Sample records for haplorhini

  1. New euprimate postcrania from the early Eocene of Gujarat, India, and the strepsirrhine-haplorhine divergence. (United States)

    Dunn, Rachel H; Rose, Kenneth D; Rana, Rajendra S; Kumar, Kishor; Sahni, Ashok; Smith, Thierry


    The oldest primates of modern aspect (euprimates) appear abruptly on the Holarctic continents during a brief episode of global warming known as the Paleocene-Eocene Thermal Maximum, at the beginning of the Eocene (∼56 Ma). When they first appear in the fossil record, they are already divided into two distinct clades, Adapoidea (basal members of Strepsirrhini, which includes extant lemurs, lorises, and bushbabies) and Omomyidae (basal Haplorhini, which comprises living tarsiers, monkeys, and apes). Both groups have recently been discovered in the early Eocene Cambay Shale Formation of Vastan lignite mine, Gujarat, India, where they are known mainly from teeth and jaws. The Vastan fossils are dated at ∼54.5 Myr based on associated dinoflagellates and isotope stratigraphy. Here, we describe new, exquisitely preserved limb bones of these Indian primates that reveal more primitive postcranial characteristics than have been previously documented for either clade, and differences between them are so minor that in many cases we cannot be certain to which group they belong. Nevertheless, the small distinctions observed in some elements foreshadow postcranial traits that distinguish the groups by the middle Eocene, suggesting that the Vastan primates-though slightly younger than the oldest known euprimates-may represent the most primitive known remnants of the divergence between the two great primate clades. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix.

    Directory of Open Access Journals (Sweden)

    Mark S Springer

    Full Text Available Phylogenetic relationships, divergence times, and patterns of biogeographic descent among primate species are both complex and contentious. Here, we generate a robust molecular phylogeny for 70 primate genera and 367 primate species based on a concatenation of 69 nuclear gene segments and ten mitochondrial gene sequences, most of which were extracted from GenBank. Relaxed clock analyses of divergence times with 14 fossil-calibrated nodes suggest that living Primates last shared a common ancestor 71-63 Ma, and that divergences within both Strepsirrhini and Haplorhini are entirely post-Cretaceous. These results are consistent with the hypothesis that the Cretaceous-Paleogene mass extinction of non-avian dinosaurs played an important role in the diversification of placental mammals. Previous queries into primate historical biogeography have suggested Africa, Asia, Europe, or North America as the ancestral area of crown primates, but were based on methods that were coopted from phylogeny reconstruction. By contrast, we analyzed our molecular phylogeny with two methods that were developed explicitly for ancestral area reconstruction, and find support for the hypothesis that the most recent common ancestor of living Primates resided in Asia. Analyses of primate macroevolutionary dynamics provide support for a diversification rate increase in the late Miocene, possibly in response to elevated global mean temperatures, and are consistent with the fossil record. By contrast, diversification analyses failed to detect evidence for rate-shift changes near the Eocene-Oligocene boundary even though the fossil record provides clear evidence for a major turnover event ("Grande Coupure" at this time. Our results highlight the power and limitations of inferring diversification dynamics from molecular phylogenies, as well as the sensitivity of diversification analyses to different species concepts.

  3. Patterns of astragalar fibular facet orientation in extant and fossil primates and their evolutionary implications. (United States)

    Boyer, Doug M; Seiffert, Erik R


    A laterally sloping fibular facet of the astragalus (=talus) has been proposed as one of few osteological synapomorphies of strepsirrhine primates, but the feature has never been comprehensively quantified. We describe a method for calculating fibular facet orientation on digital models of astragali as the angle between the planes of the fibular facet and the lateral tibial facet. We calculated this value in a sample that includes all major extant primate clades, a diversity of Paleogene primates, and nonprimate euarchontans (n = 304). Results show that previous characterization of a divide between extant haplorhines and strepsirrhines is accurate, with little overlap even when individual data points are considered. Fibular facet orientation is conserved in extant strepsirrhines despite major differences in locomotion and body size, while extant anthropoids are more variable (e.g., low values for catarrhines relative to non-callitrichine platyrrhines). Euprimate outgroups exhibit a mosaic of character states with Cynocephalus having a more obtuse strepsirrhine-like facet and sampled treeshrews and plesiadapiforms having more acute haplorhine-like facets. Surprisingly, the earliest species of the adapiform Cantius have steep haplorhine-like facets as well. We used a Bayesian approach to reconstruct the evolution of fibular facet orientation as a continuous character across a supertree of living and extinct primates. Mean estimates for crown Primatomorpha (97.9°), Primates (99.5°), Haplorhini (98.7°), and Strepsirrhini (108.2°) support the hypothesis that the strepsirrhine condition is derived, while lower values for crown Anthropoidea (92.8°) and Catarrhini (88.9°) are derived in the opposite direction. Copyright © 2013 Wiley Periodicals, Inc.