic feedback by comparing information transfer measures for teleoperation and direct interaction. Pseudo-haptic interaction yields well above-chance performance, while direct interaction performs almost perfectly. In order to optimize pseudo-haptic feedback, in the second study we perform a full-factorial experimental design with 36 subjects performing 6,480 trials with 36 different treatments. Information transfer ranges from 0.68 bit to 1.72 bit in a task with a theoretical maximum of 2.6 bit, with a predominant effect of the calculation operator and a minor effect of the maximum displacement. In a third study, short- and long-term learning effects are analyzed. Learning effects regarding the performance of pseudo-haptic feedback cannot be observed for single-day experiments. Tests over 10 days show a maximum increase in information transfer of 0.8 bit. The results show the feasibility of pseudo-haptic feedback for teleoperation and can be used as design basis for task-specific systems.

  19. Virtual reality - aesthetic consequences

    OpenAIRE

    Benda, Lubor

    2014-01-01

    In the present work we study aesthetic consequences of virtual reality. Exploring the fringe between fictional and virtual is one of the key goals, that will be achieved through etymologic and technologic definition of both fiction and virtual reality, fictional and virtual worlds. Both fiction and virtual reality will be then studied from aesthetic distance and aesthetic pleasure point of view. At the end, we will see the main difference as well as an common grounds between fiction and virtu...

  20. Virtual reality exposure therapy

    OpenAIRE

    Rothbaum, BO; Hodges, L; Kooper, R

    1997-01-01

    It has been proposed that virtual reality (VR) exposure may be an alternative to standard in vivo exposure. Virtual reality integrates real-time computer graphics, body tracking devices, visual displays, and other sensory input devices to immerse a participant in a computer- generated virtual environment. Virtual reality exposure is potentially an efficient and cost-effective treatment of anxiety disorders. VR exposure therapy reduced the fear of heights in the first control...

  1. Randomized Clinical Trial of Virtual Reality Simulation Training for Transvaginal Gynecologic Ultrasound Skills.

    Science.gov (United States)

    Chao, Coline; Chalouhi, Gihad E; Bouhanna, Philippe; Ville, Yves; Dommergues, Marc

    2015-09-01

    To compare the impact of virtual reality simulation training and theoretical teaching on the ability of inexperienced trainees to produce adequate virtual transvaginal ultrasound images. We conducted a randomized controlled trial with parallel groups. Participants included inexperienced residents starting a training program in Paris. The intervention consisted of 40 minutes of virtual reality simulation training using a haptic transvaginal simulator versus 40 minutes of conventional teaching including a conference with slides and videos and answers to the students' questions. The outcome was a 19-point image quality score calculated from a set of 4 images (sagittal and coronal views of the uterus and left and right ovaries) produced by trainees immediately after the intervention, using the same simulator on which a new virtual patient had been uploaded. Experts assessed the outcome on stored images, presented in a random order, 2 months after the trial was completed. They were blinded to group assignment. The hypothesis was an improved outcome in the intervention group. Randomization was 1 to 1. The mean score was significantly greater in the simulation group (n = 16; mean score, 12; SEM, 0.8) than the control group (n = 18; mean score, 9; SEM, 1.0; P= .0302). The quality of virtual vaginal images produced by inexperienced trainees was greater immediately after a single virtual reality simulation training session than after a single theoretical teaching session. © 2015 by the American Institute of Ultrasound in Medicine.

  2. Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis

    Directory of Open Access Journals (Sweden)

    Feldman Anatol G

    2004-12-01

    Full Text Available Abstract Background Virtual reality (VR is an innovative tool for sensorimotor rehabilitation increasingly being employed in clinical and community settings. Despite the growing interest in VR, few studies have determined the validity of movements made in VR environments with respect to real physical environments. The goal of this study was to compare movements done in physical and virtual environments in adults with motor deficits to those in healthy individuals. Methods The participants were 8 healthy adults and 7 adults with mild left hemiparesis due to stroke. Kinematics of functional arm movements involving reaching, grasping and releasing made in physical and virtual environments were analyzed in two phases: 1 reaching and grasping the ball and 2 ball transport and release. The virtual environment included interaction with an object on a 2D computer screen and haptic force feedback from a virtual ball. Temporal and spatial parameters of reaching and grasping were determined for each phase. Results Individuals in both groups were able to reach, grasp, transport, place and release the virtual and real ball using similar movement strategies. In healthy subjects, reaching and grasping movements in both environments were similar but these subjects used less wrist extension and more elbow extension to place the ball on the virtual vertical surface. Participants with hemiparesis made slower movements in both environments compared to healthy subjects and during transport and placing of the ball, trajectories were more curved and interjoint coordination was altered. Despite these differences, patients with hemiparesis also tended to use less wrist extension during the whole movement and more elbow extension at the end of the placing phase. Conclusion Differences in movements made by healthy subjects in the two environments may be explained by the use of a 2D instead of a 3D virtual environment and the absence of haptic feedback from the VR target

  3. [Virtual + 1] * Reality

    Science.gov (United States)

    Beckhaus, Steffi

    Virtual Reality aims at creating an artificial environment that can be perceived as a substitute to a real setting. Much effort in research and development goes into the creation of virtual environments that in their majority are perceivable only by eyes and hands. The multisensory nature of our perception, however, allows and, arguably, also expects more than that. As long as we are not able to simulate and deliver a fully sensory believable virtual environment to a user, we could make use of the fully sensory, multi-modal nature of real objects to fill in for this deficiency. The idea is to purposefully integrate real artifacts into the application and interaction, instead of dismissing anything real as hindering the virtual experience. The term virtual reality - denoting the goal, not the technology - shifts from a core virtual reality to an “enriched” reality, technologically encompassing both the computer generated and the real, physical artifacts. Together, either simultaneously or in a hybrid way, real and virtual jointly provide stimuli that are perceived by users through their senses and are later formed into an experience by the user's mind.

  4. Interpretations of virtual reality.

    Science.gov (United States)

    Voiskounsky, Alexander

    2011-01-01

    University students were surveyed to learn what they know about virtual realities. The two studies were administered with a half-year interval in which the students (N=90, specializing either in mathematics and science, or in social science and humanities) were asked to name particular examples of virtual realities. The second, but not the first study, was administered after the participants had the chance to see the movie "Avatar" (no investigation was held into whether they really saw it). While the students in both studies widely believed that activities such as social networking and online gaming represent virtual realities, some other examples provided by the students in the two studies differ: in the second study the participants expressed a better understanding of the items related to virtual realities. At the same time, not a single participant reported particular psychological states (either regular or altered) as examples of virtual realities. Profound popularization efforts need to be done to acquaint the public, including college students, with virtual realities and let the public adequately understand how such systems work.

  5. A "virtually minimal" visuo-haptic training of attention in severe traumatic brain injury.

    Science.gov (United States)

    Dvorkin, Assaf Y; Ramaiya, Milan; Larson, Eric B; Zollman, Felise S; Hsu, Nancy; Pacini, Sonia; Shah, Amit; Patton, James L

    2013-08-09

    Although common during the early stages of recovery from severe traumatic brain injury (TBI), attention deficits have been scarcely investigated. Encouraging evidence suggests beneficial effects of attention training in more chronic and higher functioning patients. Interactive technology may provide new opportunities for rehabilitation in inpatients who are earlier in their recovery. We designed a "virtually minimal" approach using robot-rendered haptics in a virtual environment to train severely injured inpatients in the early stages of recovery to sustain attention to a visuo-motor task. 21 inpatients with severe TBI completed repetitive reaching toward targets that were both seen and felt. Patients were tested over two consecutive days, experiencing 3 conditions (no haptic feedback, a break-through force, and haptic nudge) in 12 successive, 4-minute blocks. The interactive visuo-haptic environments were well-tolerated and engaging. Patients typically remained attentive to the task. However, patients exhibited attention loss both before (prolonged initiation) and during (pauses during motion) a movement. Compared to no haptic feedback, patients benefited from haptic nudge cues but not break-through forces. As training progressed, patients increased the number of targets acquired and spontaneously improved from one day to the next. Interactive visuo-haptic environments could be beneficial for attention training for severe TBI patients in the early stages of recovery and warrants further and more prolonged clinical testing.

  6. Virtual reality simulation for the optimization of endovascular procedures: current perspectives

    Directory of Open Access Journals (Sweden)

    Rudarakanchana N

    2015-03-01

    Full Text Available Nung Rudarakanchana,1 Isabelle Van Herzeele,2 Liesbeth Desender,2 Nicholas JW Cheshire1 1Department of Surgery, Imperial College London, London, UK; 2Department of Thoracic and Vascular Surgery, Ghent University Hospital, Ghent, BelgiumOn behalf of EVEREST (European Virtual reality Endovascular RESearch TeamAbstract: Endovascular technologies are rapidly evolving, often requiring coordination and cooperation between clinicians and technicians from diverse specialties. These multidisciplinary interactions lead to challenges that are reflected in the high rate of errors occurring during endovascular procedures. Endovascular virtual reality (VR simulation has evolved from simple benchtop devices to full physic simulators with advanced haptics and dynamic imaging and physiological controls. The latest developments in this field include the use of fully immersive simulated hybrid angiosuites to train whole endovascular teams in crisis resource management and novel technologies that enable practitioners to build VR simulations based on patient-specific anatomy. As our understanding of the skills, both technical and nontechnical, required for optimal endovascular performance improves, the requisite tools for objective assessment of these skills are being developed and will further enable the use of VR simulation in the training and assessment of endovascular interventionalists and their entire teams. Simulation training that allows deliberate practice without danger to patients may be key to bridging the gap between new endovascular technology and improved patient outcomes.Keywords: virtual reality, simulation, endovascular, aneurysm

  7. Virtual reality myringotomy simulation with real-time deformation: development and validity testing.

    Science.gov (United States)

    Ho, Andrew K; Alsaffar, Hussain; Doyle, Philip C; Ladak, Hanif M; Agrawal, Sumit K

    2012-08-01

    Surgical simulation is becoming an increasingly common training tool in residency programs. The first objective was to implement real-time soft-tissue deformation and cutting into a virtual reality myringotomy simulator. The second objective was to test the various implemented incision algorithms to determine which most accurately represents the tympanic membrane during myringotomy. Descriptive and face-validity testing. A deformable tympanic membrane was developed, and three soft-tissue cutting algorithms were successfully implemented into the virtual reality myringotomy simulator. The algorithms included element removal, direction prediction, and Delaunay cutting. The simulator was stable and capable of running in real time on inexpensive hardware. A face-validity study was then carried out using a validated questionnaire given to eight otolaryngologists and four senior otolaryngology residents. Each participant was given an adaptation period on the simulator, was blinded to the algorithm being used, and was presented the three algorithms in a randomized order. A virtual reality myringotomy simulator with real-time soft-tissue deformation and cutting was successfully developed. The simulator was stable, ran in real time on inexpensive hardware, and incorporated haptic feedback and stereoscopic vision. The Delaunay cutting algorithm was found to be the most realistic algorithm representing the incision during myringotomy (P virtual reality myringotomy simulator is being developed and now integrates a real-time deformable tympanic membrane that appears to have face validity. Further development and validation studies are necessary before the simulator can be studied with respect to training efficacy and clinical impact. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  8. Exploring Virtual Reality for Classroom Use: The Virtual Reality and Education Lab at East Carolina University.

    Science.gov (United States)

    Auld, Lawrence W. S.; Pantelidis, Veronica S.

    1994-01-01

    Describes the Virtual Reality and Education Lab (VREL) established at East Carolina University to study the implications of virtual reality for elementary and secondary education. Highlights include virtual reality software evaluation; hardware evaluation; computer-based curriculum objectives which could use virtual reality; and keeping current…

  9. VIRGY: a virtual reality and force feedback based endoscopic surgery simulator.

    Science.gov (United States)

    Baur, C; Guzzoni, D; Georg, O

    1998-01-01

    This paper describes the VIRGY project at the VRAI Group (Virtual Reality and Active Interface), Swiss Federal Institute of Technology (Lausanne, Switzerland). Since 1994, we have been investigating a variety of virtual-reality based methods for simulating laparoscopic surgery procedures. Our goal is to develop an endoscopic surgical training tool which realistically simulates the interactions between one or more surgical instruments and gastrointestinal organs. To support real-time interaction and manipulation between instruments and organs, we have developed several novel graphic simulation techniques. In particular, we are using live video texturing to achieve dynamic effects such as bleeding or vaporization of fatty tissues. Special texture manipulations allows us to generate pulsing objects while minimizing processor load. Additionally, we have created a new surface deformation algorithm which enables real-time deformations under external constraints. Lastly, we have developed a new 3D object definition which allows us to perform operations such as total or partial object cuttings, as well as to selectively render objects with different levels of detail. To provide realistic physical simulation of the forces and torques on surgical instruments encountered during an operation, we have also designed a new haptic device dedicated to endososcopic surgery constraints. We are using special interpolation and extrapolation techniques to integrate our 25 Hz visual simulation with the 300 Hz feedback required for realistic tactile interaction. The fully VIRGY simulator has been tested by surgeons and the quality of both our visual and haptic simulation has been judged sufficient for training basic surgery gestures.

  10. Virtual reality for employability skills

    OpenAIRE

    Minocha, Shailey; Tudor, Ana-Despina

    2017-01-01

    We showed a variety of virtual reality technologies, and through examples, we discussed how virtual reality technology is transforming work styles and workplaces. Virtual reality is becoming pervasive in almost all domains starting from arts, environmental causes to medical education and disaster management training, and to supporting patients with Dementia. Thus, an awareness of the virtual reality technology and its integration in curriculum design will provide and enhance employability ski...

  11. Augmented versus Virtual Reality Laparoscopic Simulation: What Is the Difference?

    Science.gov (United States)

    Botden, Sanne M.B.I.; Buzink, Sonja N.; Schijven, Marlies P.

    2007-01-01

    Background Virtual reality (VR) is an emerging new modality for laparoscopic skills training; however, most simulators lack realistic haptic feedback. Augmented reality (AR) is a new laparoscopic simulation system offering a combination of physical objects and VR simulation. Laparoscopic instruments are used within an hybrid mannequin on tissue or objects while using video tracking. This study was designed to assess the difference in realism, haptic feedback, and didactic value between AR and VR laparoscopic simulation. Methods The ProMIS AR and LapSim VR simulators were used in this study. The participants performed a basic skills task and a suturing task on both simulators, after which they filled out a questionnaire about their demographics and their opinion of both simulators scored on a 5-point Likert scale. The participants were allotted to 3 groups depending on their experience: experts, intermediates and novices. Significant differences were calculated with the paired t-test. Results There was general consensus in all groups that the ProMIS AR laparoscopic simulator is more realistic than the LapSim VR laparoscopic simulator in both the basic skills task (mean 4.22 resp. 2.18, P < 0.000) as well as the suturing task (mean 4.15 resp. 1.85, P < 0.000). The ProMIS is regarded as having better haptic feedback (mean 3.92 resp. 1.92, P < 0.000) and as being more useful for training surgical residents (mean 4.51 resp. 2.94, P < 0.000). Conclusions In comparison with the VR simulator, the AR laparoscopic simulator was regarded by all participants as a better simulator for laparoscopic skills training on all tested features. PMID:17361356

  12. Getting to the Root of Fine Motor Skill Performance in Dentistry: Brain Activity During Dental Tasks in a Virtual Reality Haptic Simulation.

    Science.gov (United States)

    Perry, Suzanne; Bridges, Susan M; Zhu, Frank; Leung, W Keung; Burrow, Michael F; Poolton, Jamie; Masters, Rich Sw

    2017-12-12

    There is little evidence considering the relationship between movement-specific reinvestment (a dimension of personality which refers to the propensity for individuals to consciously monitor and control their movements) and working memory during motor skill performance. Functional near-infrared spectroscopy (fNIRS) measuring oxyhemoglobin demands in the frontal cortex during performance of virtual reality (VR) psychomotor tasks can be used to examine this research gap. The aim of this study was to determine the potential relationship between the propensity to reinvest and blood flow to the dorsolateral prefrontal cortices of the brain. A secondary aim was to determine the propensity to reinvest and performance during 2 dental tasks carried out using haptic VR simulators. We used fNIRS to assess oxygen demands in 24 undergraduate dental students during 2 dental tasks (clinical, nonclinical) on a VR haptic simulator. We used the Movement-Specific Reinvestment Scale questionnaire to assess the students' propensity to reinvest. Students with a high propensity for movement-specific reinvestment displayed significantly greater oxyhemoglobin demands in an area associated with working memory during the nonclinical task (Spearman correlation, r s =.49, P=.03). This small-scale study suggests that neurophysiological differences are evident between high and low reinvesters during a dental VR task in terms of oxyhemoglobin demands in an area associated with working memory. ©Suzanne Perry, Susan M Bridges, Frank Zhu, W Keung Leung, Michael F Burrow, Jamie Poolton, Rich SW Masters. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 12.12.2017.

  13. Virtual Reality: Principles and Applications

    OpenAIRE

    MÉRIENNE , Frédéric

    2017-01-01

    Virtual reality aims at immersing a user in a virtual environment. Dedicated virtual reality technologies of human–computer interaction enable to make the link between the user and a virtual environment in capturing the user’s motion, acting on his senses as well as computing the virtual experience in real-time. The immersion in virtual environment is evaluated through the user’s perception and reaction. Virtual reality is used in a large variety of application domains which need multisensory...

  14. Virtual Reality simulator for dental anesthesia training in the inferior alveolar nerve block

    Directory of Open Access Journals (Sweden)

    Cléber Gimenez CORRÊA

    Full Text Available Abstract Objectives This study shows the development and validation of a dental anesthesia-training simulator, specifically for the inferior alveolar nerve block (IANB. The system developed provides the tactile sensation of inserting a real needle in a human patient, using Virtual Reality (VR techniques and a haptic device that can provide a perceived force feedback in the needle insertion task during the anesthesia procedure. Material and Methods To simulate a realistic anesthesia procedure, a Carpule syringe was coupled to a haptic device. The Volere method was used to elicit requirements from users in the Dentistry area; Repeated Measures Two-Way ANOVA (Analysis of Variance, Tukey post-hoc test and averages for the results’ analysis. A questionnaire-based subjective evaluation method was applied to collect information about the simulator, and 26 people participated in the experiments (12 beginners, 12 at intermediate level, and 2 experts. The questionnaire included profile, preferences (number of viewpoints, texture of the objects, and haptic device handler, as well as visual (appearance, scale, and position of objects and haptic aspects (motion space, tactile sensation, and motion reproduction. Results The visual aspect was considered appropriate and the haptic feedback must be improved, which the users can do by calibrating the virtual tissues’ resistance. The evaluation of visual aspects was influenced by the participants’ experience, according to ANOVA test (F=15.6, p=0.0002, with p<0.01. The user preferences were the simulator with two viewpoints, objects with texture based on images and the device with a syringe coupled to it. Conclusion The simulation was considered thoroughly satisfactory for the anesthesia training, considering the needle insertion task, which includes the correct insertion point and depth, as well as the perception of tissues resistances during the insertion.

  15. Virtual Reality simulator for dental anesthesia training in the inferior alveolar nerve block.

    Science.gov (United States)

    Corrêa, Cléber Gimenez; Machado, Maria Aparecida de Andrade Moreira; Ranzini, Edith; Tori, Romero; Nunes, Fátima de Lourdes Santos

    2017-01-01

    This study shows the development and validation of a dental anesthesia-training simulator, specifically for the inferior alveolar nerve block (IANB). The system developed provides the tactile sensation of inserting a real needle in a human patient, using Virtual Reality (VR) techniques and a haptic device that can provide a perceived force feedback in the needle insertion task during the anesthesia procedure. To simulate a realistic anesthesia procedure, a Carpule syringe was coupled to a haptic device. The Volere method was used to elicit requirements from users in the Dentistry area; Repeated Measures Two-Way ANOVA (Analysis of Variance), Tukey post-hoc test and averages for the results' analysis. A questionnaire-based subjective evaluation method was applied to collect information about the simulator, and 26 people participated in the experiments (12 beginners, 12 at intermediate level, and 2 experts). The questionnaire included profile, preferences (number of viewpoints, texture of the objects, and haptic device handler), as well as visual (appearance, scale, and position of objects) and haptic aspects (motion space, tactile sensation, and motion reproduction). The visual aspect was considered appropriate and the haptic feedback must be improved, which the users can do by calibrating the virtual tissues' resistance. The evaluation of visual aspects was influenced by the participants' experience, according to ANOVA test (F=15.6, p=0.0002, with p<0.01). The user preferences were the simulator with two viewpoints, objects with texture based on images and the device with a syringe coupled to it. The simulation was considered thoroughly satisfactory for the anesthesia training, considering the needle insertion task, which includes the correct insertion point and depth, as well as the perception of tissues resistances during the insertion.

  16. Enhancing audiovisual experience with haptic feedback: a survey on HAV.

    Science.gov (United States)

    Danieau, F; Lecuyer, A; Guillotel, P; Fleureau, J; Mollet, N; Christie, M

    2013-01-01

    Haptic technology has been widely employed in applications ranging from teleoperation and medical simulation to art and design, including entertainment, flight simulation, and virtual reality. Today there is a growing interest among researchers in integrating haptic feedback into audiovisual systems. A new medium emerges from this effort: haptic-audiovisual (HAV) content. This paper presents the techniques, formalisms, and key results pertinent to this medium. We first review the three main stages of the HAV workflow: the production, distribution, and rendering of haptic effects. We then highlight the pressing necessity for evaluation techniques in this context and discuss the key challenges in the field. By building on existing technologies and tackling the specific challenges of the enhancement of audiovisual experience with haptics, we believe the field presents exciting research perspectives whose financial and societal stakes are significant.

  17. Palpation imaging using a haptic system for virtual reality applications in medicine.

    Science.gov (United States)

    Khaled, W; Reichling, S; Bruhns, O T; Boese, H; Baumann, M; Monkman, G; Egersdoerfer, S; Klein, D; Tunayar, A; Freimuth, H; Lorenz, A; Pessavento, A; Ermert, H

    2004-01-01

    In the field of medical diagnosis, there is a strong need to determine mechanical properties of biological tissue, which are of histological and pathological relevance. Malignant tumors are significantly stiffer than surrounding healthy tissue. One of the established diagnosis procedures is the palpation of body organs and tissue. Palpation is used to measure swelling, detect bone fracture, find and measure pulse, or to locate changes in the pathological state of tissue and organs. Current medical practice routinely uses sophisticated diagnostic tests through magnetic resonance imaging (MRI), computed tomography (CT) and ultrasound (US) imaging. However, they cannot provide direct measure of tissue elasticity. Last year we presented the concept of the first haptic sensor actuator system to visualize and reconstruct mechanical properties of tissue using ultrasonic elastography and a haptic display with electrorheological fluids. We developed a real time strain imaging system for tumor diagnosis. It allows biopsies simultaneously to conventional ultrasound B-Mode and strain imaging investigations. We deduce the relative mechanical properties by using finite element simulations and numerical solution models solving the inverse problem. Various modifications on the haptic sensor actuator system have been investigated. This haptic system has the potential of inducing real time substantial forces, using a compact lightweight mechanism which can be applied to numerous areas including intraoperative navigation, telemedicine, teaching and telecommunication.

  18. Virtual Reality: An Overview.

    Science.gov (United States)

    Franchi, Jorge

    1994-01-01

    Highlights of this overview of virtual reality include optics; interface devices; virtual worlds; potential applications, including medicine and archaeology; problems, including costs; current research and development; future possibilities; and a listing of vendors and suppliers of virtual reality products. (Contains 11 references.) (LRW)

  19. Art in virtual reality 2010

    Science.gov (United States)

    Chang, Ben

    2010-01-01

    For decades, virtual reality artwork has existed in a small but highly influential niche in the world of electronic and new media art. Since the early 1990's, virtual reality installations have come to define an extreme boundary point of both aesthetic experience and technological sophistication. Classic virtual reality artworks have an almost mythological stature - powerful, exotic, and often rarely exhibited. Today, art in virtual environments continues to evolve and mature, encompassing everything from fully immersive CAVE experiences to performance art in Second Life to the use of augmented and mixed reality in public space. Art in Virtual Reality 2010 is a public exhibition of new artwork that showcases the diverse ways that contemporary artists use virtual environments to explore new aesthetic ground and investigate the continually evolving relationship between our selves and our virtual worlds.

  20. A “virtually minimal” visuo-haptic training of attention in severe traumatic brain injury

    Science.gov (United States)

    2013-01-01

    Background Although common during the early stages of recovery from severe traumatic brain injury (TBI), attention deficits have been scarcely investigated. Encouraging evidence suggests beneficial effects of attention training in more chronic and higher functioning patients. Interactive technology may provide new opportunities for rehabilitation in inpatients who are earlier in their recovery. Methods We designed a “virtually minimal” approach using robot-rendered haptics in a virtual environment to train severely injured inpatients in the early stages of recovery to sustain attention to a visuo-motor task. 21 inpatients with severe TBI completed repetitive reaching toward targets that were both seen and felt. Patients were tested over two consecutive days, experiencing 3 conditions (no haptic feedback, a break-through force, and haptic nudge) in 12 successive, 4-minute blocks. Results The interactive visuo-haptic environments were well-tolerated and engaging. Patients typically remained attentive to the task. However, patients exhibited attention loss both before (prolonged initiation) and during (pauses during motion) a movement. Compared to no haptic feedback, patients benefited from haptic nudge cues but not break-through forces. As training progressed, patients increased the number of targets acquired and spontaneously improved from one day to the next. Conclusions Interactive visuo-haptic environments could be beneficial for attention training for severe TBI patients in the early stages of recovery and warrants further and more prolonged clinical testing. PMID:23938101

  1. [Virtual reality in neurosurgery].

    Science.gov (United States)

    Tronnier, V M; Staubert, A; Bonsanto, M M; Wirtz, C R; Kunze, S

    2000-03-01

    Virtual reality enables users to immerse themselves in a virtual three-dimensional world and to interact in this world. The simulation is different from the kind in computer games, in which the viewer is active but acts in a nonrealistic world, or on the TV screen, where we are passively driven in an active world. In virtual reality elements look realistic, they change their characteristics and have almost real-world unpredictability. Virtual reality is not only implemented in gambling dens and the entertainment industry but also in manufacturing processes (cars, furniture etc.), military applications and medicine. Especially the last two areas are strongly correlated, because telemedicine or telesurgery was originated for military reasons to operate on war victims from a secure distance or to perform surgery on astronauts in an orbiting space station. In medicine and especially neurosurgery virtual-reality methods are used for education, surgical planning and simulation on a virtual patient.

  2. Virtual Reality in the Classroom.

    Science.gov (United States)

    Pantelidis, Veronica S.

    1993-01-01

    Considers the concept of virtual reality; reviews its history; describes general uses of virtual reality, including entertainment, medicine, and design applications; discusses classroom uses of virtual reality, including a software program called Virtus WalkThrough for use with a computer monitor; and suggests future possibilities. (34 references)…

  3. Virtual reality training and assessment in laparoscopic rectum surgery.

    Science.gov (United States)

    Pan, Jun J; Chang, Jian; Yang, Xiaosong; Liang, Hui; Zhang, Jian J; Qureshi, Tahseen; Howell, Robert; Hickish, Tamas

    2015-06-01

    Virtual-reality (VR) based simulation techniques offer an efficient and low cost alternative to conventional surgery training. This article describes a VR training and assessment system in laparoscopic rectum surgery. To give a realistic visual performance of interaction between membrane tissue and surgery tools, a generalized cylinder based collision detection and a multi-layer mass-spring model are presented. A dynamic assessment model is also designed for hierarchy training evaluation. With this simulator, trainees can operate on the virtual rectum with both visual and haptic sensation feedback simultaneously. The system also offers surgeons instructions in real time when improper manipulation happens. The simulator has been tested and evaluated by ten subjects. This prototype system has been verified by colorectal surgeons through a pilot study. They believe the visual performance and the tactile feedback are realistic. It exhibits the potential to effectively improve the surgical skills of trainee surgeons and significantly shorten their learning curve. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Simulation and training of lumbar punctures using haptic volume rendering and a 6DOF haptic device

    Science.gov (United States)

    Färber, Matthias; Heller, Julika; Handels, Heinz

    2007-03-01

    The lumbar puncture is performed by inserting a needle into the spinal chord of the patient to inject medicaments or to extract liquor. The training of this procedure is usually done on the patient guided by experienced supervisors. A virtual reality lumbar puncture simulator has been developed in order to minimize the training costs and the patient's risk. We use a haptic device with six degrees of freedom (6DOF) to feedback forces that resist needle insertion and rotation. An improved haptic volume rendering approach is used to calculate the forces. This approach makes use of label data of relevant structures like skin, bone, muscles or fat and original CT data that contributes information about image structures that can not be segmented. A real-time 3D visualization with optional stereo view shows the punctured region. 2D visualizations of orthogonal slices enable a detailed impression of the anatomical context. The input data consisting of CT and label data and surface models of relevant structures is defined in an XML file together with haptic rendering and visualization parameters. In a first evaluation the visible human male data has been used to generate a virtual training body. Several users with different medical experience tested the lumbar puncture trainer. The simulator gives a good haptic and visual impression of the needle insertion and the haptic volume rendering technique enables the feeling of unsegmented structures. Especially, the restriction of transversal needle movement together with rotation constraints enabled by the 6DOF device facilitate a realistic puncture simulation.

  5. Virtuality and Reality in Science

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1995-01-01

    This book compiles eight contributions devoted to the topical question about the relation between virtuality and reality. In the theoretical frame of quantum and relativistic particle physics, the concept of virtuality is used according to its strict and precise meaning. In this context, particles are generally invented before their discovery. Some famous historical experiments which led to the postulation and then the discovery of new particles are mentioned. These examples are used to illustrate and to discuss the concept of virtuality as well as the physical reality of virtual processes. But, how can the concept of virtuality in other scientific fields be applied ? In order to answer this question, the concepts of virtuality and reality are discussed in other branches of physics as well as in other fields such as geophysics, cosmology and biology. Philosophical and sociological implications of virtual realities are also considered. Moreover, in relation to virtuality and reality, the connections between modeling, simulation and experimentation, their respective roles, the advantages and risks of their use are discussed (in relation to nuclear sciences and geophysical problems) (N.T.)

  6. Virtual reality in education

    OpenAIRE

    Minocha, Shailey; Tudor, Ana-Despina

    2017-01-01

    In this workshop-presentation, we described the evolution of virtual reality technologies and our research from 3D virtual worlds, 3D virtual environments built in gaming environments such as Unity 3D, 360-degree videos, and mobile virtual reality via Google Expeditions. For each of these four technologies, we discussed the affordances of the technologies and how they contribute towards learning and teaching. We outlined the significance of students being aware of the different virtual realit...

  7. Design of a 4-DOF MR haptic master for application to robot surgery: virtual environment work

    Science.gov (United States)

    Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok

    2014-09-01

    This paper presents the design and control performance of a novel type of 4-degrees-of-freedom (4-DOF) haptic master in cyberspace for a robot-assisted minimally invasive surgery (RMIS) application. By using a controllable magnetorheological (MR) fluid, the proposed haptic master can have a feedback function for a surgical robot. Due to the difficulty in utilizing real human organs in the experiment, the cyberspace that features the virtual object is constructed to evaluate the performance of the haptic master. In order to realize the cyberspace, a volumetric deformable object is represented by a shape-retaining chain-linked (S-chain) model, which is a fast volumetric model and is suitable for real-time applications. In the haptic architecture for an RMIS application, the desired torque and position induced from the virtual object of the cyberspace and the haptic master of real space are transferred to each other. In order to validate the superiority of the proposed master and volumetric model, a tracking control experiment is implemented with a nonhomogenous volumetric cubic object to demonstrate that the proposed model can be utilized in real-time haptic rendering architecture. A proportional-integral-derivative (PID) controller is then designed and empirically implemented to accomplish the desired torque trajectories. It has been verified from the experiment that tracking the control performance for torque trajectories from a virtual slave can be successfully achieved.

  8. Design of a 4-DOF MR haptic master for application to robot surgery: virtual environment work

    International Nuclear Information System (INIS)

    Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok

    2014-01-01

    This paper presents the design and control performance of a novel type of 4-degrees-of-freedom (4-DOF) haptic master in cyberspace for a robot-assisted minimally invasive surgery (RMIS) application. By using a controllable magnetorheological (MR) fluid, the proposed haptic master can have a feedback function for a surgical robot. Due to the difficulty in utilizing real human organs in the experiment, the cyberspace that features the virtual object is constructed to evaluate the performance of the haptic master. In order to realize the cyberspace, a volumetric deformable object is represented by a shape-retaining chain-linked (S-chain) model, which is a fast volumetric model and is suitable for real-time applications. In the haptic architecture for an RMIS application, the desired torque and position induced from the virtual object of the cyberspace and the haptic master of real space are transferred to each other. In order to validate the superiority of the proposed master and volumetric model, a tracking control experiment is implemented with a nonhomogenous volumetric cubic object to demonstrate that the proposed model can be utilized in real-time haptic rendering architecture. A proportional-integral-derivative (PID) controller is then designed and empirically implemented to accomplish the desired torque trajectories. It has been verified from the experiment that tracking the control performance for torque trajectories from a virtual slave can be successfully achieved. (paper)

  9. Virtual Reality for Anxiety Disorders

    Directory of Open Access Journals (Sweden)

    Elif Uzumcu

    2018-03-01

    Full Text Available Virtual reality is a relatively new exposure tool that uses three-dimensional computer-graphics-based technologies which allow the individual to feel as if they are physically inside the virtual environment by misleading their senses. As virtual reality studies have become popular in the field of clinical psychology in recent years, it has been observed that virtual-reality-based therapies have a wide range of application areas, especially on anxiety disorders. Studies indicate that virtual reality can be more realistic than mental imagery and can create a stronger feeling of ԰resenceԻ that it is a safer starting point compared to in vivo exposure; and that it can be applied in a more practical and controlled manner. The aim of this review is to investigate exposure studies based on virtual reality in anxiety disorders (specific phobias, panic disorder and agoraphobias, generalized anxiety disorder, social phobia, posttraumatic stress disorder and obsessive compulsive disorder.

  10. Virtual reality neurosurgery: a simulator blueprint.

    Science.gov (United States)

    Spicer, Mark A; van Velsen, Martin; Caffrey, John P; Apuzzo, Michael L J

    2004-04-01

    This article details preliminary studies undertaken to integrate the most relevant advancements across multiple disciplines in an effort to construct a highly realistic neurosurgical simulator based on a distributed computer architecture. Techniques based on modified computational modeling paradigms incorporating finite element analysis are presented, as are current and projected efforts directed toward the implementation of a novel bidirectional haptic device. Patient-specific data derived from noninvasive magnetic resonance imaging sequences are used to construct a computational model of the surgical region of interest. Magnetic resonance images of the brain may be coregistered with those obtained from magnetic resonance angiography, magnetic resonance venography, and diffusion tensor imaging to formulate models of varying anatomic complexity. The majority of the computational burden is encountered in the presimulation reduction of the computational model and allows realization of the required threshold rates for the accurate and realistic representation of real-time visual animations. Intracranial neurosurgical procedures offer an ideal testing site for the development of a totally immersive virtual reality surgical simulator when compared with the simulations required in other surgical subspecialties. The material properties of the brain as well as the typically small volumes of tissue exposed in the surgical field, coupled with techniques and strategies to minimize computational demands, provide unique opportunities for the development of such a simulator. Incorporation of real-time haptic and visual feedback is approached here and likely will be accomplished soon.

  11. Virtual reality in surgical training.

    Science.gov (United States)

    Lange, T; Indelicato, D J; Rosen, J M

    2000-01-01

    Virtual reality in surgery and, more specifically, in surgical training, faces a number of challenges in the future. These challenges are building realistic models of the human body, creating interface tools to view, hear, touch, feel, and manipulate these human body models, and integrating virtual reality systems into medical education and treatment. A final system would encompass simulators specifically for surgery, performance machines, telemedicine, and telesurgery. Each of these areas will need significant improvement for virtual reality to impact medicine successfully in the next century. This article gives an overview of, and the challenges faced by, current systems in the fast-changing field of virtual reality technology, and provides a set of specific milestones for a truly realistic virtual human body.

  12. Haptic device development based on electro static force of cellulose electro active paper

    Science.gov (United States)

    Yun, Gyu-young; Kim, Sang-Youn; Jang, Sang-Dong; Kim, Dong-Gu; Kim, Jaehwan

    2011-04-01

    Haptic is one of well-considered device which is suitable for demanding virtual reality applications such as medical equipment, mobile devices, the online marketing and so on. Nowadays, many of concepts for haptic devices have been suggested to meet the demand of industries. Cellulose has received much attention as an emerging smart material, named as electro-active paper (EAPap). The EAPap is attractive for mobile haptic devices due to its unique characteristics in terms of low actuation power, suitability for thin devices and transparency. In this paper, we suggest a new concept of haptic actuator with the use of cellulose EAPap. Its performance is evaluated depending on various actuation conditions. As a result, cellulose electrostatic force actuator shows a large output displacement and fast response, which is suitable for mobile haptic devices.

  13. The force pyramid: a spatial analysis of force application during virtual reality brain tumor resection.

    Science.gov (United States)

    Azarnoush, Hamed; Siar, Samaneh; Sawaya, Robin; Zhrani, Gmaan Al; Winkler-Schwartz, Alexander; Alotaibi, Fahad Eid; Bugdadi, Abdulgadir; Bajunaid, Khalid; Marwa, Ibrahim; Sabbagh, Abdulrahman Jafar; Del Maestro, Rolando F

    2017-07-01

    OBJECTIVE Virtual reality simulators allow development of novel methods to analyze neurosurgical performance. The concept of a force pyramid is introduced as a Tier 3 metric with the ability to provide visual and spatial analysis of 3D force application by any instrument used during simulated tumor resection. This study was designed to answer 3 questions: 1) Do study groups have distinct force pyramids? 2) Do handedness and ergonomics influence force pyramid structure? 3) Are force pyramids dependent on the visual and haptic characteristics of simulated tumors? METHODS Using a virtual reality simulator, NeuroVR (formerly NeuroTouch), ultrasonic aspirator force application was continually assessed during resection of simulated brain tumors by neurosurgeons, residents, and medical students. The participants performed simulated resections of 18 simulated brain tumors with different visual and haptic characteristics. The raw data, namely, coordinates of the instrument tip as well as contact force values, were collected by the simulator. To provide a visual and qualitative spatial analysis of forces, the authors created a graph, called a force pyramid, representing force sum along the z-coordinate for different xy coordinates of the tool tip. RESULTS Sixteen neurosurgeons, 15 residents, and 84 medical students participated in the study. Neurosurgeon, resident and medical student groups displayed easily distinguishable 3D "force pyramid fingerprints." Neurosurgeons had the lowest force pyramids, indicating application of the lowest forces, followed by resident and medical student groups. Handedness, ergonomics, and visual and haptic tumor characteristics resulted in distinct well-defined 3D force pyramid patterns. CONCLUSIONS Force pyramid fingerprints provide 3D spatial assessment displays of instrument force application during simulated tumor resection. Neurosurgeon force utilization and ergonomic data form a basis for understanding and modulating resident force

  14. Virtual reality for dermatologic surgery: virtually a reality in the 21st century.

    Science.gov (United States)

    Gladstone, H B; Raugi, G J; Berg, D; Berkley, J; Weghorst, S; Ganter, M

    2000-01-01

    In the 20th century, virtual reality has predominantly played a role in training pilots and in the entertainment industry. Despite much publicity, virtual reality did not live up to its perceived potential. During the past decade, it has also been applied for medical uses, particularly as training simulators, for minimally invasive surgery. Because of advances in computer technology, virtual reality is on the cusp of becoming an effective medical educational tool. At the University of Washington, we are developing a virtual reality soft tissue surgery simulator. Based on fast finite element modeling and using a personal computer, this device can simulate three-dimensional human skin deformations with real-time tactile feedback. Although there are many cutaneous biomechanical challenges to solve, it will eventually provide more realistic dermatologic surgery training for medical students and residents than the currently used models.

  15. Endotracheal intubation: application of virtual reality to emergency medical services education.

    Science.gov (United States)

    Mayrose, James; Myers, Jeffrey W

    2007-01-01

    Virtual reality simulation has been identified as an emerging educational tool with significant potential to enhance teaching of residents and students in emergency clinical encounters and procedures. Endotracheal intubation represents a critical procedure for emergency care providers. Current methods of training include working with cadavers and mannequins, which have limitations in their representation of reality, ethical concerns, and overall availability with access, cost, and location of models. This paper will present a human airway simulation model designed for tracheal intubation and discuss the aspects that lend itself to use as an educational tool. This realistic and dynamic model is used to teach routine intubations, while future models will include more difficult airway management scenarios. This work provides a solid foundation for future versions of the intubation simulator, which will incorporate two haptic devices to allow for simultaneous control of the laryngoscope blade and endotracheal tube.

  16. Prototype of haptic device for sole of foot using magnetic field sensitive elastomer

    Science.gov (United States)

    Kikuchi, T.; Masuda, Y.; Sugiyama, M.; Mitsumata, T.; Ohori, S.

    2013-02-01

    Walking is one of the most popular activities and a healthy aerobic exercise for the elderly. However, if they have physical and / or cognitive disabilities, sometimes it is challenging to go somewhere they don't know well. The final goal of this study is to develop a virtual reality walking system that allows users to walk in virtual worlds fabricated with computer graphics. We focus on a haptic device that can perform various plantar pressures on users' soles of feet as an additional sense in the virtual reality walking. In this study, we discuss a use of a magnetic field sensitive elastomer (MSE) as a working material for the haptic interface on the sole. The first prototype with MSE was developed and evaluated in this work. According to the measurement of planter pressures, it was found that this device can perform different pressures on the sole of a light-weight user by applying magnetic field on the MSE. The result also implied necessities of the improvement of the magnetic circuit and the basic structure of the mechanism of the device.

  17. ProMIS Augmented Reality Training of Laparoscopic Procedures Face Validity

    NARCIS (Netherlands)

    Botden, Sanne M. B. I.; Buzink, Sonja N.; Schijven, Marlies P.; Jakimowicz, Jack J.

    2008-01-01

    Background: Conventional video trainers lack the ability to assess the trainee objectively, but offer modalities that are often missing in virtual reality simulation, such as realistic haptic feedback. The ProMIS augmented reality laparoscopic simulator retains the benefit of a traditional box

  18. ProMIS augmented reality training of laparoscopic procedures face validity

    NARCIS (Netherlands)

    Botden, Sanne M. B. I.; Buzink, Sonja N.; Schijven, Marlies P.; Jakimowicz, Jack J.

    2008-01-01

    BACKGROUND: Conventional video trainers lack the ability to assess the trainee objectively, but offer modalities that are often missing in virtual reality simulation, such as realistic haptic feedback. The ProMIS augmented reality laparoscopic simulator retains the benefit of a traditional box

  19. Faster simulated laparoscopic cholecystectomy with haptic feedback technology

    Directory of Open Access Journals (Sweden)

    Yiasemidou M

    2011-10-01

    Full Text Available Marina Yiasemidou, Daniel Glassman, Peter Vasas, Sarit Badiani, Bijendra Patel Barts and the London School of Medicine and Dentistry, Department of Upper GI Surgery, Barts and The Royal London Hospital, London, UK Background: Virtual reality simulators have been gradually introduced into surgical training. One of the enhanced features of the latest virtual simulators is haptic feedback. The usefulness of haptic feedback technology has been a matter of controversy in recent years. Previous studies have assessed the importance of haptic feedback in executing parts of a procedure or basic tasks, such as tissue grasping. The aim of this study was to assess the role of haptic feedback within a structured educational environment, based on the performance of junior surgical trainees after undergoing substantial simulation training. Methods: Novices, whose performance was assessed after several repetitions of a task, were recruited for this study. The performance of senior house officers at the last stage of a validated laparoscopic cholecystectomy curriculum was assessed. Nine senior house officers completed a validated laparoscopic cholecystectomy curriculum on a haptic simulator and nine on a nonhaptic simulator. Performance in terms of mean total time, mean total number of movements, and mean total path length at the last level of the validated curriculum (full procedure of laparoscopic cholecystectomy was compared between the two groups. Results: Haptic feedback significantly reduced the time required to complete the full procedure of laparoscopic cholecystectomy (mean total time for nonhaptic machine 608.83 seconds, mean total time for haptic machine 553.27 seconds; P = 0.019 while maintaining safety standards similar to those of the nonhaptic machine (mean total number of movements: nonhaptic machine 583.74, haptic machine 603.93, P = 0.145, mean total path length: for nonhaptic machine 1207.37 cm, for haptic machine 1262.36 cm, P = 0

  20. The Reality of Virtual Reality Product Development

    Science.gov (United States)

    Dever, Clark

    Virtual Reality and Augmented Reality are emerging areas of research and product development in enterprise companies. This talk will discuss industry standard tools and current areas of application in the commercial market. Attendees will gain insights into how to research, design, and (most importantly) ship, world class products. The presentation will recount the lessons learned to date developing a Virtual Reality tool to solve physics problems resulting from trying to perform aircraft maintenance on ships at sea.

  1. Haptic/graphic rehabilitation: integrating a robot into a virtual environment library and applying it to stroke therapy.

    Science.gov (United States)

    Sharp, Ian; Patton, James; Listenberger, Molly; Case, Emily

    2011-08-08

    Recent research that tests interactive devices for prolonged therapy practice has revealed new prospects for robotics combined with graphical and other forms of biofeedback. Previous human-robot interactive systems have required different software commands to be implemented for each robot leading to unnecessary developmental overhead time each time a new system becomes available. For example, when a haptic/graphic virtual reality environment has been coded for one specific robot to provide haptic feedback, that specific robot would not be able to be traded for another robot without recoding the program. However, recent efforts in the open source community have proposed a wrapper class approach that can elicit nearly identical responses regardless of the robot used. The result can lead researchers across the globe to perform similar experiments using shared code. Therefore modular "switching out"of one robot for another would not affect development time. In this paper, we outline the successful creation and implementation of a wrapper class for one robot into the open-source H3DAPI, which integrates the software commands most commonly used by all robots.

  2. Sensorimotor enhancement with a mixed reality system for balance and mobility rehabilitation.

    Science.gov (United States)

    Fung, Joyce; Perez, Claire F

    2011-01-01

    We have developed a mixed reality system incorporating virtual reality (VR), surface perturbations and light touch for gait rehabilitation. Haptic touch has emerged as a novel and efficient technique to improve postural control and dynamic stability. Our system combines visual display with the manipulation of physical environments and addition of haptic feedback to enhance balance and mobility post stroke. A research study involving 9 participants with stroke and 9 age-matched healthy individuals show that the haptic cue provided while walking is an effective means of improving gait stability in people post stroke, especially during challenging environmental conditions such as downslope walking.

  3. Virtual reality musical instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low cost technologies has created a wide interest in virtual reality (VR), but how to design and evaluate multisensory interactions in VR remains as a challenge. In this paper, we focus on virtual reality musical instruments, present an overview of our...

  4. Haptic Feedback in Motor Hand Virtual Therapy Increases Precision and Generates Less Mental Workload

    Directory of Open Access Journals (Sweden)

    Cristina Ramírez-Fernández

    2015-10-01

    Full Text Available In this work we show that haptic feedback in upper limb motor therapy improves performance and generates a lower mental workload. To demonstrate this, two groups of participants (healthy adults and elders with hand motor problems used a low-cost haptic device (Novint Falcon and a non-robotic device (Leap Motion Controller. Participants conducted the same rehabilitation task by using a non-immersive virtual environment. Results show significant differences for all participants regarding precision on the use of the haptic feedback device. Additionally, participants in the older adult group demonstrated a lower mental workload while using the haptic device (Novint Falcon. Finally, qualitative results show that participants preferred to conduct their therapy exercises by using the haptic device, as they found it more useful, easier to use and easier to learn

  5. Surgery applications of virtual reality

    Science.gov (United States)

    Rosen, Joseph

    1994-01-01

    Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.

  6. Military use of Virtual Reality

    OpenAIRE

    Gullaksen, Rasmus; Nielsen, Kristoffer Merrild; Siegel, Viktor; Labuz, Patrick Ravn

    2017-01-01

    This project is sparked by the contemporary evolvement that has been happening with consumer Virtual Reality technology and an interest for looking into the military industrial complex. The paper describes how Virtual Reality as a concept has evolved historically since the 19th century and how it has since entered the military and consumer market. The implementation of Virtual Reality is described in order to analyse it by using Technology-Oriented Scenario Analysis, as described by Francesco...

  7. Live-action Virtual Reality Games

    OpenAIRE

    Valente, Luis; Clua, Esteban; Silva, Alexandre Ribeiro; Feijó, Bruno

    2016-01-01

    This paper proposes the concept of "live-action virtual reality games" as a new genre of digital games based on an innovative combination of live-action, mixed-reality, context-awareness, and interaction paradigms that comprise tangible objects, context-aware input devices, and embedded/embodied interactions. Live-action virtual reality games are "live-action games" because a player physically acts out (using his/her real body and senses) his/her "avatar" (his/her virtual representation) in t...

  8. Reasons to Use Virtual Reality in Education and Training Courses and a Model to Determine When to Use Virtual Reality

    OpenAIRE

    Veronica S. Pantelidis

    2009-01-01

    Many studies have been conducted on the use of virtual reality in education and training. Thisarticle lists examples of such research. Reasons to use virtual reality are discussed.Advantages and disadvantages of using virtual reality are presented, as well as suggestions onwhen to use and when not to use virtual reality. A model that can be used to determine whento use virtual reality in an education or training course is presented.

  9. Control of an ER haptic master in a virtual slave environment for minimally invasive surgery applications

    International Nuclear Information System (INIS)

    Han, Young-Min; Choi, Seung-Bok

    2008-01-01

    This paper presents the control performance of an electrorheological (ER) fluid-based haptic master device connected to a virtual slave environment that can be used for minimally invasive surgery (MIS). An already developed haptic joint featuring controllable ER fluid and a spherical joint mechanism is adopted for the master system. Medical forceps and an angular position measuring device are devised and integrated with the joint to establish the MIS master system. In order to embody a human organ in virtual space, a volumetric deformable object is used. The virtual object is then mathematically formulated by a shape-retaining chain-linked (S-chain) model. After evaluating the reflection force, computation time and compatibility with real-time control, the haptic architecture for MIS is established by incorporating the virtual slave with the master device so that the reflection force for the object of the virtual slave and the desired position for the master operator are transferred to each other. In order to achieve the desired force trajectories, a sliding mode controller is formulated and then experimentally realized. Tracking control performances for various force trajectories are evaluated and presented in the time domain

  10. [Virtual reality in medical education].

    Science.gov (United States)

    Edvardsen, O; Steensrud, T

    1998-02-28

    Virtual reality technology has found new applications in industry over the last few years. Medical literature has for several years predicted a break-through in this technology for medical education. Although there is a great potential for this technology in medical education, there seems to be a wide gap between expectations and actual possibilities at present. State of the technology was explored by participation at the conference "Medicine meets virtual reality V" (San Diego Jan. 22-25 1997) and a visit to one of the leading laboratories on virtual reality in medical education. In this paper we introduce some of the basic terminology and technology, review some of the topics covered by the conference, and describe projects running in one of the leading laboratories on virtual reality technology for medical education. With this information in mind, we discuss potential applications of the current technology in medical education. Current virtual reality systems are judged to be too costly and their usefulness in education too limited for routine use in medical education.

  11. Drafting of the dismantling operations of the MAR 200 workshop with the help of virtual reality

    International Nuclear Information System (INIS)

    Chabal, C.; Soulabaille, Y.; Garnier, T.; Callixte, O.

    2014-01-01

    In order to optimize future dismantling operations of nuclear installations virtual reality allows the validation of predefined scenarios and their adequacy with the environment. CEA uses an immersion and interactive room to validate maintenance and dismantling operations. The equipment of this room is composed of a video wall that gives a 3-dimensional view of the virtual environment, and of a system for motion capture. For the simulation of handling operations a haptic interface has been designed, it allows the user to receive a tactic and effort-feeling feed back. The immersion is completed by a phonic ambience that creates sounds for virtual operations. The use of the immersion room for optimizing the dismantling of a spent fuel dissolver (MAR 200) used in hot cell is presented. (A.C.)

  12. I'm Not a Real Doctor, but I Play One in Virtual Reality: Implications of Virtual Reality for Judgments about Reality.

    Science.gov (United States)

    Shapiro, Michael A.; McDonald, Daniel G.

    1992-01-01

    Shows that communication and social psychology research in the past 100 years have identified 2 different aspects of reality evaluation. Outlines the critical elements to form a theory of media reality effects. Extends that theory to include virtual reality, and shows how virtual reality will be an important tool for investigating these effects.…

  13. A haptic interface for virtual simulation of endoscopic surgery.

    Science.gov (United States)

    Rosenberg, L B; Stredney, D

    1996-01-01

    Virtual reality can be described as a convincingly realistic and naturally interactive simulation in which the user is given a first person illusion of being immersed within a computer generated environment While virtual reality systems offer great potential to reduce the cost and increase the quality of medical training, many technical challenges must be overcome before such simulation platforms offer effective alternatives to more traditional training means. A primary challenge in developing effective virtual reality systems is designing the human interface hardware which allows rich sensory information to be presented to users in natural ways. When simulating a given manual procedure, task specific human interface requirements dictate task specific human interface hardware. The following paper explores the design of human interface hardware that satisfies the task specific requirements of virtual reality simulation of Endoscopic surgical procedures. Design parameters were derived through direct cadaver studies and interviews with surgeons. Final hardware design is presented.

  14. A Review on Virtual Reality

    OpenAIRE

    Pallavi Halarnkar; Sahil Shah; Harsh Shah; Hardik Shah; Anuj Shah

    2012-01-01

    Virtual Reality is a major asset and aspect of our future. It is the key to experiencing, feeling and touching the past, present and the future. It is the medium of creating our own world, our own customized reality. It could range from creating a video game to having a virtual stroll around the universe, from walking through our own dream house to experiencing a walk on an alien planet. With virtual reality, we can experience the most intimidating and gruelling situations by playing safe and...

  15. Reality Check: Basics of Augmented, Virtual, and Mixed Reality.

    Science.gov (United States)

    Brigham, Tara J

    2017-01-01

    Augmented, virtual, and mixed reality applications all aim to enhance a user's current experience or reality. While variations of this technology are not new, within the last few years there has been a significant increase in the number of artificial reality devices or applications available to the general public. This column will explain the difference between augmented, virtual, and mixed reality and how each application might be useful in libraries. It will also provide an overview of the concerns surrounding these different reality applications and describe how and where they are currently being used.

  16. The Role of Virtual Articulator in Prosthetic and Restorative Dentistry

    Science.gov (United States)

    Aljanakh, Mohammad

    2014-01-01

    Virtual reality is a computer based technology linked with the future of dentistry and dental practice. The virtual articulator is one such application in prosthetic and restorative dentistry based on virtual reality that will significantly reduce the limitations of the mechanical articulator, and by simulation of real patient data, allow analyses with regard to static and dynamic occlusion as well as to jaw relation. It is the purpose of this article to present the concepts and strategies for a future replacement of the mechanical articulator by a virtual one. Also, a brief note on virtual reality haptic system has been highlighted along with newly developed touch enabled virtual articulator. PMID:25177664

  17. Virtual realities and education

    Directory of Open Access Journals (Sweden)

    Curcio Igor D.D.

    2016-12-01

    Full Text Available The purpose of this article is to highlight the state of the art of virtual reality, augmented reality, mixed reality technologies and their applications in formal education. We also present a selected list of case studies that prove the utility of these technologies in the context of formal education. Furthermore, as byproduct, the mentioned case studies show also that, although the industry is able to develop very advanced virtual environment technologies, their pedagogical implications are strongly related to a well-designed theoretical framework.

  18. Reasons to Use Virtual Reality in Education and Training Courses and a Model to Determine When to Use Virtual Reality

    Science.gov (United States)

    Pantelidis, Veronica S.

    2009-01-01

    Many studies have been conducted on the use of virtual reality in education and training. This article lists examples of such research. Reasons to use virtual reality are discussed. Advantages and disadvantages of using virtual reality are presented, as well as suggestions on when to use and when not to use virtual reality. A model that can be…

  19. Virtual Reality Hysteroscopy

    Science.gov (United States)

    Levy

    1996-08-01

    New interactive computer technologies are having a significant influence on medical education, training, and practice. The newest innovation in computer technology, virtual reality, allows an individual to be immersed in a dynamic computer-generated, three-dimensional environment and can provide realistic simulations of surgical procedures. A new virtual reality hysteroscope passes through a sensing device that synchronizes movements with a three-dimensional model of a uterus. Force feedback is incorporated into this model, so the user actually experiences the collision of an instrument against the uterine wall or the sensation of the resistance or drag of a resectoscope as it cuts through a myoma in a virtual environment. A variety of intrauterine pathologies and procedures are simulated, including hyperplasia, cancer, resection of a uterine septum, polyp, or myoma, and endometrial ablation. This technology will be incorporated into comprehensive training programs that will objectively assess hand-eye coordination and procedural skills. It is possible that by incorporating virtual reality into hysteroscopic training programs, a decrease in the learning curve and the number of complications presently associated with the procedures may be realized. Prospective studies are required to assess these potential benefits.

  20. How to Build an Embodiment Lab: Achieving Body Representation Illusions in Virtual Reality

    Directory of Open Access Journals (Sweden)

    Bernhard eSpanlang

    2014-11-01

    Full Text Available Advances in computer graphics algorithms and virtual reality (VR systems, together with the reduction in cost of associated equipment, have led scientists to consider VR as a useful tool for conducting experimental studies in fields such as neuroscience and experimental psychology. In particular virtual body ownership, where the feeling of ownership over a virtual body is elicited in the participant, has become a useful tool in the study of body representation, in cognitive neuroscience and psychology, concerned with how the brain represents the body. Although VR has been shown to be a useful tool for exploring body ownership illusions, integrating the various technologies necessary for such a system can be daunting. In this paper we discuss the technical infrastructure necessary to achieve virtual embodiment. We describe a basic VR system and how it may be used for this purpose, and then extend this system with the introduction of real-time motion capture, a simple haptics system and the integration of physiological and brain electrical activity recordings.

  1. Applied virtual reality

    International Nuclear Information System (INIS)

    Yule, I.Y.; Lee, D.J.

    1996-01-01

    To reduce plant down time during irradiated fuel cell dismantling at Torness Power Station, a new visualisation technique has been used for the manipulator. Complex computer graphics packages were used to provide a ''Virtual Reality'' environment which allowed the Irradiated Fuel Dismantling Cell to be simulated. Significant cost savings have been achieved due to reductions in lost output. The virtual reality environment is at present being extended to the design and deployment of a new manipulator for in-vessel inspection of the boiler. (UK)

  2. Virtual reality in pediatric psychology

    OpenAIRE

    Parsons, T. D.; Riva, G.; Parsons, S. J.; Mantovani, F.; Newbutt, N.; Lin, L.; Venturini, E.; Hall, T.

    2017-01-01

    Virtual reality technologies allow for controlled simulations of affectively engaging background narratives. These virtual environments offer promise for enhancing emotionally relevant experiences and social interactions. Within this context virtual reality can allow instructors, therapists, neuropsychologists, and service providers to offer safe, repeatable, and diversifiable interventions that can benefit assessments and learning in both typically developing children and children with disab...

  3. STUDY PAPER ON EDUCATION USING VIRTUAL REALITY.

    OpenAIRE

    Anamika Modi*; Ayush Jaiswal; Princy Jain

    2016-01-01

    This report provides a short study of the field of virtual reality, highlighting application domains, technological requirements, and currently available solutions. In today’s market, virtual reality is playing an crucial role for the humans. If we consider the foreign countries than using virtual reality they try to create the same feelings not only for the school children’s as well as for the upper education. In this paper, we have study the technologies used in virtual reality.

  4. Image Based Rendering and Virtual Reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  5. Virtual reality simulators and training in laparoscopic surgery.

    Science.gov (United States)

    Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos

    2015-01-01

    Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Preliminarily measurement and analysis of sawing forces in fresh cadaver mandible using reciprocating saw for reality-based haptic feedback.

    Science.gov (United States)

    Yua, Dedong; Zhengb, Xiaohu; Chenc, Ming; Shend, Steve G F

    2012-05-01

    The aim of the study was to preliminarily measure and analyze the cutting forces in fresh Chinese cadaver mandible using a clinically widely used reciprocating saw for reality-based haptic feedback. Eight mandibles were taken from fresh Chinese cadavers, 4 females and 4 males, aged between 59 and 95 years. A set of sawing experiments, using a surgery Stryker micro-reciprocating saw and Kistler piezoelectric dynamometer, was carried out by a CNC machining center. Under different vibration frequencies of saw and feeding rates measured from orthognathic surgery, sawing forces were recorded by a signal acquisition system. Remarkably different sawing forces were measured from different cadavers. Feed and vibration frequency of the reciprocating saw could determine the cutting forces only on 1 body. To reduce the impact of bone thickness changes on the cutting force measurements, all the cutting force data should be converted to the force of unit cutting length. The vibration frequency of haptic feedback system is determined by main cutting forces. Fast Fourier transform method can be used to calculate the frequency of this system. To simulate surgery in higher fidelity, all the sawing forces from the experiment should be amended by experienced surgeons before use in virtual reality surgery simulator. Sawing force signals of different ages for force feedback were measured successfully, and more factors related to the bone mechanical properties, such as bone density, should be concerned in the future.

  7. Cranial implant design using augmented reality immersive system.

    Science.gov (United States)

    Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary

    2007-01-01

    Software tools that utilize haptics for sculpting precise fitting cranial implants are utilized in an augmented reality immersive system to create a virtual working environment for the modelers. The virtual environment is designed to mimic the traditional working environment as closely as possible, providing more functionality for the users. The implant design process uses patient CT data of a defective area. This volumetric data is displayed in an implant modeling tele-immersive augmented reality system where the modeler can build a patient specific implant that precisely fits the defect. To mimic the traditional sculpting workspace, the implant modeling augmented reality system includes stereo vision, viewer centered perspective, sense of touch, and collaboration. To achieve optimized performance, this system includes a dual-processor PC, fast volume rendering with three-dimensional texture mapping, the fast haptic rendering algorithm, and a multi-threading architecture. The system replaces the expensive and time consuming traditional sculpting steps such as physical sculpting, mold making, and defect stereolithography. This augmented reality system is part of a comprehensive tele-immersive system that includes a conference-room-sized system for tele-immersive small group consultation and an inexpensive, easily deployable networked desktop virtual reality system for surgical consultation, evaluation and collaboration. This system has been used to design patient-specific cranial implants with precise fit.

  8. A virtual reality based simulator for learning nasogastric tube placement.

    Science.gov (United States)

    Choi, Kup-Sze; He, Xuejian; Chiang, Vico Chung-Lim; Deng, Zhaohong

    2015-02-01

    Nasogastric tube (NGT) placement is a common clinical procedure where a plastic tube is inserted into the stomach through the nostril for feeding or drainage. However, the placement is a blind process in which the tube may be mistakenly inserted into other locations, leading to unexpected complications or fatal incidents. The placement techniques are conventionally acquired by practising on unrealistic rubber mannequins or on humans. In this paper, a virtual reality based training simulation system is proposed to facilitate the training of NGT placement. It focuses on the simulation of tube insertion and the rendering of the feedback forces with a haptic device. A hybrid force model is developed to compute the forces analytically or numerically under different conditions, including the situations when the patient is swallowing or when the tube is buckled at the nostril. To ensure real-time interactive simulations, an offline simulation approach is adopted to obtain the relationship between the insertion depth and insertion force using a non-linear finite element method. The offline dataset is then used to generate real-time feedback forces by interpolation. The virtual training process is logged quantitatively with metrics that can be used for assessing objective performance and tracking progress. The system has been evaluated by nursing professionals. They found that the haptic feeling produced by the simulated forces is similar to their experience during real NGT insertion. The proposed system provides a new educational tool to enhance conventional training in NGT placement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Virtual Reality Musical Instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low-cost technologies have created a wide interest in virtual reality. In the field of computer music, the term “virtual musical instruments” has been used for a long time to describe software simulations, extensions of existing musical instruments......, and ways to control them with new interfaces for musical expression. Virtual reality musical instruments (VRMIs) that include a simulated visual component delivered via a head-mounted display or other forms of immersive visualization have not yet received much attention. In this article, we present a field...

  10. A Haptic Feedback Scheme to Accurately Position a Virtual Wrist Prosthesis Using a Three-Node Tactor Array.

    Directory of Open Access Journals (Sweden)

    Andrew Erwin

    Full Text Available In this paper, a novel haptic feedback scheme, used for accurately positioning a 1DOF virtual wrist prosthesis through sensory substitution, is presented. The scheme employs a three-node tactor array and discretely and selectively modulates the stimulation frequency of each tactor to relay 11 discrete haptic stimuli to the user. Able-bodied participants were able to move the virtual wrist prosthesis via a surface electromyography based controller. The participants evaluated the feedback scheme without visual or audio feedback and relied solely on the haptic feedback alone to correctly position the hand. The scheme was evaluated through both normal (perpendicular and shear (lateral stimulations applied on the forearm. Normal stimulations were applied through a prototype device previously developed by the authors while shear stimulations were generated using an ubiquitous coin motor vibrotactor. Trials with no feedback served as a baseline to compare results within the study and to the literature. The results indicated that using normal and shear stimulations resulted in accurately positioning the virtual wrist, but were not significantly different. Using haptic feedback was substantially better than no feedback. The results found in this study are significant since the feedback scheme allows for using relatively few tactors to relay rich haptic information to the user and can be learned easily despite a relatively short amount of training. Additionally, the results are important for the haptic community since they contradict the common conception in the literature that normal stimulation is inferior to shear. From an ergonomic perspective normal stimulation has the potential to benefit upper limb amputees since it can operate at lower frequencies than shear-based vibrotactors while also generating less noise. Through further tuning of the novel haptic feedback scheme and normal stimulation device, a compact and comfortable sensory substitution

  11. Katalog Penjualan Rumah Berbasis Android Menggunakan Teknologi Augmented Reality dan Virtual Reality

    Directory of Open Access Journals (Sweden)

    Alders Paliling

    2017-02-01

    Full Text Available Penerapan teknologi augmented reality kian diminati oleh pihak produsen untuk memasarkan produk  yang dihasilkan. Teknologi augmented reality mampu meproyeksikan objek dua dimensi ataupun tiga dimensi kedalam lingkungan nyata. Teknologi virtual reality mampu membawa pengguna masuk kedalam lingkungan virtual sehingga pengguna merasa berada dalam lingkungan virtual. Penelitian ini menggunakan teknologi augmented reality yang mampu memproyeksikan objek tiga dimensi rumah sehingga katalog menjadi lebih nyata,  dan teknologi virtual reality yang membuat pengguna berinteraksi langsung dengan objek tiga dimensi rumah dan merasa berada di dalam rumah. Aplikasi yang dibangun memanfaatkan sensor accelerometer yang tertanam dalam perangkat mobile android yang memungkinkan pengguna melihat seisi ruangan dengan memiringkan perangkat mobile android kekiri dan kekanan. Jumlah kamera virtual yang digunakan berjumlah lima yang diletakkan di ruang tamu, ruang keluarga, ruang kamar utama, ruang kamar anak, dan ruang dapur. Aplikasi ini berjalan pada platform android dan menggunakan personal komputer sebagai server yang menyimpan data informasi rumah. Dengan adanya aplikasi ini pengguna dapat merasakan suasana berbeda dalam melihat sebuah katalog. . Kata kunci—Augmentd Reality, Virtual Reality, Katalog, Android

  12. Haptics in periodontics

    Directory of Open Access Journals (Sweden)

    Savita Abdulpur Mallikarjun

    2014-01-01

    Full Text Available Throughout history, education has evolved, and new teaching/learning methods have been developed. These methods have helped us come a long way in understanding the pathogenesis, diagnosis, and treatment of diseases of the oral cavity. However, there is still no one good way to render a student/clinician the tactile sense for detecting calculus/caries or placing the incisions or detecting the smoothness of a restoration or any treatment procedures before entering the clinics. In the education field, to improve the tactile sensation, the sense of touch and force-feedback can offer great improvements to the existing learning methods, thus enhancing the quality of education procedures. The concept of Haptics, which is extensively in use and indispensable in other fields like aviation, telecommunication etc., is now making its way into dentistry. Against this background, the following write-up intends to provide a glimpse of the coming wave of Haptics - A virtual reality system in dental education and discusses the strengths and weak points of this system.

  13. Application of Virtual Reality to Radiation Protection

    International Nuclear Information System (INIS)

    Lamela, B.; Felipe, A.; Sanchez-Mayoral, M. L.; Mreino, A.; Sarti, F.

    2004-01-01

    In order to optimize the operations and procedures in several aspects of a Nuclear Power Plants, Iberdrola Ingenieria y Consultoria (Iberinco) has been developed some projects with Virtual Reality: CIPRES, ACEWO, TILOS and SICOMORO. With the experience acquired in these projects, Iberinco has checked the utility and advantageous of Virtual Reality applications that could have a direct application to Radiation Protection. With Virtual Reality it is possible to optimize the procedures involved in several critical aspects of the Plant Management. A training program bases on Virtual Reality systems could be one of the most important application. In Emergency situations the time of reaction is very important and in order to reduce it and dose, Virtual Reality is a very important tool, that could be used for training and to guide response team actions. Finally, the reduction of dose to workers, in a NPP, and patients, in hospital, is one of the most important application of Virtual Reality. (Author) 5 refs

  14. Virtual reality for spherical images

    Science.gov (United States)

    Pilarczyk, Rafal; Skarbek, Władysław

    2017-08-01

    Paper presents virtual reality application framework and application concept for mobile devices. Framework uses Google Cardboard library for Android operating system. Framework allows to create virtual reality 360 video player using standard OpenGL ES rendering methods. Framework provides network methods in order to connect to web server as application resource provider. Resources are delivered using JSON response as result of HTTP requests. Web server also uses Socket.IO library for synchronous communication between application and server. Framework implements methods to create event driven process of rendering additional content based on video timestamp and virtual reality head point of view.

  15. [Virtual reality therapy in anxiety disorders].

    Science.gov (United States)

    Mitrousia, V; Giotakos, O

    2016-01-01

    During the last decade a number of studies have been conducted in order to examine if virtual reality exposure therapy can be an alternative form of therapy for the treatment of mental disorders and particularly for the treatment of anxiety disorders. Imaginal exposure therapy, which is one of the components of Cognitive Behavioral Therapy, cannot be easily applied to all patients and in cases like those virtual reality can be used as an alternative or a supportive psychotherapeutic technique. Most studies using virtual reality have focused on anxiety disorders, mainly in specific phobias, but some extend to other disorders such as eating disorders, drug dependence, pain control and palliative care and rehabilitation. Main characteristics of virtual reality therapy are: "interaction", "immersion", and "presence". High levels of "immersion" and "presence" are associated with increased response to exposure therapy in virtual environments, as well as better therapeutic outcomes and sustained therapeutic gains. Typical devices that are used in order patient's immersion to be achieved are the Head-Mounted Displays (HMD), which are only for individual use, and the computer automatic virtual environment (CAVE), which is a multiuser. Virtual reality therapy's disadvantages lie in the difficulties that arise due to the demanded specialized technology skills, devices' cost and side effects. Therapists' training is necessary in order for them to be able to manipulate the software and the hardware and to adjust it to each case's needs. Devices' cost is high but as technology continuously improves it constantly decreases. Immersion during virtual reality therapy can induce mild and temporary side effects such as nausea, dizziness or headache. Until today, however, experience shows that virtual reality offers several advantages. Patient's avoidance to be exposed in phobic stimuli is reduced via the use of virtual reality since the patient is exposed to them as many times as he

  16. Virtual reality in surgery and medicine.

    Science.gov (United States)

    Chinnock, C

    1994-01-01

    This report documents the state of development of enhanced and virtual reality-based systems in medicine. Virtual reality systems seek to simulate a surgical procedure in a computer-generated world in order to improve training. Enhanced reality systems seek to augment or enhance reality by providing improved imaging alternatives for specific patient data. Virtual reality represents a paradigm shift in the way we teach and evaluate the skills of medical personnel. Driving the development of virtual reality-based simulators is laparoscopic abdominal surgery, where there is a perceived need for better training techniques; within a year, systems will be fielded for second-year residency students. Further refinements over perhaps the next five years should allow surgeons to evaluate and practice new techniques in a simulator before using them on patients. Technical developments are rapidly improving the realism of these machines to an amazing degree, as well as bringing the price down to affordable levels. In the next five years, many new anatomical models, procedures, and skills are likely to become available on simulators. Enhanced reality systems are generally being developed to improve visualization of specific patient data. Three-dimensional (3-D) stereovision systems for endoscopic applications, head-mounted displays, and stereotactic image navigation systems are being fielded now, with neurosurgery and laparoscopic surgery being major driving influences. Over perhaps the next five years, enhanced and virtual reality systems are likely to merge. This will permit patient-specific images to be used on virtual reality simulators or computer-generated landscapes to be input into surgical visualization instruments. Percolating all around these activities are developments in robotics and telesurgery. An advanced information infrastructure eventually will permit remote physicians to share video, audio, medical records, and imaging data with local physicians in real time

  17. Simulators and virtual reality in surgical education.

    Science.gov (United States)

    Chou, Betty; Handa, Victoria L

    2006-06-01

    This article explores the pros and cons of virtual reality simulators, their abilities to train and assess surgical skills, and their potential future applications. Computer-based virtual reality simulators and more conventional box trainers are compared and contrasted. The virtual reality simulator provides objective assessment of surgical skills and immediate feedback further to enhance training. With this ability to provide standardized, unbiased assessment of surgical skills, the virtual reality trainer has the potential to be a tool for selecting, instructing, certifying, and recertifying gynecologists.

  18. The ethnography of virtual reality

    Directory of Open Access Journals (Sweden)

    Gavrilović Ljiljana 1

    2004-01-01

    Full Text Available This paper discusses possible application of ethnographic research in the realm of virtual reality, especially in the relationship between cultures in virtual communities. This represents an entirely new area of ethnographic research and therefore many adjustments in the research design are needed for example, a development of a specific method of data gathering and tools for their verification. A virtual, cyber space is a version of social space more or less synchronous with it, but without the, "real", that is, physical presence of the people who create it. This virtual reality, defined and bounded by virtual space, is in fact real - and though we are not able to observe real, physical parameters of its existence, we can perceive its consequences. In sum, an innovative ethnographic research method is fully applicable for exploring the realm of virtual reality; in order to do so we need to expand, in addition to the new research design and methods, the field of science itself.

  19. Virtual reality and planetary exploration

    Science.gov (United States)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  20. Virtual Reality and Public Administration

    Directory of Open Access Journals (Sweden)

    István TÓZSA

    2013-02-01

    Full Text Available This study serves as an introduction to how virtual reality systems could be applied in public administration and what research tasks would be necessary to accomplish a project. E-government solutions began to emerge in public administration approximately a decade ago all over the developed world. Administration service facilities via the Internet did not attract many customers, because of the digital divide. E-government solutions were extended to mobile devices as well, but the expected breakthrough of usage has not ensued. The virtual reality form of public administration services recommended in this study has the most attractive outlay and the simplest navigation tools if compared to ‘traditional’ Internet based e-government. Thus, in accordance with the worldwide amazingly quick spread of the virtual reality systems of Second Life and 3 D types of entertainment, virtual reality applications in public administration could rely on a wide range of acceptance as well.

  1. Virtual reality and planetary exploration

    Science.gov (United States)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  2. Learning Rationales and Virtual Reality Technology in Education.

    Science.gov (United States)

    Chiou, Guey-Fa

    1995-01-01

    Defines and describes virtual reality technology and differentiates between virtual learning environment, learning material, and learning tools. Links learning rationales to virtual reality technology to pave conceptual foundations for application of virtual reality technology education. Constructivism, case-based learning, problem-based learning,…

  3. The Virtual Reality Roving Vehicle Project.

    Science.gov (United States)

    Winn, William

    1995-01-01

    Describes the Virtual Reality Roving Vehicle project developed at the University of Washington to teach students in grades 4 through 12 about virtual reality. Topics include teacher workshops; virtual worlds created by students; learning outcomes compared with traditional instruction; and the effect of student characteristics, including gender, on…

  4. Virtual Reality: A Definition History - A Personal Essay

    OpenAIRE

    Bryson, Steve

    2013-01-01

    This essay, written in 1998 by an active participant in both virtual reality development and the virtual reality definition debate, discusses the definition of the phrase "Virtual Reality" (VR). I start with history from a personal perspective, concentrating on the debate between the "Virtual Reality" and "Virtual Environment" labels in the late 1980's and early 1990's. Definitions of VR based on specific technologies are shown to be unsatisfactory. I propose the following definition of VR, b...

  5. Virtual Reality as a Problem of the Electronic Economy.

    OpenAIRE

    Peter Koslowski

    2004-01-01

    Two concepts of virtual reality are competing in the cyber world, virtual reality as total adaptability and virtual reality as the simulation of possible worlds. Virtuality as adaptability in industrial production leads to a closer consideration of individual con-sumer demand and to de-massified production. It implies a stronger reference of pro-duction to the reality of consumer needs. The aesthetic concept of virtual reality as pos-sible words and fictional realities can imply a loss of rea...

  6. Virtual Reality Design: How Head-Mounted Displays Change Design Paradigms of Virtual Reality Worlds

    Directory of Open Access Journals (Sweden)

    Christian Stein

    2016-09-01

    Full Text Available With the upcoming generation of virtual reality HMDs, new virtual worlds, scenarios, and games are created especially for them. These are no longer bound to a remote screen or a relatively static user, but to an HMD as a more immersive device. This article discusses requirements for virtual scenarios implemented in new-generation HMDs to achieve a comfortable user experience. Furthermore, the effects of positional tracking are introduced and the relation between the user’s virtual and physical body is analyzed. The observations made are exemplified by existing software prototypes. They indicate how the term “virtual reality,” with all its loaded connotations, may be reconceptualized to express the peculiarities of HMDs in the context of gaming, entertainment, and virtual experiences.

  7. Virtual Reality, Combat, and Communication.

    Science.gov (United States)

    Thrush, Emily Austin; Bodary, Michael

    2000-01-01

    Presents a brief examination of the evolution of virtual reality devices that illustrates how the development of this new medium is influenced by emerging technologies and by marketing pressures. Notes that understanding these influences may help prepare for the role of technical communicators in building virtual reality applications for education…

  8. Interaction with virtual crowd in Immersive and semi‐Immersive Virtual Reality systems

    OpenAIRE

    Kyriakou, Marios; Pan, Xueni; Chrysanthou, Yiorgos

    2016-01-01

    This study examines attributes of virtual human behavior that may increase the plausibility of a simulated crowd and affect the user's experience in Virtual Reality. Purpose-developed experiments in both Immersive and semi-Immersive Virtual Reality systems queried the impact of collision and basic interaction between real-users and the virtual crowd and their effect on the apparent realism and ease of navigation within Virtual Reality (VR). Participants' behavior and subjective measurements i...

  9. When Rural Reality Goes Virtual.

    Science.gov (United States)

    Husain, Dilshad D.

    1998-01-01

    In rural towns where sparse population and few business are barriers, virtual reality may be the only way to bring work-based learning to students. A partnership between a small-town high school, the Ohio Supercomputer Center, and a high-tech business will enable students to explore the workplace using virtual reality. (JOW)

  10. Virtual and augmented reality for training on maintenance

    International Nuclear Information System (INIS)

    Gonzalez, F.

    2001-01-01

    This paper presents two projects focused to support training on maintenance using new technologies. Both projects aims at specifying. designing, developing, and demonstrating prototypes allowing computer guided maintenance of complex mechanical elements using Virtual Reality (VIRMAN) and Augmented Reality (STARMATE) techniques. VIRMAN project is dedicated to training course development on maintenance using Virtual Reality. It based in the animation of three dimension images for component assembly/de-assembly or equipment movements. STARMATE will rely on Augmented Reality techniques which is a growing area in virtual Reality research. The idea of Augmented Reality is to combine a real scene, viewed by the user, with a virtual scene generated by a computer augmenting the reality with additional information. (Author)

  11. Virtual reality and stereoscopic telepresence

    International Nuclear Information System (INIS)

    Mertens, E.P.

    1994-12-01

    Virtual reality technology is commonly thought to have few, if any, applications beyond the national research laboratories, the aerospace industry, and the entertainment world. A team at Westinghouse Hanford Company (WHC) is developing applications for virtual reality technology that make it a practical, viable, portable, and cost-effective business and training tool. The technology transfer is particularly applicable to the waste management industry and has become a tool that can serve the entire work force spectrum, from industrial sites to business offices. For three and a half years, a small team of WHC personnel has been developing an effective and practical method of bringing virtual reality technology to the job site. The applications are practical, the results are repeatable, and the equipment costs are within the range of present-day office machines. That combination can evolve into a competitive advantage for commercial business interests. The WHC team has contained system costs by using commercially available equipment and personal computers to create effective virtual reality work stations for less than $20,000

  12. Role of virtual reality simulation in endoscopy training

    OpenAIRE

    Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen

    2015-01-01

    Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how...

  13. Immersive virtual reality simulations in nursing education.

    Science.gov (United States)

    Kilmon, Carol A; Brown, Leonard; Ghosh, Sumit; Mikitiuk, Artur

    2010-01-01

    This article explores immersive virtual reality as a potential educational strategy for nursing education and describes an immersive learning experience now being developed for nurses. This pioneering project is a virtual reality application targeting speed and accuracy of nurse response in emergency situations requiring cardiopulmonary resuscitation. Other potential uses and implications for the development of virtual reality learning programs are discussed.

  14. Virtual Reality Lab Assistant

    Science.gov (United States)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  15. An introduction to virtual reality technology

    International Nuclear Information System (INIS)

    Louka, Michael N.

    1999-02-01

    This paper is a brief introduction to virtual reality technology. It discusses the meaning of the term 'Virtual Reality', introduces common hardware and software technology, and provides a brief overview of applications and research areas (author) (ml)

  16. Virtual Realities and the Future of Text.

    Science.gov (United States)

    Marcus, Stephen

    1992-01-01

    Discusses issues surrounding virtual reality and "virtual books." Suggests that those who are exploring the territory of virtual realities are already helping to expand and enrich expectations and visions for integrating technology into reading and writing. (RS)

  17. Mixed Reality with HoloLens: Where Virtual Reality Meets Augmented Reality in the Operating Room.

    Science.gov (United States)

    Tepper, Oren M; Rudy, Hayeem L; Lefkowitz, Aaron; Weimer, Katie A; Marks, Shelby M; Stern, Carrie S; Garfein, Evan S

    2017-11-01

    Virtual reality and augmented reality devices have recently been described in the surgical literature. The authors have previously explored various iterations of these devices, and although they show promise, it has become clear that virtual reality and/or augmented reality devices alone do not adequately meet the demands of surgeons. The solution may lie in a hybrid technology known as mixed reality, which merges many virtual reality and augmented realty features. Microsoft's HoloLens, the first commercially available mixed reality device, provides surgeons intraoperative hands-free access to complex data, the real environment, and bidirectional communication. This report describes the use of HoloLens in the operating room to improve decision-making and surgical workflow. The pace of mixed reality-related technological development will undoubtedly be rapid in the coming years, and plastic surgeons are ideally suited to both lead and benefit from this advance.

  18. Virtual reality representations in contemporary media

    CERN Document Server

    Chan, Melanie

    2014-01-01

    The idea of virtual realities has a long and complex historical trajectory, spanning from Plato's concept of the cave and the simulacrum, to artistic styles such as Trompe L'oeil, and more recently developments in 3D film, television and gaming. However, this book will pay particular attention to the time between the 1980s to the 1990s when virtual reality and cyberspace were represented, particularly in fiction, as a wondrous technology that enabled transcendence from the limitations of physical embodiment. The purpose of this critical historical analysis of representations of virtual reality

  19. Virtual reality boosts performance at AREVA Projects

    International Nuclear Information System (INIS)

    Bernasconi, F.

    2017-01-01

    AREVA Projects is one of the 6 business units of New AREVA and it is dedicated to engineering works in a vast fan of activities from mining to waste management via uranium chemistry and nuclear fuel recycling. AREVA projects has opted for innovation to improve performance. Since 2012 virtual reality has been used through the creation of a room equipped with a high-definition screen and stereoscopic goggles. At the beginning virtual reality was used to test and validate procedures for handling equipment thanks to a dynamical digital simulation of this equipment. Now virtual reality is massively used to validate the design phase of projects without having to fabricate a physical mock-up which saves time. The next step in the use of virtual reality is the implementation of a new version of devices like helmets, gloves... that will allow a better interaction with the virtual world. The continuously increasing of computer power is always pushing back the limits of what is possible in virtual reality. (A.C.)

  20. Virtual Reality in Schools: The Ultimate Educational Technology.

    Science.gov (United States)

    Reid, Robert D.; Sykes, Wylmarie

    1999-01-01

    Discusses the use of virtual reality as an educational tool. Highlights include examples of virtual reality in public schools that lead to a more active learning process, simulated environments, integrating virtual reality into any curriculum, benefits to teachers and students, and overcoming barriers to implementation. (LRW)

  1. Virtual Reality in education and for employability

    OpenAIRE

    Minocha, Shailey; Tudor, Ana-Despina

    2017-01-01

    Virtual reality is becoming pervasive in several domains - in arts and film-making, for environmental causes, in medical education, in disaster management training, in sports broadcasting, in entertainment, and in supporting patients with dementia. An awareness of virtual reality technology and its integration in curriculum design will provide and enhance employability skills for current and future workplaces.\\ud \\ud In this webinar, we will describe the evolution of virtual reality technolog...

  2. VIRTUAL REALITY AS A SPHERE OF FICTIONS

    OpenAIRE

    V. A. Abramova

    2017-01-01

    In post-nonclassical science in studying of spontaneous systems it is important to consider a narrow orientation of perception in the solution of specific objectives, in this context, perception of symbolical transformations at various levels – subjective and objective. The virtual reality widespread now thanks to enhancement of information and communication technologies consists of hypertrophied effects of virtualization of reality where the virtual image has nothing in common with reality, ...

  3. Virtual reality for stroke rehabilitation.

    Science.gov (United States)

    Laver, Kate E; Lange, Belinda; George, Stacey; Deutsch, Judith E; Saposnik, Gustavo; Crotty, Maria

    2017-11-20

    Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation with commercial gaming consoles in particular, being rapidly adopted in clinical settings. This is an update of a Cochrane Review published first in 2011 and then again in 2015. Primary objective: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity.Secondary objectives: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance, global motor function, cognitive function, activity limitation, participation restriction, quality of life, and adverse events. We searched the Cochrane Stroke Group Trials Register (April 2017), CENTRAL, MEDLINE, Embase, and seven additional databases. We also searched trials registries and reference lists. Randomised and quasi-randomised trials of virtual reality ("an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion") in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data, and assessed risk of bias. A third review author moderated disagreements when required. The review authors contacted investigators to obtain missing information. We included 72 trials that involved 2470 participants. This review includes 35 new studies in addition to the studies included in the previous version of this review. Study sample sizes were generally small and interventions varied in terms of both the goals of treatment and the virtual reality devices used. The risk of bias present in many studies was unclear due to poor reporting. Thus, while there are a large

  4. Virtual Reality Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research in interactive 3D computer graphics, including visual analytics, virtual environments, and augmented reality (AR). The...

  5. Effects of a Haptic Augmented Simulation on K-12 Students' Achievement and Their Attitudes Towards Physics

    Science.gov (United States)

    Civelek, Turhan; Ucar, Erdem; Ustunel, Hakan; Aydin, Mehmet Kemal

    2014-01-01

    The current research aims to explore the effects of a haptic augmented simulation on students' achievement and their attitudes towards Physics in an immersive virtual reality environment (VRE). A quasi-experimental post-test design was employed utilizing experiment and control groups. The participants were 215 students from a K-12 school in…

  6. Possible Application of Virtual Reality in Geography Teaching

    Directory of Open Access Journals (Sweden)

    Ivan Stojšić

    2017-03-01

    Full Text Available Virtual reality represents simulated three-dimensional environment created by hardware and software, which providing realistic experience and possibility of interaction to the end-user. Benefits provided by immersive virtual reality in educational setting were recognised in the past decades, however mass application was left out due to the lack of development and high price. Intensive development of new platforms and virtual reality devices in the last few years started up with Oculus Rift, and subsequently accelerated in the year 2014 by occurrence of Google Cardboard. Nowadays, for the first time in history, immersive virtual reality is available to millions of people. In the mid 2015 Google commenced developing Expeditions Pioneer Program aiming to massively utilise the Google Cardboard platform in education. Expeditions and other VR apps can enhance geography teaching and learning. Realistic experience acquired by utilisation of virtual reality in teaching process significantly overcome possibilities provided by images and illustrations in the textbook. Besides literature review on usage of virtual reality in education this paper presents suggestion of VR mobile apps that can be used together with the Google Cardboard head mounted displays (HMDs in geography classes, thereby emphasising advantages and disadvantages as well as possible obstacles which may occur in introducing the immersive virtual reality in the educational process.

  7. Defining Virtual Reality: Dimensions Determining Telepresence.

    Science.gov (United States)

    Steuer, Jonathan

    1992-01-01

    Defines virtual reality as a particular type of experience (in terms of "presence" and "telepresence") rather than as a collection of hardware. Maintains that media technologies can be classified and studied in terms of vividness and interactivity, two attributes on which virtual reality ranks very high. (SR)

  8. Role of virtual reality simulation in endoscopy training.

    Science.gov (United States)

    Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen

    2015-12-10

    Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed.

  9. Virtual Reality: Emerging Applications and Future Directions

    Science.gov (United States)

    Ludlow, Barbara L.

    2015-01-01

    Virtual reality is an emerging technology that has resulted in rapid expansion in the development of virtual immersive environments for use as educational simulations in schools, colleges and universities. This article presents an overview of virtual reality, describes a number of applications currently being used by special educators for…

  10. Enhancing tourism with augmented and virtual reality

    OpenAIRE

    Jenny, Sandra

    2017-01-01

    Augmented and virtual reality are on the advance. In the last twelve months, several interesting devices have entered the market. Since tourism is one of the fastest growing economic sectors in the world and has become one of the major players in international commerce, the aim of this thesis was to examine how tourism could be enhanced with augmented and virtual reality. The differences and functional principles of augmented and virtual reality were investigated, general uses were described ...

  11. Virtual reality excursions with programs in C

    CERN Document Server

    Watkins, Christopher D

    1994-01-01

    Virtual Reality Excursions with Programs in C provides the history, theory, principles and an account of the milestones in the development of virtual reality technology.The book is organized into five chapters. The first chapter explores the applications in the vast field of virtual reality. The second chapter presents a brief history of the field and its founders. Chapter 3 discusses human perception and how it works. Some interesting notes and much of the hot debate in the field are covered in Chapter 4. The fifth chapter describes many of the complexities involved in implementing virtual en

  12. Instrument Motion Metrics for Laparoscopic Skills Assessment in Virtual Reality and Augmented Reality.

    Science.gov (United States)

    Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A

    2016-11-01

    To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.

  13. Mobile devices, Virtual Reality, Augmented Reality, and Digital Geoscience Education.

    Science.gov (United States)

    Crompton, H.; De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.

    2016-12-01

    Mobile devices are playing an increasing role in geoscience education. Affordances include instructor-student communication and class management in large classrooms, virtual and augmented reality applications, digital mapping, and crowd-sourcing. Mobile technologies have spawned the sub field of mobile learning or m-learning, which is defined as learning across multiple contexts, through social and content interactions. Geoscientists have traditionally engaged in non-digital mobile learning via fieldwork, but digital devices are greatly extending the possibilities, especially for non-traditional students. Smartphones and tablets are the most common devices but smart glasses such as Pivothead enable live streaming of a first-person view (see for example, https://youtu.be/gWrDaYP5w58). Virtual reality headsets such as Google Cardboard create an immersive virtual field experience and digital imagery such as GigaPan and Structure from Motion enables instructors and/or students to create virtual specimens and outcrops that are sharable across the globe. Whereas virtual reality (VR) replaces the real world with a virtual representation, augmented reality (AR) overlays digital data on the live scene visible to the user in real time. We have previously reported on our use of the AR application called FreshAiR for geoscientific "egg hunts." The popularity of Pokémon Go demonstrates the potential of AR for mobile learning in the geosciences.

  14. Virtual Reality as Innovative Approach to the Interior Designing

    Science.gov (United States)

    Kaleja, Pavol; Kozlovská, Mária

    2017-06-01

    We can observe significant potential of information and communication technologies (ICT) in interior designing field, by development of software and hardware virtual reality tools. Using ICT tools offer realistic perception of proposal in its initial idea (the study). A group of real-time visualization, supported by hardware tools like Oculus Rift HTC Vive, provides free walkthrough and movement in virtual interior with the possibility of virtual designing. By improving of ICT software tools for designing in virtual reality we can achieve still more realistic virtual environment. The contribution presented proposal of an innovative approach of interior designing in virtual reality, using the latest software and hardware ICT virtual reality technologies

  15. Effects of 3D virtual haptics force feedback on brand personality perception: the mediating role of physical presence in advergames.

    Science.gov (United States)

    Jin, Seung-A Annie

    2010-06-01

    This study gauged the effects of force feedback in the Novint Falcon haptics system on the sensory and cognitive dimensions of a virtual test-driving experience. First, in order to explore the effects of tactile stimuli with force feedback on users' sensory experience, feelings of physical presence (the extent to which virtual physical objects are experienced as actual physical objects) were measured after participants used the haptics interface. Second, to evaluate the effects of force feedback on the cognitive dimension of consumers' virtual experience, this study investigated brand personality perception. The experiment utilized the Novint Falcon haptics controller to induce immersive virtual test-driving through tactile stimuli. The author designed a two-group (haptics stimuli with force feedback versus no force feedback) comparison experiment (N = 238) by manipulating the level of force feedback. Users in the force feedback condition were exposed to tactile stimuli involving various force feedback effects (e.g., terrain effects, acceleration, and lateral forces) while test-driving a rally car. In contrast, users in the control condition test-drove the rally car using the Novint Falcon but were not given any force feedback. Results of ANOVAs indicated that (a) users exposed to force feedback felt stronger physical presence than those in the no force feedback condition, and (b) users exposed to haptics stimuli with force feedback perceived the brand personality of the car to be more rugged than those in the control condition. Managerial implications of the study for product trial in the business world are discussed.

  16. Virtual Reality.

    Science.gov (United States)

    Newby, Gregory B.

    1993-01-01

    Discusses the current state of the art in virtual reality (VR), its historical background, and future possibilities. Highlights include applications in medicine, art and entertainment, science, business, and telerobotics; and VR for information science, including graphical display of bibliographic data, libraries and books, and cyberspace.…

  17. The virtual nose: a 3-dimensional virtual reality model of the human nose.

    Science.gov (United States)

    Vartanian, A John; Holcomb, Joi; Ai, Zhuming; Rasmussen, Mary; Tardy, M Eugene; Thomas, J Regan

    2004-01-01

    The 3-dimensionally complex interplay of soft tissue, cartilaginous, and bony elements makes the mastery of nasal anatomy difficult. Conventional methods of learning nasal anatomy exist, but they often involve a steep learning curve. Computerized models and virtual reality applications have been used to facilitate teaching in a number of other complex anatomical regions, such as the human temporal bone and pelvic floor. We present a 3-dimensional (3-D) virtual reality model of the human nose. Human cadaveric axial cross-sectional (0.33-mm cuts) photographic data of the head and neck were used. With 460 digitized images, individual structures were traced and programmed to create a computerized polygonal model of the nose. Further refinements to this model were made using a number of specialized computer programs. This 3-D computer model of the nose was then programmed to operate as a virtual reality model. Anatomically correct 3-D model of the nose was produced. High-resolution images of the "virtual nose" demonstrate the nasal septum, lower lateral cartilages, middle vault, bony dorsum, and other structural details of the nose. Also, the model can be combined with a separate virtual reality model of the face and its skin cover as well as the skull. The user can manipulate the model in space, examine 3-D anatomical relationships, and fade superficial structures to reveal deeper ones. The virtual nose is a 3-D virtual reality model of the nose that is accurate and easy to use. It can be run on a personal computer or in a specialized virtual reality environment. It can serve as an effective teaching tool. As the first virtual reality model of the nose, it establishes a virtual reality platform from which future applications can be launched.

  18. Applying virtual reality to remote control of mobile robot

    Directory of Open Access Journals (Sweden)

    Chen Chin-Shan

    2017-01-01

    Full Text Available The purpose of this research is based on virtual reality to assisted pick and place tasks. Virtual reality can be utilized to control remote robot for pick and place element. The operator monitored and controlled the situation information of working site by Human Machine Interface. Therefore, we worked in harsh or dangerous environments that thing can be avoided. The procedure to operate mobile robot in virtual reality describes as follow: An experiment site with really experimental equipment is first established. Then, the experimental equipment and scene modeling are input to virtual reality for establishing a environment similar to the reality. Finally, the remote mobile robot is controlled to operate pick and place tasks through wireless communication by the object operation in virtual reality. The robot consists of a movable robot platform and robotic arm. The virtual reality is constructed by EON software; the Human Machine Interface is established by Visual Basic. The wireless connection is equipped the wireless Bluetooth, which is set the PC and PLC controller. With experimental tests to verify the robot in virtual reality and the wireless remote control, the robot could be operated and controlled to successfully complete pick and place tasks in reality by Human Machine Interface.

  19. Development of Virtual Reality Cycling Simulator

    OpenAIRE

    Schramka, Filip; Arisona, Stefan; Joos, Michael; Erath, Alexander

    2017-01-01

    This paper presents a cycling simulator implemented using consumer virtual reality hardware and additional off-the-shelf sensors. Challenges like real time motion tracking within the performance requirements of state of the art virtual reality are successfully mastered. Retrieved data from digital motion processors is sent over Bluetooth to a render machine running Unity3D. By processing this data a bicycle is mapped into virtual space. Physically correct behaviour is simulated and high quali...

  20. Virtual Reality and Education.

    Science.gov (United States)

    Helsel, Sandra

    1992-01-01

    Intended to provide a basic understanding of virtual reality (VR) from an educational perspective, this article describes the debate between conceptual and technological orientations to VR; the conceptual orientation to VR; technological definitions of VR, artificial reality, and cyberspace; dimensions of VR; and VR's impact on education. (11…

  1. Virtual reality, augmented reality…I call it i-Reality.

    Science.gov (United States)

    Grossmann, Rafael J

    2015-01-01

    The new term improved reality (i-Reality) is suggested to include virtual reality (VR) and augmented reality (AR). It refers to a real world that includes improved, enhanced and digitally created features that would offer an advantage on a particular occasion (i.e., a medical act). I-Reality may help us bridge the gap between the high demand for medical providers and the low supply of them by improving the interaction between providers and patients.

  2. Virtual Reality in the Medical Field

    OpenAIRE

    Motomatsu, Haruka

    2014-01-01

    The objective is to analyze the use of the emerging 3D computer technology of VirtualReality in the use of relieving pain in physically impaired conditions such as burn victims,amputees, and phantom limb patients, during therapy and medical procedures. Virtualtechnology generates a three dimensional visual virtual world in which enables interaction.Comparison will be made between the emerging technology of the Virtual Reality and methodsusually used, which are the use of medicine. Medicine ha...

  3. Moving from Virtual Reality Exposure-Based Therapy to Augmented Reality Exposure-Based Therapy: A Review

    OpenAIRE

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth centur...

  4. Visualizing Compound Rotations with Virtual Reality

    Science.gov (United States)

    Flanders, Megan; Kavanagh, Richard C.

    2013-01-01

    Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…

  5. Virtual reality as a social phenomenon

    Directory of Open Access Journals (Sweden)

    Markova T. V.

    2018-05-01

    Full Text Available the article is devoted to the study of virtual reality as a social phenomenon. Through an appeal to the past, its genesis is analyzed, as well as its significance in modern realities. The latter is viewed from both a social and a personal point of view. Comparing the number of supporters of virtual communication with the number of people of conservative views, conclusions are drawn about the tendency to depart from the usual communication. It allows to assert that the problem of the termination of live communication is relevant to this day. Inferences allow us to assert that the problem of replacing real communication is different. After looking at the positive consequences, the introduction of the mind into virtual reality, it is affirmed that there are good sides to this action. Through analysis, the causes of entering the World Wide Web are generated. In conclusion, the question is raised about the need for virtual reality in everyday life, its problems, as well as the prospects for development.

  6. Cochrane review: virtual reality for stroke rehabilitation.

    Science.gov (United States)

    Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M

    2012-09-01

    Virtual reality and interactive video gaming are innovative therapy approaches in the field of stroke rehabilitation. The primary objective of this review was to determine the effectiveness of virtual reality on motor function after stroke. The impact on secondary outcomes including activities of daily living was also assessed. Randomised and quasi-randomised controlled trials that compared virtual reality with an alternative or no intervention were included in the review. The authors searched the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, electronic databases, trial registers, reference lists, Dissertation Abstracts, conference proceedings and contacted key researchers and virtual reality manufacturers. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. Nineteen studies with a total of 565 participants were included in the review. Variation in intervention approaches and outcome data collected limited the extent to which studies could be compared. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardised mean difference, SMD) 0.53, 95% confidence intervals [CI] 0.25 to 0.81)) based on seven studies, and activities of daily living (ADL) function (SMD 0.81, 95% CI 0.39 to 1.22) based on three studies. No statistically significant effects were found for grip strength (based on two studies) or gait speed (based on three studies). Virtual reality appears to be a promising approach however, further studies are required to confirm these findings.

  7. Virtual Reality Surgical Simulation: Implications for Resection of Intracranial Gliomas.

    Science.gov (United States)

    Dakson, Ayoub; Hong, Murray; Clarke, David B

    2018-01-01

    Surgical simulation has the potential to play important roles in surgical training and preoperative planning. The advent of virtual reality (VR) with tactile haptic feedback has revolutionized surgical simulation, creating a novel environment for residents to learn manual skills without compromising patient safety. This concept is particularly relevant in neurosurgical training where the acquired skill set demands performance of technically challenging tasks under pressure and where the consequences of error are significant. The evolution of VR simulation is discussed here within the context of neurosurgical training and its implications for resection of intracranial gliomas. VR holds the promise of providing a useful educational tool for neurosurgical residents to hone their surgical skills and for neurosurgeons to rehearse specific segments of the surgery prior to the actual operation. Also discussed are several important issues related to simulation and simulation-based training that will need to be addressed before widespread adoption of VR simulation as a useful technology. © 2018 S. Karger AG, Basel.

  8. The Internet and medical collaboration using virtual reality.

    Science.gov (United States)

    Liang, Wen Yau; O'Grady, Peter

    2003-01-01

    Computed Tomography (CT) provides a large amount of data but the presentation of the data to a physician can be less than satisfactory. Ideally, the image data should be available to physicians in interactive 3D to allow for improved visualization, planning and diagnosis. A virtual reality representation that not only allows for the manipulation of the image but also allows for the user to, in effect, move inside the image remotely would be ideal. In this paper the research associated with virtual reality is discussed. A formalism is then presented to create, from the CT data, the virtual reality world in the Virtual Reality Modeling Language. An implementation is described of this formalism that uses the Internet to allow for users in remote locations to view and manipulate the virtual worlds.

  9. A virtual tour of virtual reality

    Science.gov (United States)

    Harris, Margaret

    2018-03-01

    Virtual-reality glasses might still be on the starting blocks, but plenty of companies are working on the technology. Margaret Harris tries on some examples at the Photonics West show in San Francisco

  10. Validation of a virtual reality-based simulator for shoulder arthroscopy.

    Science.gov (United States)

    Rahm, Stefan; Germann, Marco; Hingsammer, Andreas; Wieser, Karl; Gerber, Christian

    2016-05-01

    This study was to determine face and construct validity of a new virtual reality-based shoulder arthroscopy simulator which uses passive haptic feedback. Fifty-one participants including 25 novices (100 shoulder arthroscopies) completed two tests: for assessment of face validity, a questionnaire was filled out concerning quality of simulated reality and training potential using a 7-point Likert scale (range 1-7). Construct validity was tested by comparing simulator metrics (operation time in seconds, camera and grasper pathway in centimetre and grasper openings) between novices and experts test results. Overall simulated reality was rated high with a median value of 5.5 (range 2.8-7) points. Training capacity scored a median value of 5.8 (range 3-7) points. Experts were significantly faster in the diagnostic test with a median of 91 (range 37-208) s than novices with 1177 (range 81-383) s (p < 0.0001) and in the therapeutic test 102 (range 58-283) s versus 229 (range 114-399) s (p < 0.0001). Similar results were seen in the other metric values except in the camera pathway in the therapeutic test. The tested simulator achieved high scores in terms of realism and training capability. It reliably discriminated between novices and experts. Further improvements of the simulator, especially in the field of therapeutic arthroscopy, might improve its value as training and assessment tool for shoulder arthroscopy skills. II.

  11. Virtual reality training for surgical trainees in laparoscopic surgery.

    Science.gov (United States)

    Nagendran, Myura; Gurusamy, Kurinchi Selvan; Aggarwal, Rajesh; Loizidou, Marilena; Davidson, Brian R

    2013-08-27

    Standard surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time-consuming, costly, and of variable effectiveness. Training using a virtual reality simulator is an option to supplement standard training. Virtual reality training improves the technical skills of surgical trainees such as decreased time for suturing and improved accuracy. The clinical impact of virtual reality training is not known. To assess the benefits (increased surgical proficiency and improved patient outcomes) and harms (potentially worse patient outcomes) of supplementary virtual reality training of surgical trainees with limited laparoscopic experience. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE and Science Citation Index Expanded until July 2012. We included all randomised clinical trials comparing virtual reality training versus other forms of training including box-trainer training, no training, or standard laparoscopic training in surgical trainees with little laparoscopic experience. We also planned to include trials comparing different methods of virtual reality training. We included only trials that assessed the outcomes in people undergoing laparoscopic surgery. Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager 5 analysis. For each outcome we calculated the mean difference (MD) or standardised mean difference (SMD) with 95% confidence intervals based on intention-to-treat analysis. We included eight trials covering 109 surgical trainees with limited laparoscopic experience. Of the eight trials, six compared virtual reality versus no supplementary training. One trial compared virtual reality training versus box-trainer training and versus no supplementary training, and one trial compared

  12. Virtual Reality in Engineering Education: The Future of Creative Learning

    Directory of Open Access Journals (Sweden)

    Abdul-Hadi Ghazi Abulrub

    2011-12-01

    Full Text Available Virtual reality has achieved an adequate level of development for it to be considered in innovative applications such as education, training, and research in higher education. Virtual reality offers both opportunities and challenges for the educational sector. One of the challenges of virtual reality technology is the costs associated which have been unaffordable for educational institutes. However, in recent years, computer hardware and software development has made it more feasible to incorporate virtual reality technology into future teaching strategies. Despite the cost challenges, educational benefits of implementing virtual reality remain compelling. This paper explains virtual reality principle and describes the interactive educational environment developed at WMG, the University of Warwick. It also discusses the benefits of using state-of-the-art 3D photorealistic interactive and immersive virtual environment for engineering undergraduates and postgraduate teaching, learning and training.

  13. Virtual reality and cognitive rehabilitation: a review of current outcome research.

    Science.gov (United States)

    Larson, Eric B; Feigon, Maia; Gagliardo, Pablo; Dvorkin, Assaf Y

    2014-01-01

    Recent advancement in the technology of virtual reality (VR) has allowed improved applications for cognitive rehabilitation. The aim of this review is to facilitate comparisons of therapeutic efficacy of different VR interventions. A systematic approach for the review of VR cognitive rehabilitation outcome research addressed the nature of each sample, treatment apparatus, experimental treatment protocol, control treatment protocol, statistical analysis and results. Using this approach, studies that provide valid evidence of efficacy of VR applications are summarized. Applications that have not yet undergone controlled outcome study but which have promise are introduced. Seventeen studies conducted over the past eight years are reviewed. The few randomized controlled trials that have been completed show that some applications are effective in treating cognitive deficits in people with neurological diagnoses although further study is needed. Innovations requiring further study include the use of enriched virtual environments that provide haptic sensory input in addition to visual and auditory inputs and the use of commercially available gaming systems to provide tele-rehabilitation services. Recommendations are offered to improve efficacy of rehabilitation, to improve scientific rigor of rehabilitation research and to broaden access to the evidence-based treatments that this research has identified.

  14. Virtual reality in pediatric neurorehabilitation: attention deficit hyperactivity disorder, autism and cerebral palsy.

    Science.gov (United States)

    Wang, Michelle; Reid, Denise

    2011-01-01

    This paper presents the current status and use of virtual reality (VR) for children with attention deficit hyperactivity disorder (ADHD), autism and cerebral palsy. This literature review explores how VR systems have been used as treatment tools to address the primary impairments of these disorders. Three major classes of VR display systems are identified that can be characterized by the type of human-computer interaction provided: (1) feedback-focused interaction, (2) gesture-based interaction, and (3) haptic-based interaction. The demonstrated effectiveness and potential effectiveness of each class are discussed in the context of remediating the primary impairments of children with ADHD, autism and cerebral palsy. Three major themes for future research are discussed to support continued research interest in using VR in pediatric neurorehabilitation. Copyright © 2010 S. Karger AG, Basel.

  15. Virtual Reality: Is It Real Or Not?

    Directory of Open Access Journals (Sweden)

    S. Serap Kurbanoğlu

    1996-01-01

    Full Text Available In this paper virtual reality technology and how libraries might be affected by this technology are examined. Virtual reality sets out to address a problem. The problem is that of user-friendliness of computer systems. Needless to say, the current generation of computers still involves a barrier between human and machine. This is keyboard or mouse on the human side, and the screen on the computer side. If computers are really going to become a part of everyone’s normal day to day experiences, they, must allow users to visualise information in a way familiar to them, not the way the computers forces them to. Virtual reality provides such a way. With the increasing amounts of information available in electronic form, it is clear that virtual reality technology will have a profound impact on libraries.

  16. Virtual Reality Exploration and Planning for Precision Colorectal Surgery.

    Science.gov (United States)

    Guerriero, Ludovica; Quero, Giuseppe; Diana, Michele; Soler, Luc; Agnus, Vincent; Marescaux, Jacques; Corcione, Francesco

    2018-06-01

    Medical software can build a digital clone of the patient with 3-dimensional reconstruction of Digital Imaging and Communication in Medicine images. The virtual clone can be manipulated (rotations, zooms, etc), and the various organs can be selectively displayed or hidden to facilitate a virtual reality preoperative surgical exploration and planning. We present preliminary cases showing the potential interest of virtual reality in colorectal surgery for both cases of diverticular disease and colonic neoplasms. This was a single-center feasibility study. The study was conducted at a tertiary care institution. Two patients underwent a laparoscopic left hemicolectomy for diverticular disease, and 1 patient underwent a laparoscopic right hemicolectomy for cancer. The 3-dimensional virtual models were obtained from preoperative CT scans. The virtual model was used to perform preoperative exploration and planning. Intraoperatively, one of the surgeons was manipulating the virtual reality model, using the touch screen of a tablet, which was interactively displayed to the surgical team. The main outcome was evaluation of the precision of virtual reality in colorectal surgery planning and exploration. In 1 patient undergoing laparoscopic left hemicolectomy, an abnormal origin of the left colic artery beginning as an extremely short common trunk from the inferior mesenteric artery was clearly seen in the virtual reality model. This finding was missed by the radiologist on CT scan. The precise identification of this vascular variant granted a safe and adequate surgery. In the remaining cases, the virtual reality model helped to precisely estimate the vascular anatomy, providing key landmarks for a safer dissection. A larger sample size would be necessary to definitively assess the efficacy of virtual reality in colorectal surgery. Virtual reality can provide an enhanced understanding of crucial anatomical details, both preoperatively and intraoperatively, which could

  17. Review of virtual reality treatment for mental health.

    Science.gov (United States)

    Gourlay, D; Lun, K C; Liya, G

    2001-01-01

    This paper describes recent research that proposes virtual reality techniques as a therapy for patients with cognitive and psychological problems. Specifically this applies to victims of conditions such as traumatic brain injury, Alzheimers and Parkinsons. Additionally virtual reality therapy offers an alternative to current desensitization techniques for the treatment of phobias Some important issues are examined including means of user interaction, skills transfer to the real world, and side-effects of virtual reality exposure.

  18. Possible Application of Virtual Reality in Geography Teaching

    OpenAIRE

    Ivan Stojšić; Anđelija Ivkov Džigurski; Olja Maričić; Ljubica Ivanović Bibić; Smiljana Đukičin Vučković

    2017-01-01

    Abstract Virtual reality represents simulated three-dimensional environment created by hardware and software, which providing realistic experience and possibility of interaction to the end-user. Benefits provided by immersive virtual reality in educational setting were recognised in the past decades, however mass application was left out due to the lack of development and high price. Intensive development of new platforms and virtual reality devices in the last few years started up with Oc...

  19. Rationalizing virtual reality based on manufacturing paradigms

    NARCIS (Netherlands)

    Damgrave, Roy Gerhardus Johannes; Lutters, Diederick; Drukker, J. W.

    2014-01-01

    Comparing the evolvement of the manufacturing industry of the last century to the way virtual reality is used nowadays some remarkable similarities come to light. Current virtual reality equipment requires a high level of craftsmanship to achieve the maximum results, and often equipment is specially

  20. Virtual Reality and Its Potential Application in Education and Training.

    Science.gov (United States)

    Milheim, William D.

    1995-01-01

    An overview is provided of current trends in virtual reality research and development, including discussion of hardware, types of virtual reality, and potential problems with virtual reality. Implications for education and training are explored. (Author/JKP)

  1. UPPER LIMB FUNCTIONAL ASSESSMENT USING HAPTIC INTERFACE

    Directory of Open Access Journals (Sweden)

    Aleš Bardorfer

    2004-12-01

    Full Text Available A new method for the assessment of the upper limb (UL functional state, using a haptic interface is presented. A haptic interface is used as a measuring device, capable of providing objective, repeatable and quantitative data of the UL motion. A patient is presented with a virtual environment, both graphically via a computer screen and haptically via the Phantom Premium 1.5 haptic interface. The setup allows the patient to explore and feel the virtual environment with three of his/her senses; sight, hearing, and most important, touch. Specially designed virtual environments are used to assess the patient’s UL movement capabilities. The tests range from tracking tasks – to assess the accuracy of movement – tracking tasks with added disturbances in a form of random forces – to assess the patient’s control abilities, a labyrinth test – to assess both speed and accuracy, to the last test for measuring the maximal force capacity of the UL.A new method for the assessment of the upper limb (UL functional state, using a haptic interface is presented. A haptic interface is used as a measuring device, capable of providing objective, repeatable and quantitative data of the UL motion. A patient is presented with a virtual environment, both graphically via a computer screen and haptically via the Phantom Premium 1.5 haptic interface. The setup allows the patient to explore and feel the virtual environment with three of his/her senses; sight, hearing, and most important, touch. Specially designed virtual environments are used to assess the patient’s UL movement capabilities. The tests range from tracking tasks–to assess the accuracy of movement-tracking tasks with added disturbances in a form of random forces-to assess the patient’s control abilities, a labyrinth test-to assess both speed and accuracy, to the last test for measuring the maximal force capacity of the UL.A comprehensive study, using the developed measurement setup within the

  2. Applied virtual reality

    International Nuclear Information System (INIS)

    Yule, I.Y.; Lee, D.J.

    1996-01-01

    An early experience in deploying a manipulator to the Irradiated Fuel Dismantling Cell at Torness Power Station, quickly highlighted that special visualisation techniques were required to achieve a successful deployment and reduce plant system down time. This visualisation was later realised through the IGRIP software pakcage operating on a Silicon Graphics computing engine, which provides a 'Non-Immersive' Virtual Reality environment. Within this environment, models of the Irradiated Fuel Dismantling cell were generated along with a model of the manipulator, allowing manipulator deployment to the Irradiated Fuel Dismantling Cell be modelled. It is estimated that the first use of this new environment provided a significant saving to Scottish Nuclear in potential lost output. The use of this virtual reality environment is currently being extended into the design and deployment of a new manipulator for Torness in vessel inspection, the Boiler Inspection Manipulator. (author)

  3. Simulated maintenance a virtual reality

    International Nuclear Information System (INIS)

    Lirvall, P.

    1995-01-01

    The article describes potential applications of personal computer-based virtual reality software. The applications are being investigated by Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories for the Canadian deuterium-uranium (Candu) reactor. Objectives include: (1) reduction of outage duration and improved safety, (2) cost-effective and safe maintenance of equipment, (3) reduction of exposure times and identification of overexposure situations, (4) cost-effective training in a virtual control room simulator, (5) human factors evaluation of design interface, and (6) visualization of conceptual and detailed designs of critical nuclear field environments. A demonstration model of a typical reactor control room, the use of virtual reality in outage planning, and safety issues are outlined

  4. A mixed reality simulator for feline abdominal palpation training in veterinary medicine.

    Science.gov (United States)

    Parkes, Rebecca; Forrest, Neil; Baillie, Sarah

    2009-01-01

    The opportunities for veterinary students to practice feline abdominal palpation are limited as cats have a low tolerance to being examined. Therefore, a mixed reality simulator was developed to complement clinical training. Two PHANToM premium haptic devices were positioned either side of a modified toy cat. Virtual models of the chest and some abdominal contents were superimposed on the physical model. The haptic properties of the virtual models were set by seven veterinarians; values were adjusted while the simulation was being palpated until the representation was satisfactory. Feedback from the veterinarians was encouraging suggesting that the simulator has a potential role in student training.

  5. The concept of strong and weak virtual reality

    OpenAIRE

    Lisewski, A. M.

    2003-01-01

    We approach the virtual reality phenomenon by studying its relationship to set theory, and we investigate the case where this is done using the wellfoundedness property of sets. Our hypothesis is that non-wellfounded sets (hypersets) give rise to a different quality of virtual reality than do familiar wellfounded sets. We initially provide an alternative approach to virtual reality based on Sommerhoff's idea of first and second order self-awareness; both categories of self-awareness are consi...

  6. Human factors consideration in clinical applications of virtual reality.

    Science.gov (United States)

    Lewis, C H; Griffin, M J

    1997-01-01

    Virtual reality environments have many potential applications in medicine, including surgical training, tele-operated robotic surgery, assessment and rehabilitation of behavioural and neurological disorders and diagnosis, therapy and rehabilitation of physical disabilities. Although there is much potential for the use of immersive virtual reality environments in clinical applications, there are problems which could limit their ultimate usability. Some users have experienced side-effects during and after exposure to virtual reality environments. The symptoms include ocular problems, disorientation and balance disturbances, and nausea. Susceptibility to side-effects can be affected by age, ethnicity, experience, gender and physical fitness, as well as the characteristics of the display, the virtual environment and the tasks. The characteristics of the virtual reality system have also been shown to affect the ability of users to perform tasks in a virtual environment. Many of these effects can be attributed to delays between the sampling of head and limb positions and the presentation of an appropriate image on the display. The introduction of patients to virtual reality environments, for assessment, therapy or rehabilitation, raises particular safety and ethical issues. Patients exposed to virtual reality environments for assessment and rehabilitation may have disabilities which increase their susceptibility to certain side-effects. Special precautions therefore need to be taken to ensure the safety and effectiveness of such virtual reality applications. These precautions include minimisation of possible side-effects at the design stage. Factors are identified which are likely to affect the incidence of side-effects during and after exposures, and which need to be understood in order to minimise undesirable consequences. There is also a need for the establishment of protocols for monitoring and controlling exposures of patients to virtual reality environments. Issues

  7. Virtual reality measures in neuropsychological assessment: a meta-analytic review.

    Science.gov (United States)

    Neguț, Alexandra; Matu, Silviu-Andrei; Sava, Florin Alin; David, Daniel

    2016-02-01

    Virtual reality-based assessment is a new paradigm for neuropsychological evaluation, that might provide an ecological assessment, compared to paper-and-pencil or computerized neuropsychological assessment. Previous research has focused on the use of virtual reality in neuropsychological assessment, but no meta-analysis focused on the sensitivity of virtual reality-based measures of cognitive processes in measuring cognitive processes in various populations. We found eighteen studies that compared the cognitive performance between clinical and healthy controls on virtual reality measures. Based on a random effects model, the results indicated a large effect size in favor of healthy controls (g = .95). For executive functions, memory and visuospatial analysis, subgroup analysis revealed moderate to large effect sizes, with superior performance in the case of healthy controls. Participants' mean age, type of clinical condition, type of exploration within virtual reality environments, and the presence of distractors were significant moderators. Our findings support the sensitivity of virtual reality-based measures in detecting cognitive impairment. They highlight the possibility of using virtual reality measures for neuropsychological assessment in research applications, as well as in clinical practice.

  8. Virtual, augmented reality and serious games for healthcare

    CERN Document Server

    Jain, Lakhmi; Anderson, Paul

    2014-01-01

    There is a tremendous interest among researchers for the development of virtual, augmented reality and games technologies due to their widespread applications in medicine and healthcare. To date the major applications of these technologies include medical simulation, telemedicine, medical and healthcare training, pain control, visualisation aid for surgery, rehabilitation in cases such as stroke, phobia, and trauma therapies. Many recent studies have identified the benefits of using Virtual Reality, Augmented Reality, or serious games in a variety of medical applications.   This research volume on Virtual, Augmented Reality and Serious Games for Healthcare 1 offers an insightful introduction to the theories, development and applications of virtual, augmented reality and digital games technologies in medical and clinical settings and healthcare in general. It is divided into six sections: section one presents a selection of applications in medical education and healthcare management; Section two relates to th...

  9. Learning in a virtual environment using haptic systems for movement re-education: can this medium be used for remodeling other behaviors and actions?

    Science.gov (United States)

    Merians, Alma S; Fluet, Gerard G; Qiu, Qinyin; Lafond, Ian; Adamovich, Sergei V

    2011-03-01

    Robotic systems that are interfaced with virtual reality gaming and task simulations are increasingly being developed to provide repetitive intensive practice to promote increased compliance and facilitate better outcomes in rehabilitation post-stroke. A major development in the use of virtual environments (VEs) has been to incorporate tactile information and interaction forces into what was previously an essentially visual experience. Robots of varying complexity are being interfaced with more traditional virtual presentations to provide haptic feedback that enriches the sensory experience and adds physical task parameters. This provides forces that produce biomechanical and neuromuscular interactions with the VE that approximate real-world movement more accurately than visual-only VEs, simulating the weight and force found in upper extremity tasks. The purpose of this article is to present an overview of several systems that are commercially available for ambulation training and for training movement of the upper extremity. We will also report on the system that we have developed (NJIT-RAVR system) that incorporates motivating and challenging haptic feedback effects into VE simulations to facilitate motor recovery of the upper extremity post-stroke. The NJIT-RAVR system trains both the upper arm and the hand. The robotic arm acts as an interface between the participants and the VEs, enabling multiplanar movements against gravity in a three-dimensional workspace. The ultimate question is whether this medium can provide a motivating, challenging, gaming experience with dramatically decreased physical difficulty levels, which would allow for participation by an obese person and facilitate greater adherence to exercise regimes. © 2011 Diabetes Technology Society.

  10. The Perceptions of CEIT Postgraduate Students Regarding Reality Concepts: Augmented, Virtual, Mixed and Mirror Reality

    Science.gov (United States)

    Taçgin, Zeynep; Arslan, Ahmet

    2017-01-01

    The purpose of this study is to determine perception of postgraduate Computer Education and Instructional Technologies (CEIT) students regarding the concepts of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), Augmented Virtuality (AV) and Mirror Reality; and to offer a table that includes differences and similarities between…

  11. Augmented reality (AR and virtual reality (VR applied in dentistry

    Directory of Open Access Journals (Sweden)

    Ta-Ko Huang

    2018-04-01

    Full Text Available The OSCE is a reliable evaluation method to estimate the preclinical examination of dental students. The most ideal assessment for OSCE is used the augmented reality simulator to evaluate. This literature review investigated a recently developed in virtual reality (VR and augmented reality (AR starting of the dental history to the progress of the dental skill. As result of the lacking of technology, it needs to depend on other device increasing the success rate and decreasing the risk of the surgery. The development of tracking unit changed the surgical and educational way. Clinical surgery is based on mature education. VR and AR simultaneously affected the skill of the training lesson and navigation system. Widely, the VR and AR not only applied in the dental training lesson and surgery, but also improved all field in our life. Keywords: OSCE, Dental simulator, Augmented reality, Virtual reality, Dentistry

  12. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    International Nuclear Information System (INIS)

    Oosterhout, J. van; Abbink, D.A.; Koning, J.F.; Boessenkool, H.; Wildenbeest, J.G.W.; Heemskerk, C.J.M.

    2013-01-01

    Highlights: Haptic shared control is generally based upon perfect environment information. A realistic implementation holds model errors with respect to the environment. Operators were aided with inaccurate guiding forces during a peg-in-hole task. The results showed that small guiding inaccuracies still aid the operator. -- Abstract: A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested such controllers with accurate knowledge of the environment (giving flawless guiding forces), while in a practical implementation guidance forces will sometimes be flawed due to inaccurate models or sensor information. This research investigated the effect of zero and small (7.5 mm) errors on task performance compared to normal (unguided) operation. In a human factors experiment subjects performed a three dimensional virtual reality peg-in-hole type task (30 mm diameter; 0.1 mm clearance), with and without potentially flawed haptic shared control. The results showed that the presence of guiding forces, despite of small guiding errors, still improved task performance with respect to unguided operations

  13. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    Energy Technology Data Exchange (ETDEWEB)

    Oosterhout, J. van, E-mail: J.vanOosterhout@differ.nl [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Abbink, D.A. [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Koning, J.F. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); Boessenkool, H. [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Wildenbeest, J.G.W. [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); Heemskerk, C.J.M. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands)

    2013-10-15

    Highlights: Haptic shared control is generally based upon perfect environment information. A realistic implementation holds model errors with respect to the environment. Operators were aided with inaccurate guiding forces during a peg-in-hole task. The results showed that small guiding inaccuracies still aid the operator. -- Abstract: A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested such controllers with accurate knowledge of the environment (giving flawless guiding forces), while in a practical implementation guidance forces will sometimes be flawed due to inaccurate models or sensor information. This research investigated the effect of zero and small (7.5 mm) errors on task performance compared to normal (unguided) operation. In a human factors experiment subjects performed a three dimensional virtual reality peg-in-hole type task (30 mm diameter; 0.1 mm clearance), with and without potentially flawed haptic shared control. The results showed that the presence of guiding forces, despite of small guiding errors, still improved task performance with respect to unguided operations.

  14. ENGEMBANGAN VIRTUAL CLASS UNTUK PEMBELAJARAN AUGMENTED REALITY BERBASIS ANDROID

    Directory of Open Access Journals (Sweden)

    Rifiana Arief

    2015-02-01

    Full Text Available ABSTRACT Augmanted Reality for android handphone has been a trend among collage students of computer department who join New Media course. To develop this application, the knowladge about visual presentation theory and case study of Augmanted Reality on android phoneneed to be conducted. Learning media through virtual class can facilitate the students’ needs in learning and developing Augmanted Reality. The method of this study in developing virtual class for Augmented Reality learning were: a having preparation to arrange learning unit, b analyzing and developing the content of learning materials, c designing storyboard or scenario of the virtual class, d making website of virtual class, e implementing the website as facility of online learning for Augmanted Reality. The available facilities in virtual class were to check learning units, to choose and download the material in the forms of e-book and presentation slides, to open the relevant website link for material enrichment as well as students’ practice with pre-test and post-test for measuring students’ understanding. By implementing virtual class for Augmanted Reality learning based Android, it is expected to provide alternative learning strategies for students that are interesting and easy to understand. The students are expected to be able to utilize this facility optimally in order to achieve the purposes of learning process and graduates’ competence. Keywords: VirtualClass, Augmented Reality (AR

  15. Conjoint analysis and virtual reality : a review

    NARCIS (Netherlands)

    Dijkstra, J.; Timmermans, H.J.P.

    1998-01-01

    This paper describes a review of an ongoing research project which aims to develop a conjoint analysis and virtual reality (CA&VR) system as part of a design information system in virtual reality. The research project aims to develop a design system that can be used for interactive design and

  16. Virtual reality and hallucination: a technoetic perspective

    Science.gov (United States)

    Slattery, Diana R.

    2008-02-01

    Virtual Reality (VR), especially in a technologically focused discourse, is defined by a class of hardware and software, among them head-mounted displays (HMDs), navigation and pointing devices; and stereoscopic imaging. This presentation examines the experiential aspect of VR. Putting "virtual" in front of "reality" modifies the ontological status of a class of experience-that of "reality." Reality has also been modified [by artists, new media theorists, technologists and philosophers] as augmented, mixed, simulated, artificial, layered, and enhanced. Modifications of reality are closely tied to modifications of perception. Media theorist Roy Ascott creates a model of three "VR's": Verifiable Reality, Virtual Reality, and Vegetal (entheogenically induced) Reality. The ways in which we shift our perceptual assumptions, create and verify illusions, and enter "the willing suspension of disbelief" that allows us entry into imaginal worlds is central to the experience of VR worlds, whether those worlds are explicitly representational (robotic manipulations by VR) or explicitly imaginal (VR artistic creations). The early rhetoric surrounding VR was interwoven with psychedelics, a perception amplified by Timothy Leary's presence on the historic SIGGRAPH panel, and the Wall Street Journal's tag of VR as "electronic LSD." This paper discusses the connections-philosophical, social-historical, and psychological-perceptual between these two domains.

  17. Virtual reality exposure therapy for social phobia

    OpenAIRE

    Herbelin, Bruno

    2005-01-01

    This thesis presents researches and experiments performed in collaboration with a psychiatrist in order to validate and improve the use of virtual reality in social phobia psychotherapy. Cognitive and behavioral therapies are strongly based on the exposure to anxiety provoking stimuli. Virtual reality seems to be appropriate for such exposures as it allows for on-demand reproduction of reality. The idea has been validated for the treatment of various phobias but is more delicate in the case o...

  18. Virtual reality applied to teletesting

    Science.gov (United States)

    van den Berg, Thomas J.; Smeenk, Roland J. M.; Mazy, Alain; Jacques, Patrick; Arguello, Luis; Mills, Simon

    2003-05-01

    The activity "Virtual Reality applied to Teletesting" is related to a wider European Space Agency (ESA) initiative of cost reduction, in particular the reduction of test costs. Reduction of costs of space related projects have to be performed on test centre operating costs and customer company costs. This can accomplished by increasing the automation and remote testing ("teletesting") capabilities of the test centre. Main problems related to teletesting are a lack of situational awareness and the separation of control over the test environment. The objective of the activity is to evaluate the use of distributed computing and Virtual Reality technology to support the teletesting of a payload under vacuum conditions, and to provide a unified man-machine interface for the monitoring and control of payload, vacuum chamber and robotics equipment. The activity includes the development and testing of a "Virtual Reality Teletesting System" (VRTS). The VRTS is deployed at one of the ESA certified test centres to perform an evaluation and test campaign using a real payload. The VRTS is entirely written in the Java programming language, using the J2EE application model. The Graphical User Interface runs as an applet in a Web browser, enabling easy access from virtually any place.

  19. Direct Manipulation in Virtual Reality

    Science.gov (United States)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  20. The effects of substitute multisensory feedback on task performance and the sense of presence in a virtual reality environment

    Science.gov (United States)

    Milella, Ferdinando; Pinto, Carlo; Cant, Iain; White, Mark; Meyer, Georg

    2018-01-01

    Objective and subjective measures of performance in virtual reality environments increase as more sensory cues are delivered and as simulation fidelity increases. Some cues (colour or sound) are easier to present than others (object weight, vestibular cues) so that substitute cues can be used to enhance informational content in a simulation at the expense of simulation fidelity. This study evaluates how substituting cues in one modality by alternative cues in another modality affects subjective and objective performance measures in a highly immersive virtual reality environment. Participants performed a wheel change in a virtual reality (VR) environment. Auditory, haptic and visual cues, signalling critical events in the simulation, were manipulated in a factorial design. Subjective ratings were recorded via questionnaires. The time taken to complete the task was used as an objective performance measure. The results show that participants performed best and felt an increased sense of immersion and involvement, collectively referred to as ‘presence’, when substitute multimodal sensory feedback was provided. Significant main effects of audio and tactile cues on task performance and on participants' subjective ratings were found. A significant negative relationship was found between the objective (overall completion times) and subjective (ratings of presence) performance measures. We conclude that increasing informational content, even if it disrupts fidelity, enhances performance and user’s overall experience. On this basis we advocate the use of substitute cues in VR environments as an efficient method to enhance performance and user experience. PMID:29390023

  1. The effects of substitute multisensory feedback on task performance and the sense of presence in a virtual reality environment.

    Science.gov (United States)

    Cooper, Natalia; Milella, Ferdinando; Pinto, Carlo; Cant, Iain; White, Mark; Meyer, Georg

    2018-01-01

    Objective and subjective measures of performance in virtual reality environments increase as more sensory cues are delivered and as simulation fidelity increases. Some cues (colour or sound) are easier to present than others (object weight, vestibular cues) so that substitute cues can be used to enhance informational content in a simulation at the expense of simulation fidelity. This study evaluates how substituting cues in one modality by alternative cues in another modality affects subjective and objective performance measures in a highly immersive virtual reality environment. Participants performed a wheel change in a virtual reality (VR) environment. Auditory, haptic and visual cues, signalling critical events in the simulation, were manipulated in a factorial design. Subjective ratings were recorded via questionnaires. The time taken to complete the task was used as an objective performance measure. The results show that participants performed best and felt an increased sense of immersion and involvement, collectively referred to as 'presence', when substitute multimodal sensory feedback was provided. Significant main effects of audio and tactile cues on task performance and on participants' subjective ratings were found. A significant negative relationship was found between the objective (overall completion times) and subjective (ratings of presence) performance measures. We conclude that increasing informational content, even if it disrupts fidelity, enhances performance and user's overall experience. On this basis we advocate the use of substitute cues in VR environments as an efficient method to enhance performance and user experience.

  2. The effects of substitute multisensory feedback on task performance and the sense of presence in a virtual reality environment.

    Directory of Open Access Journals (Sweden)

    Natalia Cooper

    Full Text Available Objective and subjective measures of performance in virtual reality environments increase as more sensory cues are delivered and as simulation fidelity increases. Some cues (colour or sound are easier to present than others (object weight, vestibular cues so that substitute cues can be used to enhance informational content in a simulation at the expense of simulation fidelity. This study evaluates how substituting cues in one modality by alternative cues in another modality affects subjective and objective performance measures in a highly immersive virtual reality environment. Participants performed a wheel change in a virtual reality (VR environment. Auditory, haptic and visual cues, signalling critical events in the simulation, were manipulated in a factorial design. Subjective ratings were recorded via questionnaires. The time taken to complete the task was used as an objective performance measure. The results show that participants performed best and felt an increased sense of immersion and involvement, collectively referred to as 'presence', when substitute multimodal sensory feedback was provided. Significant main effects of audio and tactile cues on task performance and on participants' subjective ratings were found. A significant negative relationship was found between the objective (overall completion times and subjective (ratings of presence performance measures. We conclude that increasing informational content, even if it disrupts fidelity, enhances performance and user's overall experience. On this basis we advocate the use of substitute cues in VR environments as an efficient method to enhance performance and user experience.

  3. Virtual Construction of Social Reality Through New Medium-Internet

    OpenAIRE

    KARASAR, Sahin

    2002-01-01

    This is a study on the creation of social reality in virtual setting such as chat/discussion/list groups, based on a theoretical framework of social and cultural reality. It was tried to be found how closer one can get to and create the reality in relation with others in virtual settings. It is a survey type study. For this, a virtually communicated group (45 persons) was selected and given a questionnaire in their natural virtual settings. The members were questioned on their socializatio...

  4. A Virtual Tomb for Kelvingrove: Virtual Reality, Archaeology and Education

    Directory of Open Access Journals (Sweden)

    Melissa M. Terras

    1999-11-01

    Full Text Available The use of computers as an educational resource in museums is becoming increasingly popular as more and more institutions realise that multimedia displays are very successful in imparting a broad variety of information. Although three-dimensional reconstructions of sites and structures have been used in archaeology for many years, the majority of museum computer installations have dealt with two-dimensional media because of the costs, equipment and labour involved in producing interactive 3D scenes. The birth of VRML (Virtual Reality Modeling Language has changed the way virtual reality is implemented and viewed. As an internet protocol, VRML can be used on most major platforms and implemented by anyone with a word-processing package, an internet browser, and the relevant plug-in. There is no reason why this new technology cannot be adopted by archaeologists and museums to produce virtual reality models of structures, sites and objects to aid the research of specialists and the education of the public. This project (undertaken at the Humanities Advanced Technology and Information Institute, University of Glasgow, Scotland, between May and October 1998 investigated the practicalities involved in using VRML to create a virtual reality model for use in a public space. A model of the Egyptian tomb of Sen-nedjem was developed for installation in the Egyptian Gallery of the Kelvingrove Museum and Art Gallery, Glasgow, in the hope that the introduction of this computer display would encourage the museum visitor's interest in the gallery's existing artefacts. Creation of the model would also investigate the possibility of using VRML to build accurate archaeological reconstructions cheaply and efficiently using publicly available software and existing archaeological resources. A fully functioning virtual reality model of the tomb of Sen-nedjem has been created, incorporating interactive elements, photorealistic representation, and animation, and this

  5. Usefulness of a Virtual Reality Percutaneous Trigeminal Rhizotomy Simulator in Neurosurgical Training.

    Science.gov (United States)

    Shakur, Sophia F; Luciano, Cristian J; Kania, Patrick; Roitberg, Ben Z; Banerjee, P Pat; Slavin, Konstantin V; Sorenson, Jeffrey; Charbel, Fady T; Alaraj, Ali

    2015-09-01

    Simulation-based training may be incorporated into neurosurgery in the future. To assess the usefulness of a novel haptics-based virtual reality percutaneous trigeminal rhizotomy simulator. A real-time augmented reality simulator for percutaneous trigeminal rhizotomy was developed using the ImmersiveTouch platform. Ninety-two neurosurgery residents tested the simulator at American Association of Neurological Surgeons Top Gun 2014. Postgraduate year (PGY), number of fluoroscopy shots, the distance from the ideal entry point, and the distance from the ideal target were recorded by the system during each simulation session. Final performance score was calculated considering the number of fluoroscopy shots and distances from entry and target points (a lower score is better). The impact of PGY level on residents' performance was analyzed. Seventy-one residents provided their PGY-level and simulator performance data; 38% were senior residents and 62% were junior residents. The mean distance from the entry point (9.4 mm vs 12.6 mm, P = .01), the distance from the target (12.0 mm vs 15.2 mm, P = .16), and final score (31.1 vs 37.7, P = .02) were lower in senior than in junior residents. The mean number of fluoroscopy shots (9.8 vs 10.0, P = .88) was similar in these 2 groups. Linear regression analysis showed that increasing PGY level is significantly associated with a decreased distance from the ideal entry point (P = .001), a shorter distance from target (P = .05), a better final score (P = .007), but not number of fluoroscopy shots (P = .52). Because technical performance of percutaneous rhizotomy increases with training, we proposed that the skills in performing the procedure in our virtual reality model would also increase with PGY level, if our simulator models the actual procedure. Our results confirm this hypothesis and demonstrate construct validity.

  6. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface

    OpenAIRE

    Jacopo Aleotti; Giorgio Micconi; Stefano Caselli; Giacomo Benassi; Nicola Zambelli; Manuele Bettelli; Andrea Zappettini

    2017-01-01

    A visuo-haptic augmented reality (VHAR) interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV) equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the sit...

  7. Psychological benefits of virtual reality for patients in rehabilitation therapy.

    Science.gov (United States)

    Chen, Chih-Hung; Jeng, Ming-Chang; Fung, Chin-Ping; Doong, Ji-Liang; Chuang, Tien-Yow

    2009-05-01

    Whether virtual rehabilitation is beneficial has not been determined. To investigate the psychological benefits of virtual reality in rehabilitation. An experimental group underwent therapy with a virtual-reality-based exercise bike, and a control group underwent the therapy without virtual-reality equipment. Hospital laboratory. 30 patients suffering from spinal-cord injury. A designed rehabilitation therapy. Endurance, Borg's rating-of-perceived-exertion scale, the Activation-Deactivation Adjective Check List (AD-ACL), and the Simulator Sickness Questionnaire. The differences between the experimental and control groups were significant for AD-ACL calmness and tension. A virtual-reality-based rehabilitation program can ease patients' tension and induce calm.

  8. Extending Science lessons with Virtual Reality

    OpenAIRE

    Minocha, Shailey; Tudor, Ana-Despina; Tilling, Steve; Needham, Richard

    2016-01-01

    The Open University, Field Studies Council and Association for Science Education are conducting research into the use of Google Expeditions and other virtual reality tools to a) augment and extend field work experiences; and b) as an additional tool in the classrooms along with resources such as videos, photographs. \\ud \\ud The following aspects were discussed in this workshop:\\ud \\ud Does the virtual reality technology improve student engagement, and what are the implications for teachers?\\u...

  9. An Interactive Virtual Reality System for On-Orbit Servicing

    OpenAIRE

    Sagardia, Mikel; Hertkorn, Katharina; Hulin, Thomas; Wolff, Robin; Hummel, Johannes; Dodiya, Janki; Gerndt, Andreas

    2013-01-01

    The growth of space debris is becoming a serious problem. There is an urgent need for mitigation measures based on maintenance, repair and de-orbiting technologies. Our video presents a virtual reality framework in which robotic maintenance tasks of satellites can be simulated interactively. The two key components of this framework are a realistic virtual reality simulation and an immersive interaction device. The peculiarity of the virtual reality simulation is the combi...

  10. Virtual Reality: A Dream Come True or a Nightmare.

    Science.gov (United States)

    Cornell, Richard; Bailey, Dan

    Virtual Reality (VR) is a new medium which allows total stimulation of one's senses through human/computer interfaces. VR has applications in training simulators, nano-science, medicine, entertainment, electronic technology, and manufacturing. This paper focuses on some current and potential problems of virtual reality and virtual environments…

  11. Stepping into the virtual unknown: feasibility study of a virtual reality-based test of ocular misalignment.

    Science.gov (United States)

    Nesaratnam, N; Thomas, P; Vivian, A

    2017-10-01

    IntroductionDissociated tests of strabismus provide valuable information for diagnosis and monitoring of ocular misalignment in patients with normal retinal correspondence. However, they are vulnerable to operator error and rely on a fixed head position. Virtual reality headsets obviate the need for head fixation, while providing other clear theoretical advantages, including complete control over the illumination and targets presented for the patient's interaction.PurposeWe compared the performance of a virtual reality-based test of ocular misalignment to that of the traditional Lees screen, to establish the feasibility of using virtual reality technology in ophthalmic settings in the future.MethodsThree patients underwent a traditional Lees screen test, and a virtual reality headset-based test of ocular motility. The virtual reality headset-based programme consisted of an initial test to measure horizontal and vertical deviation, followed by a test for torsion.ResultsThe pattern of deviation obtained using the virtual reality-based test showed agreement with that obtained from the Lees screen for patients with a fourth nerve palsy, comitant esotropia, and restrictive thyroid eye disease.ConclusionsThis study reports the first use of a virtual reality headset in assessing ocular misalignment, and demonstrates that it is a feasible dissociative test of strabismus.

  12. Investigation of Virtual Digital Human and Robotic Device Technology Merger Complimented by Haptics and Autostereoscopic Displays, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — As expected, the STTR Phase I investigation confirmed that the Digital Virtual Human (DVH) and Robonaut technologies can be merged, and that haptic and...

  13. The need for virtual reality simulators in dental education: A review

    OpenAIRE

    Roy, Elby; Bakr, Mahmoud M.; George, Roy

    2017-01-01

    Virtual reality simulators are becoming an essential part of modern education. The benefits of Virtual reality in dentistry is constantly being assessed as a method or an adjunct to improve fine motor skills, hand-eye coordination in pre-clinical settings and overcome the monetary and intellectual challenges involved with such training. This article, while providing an overview of the virtual reality dental simulators, also looks at the link between virtual reality simulation and current peda...

  14. Virtual reality for stroke rehabilitation.

    Science.gov (United States)

    Laver, Kate E; George, Stacey; Thomas, Susie; Deutsch, Judith E; Crotty, Maria

    2011-09-07

    Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation. In particular, commercial gaming consoles are being rapidly adopted in clinical settings; however, there is currently little information about their effectiveness. To evaluate the effects of virtual reality and interactive video gaming on upper limb, lower limb and global motor function after stroke. We searched the Cochrane Stroke Group Trials Register (March 2010), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2010, Issue 1), MEDLINE (1950 to March 2010), EMBASE (1980 to March 2010) and seven additional databases. We also searched trials registries, conference proceedings, reference lists and contacted key researchers in the area and virtual reality equipment manufacturers. Randomised and quasi-randomised trials of virtual reality ('an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion') in adults after stroke. The primary outcomes of interest were: upper limb function and activity, gait and balance function and activity and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data and assessed risk of bias. A third review author moderated disagreements when required. The authors contacted all investigators to obtain missing information. We included 19 trials which involved 565 participants. Study sample sizes were generally small and interventions and outcome measures varied, limiting the ability to which studies could be compared. Intervention approaches in the included studies were predominantly designed to improve motor function rather than cognitive function or activity performance. The majority of participants were relatively young and more than one year post stroke. results were statistically significant for arm function (standardised

  15. Effect of Virtual Reality on Cognition in Stroke Patients

    OpenAIRE

    Kim, Bo Ryun; Chun, Min Ho; Kim, Lee Suk; Park, Ji Young

    2011-01-01

    Objective To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Method Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the cont...

  16. Subjective visual vertical assessment with mobile virtual reality system

    Directory of Open Access Journals (Sweden)

    Ingrida Ulozienė

    Full Text Available Background and objective: The subjective visual vertical (SVV is a measure of a subject's perceived verticality, and a sensitive test of vestibular dysfunction. Despite this, and consequent upon technical and logistical limitations, SVV has not entered mainstream clinical practice. The aim of the study was to develop a mobile virtual reality based system for SVV test, evaluate the suitability of different controllers and assess the system's usability in practical settings. Materials and methods: In this study, we describe a novel virtual reality based system that has been developed to test SVV using integrated software and hardware, and report normative values across healthy population. Participants wore a mobile virtual reality headset in order to observe a 3D stimulus presented across separate conditions – static, dynamic and an immersive real-world (“boat in the sea” SVV tests. The virtual reality environment was controlled by the tester using a Bluetooth connected controllers. Participants controlled the movement of a vertical arrow using either a gesture control armband or a general-purpose gamepad, to indicate perceived verticality. We wanted to compare 2 different methods for object control in the system, determine normal values and compare them with literature data, to evaluate the developed system with the help of the system usability scale questionnaire and evaluate possible virtually induced dizziness with the help of subjective visual analog scale. Results: There were no statistically significant differences in SVV values during static, dynamic and virtual reality stimulus conditions, obtained using the two different controllers and the results are compared to those previously reported in the literature using alternative methodologies. The SUS scores for the system were high, with a median of 82.5 for the Myo controller and of 95.0 for the Gamepad controller, representing a statistically significant difference between the two

  17. The need for virtual reality simulators in dental education: A review

    Directory of Open Access Journals (Sweden)

    Elby Roy

    2017-04-01

    Full Text Available Virtual reality simulators are becoming an essential part of modern education. The benefits of Virtual reality in dentistry is constantly being assessed as a method or an adjunct to improve fine motor skills, hand-eye coordination in pre-clinical settings and overcome the monetary and intellectual challenges involved with such training. This article, while providing an overview of the virtual reality dental simulators, also looks at the link between virtual reality simulation and current pedagogical knowledge.

  18. The need for virtual reality simulators in dental education: A review.

    Science.gov (United States)

    Roy, Elby; Bakr, Mahmoud M; George, Roy

    2017-04-01

    Virtual reality simulators are becoming an essential part of modern education. The benefits of Virtual reality in dentistry is constantly being assessed as a method or an adjunct to improve fine motor skills, hand-eye coordination in pre-clinical settings and overcome the monetary and intellectual challenges involved with such training. This article, while providing an overview of the virtual reality dental simulators, also looks at the link between virtual reality simulation and current pedagogical knowledge.

  19. Cognitive training on stroke patients via virtual reality-based serious games.

    Science.gov (United States)

    Gamito, Pedro; Oliveira, Jorge; Coelho, Carla; Morais, Diogo; Lopes, Paulo; Pacheco, José; Brito, Rodrigo; Soares, Fabio; Santos, Nuno; Barata, Ana Filipa

    2017-02-01

    Use of virtual reality environments in cognitive rehabilitation offers cost benefits and other advantages. In order to test the effectiveness of a virtual reality application for neuropsychological rehabilitation, a cognitive training program using virtual reality was applied to stroke patients. A virtual reality-based serious games application for cognitive training was developed, with attention and memory tasks consisting of daily life activities. Twenty stroke patients were randomly assigned to two conditions: exposure to the intervention, and waiting list control. The results showed significant improvements in attention and memory functions in the intervention group, but not in the controls. Overall findings provide further support for the use of VR cognitive training applications in neuropsychological rehabilitation. Implications for Rehabilitation Improvements in memory and attention functions following a virtual reality-based serious games intervention. Training of daily-life activities using a virtual reality application. Accessibility to training contents.

  20. Immersive Virtual Reality with Applications to Tele-Operation and Training

    Science.gov (United States)

    2016-03-07

    reviewed journals : Number of Papers published in non peer-reviewed journals : Final Report: Immersive Virtual Reality with Applications to Tele-Operation... Immersive Virtual Reality with Applications to Tele-Operation and Training The proposed project aims to develop a fundamental framework for...establishing an immersive virtual reality environment for robust and scalable human robotics interaction in a cooperative intelligent architecture at the

  1. Telepresence and remote communication through virtual reality

    OpenAIRE

    Rydenfors, Gabriella

    2017-01-01

    This Master Thesis concerns a telepresence implementation which utilizes state-of-the-art virtual reality combined with live 360 degree video. Navigation interfaces for telepresence with virtual reality headsets were developed and evaluated through a user study. An evaluation of telepresence as a communication media was performed, comparing it to video communication. The result showed that telepresence was a better communication media than video communication.

  2. Virtual Reality: immersed in the structural world

    OpenAIRE

    McCabe, Aimee; McPolin, Daniel

    2015-01-01

    Virtual reality is a rapidly emerging technology, driven by the computer gaming industry. The maturity of the concept, combined with modern hardware, is delivering an experience which offers a useful commercial tool for industry and educators. This article discusses the uses of virtual reality within structural engineering and provides an understanding of how it can be incorporated easily and efficiently for design purposes and beyond.

  3. Optoelectronics technologies for Virtual Reality systems

    Science.gov (United States)

    Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław

    2017-08-01

    Solutions in the field of virtual reality are very strongly associated with optoelectronic technologies. This applies to both process design and operation of VR applications. Technologies such as 360 cameras and 3D scanners significantly improve the design work. What is more, HMD displays with high field of view or optoelectronic Motion Capture systems and 3D cameras guarantee an extraordinary experience in immersive VR applications. This article reviews selected technologies from the perspective of their use in a broadly defined process of creating and implementing solutions for virtual reality. There is also the ability to create, modify and adapt new approaches that show team own work (SteamVR tracker). Most of the introduced examples are effectively used by authors to create different VR applications. The use of optoelectronic technology in virtual reality is presented in terms of design and operation of the system as well as referring to specific applications. Designers and users of VR systems should take a close look on new optoelectronics solutions, as they can significantly contribute to increased work efficiency and offer completely new opportunities for virtual world reception.

  4. Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation

    Science.gov (United States)

    Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary

    2016-01-01

    Introduction: Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. Methods: After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. Results: The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Conclusions: Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education. PMID:27014520

  5. Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation.

    Science.gov (United States)

    Zaveri, Pavan P; Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary

    2016-02-09

    Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education.

  6. Molecular Rift: Virtual Reality for Drug Designers.

    Science.gov (United States)

    Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas

    2015-11-23

    Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub.

  7. Experiencing 3D interactions in virtual reality and augmented reality

    NARCIS (Netherlands)

    Martens, J.B.; Qi, W.; Aliakseyeu, D.; Kok, A.J.F.; Liere, van R.; Hoven, van den E.; Ijsselsteijn, W.; Kortuem, G.; Laerhoven, van K.; McClelland, I.; Perik, E.; Romero, N.; Ruyter, de B.

    2004-01-01

    We demonstrate basic 2D and 3D interactions in both a Virtual Reality (VR) system, called the Personal Space Station, and an Augmented Reality (AR) system, called the Visual Interaction Platform. Since both platforms use identical (optical) tracking hardware and software, and can run identical

  8. ARLearn: augmented reality meets augmented virtuality

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland; Kalz, Marco; Van Ulzen, Patricia; Specht, Marcus

    2012-01-01

    Ternier, S., Klemke, R., Kalz, M., Van Ulzen, P., & Specht, M. (2012). ARLearn: augmented reality meets augmented virtuality [Special issue]. Journal of Universal Computer Science - Technology for learning across physical and virtual spaces, 18(15), 2143-2164.

  9. The role of presence in virtual reality exposure therapy

    OpenAIRE

    Price, Matthew; Anderson, Page

    2006-01-01

    A growing body of literature suggests that virtual reality is a successful tool for exposure therapy in the treatment of anxiety disorders. Virtual reality (VR) researchers posit the construct of presence, defined as the interpretation of an artificial stimulus as if it were real, to be a presumed factor that enables anxiety to be felt during virtual reality exposure therapy (VRE). However, a handful of empirical studies on the relation between presence and anxiety in VRE have yielded mixed f...

  10. A real-time haptic interface for interventional radiology procedures.

    Science.gov (United States)

    Moix, Thomas; Ilic, Dejan; Fracheboud, Blaise; Zoethout, Jurjen; Bleuler, Hannes

    2005-01-01

    Interventional Radiology (IR) is a minimally-invasive surgery technique (MIS) where guidewires and catheters are steered in the vascular system under X-ray imaging. In order to perform these procedures, a radiologist has to be correctly trained to master hand-eye coordination, instrument manipulation and procedure protocols. This paper proposes a computer-assisted training environment dedicated to IR. The system is composed of a virtual reality (VR) simulation of the anatomy of the patient linked to a robotic interface providing haptic force feedback.The paper focuses on the requirements, design and prototyping of a specific part of the haptic interface dedicated to catheters. Translational tracking and force feedback on the catheter is provided by two cylinders forming a friction drive arrangement. The whole friction can be set in rotation with an additional motor providing torque feedback. A force and a torque sensor are integrated in the cylinders for direct measurement on the catheter enabling disturbance cancellation with a close-loop force control strategy.

  11. INTERACTIVE MOTION PLATFORMS AND VIRTUAL REALITY FOR VEHICLE SIMULATORS

    Directory of Open Access Journals (Sweden)

    Evžen Thöndel

    2017-12-01

    Full Text Available Interactive motion platforms are intended for vehicle simulators, where the direct interaction of the human body is used for controlling the simulated vehicle (e.g. bicycle, motorbike or other sports vehicles. The second use of interactive motion platforms is for entertainment purposes or fitness. The development of interactive motion platforms reacts to recent calls in the simulation industry to provide a device, which further enhances the virtual reality experience, especially with connection to the new and very fast growing business in virtual reality glasses. The paper looks at the design and control of an interactive motion platform with two degrees of freedom to be used in virtual reality applications. The paper provides the description of the control methods and new problems related to the virtual reality sickness are discussed here.

  12. Virtual Gravity and the Duality of Reality

    CERN Document Server

    Harokopos, E

    2003-01-01

    It is shown that a hypothesis about gravity having a virtual cause implies there are two primary reference frames, a reality and a functional virtual reality and an equivalence principle relating the two is postulated. A mathematical expression relating the primary reference frames to the state of reality provides an explanation of particle-wave duality and resolves the controversy about the speed of gravity. A model for motion, time and particle formation is briefly discussed, in which the hypothesis about the virtual cause of gravity and supporting postulates are valid. It is further shown that such model provides solutions to unsolved paradoxes and a unification of consistent but contradictory ancient theories of matter and motion. Finally, a reference is made about the basis for devising experiments and testing the predictions of the model.

  13. Virtual reality simulation: using three-dimensional technology to teach nursing students.

    Science.gov (United States)

    Jenson, Carole E; Forsyth, Diane McNally

    2012-06-01

    The use of computerized technology is rapidly growing in the classroom and in healthcare. An emerging computer technology strategy for nursing education is the use of virtual reality simulation. This computer-based three-dimensional educational tool simulates real-life patient experiences in a risk-free environment, allows for repeated practice sessions, requires clinical decision making, exposes students to diverse patient conditions, provides immediate feedback, and is portable. The purpose of this article was to review the importance of virtual reality simulation as a computerized teaching strategy. In addition, a project to explore readiness of nursing faculty at one major Midwestern university for the use of virtual reality simulation as a computerized teaching strategy is described where faculty thought virtual reality simulation would increase students' knowledge of an intravenous line insertion procedure. Faculty who practiced intravenous catheter insertion via virtual reality simulation expressed a wide range of learning experiences from using virtual reality simulation that is congruent with the literature regarding the barriers to student learning. Innovative teaching strategies, such as virtual reality simulation, address barriers of increasing patient acuity, high student-to-faculty ratio, patient safety concerns from faculty, and student anxiety and can offer rapid feedback to students.

  14. Development of Virtual Reality Industry - Analysis of Existing Businesses in Prague

    OpenAIRE

    Moroz, Bohdana

    2017-01-01

    This thesis analyses the development of virtual reality industry. The theoretical part of this paper is dedicated to the evolution of virtual reality industry throughout the years, it identifies main reasons why virtual reality did not become viral in the past and provides a correlation between the prices for VR headsets and level of technology adoption. Also, it describes which stage of industry life cycle virtual reality is and compares it with the technology adoption process. In this part ...

  15. Development of the McGill simulator for endoscopic sinus surgery: a new high-fidelity virtual reality simulator for endoscopic sinus surgery.

    Science.gov (United States)

    Varshney, Rickul; Frenkiel, Saul; Nguyen, Lily H P; Young, Meredith; Del Maestro, Rolando; Zeitouni, Anthony; Tewfik, Marc A

    2014-01-01

    The technical challenges of endoscopic sinus surgery (ESS) and the high risk of complications support the development of alternative modalities to train residents in these procedures. Virtual reality simulation is becoming a useful tool for training the skills necessary for minimally invasive surgery; however, there are currently no ESS virtual reality simulators available with valid evidence supporting their use in resident education. Our aim was to develop a new rhinology simulator, as well as to define potential performance metrics for trainee assessment. The McGill simulator for endoscopic sinus surgery (MSESS), a new sinus surgery virtual reality simulator with haptic feedback, was developed (a collaboration between the McGill University Department of Otolaryngology-Head and Neck Surgery, the Montreal Neurologic Institute Simulation Lab, and the National Research Council of Canada). A panel of experts in education, performance assessment, rhinology, and skull base surgery convened to identify core technical abilities that would need to be taught by the simulator, as well as performance metrics to be developed and captured. The MSESS allows the user to perform basic sinus surgery skills, such as an ethmoidectomy and sphenoidotomy, through the use of endoscopic tools in a virtual nasal model. The performance metrics were developed by an expert panel and include measurements of safety, quality, and efficiency of the procedure. The MSESS incorporates novel technological advancements to create a realistic platform for trainees. To our knowledge, this is the first simulator to combine novel tools such as the endonasal wash and elaborate anatomic deformity with advanced performance metrics for ESS.

  16. Grasping trajectories in a virtual environment adhere to Weber's law.

    Science.gov (United States)

    Ozana, Aviad; Berman, Sigal; Ganel, Tzvi

    2018-06-01

    Virtual-reality and telerobotic devices simulate local motor control of virtual objects within computerized environments. Here, we explored grasping kinematics within a virtual environment and tested whether, as in normal 3D grasping, trajectories in the virtual environment are performed analytically, violating Weber's law with respect to object's size. Participants were asked to grasp a series of 2D objects using a haptic system, which projected their movements to a virtual space presented on a computer screen. The apparatus also provided object-specific haptic information upon "touching" the edges of the virtual targets. The results showed that grasping movements performed within the virtual environment did not produce the typical analytical trajectory pattern obtained during 3D grasping. Unlike as in 3D grasping, grasping trajectories in the virtual environment adhered to Weber's law, which indicates relative resolution in size processing. In addition, the trajectory patterns differed from typical trajectories obtained during 3D grasping, with longer times to complete the movement, and with maximum grip apertures appearing relatively early in the movement. The results suggest that grasping movements within a virtual environment could differ from those performed in real space, and are subjected to irrelevant effects of perceptual information. Such atypical pattern of visuomotor control may be mediated by the lack of complete transparency between the interface and the virtual environment in terms of the provided visual and haptic feedback. Possible implications of the findings to movement control within robotic and virtual environments are further discussed.

  17. Physical Models and Virtual Reality Simulators in Otolaryngology.

    Science.gov (United States)

    Javia, Luv; Sardesai, Maya G

    2017-10-01

    The increasing role of simulation in the medical education of future otolaryngologists has followed suit with other surgical disciplines. Simulators make it possible for the resident to explore and learn in a safe and less stressful environment. The various subspecialties in otolaryngology use physical simulators and virtual-reality simulators. Although physical simulators allow the operator to make direct contact with its components, virtual-reality simulators allow the operator to interact with an environment that is computer generated. This article gives an overview of the various types of physical simulators and virtual-reality simulators used in otolaryngology that have been reported in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Virtual-reality displaying of workpiece by reverse modeling

    International Nuclear Information System (INIS)

    Wu Huimin; Zhang Li; Chen Zhiqiang; Zhao Ziran

    2006-01-01

    The authors first propose a suit of CT data processing system: virtual-reality-based testing of workpiece by Reverse Modeling. For reverse modeling module, the authors propose two solutions: integrating Medical CT Modeling software and using VTK library to develop independently. Then, the authors analyze the required functions and characteristics of CT-based Reverse Modeling module, and the key technologies for developing. For virtual-reality module, the authors study characteristics of CT data and the needs of CT users, and describe the required functions and key techniques as for virtual reality displaying module. The authors still analyze the problems and prospective of development. (authors)

  19. Engembangan Virtual Class Untuk Pembelajaran Augmented Reality Berbasis Android

    OpenAIRE

    Arief, Rifiana; Umniati, Naeli

    2012-01-01

    Augmanted Reality for android handphone has been a trend among collage students of computer department who join New Media course. To develop this application, the knowladge about visual presentation theory and case study of Augmanted Reality on android phoneneed to be conducted. Learning media through virtual class can facilitate the students' needs in learning and developing Augmanted Reality. The method of this study in developing virtual class for Augmented Reality learning were: a) having...

  20. ENGEMBANGAN VIRTUAL CLASS UNTUK PEMBELAJARAN AUGMENTED REALITY BERBASIS ANDROID

    OpenAIRE

    Rifiana Arief; Naeli Umniati

    2015-01-01

    ABSTRACT Augmanted Reality for android handphone has been a trend among collage students of computer department who join New Media course. To develop this application, the knowladge about visual presentation theory and case study of Augmanted Reality on android phoneneed to be conducted. Learning media through virtual class can facilitate the students’ needs in learning and developing Augmanted Reality. The method of this study in developing virtual class for Augmented Reality learning we...

  1. Archaeology, museums and virtual reality

    Directory of Open Access Journals (Sweden)

    Laia Pujol

    2004-04-01

    Full Text Available This article looks at the idea that the virtual archaeological reconstructions seen in museums cannot be considered Virtual Reality (VR as they are based on an artistic conception of the discipline. The cause is to be found in the origins of Archaeology, which began in the 18th century and was closely linked to the History of Art. In the era of New Technologies, this concept has become both the cause and the consequence: determining the characteristics of VR from within the discipline, whilst simultaneously reinforcing the virtual reconstructions.To assess the relationship between VR and Archaeology, we must first establish a definition of Virtual Reality. Subsequently, we can take a brief look at the history so as to be able to understand the evolution of Archaeology and museums. This leads us to the analysis of some examples of VR in museums, from which we can gain conclusions on the current use of VR. Finally, we look at the possibilities for VR in terms of publicising Archaeology.

  2. Evaluation of Sensory and Motor Skills in Neurosurgery Applicants Using a Virtual Reality Neurosurgical Simulator: The Sensory-Motor Quotient.

    Science.gov (United States)

    Roitberg, Ben Z; Kania, Patrick; Luciano, Cristian; Dharmavaram, Naga; Banerjee, Pat

    2015-01-01

    Manual skill is an important attribute for any surgeon. Current methods to evaluate sensory-motor skills in neurosurgical residency applicants are limited. We aim to develop an objective multifaceted measure of sensory-motor skills using a virtual reality surgical simulator. A set of 3 tests of sensory-motor function was performed using a 3-dimensional surgical simulator with head and arm tracking, collocalization, and haptic feedback. (1) Trajectory planning: virtual reality drilling of a pedicle. Entry point, target point, and trajectory were scored-evaluating spatial memory and orientation. (2) Motor planning: sequence, timing, and precision: hemostasis in a postresection cavity in the brain. (3) Haptic perception: touching virtual spheres to determine which is softest of the group, with progressive difficulty. Results were analyzed individually and for a combined score of all the tasks. The University of Chicago Hospital's tertiary care academic center. A total of 95 consecutive applicants interviewed at a neurosurgery residency program over 2 years were offered anonymous participation in the study; in 2 cohorts, 36 participants in year 1 and 27 participants in year 2 (validation cohort) agreed and completed all the tasks. We also tested 10 first-year medical students and 4 first- and second-year neurosurgery residents. A cumulative score was generated from the 3 tests. The mean score was 14.47 (standard deviation = 4.37), median score was 13.42, best score was 8.41, and worst score was 30.26. Separate analysis of applicants from each of 2 years yielded nearly identical results. Residents tended to cluster on the better performance side, and first-year students were not different from applicants. (1) Our cumulative score measures sensory-motor skills in an objective and reproducible way. (2) Better performance by residents hints at validity for neurosurgery. (3) We were able to demonstrate good psychometric qualities and generate a proposed sensory

  3. The Impact of Virtual Reality on Chronic Pain.

    Science.gov (United States)

    Jones, Ted; Moore, Todd; Choo, James

    2016-01-01

    The treatment of chronic pain could benefit from additional non-opioid interventions. Virtual reality (VR) has been shown to be effective in decreasing pain for procedural or acute pain but to date there have been few studies on its use in chronic pain. The present study was an investigation of the impact of a virtual reality application for chronic pain. Thirty (30) participants with various chronic pain conditions were offered a five-minute session using a virtual reality application called Cool! Participants were asked about their pain using a 0-10 visual analog scale rating before the VR session, during the session and immediately after the session. They were also asked about immersion into the VR world and about possible side effects. Pain was reduced from pre-session to post-session by 33%. Pain was reduced from pre-session during the VR session by 60%. These changes were both statistically significant at the p virtual reality session. All participants (100%) reported a decrease in pain to some degree between pre-session pain and during-session pain. The virtual reality experience was found here to provide a significant amount of pain relief. A head mounted display (HMD) was used with all subjects and no discomfort was experienced. Only one participant noted any side effects. VR seems to have promise as a non-opioid treatment for chronic pain and further investigation is warranted.

  4. Virtual Reality and Simulation in Neurosurgical Training.

    Science.gov (United States)

    Bernardo, Antonio

    2017-10-01

    Recent biotechnological advances, including three-dimensional microscopy and endoscopy, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging, have continued to mold the surgeon-computer relationship. For developing neurosurgeons, such tools can reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills. We explore the current and future roles and application of virtual reality and simulation in neurosurgical training. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Design of high-fidelity haptic display for one-dimensional force reflection applications

    Science.gov (United States)

    Gillespie, Brent; Rosenberg, Louis B.

    1995-12-01

    This paper discusses the development of a virtual reality platform for the simulation of medical procedures which involve needle insertion into human tissue. The paper's focus is the hardware and software requirements for haptic display of a particular medical procedure known as epidural analgesia. To perform this delicate manual procedure, an anesthesiologist must carefully guide a needle through various layers of tissue using only haptic cues for guidance. As a simplifying aspect for the simulator design, all motions and forces involved in the task occur along a fixed line once insertion begins. To create a haptic representation of this procedure, we have explored both physical modeling and perceptual modeling techniques. A preliminary physical model was built based on CT-scan data of the operative site. A preliminary perceptual model was built based on current training techniques for the procedure provided by a skilled instructor. We compare and contrast these two modeling methods and discuss the implications of each. We select and defend the perceptual model as a superior approach for the epidural analgesia simulator.

  6. [What do virtual reality tools bring to child and adolescent psychiatry?

    Science.gov (United States)

    Bioulac, S; de Sevin, E; Sagaspe, P; Claret, A; Philip, P; Micoulaud-Franchi, J A; Bouvard, M P

    2018-06-01

    Virtual reality is a relatively new technology that enables individuals to immerse themselves in a virtual world. It offers several advantages including a more realistic, lifelike environment that may allow subjects to "forget" they are being assessed, allow a better participation and an increased generalization of learning. Moreover, the virtual reality system can provide multimodal stimuli, such as visual and auditory stimuli, and can also be used to evaluate the patient's multimodal integration and to aid rehabilitation of cognitive abilities. The use of virtual reality to treat various psychiatric disorders in adults (phobic anxiety disorders, post-traumatic stress disorder, eating disorders, addictions…) and its efficacy is supported by numerous studies. Similar research for children and adolescents is lagging behind. This may be particularly beneficial to children who often show great interest and considerable success on computer, console or videogame tasks. This article will expose the main studies that have used virtual reality with children and adolescents suffering from psychiatric disorders. The use of virtual reality to treat anxiety disorders in adults is gaining popularity and its efficacy is supported by various studies. Most of the studies attest to the significant efficacy of the virtual reality exposure therapy (or in virtuo exposure). In children, studies have covered arachnophobia social anxiety and school refusal phobia. Despite the limited number of studies, results are very encouraging for treatment in anxiety disorders. Several studies have reported the clinical use of virtual reality technology for children and adolescents with autistic spectrum disorders (ASD). Extensive research has proven the efficiency of technologies as support tools for therapy. Researches are found to be focused on communication and on learning and social imitation skills. Virtual reality is also well accepted by subjects with ASD. The virtual environment offers

  7. The Potential of Using Virtual Reality Technology in Physical Activity Settings

    Science.gov (United States)

    Pasco, Denis

    2013-01-01

    In recent years, virtual reality technology has been successfully used for learning purposes. The purposes of the article are to examine current research on the role of virtual reality in physical activity settings and discuss potential application of using virtual reality technology to enhance learning in physical education. The article starts…

  8. Role of virtual reality for cerebral palsy management.

    Science.gov (United States)

    Weiss, Patrice L Tamar; Tirosh, Emanuel; Fehlings, Darcy

    2014-08-01

    Virtual reality is the use of interactive simulations to present users with opportunities to perform in virtual environments that appear, sound, and less frequently, feel similar to real-world objects and events. Interactive computer play refers to the use of a game where a child interacts and plays with virtual objects in a computer-generated environment. Because of their distinctive attributes that provide ecologically realistic and motivating opportunities for active learning, these technologies have been used in pediatric rehabilitation over the past 15 years. The ability of virtual reality to create opportunities for active repetitive motor/sensory practice adds to their potential for neuroplasticity and learning in individuals with neurologic disorders. The objectives of this article is to provide an overview of how virtual reality and gaming are used clinically, to present the results of several example studies that demonstrate their use in research, and to briefly remark on future developments. © The Author(s) 2014.

  9. Graphic and haptic simulation for transvaginal cholecystectomy training in NOTES.

    Science.gov (United States)

    Pan, Jun J; Ahn, Woojin; Dargar, Saurabh; Halic, Tansel; Li, Bai C; Sankaranarayanan, Ganesh; Roberts, Kurt; Schwaitzberg, Steven; De, Suvranu

    2016-04-01

    Natural Orifice Transluminal Endoscopic Surgery (NOTES) provides an emerging surgical technique which usually needs a long learning curve for surgeons. Virtual reality (VR) medical simulators with vision and haptic feedback can usually offer an efficient and cost-effective alternative without risk to the traditional training approaches. Under this motivation, we developed the first virtual reality simulator for transvaginal cholecystectomy in NOTES (VTEST™). This VR-based surgical simulator aims to simulate the hybrid NOTES of cholecystectomy. We use a 6DOF haptic device and a tracking sensor to construct the core hardware component of simulator. For software, an innovative approach based on the inner-spheres is presented to deform the organs in real time. To handle the frequent collision between soft tissue and surgical instruments, an adaptive collision detection method based on GPU is designed and implemented. To give a realistic visual performance of gallbladder fat tissue removal by cautery hook, a multi-layer hexahedral model is presented to simulate the electric dissection of fat tissue. From the experimental results, trainees can operate in real time with high degree of stability and fidelity. A preliminary study was also performed to evaluate the realism and the usefulness of this hybrid NOTES simulator. This prototyped simulation system has been verified by surgeons through a pilot study. Some items of its visual performance and the utility were rated fairly high by the participants during testing. It exhibits the potential to improve the surgical skills of trainee and effectively shorten their learning curve. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The role of haptic feedback in laparoscopic simulation training.

    Science.gov (United States)

    Panait, Lucian; Akkary, Ehab; Bell, Robert L; Roberts, Kurt E; Dudrick, Stanley J; Duffy, Andrew J

    2009-10-01

    Laparoscopic virtual reality simulators are becoming a ubiquitous tool in resident training and assessment. These devices provide the operator with various levels of realism, including haptic (or force) feedback. However, this feature adds significantly to the cost of the devices, and limited data exist assessing the value of haptics in skill acquisition and development. Utilizing the Laparoscopy VR (Immersion Medical, Gaithersburg, MD), we hypothesized that the incorporation of force feedback in the simulated operative environment would allow superior trainee performance compared with performance of the same basic skills tasks in a non-haptic model. Ten medical students with minimal laparoscopic experience and similar baseline skill levels as proven by performance of two fundamentals of laparoscopic surgery (FLS) tasks (peg transfer and cutting drills) voluntarily participated in the study. Each performed two tasks, analogous to the FLS drills, on the Laparoscopy VR at 3 levels of difficulty, based on the established settings of the manufacturer. After achieving familiarity with the device and tasks, the students completed the drills both with and without force feedback. Data on completion time, instrument path length, right and left hand errors, and grasping tension were analyzed. The scores in the haptic-enhanced simulation environment were compared with the scores in the non-haptic model and analyzed utilizing Student's t-test. The peg transfer drill showed no difference in performance between the haptic and non-haptic simulations for all metrics at all three levels of difficulty. For the more complex cutting exercise, the time to complete the tasks was significantly shorter when force feedback was provided, at all levels of difficulty (158+/-56 versus 187+/-51 s, 176+/-49 versus 222+/-68 s, and 275+/-76 versus 422+/-220 s, at levels 1, 2, and 3, respectively, Psimulation did not demonstrate an appreciable performance improvement among our trainees. These data

  11. Measuring user satisfaction for design variations through virtual reality

    NARCIS (Netherlands)

    Orzechowski, M.A.; Timmermans, H.J.P.; Vries, de B.; Timmermans, H.J.P.; Vries, de B.

    2000-01-01

    This paper describes Virtual Reality as an environment to collect information about user satisfaction. Because Virtual Reality (VR) allows visualization with added interactivity, this form of representation bas particular advantages when presenting new designs. The paper reports on the development

  12. E-virtual reality exposure therapy in acrophobia: A pilot study.

    Science.gov (United States)

    Levy, Fanny; Leboucher, Pierre; Rautureau, Gilles; Jouvent, Roland

    2016-06-01

    Virtual reality therapy is already used for anxiety disorders as an alternative to in vivo and in imagino exposure. To our knowledge, however, no one has yet proposed using remote virtual reality (e-virtual reality). The aim of the present study was to assess e-virtual reality in an acrophobic population. Six individuals with acrophobia each underwent six sessions (two sessions per week) of virtual reality exposure therapy. The first three were remote sessions, while the last three were traditional sessions in the physical presence of the therapist. Anxiety (STAI form Y-A, visual analog scale, heart rate), presence, technical difficulties and therapeutic alliance (Working Alliance Inventory) were measured. In order to control the conditions in which these measures were made, all the sessions were conducted in hospital. None of the participants dropped out. The remote sessions were well accepted. None of the participants verbalized reluctance. No major technical problems were reported. None of the sessions were cancelled or interrupted because of software incidents. Measures (anxiety, presence, therapeutic alliance) were comparable across the two conditions. e-Virtual reality can therefore be used to treat acrophobic disorders. However, control studies are needed to assess online feasibility, therapeutic effects and the mechanisms behind online presence. © The Author(s) 2015.

  13. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis.

    Science.gov (United States)

    Bergeron, Mathieu; Lortie, Catherine L; Guitton, Matthieu J

    2015-01-01

    Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies.

  14. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis

    Directory of Open Access Journals (Sweden)

    Mathieu Bergeron

    2015-01-01

    Full Text Available Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients’ symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points, changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies.

  15. Virtual reality applications to work.

    Science.gov (United States)

    Weiss, P L; Jessel, A S

    1998-01-01

    Virtual reality (VR) entails the use of advanced technologies, including computers and various multimedia peripherals, to produce a simulated (i.e. virtual) environment that users perceive as comparable to real world objects and events. With the aid of specially designed transducers and sensors, users interact with displayed images, moving and manipulating virtual objects, and performing other actions in a way that engenders a feeling of actual presence (immersion) in the simulated environment. The unique features and flexibility of VR give it extraordinary potential for use in work-related applications. It permits users to experience and interact with a life-like model or environment, in safety and at convenient times, while providing a degree of control over the simulation that is usually not possible in the real-life situation. The work-related applications that appear to be most promising are those that employ virtual reality for visualization and representation, distance communication and education, hands-on training, and orientation and navigation. This article presents an overview to the concepts of VR focusing on its applications in a variety of work settings. Issues related to potential difficulties in using VR including side effects and the transfer of skills learned in the virtual environment to the real world are also reviewed.

  16. Towards augmented reality: The dialectics of physical and virtual space

    Directory of Open Access Journals (Sweden)

    Guga Jelena

    2015-01-01

    Full Text Available Spaces generated by new media technologies, no matter how abstract they may be, represent a qualitatively new form of the media environment. Moreover, they are integrated into everyday life in a way that they have become the constituents of social reality. Based on dualistic Cartesian understanding of real and virtual space, virtuality still carries a connotation of 'other' world, which is ontologically and phenomenologically different from 'reality'. However, virtuality as a characteristic of new media technologies should neither be equated with illusion, deception or fiction nor set in opposition to reality, given that it embodies real interactions. Instead, we could say that there are different types or levels of reality and that the virtual exists as reality qualitatively different from that of physical reality. Today, when every place on the planet, as well as social, political, and cultural activities, have their digital manifestations, can we still talk about virtual space as an isolated phenomenon? The ubiquitous use of new media technologies such as smartphones or wearables has profoundly transformed the experience of modern man. It is more and more determined by technologically mediated reality, i.e. augmented reality. In this regard, the key issues that will be addressed in this article are the ways technologically mediated spaces redefine not only the social relationships, but also the notions of identity, embodiment, and the self.

  17. Virtual Reality in Engineering Education: The Future of Creative Learning

    OpenAIRE

    Abdul-Hadi Ghazi Abulrub; Alex Attridge; Mark A Williams

    2011-01-01

    Virtual reality has achieved an adequate level of development for it to be considered in innovative applications such as education, training, and research in higher education. Virtual reality offers both opportunities and challenges for the educational sector. One of the challenges of virtual reality technology is the costs associated which have been unaffordable for educational institutes. However, in recent years, computer hardware and software development has made it more feasible to incor...

  18. International workshop on multimodal virtual and augmented reality (workshop summary)

    NARCIS (Netherlands)

    Hürst, W.O.; Iwai, Daisuke; Balakrishnan, Prabhakaran

    2016-01-01

    Virtual reality (VR) and augmented reality (AR) are expected by many to become the next wave of computing with significant impacts on our daily lives. Motivated by this, we organized a workshop on “Multimodal Virtual and Augmented Reality (MVAR)” at the 18th ACM International Conference on

  19. The 'mad scientists': psychoanalysis, dream and virtual reality.

    Science.gov (United States)

    Leclaire, Marie

    2003-04-01

    The author explores the concept of reality-testing as a means of assessing the relationship with reality that prevails in dream and in virtual reality. Based on a model developed by Jean Laplanche, she compares these activities in detail in order to determine their respective independence from the function of reality-testing. By carefully examining the concept of hallucination in the writings of Freud and Daniel Dennett, the author seeks to pinpoint the specific modalities of interaction between perceptions, ideas, wishes and actions that converge in the 'belief' and in the 'sense of reality'. The paper's main thesis consists of the distinction that it draws between immediacy-testing and reality-testing, with the further argument that this distinction not only dissipates the conceptual vagueness that generally surrounds the latter of the two concepts but also that it promotes a more precise analysis of the function of reality in dream and in virtual reality.

  20. Virtual Reality as an Educational and Training Tool for Medicine.

    Science.gov (United States)

    Izard, Santiago González; Juanes, Juan A; García Peñalvo, Francisco J; Estella, Jesús Mª Gonçalvez; Ledesma, Mª José Sánchez; Ruisoto, Pablo

    2018-02-01

    Until very recently, we considered Virtual Reality as something that was very close, but it was still science fiction. However, today Virtual Reality is being integrated into many different areas of our lives, from videogames to different industrial use cases and, of course, it is starting to be used in medicine. There are two great general classifications for Virtual Reality. Firstly, we find a Virtual Reality in which we visualize a world completely created by computer, three-dimensional and where we can appreciate that the world we are visualizing is not real, at least for the moment as rendered images are improving very fast. Secondly, there is a Virtual Reality that basically consists of a reflection of our reality. This type of Virtual Reality is created using spherical or 360 images and videos, so we lose three-dimensional visualization capacity (until the 3D cameras are more developed), but on the other hand we gain in terms of realism in the images. We could also mention a third classification that merges the previous two, where virtual elements created by computer coexist with 360 images and videos. In this article we will show two systems that we have developed where each of them can be framed within one of the previous classifications, identifying the technologies used for their implementation as well as the advantages of each one. We will also analize how these systems can improve the current methodologies used for medical training. The implications of these developments as tools for teaching, learning and training are discussed.

  1. Augmented-Virtual Reality: How to improve education systems

    Directory of Open Access Journals (Sweden)

    Manuel Fernandez

    2017-06-01

    Full Text Available This essay presents and discusses the developing role of virtual and augmented reality technologies in education. Addressing the challenges in adapting such technologies to focus on improving students’ learning outcomes, the author discusses the inclusion of experiential modes as a vehicle for improving students’ knowledge acquisition. Stakeholders in the educational role of technology include students, faculty members, institutions, and manufacturers. While the benefits of such technologies are still under investigation, the technology landscape offers opportunities to enhance face-to-face and online teaching, including contributions in the understanding of abstract concepts and training in real environments and situations. Barriers to technology use involve limited adoption of augmented and virtual reality technologies, and, more directly, necessary training of teachers in using such technologies within meaningful educational contexts. The author proposes a six-step methodology to aid adoption of these technologies as basic elements within the regular education: training teachers; developing conceptual prototypes; teamwork involving the teacher, a technical programmer, and an educational architect; and producing the experience, which then provides results in the subsequent two phases wherein teachers are trained to apply augmented- and virtual-reality solutions within their teaching methodology using an available subject-specific experience and then finally implementing the use of the experience in a regular subject with students. The essay concludes with discussion of the business opportunities facing virtual reality in face-to-face education as well as augmented and virtual reality in online education.

  2. Application of virtual reality to simulation in nuclear power plant

    International Nuclear Information System (INIS)

    Liu Pengfei; Yang Yanhua; Yang Yongmu; Duan Dongdong; Luo Jie

    2008-01-01

    Based on detailed analysis of the structure and key techniques of a virtual reality system, the applications of virtual reality to simulation in nuclear power plant (NPP) were developed. In order to meet the requirement of simulation in NPP, motion simulation of control rod drive system, walking system inside the containment and virtual main control room were presented. A simulator of NPP was connected to interchange dynamic data between virtual main control room and the simulator. The simulating results show that the technique of virtual reality can be applied well to the simulation inside containment, which is filled with activity material, and the simulation of virtual main control room, where human factors must be considered. It also can be used well to design virtual education and training system of NPP. (authors)

  3. SOCIAL INSTITUTION OF EDUCATION AND COMPUTER VIRTUAL REALITY: POINTS OF INFLUENCE

    OpenAIRE

    Tarakanov Sergey Anatolevich

    2012-01-01

    This article discusses the impact of computer virtual reality to education as a social institution. Author gives a description of education as a social institution. Outlines the main changes of the institute of education under the influence of a virtual online-environment. Author makes the following conclusions: 1. Computer virtual reality expands sphere of activity of social institution of education. 2. Computer virtual reality deletes status and role differences. It influences on the system...

  4. Virtual reality simulation for the optimization of endovascular procedures: current perspectives.

    Science.gov (United States)

    Rudarakanchana, Nung; Van Herzeele, Isabelle; Desender, Liesbeth; Cheshire, Nicholas J W

    2015-01-01

    Endovascular technologies are rapidly evolving, often requiring coordination and cooperation between clinicians and technicians from diverse specialties. These multidisciplinary interactions lead to challenges that are reflected in the high rate of errors occurring during endovascular procedures. Endovascular virtual reality (VR) simulation has evolved from simple benchtop devices to full physic simulators with advanced haptics and dynamic imaging and physiological controls. The latest developments in this field include the use of fully immersive simulated hybrid angiosuites to train whole endovascular teams in crisis resource management and novel technologies that enable practitioners to build VR simulations based on patient-specific anatomy. As our understanding of the skills, both technical and nontechnical, required for optimal endovascular performance improves, the requisite tools for objective assessment of these skills are being developed and will further enable the use of VR simulation in the training and assessment of endovascular interventionalists and their entire teams. Simulation training that allows deliberate practice without danger to patients may be key to bridging the gap between new endovascular technology and improved patient outcomes.

  5. A programmable display-layer architecture for virtual-reality applications

    NARCIS (Netherlands)

    Smit, F.A.

    2009-01-01

    Two important technical objectives of virtual-reality systems are to provide compelling visuals and effective 3D user interaction. In this respect, modern virtual reality system architectures suffer from a number of short-comings. The reduction of end-to-end latency, crosstalk and judder are

  6. Virtual Reality: A New Learning Environment.

    Science.gov (United States)

    Ferrington, Gary; Loge, Kenneth

    1992-01-01

    Discusses virtual reality (VR) technology and its possible uses in military training, medical education, industrial design and development, the media industry, and education. Three primary applications of VR in the learning process--visualization, simulation, and construction of virtual worlds--are described, and pedagogical and moral issues are…

  7. Augmented reality (AR) and virtual reality (VR) applied in dentistry

    OpenAIRE

    Ta-Ko Huang; Chi-Hsun Yang; Yu-Hsin Hsieh; Jen-Chyan Wang; Chun-Cheng Hung

    2018-01-01

    The OSCE is a reliable evaluation method to estimate the preclinical examination of dental students. The most ideal assessment for OSCE is used the augmented reality simulator to evaluate. This literature review investigated a recently developed in virtual reality (VR) and augmented reality (AR) starting of the dental history to the progress of the dental skill. As result of the lacking of technology, it needs to depend on other device increasing the success rate and decreasing the risk of th...

  8. Virtual reality simulators for gastrointestinal endoscopy training.

    Science.gov (United States)

    Triantafyllou, Konstantinos; Lazaridis, Lazaros Dimitrios; Dimitriadis, George D

    2014-01-16

    The use of simulators as educational tools for medical procedures is spreading rapidly and many efforts have been made for their implementation in gastrointestinal endoscopy training. Endoscopy simulation training has been suggested for ascertaining patient safety while positively influencing the trainees' learning curve. Virtual simulators are the most promising tool among all available types of simulators. These integrated modalities offer a human-like endoscopy experience by combining virtual images of the gastrointestinal tract and haptic realism with using a customized endoscope. From their first steps in the 1980s until today, research involving virtual endoscopic simulators can be divided in two categories: investigation of the impact of virtual simulator training in acquiring endoscopy skills and measuring competence. Emphasis should also be given to the financial impact of their implementation in endoscopy, including the cost of these state-of-the-art simulators and the potential economic benefits from their usage. Advances in technology will contribute to the upgrade of existing models and the development of new ones; while further research should be carried out to discover new fields of application.

  9. The ethics of representation and action in virtual reality

    NARCIS (Netherlands)

    Brey, Philip A.E.

    1999-01-01

    This essay addresses ethical aspects of the design and use of virtual reality (VR) systems, focusing on the behavioral options made available in such systems and the manner in which reality is represented or simulated in them. An assessment is made of the morality of immoral behavior in virtual

  10. Designing a Virtual-Reality-Based, Gamelike Math Learning Environment

    Science.gov (United States)

    Xu, Xinhao; Ke, Fengfeng

    2016-01-01

    This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…

  11. The Virtual Tablet: Virtual Reality as a Control System

    Science.gov (United States)

    Chronister, Andrew

    2016-01-01

    In the field of human-computer interaction, Augmented Reality (AR) and Virtual Reality (VR) have been rapidly growing areas of interest and concerted development effort thanks to both private and public research. At NASA, a number of groups have explored the possibilities afforded by AR and VR technology, among which is the IT Advanced Concepts Lab (ITACL). Within ITACL, the AVR (Augmented/Virtual Reality) Lab focuses on VR technology specifically for its use in command and control. Previous work in the AVR lab includes the Natural User Interface (NUI) project and the Virtual Control Panel (VCP) project, which created virtual three-dimensional interfaces that users could interact with while wearing a VR headset thanks to body- and hand-tracking technology. The Virtual Tablet (VT) project attempts to improve on these previous efforts by incorporating a physical surrogate which is mirrored in the virtual environment, mitigating issues with difficulty of visually determining the interface location and lack of tactile feedback discovered in the development of previous efforts. The physical surrogate takes the form of a handheld sheet of acrylic glass with several infrared-range reflective markers and a sensor package attached. Using the sensor package to track orientation and a motion-capture system to track the marker positions, a model of the surrogate is placed in the virtual environment at a position which corresponds with the real-world location relative to the user's VR Head Mounted Display (HMD). A set of control mechanisms is then projected onto the surface of the surrogate such that to the user, immersed in VR, the control interface appears to be attached to the object they are holding. The VT project was taken from an early stage where the sensor package, motion-capture system, and physical surrogate had been constructed or tested individually but not yet combined or incorporated into the virtual environment. My contribution was to combine the pieces of

  12. Virtual Reality: Real Promises and False Expectations.

    Science.gov (United States)

    Homan, Willem J.

    1994-01-01

    Examines virtual reality (VR), and discusses the dilemma of defining VR, the limitations of the current technology, and the implications of VR for education. Highlights include a VR experience; human factors and the interface; and altered reality versus VR. (Author/AEF)

  13. Sound For Animation And Virtual Reality

    Science.gov (United States)

    Hahn, James K.; Docter, Pete; Foster, Scott H.; Mangini, Mark; Myers, Tom; Wenzel, Elizabeth M.; Null, Cynthia (Technical Monitor)

    1995-01-01

    Sound is an integral part of the experience in computer animation and virtual reality. In this course, we will present some of the important technical issues in sound modeling, rendering, and synchronization as well as the "art" and business of sound that are being applied in animations, feature films, and virtual reality. The central theme is to bring leading researchers and practitioners from various disciplines to share their experiences in this interdisciplinary field. The course will give the participants an understanding of the problems and techniques involved in producing and synchronizing sounds, sound effects, dialogue, and music. The problem spans a number of domains including computer animation and virtual reality. Since sound has been an integral part of animations and films much longer than for computer-related domains, we have much to learn from traditional animation and film production. By bringing leading researchers and practitioners from a wide variety of disciplines, the course seeks to give the audience a rich mixture of experiences. It is expected that the audience will be able to apply what they have learned from this course in their research or production.

  14. Virtual Reality and Multiple Intelligences: Potentials for Higher Education.

    Science.gov (United States)

    McLellan, Hilary

    1994-01-01

    Discussion of the use of virtual reality in higher education looks at how this emerging computer-based technology can promote learning that engages all seven forms of intelligence proposed in H. Gardner's theory of multiple intelligences. Technical and conceptual issues in implementation of virtual reality in education are also examined.…

  15. Speculations on the representation of architecture in virtual reality

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars; Bundgård, Ture Slot

    2017-01-01

    to the visual field of perception. However, this should not necessarily imply an acceptance of the dominance of vision over the other senses, and the much-criticized retinal architecture with its inherent loss of plasticity. Recent neurology studies indicate that 3D representation models in virtual reality......This paper discusses the present and future possibilities of representation models of architecture in new media such as virtual reality, seen in the broader context of tradition, perception, and neurology. Through comparative studies of real and virtual scenarios using eye tracking, the paper...... are less demanding on the brain’s working memory than 3D models seen on flat two-dimensional screens. This paper suggests that virtual reality representational architectural models can, if used correctly, significantly improve the imaginative role of architectural representation....

  16. Relationships of virtual reality neuroendoscopic simulations to actual imaging.

    Science.gov (United States)

    Riegel, T; Alberti, O; Retsch, R; Shiratori, V; Hellwig, D; Bertalanffy, H

    2000-12-01

    Advances in computer technology have permitted virtual reality images of the ventricular system. To determine the relevance of these images we have compared virtual reality simulations of the ventricular system with endoscopic findings in three patients. The virtual fly-through can be simulated after definition of waypoints. Flight objects of interest can be viewed from all sides. Important drawbacks are that filigree structures may be missed and blood vessels cannot be distinguished clearly. However, virtual endoscopy can presently be used as a planning tool or for training and has future potential for neurosurgery.

  17. Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning.

    Science.gov (United States)

    Luursema, Jan-Maarten; Vorstenbosch, Marc; Kooloos, Jan

    2017-01-01

    A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F (1) = 5.63 and p = .02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items.

  18. Designing Shared Virtual Reality Gaming Experiences in Local Multi-platform Games

    OpenAIRE

    Liszio , Stefan; Masuch , Maic

    2016-01-01

    Part 4: Short Papers; International audience; Designing multiplayer virtual reality games is a challenging task since immersion is easily destroyed by real world influences. However, providing fun and social virtual reality experiences is inevitable for establishing virtual reality gaming as a convincing new medium. We propose a design approach to integrate social interactions into the game design while retaining immersion, and present design methods to implement this approach. Furthermore, w...

  19. Virtual reality solutions for the design of machine tools in practice

    OpenAIRE

    Zickner, H.; Neugebauer, Reimund; Weidlich, D.

    2006-01-01

    At the Virtual Reality Centre Production Engineering (VRCP) the Institute for Machine Tools and Production Processes (IWP) of the Chemnitz University of Technology and the Fraunhofer Institute for Machine Tools and Forming Technology (IWU) have developed several practical Virtual Reality (VR) based solutions for the industry. Some practical examples will show the benefits gained by the application of Virtual Reality techniques in the design process of machine tools and assembly lines.

  20. Alleviating travel anxiety through virtual reality and narrated video technology.

    Science.gov (United States)

    Ahn, J C; Lee, O

    2013-01-01

    This study presents an empirical evidence of benefit of narrative video clips in embedded virtual reality websites of hotels for relieving travel anxiety. Even though it was proven that virtual reality functions do provide some relief in travel anxiety, a stronger virtual reality website can be built when narrative video clips that show video clips with narration about important aspects of the hotel. We posit that these important aspects are 1. Escape route and 2. Surrounding neighborhood information, which are derived from the existing research on anxiety disorder as well as travel anxiety. Thus we created a video clip that showed and narrated about the escape route from the hotel room, another video clip that showed and narrated about surrounding neighborhood. We then conducted experiments with this enhanced virtual reality website of a hotel by having human subjects play with the website and fill out a questionnaire. The result confirms our hypothesis that there is a statistically significant relationship between the degree of travel anxiety and psychological relief caused by the use of embedded virtual reality functions with narrative video clips of a hotel website (Tab. 2, Fig. 3, Ref. 26).

  1. Synthetic design and the art of virtual reality in theatre and film ...

    African Journals Online (AJOL)

    This new found space is known as Virtual Reality. This article delves into the field of Virtual Reality (VR), a current trend in audiovisual design for the entertainment industry and is therefore designed to examine the synergetic relationships between synthetic design and the art of Virtual Reality and how they influence modern ...

  2. Effect of virtual reality training on laparoscopic surgery

    DEFF Research Database (Denmark)

    Larsen, Christian R; Soerensen, Jette L; Grantcharov, Teodor P

    2009-01-01

    OBJECTIVE: To assess the effect of virtual reality training on an actual laparoscopic operation. DESIGN: Prospective randomised controlled and blinded trial. SETTING: Seven gynaecological departments in the Zeeland region of Denmark. PARTICIPANTS: 24 first and second year registrars specialising...... in gynaecology and obstetrics. INTERVENTIONS: Proficiency based virtual reality simulator training in laparoscopic salpingectomy and standard clinical education (controls). MAIN OUTCOME MEASURE: The main outcome measure was technical performance assessed by two independent observers blinded to trainee......-14 minutes) and in the control group was 24 (20-29) minutes (Pvirtual reality simulator training. The performance level of novices...

  3. Facing reality: the growth of virtual reality and health sciences libraries

    Directory of Open Access Journals (Sweden)

    Susan Lessick

    2017-10-01

    Full Text Available Virtual reality (VR is an increasingly hot tech topic. Because VR may be the ultimate virtual project as defined by this column, replacing the real world with a simulated one, it is worthwhile to pause and reflect on its potential and practicality for health sciences libraries.

  4. Distributed Virtual Reality: System Concepts for Cooperative Training and Commanding in Virtual Worlds

    Directory of Open Access Journals (Sweden)

    Eckhard Freund

    2003-02-01

    Full Text Available The general aim of the development of virtual reality technology for automation applications at the IRF is to provide the framework for Projective Virtual Reality which allows users to "project" their actions in the virtual world into the real world primarily by means of robots but also by other means of automation. The framework is based on a new task-oriented approach which builds on the "task deduction" capabilities of a newly developed virtual reality system and a task planning component. The advantage of this new approach is that robots which work at great distances from the control station can be controlled as easily and intuitively as robots that work right next to the control station. Robot control technology now provides the user in the virtual world with a "prolonged arm" into the physical environment, thus paving the way for a new quality of userfriendly man machine interfaces for automation applications. Lately, this work has been enhanced by a new structure that allows to distribute the virtual reality application over multiple computers. With this new step, it is now possible for multiple users to work together in the same virtual room, although they may physically be thousands of miles apart. They only need an Internet or ISDN connection to share this new experience. Last but not least, the distribution technology has been further developed to not just allow users to cooperate but to be able to run the virtual world on many synchronized PCs so that a panorama projection or even a cave can be run with 10 synchronized PCs instead of high-end workstations, thus cutting down the costs for such a visualization environment drastically and allowing for a new range of applications.

  5. Interactive Scientific Visualization in 3D Virtual Reality Model

    Directory of Open Access Journals (Sweden)

    Filip Popovski

    2016-11-01

    Full Text Available Scientific visualization in technology of virtual reality is a graphical representation of virtual environment in the form of images or animation that can be displayed with various devices such as Head Mounted Display (HMD or monitors that can view threedimensional world. Research in real time is a desirable capability for scientific visualization and virtual reality in which we are immersed and make the research process easier. In this scientific paper the interaction between the user and objects in the virtual environment аrе in real time which gives a sense of reality to the user. Also, Quest3D VR software package is used and the movement of the user through the virtual environment, the impossibility to walk through solid objects, methods for grabbing objects and their displacement are programmed and all interactions between them will be possible. At the end some critical analysis were made on all of these techniques on various computer systems and excellent results were obtained.

  6. Virtual Reality Educational Tool for Human Anatomy.

    Science.gov (United States)

    Izard, Santiago González; Juanes Méndez, Juan A; Palomera, Pablo Ruisoto

    2017-05-01

    Virtual Reality is becoming widespread in our society within very different areas, from industry to entertainment. It has many advantages in education as well, since it allows visualizing almost any object or going anywhere in a unique way. We will be focusing on medical education, and more specifically anatomy, where its use is especially interesting because it allows studying any structure of the human body by placing the user inside each one. By allowing virtual immersion in a body structure such as the interior of the cranium, stereoscopic vision goggles make these innovative teaching technologies a powerful tool for training in all areas of health sciences. The aim of this study is to illustrate the teaching potential of applying Virtual Reality in the field of human anatomy, where it can be used as a tool for education in medicine. A Virtual Reality Software was developed as an educational tool. This technological procedure is based entirely on software which will run in stereoscopic goggles to give users the sensation of being in a virtual environment, clearly showing the different bones and foramina which make up the cranium, and accompanied by audio explanations. Throughout the results the structure of the cranium is described in detailed from both inside and out. Importance of an exhaustive morphological knowledge of cranial fossae is further discussed. Application for the design of microsurgery is also commented.

  7. Virtual and Augmented Reality on the 5G Highway

    OpenAIRE

    Orlosky, Jason; Kiyokawa, Kiyoshi; Takemura, Haruo

    2017-01-01

    In recent years, virtual and augmented reality have begun to take advantage of the high speed capabilities of data streaming technologies and wireless networks. However, limitations like bandwidth and latency still prevent us from achieving high fidelity telepresence and collaborative virtual and augmented reality applications. Fortunately, both researchers and engineers are aware of these problems and have set out to design 5G networks to help us to move to the next generation of virtual int...

  8. Virtual Reality and its Implementation in Transport Ergonomics

    Directory of Open Access Journals (Sweden)

    Jasna Jurum-Kipke

    2007-03-01

    Full Text Available The experience of our environment is based on the informationthat reach us by means of our sensory organs, andwhich are subsequently processed in our brains. Digital interpretationimplemented to mathematical models of the studiedsubjects brings us to the so-called virtual reality that allows us toreplace some natural human senses, in this case the visualones, by computer-generated infonnation. The procedure is expandedto three-dimensional (3D scanning i. e. searching ofthe special form of the obse1ved subject/object, then digital recordingof the space point cloud (pixels which correspond tothe item, then vectorisation of the fonn, rendering and finallyanimation. In this way, by watching the display, the impressionof the virtual environment can be generated in the human perception.Moreover, in this way the human model can be realizedin a characteristic way in such a virtual space. The implementationof this virtual reality, in accordance with the possibilitiesthat it provides, has been the subject of very intensive researchin the world, and in Croatia as well. The work presentssome possibilities of applying virtual reality in the field of ergonomicanalysis of the collision process of two vehicles.

  9. ViRPET--combination of virtual reality and PET brain imaging

    Science.gov (United States)

    Majewski, Stanislaw; Brefczynski-Lewis, Julie

    2017-05-23

    Various methods, systems and apparatus are provided for brain imaging during virtual reality stimulation. In one example, among others, a system for virtual ambulatory environment brain imaging includes a mobile brain imager configured to obtain positron emission tomography (PET) scans of a subject in motion, and a virtual reality (VR) system configured to provide one or more stimuli to the subject during the PET scans. In another example, a method for virtual ambulatory environment brain imaging includes providing stimulation to a subject through a virtual reality (VR) system; and obtaining a positron emission tomography (PET) scan of the subject while moving in response to the stimulation from the VR system. The mobile brain imager can be positioned on the subject with an array of imaging photodetector modules distributed about the head of the subject.

  10. Speculations on the representation of architecture in virtual reality

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars; Bundgård, Ture Slot

    2017-01-01

    This paper discusses the present and future possibilities of representation models of architecture in new media such as virtual reality, seen in the broader context of tradition, perception, and neurology. Through comparative studies of real and virtual scenarios using eye tracking, the paper...... discusses if the constantly evolving toolset for architectural representation has in itself changed the core values of architecture, or if it is rather the level of skilful application of technology that can inflict on architecture and its quality. It is easy to contemplate virtual reality as an extension...... to the visual field of perception. However, this should not necessarily imply an acceptance of the dominance of vision over the other senses, and the much-criticized retinal architecture with its inherent loss of plasticity. Recent neurology studies indicate that 3D representation models in virtual reality...

  11. Virtual reality negotiation training system with virtual cognitions

    NARCIS (Netherlands)

    Ding, D.; Burger, F.; Brinkman, W.P.; Neerincx, M.A.

    2017-01-01

    A number of negotiation training systems have been developed to improve people’s performance in negotiation. They mainly focus on the skills development, and less on negotiation understanding and improving self-efficacy. We propose a virtual reality negotiation training system that exposes users to

  12. Introduction to Virtual Reality in Education

    Science.gov (United States)

    Dede, Chris

    2009-01-01

    As an emerging technology for learning, virtual reality (VR) dates back four decades, to early work by Ivan Sutherland in the late 1960s. At long last, interactive media are emerging that offer the promise of VR in everyday settings. Quasi-VR already is commonplace in 2-1/2-D virtual environments like Second Life and in massively multiplayer…

  13. Virtual reality exposure therapy for anxiety disorders: A meta-analysis

    NARCIS (Netherlands)

    Powers, M.B.; Emmelkamp, P.M.G.

    2008-01-01

    There is now a substantial literature investigating virtual reality exposure therapy (VRET) as a viable treatment option for anxiety disorders. In this meta-analysis we provide effect size estimates for virtual reality treatment in comparison to in vivo exposure and control conditions (waitlist,

  14. Virtual Reality: A Strategy for Training in Cross-Cultural Communication.

    Science.gov (United States)

    Meyer, Catherine; Dunn-Roberts, Richard

    1992-01-01

    Defines virtual reality and explains terminology, theoretical concepts, and enabling technologies. Research and applications are described; limitations of current technology are considered; and future possibilities are discussed, including the use of virtual reality in training for cross-cultural communication. (22 references) (LRW)

  15. Exploring Urban Environments Using Virtual and Augmented Reality

    OpenAIRE

    Stelios Papakonstantinou; Vesna Brujic-Okretic; Fotis Liarokapis

    2007-01-01

    In this paper, we propose the use of specific system architecture, based on mobile device, for navigation in urban environments. The aim of this work is to assess how virtual and augmented reality interface paradigms can provide enhanced location based services using real-time techniques in the context of these two different technologies. The virtual reality interface is based on faithful graphical representation of the localities of interest, coupled with sensory information on the location ...

  16. Virtual Reality for Materials Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to research and develop materials through applied virtual reality to enable interactive "materials-by-design." Extensive theoretical and computational...

  17. Controlling social stress in virtual reality environments

    NARCIS (Netherlands)

    Hartanto, D.; Kampmann, I.L.; Morina, N.; Emmelkamp, P.G.M.; Neerincx, M.A.; Brinkman, W.P.

    2014-01-01

    Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study:

  18. Haptic Manipulation of Deformable Objects in Hybrid Bilateral Teleoperation System

    Directory of Open Access Journals (Sweden)

    Juan Manuel Ibarra-Zannatha

    2007-01-01

    Full Text Available The aim of this work is the integration of a virtual environment containing a deformable object, manipulated by an open kinematical chain virtual slave robot, to a bilateral teleoperation scheme based on a real haptic device. The virtual environment of this hybrid bilateral teleoperation system combines collision detection algorithms, dynamical, kinematical and geometrical models with a position–position and/or force–position bilateral control algorithm, to produce on the operator side the reflected forces corresponding to the virtual mechanical interactions, through a haptic device. Contact teleoperation task over the virtual environment with a flexible object is implemented and analysed.

  19. Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning

    Directory of Open Access Journals (Sweden)

    Jan-Maarten Luursema

    2017-01-01

    Full Text Available A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F(1=5.63 and p=.02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items.

  20. Utilization of Virtual Reality Content in Grade 6 Social Studies Using Affordable Virtual Reality Technology

    Directory of Open Access Journals (Sweden)

    Lee Steven O. Zantua

    2017-05-01

    Full Text Available Virtual Reality is fast becoming a breakthrough in education technology and is headed towards a path where learning has become immersive. Virtual reality (VR offers both learners and educators a great opportunity to bridge gaps in the pedagogical sense. With the emergence of the Google Cardboard (GCB platform, a low-cost, virtual reality gadget comes a wide range of opportunities for educators and institutions to bring about an immersive type of learning environment for the 21st-century learner. Using Grade 6 Middle school students, this research explores the learning outcomes and student reactions using the GCB and Google Expeditions application. The study showed no significant difference in pre-test scores of the control and experimental group. There is however, a significant difference in the scores of the experimental group compared to the control group after post-test. Utilizing t-test in comparing the two groups, it was found that the mean of the post-test scores for Group A (experimental was significantly higher than Group B(control. The result of the independent samples t-test was significant, t(18 = 2.33, p = .032, suggesting that the mean of posttest score was significantly different between Groups A and B. This difference in score performance gives light to how VR can be used as a tool that enhances the learning experience. By using VR technology that is low cost and effective, more institutions will be able to help students learn better.

  1. Augmenting breath regulation using a mobile driven virtual reality therapy framework.

    Science.gov (United States)

    Abushakra, Ahmad; Faezipour, Miad

    2014-05-01

    This paper presents a conceptual framework of a virtual reality therapy to assist individuals, especially lung cancer patients or those with breathing disorders to regulate their breath through real-time analysis of respiration movements using a smartphone. Virtual reality technology is an attractive means for medical simulations and treatment, particularly for patients with cancer. The theories, methodologies and approaches, and real-world dynamic contents for all the components of this virtual reality therapy (VRT) via a conceptual framework using the smartphone will be discussed. The architecture and technical aspects of the offshore platform of the virtual environment will also be presented.

  2. [Application of virtual reality in surgical treatment of complex head and neck carcinoma].

    Science.gov (United States)

    Zhou, Y Q; Li, C; Shui, C Y; Cai, Y C; Sun, R H; Zeng, D F; Wang, W; Li, Q L; Huang, L; Tu, J; Jiang, J

    2018-01-07

    Objective: To investigate the application of virtual reality technology in the preoperative evaluation of complex head and neck carcinoma and he value of virtual reality technology in surgical treatment of head and neck carcinoma. Methods: The image data of eight patients with complex head and neck carcinoma treated from December 2016 to May 2017 was acquired. The data were put into virtual reality system to built the three-dimensional anatomical model of carcinoma and to created the surgical scene. The process of surgery was stimulated by recognizing the relationship between tumor and surrounding important structures. Finally all patients were treated with surgery. And two typical cases were reported. Results: With the help of virtual reality, surgeons could adequately assess the condition of carcinoma and the security of operation and ensured the safety of operations. Conclusions: Virtual reality can provide the surgeons with the sensory experience in virtual surgery scenes and achieve the man-computer cooperation and stereoscopic assessment, which will ensure the safety of surgery. Virtual reality has a huge impact on guiding the traditional surgical procedure of head and neck carcinoma.

  3. Virtual-reality education and training system for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T.; Miyatake, H.; Kawakami, T. [Radioisotope Research Center, Osaka (Japan)] [and others

    2002-07-01

    In order to break the mannerism in the education and training method for radiation protection introduction of virtual reality system to the chalkface has been discussed in addition to the usual lecture and video system in the subcommittee established in JRIAS (Japan Radioisotope Association), and the leading model has been installed in Osaka University. It consists of a main server and 3 clients with a software for virtual reality. With this system the trainee could go into the virtual laboratory and handle the radioisotope. In that case he could also experience various accidents such as trivial failure in the experiments, serious hazard, fire, earthquake, etc., which are difficult to suffer in the real laboratory. Hence those who have experienced such a training could come to act rapidly up against any sudden accidents and also the virtual reality system would result decrease in unnecessary radioactive wastes.

  4. Virtual-reality education and training system for radiation protection

    International Nuclear Information System (INIS)

    Yamamoto, T.; Miyatake, H.; Kawakami, T.

    2002-01-01

    In order to break the mannerism in the education and training method for radiation protection introduction of virtual reality system to the chalkface has been discussed in addition to the usual lecture and video system in the subcommittee established in JRIAS (Japan Radioisotope Association), and the leading model has been installed in Osaka University. It consists of a main server and 3 clients with a software for virtual reality. With this system the trainee could go into the virtual laboratory and handle the radioisotope. In that case he could also experience various accidents such as trivial failure in the experiments, serious hazard, fire, earthquake, etc., which are difficult to suffer in the real laboratory. Hence those who have experienced such a training could come to act rapidly up against any sudden accidents and also the virtual reality system would result decrease in unnecessary radioactive wastes

  5. Virtual reality technology and discussion on its application to uranium geology

    International Nuclear Information System (INIS)

    Ye Fawang; Liu Dechang; Zhang Baoju

    2004-01-01

    Based on the introduction to the concept, characteristics of virtual reality technology, and its current application situation, the application prospect of virtual reality technology to uranium geology is preliminarily discussed in this paper

  6. A standardized set of 3-D objects for virtual reality research and applications.

    Science.gov (United States)

    Peeters, David

    2018-06-01

    The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theories in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3-D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3-D objects for virtual reality research is important, because reaching valid theoretical conclusions hinges critically on the use of well-controlled experimental stimuli. Sharing standardized 3-D objects across different virtual reality labs will allow for science to move forward more quickly.

  7. Inducing Fear: Difference Between Virtual Reality and 2D Video

    NARCIS (Netherlands)

    van der Wal, C.N.; Hermans, A.; Bosse, T.

    2017-01-01

    A Virtual Reality based training can be an interesting method to teach crowd managers and emergency responders how to act in emergency situations under pressure. Compared to watching Two-Dimensional Video, Virtual Reality is assumed to induce stronger emotions and a more real-life experience of the

  8. Virtual reality simulation training in a high-fidelity procedure suite

    DEFF Research Database (Denmark)

    Lönn, Lars; Edmond, John J; Marco, Jean

    2012-01-01

    To assess the face and content validity of a novel, full physics, full procedural, virtual reality simulation housed in a hybrid procedure suite.......To assess the face and content validity of a novel, full physics, full procedural, virtual reality simulation housed in a hybrid procedure suite....

  9. [Parallel virtual reality visualization of extreme large medical datasets].

    Science.gov (United States)

    Tang, Min

    2010-04-01

    On the basis of a brief description of grid computing, the essence and critical techniques of parallel visualization of extreme large medical datasets are discussed in connection with Intranet and common-configuration computers of hospitals. In this paper are introduced several kernel techniques, including the hardware structure, software framework, load balance and virtual reality visualization. The Maximum Intensity Projection algorithm is realized in parallel using common PC cluster. In virtual reality world, three-dimensional models can be rotated, zoomed, translated and cut interactively and conveniently through the control panel built on virtual reality modeling language (VRML). Experimental results demonstrate that this method provides promising and real-time results for playing the role in of a good assistant in making clinical diagnosis.

  10. På rejse med Virtual Reality i billedkunst

    DEFF Research Database (Denmark)

    Majgaard, Gunver; Lyk, Patricia Bianca

    2015-01-01

    , de skulle have. Fokus. I artiklen er der særligt fokus på hvordan læringscentrede designprocesser og Virtual Reality tilsammen kan understøtte erfaringslæring. Konklusion. Eleverne fik en større forståelse af teknologi og kreative designprocesser ved at fungere som informanter og designpartnere i...... designforløbet. Eleverne fik igennem design af de fysiske modeller og besøget i Virtual Reality formidlet to oplevelser af deres modeller, som styrkede grundlaget for erfaringsbaseret læring. Erfaringsbaseret læring kombinerer oplevelse, refleksion, abstraktion og aktiv eksperimenteren i en proces, som...

  11. Virtual reality stimuli for force platform posturography.

    Science.gov (United States)

    Tossavainen, Timo; Juhola, Martti; Ilmari, Pyykö; Aalto, Heikki; Toppila, Esko

    2002-01-01

    People relying much on vision in the control of posture are known to have an elevated risk of falling. Dependence on visual control is an important parameter in the diagnosis of balance disorders. We have previously shown that virtual reality methods can be used to produce visual stimuli that affect balance, but suitable stimuli need to be found. In this study the effect of six different virtual reality stimuli on the balance of 22 healthy test subjects was evaluated using force platform posturography. According to the tests two of the stimuli have a significant effect on balance.

  12. Virtual reality technology in nuclear power plant operation and maintenance

    International Nuclear Information System (INIS)

    Chen Sen

    2005-01-01

    In this paper a generic virtual reality comprehensive system focusing on the operation and maintenance in Nuclear Power Plant (NPP) is proposed. Under this layout, some key topics and means of the system are discussed. As example 'Virtual Nuclear Island' comprehensive system and its typical applications in NPP are set up. In the end, it prospects the applications of virtual reality technology in NPP operation, training and maintenance. (author)

  13. Fundamental arthroscopic skill differentiation with virtual reality simulation.

    Science.gov (United States)

    Rose, Kelsey; Pedowitz, Robert

    2015-02-01

    The purpose of this study was to investigate the use and validity of virtual reality modules as part of the educational approach to mastering arthroscopy in a safe environment by assessing the ability to distinguish between experience levels. Additionally, the study aimed to evaluate whether experts have greater ambidexterity than do novices. Three virtual reality modules (Swemac/Augmented Reality Systems, Linkoping, Sweden) were created to test fundamental arthroscopic skills. Thirty participants-10 experts consisting of faculty, 10 intermediate participants consisting of orthopaedic residents, and 10 novices consisting of medical students-performed each exercise. Steady and Telescope was designed to train centering and image stability. Steady and Probe was designed to train basic triangulation. Track and Moving Target was designed to train coordinated motions of arthroscope and probe. Metrics reflecting speed, accuracy, and efficiency of motion were used to measure construct validity. Steady and Probe and Track a Moving Target both exhibited construct validity, with better performance by experts and intermediate participants than by novices (P virtual reality modules developed through task deconstruction. Participants with the most arthroscopic experience performed better and were more consistent than novices on all 3 virtual reality modules. Greater arthroscopic experience correlates with more symmetry of ambidextrous performance. However, further adjustment of the modules may better simulate fundamental arthroscopic skills and discriminate between experience levels. Arthroscopy training is a critical element of orthopaedic surgery resident training. Developing techniques to safely and effectively train these skills is critical for patient safety and resident education. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  14. Virtual Reality Game Education to Learn Traffic Regulation

    Directory of Open Access Journals (Sweden)

    Andru Deva Lukito

    2017-10-01

    Full Text Available Abstract – Traffic accident has become number 3 of children death cause in the world according to WHO[1]. Traffic accident that involve children often caused by their own by breaking the law or regulation. Therefor education about traffic regulation and law including traffic sign and its meaning must be given to children early. Because education means process to change a person or a group attitude and behavior in order to make them mature through teaching and training [2]. One of them that can be used is digital media.  One of interactive digital media is digital game, various form of digital game start from 2D, 2.5D, 3D with many point of view and new technology. VR (Virtual Reality as new digital media where alternate reality exist to test various theory without any real consequences, according to Greenbaum “Virtual Reality is an alternate world filled with computer-generated images that respond to human movements. These simulated environments are usually visited with the aid of an expensive data suit which features stereophonic video goggles and fiber-optic data gloves”[3]. Greenbaum statement before were make VR suitable to test traffic law and regulation and educate kid to obey the traffic sign and regulation without real consequences from real world. This Journal contain the result of using virtual reality as traffic regulation education media. Education material that arranged consisting traffic sign that appear on the road and safety riding gear. Keywords – Virtual Reality, Traffic sign, Road traffic, children, education

  15. Presence in Virtual Reality Exposure Therapy Systems

    NARCIS (Netherlands)

    Ling, Y.

    2014-01-01

    Experiencing anxiety is essential for virtual reality exposure therapy (VRET) to be effective in curing patients suffering from anxiety disorders. However, some patients drop out in VRET due to the lack of feeling anxiety. Presence - which refers to the feeling of being in the virtual environment -

  16. Laparoscopic skill improvement after virtual reality simulator training in medical students as assessed by augmented reality simulator.

    Science.gov (United States)

    Nomura, Tsutomu; Mamada, Yasuhiro; Nakamura, Yoshiharu; Matsutani, Takeshi; Hagiwara, Nobutoshi; Fujita, Isturo; Mizuguchi, Yoshiaki; Fujikura, Terumichi; Miyashita, Masao; Uchida, Eiji

    2015-11-01

    Definitive assessment of laparoscopic skill improvement after virtual reality simulator training is best obtained during an actual operation. However, this is impossible in medical students. Therefore, we developed an alternative assessment technique using an augmented reality simulator. Nineteen medical students completed a 6-week training program using a virtual reality simulator (LapSim). The pretest and post-test were performed using an object-positioning module and cholecystectomy on an augmented reality simulator(ProMIS). The mean performance measures between pre- and post-training on the LapSim were compared with a paired t-test. In the object-positioning module, the execution time of the task (P virtual reality simulator improved the operative skills of medical students as objectively evaluated by assessment using an augmented reality simulator instead of an actual operation. We hope that these findings help to establish an effective training program for medical students. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  17. How to design compelling Virtual Reality or Augmented Reality experience?

    OpenAIRE

    Richir , Simon; Fuchs , Philippe; Lourdeaux , Domitile; Millet , Dominique; BUCHE , Cédric; Querrec , Ronan

    2015-01-01

    International audience; The convergence of technologies currently observed in the field of Virtual Reality, Augmented Reality, robotics and consumer electronic reinforces the trend of new applications appearing every day. But when transferring knowledge acquired from research to businesses, research laboratories are often at a loss because of a lack of knowledge of the design and integration processes in creating an industrial scale product. In fact, the innovation approaches that take a good...

  18. Virtual reality exposure in the treatment of social phobia.

    Science.gov (United States)

    Klinger, Evelyne; Légeron, Patrick; Roy, Stéphane; Chemin, Isabelle; Lauer, Françoise; Nugues, Pierre

    2004-01-01

    Social phobia is one of the most frequent psychiatric disorders and is accessible to two forms of scientifically validated treatments: anti-depressant drugs and cognitive-behavioral therapies. Graded exposure to feared social situations (either in vivo or by imagining the situations) is fundamental to obtain an improvement of the anxious symptoms. Virtual reality (VR) may be an alternative to these standard exposure techniques and seems to bring significant advantages by allowing exposures to numerous and varied situations. Moreover studies have shown that human subjects are appropriately sensitive to virtual environments. This chapter reports the definition of a VR-based clinical protocol and a study to treat social phobia using virtual reality techniques. The virtual environments used in the treatment reproduce four situations that social phobics feel the most threatening: performance, intimacy, scrutiny and assertiveness. With the help of the therapist, the patient learns adapted cognitions and behaviors when coping with social situations, with the aim of reducing her or his anxiety in the corresponding real life situations. Some studies have been carried out using virtual reality in the treatment of fear of public speaking, which is only a small part of the symptomatology of most of social phobic patients. The novelty of our work is to address a larger group of situations that the phobic patients experience with high anxiety. In our protocol, the efficacy of the virtual reality treatment is compared to well established and well validated group cognitive-behavioral treatment.

  19. Stereoscopic virtual reality models for planning tumor resection in the sellar region

    Directory of Open Access Journals (Sweden)

    Wang Shou-sen

    2012-11-01

    Full Text Available Abstract Background It is difficult for neurosurgeons to perceive the complex three-dimensional anatomical relationships in the sellar region. Methods To investigate the value of using a virtual reality system for planning resection of sellar region tumors. The study included 60 patients with sellar tumors. All patients underwent computed tomography angiography, MRI-T1W1, and contrast enhanced MRI-T1W1 image sequence scanning. The CT and MRI scanning data were collected and then imported into a Dextroscope imaging workstation, a virtual reality system that allows structures to be viewed stereoscopically. During preoperative assessment, typical images for each patient were chosen and printed out for use by the surgeons as references during surgery. Results All sellar tumor models clearly displayed bone, the internal carotid artery, circle of Willis and its branches, the optic nerve and chiasm, ventricular system, tumor, brain, soft tissue and adjacent structures. Depending on the location of the tumors, we simulated the transmononasal sphenoid sinus approach, transpterional approach, and other approaches. Eleven surgeons who used virtual reality models completed a survey questionnaire. Nine of the participants said that the virtual reality images were superior to other images but that other images needed to be used in combination with the virtual reality images. Conclusions The three-dimensional virtual reality models were helpful for individualized planning of surgery in the sellar region. Virtual reality appears to be promising as a valuable tool for sellar region surgery in the future.

  20. TEACHER MASTERPIECE IN THE CONTEXT OF VIRTUAL CHARAKTERISTICS OF PEDAGOGICAL REALITY

    OpenAIRE

    Mariya P. Leshchenko

    2010-01-01

    The article characterizes nature, sources and types of virtual reality, particularities of their influence on personal development. The role of teacher in identification of virtual reality features and possibilities of their implementation in education is investigated.

  1. Virtual Reality Hospice

    OpenAIRE

    Ejsing, Sebastian Kirkegaard; Vintersborg, Kathrine Mosbæk; Benford-Brown, Cory George; Turner, Daniel Severin Pohl

    2017-01-01

    This paper details the findings of a qualitative reception analysis performed in collaboration with Hospice Sjælland, as to the potentials of Virtual Reality technology in providing entertainment and respite. The analysis was performed utilizing a theoretical analytical model based on Kim Schrøder’s ‘Multidimensional Model of Mass Media Reception’ to discourse gathered from six interviews with four patients from Hospice Sjælland. Supporting this model was supplementary literature on cognitive...

  2. Applying Virtual Reality to commercial Edutainment

    Science.gov (United States)

    Grissom, F.; Goza, Sharon P.; Goza, S. Michael

    1994-01-01

    Virtual reality (VR) when defined as a computer generated, immersive, three dimensional graphics environment which provides varying degrees of interactivity, remains an expensive, highly specialized application, yet to find its way into the school, home, or business. As a novel approach to a theme park-type attraction, though, its use can be justified. This paper describes how a virtual reality 'tour of the human digestive system' was created for the Omniplex Science Museum of Oklahoma City, Oklahoma. The customers main objectives were: (1) to educate; (2) to entertain; (3) to draw visitors; and (4) to generate revenue. The 'Edutainment' system ultimately delivered met these goals. As more such systems come into existence the resulting library of licensable programs will greatly reduce development costs to individual institutions.

  3. Using Virtual Reality Environment to Improve Joint Attention Associated with Pervasive Developmental Disorder

    Science.gov (United States)

    Cheng, Yufang; Huang, Ruowen

    2012-01-01

    The focus of this study is using data glove to practice Joint attention skill in virtual reality environment for people with pervasive developmental disorder (PDD). The virtual reality environment provides a safe environment for PDD people. Especially, when they made errors during practice in virtual reality environment, there is no suffering or…

  4. Moving from virtual reality exposure-based therapy to augmented reality exposure-based therapy: a review.

    Science.gov (United States)

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed "safely" to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user's experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia.

  5. Moving from Virtual Reality Exposure-Based Therapy to Augmented Reality Exposure-Based Therapy: A Review

    Science.gov (United States)

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed “safely” to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user’s experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia. PMID:24624073

  6. Virtual Reality: Ready or Not!

    Science.gov (United States)

    Lewis, Joan E.

    1994-01-01

    Describes the development and current status of virtual reality (VR) and VR research. Market potentials for VR are discussed, including the entertainment industry, health care and medical training, flight and other simulators, and educational possibilities. A glossary of VR-related terms is included. (LRW)

  7. Controlled interaction: strategies for using virtual reality to study perception.

    Science.gov (United States)

    Durgin, Frank H; Li, Zhi

    2010-05-01

    Immersive virtual reality systems employing head-mounted displays offer great promise for the investigation of perception and action, but there are well-documented limitations to most virtual reality systems. In the present article, we suggest strategies for studying perception/action interactions that try to depend on both scale-invariant metrics (such as power function exponents) and careful consideration of the requirements of the interactions under investigation. New data concerning the effect of pincushion distortion on the perception of surface orientation are presented, as well as data documenting the perception of dynamic distortions associated with head movements with uncorrected optics. A review of several successful uses of virtual reality to study the interaction of perception and action emphasizes scale-free analysis strategies that can achieve theoretical goals while minimizing assumptions about the accuracy of virtual simulations.

  8. Integration of immersive virtual reality in Communication Degrees

    Directory of Open Access Journals (Sweden)

    Dr. Ubaldo Cuesta Cambra

    2016-07-01

    Full Text Available The European Higher Education Area promotes the integration of new technologies in didactic innovation and it aims to improve skills. It has been requested by students at the Complutense University of Madrid, who have a digital native profile or millennial. This article is a study about implementation of immersive virtual reality in the practical part of the subjects related to business communication. Specifically, it applied in the subject Crisis Communication. The methodology is a survey and three focus groups for professors and students. The conclusions say that the implementation of immersive virtual reality improves the expectations and interest of students. It also improves the skills acquired and the practical part of the subjects of communication improve employment of students of the Degree, which is one of their main causes of dissatisfaction. The full implementation of mobile telephony suggests using virtual reality devices adapted to them rather than “caves” (C.A.V.E. or consoles.

  9. SeaTouch: A Haptic and Auditory Maritime Environment for Non Visual Cognitive Mapping of Blind Sailors

    Science.gov (United States)

    Simonnet, Mathieu; Jacobson, Dan; Vieilledent, Stephane; Tisseau, Jacques

    Navigating consists of coordinating egocentric and allocentric spatial frames of reference. Virtual environments have afforded researchers in the spatial community with tools to investigate the learning of space. The issue of the transfer between virtual and real situations is not trivial. A central question is the role of frames of reference in mediating spatial knowledge transfer to external surroundings, as is the effect of different sensory modalities accessed in simulated and real worlds. This challenges the capacity of blind people to use virtual reality to explore a scene without graphics. The present experiment involves a haptic and auditory maritime virtual environment. In triangulation tasks, we measure systematic errors and preliminary results show an ability to learn configurational knowledge and to navigate through it without vision. Subjects appeared to take advantage of getting lost in an egocentric “haptic” view in the virtual environment to improve performances in the real environment.

  10. Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling

    Science.gov (United States)

    Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.

    This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.

  11. Virtual Reality Simulation of the International Space Welding Experiment

    Science.gov (United States)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.

  12. A new possibility in thoracoscopic virtual reality simulation training

    DEFF Research Database (Denmark)

    Jensen, Katrine; Bjerrum, Flemming; Hansen, Henrik Jessen

    2015-01-01

    OBJECTIVES: The aims of this study were to develop virtual reality simulation software for video-assisted thoracic surgery (VATS) lobectomy, to explore the opinions of thoracic surgeons concerning the VATS lobectomy simulator and to test the validity of the simulator metrics. METHODS: Experienced...... VATS surgeons worked with computer specialists to develop a VATS lobectomy software for a virtual reality simulator. Thoracic surgeons with different degrees of experience in VATS were enrolled at the 22nd meeting of the European Society of Thoracic Surgeons (ESTS) held in Copenhagen in June 2014...... content validity. Metrics were compared between the three groups. RESULTS: We succeeded in developing the first version of a virtual reality VATS lobectomy simulator. A total of 103 thoracic surgeons completed the simulated lobectomy and were distributed as follows: novices n = 32, intermediates n = 45...

  13. Transduction between worlds: using virtual and mixed reality for earth and planetary science

    Science.gov (United States)

    Hedley, N.; Lochhead, I.; Aagesen, S.; Lonergan, C. D.; Benoy, N.

    2017-12-01

    Virtual reality (VR) and augmented reality (AR) have the potential to transform the way we visualize multidimensional geospatial datasets in support of geoscience research, exploration and analysis. The beauty of virtual environments is that they can be built at any scale, users can view them at many levels of abstraction, move through them in unconventional ways, and experience spatial phenomena as if they had superpowers. Similarly, augmented reality allows you to bring the power of virtual 3D data visualizations into everyday spaces. Spliced together, these interface technologies hold incredible potential to support 21st-century geoscience. In my ongoing research, my team and I have made significant advances to connect data and virtual simulations with real geographic spaces, using virtual environments, geospatial augmented reality and mixed reality. These research efforts have yielded new capabilities to connect users with spatial data and phenomena. These innovations include: geospatial x-ray vision; flexible mixed reality; augmented 3D GIS; situated augmented reality 3D simulations of tsunamis and other phenomena interacting with real geomorphology; augmented visual analytics; and immersive GIS. These new modalities redefine the ways in which we can connect digital spaces of spatial analysis, simulation and geovisualization, with geographic spaces of data collection, fieldwork, interpretation and communication. In a way, we are talking about transduction between real and virtual worlds. Taking a mixed reality approach to this, we can link real and virtual worlds. This paper presents a selection of our 3D geovisual interface projects in terrestrial, coastal, underwater and other environments. Using rigorous applied geoscience data, analyses and simulations, our research aims to transform the novelty of virtual and augmented reality interface technologies into game-changing mixed reality geoscience.

  14. What is going on in augmented reality simulation in laparoscopic surgery?

    Science.gov (United States)

    Botden, Sanne M B I; Jakimowicz, Jack J

    2009-08-01

    To prevent unnecessary errors and adverse results of laparoscopic surgery, proper training is of paramount importance. A safe way to train surgeons for laparoscopic skills is simulation. For this purpose traditional box trainers are often used, however they lack objective assessment of performance. Virtual reality laparoscopic simulators assess performance, but lack realistic haptic feedback. Augmented reality (AR) combines a virtual reality (VR) setting with real physical materials, instruments, and feedback. This article presents the current developments in augmented reality laparoscopic simulation. Pubmed searches were performed to identify articles regarding surgical simulation and augmented reality. Identified companies manufacturing an AR laparoscopic simulator received the same questionnaire referring to the features of the simulator. Seven simulators that fitted the definition of augmented reality were identified during the literature search. Five of the approached manufacturers returned a completed questionnaire, of which one simulator appeared to be VR and was therefore not applicable for this review. Several augmented reality simulators have been developed over the past few years and they are improving rapidly. We recommend the development of AR laparoscopic simulators for component tasks of procedural training. AR simulators should be implemented in current laparoscopic training curricula, in particular for laparoscopic suturing training.

  15. Designing 3 Dimensional Virtual Reality Using Panoramic Image

    Science.gov (United States)

    Wan Abd Arif, Wan Norazlinawati; Wan Ahmad, Wan Fatimah; Nordin, Shahrina Md.; Abdullah, Azrai; Sivapalan, Subarna

    The high demand to improve the quality of the presentation in the knowledge sharing field is to compete with rapidly growing technology. The needs for development of technology based learning and training lead to an idea to develop an Oil and Gas Plant Virtual Environment (OGPVE) for the benefit of our future. Panoramic Virtual Reality learning based environment is essential in order to help educators overcome the limitations in traditional technical writing lesson. Virtual reality will help users to understand better by providing the simulations of real-world and hard to reach environment with high degree of realistic experience and interactivity. Thus, in order to create a courseware which will achieve the objective, accurate images of intended scenarios must be acquired. The panorama shows the OGPVE and helps to generate ideas to users on what they have learnt. This paper discusses part of the development in panoramic virtual reality. The important phases for developing successful panoramic image are image acquisition and image stitching or mosaicing. In this paper, the combination of wide field-of-view (FOV) and close up image used in this panoramic development are also discussed.

  16. Evaluating Experiences in Different Virtual Reality Setups

    OpenAIRE

    Settgast , Volker; Pirker , Johanna; Lontschar , Stefan; Maggale , Stefan; Gütl , Christian

    2016-01-01

    Part 2: Use and Evaluation of Digital Entertainment; International audience; This paper describes the evaluation of three different scenarios in the fully immersive room-based virtual environment DAVE (Definitely Affordable Virtual Environment) and a head-mounted display, the Oculus Rift. The evaluation focuses on comparing the two immersive environments and three different scenarios (observation, emotion in a roller coaster, and interaction) in regards to typical virtual-reality characterist...

  17. A perspective on the role and utility of haptic feedback in laparoscopic skills training.

    Science.gov (United States)

    Singapogu, Ravikiran; Burg, Timothy; Burg, Karen J L; Smith, Dane E; Eckenrode, Amanda H

    2014-01-01

    Laparoscopic surgery is a minimally invasive surgical technique with significant potential benefits to the patient, including shorter recovery time, less scarring, and decreased costs. There is a growing need to teach surgical trainees this emerging surgical technique. Simulators, ranging from simple "box" trainers to complex virtual reality (VR) trainers, have emerged as the most promising method for teaching basic laparoscopic surgical skills. Current box trainers require oversight from an expert surgeon for both training and assessing skills. VR trainers decrease the dependence on expert teachers during training by providing objective, real-time feedback and automatic skills evaluation. However, current VR trainers generally have limited credibility as a means to prepare new surgeons and have often fallen short of educators' expectations. Several researchers have speculated that the missing component in modern VR trainers is haptic feedback, which refers to the range of touch sensations encountered during surgery. These force types and ranges need to be adequately rendered by simulators for a more complete training experience. This article presents a perspective of the role and utility of haptic feedback during laparoscopic surgery and laparoscopic skills training by detailing the ranges and types of haptic sensations felt by the operating surgeon, along with quantitative studies of how this feedback is used. Further, a number of research studies that have documented human performance effects as a result of the presence of haptic feedback are critically reviewed. Finally, key research directions in using haptic feedback for laparoscopy training simulators are identified.

  18. Virtual reality disaster training: translation to practice.

    Science.gov (United States)

    Farra, Sharon L; Miller, Elaine T; Hodgson, Eric

    2015-01-01

    Disaster training is crucial to the mitigation of both mortality and morbidity associated with disasters. Just as clinical practice needs to be grounded in evidence, effective disaster education is dependent upon the development and use of andragogic and pedagogic evidence. Educational research findings must be transformed into useable education strategies. Virtual reality simulation is a teaching methodology that has the potential to be a powerful educational tool. The purpose of this article is to translate research findings related to the use of virtual reality simulation in disaster training into education practice. The Ace Star Model serves as a valuable framework to translate the VRS teaching methodology and improve disaster training of healthcare professionals. Using the Ace Star Model as a framework to put evidence into practice, strategies for implementing a virtual reality simulation are addressed. Practice guidelines, implementation recommendations, integration to practice and evaluation are discussed. It is imperative that health educators provide more exemplars of how research evidence can be moved through the various stages of the model to advance practice and sustain learning outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Virtual reality applied to teletesting

    NARCIS (Netherlands)

    Berg, T.W. van den; Smeenk, R.J.M.; Mazy, A.; Jacques, P.; Argüello, L.; Mills, S.

    2003-01-01

    The activity "Virtual Reality applied to Teletesting" is related to a wider European Space Agency (ESA) initiative of cost reduction, in particular the reduction of test costs. Reduction of costs of space related projects have to be performed on test centre operating costs and customer company

  20. A Desktop Virtual Reality Earth Motion System in Astronomy Education

    Science.gov (United States)

    Chen, Chih Hung; Yang, Jie Chi; Shen, Sarah; Jeng, Ming Chang

    2007-01-01

    In this study, a desktop virtual reality earth motion system (DVREMS) is designed and developed to be applied in the classroom. The system is implemented to assist elementary school students to clarify earth motion concepts using virtual reality principles. A study was conducted to observe the influences of the proposed system in learning.…

  1. Comparing two types of navigational interfaces for Virtual Reality.

    Science.gov (United States)

    Teixeira, Luís; Vilar, Elisângela; Duarte, Emília; Rebelo, Francisco; da Silva, Fernando Moreira

    2012-01-01

    Previous studies suggest significant differences between navigating virtual environments in a life-like walking manner (i.e., using treadmills or walk-in-place techniques) and virtual navigation (i.e., flying while really standing). The latter option, which usually involves hand-centric devices (e.g., joysticks), is the most common in Virtual Reality-based studies, mostly due to low costs, less space and technology demands. However, recently, new interaction devices, originally conceived for videogames have become available offering interesting potentialities for research. This study aimed to explore the potentialities of the Nintendo Wii Balance Board as a navigation interface in a Virtual Environment presented in an immersive Virtual Reality system. Comparing participants' performance while engaged in a simulated emergency egress allows determining the adequacy of such alternative navigation interface on the basis of empirical results. Forty university students participated in this study. Results show that participants were more efficient when performing navigation tasks using the Joystick than with the Balance Board. However there were no significantly differences in the behavioral compliance with exit signs. Therefore, this study suggests that, at least for tasks similar to the studied, the Balance Board have good potentiality to be used as a navigation interface for Virtual Reality systems.

  2. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.

    Science.gov (United States)

    Rutkowski, Tomasz M

    2016-01-01

    The paper reviews nine robotic and virtual reality (VR) brain-computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.

  3. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms

    Directory of Open Access Journals (Sweden)

    Tomasz Maciej Rutkowski

    2016-12-01

    Full Text Available The paper reviews nine robotic and virtual reality (VR brain-computer interface (BCI projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP, which constitutes an internet of things (IoT control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.

  4. Operating Room Performance Improves after Proficiency-Based Virtual Reality Cataract Surgery Training

    DEFF Research Database (Denmark)

    Thomsen, Ann Sofia Skou; Bach-Holm, Daniella; Kjærbo, Hadi

    2017-01-01

    PURPOSE: To investigate the effect of virtual reality proficiency-based training on actual cataract surgery performance. The secondary purpose of the study was to define which surgeons benefit from virtual reality training. DESIGN: Multicenter masked clinical trial. PARTICIPANTS: Eighteen cataract...... surgeons with different levels of experience. METHODS: Cataract surgical training on a virtual reality simulator (EyeSi) until a proficiency-based test was passed. MAIN OUTCOME MEASURES: Technical performance in the operating room (OR) assessed by 3 independent, masked raters using a previously validated...... task-specific assessment tool for cataract surgery (Objective Structured Assessment of Cataract Surgical Skill). Three surgeries before and 3 surgeries after the virtual reality training were video-recorded, anonymized, and presented to the raters in random order. RESULTS: Novices (non...

  5. VIRTUAL REALITY HYPNOSIS.

    Science.gov (United States)

    Askay, Shelley Wiechman; Patterson, David R; Sharar, Sam R

    2009-03-01

    Scientific evidence for the viability of hypnosis as a treatment for pain has flourished over the past two decades (Rainville, Duncan, Price, Carrier and Bushnell, 1997; Montgomery, DuHamel and Redd, 2000; Lang and Rosen, 2002; Patterson and Jensen, 2003). However its widespread use has been limited by factors such as the advanced expertise, time and effort required by clinicians to provide hypnosis, and the cognitive effort required by patients to engage in hypnosis.The theory in developing virtual reality hypnosis was to apply three-dimensional, immersive, virtual reality technology to guide the patient through the same steps used when hypnosis is induced through an interpersonal process. Virtual reality replaces many of the stimuli that the patients have to struggle to imagine via verbal cueing from the therapist. The purpose of this paper is to explore how virtual reality may be useful in delivering hypnosis, and to summarize the scientific literature to date. We will also explore various theoretical and methodological issues that can guide future research.In spite of the encouraging scientific and clinical findings, hypnosis for analgesia is not universally used in medical centres. One reason for the slow acceptance is the extensive provider training required in order for hypnosis to be an effective pain management modality. Training in hypnosis is not commonly offered in medical schools or even psychology graduate curricula. Another reason is that hypnosis requires far more time and effort to administer than an analgesic pill or injection. Hypnosis requires training, skill and patience to deliver in medical centres that are often fast-paced and highly demanding of clinician time. Finally, the attention and cognitive effort required for hypnosis may be more than patients in an acute care setting, who may be under the influence of opiates and benzodiazepines, are able to impart. It is a challenge to make hypnosis a standard part of care in this environment

  6. Initial validation of a virtual-reality learning environment for prostate biopsies: realism matters!

    Science.gov (United States)

    Fiard, Gaelle; Selmi, Sonia-Yuki; Promayon, Emmanuel; Vadcard, Lucile; Descotes, Jean-Luc; Troccaz, Jocelyne

    2014-04-01

    A virtual-reality learning environment dedicated to prostate biopsies was designed to overcome the limitations of current classical teaching methods. The aim of this study was to validate reliability, face, content, and construct of the simulator. The simulator is composed of (a) a laptop computer, (b) a haptic device with a stylus that mimics the ultrasound probe, (c) a clinical case database including three-dimensional (3D) ultrasound volumes and patient data, and (d) a learning environment with a set of progressive exercises including a randomized 12-core biopsy procedure. Both visual (3D biopsy mapping) and numerical (score) feedback are given to the user. The simulator evaluation was conducted in an academic urology department on 7 experts and 14 novices who each performed a virtual biopsy procedure and completed a face and content validity questionnaire. The overall realism of the biopsy procedure was rated at a median of 9/10 by nonexperts (7.1-9.8). Experts rated the usefulness of the simulator for the initial training of urologists at 8.2/10 (7.9-8.3), but reported the range of motion and force feedback as significantly less realistic than novices (P=0.01 and 0.03, respectively). Pearson r correlation coefficient between correctly placed biopsies on the right and left side of the prostate for each user was 0.79 (Prealism and scoring system used.

  7. Integration of serious games and wearable haptic interfaces for Neuro Rehabilitation of children with movement disorders: A feasibility study.

    Science.gov (United States)

    Bortone, Ilaria; Leonardis, Daniele; Solazzi, Massimiliano; Procopio, Caterina; Crecchi, Alessandra; Bonfiglio, Luca; Frisoli, Antonio

    2017-07-01

    The past decade has seen the emergence of rehabilitation treatments using virtual reality environments. One of the advantages in using this technology is the potential to create positive motivation, by means of engaging environments and tasks shaped in the form of serious games. In this work, we propose a novel Neuro Rehabilitation System for children with movement disorders, that is based on serious games in immersive virtual reality with haptic feedback. The system design aims to enhance involvement and engagement of patients, to provide congruent multi-sensory afferent feedback during motor exercises, and to benefit from the flexibility of virtual reality in adapting exercises to the patient's needs. We present a feasibility study of the method conducted through an experimental rehabilitation session in a group of 4 children with Cerebral Palsy and Developmental Dyspraxia, 4 Typically Developing children and 4 healthy adults. Subjects and patients were able to accomplish the proposed rehabilitation session and average performance of the motor exercises in patients were lower, although comparable, to healthy subjects. Together with positive comments reported by children after the rehabilitation session, results are encouraging for application of the method in a prolonged rehabilitation treatment.

  8. Walkable self-overlapping virtual reality maze and map visualization demo

    DEFF Research Database (Denmark)

    Serubugo, Sule; Skantarova, Denisa; Evers, Nicolaj

    2017-01-01

    This paper describes our demonstration of a walkable self-overlapping maze and its corresponding map to facilitate asymmetric collaboration for room-scale virtual reality setups in public places.......This paper describes our demonstration of a walkable self-overlapping maze and its corresponding map to facilitate asymmetric collaboration for room-scale virtual reality setups in public places....

  9. A study of Generation Z’s involvement in virtual reality

    Directory of Open Access Journals (Sweden)

    Puchkova E.B.

    2017-12-01

    Full Text Available Background. This study analyzes the characteristics of modern teenagers’ involvement in virtual reality (VR. It also examines various approaches to VR in Russian science. In the current study the concept of virtual reality is defined as a particular informational environment in which a person can exist and develop. It is created by a special class of technical systems, formed on the basis of computer hypertext technology, and has a number of social and psychological characteristics. We pay special attention to the significance of virtual space for generation Z (according to the William Strauss and Neil Howe generational theory. The main factor determining the unique psychological features of the generation Z is its active involvement in virtual reality from the moment of birth. Involvement in a virtual reality is measurable by a teenager’s activity on the Internet. Objective. Our study set out to determine the level of Russian generation Z’s involvement in virtual reality. Design. We analyzed the results of a survey conducted among Moscow adolescents using multivariate profiles. Two hundred fifty-four teenagers 12-14 years old were interviewed during the study. Results and conclusion. Analysis of the data revealed the following: Modern teenagers are involved in VR with varying degrees of depth; their main type of activity on the Internet is searching for educational information and news; and no significant differences by gender in the purposes of using the Internet were found. However, it was also determined that girls’ activity in VR is more related to communication and interpersonal interaction, even though it’s indirect via the Internet, while boys prefer the “gaming” possibilities of VR; that teenagers are rather critical of the information they obtain by the Internet, and that their level of trust in the online information is low. The same trend is evident in the fact that students prefer not to make new friends in virtual

  10. Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials.

    Science.gov (United States)

    Dascal, Julieta; Reid, Mark; IsHak, Waguih William; Spiegel, Brennan; Recacho, Jennifer; Rosen, Bradley; Danovitch, Itai

    2017-01-01

    Objective: We evaluated the evidence supporting the use of virtual reality among patients in acute inpatient medical settings. Method: We conducted a systematic review of randomized controlled trials conducted that examined virtual reality applications in inpatient medical settings between 2005 and 2015. We used PsycINFO, PubMed, and Medline databases to identify studies using the keywords virtual reality , VR therapy , treatment , and inpatient. Results: We identified 2,024 citations, among which 11 met criteria for inclusion. Studies addressed three general areas: pain management, eating disorders, and cognitive and motor rehabilitation. Studies were small and heterogeneous and utilized different designs and measures. Virtual reality was generally well tolerated by patients, and a majority of studies demonstrated clinical efficacy. Studies varied in quality, as measured by an evaluation metric developed by Reisch, Tyson, and Mize (average quality score=0.87; range=0.78-0.96). Conclusion: Virtual reality is a promising intervention with several potential applications in the inpatient medical setting. Studies to date demonstrate some efficacy, but there is a need for larger, well-controlled studies to show clinical and cost-effectiveness.

  11. Telemanipulation, telepresence, and virtual reality for surgery in the year 2000

    Science.gov (United States)

    Satava, Richard M.

    1995-12-01

    The new technologic revolution in medicine is based upon information technologies, and telemanipulation, telepresence and virtual reality are essential components. Telepresence surgery returns the look and feel of `open surgery' to the surgeon and promises enhancement of physical capabilities above normal human performance. Virtual reality provides basic medical education, simulation of surgical procedures, medical forces and disaster medicine practice, and virtual prototyping of medical equipment.

  12. Application of Virtual, Augmented, and Mixed Reality to Urology

    OpenAIRE

    Hamacher, Alaric; Kim, Su Jin; Cho, Sung Tae; Pardeshi, Sunil; Lee, Seung Hyun; Eun, Sung-Jong; Whangbo, Taeg Keun

    2016-01-01

    Recent developments in virtual, augmented, and mixed reality have introduced a considerable number of new devices into the consumer market. This momentum is also affecting the medical and health care sector. Although many of the theoretical and practical foundations of virtual reality (VR) were already researched and experienced in the 1980s, the vastly improved features of displays, sensors, interactivity, and computing power currently available in devices offer a new field of applications t...

  13. Virtual reality for treatment compliance for people with serious mental illness.

    Science.gov (United States)

    Välimäki, Maritta; Hätönen, Heli M; Lahti, Mari E; Kurki, Marjo; Hottinen, Anja; Metsäranta, Kiki; Riihimäki, Tanja; Adams, Clive E

    2014-10-08

    Virtual reality (VR) is computerised real-time technology, which can be used an alternative assessment and treatment tool in the mental health field. Virtual reality may take different forms to simulate real-life activities and support treatment. To investigate the effects of virtual reality to support treatment compliance in people with serious mental illness. We searched the Cochrane Schizophrenia Group Trials Register (most recent, 17th September 2013) and relevant reference lists. All relevant randomised studies comparing virtual reality with standard care for those with serious mental illnesses. We defined virtual reality as a computerised real-time technology using graphics, sound and other sensory input, which creates the interactive computer-mediated world as a therapeutic tool. All review authors independently selected studies and extracted data. For homogeneous dichotomous data the risk difference (RD) and the 95% confidence intervals (CI) were calculated on an intention-to-treat basis. For continuous data, we calculated mean differences (MD). We assessed risk of bias and created a 'Summary of findings' table using the GRADE approach. We identified three short-term trials (total of 156 participants, duration five to 12 weeks). Outcomes were prone to at least a moderate risk of overestimating positive effects. We found that virtual reality had little effects regarding compliance (3 RCTs, n = 156, RD loss to follow-up 0.02 CI -0.08 to 0.12, low quality evidence), cognitive functioning (1 RCT, n = 27, MD average score on Cognistat 4.67 CI -1.76 to 11.10, low quality evidence), social skills (1 RCT, n = 64, MD average score on social problem solving SPSI-R (Social Problem Solving Inventory - Revised) -2.30 CI -8.13 to 3.53, low quality evidence), or acceptability of intervention (2 RCTs, n = 92, RD 0.05 CI -0.09 to 0.19, low quality evidence). There were no data reported on mental state, insight, behaviour, quality of life, costs, service utilisation, or

  14. Spatial augmented reality merging real and virtual worlds

    CERN Document Server

    Bimber, Oliver

    2005-01-01

    Like virtual reality, augmented reality is becoming an emerging platform in new application areas for museums, edutainment, home entertainment, research, industry, and the art communities using novel approaches which have taken augmented reality beyond traditional eye-worn or hand-held displays. In this book, the authors discuss spatial augmented reality approaches that exploit optical elements, video projectors, holograms, radio frequency tags, and tracking technology, as well as interactive rendering algorithms and calibration techniques in order to embed synthetic supplements into the real

  15. ARLearn and StreetLearn software for virtual reality and augmented reality multi user learning games

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland

    2012-01-01

    Ternier, S., & Klemke, R. (2011). ARLearn and StreetLearn software for virtual reality and augmented reality multi user learning games (Version 1.0) [Software Documentation]. Heerlen, The Netherlands: Open Universiteit in the Netherlands.

  16. ARLearn and StreetLearn software for virtual reality and augmented reality multi user learning games

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland

    2012-01-01

    Ternier, S., & Klemke, R. (2011). ARLearn and StreetLearn software for virtual reality and augmented reality multi user learning games (Version 1.0) [Computer software]. Heerlen, The Netherlands: Open Universiteit in the Netherlands.

  17. Design of a Graphical User Interface for Virtual Reality with Oculus Rift

    OpenAIRE

    Silverhav, Robin

    2015-01-01

    Virtual reality is a concept that has existed for some time but the recent advances in the performance of commercial computers has led the development of different commercial head mounted displays, for example the Oculus Rift. With this growing interest in virtual reality, it is important to evaluate existing techniques used when designing user interfaces. In addition, it is also important to develop new techniques to be able to give the user the best experience when using virtual reality app...

  18. Simulation Of Assembly Processes With Technical Of Virtual Reality

    Science.gov (United States)

    García García, Manuel; Arenas Reina, José Manuel; Lite, Alberto Sánchez; Sebastián Pérez, Miguel Ángel

    2009-11-01

    Virtual reality techniques use at industrial processes provides a real approach to product life cycle. For components manual assembly, the use of virtual surroundings facilitates a simultaneous engineering in which variables such as human factors and productivity take a real act. On the other hand, in the actual phase of industrial competition it is required a rapid adjustment to client needs and to market situation. In this work it is analyzed the assembly of the front components of a vehicle using virtual reality tools and following up a product-process design methodology which includes every life service stage. This study is based on workstations design, taking into account productive and human factors from the ergonomic point of view implementing a postural study of every assembly operation, leaving the rest of stages for a later study. Design is optimized applying this methodology together with the use of virtual reality tools. It is also achieved a 15% reduction on time assembly and of 90% reduction in muscle—skeletal diseases at every assembly operation.

  19. Embodying compassion: a virtual reality paradigm for overcoming excessive self-criticism.

    Science.gov (United States)

    Falconer, Caroline J; Slater, Mel; Rovira, Aitor; King, John A; Gilbert, Paul; Antley, Angus; Brewin, Chris R

    2014-01-01

    Virtual reality has been successfully used to study and treat psychological disorders such as phobias and posttraumatic stress disorder but has rarely been applied to clinically-relevant emotions other than fear and anxiety. Self-criticism is a ubiquitous feature of psychopathology and can be treated by increasing levels of self-compassion. We exploited the known effects of identification with a virtual body to arrange for healthy female volunteers high in self-criticism to experience self-compassion from an embodied first-person perspective within immersive virtual reality. Whereas observation and practice of compassionate responses reduced self-criticism, the additional experience of embodiment also increased self-compassion and feelings of being safe. The results suggest potential new uses for immersive virtual reality in a range of clinical conditions.

  20. The Impact of Virtual Reality Programs in Career and Technical Education

    Science.gov (United States)

    Catterson, Anna J.

    2013-01-01

    Instructional technology has evolved from blackboards with chalk to in some cases three-dimensional virtual reality environments in which students are interacting and engaging with other students worldwide. The use of this new instructional methodology, known as "virtual reality," has experienced substantial growth in higher education…

  1. Assessment method of digital Chinese dance movements based on virtual reality technology

    Science.gov (United States)

    Feng, Wei; Shao, Shuyuan; Wang, Shumin

    2008-03-01

    Virtual reality has played an increasing role in such areas as medicine, architecture, aviation, engineering science and advertising. However, in the art fields, virtual reality is still in its infancy in the representation of human movements. Based on the techniques of motion capture and reuse of motion capture data in virtual reality environment, this paper presents an assessment method in order to evaluate the quantification of dancers' basic Arm Position movements in Chinese traditional dance. In this paper, the data for quantifying traits of dance motions are defined and measured on dancing which performed by an expert and two beginners, with results indicating that they are beneficial for evaluating dance skills and distinctiveness, and the assessment method of digital Chinese dance movements based on virtual reality technology is validity and feasibility.

  2. Virtual Reality Applications for Stress Management Training in the Military.

    Science.gov (United States)

    Pallavicini, Federica; Argenton, Luca; Toniazzi, Nicola; Aceti, Luciana; Mantovani, Fabrizia

    2016-12-01

    Stress Management Training programs are increasingly being adopted in the military field for resilience empowerment and primary stress prevention. In the last several years, advanced technologies (virtual reality in particular) have been integrated in order to develop more innovative and effective stress training programs for military personnel, including soldiers, pilots, and other aircrew professionals. This systematic review describes experimental studies that have been conducted in recent years to test the effectiveness of virtual reality-based Stress Management Training programs developed for military personnel. This promising state-of-the-art technology has the potential to be a successful new approach in empowering soldiers and increasing their resilience to stress. To provide an overview from 2001 to 2016 of the application of virtual reality for Stress Management Training programs developed for the military, a computer-based search for relevant publications was performed in several databases. Databases used in the search were PsycINFO, Web of Science (Web of Knowledge), PubMed, and Medline. The search string was: ("Virtual Reality") AND ("Military") AND ["Stress Training" OR ("Stress Management")]. There were 14 studies that met the inclusion criteria and were included in the review. The main observation to be drawn from this review is that virtual reality can provide interactive Stress Management Training to decrease levels of perceived stress and negative affect in military personnel. This technology appears to be a promising tool for assessing individuals' resilience to stress and for identifying the impact that stress can have on physiological reactivity and performance.Pallavicini F, Argenton L, Toniazzi N, Aceti L, Mantovani F. Virtual realtiy applications for stress management training in the military. Aerosp Med Hum Perform. 2016; 87(12):1021-1030.

  3. Clinician perceptions of virtual reality to assess and treat returning veterans.

    Science.gov (United States)

    Kramer, Teresa L; Pyne, Jeffrey M; Kimbrell, Timothy A; Savary, Patricia E; Smith, Jeffrey L; Jegley, Susan M

    2010-11-01

    Implementation of evidence-based, innovative treatments is necessary to address posttraumatic stress disorder (PTSD) and related mental health problems of Operation Enduring Freedom and Operation Iraqi Freedom (OEF-OIF) military service personnel. The purpose of this study was to characterize mental health clinicians' perceptions of virtual reality as an assessment tool or adjunct to exposure therapy. Focus groups were conducted with 18 prescribing and nonprescribing mental health clinicians within the Veterans Health Administration. Group discussion was digitally recorded, downloaded into Ethnograph software, and coded to arrive at primary, secondary, and tertiary themes. Most frequently mentioned barriers pertained to aspects of virtual reality, followed by veteran characteristics. Organizational barriers were more relevant when implementing virtual reality as a treatment adjunct. Although the study demonstrated that use of virtual reality as a therapy was feasible and acceptable to clinicians, successful implementation of the technology as an assessment and treatment tool will depend on consideration of the facilitators and barriers that were identified.

  4. Clinical Utility of Virtual Reality in Pain Management: A Comprehensive Research Review from 2009 to 2016

    OpenAIRE

    Matsangidou, Maria; Ang, Chee Siang; Sakel, Mohamed

    2017-01-01

    Virtual Reality is a technology that allows users to experience a computer-simulated reality with visual, auditory, tactile and olfactory interactions. In the past decades, there have been considerable interests in using Virtual Reality for clinical purposes, including pain management. This article provides a systematic review of research on Virtual Reality and pain management, with an aim to understand the feasibilities of current Virtual Reality technologies and content design approaches in...

  5. A Discussion of Virtual Reality As a New Tool for Training Healthcare Professionals.

    Science.gov (United States)

    Fertleman, Caroline; Aubugeau-Williams, Phoebe; Sher, Carmel; Lim, Ai-Nee; Lumley, Sophie; Delacroix, Sylvie; Pan, Xueni

    2018-01-01

    Virtual reality technology is an exciting and emerging field with vast applications. Our study sets out the viewpoint that virtual reality software could be a new focus of direction in the development of training tools in medical education. We carried out a panel discussion at the Center for Behavior Change 3rd Annual Conference, prompted by the study, "The Responses of Medical General Practitioners to Unreasonable Patient Demand for Antibiotics--A Study of Medical Ethics Using Immersive Virtual Reality" (1). In Pan et al.'s study, 21 general practitioners (GPs) and GP trainees took part in a videoed, 15-min virtual reality scenario involving unnecessary patient demands for antibiotics. This paper was discussed in-depth at the Center for Behavior Change 3rd Annual Conference; the content of this paper is a culmination of findings and feedback from the panel discussion. The experts involved have backgrounds in virtual reality, general practice, medicines management, medical education and training, ethics, and philosophy. Virtual reality is an unexplored methodology to instigate positive behavioral change among clinicians where other methods have been unsuccessful, such as antimicrobial stewardship. There are several arguments in favor of use of virtual reality in medical education: it can be used for "difficult to simulate" scenarios and to standardize a scenario, for example, for use in exams. However, there are limitations to its usefulness because of the cost implications and the lack of evidence that it results in demonstrable behavior change.

  6. Mixed reality virtual pets to reduce childhood obesity.

    Science.gov (United States)

    Johnsen, Kyle; Ahn, Sun Joo; Moore, James; Brown, Scott; Robertson, Thomas P; Marable, Amanda; Basu, Aryabrata

    2014-04-01

    Novel approaches are needed to reduce the high rates of childhood obesity in the developed world. While multifactorial in cause, a major factor is an increasingly sedentary lifestyle of children. Our research shows that a mixed reality system that is of interest to children can be a powerful motivator of healthy activity. We designed and constructed a mixed reality system that allowed children to exercise, play with, and train a virtual pet using their own physical activity as input. The health, happiness, and intelligence of each virtual pet grew as its associated child owner exercised more, reached goals, and interacted with their pet. We report results of a research study involving 61 children from a local summer camp that shows a large increase in recorded and observed activity, alongside observational evidence that the virtual pet was responsible for that change. These results, and the ease at which the system integrated into the camp environment, demonstrate the practical potential to impact the exercise behaviors of children with mixed reality.

  7. Astronauts Prepare for Mission With Virtual Reality Hardware

    Science.gov (United States)

    2001-01-01

    Astronauts John M. Grunsfeld (left), STS-109 payload commander, and Nancy J. Currie, mission specialist, use the virtual reality lab at Johnson Space Center to train for upcoming duties aboard the Space Shuttle Columbia. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team to perform its duties for the fourth Hubble Space Telescope Servicing mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.

  8. Mucosal detail at CT virtual reality: surface versus volume rendering.

    Science.gov (United States)

    Hopper, K D; Iyriboz, A T; Wise, S W; Neuman, J D; Mauger, D T; Kasales, C J

    2000-02-01

    To evaluate computed tomographic virtual reality with volumetric versus surface rendering. Virtual reality images were reconstructed for 27 normal or pathologic colonic, gastric, or bronchial structures in four ways: the transition zone (a) reconstructed separately from the wall by using volume rendering; (b) with attenuation equal to air; (c) with attenuation equal to wall (soft tissue); (d) with attenuation halfway between air and wall. The four reconstructed images were randomized. Four experienced imagers blinded to the reconstruction graded them from best to worst with predetermined criteria. All readers rated images with the transition zone as a separate structure as overwhelmingly superior (P Virtual reality is best with volume rendering, with the transition zone (mucosa) between the wall and air reconstructed as a separate structure.

  9. UbiWorld: An environment integrating virtual reality, supercomputing, and design

    Energy Technology Data Exchange (ETDEWEB)

    Disz, T.; Papka, M.E.; Stevens, R. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1997-07-01

    UbiWorld is a concept being developed by the Futures Laboratory group at Argonne National Laboratory that ties together the notion of ubiquitous computing (Ubicomp) with that of using virtual reality for rapid prototyping. The goal is to develop an environment where one can explore Ubicomp-type concepts without having to build real Ubicomp hardware. The basic notion is to extend object models in a virtual world by using distributed wide area heterogeneous computing technology to provide complex networking and processing capabilities to virtual reality objects.

  10. Virtual reality training for health-care professionals.

    Science.gov (United States)

    Mantovani, Fabrizia; Castelnuovo, Gianluca; Gaggioli, Andrea; Riva, Giuseppe

    2003-08-01

    Emerging changes in health-care delivery are having a significant impact on the structure of health-care professionals' education. Today it is recognized that medical knowledge doubles every 6-8 years, with new medical procedures emerging everyday. While the half-life of medical information is so short, the average physician practices 30 years and the average nurse 40 years. Continuing education thus represents an important challenge to face. Recent advances in educational technology are offering an increasing number of innovative learning tools. Among these, Virtual Reality represents a promising area with high potential of enhancing the training of health-care professionals. Virtual Reality Training can provide a rich, interactive, engaging educational context, thus supporting experiential learning-by-doing; it can, in fact, contribute to raise interest and motivation in trainees and to effectively support skills acquisition and transfer, since the learning process can be settled within an experiential framework. Current virtual training applications for health-care differ a lot as to both their technological/multimedia sophistication and to the types of skills trained, varying for example from telesurgical applications to interactive simulations of human body and brain, to virtual worlds for emergency training. Other interesting applications include the development of immersive 3D environments for training psychiatrists and psychologists in the treatment of mental disorders. This paper has the main aim of discussing the rationale and main benefits for the use of virtual reality in health-care education and training. Significant research and projects carried out in this field will also be presented, followed by discussion on key issues concerning current limitations and future development directions.

  11. Effects of kinesthetic haptic feedback on standing stability of young healthy subjects and stroke patients.

    Science.gov (United States)

    Afzal, Muhammad Raheel; Byun, Ha-Young; Oh, Min-Kyun; Yoon, Jungwon

    2015-03-13

    Haptic control is a useful therapeutic option in rehabilitation featuring virtual reality interaction. As with visual and vibrotactile biofeedback, kinesthetic haptic feedback may assist in postural control, and can achieve balance control. Kinesthetic haptic feedback in terms of body sway can be delivered via a commercially available haptic device and can enhance the balance stability of both young healthy subjects and stroke patients. Our system features a waist-attached smartphone, software running on a computer (PC), and a dedicated Phantom Omni® device. Young healthy participants performed balance tasks after assumption of each of four distinct postures for 30 s (one foot on the ground; the Tandem Romberg stance; one foot on foam; and the Tandem Romberg stance on foam) with eyes closed. Patient eyes were not closed and assumption of the Romberg stance (only) was tested during a balance task 25 s in duration. An Android application running continuously on the smartphone sent mediolateral (ML) and anteroposterior (AP) tilt angles to a PC, which generated kinesthetic haptic feedback via Phantom Omni®. A total of 16 subjects, 8 of whom were young healthy and 8 of whom had suffered stroke, participated in the study. Post-experiment data analysis was performed using MATLAB®. Mean Velocity Displacement (MVD), Planar Deviation (PD), Mediolateral Trajectory (MLT) and Anteroposterior Trajectory (APT) parameters were analyzed to measure reduction in body sway. Our kinesthetic haptic feedback system was effective to reduce postural sway in young healthy subjects regardless of posture and the condition of the substrate (the ground) and to improve MVD and PD in stroke patients who assumed the Romberg stance. Analysis of Variance (ANOVA) revealed that kinesthetic haptic feedback significantly reduced body sway in both categories of subjects. Kinesthetic haptic feedback can be implemented using a commercial haptic device and a smartphone. Intuitive balance cues were

  12. Fusion interfaces for tactical environments: An application of virtual reality technology

    Science.gov (United States)

    Haas, Michael W.

    1994-01-01

    The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and nonvirtual concepts and devices across the visual, auditory, and haptic sensory modalities. A fusion interface is a multisensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion interface concepts. This new facility, the Fusion Interfaces for Tactical Environments (FITE) Facility is a specialized flight simulator enabling efficient concept development through rapid prototyping and direct experience of new fusion concepts. The FITE Facility also supports evaluation of fusion concepts by operation fighter pilots in an air combat environment. The facility is utilized by a multidisciplinary design team composed of human factors engineers, electronics engineers, computer scientists, experimental psychologists, and oeprational pilots. The FITE computational architecture is composed of twenty-five 80486-based microcomputers operating in real-time. The microcomputers generate out-the-window visuals, in-cockpit and head-mounted visuals, localized auditory presentations, haptic displays on the stick and rudder pedals, as well as executing weapons models, aerodynamic models, and threat models.

  13. Evaluating Virtual Reality and Augmented Reality Training for Industrial Maintenance and Assembly Tasks

    Science.gov (United States)

    Gavish, Nirit; Gutiérrez, Teresa; Webel, Sabine; Rodríguez, Jorge; Peveri, Matteo; Bockholt, Uli; Tecchia, Franco

    2015-01-01

    The current study evaluated the use of virtual reality (VR) and augmented reality (AR) platforms, developed within the scope of the SKILLS Integrated Project, for industrial maintenance and assembly (IMA) tasks training. VR and AR systems are now widely regarded as promising training platforms for complex and highly demanding IMA tasks. However,…

  14. Applying virtual and augmented reality in cultural computing

    NARCIS (Netherlands)

    Bartneck, C.; Hu, J.; Salem, B.I.; Cristescu, R.; Rauterberg, G.W.M.

    2008-01-01

    We are exploring a new application of virtual and augmented reality for a novel direction in human-computer inteaction named 'cultural computing', which aims to provide a new medium for cultural translation and unconscious metamorphosis. In this application both virtual and robotic agents are

  15. Virtual Reality and Legal Education

    OpenAIRE

    Kiskinov, Vihar

    2014-01-01

    Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014 The paper examines the impact of virtual reality on legal education. Association for the Development of the Information Society, Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Plovdiv University "Paisii Hilendarski"

  16. Virtual Reality and Engineering Education.

    Science.gov (United States)

    Pantelidis, Veronica S.

    1997-01-01

    Virtual Reality (VR) offers benefits to engineering education. This article defines VR and describes types; outlines reasons for using VR in engineering education; provides guidelines for using VR; presents a model for determining when to use VR; discusses VR applications; and describes hardware and software needed for a low-budget VR and…

  17. Integrating virtual reality applications in nuclear safeguards

    International Nuclear Information System (INIS)

    Barletta, Michael; Crete, Jean-Maurice; Pickett, Susan

    2011-01-01

    Virtual reality (VR) tools have already been developed and deployed in the nuclear industry, including in nuclear power plant construction, project management, equipment and system design, and training. Recognized as powerful tools for, inter alia, integration of data, simulation of activities, design of facilities, validation of concepts and mission planning, their application in nuclear safeguards is still very limited. However, VR tools may eventually offer transformative potential for evolving the future safeguards system to be more fully information-driven. The paper focuses especially on applications in the area of training that have been underway in the Department of Safeguards of the International Atomic Energy Agency. It also outlines future applications envisioned for safeguards information and knowledge management, and information-analytic collaboration. The paper identifies some technical and programmatic pre-requisites for realizing the integrative potential of VR technologies. If developed with an orientation to integrating applications through compatible platforms, software, and models, virtual reality tools offer the long-term potential of becoming a real 'game changer,' enabling a qualitative leap in the efficiency and effectiveness of nuclear safeguards. The IAEA invites Member States, industry, and academia to make proposals as to how such integrating potential in the use of virtual reality technology for nuclear safeguards could be realized. (author)

  18. Virtual Reality: a way to prepare and optimize operations in decommissioning projects

    International Nuclear Information System (INIS)

    Chabal, Caroline; Soulabaille, Yves

    2016-01-01

    The CEA has operated numerous nuclear facilities to carry out R and D and define nuclear fuel life cycle processes since the 1950's. It must now manage the clean-up and dismantling of those which have reached the end of their lifetime. These high priority actions have led to the creation of a dismantling R and D division which provides innovative tools, including in-situ radiological characterization, remote handling and cutting, and intervention scenario simulation. The latter involves running defined scenarios and verifying their suitability for the environment. Simulation is an ideal means of visualizing and therefore better knowing highly radioactive environments where humans cannot enter, of testing different technical alternatives, and of training workers prior to interventions. This paper describes Virtual Reality (VR) uses on dismantling projects. A VR simulation can be defined as an interactive and immersive simulation that enables the user to interact with a computer-simulated environment. VR environments, mostly based on visual immersion displayed through stereoscopic devices, can also include additional sensory information, such as sound or touch. Our application, based on audio, tactile and visual immersion, provides a useful support to verify pre-defined scenarios and to design alternative solutions if necessary. Thanks to a stereoscopic visualization, users are immersed in a virtual world, where they can hear virtual sounds when there is a collision, and can manipulate virtual objects and touch them via a haptic interface. This article first describes the PRESAGE immersive room in Marcoule. Then, the data preparation is explained, especially the 3D model reconstruction and the simulation configuration (remote handling and radiological). Next, different VR uses on decommissioning projects are shown and illustrated by examples. The advantages of such technologies include their speed in testing, user-friendliness, reactivity and usefulness in the

  19. Using Virtual Reality For Outreach Purposes in Planetology

    Science.gov (United States)

    Civet, François; Le Mouélic, Stéphane; Le Menn, Erwan; Beaunay, Stéphanie

    2016-10-01

    2016 has been a year marked by a technological breakthrough : the availability for the first time to the general public of technologically mature virtual reality devices. Virtual Reality consists in visually immerging a user in a 3D environment reproduced either from real and/or imaginary data, with the possibility to move and eventually interact with the different elements. In planetology, most of the places will remain inaccessible to the public for a while, but a fleet of dedicated spacecraft's such as orbiters, landers and rovers allow the possibility to virtually reconstruct the environments, using image processing, cartography and photogrammetry. Virtual reality can then bridge the gap to virtually "send" any user into the place and enjoy the exploration.We are investigating several type of devices to render orbital or ground based data of planetological interest, mostly from Mars. The most simple system consists of a "cardboard" headset, on which the user can simply use his cellphone as the screen. A more comfortable experience is obtained with more complex systems such as the HTC vive or Oculus Rift headsets, which include a tracking system important to minimize motion sickness. The third environment that we have developed is based on the CAVE concept, were four 3D video projectors are used to project on three 2x3m walls plus the ground. These systems can be used for scientific data analysis, but also prove to be perfectly suited for outreach and education purposes.

  20. Development of a low-cost virtual reality workstation for training and education

    Science.gov (United States)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) it involves 3-dimensional computer graphics; (2) it includes real-time feedback and response to user actions; and (3) it must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, but the high cost of VR technology has limited its practical application to fields with big budgets, such as military combat simulation, commercial pilot training, and certain projects within the space program. However, in the last year there has been a revolution in the cost of VR technology. The speed of inexpensive personal computers has increased dramatically, especially with the introduction of the Pentium processor and the PCI bus for IBM-compatibles, and the cost of high-quality virtual reality peripherals has plummeted. The result is that many public schools, colleges, and universities can afford a PC-based workstation capable of running immersive virtual reality applications. My goal this summer was to assemble and evaluate such a system.

  1. The role of presence in virtual reality exposure therapy.

    Science.gov (United States)

    Price, Matthew; Anderson, Page

    2007-01-01

    A growing body of literature suggests that virtual reality is a successful tool for exposure therapy in the treatment of anxiety disorders. Virtual reality (VR) researchers posit the construct of presence, defined as the interpretation of an artificial stimulus as if it were real, to be a presumed factor that enables anxiety to be felt during virtual reality exposure therapy (VRE). However, a handful of empirical studies on the relation between presence and anxiety in VRE have yielded mixed findings. The current study tested the following hypotheses about the relation between presence and anxiety in VRE with a clinical sample of fearful flyers: (1) presence is related to in-session anxiety; (2) presence mediates the extent that pre-existing (pre-treatment) anxiety is experienced during exposure with VR; (3) presence is positively related to the amount of phobic elements included within the virtual environment; (4) presence is related to treatment outcome. Results supported presence as a factor that contributes to the experience of anxiety in the virtual environment as well as a relation between presence and the phobic elements, but did not support a relation between presence and treatment outcome. The study suggests that presence may be a necessary but insufficient requirement for successful VRE.

  2. Virtual Reality Treatment in Acrophobia : A Comparison with Exposure in Vivo

    NARCIS (Netherlands)

    Emmelkamp, P.M.G.; Bruynzeel, M.; Drost, L.; Van der Mast, C.A.P.G.

    2001-01-01

    The aim of the present study was to evaluate the effectiveness of low-budget virtual reality exposure versus exposure in vivo in a within-group design in 10 individuals suffering from acrophobia. Virtual reality exposure was found to be at least as effective as exposure in vivo on anxiety and

  3. The UFRJ-UERJ group: interdisciplinary virtual reality experiments in neuropsychiatry.

    Science.gov (United States)

    Costa, Rosa Maria E M; de Carvalho, Luis Alfredo V; Drummond, Ricardo; Wauke, Ana Paula T; de Sá Guimarães, Marcele

    2002-10-01

    This paper describes the research lines of an interdisciplinary group composed by two government universities in Rio de Janeiro. The first research line, a Virtual Environment for testing the acceptance of Virtual Reality equipment by schizophrenia patients, has stimulated a growing interest in this area in the country and abroad. The second research line, in progress now, develops a virtual environment to improve the learning abilities of children with Attention-Deficit and Hyperactivity Disorder (ADHD). Another study is related to the use of Virtual Reality in the cognitive treatment of common city phobias, beginning with the reproduction of some tunnels of our city to treatment of claustrophobic patients. The last of the research lines in progress in this group develops a virtual square for stimulating autistic patients.

  4. Controlling social stress in virtual reality environments.

    Directory of Open Access Journals (Sweden)

    Dwi Hartanto

    Full Text Available Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6 = 0.91, p = 0.002; r(6 = 0.76, p = 0.028 and r(6 = -0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes.

  5. Controlling social stress in virtual reality environments.

    Science.gov (United States)

    Hartanto, Dwi; Kampmann, Isabel L; Morina, Nexhmedin; Emmelkamp, Paul G M; Neerincx, Mark A; Brinkman, Willem-Paul

    2014-01-01

    Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive) between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6) = 0.91, p = 0.002; r(6) = 0.76, p = 0.028 and r(6) = -0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes.

  6. Controlling Social Stress in Virtual Reality Environments

    Science.gov (United States)

    Hartanto, Dwi; Kampmann, Isabel L.; Morina, Nexhmedin; Emmelkamp, Paul G. M.; Neerincx, Mark A.; Brinkman, Willem-Paul

    2014-01-01

    Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive) between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6) = 0.91, p = 0.002; r(6) = 0.76, p = 0.028 and r(6) = −0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes. PMID:24671006

  7. A hardware and software architecture to deal with multimodal and collaborative interactions in multiuser virtual reality environments

    Science.gov (United States)

    Martin, P.; Tseu, A.; Férey, N.; Touraine, D.; Bourdot, P.

    2014-02-01

    Most advanced immersive devices provide collaborative environment within several users have their distinct head-tracked stereoscopic point of view. Combining with common used interactive features such as voice and gesture recognition, 3D mouse, haptic feedback, and spatialized audio rendering, these environments should faithfully reproduce a real context. However, even if many studies have been carried out on multimodal systems, we are far to definitively solve the issue of multimodal fusion, which consists in merging multimodal events coming from users and devices, into interpretable commands performed by the application. Multimodality and collaboration was often studied separately, despite of the fact that these two aspects share interesting similarities. We discuss how we address this problem, thought the design and implementation of a supervisor that is able to deal with both multimodal fusion and collaborative aspects. The aim of this supervisor is to ensure the merge of user's input from virtual reality devices in order to control immersive multi-user applications. We deal with this problem according to a practical point of view, because the main requirements of this supervisor was defined according to a industrial task proposed by our automotive partner, that as to be performed with multimodal and collaborative interactions in a co-located multi-user environment. In this task, two co-located workers of a virtual assembly chain has to cooperate to insert a seat into the bodywork of a car, using haptic devices to feel collision and to manipulate objects, combining speech recognition and two hands gesture recognition as multimodal instructions. Besides the architectural aspect of this supervisor, we described how we ensure the modularity of our solution that could apply on different virtual reality platforms, interactive contexts and virtual contents. A virtual context observer included in this supervisor in was especially designed to be independent to the

  8. Jacob - an animated instruction agent for virtual reality

    NARCIS (Netherlands)

    Evers, M.J.; Nijholt, Antinus; Tan, T.; Shi, Y.; Gao, W.

    2000-01-01

    This paper gives an overview of the Jacob project. This project in-volves the construction of a 3D virtual environment where an animated human-like agent called Jacob gives instruction to the user. The project investigates virtual reality techniques and focuses on three issues: the software

  9. Intelligent Decision-Support in Virtual Reality Healthcare & Rehabilitation

    DEFF Research Database (Denmark)

    Lewis Brooks, Anthony

    2011-01-01

    and the ‘Hermeneutic Action Research Recursive Reflection’ model have emerged from a body of virtual reality research called SoundScapes. The work targets all ages and all abilities through gesture-control of responsive multimedia within Virtual Interactive Space (VIS). VIS is an interactive information environment...

  10. Embodying compassion: a virtual reality paradigm for overcoming excessive self-criticism.

    Directory of Open Access Journals (Sweden)

    Caroline J Falconer

    Full Text Available Virtual reality has been successfully used to study and treat psychological disorders such as phobias and posttraumatic stress disorder but has rarely been applied to clinically-relevant emotions other than fear and anxiety. Self-criticism is a ubiquitous feature of psychopathology and can be treated by increasing levels of self-compassion. We exploited the known effects of identification with a virtual body to arrange for healthy female volunteers high in self-criticism to experience self-compassion from an embodied first-person perspective within immersive virtual reality. Whereas observation and practice of compassionate responses reduced self-criticism, the additional experience of embodiment also increased self-compassion and feelings of being safe. The results suggest potential new uses for immersive virtual reality in a range of clinical conditions.

  11. Virtual reality and laparoscopic surgery.

    Science.gov (United States)

    Coleman, J; Nduka, C C; Darzi, A

    1994-12-01

    The nature of laparoscopic surgery makes it likely to benefit from current and future developments in virtual reality and telepresence technology. High-definition screens, three-dimensional sensory feedback and remote dextrous manipulation will be the next major developments in laparoscopic surgery. Simulators may be used in surgical training and in the evaluation of surgical capability.

  12. Virtual reality at nuclear issues : a review study

    International Nuclear Information System (INIS)

    Silva, Marcio Henrique da; Legey, Ana Paula; Mol, Antonio Carlos de A.

    2015-01-01

    Recently, several applications using concepts related to virtual reality has been proposed to help on solving issues of great interest in Nuclear Engineering. Among them are power plant's control rooms simulators; measurement of the estimated radiation dose in a nuclear power plant; use of game engines to create virtual environments to support evacuation planning of buildings and circulation in areas subjected to radiation; development of a man - machine interface based on speech recognition; virtual control tables for simulation of nuclear power plants; evacuation plans support; security teams training and evaluation of physical protection barriers; ergonomic evaluation of control rooms, and other ones. Many of these applications are developed at Instituto de Engenharia Nuclear (IEN), having their results published in form of articles in periodicals and conferences. This article presents a review of some of these studies showing the evolution in the use of these concepts, describing some of its results and showing prospects for future applications that can make use of virtual reality technology. (author)

  13. Efficacy of virtual reality in pedestrian safety research.

    Science.gov (United States)

    Deb, Shuchisnigdha; Carruth, Daniel W; Sween, Richard; Strawderman, Lesley; Garrison, Teena M

    2017-11-01

    Advances in virtual reality technology present new opportunities for human factors research in areas that are dangerous, difficult, or expensive to study in the real world. The authors developed a new pedestrian simulator using the HTC Vive head mounted display and Unity software. Pedestrian head position and orientation were tracked as participants attempted to safely cross a virtual signalized intersection (5.5 m). In 10% of 60 trials, a vehicle violated the traffic signal and in 10.84% of these trials, a collision between the vehicle and the pedestrian was observed. Approximately 11% of the participants experienced simulator sickness and withdrew from the study. Objective measures, including the average walking speed, indicate that participant behavior in VR matches published real world norms. Subjective responses indicate that the virtual environment was realistic and engaging. Overall, the study results confirm the effectiveness of the new virtual reality technology for research on full motion tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Virtual reality at nuclear issues : a review study

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcio Henrique da; Legey, Ana Paula; Mol, Antonio Carlos de A., E-mail: marciohenrique@lmp.ufrj.br, E-mail: ana.legey@pq.cnpq.br, E-mail: mol@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Recently, several applications using concepts related to virtual reality has been proposed to help on solving issues of great interest in Nuclear Engineering. Among them are power plant's control rooms simulators; measurement of the estimated radiation dose in a nuclear power plant; use of game engines to create virtual environments to support evacuation planning of buildings and circulation in areas subjected to radiation; development of a man - machine interface based on speech recognition; virtual control tables for simulation of nuclear power plants; evacuation plans support; security teams training and evaluation of physical protection barriers; ergonomic evaluation of control rooms, and other ones. Many of these applications are developed at Instituto de Engenharia Nuclear (IEN), having their results published in form of articles in periodicals and conferences. This article presents a review of some of these studies showing the evolution in the use of these concepts, describing some of its results and showing prospects for future applications that can make use of virtual reality technology. (author)

  15. Applied virtual reality at the Research Triangle Institute

    Science.gov (United States)

    Montoya, R. Jorge

    1994-01-01

    Virtual Reality (VR) is a way for humans to use computers in visualizing, manipulating and interacting with large geometric data bases. This paper describes a VR infrastructure and its application to marketing, modeling, architectural walk through, and training problems. VR integration techniques used in these applications are based on a uniform approach which promotes portability and reusability of developed modules. For each problem, a 3D object data base is created using data captured by hand or electronically. The object's realism is enhanced through either procedural or photo textures. The virtual environment is created and populated with the data base using software tools which also support interactions with and immersivity in the environment. These capabilities are augmented by other sensory channels such as voice recognition, 3D sound, and tracking. Four applications are presented: a virtual furniture showroom, virtual reality models of the North Carolina Global TransPark, a walk through the Dresden Fraunenkirche, and the maintenance training simulator for the National Guard.

  16. Virtual Reality in Education: Defining Researchable Issues.

    Science.gov (United States)

    Hedburg, John; Alexander, Shirley

    1994-01-01

    Discusses situated learning and virtual reality, focusing on the pedagogical aspects of the technology and its importance in achieving a learning environment which challenges and supports effective learning. (AEF)

  17. Journalism in virtual reality : opportunities and future research challenges

    OpenAIRE

    Sirkkunen, Esa; Väätäjä, Heli; Uskali, Turo; Rezaei, Parisa Pour

    2016-01-01

    This paper presents a state-of-the-art overview on journalism and its opportunities and challenges in virtual reality. First we take a look at what kind of real-life journalistic experiments there have been made in this field so far, then we analyze the research literature on journalistic VR. The paper proceeds to discuss the emergence of virtual reality and immersive journalism explored in the latest reports in the fields of HCI and VR design. In order to analyse VR-journalism...

  18. Semi-Immersive Virtual Turbine Engine Simulation System

    Science.gov (United States)

    Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea

    2018-05-01

    The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.

  19. Resident simulation training in endoscopic endonasal surgery utilizing haptic feedback technology.

    Science.gov (United States)

    Thawani, Jayesh P; Ramayya, Ashwin G; Abdullah, Kalil G; Hudgins, Eric; Vaughan, Kerry; Piazza, Matthew; Madsen, Peter J; Buch, Vivek; Sean Grady, M

    2016-12-01

    Simulated practice may improve resident performance in endoscopic endonasal surgery. Using the NeuroTouch haptic simulation platform, we evaluated resident performance and assessed the effect of simulation training on performance in the operating room. First- (N=3) and second- (N=3) year residents were assessed using six measures of proficiency. Using a visual analog scale, the senior author scored subjects. After the first session, subjects with lower scores were provided with simulation training. A second simulation served as a task-learning control. Residents were evaluated in the operating room over six months by the senior author-who was blinded to the trained/untrained identities-using the same parameters. A nonparametric bootstrap testing method was used for the analysis (Matlab v. 2014a). Simulation training was associated with an increase in performance scores in the operating room averaged over all measures (p=0.0045). This is the first study to evaluate the training utility of an endoscopic endonasal surgical task using a virtual reality haptic simulator. The data suggest that haptic simulation training in endoscopic neurosurgery may contribute to improvements in operative performance. Limitations include a small number of subjects and adjudication bias-although the trained/untrained identity of subjects was blinded. Further study using the proposed methods may better describe the relationship between simulated training and operative performance in endoscopic Neurosurgery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Integrating Music into Math in a Virtual Reality Game: Learning Fractions

    Science.gov (United States)

    Lim, Taehyeong; Lee, Sungwoong; Ke, Fengfeng

    2016-01-01

    The purpose of this study was to investigate future teachers' experiences and perceptions of using a virtual reality game for elementary math education. The virtual reality game was designed and developed to integrate a musical activity (beat-making) into the math learning of fractions. Five math education major students participated in this…

  1. Virtual superheroes: using superpowers in virtual reality to encourage prosocial behavior.

    Directory of Open Access Journals (Sweden)

    Robin S Rosenberg

    Full Text Available BACKGROUND: Recent studies have shown that playing prosocial video games leads to greater subsequent prosocial behavior in the real world. However, immersive virtual reality allows people to occupy avatars that are different from them in a perceptually realistic manner. We examine how occupying an avatar with the superhero ability to fly increases helping behavior. PRINCIPAL FINDINGS: Using a two-by-two design, participants were either given the power of flight (their arm movements were tracked to control their flight akin to Superman's flying ability or rode as a passenger in a helicopter, and were assigned one of two tasks, either to help find a missing diabetic child in need of insulin or to tour a virtual city. Participants in the "super-flight" conditions helped the experimenter pick up spilled pens after their virtual experience significantly more than those who were virtual passengers in a helicopter. CONCLUSION: The results indicate that having the "superpower" of flight leads to greater helping behavior in the real world, regardless of how participants used that power. A possible mechanism for this result is that having the power of flight primed concepts and prototypes associated with superheroes (e.g., Superman. This research illustrates the potential of using experiences in virtual reality technology to increase prosocial behavior in the physical world.

  2. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.

    Science.gov (United States)

    Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike

    2015-01-01

    Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

  3. Evaluating the Effects of Immersive Embodied Interaction on Cognition in Virtual Reality

    Science.gov (United States)

    Parmar, Dhaval

    Virtual reality is on its advent of becoming mainstream household technology, as technologies such as head-mounted displays, trackers, and interaction devices are becoming affordable and easily available. Virtual reality (VR) has immense potential in enhancing the fields of education and training, and its power can be used to spark interest and enthusiasm among learners. It is, therefore, imperative to evaluate the risks and benefits that immersive virtual reality poses to the field of education. Research suggests that learning is an embodied process. Learning depends on grounded aspects of the body including action, perception, and interactions with the environment. This research aims to study if immersive embodiment through the means of virtual reality facilitates embodied cognition. A pedagogical VR solution which takes advantage of embodied cognition can lead to enhanced learning benefits. Towards achieving this goal, this research presents a linear continuum for immersive embodied interaction within virtual reality. This research evaluates the effects of three levels of immersive embodied interactions on cognitive thinking, presence, usability, and satisfaction among users in the fields of science, technology, engineering, and mathematics (STEM) education. Results from the presented experiments show that immersive virtual reality is greatly effective in knowledge acquisition and retention, and highly enhances user satisfaction, interest and enthusiasm. Users experience high levels of presence and are profoundly engaged in the learning activities within the immersive virtual environments. The studies presented in this research evaluate pedagogical VR software to train and motivate students in STEM education, and provide an empirical analysis comparing desktop VR (DVR), immersive VR (IVR), and immersive embodied VR (IEVR) conditions for learning. This research also proposes a fully immersive embodied interaction metaphor (IEIVR) for learning of computational

  4. Stencil cutouts for virtual reality inputs

    CSIR Research Space (South Africa)

    Ausmeier, Natalie J

    2017-02-01

    Full Text Available Virtual Reality (VR) is widely used in training simulators of dangerous or expensive vehicles such as aircraft or heavy mining machinery. The vehicles often have very complicated controls that users need to master before attempting to operate a real...

  5. Adaptation of a haptic robot in a 3T fMRI.

    Science.gov (United States)

    Snider, Joseph; Plank, Markus; May, Larry; Liu, Thomas T; Poizner, Howard

    2011-10-04

    Functional magnetic resonance imaging (fMRI) provides excellent functional brain imaging via the BOLD signal with advantages including non-ionizing radiation, millimeter spatial accuracy of anatomical and functional data, and nearly real-time analyses. Haptic robots provide precise measurement and control of position and force of a cursor in a reasonably confined space. Here we combine these two technologies to allow precision experiments involving motor control with haptic/tactile environment interaction such as reaching or grasping. The basic idea is to attach an 8 foot end effecter supported in the center to the robot allowing the subject to use the robot, but shielding it and keeping it out of the most extreme part of the magnetic field from the fMRI machine (Figure 1). The Phantom Premium 3.0, 6DoF, high-force robot (SensAble Technologies, Inc.) is an excellent choice for providing force-feedback in virtual reality experiments, but it is inherently non-MR safe, introduces significant noise to the sensitive fMRI equipment, and its electric motors may be affected by the fMRI's strongly varying magnetic field. We have constructed a table and shielding system that allows the robot to be safely introduced into the fMRI environment and limits both the degradation of the fMRI signal by the electrically noisy motors and the degradation of the electric motor performance by the strongly varying magnetic field of the fMRI. With the shield, the signal to noise ratio (SNR: mean signal/noise standard deviation) of the fMRI goes from a baseline of ~380 to ~330, and ~250 without the shielding. The remaining noise appears to be uncorrelated and does not add artifacts to the fMRI of a test sphere (Figure 2). The long, stiff handle allows placement of the robot out of range of the most strongly varying parts of the magnetic field so there is no significant effect of the fMRI on the robot. The effect of the handle on the robot's kinematics is minimal since it is lightweight (~2

  6. The role of virtual reality and 3D modelling in built environment education

    OpenAIRE

    Horne, Margaret; Thompson, Emine Mine

    2007-01-01

    This study builds upon previous research on the integration of Virtual Reality (VR) within the built environment curriculum and aims to investigate the role of Virtual Reality and three-dimensional (3D) computer modelling on learning and teaching in a school of the built environment. In order to achieve this aim a number of academic experiences were analysed to explore the applicability and viability of 3D computer modelling and Virtual Reality (VR) into built environment subject areas. Altho...

  7. Mapping the plateau of novices in virtual reality simulation training of mastoidectomy

    DEFF Research Database (Denmark)

    A.W. Andersen, Steven; Konge, Lars; Mikkelsen, Peter Trier

    2016-01-01

    To explore why novices' performance plateau in directed, self-regulated virtual reality (VR) simulation training and how performance can be improved.......To explore why novices' performance plateau in directed, self-regulated virtual reality (VR) simulation training and how performance can be improved....

  8. Virtual reality for mobility devices: training applications and clinical research: a review

    NARCIS (Netherlands)

    Erren-Wolters, Cathelijne V.; van Dijk, Henk; de Kort, Alexander C.; IJzerman, Maarten Joost; Jannink, M.J.A.

    2007-01-01

    Virtual reality technology is an emerging technology that possibly can address the problems encountered in training (elderly) people to handle a mobility device. The objective of this review was to study different virtual reality training applications as well as their clinical implication for

  9. On the effectiveness of virtual reality in the education of software engineering

    NARCIS (Netherlands)

    Akbulut, Akhan; Catal, Cagatay; Yildiz, Burak

    2018-01-01

    The popularity of virtual reality headsets have been rapidly increasing. With this technology, students can efficiently interact with the course content and learn the material faster than the traditional methodologies. In addition to this benefit, virtual reality devices also draw the attention

  10. E-Learning Application of Tarsier with Virtual Reality using Android Platform

    Science.gov (United States)

    Oroh, H. N.; Munir, R.; Paseru, D.

    2017-01-01

    Spectral Tarsier is a primitive primate that can only be found in the province of North Sulawesi. To study these primates can be used an e-learning application with Augmented Reality technology that uses a marker to confronted the camera computer to interact with three dimensions Tarsier object. But that application only shows tarsier object in three dimensions without habitat and requires a lot of resources because it runs on a Personal Computer. The same technology can be shown three dimensions’ objects is Virtual Reality to excess can make the user like venturing into the virtual world with Android platform that requires fewer resources. So, put on Virtual Reality technology using the Android platform that can make users not only to view and interact with the tarsiers but also the habitat. The results of this research indicate that the user can learn the Tarsier and habitat with good. Thus, the use of Virtual Reality technology in the e-learning application of tarsiers can help people to see, know, and learn about Spectral Tarsier.

  11. Speculations on the representation of architecture in virtual reality

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars; Bundgård, Ture Slot

    2017-01-01

    to the visual field of perception. However, this should not necessarily imply an acceptance of the dominance of vision over the other senses, and the much-criticized retinal architecture with its inherent loss of plasticity. Recent neurology studies indicate that 3D representation models in virtual reality...... are less demanding on the brain’s working memory than 3D models seen on flat two-dimensional screens. This paper suggests that virtual reality representational architectural models can, if used correctly, significantly improve the imaginative role of architectural representation....

  12. Using Immersive Virtual Reality for Electrical Substation Training

    Science.gov (United States)

    Tanaka, Eduardo H.; Paludo, Juliana A.; Cordeiro, Carlúcio S.; Domingues, Leonardo R.; Gadbem, Edgar V.; Euflausino, Adriana

    2015-01-01

    Usually, distribution electricians are called upon to solve technical problems found in electrical substations. In this project, we apply problem-based learning to a training program for electricians, with the help of a virtual reality environment that simulates a real substation. Using this virtual substation, users may safely practice maneuvers…

  13. Theoretical Bases for Using Virtual Reality in Education

    Science.gov (United States)

    Chen, Chwen Jen

    2009-01-01

    This article elaborates on how the technical capabilities of virtual reality support the constructivist learning principles. It introduces VRID, a model for instructional design and development that offers explicit guidance on how to produce an educational virtual environment. The define phase of VRID consists of three main tasks: forming a…

  14. Virtual reality in Latin American clinical psychology and the VREPAR project. Virtual Reality Environments for Psycho-Neuro-physiological Assessment and Rehabilitation.

    Science.gov (United States)

    Silva, Mauro Rubens

    2002-10-01

    Starting with the excellent collective work done by the European Community (EC)-funded Virtual Reality Environments for Psycho-Neuro-physiological Assessment and Rehabilitation (VREPAR) projects, I try to indicate some possible pathways that would allow a better integration of this advanced technology into the reality of Latin American psychology. I myself use analyses that I did in my master's degree in the PUCSP-Catholic University in São Paulo, Brazil. I also include a brief description of the CD-ROM Clinical Psychology Uses of Virtual Reality (CPUVR) that accompanies my thesis. I point out the importance of collaboration between psychology and other disciplines, including computer science. I explain the method that I used to work with digital information, important for the formation of a critical mass of people thinking in Portuguese and Spanish to accelerate a technological jump.

  15. Virtual reality therapy in aid of senior citizens' psychological disorders.

    Science.gov (United States)

    North, Max M; Rives, Jason

    2003-01-01

    The treatment for senior citizens suffering from psychological disorders seems to be different from therapeutic procedures used for other populations. This pilot study is the first known in-depth case study of the effectiveness of virtual reality therapy (VRT) as a treatment for senior citizens. The fear of flying treatment was chosen for this study. The subject of the study was a 62-year-old married female, whose anxiety and avoidance behavior was interfering with her normal activities. For treatment, she was placed in the cabin of a virtual commercial aircraft environment accompanied by a virtual therapist. After a few sessions in which she spent time in a virtual airport scene, she spent four sessions in which she was flown over a simulated city. While under the virtual reality treatment, the subject experienced a number of physical and emotional anxiety-related symptoms. These symptoms included sweaty palms, loss of balance, weakness in the knees, etc. In this study, the virtual reality treatment caused a significant reduction in the anxiety symptoms in the subject and enhanced her ability to face phobic situations in the real world. Since termination of the treatment, she has taken several flights to professional conferences and reported feeling more comfortable and has fewer symptoms than those experienced prior to the VRT treatment.

  16. Investigation of virtual reality concept based on system analysis of conceptual series

    Science.gov (United States)

    Romanova, A.; Shuklin, D. A.; Kalinkina, M. E.; Gotskaya, I. B.; Ponomarev, Y. E.

    2018-05-01

    The paper covers approaches to the definition of virtual reality from the point of view of the humanitarian sciences and technology. Each approach analyzing problems of concept perception of methods interpreted by representatives of philosophy, psychology and sociology is singled out. Terminological analysis of the basic concepts is carried out and their refinement is constructed in the process of comparing the concepts of virtuality and virtual reality. Using the analysis of selected sources, a number of singularity characteristics of the given concept are singled out and its definition is specified. Results consist in combining the interpretation of all approaches to determine the concept of virtual reality. Due to the use of a comprehensive approach to the definition of the investigated concept, which allows us to consider the object of research as a set of elements that are subject to study with the help of a corresponding set of methods, one can conclude that the concept under study is complex and multifaceted. The authors noted that virtual reality technologies have a flexible concept depending on the field of application.

  17. Summer Students in Virtual Reality: A Pilot Study on Educational Applications of Virtual Reality Technology.

    Science.gov (United States)

    Bricken, Meredith; Byrne, Chris M.

    The goal of this study was to take a first step in evaluating the potential of virtual reality (VR) as a learning environment. The context of the study was The Technology Academy, a technology-oriented summer day camp for students ages 5-18, where student activities center around hands-on exploration of new technology (e.g., robotics, MIDI digital…

  18. Effects of virtual reality-based bilateral upper-extremity training on brain activity in post-stroke patients.

    Science.gov (United States)

    Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee

    2015-07-01

    [Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.

  19. The Use of Virtual Reality in Patients with Eating Disorders: Systematic Review.

    Science.gov (United States)

    Clus, Damien; Larsen, Mark Erik; Lemey, Christophe; Berrouiguet, Sofian

    2018-04-27

    Patients with eating disorders are characterized by pathological eating habits and a tendency to overestimate their weight and body shape. Virtual reality shows promise for the evaluation and management of patients with eating disorders. This technology, when accepted by this population, allows immersion in virtual environments, assessment, and therapeutic approaches, by exposing users to high-calorie foods or changes in body shape. To better understand the value of virtual reality, we conducted a review of the literature, including clinical studies proposing the use of virtual reality for the evaluation and management of patients with eating disorders. We searched PubMed, PsycINFO, ScienceDirect, the Cochrane Library, Scopus, and Web of Science up to April 2017. We created the list of keywords based on two domains: virtual reality and eating disorders. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify, select, and critically appraise relevant research while minimizing bias. The initial database searches identified 311 articles, 149 of which we removed as duplicates. We analyzed the resulting set of 26 unique studies that met the inclusion criteria. Of these, 8 studies were randomized controlled trials, 13 were nonrandomized studies, and 5 were clinical trials with only 1 participant. Most articles focused on clinical populations (19/26, 73%), with the remainder reporting case-control studies (7/26, 27%). Most of the studies used visual immersive equipment (16/26, 62%) with a head-mounted display (15/16, 94%). Two main areas of interest emerged from these studies: virtual work on patients’ body image (7/26, 27%) and exposure to virtual food stimuli (10/26, 38%). We conducted a broad analysis of studies on the use of virtual reality in patients with eating disorders. This review of the literature showed that virtual reality is an acceptable and promising therapeutic tool for patients with eating disorders. ©Damien Clus

  20. Challenges to the development of complex virtual reality surgical simulations.

    Science.gov (United States)

    Seymour, N E; Røtnes, J S

    2006-11-01

    Virtual reality simulation in surgical training has become more widely used and intensely investigated in an effort to develop safer, more efficient, measurable training processes. The development of virtual reality simulation of surgical procedures has begun, but well-described technical obstacles must be overcome to permit varied training in a clinically realistic computer-generated environment. These challenges include development of realistic surgical interfaces and physical objects within the computer-generated environment, modeling of realistic interactions between objects, rendering of the surgical field, and development of signal processing for complex events associated with surgery. Of these, the realistic modeling of tissue objects that are fully responsive to surgical manipulations is the most challenging. Threats to early success include relatively limited resources for development and procurement, as well as smaller potential for return on investment than in other simulation industries that face similar problems. Despite these difficulties, steady progress continues to be made in these areas. If executed properly, virtual reality offers inherent advantages over other training systems in creating a realistic surgical environment and facilitating measurement of surgeon performance. Once developed, complex new virtual reality training devices must be validated for their usefulness in formative training and assessment of skill to be established.

  1. Review of Designs for Haptic Data Visualization.

    Science.gov (United States)

    Paneels, Sabrina; Roberts, Jonathan C

    2010-01-01

    There are many different uses for haptics, such as training medical practitioners, teleoperation, or navigation of virtual environments. This review focuses on haptic methods that display data. The hypothesis is that haptic devices can be used to present information, and consequently, the user gains quantitative, qualitative, or holistic knowledge about the presented data. Not only is this useful for users who are blind or partially sighted (who can feel line graphs, for instance), but also the haptic modality can be used alongside other modalities, to increase the amount of variables being presented, or to duplicate some variables to reinforce the presentation. Over the last 20 years, a significant amount of research has been done in haptic data presentation; e.g., researchers have developed force feedback line graphs, bar charts, and other forms of haptic representations. However, previous research is published in different conferences and journals, with different application emphases. This paper gathers and collates these various designs to provide a comprehensive review of designs for haptic data visualization. The designs are classified by their representation: Charts, Maps, Signs, Networks, Diagrams, Images, and Tables. This review provides a comprehensive reference for researchers and learners, and highlights areas for further research.

  2. Virtual reality in the treatment of persecutory delusions: randomised controlled experimental study testing how to reduce delusional conviction

    Science.gov (United States)

    Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M.

    2016-01-01

    Background Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. Aims To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Method Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. Results In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Conclusion Cognitive therapy using virtual reality could prove highly effective in treating delusions. PMID:27151071

  3. Cognitive assessment and rehabilitation in virtual reality: theoretical review and practical implications

    Directory of Open Access Journals (Sweden)

    Negut, A.

    2014-07-01

    Full Text Available Virtual reality scenarios have been developed in order to assess cognitive functioning such as: memory, attention and executive function. Most scenarios replicate everyday situations like shopping activities, navigation through a park or a street, learning objects in an apartment or virtual office, or sitting and solving tasks in a classroom or apartment. Results of these studies support the use of virtual reality scenarios in neurocognitive assessment. Virtual scenarios that are used in cognitive training include a wide range of contexts from everyday life such as: a store, a kitchen, a city, as well as exercises like touching a ball on a screen for movement coordination, collecting a coconut and positioning it in a basket. Overall, virtual reality-based assessment or rehabilitation tools seem to be valid, reliable and efficient with an increased level of ecological validity.

  4. Moving from Virtual Reality Exposure-Based Therapy (VRET to Augmented Reality Exposure-Based Therapy (ARET: A review.

    Directory of Open Access Journals (Sweden)

    Oliver eBaus

    2014-03-01

    Full Text Available This paper reviews the move from virtual reality exposure-based therapy (VRET to augmented reality exposure-based therapy (ARET. Unlike virtual reality (VR, which entails a complete virtual environment (VE, augmented reality (AR limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the 20th century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed safely to the object(s of their fear, without the costs associated with programming complete virtual environments. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper also raises some ARET related issues, and proposes potential avenues to be followed. These include the definition of an AR related term, the type of measures to be used to qualify the user’s experience in an augmented reality environment (ARE, the development of alternative geospatial referencing systems, as well as the potential use of ARET to treat social phobia. Overall, it may be said that the use of ARET, although promising, is still in its infancy but that, given a continued cooperation between clinical and technical teams, ARET has the potential of going well beyond the treatment of small animal phobia.

  5. Integrated Data Visualization and Virtual Reality Tool

    Science.gov (United States)

    Dryer, David A.

    1998-01-01

    The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.

  6. Special Experiences for Exceptional Students: Integrating Virtual Reality into Special Education Classrooms.

    Science.gov (United States)

    Miller, Erez Cedric

    This paper discusses some of the potential benefits and hazards that virtual reality holds for exceptional children in the special education system. Topics addressed include (1) applications of virtual reality, including developing academic skills via cyberspace, vocational training, and social learning in cyberspace; (2) telepresence and distance…

  7. Construction of educational application system for calligraphy master based on virtual reality; Virtual reality wo mochiita shodo shutoku no tame no kyoikuteki oyo system no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.; Muranaka, N.; Imanishi, S. [Kansai University, Osaka (Japan)

    1997-10-20

    Technique of virtual reality has been becoming popular in various fields including education because of its remarkable technique progress. There are the three useful elements of `presence`, `interaction` and `autonomy` in realizing the virtual reality. Here, we are focusing on the `presence` in constructing a simple supporting system for calligraphy education. We take advantage of the virtual image with reality to use as an educational interface because the virtual image and the real image are overlapped by showing the visual scene in the system. It is general that the unity of the virtual image and the real image has been processed as the stationary pictures by using `See-through HMD` and so on. In this paper, by using half mirror in stead of using the HMD with restraint, we are released from its restrainable sense. The virtual image and the real image are laid to overlap as the mobile pictures. The virtual hand replays the character inputted on the tablet by the excellent calligrapher. A calligraphic trainee is practicing overlapping the virtual hand which is reflected at the half mirror, while the trainee is doing the character on the tablet in the handwriting. The trainee is repeatedly practicing with feedback and is getting better in handwriting the character. It is shown in the good expermental results that the system has a proven effectiveness. 9 refs., 12 figs., 2 tabs.

  8. Collaboration and Dialogue in Virtual Reality

    Science.gov (United States)

    Jensen, Camilla Gyldendahl

    2017-01-01

    "Virtual reality" adds a new dimension to problem-based learning (PBL) environments in the architecture and building construction educations, where a realistic and lifelike presence in a building enables students to assess and discuss how the various solutions interact with each other. Combined with "Building Information…

  9. Visualizing Cumulus Clouds in Virtual Reality

    NARCIS (Netherlands)

    Griffith, E.J.

    2010-01-01

    This thesis focuses on interactively visualizing, and ultimately simulating, cumulus clouds both in virtual reality (VR) and with a standard desktop computer. The cumulus clouds in question are found in data sets generated by Large-Eddy Simulations (LES), which are used to simulate a small section

  10. The Whole World In Your Hands: Using an Interactive Virtual Reality Sandbox for Geospatial Education and Outreach

    Science.gov (United States)

    Clucas, T.; Wirth, G. S.; Broderson, D.

    2014-12-01

    Traditional geospatial education tools such as maps and computer screens don't convey the rich topography present on Earth. Translating lines on a contour lines on a topo map to relief in a landscape can be a challenging concept to convey.A partnership between Alaska EPSCoR and the Geographic Information Network of Alaska has successfully constructed an Interactive Virtual Reality Sandbox, an education tool that in real-time projects and updates topographic contours on the surface of a sandbox. The sandbox has been successfully deployed at public science events as well as professional geospatial and geodesy conferences. Landscape change, precipitation, and evaporation can all be modeled, much to the delight of our enthusiasts, who range in age from 3 to 90. Visually, as well as haptically, demonstrating the effects of events (such as dragging a hand through the sand) on a landscape, as well as the intuitive realization of meaning of topographic contour lines, has proven to be engaging.

  11. Virtual reality at work

    Science.gov (United States)

    Brooks, Frederick P., Jr.

    1991-01-01

    The utility of virtual reality computer graphics in telepresence applications is not hard to grasp and promises to be great. When the virtual world is entirely synthetic, as opposed to real but remote, the utility is harder to establish. Vehicle simulators for aircraft, vessels, and motor vehicles are proving their worth every day. Entertainment applications such as Disney World's StarTours are technologically elegant, good fun, and economically viable. Nevertheless, some of us have no real desire to spend our lifework serving the entertainment craze of our sick culture; we want to see this exciting technology put to work in medicine and science. The topics covered include the following: testing a force display for scientific visualization -- molecular docking; and testing a head-mounted display for scientific and medical visualization.

  12. Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review.

    Science.gov (United States)

    Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M

    2015-08-01

    Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation settings over the last ten years. The primary objective of this review was to determine the effectiveness of virtual reality on upper limb function and activity after stroke. The impact on secondary outcomes including gait, cognitive function and activities of daily living was also assessed. Randomized and quasi-randomized controlled trials comparing virtual reality with an alternative intervention or no intervention were eligible to be included in the review. The authors searched a number of electronic databases including: the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, clinical trial registers, reference lists, Dissertation Abstracts and contacted key researchers in the field. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. A total of 37 randomized or quasi randomized controlled trials with a total of 1019 participants were included in the review. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardized mean difference [SMD] 0.28, 95% confidence intervals [CI] 0.08 to 0.49) based on 12 studies and significantly more effective than no therapy in improving upper limber function (SMD 0.44 [95% CI 0.15 to 0.73]) based on nine studies. The use of virtual reality also significantly improved activities of daily living function when compared to more conventional therapy approaches (SMD 0.43 [95% CI 0.18 to 0.69]) based on eight studies. While there are a large number of studies assessing the efficacy of virtual reality they tend to be small and many are at risk of bias. While there is evidence to support the use of virtual reality intervention as part of upper limb training programs, more research is required to determine whether it

  13. Advances in Robotics and Virtual Reality

    CERN Document Server

    Hassanien, Aboul

    2012-01-01

    A beyond human knowledge and reach, robotics is strongly involved in tackling challenges of new emerging multidisciplinary fields. Together with humans, robots are busy exploring and working on the new generation of ideas and problems whose solution is otherwise impossible to find. The future is near when robots will sense, smell and touch people and their lives. Behind this practical aspect of human-robotics, there is a half a century spanned robotics research, which transformed robotics into a modern science. The Advances in Robotics and Virtual Reality is a compilation of emerging application areas of robotics. The book covers robotics role in medicine, space exploration and also explains the role of virtual reality as a non-destructive test bed which constitutes a premise of further advances towards new challenges in robotics. This book, edited by two famous scientists with the support of an outstanding team of fifteen authors, is a well suited reference for robotics researchers and scholars from related ...

  14. Visualization framework for CAVE virtual reality systems

    OpenAIRE

    Kageyama, Akira; Tomiyama, Asako

    2016-01-01

    We have developed a software framework for scientific visualization in immersive-type, room-sized virtual reality (VR) systems, or Cave automatic virtual environment (CAVEs). This program, called Multiverse, allows users to select and invoke visualization programs without leaving CAVE’s VR space. Multiverse is a kind of immersive “desktop environment” for users, with a three-dimensional graphical user interface. For application developers, Multiverse is a software framework with useful class ...

  15. Learning design thinking online : studying students' learning experience in shared virtual reality

    OpenAIRE

    Lau, Kung Wong

    2010-01-01

    Learning Design Thinking Online: Studying Students' Learning Experience in Shared Virtual Reality My study attempts to deepen understanding about the learning experiences of design students in undertaking design-thinking exercises in a shared virtual reality. This study has identified the areas of an appropriate pedagogy for E-Learning and the use of a shared virtual environment for students in tertiary design education. Specific questions arising ji"Om this research are: (1...

  16. Virtual Reality Learning Activities for Multimedia Students to Enhance Spatial Ability

    Directory of Open Access Journals (Sweden)

    Rafael Molina-Carmona

    2018-04-01

    Full Text Available Virtual Reality is an incipient technology that is proving very useful for training different skills. Our hypothesis is that it is possible to design virtual reality learning activities that can help students to develop their spatial ability. To prove the hypothesis, we have conducted an experiment consisting of training the students using an on-purpose learning activity based on a virtual reality application and assessing the possible improvement of the students’ spatial ability through a widely accepted spatial visualization test. The learning activity consists of a virtual environment where some simple polyhedral shapes are shown and manipulated by moving, rotating and scaling them. The students participating in the experiment are divided into a control and an experimental group, carrying out the same learning activity with the only difference of the device used for the interaction: a traditional computer with screen, keyboard and mouse for the control group, and virtual reality goggles with a smartphone for the experimental group. To assess the experience, all the students have completed a spatial visualization test twice: just before performing the activities and four weeks later, once all the activities were performed. Specifically, we have used the well-known and widely used Purdue Spatial Visualization Test—Rotation (PSVT-R, designed to test rotational visualization ability. The results of the test show that there is an improvement in the test results for both groups, but the improvement is significantly higher in the case of the experimental group. The conclusion is that the virtual reality learning activities have shown to improve the spatial ability of the experimental group.

  17. Two-photon calcium imaging in mice navigating a virtual reality environment.

    Science.gov (United States)

    Leinweber, Marcus; Zmarz, Pawel; Buchmann, Peter; Argast, Paul; Hübener, Mark; Bonhoeffer, Tobias; Keller, Georg B

    2014-02-20

    In recent years, two-photon imaging has become an invaluable tool in neuroscience, as it allows for chronic measurement of the activity of genetically identified cells during behavior(1-6). Here we describe methods to perform two-photon imaging in mouse cortex while the animal navigates a virtual reality environment. We focus on the aspects of the experimental procedures that are key to imaging in a behaving animal in a brightly lit virtual environment. The key problems that arise in this experimental setup that we here address are: minimizing brain motion related artifacts, minimizing light leak from the virtual reality projection system, and minimizing laser induced tissue damage. We also provide sample software to control the virtual reality environment and to do pupil tracking. With these procedures and resources it should be possible to convert a conventional two-photon microscope for use in behaving mice.

  18. Generating Contextual Descriptions of Virtual Reality (VR) Spaces

    Science.gov (United States)

    Olson, D. M.; Zaman, C. H.; Sutherland, A.

    2017-12-01

    Virtual reality holds great potential for science communication, education, and research. However, interfaces for manipulating data and environments in virtual worlds are limited and idiosyncratic. Furthermore, speech and vision are the primary modalities by which humans collect information about the world, but the linking of visual and natural language domains is a relatively new pursuit in computer vision. Machine learning techniques have been shown to be effective at image and speech classification, as well as at describing images with language (Karpathy 2016), but have not yet been used to describe potential actions. We propose a technique for creating a library of possible context-specific actions associated with 3D objects in immersive virtual worlds based on a novel dataset generated natively in virtual reality containing speech, image, gaze, and acceleration data. We will discuss the design and execution of a user study in virtual reality that enabled the collection and the development of this dataset. We will also discuss the development of a hybrid machine learning algorithm linking vision data with environmental affordances in natural language. Our findings demonstrate that it is possible to develop a model which can generate interpretable verbal descriptions of possible actions associated with recognized 3D objects within immersive VR environments. This suggests promising applications for more intuitive user interfaces through voice interaction within 3D environments. It also demonstrates the potential to apply vast bodies of embodied and semantic knowledge to enrich user interaction within VR environments. This technology would allow for applications such as expert knowledge annotation of 3D environments, complex verbal data querying and object manipulation in virtual spaces, and computer-generated, dynamic 3D object affordances and functionality during simulations.

  19. A Discussion of Virtual Reality As a New Tool for Training Healthcare Professionals

    Directory of Open Access Journals (Sweden)

    Caroline Fertleman

    2018-02-01

    Full Text Available BackgroundVirtual reality technology is an exciting and emerging field with vast applications. Our study sets out the viewpoint that virtual reality software could be a new focus of direction in the development of training tools in medical education. We carried out a panel discussion at the Center for Behavior Change 3rd Annual Conference, prompted by the study, “The Responses of Medical General Practitioners to Unreasonable Patient Demand for Antibiotics––A Study of Medical Ethics Using Immersive Virtual Reality” (1.MethodsIn Pan et al.’s study, 21 general practitioners (GPs and GP trainees took part in a videoed, 15-min virtual reality scenario involving unnecessary patient demands for antibiotics. This paper was discussed in-depth at the Center for Behavior Change 3rd Annual Conference; the content of this paper is a culmination of findings and feedback from the panel discussion. The experts involved have backgrounds in virtual reality, general practice, medicines management, medical education and training, ethics, and philosophy.ViewpointVirtual reality is an unexplored methodology to instigate positive behavioral change among clinicians where other methods have been unsuccessful, such as antimicrobial stewardship. There are several arguments in favor of use of virtual reality in medical education: it can be used for “difficult to simulate” scenarios and to standardize a scenario, for example, for use in exams. However, there are limitations to its usefulness because of the cost implications and the lack of evidence that it results in demonstrable behavior change.

  20. Considerations on the use of Virtual and Augmented Reality Technologies in Music Education

    DEFF Research Database (Denmark)

    Serafin, Stefania; Adjorlu, Ali; Nilsson, Niels Chr.

    2017-01-01

    Learning to play an instrument is challenging for both children and adults. Adding to this music education in K-12 oftentimes is subject to budget cuts. In this paper, we propose that virtual reality may offer children with an alternative approach to acquiring musical skills. Initially we present...... an overview of the state of the art software and technology for virtual and augmented reality in music, and then we outline a series of considerations on how virtual and augmented reality can help music education....