WorldWideScience

Sample records for haploid genome copies

  1. Dramatic improvement in genome assembly achieved using doubled-haploid genomes.

    Science.gov (United States)

    Zhang, Hong; Tan, Engkong; Suzuki, Yutaka; Hirose, Yusuke; Kinoshita, Shigeharu; Okano, Hideyuki; Kudoh, Jun; Shimizu, Atsushi; Saito, Kazuyoshi; Watabe, Shugo; Asakawa, Shuichi

    2014-10-27

    Improvement in de novo assembly of large genomes is still to be desired. Here, we improved draft genome sequence quality by employing doubled-haploid individuals. We sequenced wildtype and doubled-haploid Takifugu rubripes genomes, under the same conditions, using the Illumina platform and assembled contigs with SOAPdenovo2. We observed 5.4-fold and 2.6-fold improvement in the sizes of the N50 contig and scaffold of doubled-haploid individuals, respectively, compared to the wildtype, indicating that the use of a doubled-haploid genome aids in accurate genome analysis.

  2. A Trichosporonales genome tree based on 27 haploid and three evolutionarily conserved 'natural' hybrid genomes.

    Science.gov (United States)

    Takashima, Masako; Sriswasdi, Sira; Manabe, Ri-Ichiroh; Ohkuma, Moriya; Sugita, Takashi; Iwasaki, Wataru

    2018-01-01

    To construct a backbone tree consisting of basidiomycetous yeasts, draft genome sequences from 25 species of Trichosporonales (Tremellomycetes, Basidiomycota) were generated. In addition to the hybrid genomes of Trichosporon coremiiforme and Trichosporon ovoides that we described previously, we identified an interspecies hybrid genome in Cutaneotrichosporon mucoides (formerly Trichosporon mucoides). This hybrid genome had a gene retention rate of ~55%, and its closest haploid relative was Cutaneotrichosporon dermatis. After constructing the C. mucoides subgenomes, we generated a phylogenetic tree using genome data from the 27 haploid species and the subgenome data from the three hybrid genome species. It was a high-quality tree with 100% bootstrap support for all of the branches. The genome-based tree provided superior resolution compared with previous multi-gene analyses. Although our backbone tree does not include all Trichosporonales genera (e.g. Cryptotrichosporon), it will be valuable for future analyses of genome data. Interest in interspecies hybrid fungal genomes has recently increased because they may provide a basis for new technologies. The three Trichosporonales hybrid genomes described in this study are different from well-characterized hybrid genomes (e.g. those of Saccharomyces pastorianus and Saccharomyces bayanus) because these hybridization events probably occurred in the distant evolutionary past. Hence, they will be useful for studying genome stability following hybridization and speciation events. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Selection on Optimal Haploid Value Increases Genetic Gain and Preserves More Genetic Diversity Relative to Genomic Selection

    OpenAIRE

    Daetwyler, Hans D.; Hayden, Matthew J.; Spangenberg, German C.; Hayes, Ben J.

    2015-01-01

    Doubled haploids are routinely created and phenotypically selected in plant breeding programs to accelerate the breeding cycle. Genomic selection, which makes use of both phenotypes and genotypes, has been shown to further improve genetic gain through prediction of performance before or without phenotypic characterization of novel germplasm. Additional opportunities exist to combine genomic prediction methods with the creation of doubled haploids. Here we propose an extension to genomic selec...

  4. Generation of Mouse Haploid Somatic Cells by Small Molecules for Genome-wide Genetic Screening

    Directory of Open Access Journals (Sweden)

    Zheng-Quan He

    2017-08-01

    Full Text Available The recent success of derivation of mammalian haploid embryonic stem cells (haESCs has provided a powerful tool for large-scale functional analysis of the mammalian genome. However, haESCs rapidly become diploidized after differentiation, posing challenges for genetic analysis. Here, we show that the spontaneous diploidization of haESCs happens in metaphase due to mitotic slippage. Diploidization can be suppressed by small-molecule-mediated inhibition of CDK1 and ROCK. Through ROCK inhibition, we can generate haploid somatic cells of all three germ layers from haESCs, including terminally differentiated neurons. Using piggyBac transposon-based insertional mutagenesis, we generated a haploid neural cell library harboring genome-wide mutations for genetic screening. As a proof of concept, we screened for Mn2+-mediated toxicity and identified the Park2 gene. Our findings expand the applications of mouse haploid cell technology to somatic cell types and may also shed light on the mechanisms of ploidy maintenance.

  5. Selection on Optimal Haploid Value Increases Genetic Gain and Preserves More Genetic Diversity Relative to Genomic Selection.

    Science.gov (United States)

    Daetwyler, Hans D; Hayden, Matthew J; Spangenberg, German C; Hayes, Ben J

    2015-08-01

    Doubled haploids are routinely created and phenotypically selected in plant breeding programs to accelerate the breeding cycle. Genomic selection, which makes use of both phenotypes and genotypes, has been shown to further improve genetic gain through prediction of performance before or without phenotypic characterization of novel germplasm. Additional opportunities exist to combine genomic prediction methods with the creation of doubled haploids. Here we propose an extension to genomic selection, optimal haploid value (OHV) selection, which predicts the best doubled haploid that can be produced from a segregating plant. This method focuses selection on the haplotype and optimizes the breeding program toward its end goal of generating an elite fixed line. We rigorously tested OHV selection breeding programs, using computer simulation, and show that it results in up to 0.6 standard deviations more genetic gain than genomic selection. At the same time, OHV selection preserved a substantially greater amount of genetic diversity in the population than genomic selection, which is important to achieve long-term genetic gain in breeding populations. Copyright © 2015 by the Genetics Society of America.

  6. Copy number variation in the bovine genome

    DEFF Research Database (Denmark)

    Fadista, João; Thomsen, Bo; Holm, Lars-Erik

    2010-01-01

    to genetic variation in cattle. Results We designed and used a set of NimbleGen CGH arrays that tile across the assayable portion of the cattle genome with approximately 6.3 million probes, at a median probe spacing of 301 bp. This study reports the highest resolution map of copy number variation...... in the cattle genome, with 304 CNV regions (CNVRs) being identified among the genomes of 20 bovine samples from 4 dairy and beef breeds. The CNVRs identified covered 0.68% (22 Mb) of the genome, and ranged in size from 1.7 to 2,031 kb (median size 16.7 kb). About 20% of the CNVs co-localized with segmental...... duplications, while 30% encompass genes, of which the majority is involved in environmental response. About 10% of the human orthologous of these genes are associated with human disease susceptibility and, hence, may have important phenotypic consequences. Conclusions Together, this analysis provides a useful...

  7. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents

    International Nuclear Information System (INIS)

    Albertsen, H.M.; Abderrahim, H.; Cann, H.M.; Dausset, J.; Le Paslier, D.; Cohen, D.

    1990-01-01

    Prior to constructing a library of yeast artificial chromosomes (YACs) containing very large human DNA fragments, the authors performed a series of preliminary experiments aimed at developing a suitable protocol. They found an inverse relationship between YAC insert size and transformation efficiency. Evidence of occasional rearrangement within YAC inserts was found resulting in clonally stable internal deletions or clonally unstable size variations. A protocol was developed for preparative electrophoretic enrichment of high molecular mass human DNA fragments from partial restriction digests and ligation with the YAC vector in agarose. A YAC library has been constructed from large fragments of DNA from an Epstein-Barr virus-transformed human lymphoblastoid cell line. The library presently contains 50,000 clones, 95% of which are greater than 250 kilobase pairs in size. The mean YAC size of the library, calculated from 132 randomly isolated clones, is 430 kilobase pairs. The library thus contains the equivalent of approximately seven haploid human genomes

  8. Copy Number Variations in Tilapia Genomes.

    Science.gov (United States)

    Li, Bi Jun; Li, Hong Lian; Meng, Zining; Zhang, Yong; Lin, Haoran; Yue, Gen Hua; Xia, Jun Hong

    2017-02-01

    Discovering the nature and pattern of genome variation is fundamental in understanding phenotypic diversity among populations. Although several millions of single nucleotide polymorphisms (SNPs) have been discovered in tilapia, the genome-wide characterization of larger structural variants, such as copy number variation (CNV) regions has not been carried out yet. We conducted a genome-wide scan for CNVs in 47 individuals from three tilapia populations. Based on 254 Gb of high-quality paired-end sequencing reads, we identified 4642 distinct high-confidence CNVs. These CNVs account for 1.9% (12.411 Mb) of the used Nile tilapia reference genome. A total of 1100 predicted CNVs were found overlapping with exon regions of protein genes. Further association analysis based on linear model regression found 85 CNVs ranging between 300 and 27,000 base pairs significantly associated to population types (R 2  > 0.9 and P > 0.001). Our study sheds first insights on genome-wide CNVs in tilapia. These CNVs among and within tilapia populations may have functional effects on phenotypes and specific adaptation to particular environments.

  9. Copy Number Variation in the Horse Genome

    Science.gov (United States)

    Ghosh, Sharmila; Qu, Zhipeng; Das, Pranab J.; Fang, Erica; Juras, Rytis; Cothran, E. Gus; McDonell, Sue; Kenney, Daniel G.; Lear, Teri L.; Adelson, David L.; Chowdhary, Bhanu P.; Raudsepp, Terje

    2014-01-01

    We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs) in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs) across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches. PMID:25340504

  10. Copy number variation in the horse genome.

    Directory of Open Access Journals (Sweden)

    Sharmila Ghosh

    2014-10-01

    Full Text Available We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches.

  11. Genome Sequences of Industrially Relevant Saccharomyces cerevisiae Strain M3707, Isolated from a Sample of Distillers Yeast and Four Haploid Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Clum, Alicia; Aerts, Andrea; Salamov, Asaf; Sharma, Aditi; Zane, Matthew; Barry, Kerrie; Grigoriev, Igor V.; Davison, Brian H.; Lynd, Lee R.; Gilna, Paul; Hau, Heidi; Hogsett, David A.; Froehlich, Allan C.

    2013-04-19

    Saccharomyces cerevisiae strain M3707 was isolated from a sample of commercial distillers yeast, and its genome sequence together with the genome sequences for the four derived haploid strains M3836, M3837, M3838, and M3839 has been determined. Yeasts have potential for consolidated bioprocessing (CBP) for biofuel production, and access to these genome sequences will facilitate their development.

  12. A Perfect Match Genomic Landscape Provides a Unified Framework for the Precise Detection of Variation in Natural and Synthetic Haploid Genomes.

    Science.gov (United States)

    Palacios-Flores, Kim; García-Sotelo, Jair; Castillo, Alejandra; Uribe, Carina; Aguilar, Luis; Morales, Lucía; Gómez-Romero, Laura; Reyes, José; Garciarubio, Alejandro; Boege, Margareta; Dávila, Guillermo

    2018-04-01

    We present a conceptually simple, sensitive, precise, and essentially nonstatistical solution for the analysis of genome variation in haploid organisms. The generation of a Perfect Match Genomic Landscape (PMGL), which computes intergenome identity with single nucleotide resolution, reveals signatures of variation wherever a query genome differs from a reference genome. Such signatures encode the precise location of different types of variants, including single nucleotide variants, deletions, insertions, and amplifications, effectively introducing the concept of a general signature of variation. The precise nature of variants is then resolved through the generation of targeted alignments between specific sets of sequence reads and known regions of the reference genome. Thus, the perfect match logic decouples the identification of the location of variants from the characterization of their nature, providing a unified framework for the detection of genome variation. We assessed the performance of the PMGL strategy via simulation experiments. We determined the variation profiles of natural genomes and of a synthetic chromosome, both in the context of haploid yeast strains. Our approach uncovered variants that have previously escaped detection. Moreover, our strategy is ideally suited for further refining high-quality reference genomes. The source codes for the automated PMGL pipeline have been deposited in a public repository. Copyright © 2018 by the Genetics Society of America.

  13. Genome Architecture and Its Roles in Human Copy Number Variation

    Directory of Open Access Journals (Sweden)

    Lu Chen

    2014-12-01

    Full Text Available Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs, are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.

  14. Strategies for implementing genomic selection in family-based aquaculture breeding schemes: double haploid sib test populations

    Directory of Open Access Journals (Sweden)

    Nirea Kahsay G

    2012-10-01

    Full Text Available Abstract Background Simulation studies have shown that accuracy and genetic gain are increased in genomic selection schemes compared to traditional aquaculture sib-based schemes. In genomic selection, accuracy of selection can be maximized by increasing the precision of the estimation of SNP effects and by maximizing the relationships between test sibs and candidate sibs. Another means of increasing the accuracy of the estimation of SNP effects is to create individuals in the test population with extreme genotypes. The latter approach was studied here with creation of double haploids and use of non-random mating designs. Methods Six alternative breeding schemes were simulated in which the design of the test population was varied: test sibs inherited maternal (Mat, paternal (Pat or a mixture of maternal and paternal (MatPat double haploid genomes or test sibs were obtained by maximum coancestry mating (MaxC, minimum coancestry mating (MinC, or random (RAND mating. Three thousand test sibs and 3000 candidate sibs were genotyped. The test sibs were recorded for a trait that could not be measured on the candidates and were used to estimate SNP effects. Selection was done by truncation on genome-wide estimated breeding values and 100 individuals were selected as parents each generation, equally divided between both sexes. Results Results showed a 7 to 19% increase in selection accuracy and a 6 to 22% increase in genetic gain in the MatPat scheme compared to the RAND scheme. These increases were greater with lower heritabilities. Among all other scenarios, i.e. Mat, Pat, MaxC, and MinC, no substantial differences in selection accuracy and genetic gain were observed. Conclusions In conclusion, a test population designed with a mixture of paternal and maternal double haploids, i.e. the MatPat scheme, increases substantially the accuracy of selection and genetic gain. This will be particularly interesting for traits that cannot be recorded on the

  15. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly.

    Science.gov (United States)

    Schneider, Valerie A; Graves-Lindsay, Tina; Howe, Kerstin; Bouk, Nathan; Chen, Hsiu-Chuan; Kitts, Paul A; Murphy, Terence D; Pruitt, Kim D; Thibaud-Nissen, Françoise; Albracht, Derek; Fulton, Robert S; Kremitzki, Milinn; Magrini, Vincent; Markovic, Chris; McGrath, Sean; Steinberg, Karyn Meltz; Auger, Kate; Chow, William; Collins, Joanna; Harden, Glenn; Hubbard, Timothy; Pelan, Sarah; Simpson, Jared T; Threadgold, Glen; Torrance, James; Wood, Jonathan M; Clarke, Laura; Koren, Sergey; Boitano, Matthew; Peluso, Paul; Li, Heng; Chin, Chen-Shan; Phillippy, Adam M; Durbin, Richard; Wilson, Richard K; Flicek, Paul; Eichler, Evan E; Church, Deanna M

    2017-05-01

    The human reference genome assembly plays a central role in nearly all aspects of today's basic and clinical research. GRCh38 is the first coordinate-changing assembly update since 2009; it reflects the resolution of roughly 1000 issues and encompasses modifications ranging from thousands of single base changes to megabase-scale path reorganizations, gap closures, and localization of previously orphaned sequences. We developed a new approach to sequence generation for targeted base updates and used data from new genome mapping technologies and single haplotype resources to identify and resolve larger assembly issues. For the first time, the reference assembly contains sequence-based representations for the centromeres. We also expanded the number of alternate loci to create a reference that provides a more robust representation of human population variation. We demonstrate that the updates render the reference an improved annotation substrate, alter read alignments in unchanged regions, and impact variant interpretation at clinically relevant loci. We additionally evaluated a collection of new de novo long-read haploid assemblies and conclude that although the new assemblies compare favorably to the reference with respect to continuity, error rate, and gene completeness, the reference still provides the best representation for complex genomic regions and coding sequences. We assert that the collected updates in GRCh38 make the newer assembly a more robust substrate for comprehensive analyses that will promote our understanding of human biology and advance our efforts to improve health. © 2017 Schneider et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Breast tumor copy number aberration phenotypes and genomic instability

    International Nuclear Information System (INIS)

    Fridlyand, Jane; Jain, Ajay N; McLennan, Jane; Ziegler, John; Chin, Koei; Devries, Sandy; Feiler, Heidi; Gray, Joe W; Waldman, Frederic; Pinkel, Daniel; Albertson, Donna G; Snijders, Antoine M; Ylstra, Bauke; Li, Hua; Olshen, Adam; Segraves, Richard; Dairkee, Shanaz; Tokuyasu, Taku; Ljung, Britt Marie

    2006-01-01

    Genomic DNA copy number aberrations are frequent in solid tumors, although the underlying causes of chromosomal instability in tumors remain obscure. Genes likely to have genomic instability phenotypes when mutated (e.g. those involved in mitosis, replication, repair, and telomeres) are rarely mutated in chromosomally unstable sporadic tumors, even though such mutations are associated with some heritable cancer prone syndromes. We applied array comparative genomic hybridization (CGH) to the analysis of breast tumors. The variation in the levels of genomic instability amongst tumors prompted us to investigate whether alterations in processes/genes involved in maintenance and/or manipulation of the genome were associated with particular types of genomic instability. We discriminated three breast tumor subtypes based on genomic DNA copy number alterations. The subtypes varied with respect to level of genomic instability. We find that shorter telomeres and altered telomere related gene expression are associated with amplification, implicating telomere attrition as a promoter of this type of aberration in breast cancer. On the other hand, the numbers of chromosomal alterations, particularly low level changes, are associated with altered expression of genes in other functional classes (mitosis, cell cycle, DNA replication and repair). Further, although loss of function instability phenotypes have been demonstrated for many of the genes in model systems, we observed enhanced expression of most genes in tumors, indicating that over expression, rather than deficiency underlies instability. Many of the genes associated with higher frequency of copy number aberrations are direct targets of E2F, supporting the hypothesis that deregulation of the Rb pathway is a major contributor to chromosomal instability in breast tumors. These observations are consistent with failure to find mutations in sporadic tumors in genes that have roles in maintenance or manipulation of the genome

  17. Mapping copy number variation by population-scale genome sequencing

    DEFF Research Database (Denmark)

    Mills, Ryan E.; Walter, Klaudia; Stewart, Chip

    2011-01-01

    Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is......, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications...

  18. Gene copy number variation throughout the Plasmodium falciparum genome

    Directory of Open Access Journals (Sweden)

    Stewart Lindsay B

    2009-08-01

    Full Text Available Abstract Background Gene copy number variation (CNV is responsible for several important phenotypes of the malaria parasite Plasmodium falciparum, including drug resistance, loss of infected erythrocyte cytoadherence and alteration of receptor usage for erythrocyte invasion. Despite the known effects of CNV, little is known about its extent throughout the genome. Results We performed a whole-genome survey of CNV genes in P. falciparum using comparative genome hybridisation of a diverse set of 16 laboratory culture-adapted isolates to a custom designed high density Affymetrix GeneChip array. Overall, 186 genes showed hybridisation signals consistent with deletion or amplification in one or more isolate. There is a strong association of CNV with gene length, genomic location, and low orthology to genes in other Plasmodium species. Sub-telomeric regions of all chromosomes are strongly associated with CNV genes independent from members of previously described multigene families. However, ~40% of CNV genes were located in more central regions of the chromosomes. Among the previously undescribed CNV genes, several that are of potential phenotypic relevance are identified. Conclusion CNV represents a major form of genetic variation within the P. falciparum genome; the distribution of gene features indicates the involvement of highly non-random mutational and selective processes. Additional studies should be directed at examining CNV in natural parasite populations to extend conclusions to clinical settings.

  19. aCNViewer: Comprehensive genome-wide visualization of absolute copy number and copy neutral variations.

    Directory of Open Access Journals (Sweden)

    Victor Renault

    Full Text Available Copy number variations (CNV include net gains or losses of part or whole chromosomal regions. They differ from copy neutral loss of heterozygosity (cn-LOH events which do not induce any net change in the copy number and are often associated with uniparental disomy. These phenomena have long been reported to be associated with diseases and particularly in cancer. Losses/gains of genomic regions are often correlated with lower/higher gene expression. On the other hand, loss of heterozygosity (LOH and cn-LOH are common events in cancer and may be associated with the loss of a functional tumor suppressor gene. Therefore, identifying recurrent CNV and cn-LOH events can be important as they may highlight common biological components and give insights into the development or mechanisms of a disease. However, no currently available tools allow a comprehensive whole-genome visualization of recurrent CNVs and cn-LOH in groups of samples providing absolute quantification of the aberrations leading to the loss of potentially important information.To overcome these limitations, we developed aCNViewer (Absolute CNV Viewer, a visualization tool for absolute CNVs and cn-LOH across a group of samples. aCNViewer proposes three graphical representations: dendrograms, bi-dimensional heatmaps showing chromosomal regions sharing similar abnormality patterns, and quantitative stacked histograms facilitating the identification of recurrent absolute CNVs and cn-LOH. We illustrated aCNViewer using publically available hepatocellular carcinomas (HCCs Affymetrix SNP Array data (Fig 1A. Regions 1q and 8q present a similar percentage of total gains but significantly different copy number gain categories (p-value of 0.0103 with a Fisher exact test, validated by another cohort of HCCs (p-value of 5.6e-7 (Fig 2B.aCNViewer is implemented in python and R and is available with a GNU GPLv3 license on GitHub https://github.com/FJD-CEPH/aCNViewer and Docker https://hub.docker.com/r/fjdceph/acnviewer/.aCNViewer@cephb.fr.

  20. aCNViewer: Comprehensive genome-wide visualization of absolute copy number and copy neutral variations.

    Science.gov (United States)

    Renault, Victor; Tost, Jörg; Pichon, Fabien; Wang-Renault, Shu-Fang; Letouzé, Eric; Imbeaud, Sandrine; Zucman-Rossi, Jessica; Deleuze, Jean-François; How-Kit, Alexandre

    2017-01-01

    Copy number variations (CNV) include net gains or losses of part or whole chromosomal regions. They differ from copy neutral loss of heterozygosity (cn-LOH) events which do not induce any net change in the copy number and are often associated with uniparental disomy. These phenomena have long been reported to be associated with diseases and particularly in cancer. Losses/gains of genomic regions are often correlated with lower/higher gene expression. On the other hand, loss of heterozygosity (LOH) and cn-LOH are common events in cancer and may be associated with the loss of a functional tumor suppressor gene. Therefore, identifying recurrent CNV and cn-LOH events can be important as they may highlight common biological components and give insights into the development or mechanisms of a disease. However, no currently available tools allow a comprehensive whole-genome visualization of recurrent CNVs and cn-LOH in groups of samples providing absolute quantification of the aberrations leading to the loss of potentially important information. To overcome these limitations, we developed aCNViewer (Absolute CNV Viewer), a visualization tool for absolute CNVs and cn-LOH across a group of samples. aCNViewer proposes three graphical representations: dendrograms, bi-dimensional heatmaps showing chromosomal regions sharing similar abnormality patterns, and quantitative stacked histograms facilitating the identification of recurrent absolute CNVs and cn-LOH. We illustrated aCNViewer using publically available hepatocellular carcinomas (HCCs) Affymetrix SNP Array data (Fig 1A). Regions 1q and 8q present a similar percentage of total gains but significantly different copy number gain categories (p-value of 0.0103 with a Fisher exact test), validated by another cohort of HCCs (p-value of 5.6e-7) (Fig 2B). aCNViewer is implemented in python and R and is available with a GNU GPLv3 license on GitHub https://github.com/FJD-CEPH/aCNViewer and Docker https

  1. Potential Value of Genomic Copy Number Variations in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Chuanjun Zhuo

    2017-06-01

    Full Text Available Schizophrenia is a devastating neuropsychiatric disorder affecting approximately 1% of the global population, and the disease has imposed a considerable burden on families and society. Although, the exact cause of schizophrenia remains unknown, several lines of scientific evidence have revealed that genetic variants are strongly correlated with the development and early onset of the disease. In fact, the heritability among patients suffering from schizophrenia is as high as 80%. Genomic copy number variations (CNVs are one of the main forms of genomic variations, ubiquitously occurring in the human genome. An increasing number of studies have shown that CNVs account for population diversity and genetically related diseases, including schizophrenia. The last decade has witnessed rapid advances in the development of novel genomic technologies, which have led to the identification of schizophrenia-associated CNVs, insight into the roles of the affected genes in their intervals in schizophrenia, and successful manipulation of the target CNVs. In this review, we focus on the recent discoveries of important CNVs that are associated with schizophrenia and outline the potential values that the study of CNVs will bring to the areas of schizophrenia research, diagnosis, and therapy. Furthermore, with the help of the novel genetic tool known as the Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease 9 (CRISPR/Cas9 system, the pathogenic CNVs as genomic defects could be corrected. In conclusion, the recent novel findings of schizophrenia-associated CNVs offer an exciting opportunity for schizophrenia research to decipher the pathological mechanisms underlying the onset and development of schizophrenia as well as to provide potential clinical applications in genetic counseling, diagnosis, and therapy for this complex mental disease.

  2. Effective Normalization for Copy Number Variation Detection from Whole Genome Sequencing

    NARCIS (Netherlands)

    Janevski, A.; Varadan, V.; Kamalakaran, S.; Banerjee, N.; Dimitrova, D.

    2012-01-01

    Background Whole genome sequencing enables a high resolution view ofthe human genome and provides unique insights into genome structureat an unprecedented scale. There have been a number of tools to infer copy number variation in the genome. These tools while validatedalso include a number of

  3. Genomic copy number variations in three Southeast Asian populations.

    Science.gov (United States)

    Ku, Chee-Seng; Pawitan, Yudi; Sim, Xueling; Ong, Rick T H; Seielstad, Mark; Lee, Edmund J D; Teo, Yik-Ying; Chia, Kee-Seng; Salim, Agus

    2010-07-01

    Research on the role of copy number variations (CNVs) in the genetic risk of diseases in Asian populations has been hampered by a relative lack of reference CNV maps for Asian populations outside the East Asians. In this article, we report the population characteristics of CNVs in Chinese, Malay, and Asian Indian populations in Singapore. Using the Illumina Human 1M Beadchip array, we identify 1,174 CNV loci in these populations that corroborated with findings when the same samples were typed on the Affymetrix 6.0 platform. We identify 441 novel loci not previously reported in the Database of Genomic Variations (DGV). We observe a considerable number of loci that span all three populations and were previously unreported, as well as population-specific loci that are quite common in the respective populations. From this we observe the distribution of CNVs in the Asian Indian population to be considerably different from the Chinese and Malay populations. About half of the deletion loci and three-quarters of duplication loci overlap UCSC genes. Tens of loci show population differentiation and overlap with genes previously known to be associated with genetic risk of diseases. One of these loci is the CYP2A6 deletion, previously linked to reduced susceptibility to lung cancer. (c) 2010 Wiley-Liss, Inc.

  4. Incidental copy-number variants identified by routine genome testing in a clinical population

    Science.gov (United States)

    Boone, Philip M.; Soens, Zachry T.; Campbell, Ian M.; Stankiewicz, Pawel; Cheung, Sau Wai; Patel, Ankita; Beaudet, Arthur L.; Plon, Sharon E.; Shaw, Chad A.; McGuire, Amy L.; Lupski, James R.

    2013-01-01

    Purpose Mutational load of susceptibility variants has not been studied on a genomic scale in a clinical population, nor has the potential to identify these mutations as incidental findings during clinical testing been systematically ascertained. Methods Array comparative genomic hybridization, a method for genome-wide detection of DNA copy-number variants, was performed clinically on DNA from 9,005 individuals. Copy-number variants encompassing or disrupting single genes were identified and analyzed for their potential to confer predisposition to dominant, adult-onset disease. Multigene copy-number variants affecting dominant, adult-onset cancer syndrome genes were also assessed. Results In our cohort, 83 single-gene copy-number variants affected 40 unique genes associated with dominant, adult-onset disorders and unrelated to the patients’ referring diagnoses (i.e., incidental) were found. Fourteen of these copy-number variants are likely disease-predisposing, 25 are likely benign, and 44 are of unknown clinical consequence. When incidental copy-number variants spanning up to 20 genes were considered, 27 copy-number variants affected 17 unique genes associated with dominant, adult-onset cancer predisposition. Conclusion Copy-number variants potentially conferring susceptibility to adult-onset disease can be identified as incidental findings during routine genome-wide testing. Some of these mutations may be medically actionable, enabling disease surveillance or prevention; however, most incidentally observed single-gene copy-number variants are currently of unclear significance to the patient. PMID:22878507

  5. Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. | Office of Cancer Genomics

    Science.gov (United States)

    Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent.

  6. Evaluating droplet digital PCR for the quantification of human genomic DNA: converting copies per nanoliter to nanograms nuclear DNA per microliter.

    Science.gov (United States)

    Duewer, David L; Kline, Margaret C; Romsos, Erica L; Toman, Blaza

    2018-05-01

    The highly multiplexed polymerase chain reaction (PCR) assays used for forensic human identification perform best when used with an accurately determined quantity of input DNA. To help ensure the reliable performance of these assays, we are developing a certified reference material (CRM) for calibrating human genomic DNA working standards. To enable sharing information over time and place, CRMs must provide accurate and stable values that are metrologically traceable to a common reference. We have shown that droplet digital PCR (ddPCR) limiting dilution end-point measurements of the concentration of DNA copies per volume of sample can be traceably linked to the International System of Units (SI). Unlike values assigned using conventional relationships between ultraviolet absorbance and DNA mass concentration, entity-based ddPCR measurements are expected to be stable over time. However, the forensic community expects DNA quantity to be stated in terms of mass concentration rather than entity concentration. The transformation can be accomplished given SI-traceable values and uncertainties for the number of nucleotide bases per human haploid genome equivalent (HHGE) and the average molar mass of a nucleotide monomer in the DNA polymer. This report presents the considerations required to establish the metrological traceability of ddPCR-based mass concentration estimates of human nuclear DNA. Graphical abstract The roots of metrological traceability for human nuclear DNA mass concentration results. Values for the factors in blue must be established experimentally. Values for the factors in red have been established from authoritative source materials. HHGE stands for "haploid human genome equivalent"; there are two HHGE per diploid human genome.

  7. Sparse representation and Bayesian detection of genome copy number alterations from microarray data.

    Science.gov (United States)

    Pique-Regi, Roger; Monso-Varona, Jordi; Ortega, Antonio; Seeger, Robert C; Triche, Timothy J; Asgharzadeh, Shahab

    2008-02-01

    Genomic instability in cancer leads to abnormal genome copy number alterations (CNA) that are associated with the development and behavior of tumors. Advances in microarray technology have allowed for greater resolution in detection of DNA copy number changes (amplifications or deletions) across the genome. However, the increase in number of measured signals and accompanying noise from the array probes present a challenge in accurate and fast identification of breakpoints that define CNA. This article proposes a novel detection technique that exploits the use of piece wise constant (PWC) vectors to represent genome copy number and sparse Bayesian learning (SBL) to detect CNA breakpoints. First, a compact linear algebra representation for the genome copy number is developed from normalized probe intensities. Second, SBL is applied and optimized to infer locations where copy number changes occur. Third, a backward elimination (BE) procedure is used to rank the inferred breakpoints; and a cut-off point can be efficiently adjusted in this procedure to control for the false discovery rate (FDR). The performance of our algorithm is evaluated using simulated and real genome datasets and compared to other existing techniques. Our approach achieves the highest accuracy and lowest FDR while improving computational speed by several orders of magnitude. The proposed algorithm has been developed into a free standing software application (GADA, Genome Alteration Detection Algorithm). http://biron.usc.edu/~piquereg/GADA

  8. TEGS-CN: A Statistical Method for Pathway Analysis of Genome-wide Copy Number Profile.

    Science.gov (United States)

    Huang, Yen-Tsung; Hsu, Thomas; Christiani, David C

    2014-01-01

    The effects of copy number alterations make up a significant part of the tumor genome profile, but pathway analyses of these alterations are still not well established. We proposed a novel method to analyze multiple copy numbers of genes within a pathway, termed Test for the Effect of a Gene Set with Copy Number data (TEGS-CN). TEGS-CN was adapted from TEGS, a method that we previously developed for gene expression data using a variance component score test. With additional development, we extend the method to analyze DNA copy number data, accounting for different sizes and thus various numbers of copy number probes in genes. The test statistic follows a mixture of X (2) distributions that can be obtained using permutation with scaled X (2) approximation. We conducted simulation studies to evaluate the size and the power of TEGS-CN and to compare its performance with TEGS. We analyzed a genome-wide copy number data from 264 patients of non-small-cell lung cancer. With the Molecular Signatures Database (MSigDB) pathway database, the genome-wide copy number data can be classified into 1814 biological pathways or gene sets. We investigated associations of the copy number profile of the 1814 gene sets with pack-years of cigarette smoking. Our analysis revealed five pathways with significant P values after Bonferroni adjustment (number data, and causal mechanisms of the five pathways require further study.

  9. Characterization of in vitro haploid and doubled haploid Chrysanthemum morifolium plants via unfertilized ovule culture for phenotypical traits and DNA methylation pattern.

    Directory of Open Access Journals (Sweden)

    Haibin eWang

    2014-12-01

    Full Text Available Chrysanthemum is one of important ornamental species in the world. Its highly heterozygous state complicates molecular analysis, so it is of interest to derive haploid forms. A total of 2,579 non-fertilized chrysanthemum ovules pollinated by Argyranthemum frutescens were cultured in vitro to isolate haploid progeny. One single regenerant emerged from each of three of the 105 calli produced. Chromosome counts and microsatellite fingerprinting showed that only one of the regenerants was a true haploid. Nine doubled haploid derivatives were subsequently generated by colchicine treatment of 80 in vitro cultured haploid nodal segments. Morphological screening showed that the haploid plant was shorter than the doubled haploids, and developed smaller leaves, flowers and stomata. An in vitro pollen germination test showed that few of the haploid's pollen were able to germinate and those which did so were abnormal. Both the haploid and the doubled haploids produced yellow flowers, whereas those of the maternal parental cultivar were mauve. Methylation-sensitive amplification polymorphism (MSAP profiling was further used to detect alterations in cytosine methylation caused by the haploidization and/or the chromosome doubling processes. While 52.2% of the resulting amplified fragments were cytosine methylated in the maternal parent's genome, the corresponding proportions for the haploid's and doubled haploids' genomes were, respectively, 47.0% and 51.7%, demonstrating a reduction in global cytosine methylation caused by haploidization and a partial recovery following chromosome doubling.

  10. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Science.gov (United States)

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  11. Allelic recombination between distinct genomic locations generates copy number diversity in human β-defensins

    Science.gov (United States)

    Bakar, Suhaili Abu; Hollox, Edward J.; Armour, John A. L.

    2009-01-01

    β-Defensins are small secreted antimicrobial and signaling peptides involved in the innate immune response of vertebrates. In humans, a cluster of at least 7 of these genes shows extensive copy number variation, with a diploid copy number commonly ranging between 2 and 7. Using a genetic mapping approach, we show that this cluster is at not 1 but 2 distinct genomic loci ≈5 Mb apart on chromosome band 8p23.1, contradicting the most recent genome assembly. We also demonstrate that the predominant mechanism of change in β-defensin copy number is simple allelic recombination occurring in the interval between the 2 distinct genomic loci for these genes. In 416 meiotic transmissions, we observe 3 events creating a haplotype copy number not found in the parent, equivalent to a germ-line rate of copy number change of ≈0.7% per gamete. This places it among the fastest-changing copy number variants currently known. PMID:19131514

  12. Beta-defensin genomic copy number is not a modifier locus for cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Burgess Juliana

    2005-12-01

    Full Text Available Abstract Human beta-defensin 2 (DEFB4, also known as DEFB2 or hBD-2 is a salt-sensitive antimicrobial protein that is expressed in lung epithelia. Previous work has shown that it is encoded in a cluster of beta-defensin genes at 8p23.1, which varies in copy number between 2 and 12 in different individuals. We determined the copy number of this locus in 355 patients with cystic fibrosis (CF, and tested for correlation between beta-defensin cluster genomic copy number and lung disease associated with CF. No significant association was found.

  13. Genomic Diversity Using Copy Number Variations in Worldwide Chicken Populations

    Directory of Open Access Journals (Sweden)

    Erica Gorla

    2018-06-01

    Full Text Available Recently, many studies in livestock have focused on the identification of Copy Number Variants (CNVs using high-density Single Nucleotide Polymorphism (SNP arrays, but few have focused on studying chicken ecotypes coming from many locations. CNVs are polymorphisms, which may influence phenotype and are an important source of genetic variation in populations. The aim of this study was to explore the genetic difference and structure, using a high density SNP chip in 936 individuals from seven different countries (Brazil, Italy, Egypt, Mexico, Rwanda, Sri Lanka and Uganda. The DNA was genotyped with the Affymetrix Axiom®600k Chicken Genotyping Array and processed with stringent quality controls to obtain 559,201 SNPs in 915 individuals. The Log R Ratio (LRR and the B Allele Frequency of SNPs were used to perform the CNV calling with PennCNV software based on a Hidden Markov Model analysis and the LRR was used to perform CNV detection with SVS Golden Helix software.After filtering, a total of 19,027 CNVs were detected with the SVS software, while 9,065 CNVs were identified with the Penn CNV software. The CNVs were summarized in 7,001 Copy Number Variant Regions (CNVRs and 4,414 CNVRs, using the software BedTool.The consensus analysis across the CNVRs allowed the identification of 2,820 consensus CNVR, of which 1,721 were gain, 637 loss and 462 complex, for a total length of 53 Mb corresponding to the 5 % of the GalGal5 chicken autosomes. Only the consensus CNV regions obtained from both detections were considered for further analysis.The intersection analysis performed between the chicken gene database (Gallus_gallus-5.0 and the 1,927 consensus CNVRs allowed the identification (within or partial overlap of a total of 2,354 unique genes with an official gene ID.  The CNVRs identified here represent the first comprehensive mapping in several worldwide populations, using a high-density SNP chip.

  14. Integrative Genomics Reveals Mechanisms of Copy Number Alterations Responsible for Transcriptional Deregulation in Colorectal Cancer

    Science.gov (United States)

    Camps, Jordi; Nguyen, Quang Tri; Padilla-Nash, Hesed M.; Knutsen, Turid; McNeil, Nicole E.; Wangsa, Danny; Hummon, Amanda B.; Grade, Marian; Ried, Thomas; Difilippantonio, Michael J.

    2016-01-01

    To evaluate the mechanisms and consequences of chromosomal aberrations in colorectal cancer (CRC), we used a combination of spectral karyotyping, array comparative genomic hybridization (aCGH), and array-based global gene expression profiling on 31 primary carcinomas and 15 established cell lines. Importantly, aCGH showed that the genomic profiles of primary tumors are recapitulated in the cell lines. We revealed a preponderance of chromosome breakpoints at sites of copy number variants (CNVs) in the CRC cell lines, a novel mechanism of DNA breakage in cancer. The integration of gene expression and aCGH led to the identification of 157 genes localized within high-level copy number changes whose transcriptional deregulation was significantly affected across all of the samples, thereby suggesting that these genes play a functional role in CRC. Genomic amplification at 8q24 was the most recurrent event and led to the overexpression of MYC and FAM84B. Copy number dependent gene expression resulted in deregulation of known cancer genes such as APC, FGFR2, and ERBB2. The identification of only 36 genes whose localization near a breakpoint could account for their observed deregulated expression demonstrates that the major mechanism for transcriptional deregulation in CRC is genomic copy number changes resulting from chromosomal aberrations. PMID:19691111

  15. Copy-number analysis and inference of subclonal populations in cancer genomes using Sclust.

    Science.gov (United States)

    Cun, Yupeng; Yang, Tsun-Po; Achter, Viktor; Lang, Ulrich; Peifer, Martin

    2018-06-01

    The genomes of cancer cells constantly change during pathogenesis. This evolutionary process can lead to the emergence of drug-resistant mutations in subclonal populations, which can hinder therapeutic intervention in patients. Data derived from massively parallel sequencing can be used to infer these subclonal populations using tumor-specific point mutations. The accurate determination of copy-number changes and tumor impurity is necessary to reliably infer subclonal populations by mutational clustering. This protocol describes how to use Sclust, a copy-number analysis method with a recently developed mutational clustering approach. In a series of simulations and comparisons with alternative methods, we have previously shown that Sclust accurately determines copy-number states and subclonal populations. Performance tests show that the method is computationally efficient, with copy-number analysis and mutational clustering taking Linux/Unix command-line syntax should be able to carry out analyses of subclonal populations.

  16. Insights into the genome structure and copy-number variation of Eimeria tenella

    Directory of Open Access Journals (Sweden)

    Lim Lik-Sin

    2012-08-01

    Full Text Available Abstract Background Eimeria is a genus of parasites in the same phylum (Apicomplexa as human parasites such as Toxoplasma, Cryptosporidium and the malaria parasite Plasmodium. As an apicomplexan whose life-cycle involves a single host, Eimeria is a convenient model for understanding this group of organisms. Although the genomes of the Apicomplexa are diverse, that of Eimeria is unique in being composed of large alternating blocks of sequence with very different characteristics - an arrangement seen in no other organism. This arrangement has impeded efforts to fully sequence the genome of Eimeria, which remains the last of the major apicomplexans to be fully analyzed. In order to increase the value of the genome sequence data and aid in the effort to gain a better understanding of the Eimeria tenella genome, we constructed a whole genome map for the parasite. Results A total of 1245 contigs representing 70.0% of the whole genome assembly sequences (Wellcome Trust Sanger Institute were selected and subjected to marker selection. Subsequently, 2482 HAPPY markers were developed and typed. Of these, 795 were considered as usable markers, and utilized in the construction of a HAPPY map. Markers developed from chromosomally-assigned genes were then integrated into the HAPPY map and this aided the assignment of a number of linkage groups to their respective chromosomes. BAC-end sequences and contigs from whole genome sequencing were also integrated to improve and validate the HAPPY map. This resulted in an integrated HAPPY map consisting of 60 linkage groups that covers approximately half of the estimated 60 Mb genome. Further analysis suggests that the segmental organization first seen in Chromosome 1 is present throughout the genome, with repeat-poor (P regions alternating with repeat-rich (R regions. Evidence of copy-number variation between strains was also uncovered. Conclusions This paper describes the application of a whole genome mapping

  17. Identification of copy number variants defining genomic differences among major human groups.

    Directory of Open Access Journals (Sweden)

    Lluís Armengol

    Full Text Available BACKGROUND: Understanding the genetic contribution to phenotype variation of human groups is necessary to elucidate differences in disease predisposition and response to pharmaceutical treatments in different human populations. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the genome-wide profile of structural variation on pooled samples from the three populations studied in the HapMap project by comparative genome hybridization (CGH in different array platforms. We have identified and experimentally validated 33 genomic loci that show significant copy number differences from one population to the other. Interestingly, we found an enrichment of genes related to environment adaptation (immune response, lipid metabolism and extracellular space within these regions and the study of expression data revealed that more than half of the copy number variants (CNVs translate into gene-expression differences among populations, suggesting that they could have functional consequences. In addition, the identification of single nucleotide polymorphisms (SNPs that are in linkage disequilibrium with the copy number alleles allowed us to detect evidences of population differentiation and recent selection at the nucleotide variation level. CONCLUSIONS: Overall, our results provide a comprehensive view of relevant copy number changes that might play a role in phenotypic differences among major human populations, and generate a list of interesting candidates for future studies.

  18. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing.

    Science.gov (United States)

    Yi, Guoqiang; Qu, Lujiang; Liu, Jianfeng; Yan, Yiyuan; Xu, Guiyun; Yang, Ning

    2014-11-07

    Copy number variation (CNV) is important and widespread in the genome, and is a major cause of disease and phenotypic diversity. Herein, we performed a genome-wide CNV analysis in 12 diversified chicken genomes based on whole genome sequencing. A total of 8,840 CNV regions (CNVRs) covering 98.2 Mb and representing 9.4% of the chicken genome were identified, ranging in size from 1.1 to 268.8 kb with an average of 11.1 kb. Sequencing-based predictions were confirmed at a high validation rate by two independent approaches, including array comparative genomic hybridization (aCGH) and quantitative PCR (qPCR). The Pearson's correlation coefficients between sequencing and aCGH results ranged from 0.435 to 0.755, and qPCR experiments revealed a positive validation rate of 91.71% and a false negative rate of 22.43%. In total, 2,214 (25.0%) predicted CNVRs span 2,216 (36.4%) RefSeq genes associated with specific biological functions. Besides two previously reported copy number variable genes EDN3 and PRLR, we also found some promising genes with potential in phenotypic variation. Two genes, FZD6 and LIMS1, related to disease susceptibility/resistance are covered by CNVRs. The highly duplicated SOCS2 may lead to higher bone mineral density. Entire or partial duplication of some genes like POPDC3 may have great economic importance in poultry breeding. Our results based on extensive genetic diversity provide a more refined chicken CNV map and genome-wide gene copy number estimates, and warrant future CNV association studies for important traits in chickens.

  19. Copy number variation is a fundamental aspect of the placental genome.

    Directory of Open Access Journals (Sweden)

    Roberta L Hannibal

    2014-05-01

    Full Text Available Discovery of lineage-specific somatic copy number variation (CNV in mammals has led to debate over whether CNVs are mutations that propagate disease or whether they are a normal, and even essential, aspect of cell biology. We show that 1,000 N polyploid trophoblast giant cells (TGCs of the mouse placenta contain 47 regions, totaling 138 Megabases, where genomic copies are underrepresented (UR. UR domains originate from a subset of late-replicating heterochromatic regions containing gene deserts and genes involved in cell adhesion and neurogenesis. While lineage-specific CNVs have been identified in mammalian cells, classically in the immune system where V(DJ recombination occurs, we demonstrate that CNVs form during gestation in the placenta by an underreplication mechanism, not by recombination nor deletion. Our results reveal that large scale CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during embryogenesis and are propagated by a mechanism of underreplication.

  20. Whole genome DNA copy number changes identified by high density oligonucleotide arrays

    Directory of Open Access Journals (Sweden)

    Huang Jing

    2004-05-01

    Full Text Available Abstract Changes in DNA copy number are one of the hallmarks of the genetic instability common to most human cancers. Previous micro-array-based methods have been used to identify chromosomal gains and losses; however, they are unable to genotype alleles at the level of single nucleotide polymorphisms (SNPs. Here we describe a novel algorithm that uses a recently developed high-density oligonucleotide array-based SNP genotyping method, whole genome sampling analysis (WGSA, to identify genome-wide chromosomal gains and losses at high resolution. WGSA simultaneously genotypes over 10,000 SNPs by allele-specific hybridisation to perfect match (PM and mismatch (MM probes synthesised on a single array. The copy number algorithm jointly uses PM intensity and discrimination ratios between paired PM and MM intensity values to identify and estimate genetic copy number changes. Values from an experimental sample are compared with SNP-specific distributions derived from a reference set containing over 100 normal individuals to gain statistical power. Genomic regions with statistically significant copy number changes can be identified using both single point analysis and contiguous point analysis of SNP intensities. We identified multiple regions of amplification and deletion using a panel of human breast cancer cell lines. We verified these results using an independent method based on quantitative polymerase chain reaction and found that our approach is both sensitive and specific and can tolerate samples which contain a mixture of both tumour and normal DNA. In addition, by using known allele frequencies from the reference set, statistically significant genomic intervals can be identified containing contiguous stretches of homozygous markers, potentially allowing the detection of regions undergoing loss of heterozygosity (LOH without the need for a matched normal control sample. The coupling of LOH analysis, via SNP genotyping, with copy number

  1. Genome-wide detection of copy number variations among diverse horse breeds by array CGH.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Recent studies have found that copy number variations (CNVs are widespread in human and animal genomes. CNVs are a significant source of genetic variation, and have been shown to be associated with phenotypic diversity. However, the effect of CNVs on genetic variation in horses is not well understood. In the present study, CNVs in 6 different breeds of mare horses, Mongolia horse, Abaga horse, Hequ horse and Kazakh horse (all plateau breeds and Debao pony and Thoroughbred, were determined using aCGH. In total, seven hundred CNVs were identified ranging in size from 6.1 Kb to 0.57 Mb across all autosomes, with an average size of 43.08 Kb and a median size of 15.11 Kb. By merging overlapping CNVs, we found a total of three hundred and fifty-three CNV regions (CNVRs. The length of the CNVRs ranged from 6.1 Kb to 1.45 Mb with average and median sizes of 38.49 Kb and 13.1 Kb. Collectively, 13.59 Mb of copy number variation was identified among the horses investigated and accounted for approximately 0.61% of the horse genome sequence. Five hundred and eighteen annotated genes were affected by CNVs, which corresponded to about 2.26% of all horse genes. Through the gene ontology (GO, genetic pathway analysis and comparison of CNV genes among different breeds, we found evidence that CNVs involving 7 genes may be related to the adaptation to severe environment of these plateau horses. This study is the first report of copy number variations in Chinese horses, which indicates that CNVs are ubiquitous in the horse genome and influence many biological processes of the horse. These results will be helpful not only in mapping the horse whole-genome CNVs, but also to further research for the adaption to the high altitude severe environment for plateau horses.

  2. Genome-wide copy number variation (CNV in patients with autoimmune Addison's disease

    Directory of Open Access Journals (Sweden)

    Brønstad Ingeborg

    2011-08-01

    Full Text Available Abstract Background Addison's disease (AD is caused by an autoimmune destruction of the adrenal cortex. The pathogenesis is multi-factorial, involving genetic components and hitherto unknown environmental factors. The aim of the present study was to investigate if gene dosage in the form of copy number variation (CNV could add to the repertoire of genetic susceptibility to autoimmune AD. Methods A genome-wide study using the Affymetrix GeneChip® Genome-Wide Human SNP Array 6.0 was conducted in 26 patients with AD. CNVs in selected genes were further investigated in a larger material of patients with autoimmune AD (n = 352 and healthy controls (n = 353 by duplex Taqman real-time polymerase chain reaction assays. Results We found that low copy number of UGT2B28 was significantly more frequent in AD patients compared to controls; conversely high copy number of ADAM3A was associated with AD. Conclusions We have identified two novel CNV associations to ADAM3A and UGT2B28 in AD. The mechanism by which this susceptibility is conferred is at present unclear, but may involve steroid inactivation (UGT2B28 and T cell maturation (ADAM3A. Characterization of these proteins may unravel novel information on the pathogenesis of autoimmunity.

  3. Genome-wide copy number variation (CNV) in patients with autoimmune Addison's disease

    Science.gov (United States)

    2011-01-01

    Background Addison's disease (AD) is caused by an autoimmune destruction of the adrenal cortex. The pathogenesis is multi-factorial, involving genetic components and hitherto unknown environmental factors. The aim of the present study was to investigate if gene dosage in the form of copy number variation (CNV) could add to the repertoire of genetic susceptibility to autoimmune AD. Methods A genome-wide study using the Affymetrix GeneChip® Genome-Wide Human SNP Array 6.0 was conducted in 26 patients with AD. CNVs in selected genes were further investigated in a larger material of patients with autoimmune AD (n = 352) and healthy controls (n = 353) by duplex Taqman real-time polymerase chain reaction assays. Results We found that low copy number of UGT2B28 was significantly more frequent in AD patients compared to controls; conversely high copy number of ADAM3A was associated with AD. Conclusions We have identified two novel CNV associations to ADAM3A and UGT2B28 in AD. The mechanism by which this susceptibility is conferred is at present unclear, but may involve steroid inactivation (UGT2B28) and T cell maturation (ADAM3A). Characterization of these proteins may unravel novel information on the pathogenesis of autoimmunity. PMID:21851588

  4. Genome-Wide Association of Copy Number Polymorphisms and Kidney Function.

    Directory of Open Access Journals (Sweden)

    Man Li

    Full Text Available Genome-wide association studies (GWAS using single nucleotide polymorphisms (SNPs have identified more than 50 loci associated with estimated glomerular filtration rate (eGFR, a measure of kidney function. However, significant SNPs account for a small proportion of eGFR variability. Other forms of genetic variation have not been comprehensively evaluated for association with eGFR. In this study, we assess whether changes in germline DNA copy number are associated with GFR estimated from serum creatinine, eGFRcrea. We used hidden Markov models (HMMs to identify copy number polymorphic regions (CNPs from high-throughput SNP arrays for 2,514 African (AA and 8,645 European ancestry (EA participants in the Atherosclerosis Risk in Communities (ARIC study. Separately for the EA and AA cohorts, we used Bayesian Gaussian mixture models to estimate copy number at regions identified by the HMM or previously reported in the HapMap Project. We identified 312 and 464 autosomal CNPs among individuals of EA and AA, respectively. Multivariate models adjusted for SNP-derived covariates of population structure identified one CNP in the EA cohort near genome-wide statistical significance (Bonferroni-adjusted p = 0.067 located on chromosome 5 (876-880kb. Overall, our findings suggest a limited role of CNPs in explaining eGFR variability.

  5. Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA.

    Science.gov (United States)

    Gibbons, Brian; Datta, Parikkhit; Wu, Ying; Chan, Alan; Al Armour, John

    2006-06-30

    Current methods for measurement of copy number do not combine all the desirable qualities of convenience, throughput, economy, accuracy and resolution. In this study, to improve the throughput associated with Multiplex Amplifiable Probe Hybridisation (MAPH) we aimed to develop a modification based on the 3-Dimensional, Flow-Through Microarray Platform from PamGene International. In this new method, electrophoretic analysis of amplified products is replaced with photometric analysis of a probed oligonucleotide array. Copy number analysis of hybridised probes is based on a dual-label approach by comparing the intensity of Cy3-labelled MAPH probes amplified from test samples co-hybridised with similarly amplified Cy5-labelled reference MAPH probes. The key feature of using a hybridisation-based end point with MAPH is that discrimination of amplified probes is based on sequence and not fragment length. In this study we showed that microarray MAPH measurement of PMP22 gene dosage correlates well with PMP22 gene dosage determined by capillary MAPH and that copy number was accurately reported in analyses of DNA from 38 individuals, 12 of which were known to have Charcot-Marie-Tooth disease type 1A (CMT1A). Measurement of microarray-based endpoints for MAPH appears to be of comparable accuracy to electrophoretic methods, and holds the prospect of fully exploiting the potential multiplicity of MAPH. The technology has the potential to simplify copy number assays for genes with a large number of exons, or of expanded sets of probes from dispersed genomic locations.

  6. Genome Wide Distributions and Functional Characterization of Copy Number Variations between Chinese and Western Pigs.

    Directory of Open Access Journals (Sweden)

    Hongyang Wang

    Full Text Available Copy number variations (CNVs refer to large insertions, deletions and duplications in the genomic structure ranging from one thousand to several million bases in size. Since the development of next generation sequencing technology, several methods have been well built for detection of copy number variations with high credibility and accuracy. Evidence has shown that CNV occurring in gene region could lead to phenotypic changes due to the alteration in gene structure and dosage. However, it still remains unexplored whether CNVs underlie the phenotypic differences between Chinese and Western domestic pigs. Based on the read-depth methods, we investigated copy number variations using 49 individuals derived from both Chinese and Western pig breeds. A total of 3,131 copy number variation regions (CNVRs were identified with an average size of 13.4 Kb in all individuals during domestication, harboring 1,363 genes. Among them, 129 and 147 CNVRs were Chinese and Western pig specific, respectively. Gene functional enrichments revealed that these CNVRs contribute to strong disease resistance and high prolificacy in Chinese domestic pigs, but strong muscle tissue development in Western domestic pigs. This finding is strongly consistent with the morphologic characteristics of Chinese and Western pigs, indicating that these group-specific CNVRs might have been preserved by artificial selection for the favored phenotypes during independent domestication of Chinese and Western pigs. In this study, we built high-resolution CNV maps in several domestic pig breeds and discovered the group specific CNVs by comparing Chinese and Western pigs, which could provide new insight into genomic variations during pigs' independent domestication, and facilitate further functional studies of CNV-associated genes.

  7. Genomic copy concentrations of selected waterborne viruses in a slum environment in Kampala, Uganda.

    Science.gov (United States)

    Katukiza, A Y; Temanu, H; Chung, J W; Foppen, J W A; Lens, P N L

    2013-06-01

    The presence of viruses in a slum environment where sanitation is poor is a major concern. However, little is known of their occurrence and genomic copy concentration in the slum environment. The main objective of this study was to determine the genomic copy concentrations of human adenoviruses F and G, Rotavirus (RV), Hepatitis A virus (HAV), Hepatitis E virus (HEV) and human adenovirus species A,C,D,E, and F (HAdV-ACDEF) in Bwaise III, a typical slum in Kampala, Uganda. Forty-one samples from surface water, grey water and ground water were collected from 30 sampling locations. The virus particles were recovered by glass wool filtration with elution using beef extract. DNA and RNA viruses were detected by the real time quantitative polymerase chain reaction (qPCR) and the reverse transcription-qPCR (RT-qPCR), respectively. HAdV-F and G were detected in 70.7% of the samples with concentrations up to 2.65 × 10(1) genomic copies per mL (gc mL(-1)). RV and HAV were detected in 60.9% and 17.1% of the samples, respectively. The maximum concentration of RV was 1.87 × 10(2)gc mL(-1). In addition, 78% of the samples tested positive for the HAdV-ACDEF, but all samples tested negative for HEV. These new data are essential for quantitative microbial risk assessment, and for understanding the effects of environmental pollution in slums.

  8. Characterization of a new high copy Stowaway family MITE, BRAMI-1 in Brassica genome

    Science.gov (United States)

    2013-01-01

    Background Miniature inverted-repeat transposable elements (MITEs) are expected to play important roles in evolution of genes and genome in plants, especially in the highly duplicated plant genomes. Various MITE families and their roles in plants have been characterized. However, there have been fewer studies of MITE families and their potential roles in evolution of the recently triplicated Brassica genome. Results We identified a new MITE family, BRAMI-1, belonging to the Stowaway super-family in the Brassica genome. In silico mapping revealed that 697 members are dispersed throughout the euchromatic regions of the B. rapa pseudo-chromosomes. Among them, 548 members (78.6%) are located in gene-rich regions, less than 3 kb from genes. In addition, we identified 516 and 15 members in the 470 Mb and 15 Mb genomic shotgun sequences currently available for B. oleracea and B. napus, respectively. The resulting estimated copy numbers for the entire genomes were 1440, 1464 and 2490 in B. rapa, B. oleracea and B. napus, respectively. Concurrently, only 70 members of the related Arabidopsis ATTIRTA-1 MITE family were identified in the Arabidopsis genome. Phylogenetic analysis revealed that BRAMI-1 elements proliferated in the Brassica genus after divergence from the Arabidopsis lineage. MITE insertion polymorphism (MIP) was inspected for 50 BRAMI-1 members, revealing high levels of insertion polymorphism between and within species of Brassica that clarify BRAMI-1 activation periods up to the present. Comparative analysis of the 71 genes harbouring the BRAMI-1 elements with their non-insertion paralogs (NIPs) showed that the BRAMI-1 insertions mainly reside in non-coding sequences and that the expression levels of genes with the elements differ from those of their NIPs. Conclusion A Stowaway family MITE, named as BRAMI-1, was gradually amplified and remained present in over than 1400 copies in each of three Brassica species. Overall, 78% of the members were identified in

  9. Global copy number profiling of cancer genomes | Office of Cancer Genomics

    Science.gov (United States)

    In this article, we introduce a robust and efficient strategy for deriving global and allele-specific copy number alternations (CNA) from cancer whole exome sequencing data based on Log R ratios and B-allele frequencies. Applying the approach to the analysis of over 200 skin cancer samples, we demonstrate its utility for discovering distinct CNA events and for deriving ancillary information such as tumor purity. Availability and implementation: https://github.com/xfwang/CLOSE CONTACT: xuefeng.wang@stonybrook.edu or michael.krauthammer@yale.edu. (Publication Abstract)

  10. Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey

    Directory of Open Access Journals (Sweden)

    Varala Kranthi

    2007-05-01

    Full Text Available Abstract Background Extensive computational and database tools are available to mine genomic and genetic databases for model organisms, but little genomic data is available for many species of ecological or agricultural significance, especially those with large genomes. Genome surveys using conventional sequencing techniques are powerful, particularly for detecting sequences present in many copies per genome. However these methods are time-consuming and have potential drawbacks. High throughput 454 sequencing provides an alternative method by which much information can be gained quickly and cheaply from high-coverage surveys of genomic DNA. Results We sequenced 78 million base-pairs of randomly sheared soybean DNA which passed our quality criteria. Computational analysis of the survey sequences provided global information on the abundant repetitive sequences in soybean. The sequence was used to determine the copy number across regions of large genomic clones or contigs and discover higher-order structures within satellite repeats. We have created an annotated, online database of sequences present in multiple copies in the soybean genome. The low bias of pyrosequencing against repeat sequences is demonstrated by the overall composition of the survey data, which matches well with past estimates of repetitive DNA content obtained by DNA re-association kinetics (Cot analysis. Conclusion This approach provides a potential aid to conventional or shotgun genome assembly, by allowing rapid assessment of copy number in any clone or clone-end sequence. In addition, we show that partial sequencing can provide access to partial protein-coding sequences.

  11. Genomic copy number analysis of Chernobyl papillary thyroid carcinoma in the Ukrainian–American Cohort

    Science.gov (United States)

    Selmansberger, Martin; Braselmann, Herbert; Hess, Julia; Bogdanova, Tetiana; Abend, Michael; Tronko, Mykola; Brenner, Alina; Zitzelsberger, Horst; Unger, Kristian

    2015-01-01

    One of the major consequences of the 1986 Chernobyl reactor accident was a dramatic increase in papillary thyroid carcinoma (PTC) incidence, predominantly in patients exposed to the radioiodine fallout at young age. The present study is the first on genomic copy number alterations (CNAs) of PTCs of the Ukrainian–American cohort (UkrAm) generated by array comparative genomic hybridization (aCGH). Unsupervised hierarchical clustering of CNA profiles revealed a significant enrichment of a subgroup of patients with female gender, long latency (>17 years) and negative lymph node status. Further, we identified single CNAs that were significantly associated with latency, gender, radiation dose and BRAF V600E mutation status. Multivariate analysis revealed no interactions but additive effects of parameters gender, latency and dose on CNAs. The previously identified radiation-associated gain of the chromosomal bands 7q11.22-11.23 was present in 29% of cases. Moreover, comparison of our radiation-associated PTC data set with the TCGA data set on sporadic PTCs revealed altered copy numbers of the tumor driver genes NF2 and CHEK2. Further, we integrated the CNA data with transcriptomic data that were available on a subset of the herein analyzed cohort and did not find statistically significant associations between the two molecular layers. However, applying hierarchical clustering on a ‘BRAF-like/RAS-like’ transcriptome signature split the cases into four groups, one of which containing all BRAF-positive cases validating the signature in an independent data set. PMID:26320103

  12. [Analysis of genomic copy number variations in two sisters with primary amenorrhea and hyperandrogenism].

    Science.gov (United States)

    Zhang, Yanliang; Xu, Qiuyue; Cai, Xuemei; Li, Yixun; Song, Guibo; Wang, Juan; Zhang, Rongchen; Dai, Yong; Duan, Yong

    2015-12-01

    To analyze genomic copy number variations (CNVs) in two sisters with primary amenorrhea and hyperandrogenism. G-banding was performed for karyotype analysis. The whole genome of the two sisters were scanned and analyzed by array-based comparative genomic hybridization (array-CGH). The results were confirmed with real-time quantitative PCR (RT-qPCR). No abnormality was found by conventional G-banded chromosome analysis. Array-CGH has identified 11 identical CNVs from the sisters which, however, overlapped with CNVs reported by the Database of Genomic Variants (http://projects.tcag.ca/variation/). Therefore, they are likely to be benign. In addition, a -8.44 Mb 9p11.1-p13.1 duplication (38,561,587-47,002,387 bp, hg18) and a -80.9 kb 4q13.2 deletion (70,183,990-70,264,889 bp, hg18) were also detected in the elder and younger sister, respectively. The relationship between such CNVs and primary amenorrhea and hyperandrogenism was however uncertain. RT-qPCR results were in accordance with array-CGH. Two CNVs were detected in two sisters by array-CGH, for which further studies are needed to clarify their correlation with primary amenorrhea and hyperandrogenism.

  13. Population-genetic nature of copy number variations in the human genome.

    Science.gov (United States)

    Kato, Mamoru; Kawaguchi, Takahisa; Ishikawa, Shumpei; Umeda, Takayoshi; Nakamichi, Reiichiro; Shapero, Michael H; Jones, Keith W; Nakamura, Yusuke; Aburatani, Hiroyuki; Tsunoda, Tatsuhiko

    2010-03-01

    Copy number variations (CNVs) are universal genetic variations, and their association with disease has been increasingly recognized. We designed high-density microarrays for CNVs, and detected 3000-4000 CNVs (4-6% of the genomic sequence) per population that included CNVs previously missed because of smaller sizes and residing in segmental duplications. The patterns of CNVs across individuals were surprisingly simple at the kilo-base scale, suggesting the applicability of a simple genetic analysis for these genetic loci. We utilized the probabilistic theory to determine integer copy numbers of CNVs and employed a recently developed phasing tool to estimate the population frequencies of integer copy number alleles and CNV-SNP haplotypes. The results showed a tendency toward a lower frequency of CNV alleles and that most of our CNVs were explained only by zero-, one- and two-copy alleles. Using the estimated population frequencies, we found several CNV regions with exceptionally high population differentiation. Investigation of CNV-SNP linkage disequilibrium (LD) for 500-900 bi- and multi-allelic CNVs per population revealed that previous conflicting reports on bi-allelic LD were unexpectedly consistent and explained by an LD increase correlated with deletion-allele frequencies. Typically, the bi-allelic LD was lower than SNP-SNP LD, whereas the multi-allelic LD was somewhat stronger than the bi-allelic LD. After further investigation of tag SNPs for CNVs, we conclude that the customary tagging strategy for disease association studies can be applicable for common deletion CNVs, but direct interrogation is needed for other types of CNVs.

  14. Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA

    Directory of Open Access Journals (Sweden)

    Chan Alan

    2006-06-01

    Full Text Available Abstract Background Current methods for measurement of copy number do not combine all the desirable qualities of convenience, throughput, economy, accuracy and resolution. In this study, to improve the throughput associated with Multiplex Amplifiable Probe Hybridisation (MAPH we aimed to develop a modification based on the 3-Dimensional, Flow-Through Microarray Platform from PamGene International. In this new method, electrophoretic analysis of amplified products is replaced with photometric analysis of a probed oligonucleotide array. Copy number analysis of hybridised probes is based on a dual-label approach by comparing the intensity of Cy3-labelled MAPH probes amplified from test samples co-hybridised with similarly amplified Cy5-labelled reference MAPH probes. The key feature of using a hybridisation-based end point with MAPH is that discrimination of amplified probes is based on sequence and not fragment length. Results In this study we showed that microarray MAPH measurement of PMP22 gene dosage correlates well with PMP22 gene dosage determined by capillary MAPH and that copy number was accurately reported in analyses of DNA from 38 individuals, 12 of which were known to have Charcot-Marie-Tooth disease type 1A (CMT1A. Conclusion Measurement of microarray-based endpoints for MAPH appears to be of comparable accuracy to electrophoretic methods, and holds the prospect of fully exploiting the potential multiplicity of MAPH. The technology has the potential to simplify copy number assays for genes with a large number of exons, or of expanded sets of probes from dispersed genomic locations.

  15. An initial comparative map of copy number variations in the goat (Capra hircus genome

    Directory of Open Access Journals (Sweden)

    Casadio Rita

    2010-11-01

    Full Text Available Abstract Background The goat (Capra hircus represents one of the most important farm animal species. It is reared in all continents with an estimated world population of about 800 million of animals. Despite its importance, studies on the goat genome are still in their infancy compared to those in other farm animal species. Comparative mapping between cattle and goat showed only a few rearrangements in agreement with the similarity of chromosome banding. We carried out a cross species cattle-goat array comparative genome hybridization (aCGH experiment in order to identify copy number variations (CNVs in the goat genome analysing animals of different breeds (Saanen, Camosciata delle Alpi, Girgentana, and Murciano-Granadina using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome. Results We identified a total of 161 CNVs (an average of 17.9 CNVs per goat, with the largest number in the Saanen breed and the lowest in the Camosciata delle Alpi goat. By aggregating overlapping CNVs identified in different animals we determined CNV regions (CNVRs: on the whole, we identified 127 CNVRs covering about 11.47 Mb of the virtual goat genome referred to the bovine genome (0.435% of the latter genome. These 127 CNVRs included 86 loss and 41 gain and ranged from about 24 kb to about 1.07 Mb with a mean and median equal to 90,292 bp and 49,530 bp, respectively. To evaluate whether the identified goat CNVRs overlap with those reported in the cattle genome, we compared our results with those obtained in four independent cattle experiments. Overlapping between goat and cattle CNVRs was highly significant (P Conclusions We describe a first map of goat CNVRs. This provides information on a comparative basis with the cattle genome by identifying putative recurrent interspecies CNVs between these two ruminant species. Several goat CNVs affect genes with important biological functions. Further studies are needed to evaluate the

  16. Detecting single DNA copy number variations in complex genomes using one nanogram of starting DNA and BAC-array CGH.

    Science.gov (United States)

    Guillaud-Bataille, Marine; Valent, Alexander; Soularue, Pascal; Perot, Christine; Inda, Maria Mar; Receveur, Aline; Smaïli, Sadek; Roest Crollius, Hugues; Bénard, Jean; Bernheim, Alain; Gidrol, Xavier; Danglot, Gisèle

    2004-07-29

    Comparative genomic hybridization to bacterial artificial chromosome (BAC)-arrays (array-CGH) is a highly efficient technique, allowing the simultaneous measurement of genomic DNA copy number at hundreds or thousands of loci, and the reliable detection of local one-copy-level variations. We report a genome-wide amplification method allowing the same measurement sensitivity, using 1 ng of starting genomic DNA, instead of the classical 1 microg usually necessary. Using a discrete series of DNA fragments, we defined the parameters adapted to the most faithful ligation-mediated PCR amplification and the limits of the technique. The optimized protocol allows a 3000-fold DNA amplification, retaining the quantitative characteristics of the initial genome. Validation of the amplification procedure, using DNA from 10 tumour cell lines hybridized to BAC-arrays of 1500 spots, showed almost perfectly superimposed ratios for the non-amplified and amplified DNAs. Correlation coefficients of 0.96 and 0.99 were observed for regions of low-copy-level variations and all regions, respectively (including in vivo amplified oncogenes). Finally, labelling DNA using two nucleotides bearing the same fluorophore led to a significant increase in reproducibility and to the correct detection of one-copy gain or loss in >90% of the analysed data, even for pseudotriploid tumour genomes.

  17. Exploiting a Reference Genome in Terms of Duplications: The Network of Paralogs and Single Copy Genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Mara Sangiovanni

    2013-12-01

    Full Text Available Arabidopsis thaliana became the model organism for plant studies because of its small diploid genome, rapid lifecycle and short adult size. Its genome was the first among plants to be sequenced, becoming the reference in plant genomics. However, the Arabidopsis genome is characterized by an inherently complex organization, since it has undergone ancient whole genome duplications, followed by gene reduction, diploidization events and extended rearrangements, which relocated and split up the retained portions. These events, together with probable chromosome reductions, dramatically increased the genome complexity, limiting its role as a reference. The identification of paralogs and single copy genes within a highly duplicated genome is a prerequisite to understand its organization and evolution and to improve its exploitation in comparative genomics. This is still controversial, even in the widely studied Arabidopsis genome. This is also due to the lack of a reference bioinformatics pipeline that could exhaustively identify paralogs and singleton genes. We describe here a complete computational strategy to detect both duplicated and single copy genes in a genome, discussing all the methodological issues that may strongly affect the results, their quality and their reliability. This approach was used to analyze the organization of Arabidopsis nuclear protein coding genes, and besides classifying computationally defined paralogs into networks and single copy genes into different classes, it unraveled further intriguing aspects concerning the genome annotation and the gene relationships in this reference plant species. Since our results may be useful for comparative genomics and genome functional analyses, we organized a dedicated web interface to make them accessible to the scientific community.

  18. Assessing genome-wide copy number variation in the Han Chinese population.

    Science.gov (United States)

    Lu, Jianqi; Lou, Haiyi; Fu, Ruiqing; Lu, Dongsheng; Zhang, Feng; Wu, Zhendong; Zhang, Xi; Li, Changhua; Fang, Baijun; Pu, Fangfang; Wei, Jingning; Wei, Qian; Zhang, Chao; Wang, Xiaoji; Lu, Yan; Yan, Shi; Yang, Yajun; Jin, Li; Xu, Shuhua

    2017-10-01

    Copy number variation (CNV) is a valuable source of genetic diversity in the human genome and a well-recognised cause of various genetic diseases. However, CNVs have been considerably under-represented in population-based studies, particularly the Han Chinese which is the largest ethnic group in the world. To build a representative CNV map for the Han Chinese population. We conducted a genome-wide CNV study involving 451 male Han Chinese samples from 11 geographical regions encompassing 28 dialect groups, representing a less-biased panel compared with the currently available data. We detected CNVs by using 4.2M NimbleGen comparative genomic hybridisation array and whole-genome deep sequencing of 51 samples to optimise the filtering conditions in CNV discovery. A comprehensive Han Chinese CNV map was built based on a set of high-quality variants (positive predictive value >0.8, with sizes ranging from 369 bp to 4.16 Mb and a median of 5907 bp). The map consists of 4012 CNV regions (CNVRs), and more than half are novel to the 30 East Asian CNV Project and the 1000 Genomes Project Phase 3. We further identified 81 CNVRs specific to regional groups, which was indicative of the subpopulation structure within the Han Chinese population. Our data are complementary to public data sources, and the CNV map may facilitate in the identification of pathogenic CNVs and further biomedical research studies involving the Han Chinese population. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Haploid rice plants in mutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S [Institute of Radiation Breeding, Ministry of Agriculture and Forestry, Ohmiya, Ibaraki-ken (Japan)

    1970-03-01

    Studies were made on chlorophyll-deficient sectors and diploid-like sectors in haploid rice plants exposed to chronic gamma irradiation, and on germinal mutations in diploid strains derived from the haploid plants. The induction and elimination of somatic mutations in haploid plants and the occurrence of drastic germinal mutations in diploid strains from haploid plants are discussed. (author)

  20. A genomic copy number signature predicts radiation exposure in post-Chernobyl breast cancer.

    Science.gov (United States)

    Wilke, Christina M; Braselmann, Herbert; Hess, Julia; Klymenko, Sergiy V; Chumak, Vadim V; Zakhartseva, Liubov M; Bakhanova, Elena V; Walch, Axel K; Selmansberger, Martin; Samaga, Daniel; Weber, Peter; Schneider, Ludmila; Fend, Falko; Bösmüller, Hans C; Zitzelsberger, Horst; Unger, Kristian

    2018-04-16

    Breast cancer is the second leading cause of cancer death among women worldwide and besides life style, age and genetic risk factors, exposure to ionizing radiation is known to increase the risk for breast cancer. Further, DNA copy number alterations (CNAs), which can result from radiation-induced double-strand breaks, are frequently occurring in breast cancer cells. We set out to identify a signature of CNAs discriminating breast cancers from radiation-exposed and non-exposed female patients. We analyzed resected breast cancer tissues from 68 exposed female Chernobyl clean-up workers and evacuees and 68 matched non-exposed control patients for CNAs by array comparative genomic hybridization analysis (aCGH). Using a stepwise forward-backward selection approach a non-complex CNA signature, that is, less than ten features, was identified in the training data set, which could be subsequently validated in the validation data set (p value < 0.05). The signature consisted of nine copy number regions located on chromosomal bands 7q11.22-11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23-11.21, 1p21.1, 2q35, 2q35, 6p22.2. The signature was independent of any clinical characteristics of the patients. In all, we identified a CNA signature that has the potential to allow identification of radiation-associated breast cancer at the individual level. © 2018 UICC.

  1. Genome-wide analysis of esophageal adenocarcinoma yields specific copy number aberrations that correlate with prognosis.

    Science.gov (United States)

    Frankel, Adam; Armour, Nicola; Nancarrow, Derek; Krause, Lutz; Hayward, Nicholas; Lampe, Guy; Smithers, B Mark; Barbour, Andrew

    2014-04-01

    The incidence of esophageal adenocarcinoma (EAC) has been increasing rapidly for the past 3 decades in Western (Caucasian) populations. Curative treatment is based around esophagectomy, which has a major impact on quality of life. For those suitable for treatment with curative intent, 5-year survival is ∼30%. More accurate prognostic tools are therefore needed, and copy number aberrations (CNAs) may offer the ability to act as prospective biomarkers in this regard. We performed a genome-wide examination of CNAs in 54 samples of EAC using single-nucleotide polymorphism (SNP) arrays. Our aims were to describe frequent regions of CNA, to define driver CNAs, and to identify CNAs that correlated with survival. Regions of frequent amplification included oncogenes such as EGFR, MYC, KLF12, and ERBB2, while frequently deleted regions included tumor suppressor genes such as CDKN2A/B, PTPRD, FHIT, and SMAD4. The genomic identification of significant targets in cancer (GISTIC) algorithm identified 24 regions of gain and 28 regions of loss that were likely to contain driver changes. We discovered 61 genes in five regions that, when stratified by CNA type (gain or loss), correlated with a statistically significant difference in survival. Pathway analysis of the genes residing in both the GISTIC and prognostic regions showed they were significantly enriched for cancer-related networks. Finally, we discovered that copy-neutral loss of heterozygosity is a frequent mechanism of CNA in genes currently targetable by chemotherapy, potentially leading to under-reporting of cases suitable for such treatment. Copyright © 2014 Wiley Periodicals, Inc.

  2. A genome-wide association study of copy number variations with umbilical hernia in swine.

    Science.gov (United States)

    Long, Yi; Su, Ying; Ai, Huashui; Zhang, Zhiyan; Yang, Bin; Ruan, Guorong; Xiao, Shijun; Liao, Xinjun; Ren, Jun; Huang, Lusheng; Ding, Nengshui

    2016-06-01

    Umbilical hernia (UH) is one of the most common congenital defects in pigs, leading to considerable economic loss and serious animal welfare problems. To test whether copy number variations (CNVs) contribute to pig UH, we performed a case-control genome-wide CNV association study on 905 pigs from the Duroc, Landrace and Yorkshire breeds using the Porcine SNP60 BeadChip and penncnv algorithm. We first constructed a genomic map comprising 6193 CNVs that pertain to 737 CNV regions. Then, we identified eight CNVs significantly associated with the risk for UH in the three pig breeds. Six of seven significantly associated CNVs were validated using quantitative real-time PCR. Notably, a rare CNV (CNV14:13030843-13059455) encompassing the NUGGC gene was strongly associated with UH (permutation-corrected P = 0.0015) in Duroc pigs. This CNV occurred exclusively in seven Duroc UH-affected individuals. SNPs surrounding the CNV did not show association signals, indicating that rare CNVs may play an important role in complex pig diseases such as UH. The NUGGC gene has been implicated in human omphalocele and inguinal hernia. Our finding supports that CNVs, including the NUGGC CNV, contribute to the pathogenesis of pig UH. © 2016 Stichting International Foundation for Animal Genetics.

  3. Genome-wide association study identified copy number variants important for appendicular lean mass.

    Science.gov (United States)

    Ran, Shu; Liu, Yong-Jun; Zhang, Lei; Pei, Yufang; Yang, Tie-Lin; Hai, Rong; Han, Ying-Ying; Lin, Yong; Tian, Qing; Deng, Hong-Wen

    2014-01-01

    Skeletal muscle is a major component of the human body. Age-related loss of muscle mass and function contributes to some public health problems such as sarcopenia and osteoporosis. Skeletal muscle, mainly composed of appendicular lean mass (ALM), is a heritable trait. Copy number variation (CNV) is a common type of human genome variant which may play an important role in the etiology of many human diseases. In this study, we performed genome-wide association analyses of CNV for ALM in 2,286 Caucasian subjects. We then replicated the major findings in 1,627 Chinese subjects. Two CNVs, CNV1191 and CNV2580, were detected to be associated with ALM (p = 2.26×10(-2) and 3.34×10(-3), respectively). In the Chinese replication sample, the two CNVs achieved p-values of 3.26×10(-2) and 0.107, respectively. CNV1191 covers a gene, GTPase of the immunity-associated protein family (GIMAP1), which is important for skeletal muscle cell survival/death in humans. CNV2580 is located in the Serine hydrolase-like protein (SERHL) gene, which plays an important role in normal peroxisome function and skeletal muscle growth in response to mechanical stimuli. In summary, our study suggested two novel CNVs and the related genes that may contribute to variation in ALM.

  4. Genome-wide association study identified copy number variants important for appendicular lean mass.

    Directory of Open Access Journals (Sweden)

    Shu Ran

    Full Text Available Skeletal muscle is a major component of the human body. Age-related loss of muscle mass and function contributes to some public health problems such as sarcopenia and osteoporosis. Skeletal muscle, mainly composed of appendicular lean mass (ALM, is a heritable trait. Copy number variation (CNV is a common type of human genome variant which may play an important role in the etiology of many human diseases. In this study, we performed genome-wide association analyses of CNV for ALM in 2,286 Caucasian subjects. We then replicated the major findings in 1,627 Chinese subjects. Two CNVs, CNV1191 and CNV2580, were detected to be associated with ALM (p = 2.26×10(-2 and 3.34×10(-3, respectively. In the Chinese replication sample, the two CNVs achieved p-values of 3.26×10(-2 and 0.107, respectively. CNV1191 covers a gene, GTPase of the immunity-associated protein family (GIMAP1, which is important for skeletal muscle cell survival/death in humans. CNV2580 is located in the Serine hydrolase-like protein (SERHL gene, which plays an important role in normal peroxisome function and skeletal muscle growth in response to mechanical stimuli. In summary, our study suggested two novel CNVs and the related genes that may contribute to variation in ALM.

  5. A quantitative PCR approach for determining the ribosomal DNA copy number in the genome of Agave tequila Weber

    Directory of Open Access Journals (Sweden)

    Jorge Rubio-Piña

    2016-07-01

    Conclusions: Results show that the proposed method a can correctly detect the rDNA copy number, b could be used as species-specific markers and c might help in understanding the genetic diversity, genome organization and evolution of this species.

  6. Molecular cloning and expression of full-length DNA copies of the genomic RNAs of cowpea mosaic virus

    NARCIS (Netherlands)

    Vos, P.

    1987-01-01

    The experiments described in this thesis were designed to unravel various aspects of the mechanism of gene expression of cowpea mosaic virus (CPMV). For this purpose full-length DNA copies of both genomic RNAs of CPMV were constructed. Using powerful invitro

  7. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

    DEFF Research Database (Denmark)

    Marshall, Christian R.; Howrigan, Daniel P.; Merico, Daniele

    2017-01-01

    Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline...

  8. Identification of genomic copy number variations associated with specific clinical features of head and neck cancer.

    Science.gov (United States)

    Zagradišnik, Boris; Krgović, Danijela; Herodež, Špela Stangler; Zagorac, Andreja; Ćižmarević, Bogdan; Vokač, Nadja Kokalj

    2018-01-01

    Copy number variations (CNSs) of large genomic regions are an important mechanism implicated in the development of head and neck cancer, however, for most changes their exact role is not well understood. The aim of this study was to find possible associations between gains/losses of genomic regions and clinically distinct subgroups of head and neck cancer patients. Array comparative genomic hybridization (aCGH) analysis was performed on DNA samples in 64 patients with cancer in oral cavity, oropharynx or hypopharynx. Overlapping genomic regions created from gains and losses were used for statistical analysis. Following regions were overrepresented: in tumors with stage I or II a gain of 2.98 Mb on 6p21.2-p11 and a gain of 7.4 Mb on 8q11.1-q11.23; in tumors with grade I histology a gain of 1.1 Mb on 8q24.13, a loss of a large part of p arm of chromosome 3, a loss of a 1.24 Mb on 6q14.3, and a loss of terminal 32 Mb region of 8p23.3; in cases with affected lymph nodes a gain of 0.75 Mb on 3q24, and a gain of 0.9 Mb on 3q26.32-q26.33; in cases with unaffected lymph nodes a gain of 1.1 Mb on 8q23.3, in patients not treated with surgery a gain of 12.2 Mb on 7q21.3-q22.3 and a gain of 0.33 Mb on 20q11.22. Our study identified several genomic regions of interest which appear to be associated with various clinically distinct subgroups of head and neck cancer. They represent a potentially important source of biomarkers useful for the clinical management of head and neck cancer. In particular, the PIK3CA and AGTR1 genes could be singled out to predict the lymph node involvement.

  9. Whole-genome copy number variation analysis in anophthalmia and microphthalmia.

    Science.gov (United States)

    Schilter, K F; Reis, L M; Schneider, A; Bardakjian, T M; Abdul-Rahman, O; Kozel, B A; Zimmerman, H H; Broeckel, U; Semina, E V

    2013-11-01

    Anophthalmia/microphthalmia (A/M) represent severe developmental ocular malformations. Currently, mutations in known genes explain less than 40% of A/M cases. We performed whole-genome copy number variation analysis in 60 patients affected with isolated or syndromic A/M. Pathogenic deletions of 3q26 (SOX2) were identified in four independent patients with syndromic microphthalmia. Other variants of interest included regions with a known role in human disease (likely pathogenic) as well as novel rearrangements (uncertain significance). A 2.2-Mb duplication of 3q29 in a patient with non-syndromic anophthalmia and an 877-kb duplication of 11p13 (PAX6) and a 1.4-Mb deletion of 17q11.2 (NF1) in two independent probands with syndromic microphthalmia and other ocular defects were identified; while ocular anomalies have been previously associated with 3q29 duplications, PAX6 duplications, and NF1 mutations in some cases, the ocular phenotypes observed here are more severe than previously reported. Three novel regions of possible interest included a 2q14.2 duplication which cosegregated with microphthalmia/microcornea and congenital cataracts in one family, and 2q21 and 15q26 duplications in two additional cases; each of these regions contains genes that are active during vertebrate ocular development. Overall, this study identified causative copy number mutations and regions with a possible role in ocular disease in 17% of A/M cases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance [version 1; referees: 5 approved

    Directory of Open Access Journals (Sweden)

    Marie-Claude N. Laffitte

    2016-09-01

    Full Text Available Leishmania has a plastic genome, and drug pressure can select for gene copy number variation (CNV. CNVs can apply either to whole chromosomes, leading to aneuploidy, or to specific genomic regions. For the latter, the amplification of chromosomal regions occurs at the level of homologous direct or inverted repeated sequences leading to extrachromosomal circular or linear amplified DNAs. This ability of Leishmania to respond to drug pressure by CNVs has led to the development of genomic screens such as Cos-Seq, which has the potential of expediting the discovery of drug targets for novel promising drug candidates.

  11. Determination of beta-defensin genomic copy number in different populations

    DEFF Research Database (Denmark)

    Fode, Peder; Jespersgaard, Cathrine; Hardwick, Robert J

    2011-01-01

    There have been conflicting reports in the literature on association of gene copy number with disease, including CCL3L1 and HIV susceptibility, and ß-defensins and Crohn's disease. Quantification of precise gene copy numbers is important in order to define any association of gene copy number with...

  12. Evaluation of the Cow Rumen Metagenome: Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Sczyrba, Alex

    2011-10-13

    DOE JGI's Alex Sczyrba on "Evaluation of the Cow Rumen Metagenome" and "Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  13. Inference of haplotypic phase and missing genotypes in polyploid organisms and variable copy number genomic regions

    Directory of Open Access Journals (Sweden)

    Balding David J

    2008-12-01

    Full Text Available Abstract Background The power of haplotype-based methods for association studies, identification of regions under selection, and ancestral inference, is well-established for diploid organisms. For polyploids, however, the difficulty of determining phase has limited such approaches. Polyploidy is common in plants and is also observed in animals. Partial polyploidy is sometimes observed in humans (e.g. trisomy 21; Down's syndrome, and it arises more frequently in some human tissues. Local changes in ploidy, known as copy number variations (CNV, arise throughout the genome. Here we present a method, implemented in the software polyHap, for the inference of haplotype phase and missing observations from polyploid genotypes. PolyHap allows each individual to have a different ploidy, but ploidy cannot vary over the genomic region analysed. It employs a hidden Markov model (HMM and a sampling algorithm to infer haplotypes jointly in multiple individuals and to obtain a measure of uncertainty in its inferences. Results In the simulation study, we combine real haplotype data to create artificial diploid, triploid, and tetraploid genotypes, and use these to demonstrate that polyHap performs well, in terms of both switch error rate in recovering phase and imputation error rate for missing genotypes. To our knowledge, there is no comparable software for phasing a large, densely genotyped region of chromosome from triploids and tetraploids, while for diploids we found polyHap to be more accurate than fastPhase. We also compare the results of polyHap to SATlotyper on an experimentally haplotyped tetraploid dataset of 12 SNPs, and show that polyHap is more accurate. Conclusion With the availability of large SNP data in polyploids and CNV regions, we believe that polyHap, our proposed method for inferring haplotypic phase from genotype data, will be useful in enabling researchers analysing such data to exploit the power of haplotype-based analyses.

  14. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes.

    Science.gov (United States)

    Glessner, Joseph T; Wang, Kai; Cai, Guiqing; Korvatska, Olena; Kim, Cecilia E; Wood, Shawn; Zhang, Haitao; Estes, Annette; Brune, Camille W; Bradfield, Jonathan P; Imielinski, Marcin; Frackelton, Edward C; Reichert, Jennifer; Crawford, Emily L; Munson, Jeffrey; Sleiman, Patrick M A; Chiavacci, Rosetta; Annaiah, Kiran; Thomas, Kelly; Hou, Cuiping; Glaberson, Wendy; Flory, James; Otieno, Frederick; Garris, Maria; Soorya, Latha; Klei, Lambertus; Piven, Joseph; Meyer, Kacie J; Anagnostou, Evdokia; Sakurai, Takeshi; Game, Rachel M; Rudd, Danielle S; Zurawiecki, Danielle; McDougle, Christopher J; Davis, Lea K; Miller, Judith; Posey, David J; Michaels, Shana; Kolevzon, Alexander; Silverman, Jeremy M; Bernier, Raphael; Levy, Susan E; Schultz, Robert T; Dawson, Geraldine; Owley, Thomas; McMahon, William M; Wassink, Thomas H; Sweeney, John A; Nurnberger, John I; Coon, Hilary; Sutcliffe, James S; Minshew, Nancy J; Grant, Struan F A; Bucan, Maja; Cook, Edwin H; Buxbaum, Joseph D; Devlin, Bernie; Schellenberg, Gerard D; Hakonarson, Hakon

    2009-05-28

    Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with approximately 550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 x 10(-3)). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 x 10(-3)). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 x 10(-6)). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.

  15. SNP array analysis reveals novel genomic abnormalities including copy neutral loss of heterozygosity in anaplastic oligodendrogliomas.

    Directory of Open Access Journals (Sweden)

    Ahmed Idbaih

    Full Text Available Anaplastic oligodendrogliomas (AOD are rare glial tumors in adults with relative homogeneous clinical, radiological and histological features at the time of diagnosis but dramatically various clinical courses. Studies have identified several molecular abnormalities with clinical or biological relevance to AOD (e.g. t(1;19(q10;p10, IDH1, IDH2, CIC and FUBP1 mutations.To better characterize the clinical and biological behavior of this tumor type, the creation of a national multicentric network, named "Prise en charge des OLigodendrogliomes Anaplasiques (POLA," has been supported by the Institut National du Cancer (InCA. Newly diagnosed and centrally validated AOD patients and their related biological material (tumor and blood samples were prospectively included in the POLA clinical database and tissue bank, respectively.At the molecular level, we have conducted a high-resolution single nucleotide polymorphism array analysis, which included 83 patients. Despite a careful central pathological review, AOD have been found to exhibit heterogeneous genomic features. A total of 82% of the tumors exhibited a 1p/19q-co-deletion, while 18% harbor a distinct chromosome pattern. Novel focal abnormalities, including homozygously deleted, amplified and disrupted regions, have been identified. Recurring copy neutral losses of heterozygosity (CNLOH inducing the modulation of gene expression have also been discovered. CNLOH in the CDKN2A locus was associated with protein silencing in 1/3 of the cases. In addition, FUBP1 homozygous deletion was detected in one case suggesting a putative tumor suppressor role of FUBP1 in AOD.Our study showed that the genomic and pathological analyses of AOD are synergistic in detecting relevant clinical and biological subgroups of AOD.

  16. Rare copy number alterations and copy-neutral loss of heterozygosity revealed in ameloblastomas by high-density whole-genome microarray analysis.

    Science.gov (United States)

    Diniz, Marina Gonçalves; Duarte, Alessandra Pires; Villacis, Rolando A; Guimarães, Bruna V A; Duarte, Luiz Cláudio Pires; Rogatto, Sílvia R; Gomez, Ricardo Santiago; Gomes, Carolina Cavaliéri

    2017-05-01

    Ameloblastoma (unicystic, UA, or multicystic, MA) is a rare tumor associated with bone destruction and facial deformity. Its malignant counterpart is the ameloblastic carcinoma (AC). The BRAFV600E mutation is highly prevalent in all these tumors subtypes and cannot account for their different clinical behaviors. We assessed copy number alterations (CNAs) and copy-neutral loss of heterozygosity (cnLOH) in UA (n = 2), MA (n = 3), and AC (n = 1) using the CytoScan HD Array (Affymetrix) and the BRAFV600E status. RT-qPCR was applied in four selected genes (B4GALT1, BAG1, PKD1L2, and PPP2R5A) covered by rare alterations, also including three MA and four normal oral tissues. Fifty-seven CNAs and cnLOH were observed in the ameloblastomas and six CNAs in the AC. Seven of the CNAs were rare (six in UA and one in MA), four of them encompassing genes (gains of 7q11.21, 1q32.3, and 9p21.1 and loss of 16q23.2). We found positive correlation between rare CNA gene dosage and the expression of B4GALT1, BAG1, PKD1L2, and PPP2R5A. The AC and 1 UA were BRAF wild-type; however, this UA showed rare genomic alterations encompassing genes associated with RAF/MAPK activation. Ameloblastomas show rare CNAs and cnLOH, presenting a specific genomic profile with no overlapping of the rare alterations among UA, MA, and AC. These genomic changes might play a role in tumor evolution and in BRAFV600E-negative tumors. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. A genome-wide copy number variant study of suicidal behavior.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Gross

    Full Text Available Suicide and suicide attempts are complex behaviors that result from the interaction of different factors, including genetic variants that increase the predisposition to suicidal behaviors. Copy number variations (CNVs are deletions or duplications of a segment of DNA usually larger than one kilobase. These structural genetic changes, although quite rare, have been associated with genetic liability to mental disorders, such as autism, schizophrenia, and bipolar disorder. No genome-wide level studies have been published investigating the potential role of CNVs in suicidal behaviors. Based on single-nucleotide polymorphism array data, we followed the Penn-CNV standards to detect CNVs in 1,608 subjects, comprising 475 suicide and suicide attempt cases and 1,133 controls. Although the initial algorithms determined the presence of CNVs on chromosomes 6 and 12 in seven and eight cases, respectively, compared with none of the controls, visual inspection of the raw data did not support this finding. Furthermore we were unable to validate these findings by CNV-specific real-time polymerase chain reaction. Additionally, rare CNV burden analysis did not find an association between the frequency or length of rare CNVs and suicidal behavior in our sample population. Although our findings suggest CNVs do not play an important role in the etiology of suicidal behaviors, they are not inconsistent with the strong evidence from the literature suggesting that other genetic variants account for a portion of the total phenotypic variability in suicidal behavior.

  18. Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains.

    Science.gov (United States)

    van den Broek, M; Bolat, I; Nijkamp, J F; Ramos, E; Luttik, M A H; Koopman, F; Geertman, J M; de Ridder, D; Pronk, J T; Daran, J-M

    2015-09-01

    Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes. Copyright © 2015, van den Broek et al.

  19. Integrative analysis of genome-wide gene copy number changes and gene expression in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Verena Jabs

    Full Text Available Non-small cell lung cancer (NSCLC represents a genomically unstable cancer type with extensive copy number aberrations. The relationship of gene copy number alterations and subsequent mRNA levels has only fragmentarily been described. The aim of this study was to conduct a genome-wide analysis of gene copy number gains and corresponding gene expression levels in a clinically well annotated NSCLC patient cohort (n = 190 and their association with survival. While more than half of all analyzed gene copy number-gene expression pairs showed statistically significant correlations (10,296 of 18,756 genes, high correlations, with a correlation coefficient >0.7, were obtained only in a subset of 301 genes (1.6%, including KRAS, EGFR and MDM2. Higher correlation coefficients were associated with higher copy number and expression levels. Strong correlations were frequently based on few tumors with high copy number gains and correspondingly increased mRNA expression. Among the highly correlating genes, GO groups associated with posttranslational protein modifications were particularly frequent, including ubiquitination and neddylation. In a meta-analysis including 1,779 patients we found that survival associated genes were overrepresented among highly correlating genes (61 of the 301 highly correlating genes, FDR adjusted p<0.05. Among them are the chaperone CCT2, the core complex protein NUP107 and the ubiquitination and neddylation associated protein CAND1. In conclusion, in a comprehensive analysis we described a distinct set of highly correlating genes. These genes were found to be overrepresented among survival-associated genes based on gene expression in a large collection of publicly available datasets.

  20. Genome-wide assessment of the association of rare and common copy number variations to testicular germ cell cancer

    DEFF Research Database (Denmark)

    Edsgard, Stefan Daniel; Dalgaard, Marlene Danner; Weinhold, Nils

    2013-01-01

    Testicular germ cell cancer (TGCC) is one of the most heritable forms of cancer. Previous genome-wide association studies have focused on single nucleotide polymorphisms, largely ignoring the influence of copy number variants (CNVs). Here we present a genome-wide study of CNV on a cohort of 212...... of rare CNVs related to cell migration (false-discovery rate = 0.021, 1.8% of cases and 1.1% of controls). Dysregulation during migration of primordial germ cells has previously been suspected to be a part of TGCC development and this set of multiple rare variants may thereby have a minor contribution...

  1. A genome-wide investigation of copy number variation in patients with sporadic brain arteriovenous malformation.

    Directory of Open Access Journals (Sweden)

    Nasrine Bendjilali

    Full Text Available Brain arteriovenous malformations (BAVM are clusters of abnormal blood vessels, with shunting of blood from the arterial to venous circulation and a high risk of rupture and intracranial hemorrhage. Most BAVMs are sporadic, but also occur in patients with Hereditary Hemorrhagic Telangiectasia, a Mendelian disorder caused by mutations in genes in the transforming growth factor beta (TGFβ signaling pathway.To investigate whether copy number variations (CNVs contribute to risk of sporadic BAVM, we performed a genome-wide association study in 371 sporadic BAVM cases and 563 healthy controls, all Caucasian. Cases and controls were genotyped using the Affymetrix 6.0 array. CNVs were called using the PennCNV and Birdsuite algorithms and analyzed via segment-based and gene-based approaches. Common and rare CNVs were evaluated for association with BAVM.A CNV region on 1p36.13, containing the neuroblastoma breakpoint family, member 1 gene (NBPF1, was significantly enriched with duplications in BAVM cases compared to controls (P = 2.2×10(-9; NBPF1 was also significantly associated with BAVM in gene-based analysis using both PennCNV and Birdsuite. We experimentally validated the 1p36.13 duplication; however, the association did not replicate in an independent cohort of 184 sporadic BAVM cases and 182 controls (OR = 0.81, P = 0.8. Rare CNV analysis did not identify genes significantly associated with BAVM.We did not identify common CNVs associated with sporadic BAVM that replicated in an independent cohort. Replication in larger cohorts is required to elucidate the possible role of common or rare CNVs in BAVM pathogenesis.

  2. Specific genomic regions are differentially affected by copy number alterations across distinct cancer types, in aggregated cytogenetic data.

    Science.gov (United States)

    Kumar, Nitin; Cai, Haoyang; von Mering, Christian; Baudis, Michael

    2012-01-01

    Regional genomic copy number alterations (CNA) are observed in the vast majority of cancers. Besides specifically targeting well-known, canonical oncogenes, CNAs may also play more subtle roles in terms of modulating genetic potential and broad gene expression patterns of developing tumors. Any significant differences in the overall CNA patterns between different cancer types may thus point towards specific biological mechanisms acting in those cancers. In addition, differences among CNA profiles may prove valuable for cancer classifications beyond existing annotation systems. We have analyzed molecular-cytogenetic data from 25579 tumors samples, which were classified into 160 cancer types according to the International Classification of Disease (ICD) coding system. When correcting for differences in the overall CNA frequencies between cancer types, related cancers were often found to cluster together according to similarities in their CNA profiles. Based on a randomization approach, distance measures from the cluster dendrograms were used to identify those specific genomic regions that contributed significantly to this signal. This approach identified 43 non-neutral genomic regions whose propensity for the occurrence of copy number alterations varied with the type of cancer at hand. Only a subset of these identified loci overlapped with previously implied, highly recurrent (hot-spot) cytogenetic imbalance regions. Thus, for many genomic regions, a simple null-hypothesis of independence between cancer type and relative copy number alteration frequency can be rejected. Since a subset of these regions display relatively low overall CNA frequencies, they may point towards second-tier genomic targets that are adaptively relevant but not necessarily essential for cancer development.

  3. Induction of gynogenetic and androgenetic haploid and doubled haploid development in the brown trout (Salmo trutta Linnaeus 1758).

    Science.gov (United States)

    Michalik, O; Dobosz, S; Zalewski, T; Sapota, M; Ocalewicz, K

    2015-04-01

    Gynogenetic and androgenetic brown trout (Salmo trutta Linnaeus 1758) haploids (Hs) and doubled haploids (DHs) were produced in the present research. Haploid development was induced by radiation-induced genetic inactivation of spermatozoa (gynogenesis) or eggs (androgenesis) before insemination. To provide DHs, gynogenetic and androgenetic haploid zygotes were subjected to the high pressure shock to suppress the first mitotic cleavage. Among haploids, gynogenetic embryos were showing lower mortality when compared to the androgenetic embryos; however, most of them die before the first feeding stage. Gynogenetic doubled haploids provided in the course of the brown trout eggs activation performed by homologous and heterologous sperm (rainbow trout) were developing equally showing hatching rates of 14.76 ± 2.4% and 16.14 ± 2.90% and the survival rates at the first feeding stage of 10.48 ± 3.48% and 12.78 ± 2.18%, respectively. Significantly, lower survival rate was observed among androgenetic progenies from the diploid groups with only few specimens that survived to the first feeding stage. Cytogenetic survey showed that among embryos from the diploid variants of the research, only gynogenetic individuals possessed doubled sets of chromosomes. Thus, it is reasonable to assume that radiation employed for the genetic inactivation of the brown trout eggs misaligned mechanism responsible for the cell divisions and might have delayed or even arrested the first mitotic cleavage in the androgenetic brown trout zygotes. Moreover, protocol for the radiation-induced inactivation of the paternal and maternal genome should be adjusted as some of the cytogenetically surveyed gynogenetic and androgenetic embryos exhibited fragments of the irradiated chromosomes. © 2015 Blackwell Verlag GmbH.

  4. Dana-Farber Cancer Institute (DFCI): Computational Correction of Copy-number Effect in CRISPR-Cas9 Essentiality Screens of Cancer Cells | Office of Cancer Genomics

    Science.gov (United States)

    Genome-wide CRISPR-Cas9 screens were performed in 341 cell lines. The results were processed with the CERES algorithm to produce copy-number and guide-efficacy corrected gene knockout effect estimates.

  5. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints

    NARCIS (Netherlands)

    J. Vogt (Julia); K. Bengesser (Kathrin); K.B.M. Claes (Kathleen B.M.); K. Wimmer (Katharina); V.-F. Mautner (Victor-Felix); R. van Minkelen (Rick); E. Legius (Eric); H. Brems (Hilde); M. Upadhyaya (Meena); J. Högel (Josef); C. Lazaro (Conxi); T. Rosenbaum (Thorsten); S. Bammert (Simone); L. Messiaen (Ludwine); D.N. Cooper (David); H. Kehrer-Sawatzki (Hildegard)

    2014-01-01

    textabstractBackground: Genomic disorders are caused by copy number changes that may exhibit recurrent breakpoints processed by nonallelic homologous recombination. However, region-specific disease-associated copy number changes have also been observed which exhibit non-recurrent breakpoints. The

  6. Copy number alterations in small intestinal neuroendocrine tumors determined by array comparative genomic hybridization

    International Nuclear Information System (INIS)

    Hashemi, Jamileh; Fotouhi, Omid; Sulaiman, Luqman; Kjellman, Magnus; Höög, Anders; Zedenius, Jan; Larsson, Catharina

    2013-01-01

    Small intestinal neuroendocrine tumors (SI-NETs) are typically slow-growing tumors that have metastasized already at the time of diagnosis. The purpose of the present study was to further refine and define regions of recurrent copy number (CN) alterations (CNA) in SI-NETs. Genome-wide CNAs was determined by applying array CGH (a-CGH) on SI-NETs including 18 primary tumors and 12 metastases. Quantitative PCR analysis (qPCR) was used to confirm CNAs detected by a-CGH as well as to detect CNAs in an extended panel of SI-NETs. Unsupervised hierarchical clustering was used to detect tumor groups with similar patterns of chromosomal alterations based on recurrent regions of CN loss or gain. The log rank test was used to calculate overall survival. Mann–Whitney U test or Fisher’s exact test were used to evaluate associations between tumor groups and recurrent CNAs or clinical parameters. The most frequent abnormality was loss of chromosome 18 observed in 70% of the cases. CN losses were also frequently found of chromosomes 11 (23%), 16 (20%), and 9 (20%), with regions of recurrent CN loss identified in 11q23.1-qter, 16q12.2-qter, 9pter-p13.2 and 9p13.1-11.2. Gains were most frequently detected in chromosomes 14 (43%), 20 (37%), 4 (27%), and 5 (23%) with recurrent regions of CN gain located to 14q11.2, 14q32.2-32.31, 20pter-p11.21, 20q11.1-11.21, 20q12-qter, 4 and 5. qPCR analysis confirmed most CNAs detected by a-CGH as well as revealed CNAs in an extended panel of SI-NETs. Unsupervised hierarchical clustering of recurrent regions of CNAs revealed two separate tumor groups and 5 chromosomal clusters. Loss of chromosomes 18, 16 and 11 and again of chromosome 20 were found in both tumor groups. Tumor group II was enriched for alterations in chromosome cluster-d, including gain of chromosomes 4, 5, 7, 14 and gain of 20 in chromosome cluster-b. Gain in 20pter-p11.21 was associated with short survival. Statistically significant differences were observed between primary

  7. Single-Cell-Based Platform for Copy Number Variation Profiling through Digital Counting of Amplified Genomic DNA Fragments.

    Science.gov (United States)

    Li, Chunmei; Yu, Zhilong; Fu, Yusi; Pang, Yuhong; Huang, Yanyi

    2017-04-26

    We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.

  8. Comparisons of Copy Number, Genomic Structure, and Conserved Motifs for α-Amylase Genes from Barley, Rice, and Wheat

    Directory of Open Access Journals (Sweden)

    Qisen Zhang

    2017-10-01

    Full Text Available Barley is an important crop for the production of malt and beer. However, crops such as rice and wheat are rarely used for malting. α-amylase is the key enzyme that degrades starch during malting. In this study, we compared the genomic properties, gene copies, and conserved promoter motifs of α-amylase genes in barley, rice, and wheat. In all three crops, α-amylase consists of four subfamilies designated amy1, amy2, amy3, and amy4. In wheat and barley, members of amy1 and amy2 genes are localized on chromosomes 6 and 7, respectively. In rice, members of amy1 genes are found on chromosomes 1 and 2, and amy2 genes on chromosome 6. The barley genome has six amy1 members and three amy2 members. The wheat B genome contains four amy1 members and three amy2 members, while the rice genome has three amy1 members and one amy2 member. The B genome has mostly amy1 and amy2 members among the three wheat genomes. Amy1 promoters from all three crop genomes contain a GA-responsive complex consisting of a GA-responsive element (CAATAAA, pyrimidine box (CCTTTT and TATCCAT/C box. This study has shown that amy1 and amy2 from both wheat and barley have similar genomic properties, including exon/intron structures and GA-responsive elements on promoters, but these differ in rice. Like barley, wheat should have sufficient amy activity to degrade starch completely during malting. Other factors, such as high protein with haze issues and the lack of husk causing Lauting difficulty, may limit the use of wheat for brewing.

  9. GenomeCAT: a versatile tool for the analysis and integrative visualization of DNA copy number variants.

    Science.gov (United States)

    Tebel, Katrin; Boldt, Vivien; Steininger, Anne; Port, Matthias; Ebert, Grit; Ullmann, Reinhard

    2017-01-06

    The analysis of DNA copy number variants (CNV) has increasing impact in the field of genetic diagnostics and research. However, the interpretation of CNV data derived from high resolution array CGH or NGS platforms is complicated by the considerable variability of the human genome. Therefore, tools for multidimensional data analysis and comparison of patient cohorts are needed to assist in the discrimination of clinically relevant CNVs from others. We developed GenomeCAT, a standalone Java application for the analysis and integrative visualization of CNVs. GenomeCAT is composed of three modules dedicated to the inspection of single cases, comparative analysis of multidimensional data and group comparisons aiming at the identification of recurrent aberrations in patients sharing the same phenotype, respectively. Its flexible import options ease the comparative analysis of own results derived from microarray or NGS platforms with data from literature or public depositories. Multidimensional data obtained from different experiment types can be merged into a common data matrix to enable common visualization and analysis. All results are stored in the integrated MySQL database, but can also be exported as tab delimited files for further statistical calculations in external programs. GenomeCAT offers a broad spectrum of visualization and analysis tools that assist in the evaluation of CNVs in the context of other experiment data and annotations. The use of GenomeCAT does not require any specialized computer skills. The various R packages implemented for data analysis are fully integrated into GenomeCATs graphical user interface and the installation process is supported by a wizard. The flexibility in terms of data import and export in combination with the ability to create a common data matrix makes the program also well suited as an interface between genomic data from heterogeneous sources and external software tools. Due to the modular architecture the functionality of

  10. The Number of Genomic Copies at the 16p11.2 Locus Modulates Language, Verbal Memory, and Inhibition.

    Science.gov (United States)

    Hippolyte, Loyse; Maillard, Anne M; Rodriguez-Herreros, Borja; Pain, Aurélie; Martin-Brevet, Sandra; Ferrari, Carina; Conus, Philippe; Macé, Aurélien; Hadjikhani, Nouchine; Metspalu, Andres; Reigo, Anu; Kolk, Anneli; Männik, Katrin; Barker, Mandy; Isidor, Bertrand; Le Caignec, Cédric; Mignot, Cyril; Schneider, Laurence; Mottron, Laurent; Keren, Boris; David, Albert; Doco-Fenzy, Martine; Gérard, Marion; Bernier, Raphael; Goin-Kochel, Robin P; Hanson, Ellen; Green Snyder, LeeAnne; Ramus, Franck; Beckmann, Jacques S; Draganski, Bogdan; Reymond, Alexandre; Jacquemont, Sébastien

    2016-07-15

    Deletions and duplications of the 16p11.2 BP4-BP5 locus are prevalent copy number variations (CNVs), highly associated with autism spectrum disorder and schizophrenia. Beyond language and global cognition, neuropsychological assessments of these two CNVs have not yet been reported. This study investigates the relationship between the number of genomic copies at the 16p11.2 locus and cognitive domains assessed in 62 deletion carriers, 44 duplication carriers, and 71 intrafamilial control subjects. IQ is decreased in deletion and duplication carriers, but we demonstrate contrasting cognitive profiles in these reciprocal CNVs. Deletion carriers present with severe impairments of phonology and of inhibition skills beyond what is expected for their IQ level. In contrast, for verbal memory and phonology, the data may suggest that duplication carriers outperform intrafamilial control subjects with the same IQ level. This finding is reminiscent of special isolated skills as well as contrasting language performance observed in autism spectrum disorder. Some domains, such as visuospatial and working memory, are unaffected by the 16p11.2 locus beyond the effect of decreased IQ. Neuroimaging analyses reveal that measures of inhibition covary with neuroanatomic structures previously identified as sensitive to 16p11.2 CNVs. The simultaneous study of reciprocal CNVs suggests that the 16p11.2 genomic locus modulates specific cognitive skills according to the number of genomic copies. Further research is warranted to replicate these findings and elucidate the molecular mechanisms modulating these cognitive performances. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Production of haploids and doubled haploids in oil palm

    Directory of Open Access Journals (Sweden)

    Croxford Adam E

    2010-10-01

    Full Text Available Abstract Background Oil palm is the world's most productive oil-food crop despite yielding well below its theoretical maximum. This maximum could be approached with the introduction of elite F1 varieties. The development of such elite lines has thus far been prevented by difficulties in generating homozygous parental types for F1 generation. Results Here we present the first high-throughput screen to identify spontaneously-formed haploid (H and doubled haploid (DH palms. We secured over 1,000 Hs and one DH from genetically diverse material and derived further DH/mixoploid palms from Hs using colchicine. We demonstrated viability of pollen from H plants and expect to generate 100% homogeneous F1 seed from intercrosses between DH/mixoploids once they develop female inflorescences. Conclusions This study has generated genetically diverse H/DH palms from which parental clones can be selected in sufficient numbers to enable the commercial-scale breeding of F1 varieties. The anticipated step increase in productivity may help to relieve pressure to extend palm cultivation, and limit further expansion into biodiverse rainforest.

  12. Genome-wide analysis of macrosatellite repeat copy number variation in worldwide populations: Evidence for differences and commonalities in size distributions and size restrictions

    NARCIS (Netherlands)

    M. Schaap (Michiel); R.J.L.F. Lemmers (Richard); R. Maassen (Roel); P.J. van der Vliet (Patrick); L.F. Hoogerheide (Lennart); H.K. van Dijk (Herman); N. Basturk (Nalan); P. de Knijff (Peter); S.M. van der Maarel (Silvère)

    2013-01-01

    textabstractBackground: Macrosatellite repeats (MSRs), usually spanning hundreds of kilobases of genomic DNA, comprise a significant proportion of the human genome. Because of their highly polymorphic nature, MSRs represent an extreme example of copy number variation, but their structure and

  13. Genome-wide analysis of macrosatellite repeat copy number variation in worldwide populations: evidence for differences and commonalities in size distributions and size restrictions

    NARCIS (Netherlands)

    Schaap, M.; Lemmers, R.J.L.F.; Maassen, R.; van der Vliet, P.J.; Hoogerheide, L.F.; van Dijk, H.K.; Basturk, N.; de Knijff, P.; van der Maarel, S.M.

    2013-01-01

    Background: Macrosatellite repeats (MSRs), usually spanning hundreds of kilobases of genomic DNA, comprise a significant proportion of the human genome. Because of their highly polymorphic nature, MSRs represent an extreme example of copy number variation, but their structure and function is largely

  14. In vitro wheat haploid embryo production by wheat x maize cross system under different environmental conditions

    International Nuclear Information System (INIS)

    Khan, M.A.; Ahmad, J.

    2011-01-01

    Haploids are helpful in studies for inter genomic relationship, identifying molecular markers, reducing time period of varietal development and increasing efficiency of breeding program. In case of bread wheat (Triticum aestivum L.), wheat x maize cross system is the most successful system due to its higher efficiency, more haploid embryo production and low genetic specificity. The haploid embryo production is affected by many factors i.e. light, temperature, relative humidity and tiller culture media. A study was carried out comprising 25 genotypes of bread wheat for haploid embryo production using 100 mgL/sup -1/ 2,4-D, 40Gl/sup -1/ Sucrose and 8mlL/sup -1/ Sulphurous acid. Haploid embryo production was observed at various levels of environmental factors i.e. maize pollen collection temperature, time of pollination after tiller emasculation, light intensity and relative humidity during haploid seed formation. Maximum haploid embryo formation recorded was 9.52%. Best temperature observed for pollination was 21-26 degree C, optimum time duration for pollination was 24 hours after emasculation, light intensity was 10,000 Lux and relative humidity was 60-65% at 20-22 degree C. (author)

  15. Genome-wide association study identifies a maternal copy-number deletion in PSG11 enriched among preeclampsia patients

    Directory of Open Access Journals (Sweden)

    Zhao Linlu

    2012-06-01

    Full Text Available Abstract Background Specific genetic contributions for preeclampsia (PE are currently unknown. This genome-wide association study (GWAS aims to identify maternal single nucleotide polymorphisms (SNPs and copy-number variants (CNVs involved in the etiology of PE. Methods A genome-wide scan was performed on 177 PE cases (diagnosed according to National Heart, Lung and Blood Institute guidelines and 116 normotensive controls. White female study subjects from Iowa were genotyped on Affymetrix SNP 6.0 microarrays. CNV calls made using a combination of four detection algorithms (Birdseye, Canary, PennCNV, and QuantiSNP were merged using CNVision and screened with stringent prioritization criteria. Due to limited DNA quantities and the deleterious nature of copy-number deletions, it was decided a priori that only deletions would be selected for assay on the entire case-control dataset using quantitative real-time PCR. Results The top four SNP candidates had an allelic or genotypic p-value between 10-5 and 10-6, however, none surpassed the Bonferroni-corrected significance threshold. Three recurrent rare deletions meeting prioritization criteria detected in multiple cases were selected for targeted genotyping. A locus of particular interest was found showing an enrichment of case deletions in 19q13.31 (5/169 cases and 1/114 controls, which encompasses the PSG11 gene contiguous to a highly plastic genomic region. All algorithm calls for these regions were assay confirmed. Conclusions CNVs may confer risk for PE and represent interesting regions that warrant further investigation. Top SNP candidates identified from the GWAS, although not genome-wide significant, may be useful to inform future studies in PE genetics.

  16. Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis.

    Science.gov (United States)

    Suga, Koushirou; Mark Welch, David B; Tanaka, Yukari; Sakakura, Yoshitaka; Hagiwara, Atsushi

    2008-06-01

    The monogonont rotifer Brachionus plicatilis is an emerging model system for a diverse array of questions in limnological ecosystem dynamics, the evolution of sexual recombination, cryptic speciation, and the phylogeny of basal metazoans. We sequenced the complete mitochondrial genome of B. plicatilis sensu strictu NH1L and found that it is composed of 2 circular chromosomes, designated mtDNA-I (11,153 bp) and mtDNA-II (12,672 bp). Hybridization to DNA isolated from mitochondria demonstrated that mtDNA-I is present at 4 times the copy number of mtDNA-II. The only nucleotide similarity between the 2 chromosomes is a 4.9-kbp region of 99.5% identity including a transfer RNA (tRNA) gene and an extensive noncoding region that contains putative D-loop and control sequence. The mtDNA-I chromosome encodes 4 proteins (ATP6, COB, NAD1, and NAD2), 13 tRNAs, and the large and small subunit ribosomal RNAs; mtDNA-II encodes 8 proteins (COX1-3, NAD3-6, and NAD4L) and 9 tRNAs. Gene order is not conserved between B. plicatilis and its closest relative with a sequenced mitochondrial genome, the acanthocephalan Leptorhynchoides thecatus, or other sequenced mitochondrial genomes. Polymerase chain reaction assays and Southern hybridization to DNA from 18 strains of Brachionus suggest that the 2-chromosome structure has been stable for millions of years. The novel organization of the B. plicatilis mitochondrial genome into 2 nearly equal chromosomes of 4-fold different copy number may provide insight into the evolution of metazoan mitochondria and the phylogenetics of rotifers and other basal animal phyla.

  17. Copy number and loss of heterozygosity detected by SNP array of formalin-fixed tissues using whole-genome amplification.

    Directory of Open Access Journals (Sweden)

    Angela Stokes

    Full Text Available The requirement for large amounts of good quality DNA for whole-genome applications prohibits their use for small, laser capture micro-dissected (LCM, and/or rare clinical samples, which are also often formalin-fixed and paraffin-embedded (FFPE. Whole-genome amplification of DNA from these samples could, potentially, overcome these limitations. However, little is known about the artefacts introduced by amplification of FFPE-derived DNA with regard to genotyping, and subsequent copy number and loss of heterozygosity (LOH analyses. Using a ligation adaptor amplification method, we present data from a total of 22 Affymetrix SNP 6.0 experiments, using matched paired amplified and non-amplified DNA from 10 LCM FFPE normal and dysplastic oral epithelial tissues, and an internal method control. An average of 76.5% of SNPs were called in both matched amplified and non-amplified DNA samples, and concordance was a promising 82.4%. Paired analysis for copy number, LOH, and both combined, showed that copy number changes were reduced in amplified DNA, but were 99.5% concordant when detected, amplifications were the changes most likely to be 'missed', only 30% of non-amplified LOH changes were identified in amplified pairs, and when copy number and LOH are combined ∼50% of gene changes detected in the unamplified DNA were also detected in the amplified DNA and within these changes, 86.5% were concordant for both copy number and LOH status. However, there are also changes introduced as ∼20% of changes in the amplified DNA are not detected in the non-amplified DNA. An integrative network biology approach revealed that changes in amplified DNA of dysplastic oral epithelium localize to topologically critical regions of the human protein-protein interaction network, suggesting their functional implication in the pathobiology of this disease. Taken together, our results support the use of amplification of FFPE-derived DNA, provided sufficient samples are used

  18. The role of epistatic interactions underpinning resistance to parasitic Varroa mites in haploid honey bee (Apis mellifera) drones.

    Science.gov (United States)

    Conlon, Benjamin H; Frey, Eva; Rosenkranz, Peter; Locke, Barbara; Moritz, Robin F A; Routtu, Jarkko

    2018-06-01

    The Red Queen hypothesis predicts that host-parasite coevolutionary dynamics can select for host resistance through increased genetic diversity, recombination and evolutionary rates. However, in haplodiploid organisms such as the honeybee (Apis mellifera), models suggest the selective pressure is weaker than in diploids. Haplodiploid sex determination, found in A. mellifera, can allow deleterious recessive alleles to persist in the population through the diploid sex with negative effects predominantly expressed in the haploid sex. To overcome these negative effects in haploid genomes, epistatic interactions have been hypothesized to play an important role. Here, we use the interaction between A. mellifera and the parasitic mite Varroa destructor to test epistasis in the expression of resistance, through the inhibition of parasite reproduction, in haploid drones. We find novel loci on three chromosomes which explain over 45% of the resistance phenotype. Two of these loci interact only additively, suggesting their expression is independent of each other, but both loci interact epistatically with the third locus. With drone offspring inheriting only one copy of the queen's chromosomes, the drones will only possess one of two queen alleles throughout the years-long lifetime of the honeybee colony. Varroa, in comparison, completes its highly inbred reproductive cycle in a matter of weeks, allowing it to rapidly evolve resistance. Faced with the rapidly evolving Varroa, a diversity of pathways and epistatic interactions for the inhibition of Varroa reproduction could therefore provide a selective advantage to the high levels of recombination seen in A. mellifera. This allows for the remixing of phenotypes despite a fixed queen genotype. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  19. Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    Science.gov (United States)

    Bodilis, Josselin; Nsigue-Meilo, Sandrine; Besaury, Ludovic; Quillet, Laurent

    2012-01-01

    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies. PMID:22545126

  20. Genome-wide screening identifies a KCNIP1 copy number variant as a genetic predictor for atrial fibrillation

    Science.gov (United States)

    Tsai, Chia-Ti; Hsieh, Chia-Shan; Chang, Sheng-Nan; Chuang, Eric Y.; Ueng, Kwo-Chang; Tsai, Chin-Feng; Lin, Tsung-Hsien; Wu, Cho-Kai; Lee, Jen-Kuang; Lin, Lian-Yu; Wang, Yi-Chih; Yu, Chih-Chieh; Lai, Ling-Ping; Tseng, Chuen-Den; Hwang, Juey-Jen; Chiang, Fu-Tien; Lin, Jiunn-Lee

    2016-01-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Previous genome-wide association studies had identified single-nucleotide polymorphisms in several genomic regions to be associated with AF. In human genome, copy number variations (CNVs) are known to contribute to disease susceptibility. Using a genome-wide multistage approach to identify AF susceptibility CNVs, we here show a common 4,470-bp diallelic CNV in the first intron of potassium interacting channel 1 gene (KCNIP1) is strongly associated with AF in Taiwanese populations (odds ratio=2.27 for insertion allele; P=6.23 × 10−24). KCNIP1 insertion is associated with higher KCNIP1 mRNA expression. KCNIP1-encoded protein potassium interacting channel 1 (KCHIP1) is physically associated with potassium Kv channels and modulates atrial transient outward current in cardiac myocytes. Overexpression of KCNIP1 results in inducible AF in zebrafish. In conclusions, a common CNV in KCNIP1 gene is a genetic predictor of AF risk possibly pointing to a functional pathway. PMID:26831368

  1. FISH Oracle: a web server for flexible visualization of DNA copy number data in a genomic context.

    Science.gov (United States)

    Mader, Malte; Simon, Ronald; Steinbiss, Sascha; Kurtz, Stefan

    2011-07-28

    The rapidly growing amount of array CGH data requires improved visualization software supporting the process of identifying candidate cancer genes. Optimally, such software should work across multiple microarray platforms, should be able to cope with data from different sources and should be easy to operate. We have developed a web-based software FISH Oracle to visualize data from multiple array CGH experiments in a genomic context. Its fast visualization engine and advanced web and database technology supports highly interactive use. FISH Oracle comes with a convenient data import mechanism, powerful search options for genomic elements (e.g. gene names or karyobands), quick navigation and zooming into interesting regions, and mechanisms to export the visualization into different high quality formats. These features make the software especially suitable for the needs of life scientists. FISH Oracle offers a fast and easy to use visualization tool for array CGH and SNP array data. It allows for the identification of genomic regions representing minimal common changes based on data from one or more experiments. FISH Oracle will be instrumental to identify candidate onco and tumor suppressor genes based on the frequency and genomic position of DNA copy number changes. The FISH Oracle application and an installed demo web server are available at http://www.zbh.uni-hamburg.de/fishoracle.

  2. Copy number variation identification and analysis of the chicken genome using a 60K SNP BeadChip.

    Science.gov (United States)

    Rao, Y S; Li, J; Zhang, R; Lin, X R; Xu, J G; Xie, L; Xu, Z Q; Wang, L; Gan, J K; Xie, X J; He, J; Zhang, X Q

    2016-08-01

    Copy number variation (CNV) is an important source of genetic variation in organisms and a main factor that affects phenotypic variation. A comprehensive study of chicken CNV can provide valuable information on genetic diversity and facilitate future analyses of associations between CNV and economically important traits in chickens. In the present study, an F2 full-sib chicken population (554 individuals), established from a cross between Xinghua and White Recessive Rock chickens, was used to explore CNV in the chicken genome. Genotyping was performed using a chicken 60K SNP BeadChip. A total of 1,875 CNV were detected with the PennCNV algorithm, and the average number of CNV was 3.42 per individual. The CNV were distributed across 383 independent CNV regions (CNVR) and covered 41 megabases (3.97%) of the chicken genome. Seven CNVR in 108 individuals were validated by quantitative real-time PCR, and 81 of these individuals (75%) also were detected with the PennCNV algorithm. In total, 274 CNVR (71.54%) identified in the current study were previously reported. Of these, 147 (38.38%) were reported in at least 2 studies. Additionally, 109 of the CNVR (28.46%) discovered here are novel. A total of 709 genes within or overlapping with the CNVR was retrieved. Out of the 2,742 quantitative trait loci (QTL) collected in the chicken QTL database, 43 QTL had confidence intervals overlapping with the CNVR, and 32 CNVR encompassed one or more functional genes. The functional genes located in the CNVR are likely to be the QTG that are associated with underlying economic traits. This study considerably expands our insight into the structural variation in the genome of chickens and provides an important resource for genomic variation, especially for genomic structural variation related to economic traits in chickens. © 2016 Poultry Science Association Inc.

  3. A High-Throughput Computational Framework for Identifying Significant Copy Number Aberrations from Array Comparative Genomic Hybridisation Data

    Directory of Open Access Journals (Sweden)

    Ian Roberts

    2012-01-01

    Full Text Available Reliable identification of copy number aberrations (CNA from comparative genomic hybridization data would be improved by the availability of a generalised method for processing large datasets. To this end, we developed swatCGH, a data analysis framework and region detection heuristic for computational grids. swatCGH analyses sequentially displaced (sliding windows of neighbouring probes and applies adaptive thresholds of varying stringency to identify the 10% of each chromosome that contains the most frequently occurring CNAs. We used the method to analyse a published dataset, comparing data preprocessed using four different DNA segmentation algorithms, and two methods for prioritising the detected CNAs. The consolidated list of the most commonly detected aberrations confirmed the value of swatCGH as a simplified high-throughput method for identifying biologically significant CNA regions of interest.

  4. Bayesian Nonparametric Hidden Markov Models with application to the analysis of copy-number-variation in mammalian genomes.

    Science.gov (United States)

    Yau, C; Papaspiliopoulos, O; Roberts, G O; Holmes, C

    2011-01-01

    We consider the development of Bayesian Nonparametric methods for product partition models such as Hidden Markov Models and change point models. Our approach uses a Mixture of Dirichlet Process (MDP) model for the unknown sampling distribution (likelihood) for the observations arising in each state and a computationally efficient data augmentation scheme to aid inference. The method uses novel MCMC methodology which combines recent retrospective sampling methods with the use of slice sampler variables. The methodology is computationally efficient, both in terms of MCMC mixing properties, and robustness to the length of the time series being investigated. Moreover, the method is easy to implement requiring little or no user-interaction. We apply our methodology to the analysis of genomic copy number variation.

  5. Genome-Wide DNA Copy Number Analysis of Acute Lymphoblastic Leukemia Identifies New Genetic Markers Associated with Clinical Outcome.

    Directory of Open Access Journals (Sweden)

    Maribel Forero-Castro

    Full Text Available Identifying additional genetic alterations associated with poor prognosis in acute lymphoblastic leukemia (ALL is still a challenge.To characterize the presence of additional DNA copy number alterations (CNAs in children and adults with ALL by whole-genome oligonucleotide array (aCGH analysis, and to identify their associations with clinical features and outcome. Array-CGH was carried out in 265 newly diagnosed ALLs (142 children and 123 adults. The NimbleGen CGH 12x135K array (Roche was used to analyze genetic gains and losses. CNAs were analyzed with GISTIC and aCGHweb software. Clinical and biological variables were analyzed. Three of the patients showed chromothripsis (cth6, cth14q and cth15q. CNAs were associated with age, phenotype, genetic subtype and overall survival (OS. In the whole cohort of children, the losses on 14q32.33 (p = 0.019 and 15q13.2 (p = 0.04 were related to shorter OS. In the group of children without good- or poor-risk cytogenetics, the gain on 1p36.11 was a prognostic marker independently associated with shorter OS. In adults, the gains on 19q13.2 (p = 0.001 and Xp21.1 (p = 0.029, and the loss of 17p (p = 0.014 were independent markers of poor prognosis with respect to OS. In summary, CNAs are frequent in ALL and are associated with clinical parameters and survival. Genome-wide DNA copy number analysis allows the identification of genetic markers that predict clinical outcome, suggesting that detection of these genetic lesions will be useful in the management of patients newly diagnosed with ALL.

  6. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis.

    Science.gov (United States)

    Thiesen, H-J; Steinbeck, F; Maruschke, M; Koczan, D; Ziems, B; Hakenberg, O W

    2017-01-01

    Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs) presented in 48 clear cell renal cell carcinoma (ccRCC) genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25) and 20 G3 (ratio 0.58). Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes) has been successfully validated on published Swiss data (GSE19949) leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and predictive value.

  7. Selective genomic copy number imbalances and probability of recurrence in early-stage breast cancer.

    Directory of Open Access Journals (Sweden)

    Patricia A Thompson

    Full Text Available A number of studies of copy number imbalances (CNIs in breast tumors support associations between individual CNIs and patient outcomes. However, no pattern or signature of CNIs has emerged for clinical use. We determined copy number (CN gains and losses using high-density molecular inversion probe (MIP arrays for 971 stage I/II breast tumors and applied a boosting strategy to fit hazards models for CN and recurrence, treating chromosomal segments in a dose-specific fashion (-1 [loss], 0 [no change] and +1 [gain]. The concordance index (C-Index was used to compare prognostic accuracy between a training (n = 728 and test (n = 243 set and across models. Twelve novel prognostic CNIs were identified: losses at 1p12, 12q13.13, 13q12.3, 22q11, and Xp21, and gains at 2p11.1, 3q13.12, 10p11.21, 10q23.1, 11p15, 14q13.2-q13.3, and 17q21.33. In addition, seven CNIs previously implicated as prognostic markers were selected: losses at 8p22 and 16p11.2 and gains at 10p13, 11q13.5, 12p13, 20q13, and Xq28. For all breast cancers combined, the final full model including 19 CNIs, clinical covariates, and tumor marker-approximated subtypes (estrogen receptor [ER], progesterone receptor, ERBB2 amplification, and Ki67 significantly outperformed a model containing only clinical covariates and tumor subtypes (C-Index(full model, train[test]  =  0.72[0.71] ± 0.02 vs. C-Index(clinical + subtype model, train[test]  =  0.62[0.62] ± 0.02; p<10(-6. In addition, the full model containing 19 CNIs significantly improved prognostication separately for ER-, HER2+, luminal B, and triple negative tumors over clinical variables alone. In summary, we show that a set of 19 CNIs discriminates risk of recurrence among early-stage breast tumors, independent of ER status. Further, our data suggest the presence of specific CNIs that promote and, in some cases, limit tumor spread.

  8. β-Defensin genomic copy number does not influence the age of onset in Huntington's Disease.

    Science.gov (United States)

    Vittori, Angelica; Orth, Michael; Roos, Raymund A C; Outeiro, Tiago F; Giorgini, Flaviano; Hollox, Edward J

    2013-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the abnormal expansion of a CAG triplet repeat tract in the huntingtin gene. While the length of this CAG expansion is the major determinant of the age of onset (AO), other genetic factors have also been shown to play a modulatory role. Recent evidence suggests that neuroinflammations is a pivotal factor in the pathogenesis of HD, and that targeting this process may have important therapeutic ramifications. The human β-defensin 2 (hBD2)- encoded by DEFB4- is an antimicrobial peptide that exhibits inducible expression in astrocytes during inflammation and is an important regulator of innate and adaptive immune response. Therefore, DEFB4 may contribute to the neuroinflammatory processes observed in HD. In this study we tested the hypothesis that copy number variation (CNV) of the β-defensin region, including DEFB4, modifies the AO in HD. We genotyped β-defensin CNV in 490 HD individuals using the paralogue ratio test and found no association between β-defensin CNV and onset of HD. We conclude that it is unlikely that DEFB4 plays a role in HD pathogenesis.

  9. Haploids in Conifer Species: Characterization and Chromosomal Integrity of a Maritime Pine Cell Line

    Directory of Open Access Journals (Sweden)

    José Antonio Cabezas

    2016-11-01

    Full Text Available Haploids are a valuable tool for genomic studies in higher plants, especially those with huge genome size and long juvenile periods, such as conifers. In these species, megagametophyte cultures have been widely used to obtain haploid callus and somatic embryogenic lines. One of the main problems associated with tissue culture is the potential genetic instability of the regenerants. Because of this, chromosomal stability of the callus and/or somatic embryos should also be assessed. To this end, chromosome counting, flow cytometry and genotyping using microsatellites have been reported. Here, we present an overview of the work done in conifers, with special emphasis on the production of a haploid cell line in maritime pine (Pinus pinaster L. and the use of a set of molecular markers, which includes Single Nucleotide Polymorphisms (SNPs and microsatellites or Single Sequence Repeats (SSRs, to validate chromosomal integrity confirming the presence of all chromosomic arms.

  10. Performance Evaluation of NIPT in Detection of Chromosomal Copy Number Variants Using Low-Coverage Whole-Genome Sequencing of Plasma DNA

    DEFF Research Database (Denmark)

    Liu, Hongtai; Gao, Ya; Hu, Zhiyang

    2016-01-01

    , including 33 CNVs samples and 886 normal samples from September 1, 2011 to May 31, 2013, were enrolled in this study. The samples were randomly rearranged and blindly sequenced by low-coverage (about 7M reads) whole-genome sequencing of plasma DNA. Fetal CNVs were detected by Fetal Copy-number Analysis...

  11. Rare Genome-Wide Copy Number Variation and Expression of Schizophrenia in 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Bassett, Anne S; Lowther, Chelsea; Merico, Daniele; Costain, Gregory; Chow, Eva W C; van Amelsvoort, Therese; McDonald-McGinn, Donna; Gur, Raquel E; Swillen, Ann; Van den Bree, Marianne; Murphy, Kieran; Gothelf, Doron; Bearden, Carrie E; Eliez, Stephan; Kates, Wendy; Philip, Nicole; Sashi, Vandana; Campbell, Linda; Vorstman, Jacob; Cubells, Joseph; Repetto, Gabriela M; Simon, Tony; Boot, Erik; Heung, Tracy; Evers, Rens; Vingerhoets, Claudia; van Duin, Esther; Zackai, Elaine; Vergaelen, Elfi; Devriendt, Koen; Vermeesch, Joris R; Owen, Michael; Murphy, Clodagh; Michaelovosky, Elena; Kushan, Leila; Schneider, Maude; Fremont, Wanda; Busa, Tiffany; Hooper, Stephen; McCabe, Kathryn; Duijff, Sasja; Isaev, Karin; Pellecchia, Giovanna; Wei, John; Gazzellone, Matthew J; Scherer, Stephen W; Emanuel, Beverly S; Guo, Tingwei; Morrow, Bernice E; Marshall, Christian R

    2017-11-01

    Chromosome 22q11.2 deletion syndrome (22q11.2DS) is associated with a more than 20-fold increased risk for developing schizophrenia. The aim of this study was to identify additional genetic factors (i.e., "second hits") that may contribute to schizophrenia expression. Through an international consortium, the authors obtained DNA samples from 329 psychiatrically phenotyped subjects with 22q11.2DS. Using a high-resolution microarray platform and established methods to assess copy number variation (CNV), the authors compared the genome-wide burden of rare autosomal CNV, outside of the 22q11.2 deletion region, between two groups: a schizophrenia group and those with no psychotic disorder at age ≥25 years. The authors assessed whether genes overlapped by rare CNVs were overrepresented in functional pathways relevant to schizophrenia. Rare CNVs overlapping one or more protein-coding genes revealed significant between-group differences. For rare exonic duplications, six of 19 gene sets tested were enriched in the schizophrenia group; genes associated with abnormal nervous system phenotypes remained significant in a stepwise logistic regression model and showed significant interactions with 22q11.2 deletion region genes in a connectivity analysis. For rare exonic deletions, the schizophrenia group had, on average, more genes overlapped. The additional rare CNVs implicated known (e.g., GRM7, 15q13.3, 16p12.2) and novel schizophrenia risk genes and loci. The results suggest that additional rare CNVs overlapping genes outside of the 22q11.2 deletion region contribute to schizophrenia risk in 22q11.2DS, supporting a multigenic hypothesis for schizophrenia. The findings have implications for understanding expression of psychotic illness and herald the importance of whole-genome sequencing to appreciate the overall genomic architecture of schizophrenia.

  12. Probabilistic quantitative microbial risk assessment model of norovirus from wastewater irrigated vegetables in Ghana using genome copies and fecal indicator ratio conversion for estimating exposure dose.

    Science.gov (United States)

    Owusu-Ansah, Emmanuel de-Graft Johnson; Sampson, Angelina; Amponsah, Samuel K; Abaidoo, Robert C; Dalsgaard, Anders; Hald, Tine

    2017-12-01

    The need to replace the commonly applied fecal indicator conversions ratio (an assumption of 1:10 -5 virus to fecal indicator organism) in Quantitative Microbial Risk Assessment (QMRA) with models based on quantitative data on the virus of interest has gained prominence due to the different physical and environmental factors that might influence the reliability of using indicator organisms in microbial risk assessment. The challenges facing analytical studies on virus enumeration (genome copies or particles) have contributed to the already existing lack of data in QMRA modelling. This study attempts to fit a QMRA model to genome copies of norovirus data. The model estimates the risk of norovirus infection from the intake of vegetables irrigated with wastewater from different sources. The results were compared to the results of a corresponding model using the fecal indicator conversion ratio to estimate the norovirus count. In all scenarios of using different water sources, the application of the fecal indicator conversion ratio underestimated the norovirus disease burden, measured by the Disability Adjusted Life Years (DALYs), when compared to results using the genome copies norovirus data. In some cases the difference was >2 orders of magnitude. All scenarios using genome copies met the 10 -4 DALY per person per year for consumption of vegetables irrigated with wastewater, although these results are considered to be highly conservative risk estimates. The fecal indicator conversion ratio model of stream-water and drain-water sources of wastewater achieved the 10 -6 DALY per person per year threshold, which tends to indicate an underestimation of health risk when compared to using genome copies for estimating the dose. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Transposition of a Ds element from a plasmid into the plant genome in Nicotiana plumbaginifolia protoplast-derived cells.

    Science.gov (United States)

    Houba-Hérin, N; Domin, M; Pédron, J

    1994-07-01

    Nicotiana plumbaginifolia haploid protoplasts were co-transformed with two plasmids, one with a NPT-II/Ds element and one with a gene encoding an amino-terminal truncated Ac transposase. It is shown that Ds can efficiently transpose from extrachromosomal DNA to N. plumbaginifolia chromosomes when the Ac transposase gene is present in trans. Ds has been shown to have transposed into the plant genome in a limited number of copies (1.9 copies per genome), for 21/32 transgenic lines tested. The flanking sequences present in the original plasmid are missing in these 21 plants. In only two of 21 plants was part of the transposase construct integrated. By segregation analysis of transgenic progeny, Ds was shown to be present in the heterozygous state in 10 lines even though haploid protoplasts had been originally transformed. This observation could indicate that integration occurred after or during DNA replication that leads to protoplast diploidization.

  14. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder

    Science.gov (United States)

    Elia, Josephine; Glessner, Joseph T; Wang, Kai; Takahashi, Nagahide; Shtir, Corina J; Hadley, Dexter; Sleiman, Patrick M A; Zhang, Haitao; Kim, Cecilia E; Robison, Reid; Lyon, Gholson J; Flory, James H; Bradfield, Jonathan P; Imielinski, Marcin; Hou, Cuiping; Frackelton, Edward C; Chiavacci, Rosetta M; Sakurai, Takeshi; Rabin, Cara; Middleton, Frank A; Thomas, Kelly A; Garris, Maria; Mentch, Frank; Freitag, Christine M; Steinhausen, Hans-Christoph; Todorov, Alexandre A; Reif, Andreas; Rothenberger, Aribert; Franke, Barbara; Mick, Eric O; Roeyers, Herbert; Buitelaar, Jan; Lesch, Klaus-Peter; Banaschewski, Tobias; Ebstein, Richard P; Mulas, Fernando; Oades, Robert D; Sergeant, Joseph; Sonuga-Barke, Edmund; Renner, Tobias J; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Walitza, Susanne; Meyer, Jobst; Pálmason, Haukur; Seitz, Christiane; Loo, Sandra K; Smalley, Susan L; Biederman, Joseph; Kent, Lindsey; Asherson, Philip; Anney, Richard J L; Gaynor, J William; Shaw, Philip; Devoto, Marcella; White, Peter S; Grant, Struan F A; Buxbaum, Joseph D; Rapoport, Judith L; Williams, Nigel M; Nelson, Stanley F; Faraone, Stephen V; Hakonarson, Hakon

    2014-01-01

    Attention deficit hyperactivity disorder (ADHD) is a common, heritable neuropsychiatric disorder of unknown etiology. We performed a whole-genome copy number variation (CNV) study on 1,013 cases with ADHD and 4,105 healthy children of European ancestry using 550,000 SNPs. We evaluated statistically significant findings in multiple independent cohorts, with a total of 2,493 cases with ADHD and 9,222 controls of European ancestry, using matched platforms. CNVs affecting metabotropic glutamate receptor genes were enriched across all cohorts (P = 2.1 × 10−9). We saw GRM5 (encoding glutamate receptor, metabotropic 5) deletions in ten cases and one control (P = 1.36 × 10−6). We saw GRM7 deletions in six cases, and we saw GRM8 deletions in eight cases and no controls. GRM1 was duplicated in eight cases. We experimentally validated the observed variants using quantitative RT-PCR. A gene network analysis showed that genes interacting with the genes in the GRM family are enriched for CNVs in ~10% of the cases (P = 4.38 × 10−10) after correction for occurrence in the controls. We identified rare recurrent CNVs affecting glutamatergic neurotransmission genes that were overrepresented in multiple ADHD cohorts. PMID:22138692

  15. Interspersion of highly repetitive DNA with single copy DNA in the genome of the red crab, Geryon quinquedens

    Energy Technology Data Exchange (ETDEWEB)

    Christie, N.T. (Univ. of Tennessee, Oak Ridge); Skinner, D.M.

    1979-02-01

    Kinetic analysis of the reassociation of 420 nucleotide (NT) long fragments has shown that essentially all of the repetitive sequences of the DNA of the red crab Geryon quinquedens are highly repetitive. There are negligible amounts of low and intermediate repetitive DNAs. Though atypical of most eukaryotes, this pattern has been observed in al other brachyurans (true crabs) studied. The major repetitive component is subdivided into short runs of 300 NT and longer runs of greater than 1200 NT while the minor component has an average sequence length of 400 NT. Both components reassociate at rates commonly observed for satellite DNAs. Unique among eukaryotes the organization of the genome includes single copy DNA contiguous to short runs (300 NT) of both repetitive components. Although patent satellites are not present, subsets of the repetitive DNA have been isolated by either restriction endonuclease digestion or by centrifugation in Ag/sup +/ or Hg/sup 2 +//Cs/sub 2/SO/sub 4/ density gradients.

  16. Complete mitochondrial genome of endangered Yellow-shouldered Amazon (Amazona barbadensis): two control region copies in parrot species of the Amazona genus.

    Science.gov (United States)

    Urantowka, Adam Dawid; Hajduk, Kacper; Kosowska, Barbara

    2013-08-01

    Amazona barbadensis is an endangered species of parrot living in northern coastal Venezuela and in several Caribbean islands. In this study, we sequenced full mitochondrial genome of the considered species. The total length of the mitogenome was 18,983 bp and contained 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, duplicated control region, and degenerate copies of ND6 and tRNA (Glu) genes. High degree of identity between two copies of control region suggests their coincident evolution and functionality. Comparative analysis of both the control region sequences from four Amazona species revealed their 89.1% identity over a region of 1300 bp and indicates the presence of distinctive parts of two control region copies.

  17. Probabilistic quantitative microbial risk assessment model of norovirus from wastewater irrigated vegetables in Ghana using genome copies and fecal indicator ratio conversion for estimating exposure dose

    DEFF Research Database (Denmark)

    Owusu-Ansah, Emmanuel de-Graft Johnson; Sampson, Angelina; Amponsah, Samuel K.

    2017-01-01

    physical and environmental factors that might influence the reliability of using indicator organisms in microbial risk assessment. The challenges facing analytical studies on virus enumeration (genome copies or particles) have contributed to the already existing lack of data in QMRA modelling. This study......The need to replace the commonly applied fecal indicator conversions ratio (an assumption of 1:10− 5 virus to fecal indicator organism) in Quantitative Microbial Risk Assessment (QMRA) with models based on quantitative data on the virus of interest has gained prominence due to the different...... attempts to fit a QMRA model to genome copies of norovirus data. The model estimates the risk of norovirus infection from the intake of vegetables irrigated with wastewater from different sources. The results were compared to the results of a corresponding model using the fecal indicator conversion ratio...

  18. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints

    Science.gov (United States)

    2014-01-01

    Background Genomic disorders are caused by copy number changes that may exhibit recurrent breakpoints processed by nonallelic homologous recombination. However, region-specific disease-associated copy number changes have also been observed which exhibit non-recurrent breakpoints. The mechanisms underlying these non-recurrent copy number changes have not yet been fully elucidated. Results We analyze large NF1 deletions with non-recurrent breakpoints as a model to investigate the full spectrum of causative mechanisms, and observe that they are mediated by various DNA double strand break repair mechanisms, as well as aberrant replication. Further, two of the 17 NF1 deletions with non-recurrent breakpoints, identified in unrelated patients, occur in association with the concomitant insertion of SINE/variable number of tandem repeats/Alu (SVA) retrotransposons at the deletion breakpoints. The respective breakpoints are refractory to analysis by standard breakpoint-spanning PCRs and are only identified by means of optimized PCR protocols designed to amplify across GC-rich sequences. The SVA elements are integrated within SUZ12P intron 8 in both patients, and were mediated by target-primed reverse transcription of SVA mRNA intermediates derived from retrotranspositionally active source elements. Both SVA insertions occurred during early postzygotic development and are uniquely associated with large deletions of 1 Mb and 867 kb, respectively, at the insertion sites. Conclusions Since active SVA elements are abundant in the human genome and the retrotranspositional activity of many SVA source elements is high, SVA insertion-associated large genomic deletions encompassing many hundreds of kilobases could constitute a novel and as yet under-appreciated mechanism underlying large-scale copy number changes in the human genome. PMID:24958239

  19. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. | Office of Cancer Genomics

    Science.gov (United States)

    The CRISPR-Cas9 system has revolutionized gene editing both at single genes and in multiplexed loss-of-function screens, thus enabling precise genome-scale identification of genes essential for proliferation and survival of cancer cells. However, previous studies have reported that a gene-independent antiproliferative effect of Cas9-mediated DNA cleavage confounds such measurement of genetic dependency, thereby leading to false-positive results in copy number-amplified regions.

  20. The distribution and impact of common copy-number variation in the genome of the domesticated apple, Malus x domestica Borkh.

    Science.gov (United States)

    Boocock, James; Chagné, David; Merriman, Tony R; Black, Michael A

    2015-10-23

    Copy number variation (CNV) is a common feature of eukaryotic genomes, and a growing body of evidence suggests that genes affected by CNV are enriched in processes that are associated with environmental responses. Here we use next generation sequence (NGS) data to detect copy-number variable regions (CNVRs) within the Malus x domestica genome, as well as to examine their distribution and impact. CNVRs were detected using NGS data derived from 30 accessions of M. x domestica analyzed using the read-depth method, as implemented in the CNVrd2 software. To improve the reliability of our results, we developed a quality control and analysis procedure that involved checking for organelle DNA, not repeat masking, and the determination of CNVR identity using a permutation testing procedure. Overall, we identified 876 CNVRs, which spanned 3.5 % of the apple genome. To verify that detected CNVRs were not artifacts, we analyzed the B- allele-frequencies (BAF) within a single nucleotide polymorphism (SNP) array dataset derived from a screening of 185 individual apple accessions and found the CNVRs were enriched for SNPs having aberrant BAFs (P apple scab. We present the first analysis and catalogue of CNVRs in the M. x domestica genome. The enrichment of the CNVRs with R gene models and their overlap with gene loci of agricultural significance draw attention to a form of unexplored genetic variation in apple. This research will underpin further investigation of the role that CNV plays within the apple genome.

  1. Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data.

    Directory of Open Access Journals (Sweden)

    Niedzica Camacho

    2017-09-01

    Full Text Available A variety of models have been proposed to explain regions of recurrent somatic copy number alteration (SCNA in human cancer. Our study employs Whole Genome DNA Sequence (WGS data from tumor samples (n = 103 to comprehensively assess the role of the Knudson two hit genetic model in SCNA generation in prostate cancer. 64 recurrent regions of loss and gain were detected, of which 28 were novel, including regions of loss with more than 15% frequency at Chr4p15.2-p15.1 (15.53%, Chr6q27 (16.50% and Chr18q12.3 (17.48%. Comprehensive mutation screens of genes, lincRNA encoding sequences, control regions and conserved domains within SCNAs demonstrated that a two-hit genetic model was supported in only a minor proportion of recurrent SCNA losses examined (15/40. We found that recurrent breakpoints and regions of inversion often occur within Knudson model SCNAs, leading to the identification of ZNF292 as a target gene for the deletion at 6q14.3-q15 and NKX3.1 as a two-hit target at 8p21.3-p21.2. The importance of alterations of lincRNA sequences was illustrated by the identification of a novel mutational hotspot at the KCCAT42, FENDRR, CAT1886 and STCAT2 loci at the 16q23.1-q24.3 loss. Our data confirm that the burden of SCNAs is predictive of biochemical recurrence, define nine individual regions that are associated with relapse, and highlight the possible importance of ion channel and G-protein coupled-receptor (GPCR pathways in cancer development. We concluded that a two-hit genetic model accounts for about one third of SCNA indicating that mechanisms, such haploinsufficiency and epigenetic inactivation, account for the remaining SCNA losses.

  2. Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens

    DEFF Research Database (Denmark)

    Timms, Richard T.; Menzies, Sam A.; Tchasovnikarova, Iva A.

    2016-01-01

    The application of forward genetic screens to cultured human cells represents a powerful method to study gene function. The repurposing of the bacterial CRISPR/Cas9 system provides an effective method to disrupt gene function in mammalian cells, and has been applied to genome-wide screens. Here, we...... compare the efficacy of genome-wide CRISPR/Cas9-mediated forward genetic screens versus gene-trap mutagenesis screens in haploid human cells, which represent the existing ‘gold standard’ method. This head-to-head comparison aimed to identify genes required for the endoplasmic reticulum....../3-associated disulphide reductase. Genome-wide CRISPR/Cas9-mediated screens together with haploid genetic screens provide a powerful addition to the forward genetic toolbox....

  3. The role of copy number variation in susceptibility to amyotrophic lateral sclerosis: genome-wide association study and comparison with published loci.

    Directory of Open Access Journals (Sweden)

    Louise V Wain

    2009-12-01

    Full Text Available The genetic contribution to sporadic amyotrophic lateral sclerosis (ALS has not been fully elucidated. There are increasing efforts to characterise the role of copy number variants (CNVs in human diseases; two previous studies concluded that CNVs may influence risk of sporadic ALS, with multiple rare CNVs more important than common CNVs. A little-explored issue surrounding genome-wide CNV association studies is that of post-calling filtering and merging of raw CNV calls. We undertook simulations to define filter thresholds and considered optimal ways of merging overlapping CNV calls for association testing, taking into consideration possibly overlapping or nested, but distinct, CNVs and boundary estimation uncertainty.In this study we screened Illumina 300K SNP genotyping data from 730 ALS cases and 789 controls for copy number variation. Following quality control filters using thresholds defined by simulation, a total of 11321 CNV calls were made across 575 cases and 621 controls. Using region-based and gene-based association analyses, we identified several loci showing nominally significant association. However, the choice of criteria for combining calls for association testing has an impact on the ranking of the results by their significance. Several loci which were previously reported as being associated with ALS were identified here. However, of another 15 genes previously reported as exhibiting ALS-specific copy number variation, only four exhibited copy number variation in this study. Potentially interesting novel loci, including EEF1D, a translation elongation factor involved in the delivery of aminoacyl tRNAs to the ribosome (a process which has previously been implicated in genetic studies of spinal muscular atrophy were identified but must be treated with caution due to concerns surrounding genomic location and platform suitability.Interpretation of CNV association findings must take into account the effects of filtering and combining

  4. High Quality Genomic Copy Number Data from Archival Formalin-Fixed Paraffin-Embedded Leiomyosarcoma: Optimisation of Universal Linkage System Labelling

    Science.gov (United States)

    Salawu, Abdulazeez; Ul-Hassan, Aliya; Hammond, David; Fernando, Malee; Reed, Malcolm; Sisley, Karen

    2012-01-01

    Most soft tissue sarcomas are characterized by genetic instability and frequent genomic copy number aberrations that are not subtype-specific. Oligonucleotide microarray-based Comparative Genomic Hybridisation (array CGH) is an important technique used to map genome-wide copy number aberrations, but the traditional requirement for high-quality DNA typically obtained from fresh tissue has limited its use in sarcomas. Although large archives of Formalin-fixed Paraffin-embedded (FFPE) tumour samples are available for research, the degradative effects of formalin on DNA from these tissues has made labelling and analysis by array CGH technically challenging. The Universal Linkage System (ULS) may be used for a one-step chemical labelling of such degraded DNA. We have optimised the ULS labelling protocol to perform aCGH on archived FFPE leiomyosarcoma tissues using the 180k Agilent platform. Preservation age of samples ranged from a few months to seventeen years and the DNA showed a wide range of degradation (when visualised on agarose gels). Consistently high DNA labelling efficiency and low microarray probe-to-probe variation (as measured by the derivative log ratio spread) was seen. Comparison of paired fresh and FFPE samples from identical tumours showed good correlation of CNAs detected. Furthermore, the ability to macro-dissect FFPE samples permitted the detection of CNAs that were masked in fresh tissue. Aberrations were visually confirmed using Fluorescence in situ Hybridisation. These results suggest that archival FFPE tissue, with its relative abundance and attendant clinical data may be used for effective mapping for genomic copy number aberrations in such rare tumours as leiomyosarcoma and potentially unravel clues to tumour origins, progression and ultimately, targeted treatment. PMID:23209738

  5. Genome-wide gene copy number and expression analysis of primary gastric tumors and gastric cancer cell lines

    International Nuclear Information System (INIS)

    Junnila, Siina; Kokkola, Arto; Karjalainen-Lindsberg, Marja-Liisa; Puolakkainen, Pauli; Monni, Outi

    2010-01-01

    Gastric cancer is one of the most common malignancies worldwide and the second most common cause of cancer related death. Gene copy number alterations play an important role in the development of gastric cancer and a change in gene copy number is one of the main mechanisms for a cancer cell to control the expression of potential oncogenes and tumor suppressor genes. To highlight genes of potential biological and clinical relevance in gastric cancer, we carried out a systematic array-based survey of gene expression and copy number levels in primary gastric tumors and gastric cancer cell lines and validated the results using an affinity capture based transcript analysis (TRAC assay) and real-time qRT-PCR. Integrated microarray analysis revealed altogether 256 genes that were located in recurrent regions of gains or losses and had at least a 2-fold copy number- associated change in their gene expression. The expression levels of 13 of these genes, ALPK2, ASAP1, CEACAM5, CYP3A4, ENAH, ERBB2, HHIPL2, LTB4R, MMP9, PERLD1, PNMT, PTPRA, and OSMR, were validated in a total of 118 gastric samples using either the qRT-PCR or TRAC assay. All of these 13 genes were differentially expressed between cancerous samples and nonmalignant tissues (p < 0.05) and the association between copy number and gene expression changes was validated for nine (69.2%) of these genes (p < 0.05). In conclusion, integrated gene expression and copy number microarray analysis highlighted genes that may be critically important for gastric carcinogenesis. TRAC and qRT-PCR analyses validated the microarray results and therefore the role of these genes as potential biomarkers for gastric cancer

  6. Analysis of Genome-Wide Copy Number Variations in Chinese Indigenous and Western Pig Breeds by 60 K SNP Genotyping Arrays

    Science.gov (United States)

    Sun, Yaqi; Wang, Hongyang; Wang, Chao; Yu, Shaobo; Liu, Jing; Zhang, Yu; Fan, Bin; Li, Kui; Liu, Bang

    2014-01-01

    Copy number variations (CNVs) represent a substantial source of structural variants in mammals and contribute to both normal phenotypic variability and disease susceptibility. Although low-resolution CNV maps are produced in many domestic animals, and several reports have been published about the CNVs of porcine genome, the differences between Chinese and western pigs still remain to be elucidated. In this study, we used Porcine SNP60 BeadChip and PennCNV algorithm to perform a genome-wide CNV detection in 302 individuals from six Chinese indigenous breeds (Tongcheng, Laiwu, Luchuan, Bama, Wuzhishan and Ningxiang pigs), three western breeds (Yorkshire, Landrace and Duroc) and one hybrid (Tongcheng×Duroc). A total of 348 CNV Regions (CNVRs) across genome were identified, covering 150.49 Mb of the pig genome or 6.14% of the autosomal genome sequence. In these CNVRs, 213 CNVRs were found to exist only in the six Chinese indigenous breeds, and 60 CNVRs only in the three western breeds. The characters of CNVs in four Chinese normal size breeds (Luchuan, Tongcheng and Laiwu pigs) and two minipig breeds (Bama and Wuzhishan pigs) were also analyzed in this study. Functional annotation suggested that these CNVRs possess a great variety of molecular function and may play important roles in phenotypic and production traits between Chinese and western breeds. Our results are important complementary to the CNV map in pig genome, which provide new information about the diversity of Chinese and western pig breeds, and facilitate further research on porcine genome CNVs. PMID:25198154

  7. Untangling nucleotide diversity and evolution of the H genome in polyploid Hordeum and Elymus species based on the single copy of nuclear gene DMC1.

    Directory of Open Access Journals (Sweden)

    Dongfa Sun

    Full Text Available Numerous hybrid and polypoid species are found within the Triticeae. It has been suggested that the H subgenome of allopolyploid Elymus (wheatgrass species originated from diploid Hordeum (barley species, but the role of hybridization between polyploid Elymus and Hordeum has not been studied. It is not clear whether gene flow across polyploid Hordeum and Elymus species has occurred following polyploid speciation. Answering these questions will provide new insights into the formation of these polyploid species, and the potential role of gene flow among polyploid species during polyploid evolution. In order to address these questions, disrupted meiotic cDNA1 (DMC1 data from the allopolyploid StH Elymus are analyzed together with diploid and polyploid Hordeum species. Phylogenetic analysis revealed that the H copies of DMC1 sequence in some Elymus are very close to the H copies of DMC1 sequence in some polyploid Hordeum species, indicating either that the H genome in theses Elymus and polyploid Hordeum species originated from same diploid donor or that gene flow has occurred among them. Our analysis also suggested that the H genomes in Elymus species originated from limited gene pool, while H genomes in Hordeum polyploids have originated from broad gene pools. Nucleotide diversity (π of the DMC1 sequences on H genome from polyploid species (π = 0.02083 in Elymus, π = 0.01680 in polyploid Hordeum is higher than that in diploid Hordeum (π = 0.01488. The estimates of Tajima's D were significantly departure from the equilibrium neutral model at this locus in diploid Hordeum species (P<0.05, suggesting an excess of rare variants in diploid species which may not contribute to the origination of polyploids. Nucleotide diversity (π of the DMC1 sequences in Elymus polyploid species (π = 0.02083 is higher than that in polyploid Hordeum (π = 0.01680, suggesting that the degree of relationships between two parents of a polyploid might be a factor

  8. Integrated genomic classification of melanocytic tumors of the central nervous system using mutation analysis, copy number alterations and DNA methylation profiling.

    Science.gov (United States)

    Griewank, Klaus; Koelsche, Christian; van de Nes, Johannes A P; Schrimpf, Daniel; Gessi, Marco; Möller, Inga; Sucker, Antje; Scolyer, Richard A; Buckland, Michael E; Murali, Rajmohan; Pietsch, Torsten; von Deimling, Andreas; Schadendorf, Dirk

    2018-06-11

    In the central nervous system, distinguishing primary leptomeningeal melanocytic tumors from melanoma metastases and predicting their biological behavior solely using histopathologic criteria can be challenging. We aimed to assess the diagnostic and prognostic value of integrated molecular analysis. Targeted next-generation-sequencing, array-based genome-wide methylation analysis and BAP1 immunohistochemistry was performed on the largest cohort of central nervous system melanocytic tumors analyzed to date, incl. 47 primary tumors of the central nervous system, 16 uveal melanomas. 13 cutaneous melanoma metastasis and 2 blue nevus-like melanomas. Gene mutation, DNA-methylation and copy-number profiles were correlated with clinicopathological features. Combining mutation, copy-number and DNA-methylation profiles clearly distinguished cutaneous melanoma metastases from other melanocytic tumors. Primary leptomeningeal melanocytic tumors, uveal melanomas and blue nevus-like melanoma showed common DNA-methylation, copy-number alteration and gene mutation signatures. Notably, tumors demonstrating chromosome 3 monosomy and BAP1 alterations formed a homogeneous subset within this group. Integrated molecular profiling aids in distinguishing primary from metastatic melanocytic tumors of the central nervous system. Primary leptomeningeal melanocytic tumors, uveal melanoma and blue nevus-like melanoma share molecular similarity with chromosome 3 and BAP1 alterations markers of poor prognosis. Copyright ©2018, American Association for Cancer Research.

  9. Genome-wide loss of heterozygosity and copy number alteration in esophageal squamous cell carcinoma using the Affymetrix GeneChip Mapping 10 K array

    Directory of Open Access Journals (Sweden)

    Goldstein Alisa M

    2006-11-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC is a common malignancy worldwide. Comprehensive genomic characterization of ESCC will further our understanding of the carcinogenesis process in this disease. Results Genome-wide detection of chromosomal changes was performed using the Affymetrix GeneChip 10 K single nucleotide polymorphism (SNP array, including loss of heterozygosity (LOH and copy number alterations (CNA, for 26 pairs of matched germ-line and micro-dissected tumor DNA samples. LOH regions were identified by two methods – using Affymetrix's genotype call software and using Affymetrix's copy number alteration tool (CNAT software – and both approaches yielded similar results. Non-random LOH regions were found on 10 chromosomal arms (in decreasing order of frequency: 17p, 9p, 9q, 13q, 17q, 4q, 4p, 3p, 15q, and 5q, including 20 novel LOH regions (10 kb to 4.26 Mb. Fifteen CNA-loss regions (200 kb to 4.3 Mb and 36 CNA-gain regions (200 kb to 9.3 Mb were also identified. Conclusion These studies demonstrate that the Affymetrix 10 K SNP chip is a valid platform to integrate analyses of LOH and CNA. The comprehensive knowledge gained from this analysis will enable improved strategies to prevent, diagnose, and treat ESCC.

  10. Identification of networks of co-occurring, tumor-related DNA copy number changes using a genome-wide scoring approach.

    Directory of Open Access Journals (Sweden)

    Christiaan Klijn

    2010-01-01

    Full Text Available Tumorigenesis is a multi-step process in which normal cells transform into malignant tumors following the accumulation of genetic mutations that enable them to evade the growth control checkpoints that would normally suppress their growth or result in apoptosis. It is therefore important to identify those combinations of mutations that collaborate in cancer development and progression. DNA copy number alterations (CNAs are one of the ways in which cancer genes are deregulated in tumor cells. We hypothesized that synergistic interactions between cancer genes might be identified by looking for regions of co-occurring gain and/or loss. To this end we developed a scoring framework to separate truly co-occurring aberrations from passenger mutations and dominant single signals present in the data. The resulting regions of high co-occurrence can be investigated for between-region functional interactions. Analysis of high-resolution DNA copy number data from a panel of 95 hematological tumor cell lines correctly identified co-occurring recombinations at the T-cell receptor and immunoglobulin loci in T- and B-cell malignancies, respectively, showing that we can recover truly co-occurring genomic alterations. In addition, our analysis revealed networks of co-occurring genomic losses and gains that are enriched for cancer genes. These networks are also highly enriched for functional relationships between genes. We further examine sub-networks of these networks, core networks, which contain many known cancer genes. The core network for co-occurring DNA losses we find seems to be independent of the canonical cancer genes within the network. Our findings suggest that large-scale, low-intensity copy number alterations may be an important feature of cancer development or maintenance by affecting gene dosage of a large interconnected network of functionally related genes.

  11. Genome size variation in the pine fusiform rust pathogen Cronartium quercuum f.sp. fusiforme as determined by flow cytometry

    Science.gov (United States)

    Claire L Anderson; Thomas L Kubisiak; C Dana Nelson; Jason A Smith; John M Davis

    2010-01-01

    The genome size of the pine fusiform rust pathogen Cronartium quercuum f.sp. fusiforme (Cqf) was determined by flow cytometric analysis of propidium iodide-stained, intact haploid pycniospores with haploid spores of two genetically well characterized fungal species, Sclerotinia sclerotiorum and Puccinia graminis f.sp. tritici, as size standards. The Cqf haploid genome...

  12. Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number.

    Directory of Open Access Journals (Sweden)

    Joseph Andrews

    2010-01-01

    Full Text Available We have previously identified genome-wide DNA methylation changes in a cell line model of breast cancer metastasis. These complex epigenetic changes that we observed, along with concurrent karyotype analyses, have led us to hypothesize that complex genomic alterations in cancer cells (deletions, translocations and ploidy are superimposed over promoter-specific methylation events that are responsible for gene-specific expression changes observed in breast cancer metastasis.We undertook simultaneous high-resolution, whole-genome analyses of MDA-MB-468GFP and MDA-MB-468GFP-LN human breast cancer cell lines (an isogenic, paired lymphatic metastasis cell line model using Affymetrix gene expression (U133, promoter (1.0R, and SNP/CNV (SNP 6.0 microarray platforms to correlate data from gene expression, epigenetic (DNA methylation, and combination copy number variant/single nucleotide polymorphism microarrays. Using Partek Software and Ingenuity Pathway Analysis we integrated datasets from these three platforms and detected multiple hypomethylation and hypermethylation events. Many of these epigenetic alterations correlated with gene expression changes. In addition, gene dosage events correlated with the karyotypic differences observed between the cell lines and were reflected in specific promoter methylation patterns. Gene subsets were identified that correlated hyper (and hypo methylation with the loss (or gain of gene expression and in parallel, with gene dosage losses and gains, respectively. Individual gene targets from these subsets were also validated for their methylation, expression and copy number status, and susceptible gene pathways were identified that may indicate how selective advantage drives the processes of tumourigenesis and metastasis.Our approach allows more precisely profiling of functionally relevant epigenetic signatures that are associated with cancer progression and metastasis.

  13. The human homolog of S. cerevisiae CDC27, CDC27 Hs, is encoded by a highly conserved intronless gene present in multiple copies in the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Devor, E.J.; Dill-Devor, R.M. [Univ. of Iowa College of Medicine, Iowa City (United States)

    1994-09-01

    We have obtained a number of unique sequences via PCR amplification of human genomic DNA using degenerate primers under low stringency (42{degrees}C). One of these, an 853 bp product, has been identified as a partial genomic sequence of the human homolog of the S. cerevisiae CDC27 gene, CDC27Hs (GenBank No. U00001). This gene, reported by Turgendreich et al. is also designated EST00556 from Adams et al. We have undertaken a more detailed examination of our sequence, MCP34N, and have found that: 1. the genomic sequence is nearly identical to CDC27Hs over its entire 853 bp length; 2. an MCP34N-specific PCR assay of several non-human primate species reveals amplification products in chimpanzee and gorilla genomes having greater than 90% sequence identity with CDC27Hs; and 3. an MCP34N-specific PCR assay of the BIOS hybrid cell line panel gives a discordancy pattern suggesting multiple loci. Based upon these data, we present the following initial characterization: 1. the complete MCP34N sequence identity with CDC27Hs indicates that the latter is encoded by an intronless gene; 2. CDC27Hs is highly conserved among higher primates; and 3. CDC27Hs is present in multiple copies in the human genome. These characteristics, taken together with those initially reported for CDC27Hs, suggest that this is an old gene that carries out an important but, as yet, unknown function in the human brain.

  14. Platform comparison for evaluation of ALK protein immunohistochemical expression, genomic copy number and hotspot mutation status in neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Benedict Yan

    Full Text Available ALK is an established causative oncogenic driver in neuroblastoma, and is likely to emerge as a routine biomarker in neuroblastoma diagnostics. At present, the optimal strategy for clinical diagnostic evaluation of ALK protein, genomic and hotspot mutation status is not well-studied. We evaluated ALK immunohistochemical (IHC protein expression using three different antibodies (ALK1, 5A4 and D5F3 clones, ALK genomic status using single-color chromogenic in situ hybridization (CISH, and ALK hotspot mutation status using conventional Sanger sequencing and a next-generation sequencing platform (Ion Torrent Personal Genome Machine (IT-PGM, in archival formalin-fixed, paraffin-embedded neuroblastoma samples. We found a significant difference in IHC results using the three different antibodies, with the highest percentage of positive cases seen on D5F3 immunohistochemistry. Correlation with ALK genomic and hotspot mutational status revealed that the majority of D5F3 ALK-positive cases did not possess either ALK genomic amplification or hotspot mutations. Comparison of sequencing platforms showed a perfect correlation between conventional Sanger and IT-PGM sequencing. Our findings suggest that D5F3 immunohistochemistry, single-color CISH and IT-PGM sequencing are suitable assays for evaluation of ALK status in future neuroblastoma clinical trials.

  15. Qtl mapping of wheat doubled haploids for chlorophyll content and chlorophyll fluorescence kinetics under drought stress imposed at anthesis stage

    International Nuclear Information System (INIS)

    Ilyas, M.; Ilyas, N.; Arshad, M.; Kazi, A.G.

    2014-01-01

    Drought stress is one of the major environmental constraints to crop plants including wheat worldwide. Synthetic hexaploid can act as a vehicle for improving crop tolerance against biotic and abiotic stresses. Doubled haploid population consisting of one hundred and forty individuals derived from cross of Opata and SH223 was used in the present study to identify genomic regions associated with various quantitative attributes of physiological nature. Doubled haploid mapping population was phenotyped for chlorophyll content and chlorophyll fluorescence kinetics under control and drought stress imposed at anthesis stage. Genotyping of population was accomplished by utilizing two hundred and sixty one polymorphic Gaterslaben wheat microsatellites and Beltsville agriculture research center simple sequence repeats. Linkage map of doubled haploid population comprising of 19 linkage groups and covering map length of two thousands six hundred and twenty six (2626) cM was constructed using map maker software. Major and minor QTLs associated with quantitative traits were identified using QGene software. Major QTL for chlorophyll content (QTc.wwc-1B-S11) of doubled haploid mapping population under anthesis drought stress was mapped on chromosome 1B and explained 10.09 percent of phenotypic variation at LOD score of 5.5. Seven major and minor QTLs for PCFK of doubled haploids were identified on chromosome 1B, 7A and 7D under control and drought stress at anthesis stage. The identified QTLs are of prime importance for high resolution mapping in synthetic hexaploid wheat. Genomic synteny of doubled haploids was observed with rice chromosome 2, 4, 7 and maize chromosome 7 owing to occurrence of orthologous QTLs for chlorophyll content and chlorophyll fluorescence respectively. (author)

  16. Discrimination of haploid and diploid maize kernels via multispectral imaging

    DEFF Research Database (Denmark)

    De La Fuente, Gerald N.; Carstensen, Jens Michael; Adsetts Edberg Hansen, Michael

    2017-01-01

    sorting of haploids would increase the efficiency of DH line development. In this study, six inbred lines were crossed with the maternal haploid inducer ‘RWS/RWK-76’ and a sample of seed was sorted manually for each line. Using the VideometerLab 3 system, spectral imaging techniques were applied...

  17. Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans.

    Science.gov (United States)

    Hansen, M T

    1978-01-01

    The complexity of the genome of Micrococcus radiodurans was determined to be (2.0 +/- 0.3) X 10(9) daltons by DNA renaturation kinetics. The number of genome equivalents of DNA per cell was calculated from the complexity and the content of DNA. A lower limit of four genome equivalents per cell was approached with decreasing growth rate. Thus, no haploid stage appeared to be realized in this organism. The replication time was estimated from the kinetics and amount of residual DNA synthesis after inhibiting initiation of new rounds of replication. From this, the redundancy of terminal genetic markers was calculated to vary with growth rate from four to approximately eight copies per cell. All genetic material, including the least abundant, is thus multiply represented in each cell. The potential significance of the maintenance in each cell of multiple gene copies is discussed in relation to the extreme radiation resistance of M. radiodurans. PMID:649572

  18. Massively parallel sequencing and genome-wide copy number analysis revealed a clonal relationship in benign metastasizing leiomyoma.

    Science.gov (United States)

    Wu, Ren-Chin; Chao, An-Shine; Lee, Li-Yu; Lin, Gigin; Chen, Shu-Jen; Lu, Yen-Jung; Huang, Huei-Jean; Yen, Chi-Feng; Han, Chien Min; Lee, Yun-Shien; Wang, Tzu-Hao; Chao, Angel

    2017-07-18

    Benign metastasizing leiomyoma (BML) is a rare disease entity typically presenting as multiple extrauterine leiomyomas associated with a uterine leiomyoma. It has been hypothesized that the extrauterine leiomyomata represent distant metastasis of the uterine leiomyoma. To date, the only molecular evidence supporting this hypothesis was derived from clonality analyses based on X-chromosome inactivation assays. Here, we sought to address this issue by examining paired specimens of synchronous pulmonary and uterine leiomyomata from three patients using targeted massively parallel sequencing and molecular inversion probe array analysis for detecting somatic mutations and copy number aberrations. We detected identical non-hot-spot somatic mutations and similar patterns of copy number aberrations (CNAs) in paired pulmonary and uterine leiomyomata from two patients, indicating the clonal relationship between pulmonary and uterine leiomyomata. In addition to loss of chromosome 22q found in the literature, we identified additional recurrent CNAs including losses of chromosome 3q and 11q. In conclusion, our findings of the clonal relationship between synchronous pulmonary and uterine leiomyomas support the hypothesis that BML represents a condition wherein a uterine leiomyoma disseminates to distant extrauterine locations.

  19. Massively parallel sequencing and genome-wide copy number analysis revealed a clonal relationship in benign metastasizing leiomyoma

    Science.gov (United States)

    Lee, Li-Yu; Lin, Gigin; Chen, Shu-Jen; Lu, Yen-Jung; Huang, Huei-Jean; Yen, Chi-Feng; Han, Chien Min; Lee, Yun-Shien; Wang, Tzu-Hao; Chao, Angel

    2017-01-01

    Benign metastasizing leiomyoma (BML) is a rare disease entity typically presenting as multiple extrauterine leiomyomas associated with a uterine leiomyoma. It has been hypothesized that the extrauterine leiomyomata represent distant metastasis of the uterine leiomyoma. To date, the only molecular evidence supporting this hypothesis was derived from clonality analyses based on X-chromosome inactivation assays. Here, we sought to address this issue by examining paired specimens of synchronous pulmonary and uterine leiomyomata from three patients using targeted massively parallel sequencing and molecular inversion probe array analysis for detecting somatic mutations and copy number aberrations. We detected identical non-hot-spot somatic mutations and similar patterns of copy number aberrations (CNAs) in paired pulmonary and uterine leiomyomata from two patients, indicating the clonal relationship between pulmonary and uterine leiomyomata. In addition to loss of chromosome 22q found in the literature, we identified additional recurrent CNAs including losses of chromosome 3q and 11q. In conclusion, our findings of the clonal relationship between synchronous pulmonary and uterine leiomyomas support the hypothesis that BML represents a condition wherein a uterine leiomyoma disseminates to distant extrauterine locations. PMID:28533481

  20. Doubled haploid production in Flax (Linum usitatissimum L.).

    Science.gov (United States)

    Obert, Bohus; Zácková, Zuzana; Samaj, Jozef; Pretová, Anna

    2009-01-01

    There is a requirement of haploid and double haploid material and homozygous lines for cell culture studies and breeding in flax. Anther culture is currently the most successful method producing doubled haploid lines in flax. Recently, ovary culture was also described as a good source of doubled haploids. In this review we focus on tissue and plants regeneration using anther culture, and cultivation of ovaries containing unfertilized ovules. The effect of genotype, physiological status of donor plants, donor material pre-treatment and cultivation conditions for flax anthers and ovaries is discussed here. The process of plant regeneration from anther and ovary derived calli is also in the focus of this review. Attention is paid to the ploidy level of regenerated tissue and to the use of molecular markers for determining of gametic origin of flax plants derived from anther and ovary cultures. Finally, some future prospects on the use of doubled haploids in flax biotechnology are outlined here.

  1. Diploidization of cucumber (Cucumis sativus L. haploids by colchicine treatment

    Directory of Open Access Journals (Sweden)

    Vesselina Nikolova

    2014-01-01

    Full Text Available Haploid cucumber plants are totally infertile and do not undergo spontaneous diploidization. The use of haploids depends on the possibility of doubling the chromosome number and the obtaining of stable doubled haploids (DH. Four haploids of different genotypes propagated vegetatively were treated with colchicine in order to obtain DH. The following procedures were used: 1 apical shoot meristem treatment, 2 soaking of shoot explants, 3 placing of shoot explants on medium with colchicine. Plants of the C1 generation were evaluated in respect to morphological and cytological characters and fertility. The best result of 20.9% DH was obtained after repeated treatment of the meristem with colchicine. A large group of chimeras (28.5% was also distinguished as were haploids and tetraploids. DH plants were fertile and gave uniform progeny. Chimeras had a decreased fertility and showed disturbances in meiotic divisions.

  2. Original Copies

    DEFF Research Database (Denmark)

    Sørensen, Tim Flohr

    2013-01-01

    of similarity by looking at artefactual similarity as the results of prototyping and as a production of simulacra. In this light, the concept of copying turns out to be more than simply a matter of trying to imitate an exotic or prestigious original, and it fundamentally raises the question how different a copy...

  3. Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber

    NARCIS (Netherlands)

    Zhang, Z.; Mao, L.; Chen, Junshi; Bu, F.; Li, G.; Sun, J.; Li, S.; Sun, H.; Jiao, C.; Blakely, R.; Pan, J.; Cai, R.; Luo, R.; Peer, Van de Y.; Jacobsen, E.; Fei, Z.; Huang, S.

    2015-01-01

    Structural variations (SVs) represent a major source of genetic diversity. However, the functional impact and formation mechanisms of SVs in plant genomes remain largely unexplored. Here, we report a nucleotide-resolution SV map of cucumber (Cucumis sativas) that comprises 26,788 SVs based on deep

  4. The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese

    DEFF Research Database (Denmark)

    Zhao, Xin; Liu, Xiaomin; Zhang, Aiping

    2018-01-01

    208), the risk of cancer (FOXA1, LAMA5, ZNF716), and vascular and immune-related diseases (ARHGEF10, TOR2A, SH2D3C). In addition, we found several pathways enriched in long-lived genomes, including FOXA1 and FOXA transcription factor networks involved in regulating aging or age-dependent diseases...

  5. Inhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair

    Science.gov (United States)

    Gelincik, Ozkan; Blecua, Pedro; Edelmann, Winfried; Kucherlapati, Raju; Zhou, Kathy; Jasin, Maria; Gümüş, Zeynep H.; Lipkin, Steven M.

    2017-01-01

    Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the roles of mammalian MMR MutL homologues (MLH1, PMS2 and MLH3) proteins in HeR suppression are poorly characterized. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) carrying Mlh1, Pms2, and Mlh3 mutations have higher HeR rates, by using 7,863 uniquely mapping paired direct repeat sequences (DRs) in the mouse genome as endogenous gene conversion and SSA reporters. Additionally, when DSBs are induced by gamma-radiation, Mlh1, Pms2 and Mlh3 mutant MEFs have higher DR copy number alterations (CNAs), including DR CNA hotspots previously identified in mouse MMR-deficient colorectal cancer (dMMR CRC). Analysis of The Cancer Genome Atlas CRC data revealed that dMMR CRCs have higher genome-wide DR HeR rates than MMR proficient CRCs, and that dMMR CRCs have deletion hotspots in tumor suppressors FHIT/WWOX at chromosomal fragile sites FRA3B and FRA16D (which have elevated DSB rates) flanked by paired homologous DRs and inverted repeats (IR). Overall, these data provide novel insights into the MMR-dependent HeR inhibition mechanism and its role in tumor suppression. PMID:29069730

  6. High copy number of highly similar mariner-like transposons in planarian (Platyhelminthe): evidence for a trans-phyla horizontal transfer.

    Science.gov (United States)

    Garcia-Fernàndez, J; Bayascas-Ramírez, J R; Marfany, G; Muñoz-Mármol, A M; Casali, A; Baguñà, J; Saló, E

    1995-05-01

    Several DNA sequences similar to the mariner element were isolated and characterized in the platyhelminthe Dugesia (Girardia) tigrina. They were 1,288 bp long, flanked by two 32 bp-inverted repeats, and contained a single 339 amino acid open-reading frame (ORF) encoding the transposase. The number of copies of this element is approximately 8,000 per haploid genome, constituting a member of the middle-repetitive DNA of Dugesia tigrina. Sequence analysis of several elements showed a high percentage of conservation between the different copies. Most of them presented an intact ORF and the standard signals of actively expressed genes, which suggests that some of them are or have recently been functional transposons. The high degree of similarity shared with other mariner elements from some arthropods, together with the fact that this element is undetectable in other planarian species, strongly suggests a case of horizontal transfer between these two distant phyla.

  7. Copy Counts

    Science.gov (United States)

    Beaumont, Lee R.

    1970-01-01

    The level of difficulty of straight copy, which is used to measure typewriting speed, is influenced by syllable intensity (the average number of syllables per word), stroke intensity (average number of strokes per word), and high-frequency words. (CH)

  8. The RNA 5 of Prunus necrotic ringspot virus is a biologically inactive copy of the 3'-UTR of the genomic RNA 3.

    Science.gov (United States)

    Di Terlizzi, B; Skrzeczkowski, L J; Mink, G I; Scott, S W; Zimmerman, M T

    2001-01-01

    In addition to the four RNAs known to be encapsidated by Prunus necrotic ringspot virus (PNRSV) and Apple mosaic virus (ApMV), an additional small RNA (RNA 5) was present in purified preparations of several isolates of both viruses. RNA 5 was always produced following infection of a susceptible host by an artificial mixture of RNAs 1, 2, 3, and 4 indicating that it was a product of viral replication. RNA 5 does not activate the infectivity of mixtures that contain the three genomic RNAs (RNA 1 + RNA 2 + RNA 3) nor does it appear to modify symptom expression. Results from hybridization studies suggested that RNA 5 had partial sequence homology with RNAs 1, 2, 3, and 4. Cloning and sequencing the RNA 5 of isolate CH 57/1-M of PNRSV, and the 3' termini of the RNA 1, RNA 2 and RNA 3 of this isolate indicated that it was a copy of the 3' untranslated terminal region (3'-UTR) of the genomic RNA 3.

  9. Genome-wide copy number variation analysis identified deletions in SFMBT1 associated with fasting plasma glucose in a Han Chinese population.

    Science.gov (United States)

    Chung, Ren-Hua; Chiu, Yen-Feng; Hung, Yi-Jen; Lee, Wen-Jane; Wu, Kwan-Dun; Chen, Hui-Ling; Lin, Ming-Wei; Chen, Yii-Der I; Quertermous, Thomas; Hsiung, Chao A

    2017-08-08

    Fasting glucose and fasting insulin are glycemic traits closely related to diabetes, and understanding the role of genetic factors in these traits can help reveal the etiology of type 2 diabetes. Although single nucleotide polymorphisms (SNPs) in several candidate genes have been found to be associated with fasting glucose and fasting insulin, copy number variations (CNVs), which have been reported to be associated with several complex traits, have not been reported for association with these two traits. We aimed to identify CNVs associated with fasting glucose and fasting insulin. We conducted a genome-wide CNV association analysis for fasting plasma glucose (FPG) and fasting plasma insulin (FPI) using a family-based genome-wide association study sample from a Han Chinese population in Taiwan. A family-based CNV association test was developed in this study to identify common CNVs (i.e., CNVs with frequencies ≥ 5%), and a generalized estimating equation approach was used to test the associations between the traits and counts of global rare CNVs (i.e., CNVs with frequencies <5%). We found a significant genome-wide association for common deletions with a frequency of 5.2% in the Scm-like with four mbt domains 1 (SFMBT1) gene with FPG (association p-value = 2×10 -4 and an adjusted p-value = 0.0478 for multiple testing). No significant association was observed between global rare CNVs and FPG or FPI. The deletions in 20 individuals with DNA samples available were successfully validated using PCR-based amplification. The association of the deletions in SFMBT1 with FPG was further evaluated using an independent population-based replication sample obtained from the Taiwan Biobank. An association p-value of 0.065, which was close to the significance level of 0.05, for FPG was obtained by testing 9 individuals with CNVs in the SFMBT1 gene region and 11,692 individuals with normal copies in the replication cohort. Previous studies have found that SNPs in SFMBT1 are

  10. Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE tumor tissues for copy-number- and mutation-analysis.

    Directory of Open Access Journals (Sweden)

    Michal R Schweiger

    Full Text Available BACKGROUND: Cancer re-sequencing programs rely on DNA isolated from fresh snap frozen tissues, the preparation of which is combined with additional preservation efforts. Tissue samples at pathology departments are routinely stored as formalin-fixed and paraffin-embedded (FFPE samples and their use would open up access to a variety of clinical trials. However, FFPE preparation is incompatible with many down-stream molecular biology techniques such as PCR based amplification methods and gene expression studies. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the sample quality requirements of FFPE tissues for massively parallel short-read sequencing approaches. We evaluated key variables of pre-fixation, fixation related and post-fixation processes that occur in routine medical service (e.g. degree of autolysis, duration of fixation and of storage. We also investigated the influence of tissue storage time on sequencing quality by using material that was up to 18 years old. Finally, we analyzed normal and tumor breast tissues using the Sequencing by Synthesis technique (Illumina Genome Analyzer, Solexa to simultaneously localize genome-wide copy number alterations and to detect genomic variations such as substitutions and point-deletions and/or insertions in FFPE tissue samples. CONCLUSIONS/SIGNIFICANCE: The application of second generation sequencing techniques on small amounts of FFPE material opens up the possibility to analyze tissue samples which have been collected during routine clinical work as well as in the context of clinical trials. This is in particular important since FFPE samples are amply available from surgical tumor resections and histopathological diagnosis, and comprise tissue from precursor lesions, primary tumors, lymphogenic and/or hematogenic metastases. Large-scale studies using this tissue material will result in a better prediction of the prognosis of cancer patients and the early identification of patients which

  11. Clinical significance of rare copy number variations in epilepsy: a case-control survey using microarray-based comparative genomic hybridization.

    Science.gov (United States)

    Striano, Pasquale; Coppola, Antonietta; Paravidino, Roberta; Malacarne, Michela; Gimelli, Stefania; Robbiano, Angela; Traverso, Monica; Pezzella, Marianna; Belcastro, Vincenzo; Bianchi, Amedeo; Elia, Maurizio; Falace, Antonio; Gazzerro, Elisabetta; Ferlazzo, Edoardo; Freri, Elena; Galasso, Roberta; Gobbi, Giuseppe; Molinatto, Cristina; Cavani, Simona; Zuffardi, Orsetta; Striano, Salvatore; Ferrero, Giovanni Battista; Silengo, Margherita; Cavaliere, Maria Luigia; Benelli, Matteo; Magi, Alberto; Piccione, Maria; Dagna Bricarelli, Franca; Coviello, Domenico A; Fichera, Marco; Minetti, Carlo; Zara, Federico

    2012-03-01

    To perform an extensive search for genomic rearrangements by microarray-based comparative genomic hybridization in patients with epilepsy. Prospective cohort study. Epilepsy centers in Italy. Two hundred seventy-nine patients with unexplained epilepsy, 265 individuals with nonsyndromic mental retardation but no epilepsy, and 246 healthy control subjects were screened by microarray-based comparative genomic hybridization. Identification of copy number variations (CNVs) and gene enrichment. Rare CNVs occurred in 26 patients (9.3%) and 16 healthy control subjects (6.5%) (P = .26). The CNVs identified in patients were larger (P = .03) and showed higher gene content (P = .02) than those in control subjects. The CNVs larger than 1 megabase (P = .002) and including more than 10 genes (P = .005) occurred more frequently in patients than in control subjects. Nine patients (34.6%) among those harboring rare CNVs showed rearrangements associated with emerging microdeletion or microduplication syndromes. Mental retardation and neuropsychiatric features were associated with rare CNVs (P = .004), whereas epilepsy type was not. The CNV rate in patients with epilepsy and mental retardation or neuropsychiatric features is not different from that observed in patients with mental retardation only. Moreover, significant enrichment of genes involved in ion transport was observed within CNVs identified in patients with epilepsy. Patients with epilepsy show a significantly increased burden of large, rare, gene-rich CNVs, particularly when associated with mental retardation and neuropsychiatric features. The limited overlap between CNVs observed in the epilepsy group and those observed in the group with mental retardation only as well as the involvement of specific (ion channel) genes indicate a specific association between the identified CNVs and epilepsy. Screening for CNVs should be performed for diagnostic purposes preferentially in patients with epilepsy and mental retardation or

  12. Near-haploid and low-hypodiploid acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Safavi, Setareh; Paulsson, Kajsa

    2017-01-01

    Hypodiploidy leukemia (ALL) in both children and adults. It has long been clear by cytogenetic analyses, and recently confirmed by mutational profiling, that these cases may be further subdivided into 2 subtypes: near-haploid ALL...

  13. Chromosome length scaling in haploid, asexual reproduction

    International Nuclear Information System (INIS)

    Oliveira, P M C de

    2007-01-01

    We study the genetic behaviour of a population formed by haploid individuals which reproduce asexually. The genetic information for each individual is stored along a bit-string (or chromosome) with L bits, where 0-bits represent the wild allele and 1-bits correspond to harmful mutations. Each newborn inherits this chromosome from its parent with a few random mutations: on average a fixed number m of bits are flipped. Selection is implemented according to the number N of 1-bits counted along the individual's chromosome: the smaller N the higher the probability an individual has to survive a new time step. Such a population evolves, with births and deaths, and its genetic distribution becomes stabilized after sufficiently many generations have passed. The question we pose concerns the procedure of increasing L. The aim is to get the same distribution of genetic loads N/L among the equilibrated population, in spite of a larger L. Should we keep the same mutation rate m/L for different values of L? The answer is yes, which intuitively seems to be plausible. However, this conclusion is not trivial, according to our simulation results: the question also involves the population size

  14. Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems

    Directory of Open Access Journals (Sweden)

    Li-Fang JIN

    2016-07-01

    Full Text Available With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches.

  15. Verification and characterization of chromosome duplication in haploid maize.

    Science.gov (United States)

    de Oliveira Couto, E G; Resende Von Pinho, E V; Von Pinho, R G; Veiga, A D; de Carvalho, M R; de Oliveira Bustamante, F; Nascimento, M S

    2015-06-26

    Doubled haploid technology has been used by various private companies. However, information regarding chromosome duplication methodologies, particularly those concerning techniques used to identify duplication in cells, is limited. Thus, we analyzed and characterized artificially doubled haploids using microsatellites molecular markers, pollen viability, and flow cytometry techniques. Evaluated material was obtained using two different chromosome duplication protocols in maize seeds considered haploids, resulting from the cross between the haploid inducer line KEMS and 4 hybrids (GNS 3225, GNS 3032, GNS 3264, and DKB 393). Fourteen days after duplication, plant samples were collected and assessed by flow cytometry. Further, the plants were transplanted to a field, and samples were collected for DNA analyses using microsatellite markers. The tassels were collected during anthesis for pollen viability analyses. Haploid, diploid, and mixoploid individuals were detected using flow cytometry, demonstrating that this technique was efficient for identifying doubled haploids. The microsatellites markers were also efficient for confirming the ploidies preselected by flow cytometry and for identifying homozygous individuals. Pollen viability showed a significant difference between the evaluated ploidies when the Alexander and propionic-carmin stains were used. The viability rates between the plodies analyzed show potential for fertilization.

  16. Simple Meets Single: The Application of CRISPR/Cas9 in Haploid Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Zixi Yin

    2017-01-01

    Full Text Available The CRISPR/Cas9 system provides a powerful method for the genetic manipulation of the mammalian genome, allowing knockout of individual genes as well as the generation of genome-wide knockout cell libraries for genetic screening. However, the diploid status of most mammalian cells restricts the application of CRISPR/Cas9 in genetic screening. Mammalian haploid embryonic stem cells (haESCs have only one set of chromosomes per cell, avoiding the issue of heterozygous recessive mutations in diploid cells. Thus, the combination of haESCs and CRISPR/Cas9 facilitates the generation of genome-wide knockout cell libraries for genetic screening. Here, we review recent progress in CRISPR/Cas9 and haPSCs and discuss their applications in genetic screening.

  17. Fixation Probability in a Haploid-Diploid Population.

    Science.gov (United States)

    Bessho, Kazuhiro; Otto, Sarah P

    2017-01-01

    Classical population genetic theory generally assumes either a fully haploid or fully diploid life cycle. However, many organisms exhibit more complex life cycles, with both free-living haploid and diploid stages. Here we ask what the probability of fixation is for selected alleles in organisms with haploid-diploid life cycles. We develop a genetic model that considers the population dynamics using both the Moran model and Wright-Fisher model. Applying a branching process approximation, we obtain an accurate fixation probability assuming that the population is large and the net effect of the mutation is beneficial. We also find the diffusion approximation for the fixation probability, which is accurate even in small populations and for deleterious alleles, as long as selection is weak. These fixation probabilities from branching process and diffusion approximations are similar when selection is weak for beneficial mutations that are not fully recessive. In many cases, particularly when one phase predominates, the fixation probability differs substantially for haploid-diploid organisms compared to either fully haploid or diploid species. Copyright © 2017 by the Genetics Society of America.

  18. The mobile genetic element Alu in the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Novick, G.E. [Florida International Univ., Miami, FL (United States); Batzer, M.A.; Deininger, P.L. [Louisiana State Univ. Medical Center, New Orleans, LA (United States)] [and others

    1996-01-01

    Genetic material has been traditionally envisioned as relatively static with the exception of occasional, often deleterious mutations. The sequence DNA-to-RNA-to-protein represented for many years the central dogma relating gene structure and function. Recently, the field of molecular genetics has provided revolutionary information on the dynamic role of repetitive elements in the function of the genetic material and the evolution of humans and other organisms. Alu sequences represent the largest family of short interspersed repetitive elements (SINEs) in humans, being present in an excess of 500,000 copies per haploid genome. Alu elements, as well as the other repetitive elements, were once considered to be useless. Today, the biology of Alu transposable elements is being widely examined in order to determine the molecular basis of a growing number of identified diseases and to provide new directions in genome mapping and biomedical research. 66 refs., 5 figs.

  19. Evolutionary restoration of fertility in an interspecies hybrid yeast, by whole-genome duplication after a failed mating-type switch.

    Directory of Open Access Journals (Sweden)

    Raúl A Ortiz-Merino

    2017-05-01

    Full Text Available Many interspecies hybrids have been discovered in yeasts, but most of these hybrids are asexual and can replicate only mitotically. Whole-genome duplication has been proposed as a mechanism by which interspecies hybrids can regain fertility, restoring their ability to perform meiosis and sporulate. Here, we show that this process occurred naturally during the evolution of Zygosaccharomyces parabailii, an interspecies hybrid that was formed by mating between 2 parents that differed by 7% in genome sequence and by many interchromosomal rearrangements. Surprisingly, Z. parabailii has a full sexual cycle and is genetically haploid. It goes through mating-type switching and autodiploidization, followed by immediate sporulation. We identified the key evolutionary event that enabled Z. parabailii to regain fertility, which was breakage of 1 of the 2 homeologous copies of the mating-type (MAT locus in the hybrid, resulting in a chromosomal rearrangement and irreparable damage to 1 MAT locus. This rearrangement was caused by HO endonuclease, which normally functions in mating-type switching. With 1 copy of MAT inactivated, the interspecies hybrid now behaves as a haploid. Our results provide the first demonstration that MAT locus damage is a naturally occurring evolutionary mechanism for whole-genome duplication and restoration of fertility to interspecies hybrids. The events that occurred in Z. parabailii strongly resemble those postulated to have caused ancient whole-genome duplication in an ancestor of Saccharomyces cerevisiae.

  20. Genetic heterogeneity of patients with suspected Silver-Russell syndrome: genome-wide copy number analysis in 82 patients without imprinting defects.

    Science.gov (United States)

    Inoue, Takanobu; Nakamura, Akie; Fuke, Tomoko; Yamazawa, Kazuki; Sano, Shinichiro; Matsubara, Keiko; Mizuno, Seiji; Matsukura, Yoshika; Harashima, Chie; Hasegawa, Tatsuji; Nakajima, Hisakazu; Tsumura, Kumi; Kizaki, Zenro; Oka, Akira; Ogata, Tsutomu; Fukami, Maki; Kagami, Masayo

    2017-01-01

    Silver-Russell syndrome (SRS) is a rare congenital disorder characterized by pre- and postnatal growth failure and dysmorphic features. Recently, pathogenic copy number variations (PCNVs) and imprinting defects other than hypomethylation of the H19 -differentially methylated region (DMR) and maternal uniparental disomy chromosome 7 have been reported in patients with the SRS phenotype. This study aimed to clarify the frequency and clinical features of patients with SRS phenotype caused by PCNVs. We performed array comparative genomic hybridization analysis using a catalog array for 54 patients satisfying the Netchine-Harbison clinical scoring system (NH-CSS) (SRS-compatible) and for 28 patients presenting with three NH-CSS items together with triangular face and/or fifth finger clinodactyly and/or brachydactyly (SRS-like) without abnormal methylation levels of 9 DMRs related to known imprinting disorders. We then investigated the clinical features of patients with PCNVs. Three of the 54 SRS-compatible patients (5.6%) and 2 of the 28 SRS-like patients (7.1%) had PCNVs. We detected 3.5 Mb deletion in 4p16.3, mosaic trisomy 18, and 3.77-4.00 Mb deletion in 19q13.11-12 in SRS-compatible patients, and 1.41-1.97 Mb deletion in 7q11.23 in both SRS-like patients. Congenital heart diseases (CHDs) were identified in two patients and moderate to severe global developmental delay was observed in four patients. Of the patients in our study, 5.6% of SRS-compatible and 7.1% of SRS-like patients had PCNVs. All PCNVs have been previously reported for genetic causes of contiguous deletion syndromes or mosaic trisomy 18. Our study suggests patients with PCNVs, who have a phenotype resembling SRS, show a high tendency towards CHDs and/or apparent developmental delay.

  1. Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music.

    Science.gov (United States)

    Ukkola-Vuoti, Liisa; Kanduri, Chakravarthi; Oikkonen, Jaana; Buck, Gemma; Blancher, Christine; Raijas, Pirre; Karma, Kai; Lähdesmäki, Harri; Järvelä, Irma

    2013-01-01

    Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire.Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music perception

  2. Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music.

    Directory of Open Access Journals (Sweden)

    Liisa Ukkola-Vuoti

    Full Text Available Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores: auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music was surveyed using a web-based questionnaire.Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9 was found co-segregating with low music test scores (COMB in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for

  3. Genome-Wide Copy Number Variation Analysis in Extended Families and Unrelated Individuals Characterized for Musical Aptitude and Creativity in Music

    Science.gov (United States)

    Oikkonen, Jaana; Buck, Gemma; Blancher, Christine; Raijas, Pirre; Karma, Kai; Lähdesmäki, Harri; Järvelä, Irma

    2013-01-01

    Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire. Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music

  4. An analysis of radiation-induced damage in the spider mite. Relationship between mortality of haploid and diploid eggs in two successive generations

    International Nuclear Information System (INIS)

    Leenhouts, H.P.; Chadwick, K.H.

    1976-01-01

    Unfertilized females of the spider mite (Tetranychus urticae) produce only haploid eggs which develop into a haploid male. Fertilized females produce both haploid eggs (unfertilized), which develop into males, and diploid eggs (fertilized), which develop into females. Radiobiological experiments performed by A.M. Feldmann (Association Euratom-ITAL) made data available on the radiation-induced mortality of haploid and diploid eggs in the F 1 and F 2 generation following irradiation of either males or females with X rays or fast neutrons. The data have been analysed using the molecular theory of cell survival where it is assumed that DNA double strand breaks, induced randomly in the cell, are the critical radiation-induced lesions, which lead to cell death. Theoretical relationships are derived for the dose dependence of hatchability in haploid and diploid eggs in the first and second generations expressed as a function of the radiation damage in the parental genome. These theoretical relationships can be used to derive the inter-relationship between the different hatchabilities, and the results from the spider mite have been analysed using these considerations. It is concluded that the radiation-induced genetic damage arises from one type of initial lesion. The eventual radiobiological implications of this analysis are discussed, expecially with respect to the transmittance of radiation-induced genetic damage after low-level radiation. (author)

  5. Direct Differentiation of Human Pluripotent Stem Cells into Haploid Spermatogenic Cells

    Directory of Open Access Journals (Sweden)

    Charles A. Easley, IV

    2012-09-01

    Full Text Available Human embryonic stem cells (hESCs and induced pluripotent stem cells (hiPSCs have been shown to differentiate into primordial germ cells (PGCs but not into spermatogonia, haploid spermatocytes, or spermatids. Here, we show that hESCs and hiPSCs differentiate directly into advanced male germ cell lineages, including postmeiotic, spermatid-like cells, in vitro without genetic manipulation. Furthermore, our procedure mirrors spermatogenesis in vivo by differentiating PSCs into UTF1-, PLZF-, and CDH1-positive spermatogonia-like cells; HIWI- and HILI-positive spermatocyte-like cells; and haploid cells expressing acrosin, transition protein 1, and protamine 1 (proteins that are uniquely found in spermatids and/or sperm. These spermatids show uniparental genomic imprints similar to those of human sperm on two loci: H19 and IGF2. These results demonstrate that male PSCs have the ability to differentiate directly into advanced germ cell lineages and may represent a novel strategy for studying spermatogenesis in vitro.

  6. Novel type of linear mitochondrial genomes with dual flip-flop inversion system in apicomplexan parasites, Babesia microti and Babesia rodhaini

    Directory of Open Access Journals (Sweden)

    Hikosaka Kenji

    2012-11-01

    Full Text Available Abstract Background Mitochondrial (mt genomes vary considerably in size, structure and gene content. The mt genomes of the phylum Apicomplexa, which includes important human pathogens such as the malaria parasite Plasmodium, also show marked diversity of structure. Plasmodium has a concatenated linear mt genome of the smallest size (6-kb; Babesia and Theileria have a linear monomeric mt genome (6.5-kb to 8.2-kb with terminal inverted repeats; Eimeria, which is distantly related to Plasmodium and Babesia/Theileria, possesses a mt genome (6.2-kb with a concatemeric form similar to that of Plasmodium; Cryptosporidium, the earliest branching lineage within the phylum Apicomplexa, has no mt genome. We are interested in the evolutionary origin of linear mt genomes of Babesia/Theileria, and have investigated mt genome structures in members of archaeopiroplasmid, a lineage branched off earlier from Babesia/Theileria. Results The complete mt genomes of archaeopiroplasmid parasites, Babesia microti and Babesia rodhaini, were sequenced. The mt genomes of B. microti (11.1-kb and B. rodhaini (6.9-kb possess two pairs of unique inverted repeats, IR-A and IR-B. Flip-flop inversions between two IR-As and between two IR-Bs appear to generate four distinct genome structures that are present at an equi-molar ratio. An individual parasite contained multiple mt genome structures, with 20 copies and 2 – 3 copies per haploid nuclear genome in B. microti and B. rodhaini, respectively. Conclusion We found a novel linear monomeric mt genome structure of B. microti and B. rhodhaini equipped with dual flip-flop inversion system, by which four distinct genome structures are readily generated. To our knowledge, this study is the first to report the presence of two pairs of distinct IR sequences within a monomeric linear mt genome. The present finding provides insight into further understanding of evolution of mt genome structure.

  7. Meiosis and Haploid Gametes in the Pathogen Trypanosoma brucei

    OpenAIRE

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-01

    Summary In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence [1]. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector [2, 3] and involves meiosis [4], but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human...

  8. Gauge field copies

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.

    1979-01-01

    The construction of field strength copies without any gauge constraint is discussed. Several examples are given, one of which is not only a field strength copy but also (at the same time) a 'current copy'. (author) [pt

  9. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.

    Science.gov (United States)

    Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S

    2016-06-03

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Genomic copy number analysis of a spectrum of blue nevi identifies recurrent aberrations of entire chromosomal arms in melanoma ex blue nevus.

    Science.gov (United States)

    Chan, May P; Andea, Aleodor A; Harms, Paul W; Durham, Alison B; Patel, Rajiv M; Wang, Min; Robichaud, Patrick; Fisher, Gary J; Johnson, Timothy M; Fullen, Douglas R

    2016-03-01

    Blue nevi may display significant atypia or undergo malignant transformation. Morphologic diagnosis of this spectrum of lesions is notoriously difficult, and molecular tools are increasingly used to improve diagnostic accuracy. We studied copy number aberrations in a cohort of cellular blue nevi, atypical cellular blue nevi, and melanomas ex blue nevi using Affymetrix's OncoScan platform. Cases with sufficient DNA were analyzed for GNAQ, GNA11, and HRAS mutations. Copy number aberrations were detected in 0 of 5 (0%) cellular blue nevi, 3 of 12 (25%) atypical cellular blue nevi, and 6 of 9 (67%) melanomas ex blue nevi. None of the atypical cellular blue nevi displayed more than one aberration, whereas complex aberrations involving four or more regions were seen exclusively in melanomas ex blue nevi. Gains and losses of entire chromosomal arms were identified in four of five melanomas ex blue nevi with copy number aberrations. In particular, gains of 1q, 4p, 6p, and 8q, and losses of 1p and 4q were each found in at least two melanomas. Whole chromosome aberrations were also common, and represented the sole finding in one atypical cellular blue nevus. When seen in melanomas, however, whole chromosome aberrations were invariably accompanied by partial aberrations of other chromosomes. Three melanomas ex blue nevi harbored aberrations, which were absent or negligible in their precursor components, suggesting progression in tumor biology. Gene mutations involving GNAQ and GNA11 were each detected in two of eight melanomas ex blue nevi. In conclusion, copy number aberrations are more common and often complex in melanomas ex blue nevi compared with cellular and atypical cellular blue nevi. Identification of recurrent gains and losses of entire chromosomal arms in melanomas ex blue nevi suggests that development of new probes targeting these regions may improve detection and risk stratification of these lesions.

  11. Isolation of BAC Clones Containing Conserved Genes from Libraries of Three Distantly Related Moths: A Useful Resource for Comparative Genomics of Lepidoptera

    Directory of Open Access Journals (Sweden)

    Yuji Yasukochi

    2011-01-01

    Full Text Available Lepidoptera, butterflies and moths, is the second largest animal order and includes numerous agricultural pests. To facilitate comparative genomics in Lepidoptera, we isolated BAC clones containing conserved and putative single-copy genes from libraries of three pests, Heliothis virescens, Ostrinia nubilalis, and Plutella xylostella, harboring the haploid chromosome number, =31, which are not closely related with each other or with the silkworm, Bombyx mori, (=28, the sequenced model lepidopteran. A total of 108–184 clones representing 101–182 conserved genes were isolated for each species. For 79 genes, clones were isolated from more than two species, which will be useful as common markers for analysis using fluorescence in situ hybridization (FISH, as well as for comparison of genome sequence among multiple species. The PCR-based clone isolation method presented here is applicable to species which lack a sequenced genome but have a significant collection of cDNA or EST sequences.

  12. Scaling up Copy Detection

    OpenAIRE

    Li, Xian; Dong, Xin Luna; Lyons, Kenneth B.; Meng, Weiyi; Srivastava, Divesh

    2015-01-01

    Recent research shows that copying is prevalent for Deep-Web data and considering copying can significantly improve truth finding from conflicting values. However, existing copy detection techniques do not scale for large sizes and numbers of data sources, so truth finding can be slowed down by one to two orders of magnitude compared with the corresponding techniques that do not consider copying. In this paper, we study {\\em how to improve scalability of copy detection on structured data}. Ou...

  13. Evaluasi keseragaaman, keragaman, dan kestabilan karakter agronomi galur-galur padi haploid ganda hasil kultur antera

    Directory of Open Access Journals (Sweden)

    PRIATNA SASMITA

    2011-05-01

    Full Text Available Sasmita P. 2011. Evaluasi keseragaman, keragaman, dan kestabilan karakter agronomi galur-galur padi haploid ganda hasil kultur antera. Bioteknologi 8: 10-17. Pembentukan galur haploid ganda dalam kultur antera bertujuan untuk mempercepat perolehan galur murni. Seleksi karakter yang diinginkan dapat dilakukan langsung terhadap progeni hasil kultur antera pada generasi awal. Percobaan ini bertujuan untuk mengetahui karakteristik agronomi, keseragaman, dan kestabilan galur haploid ganda, serta mendapatkan putatif galur-gallur haploid ganda sebagai bahan evaluasi lebih lanjut untuk mendapatkan galur harapan. Percobaan pertama menggunakan rancangan acak lengkap diulang lima kali. Perlakuannya aadalah 111 galur haploid ganda hasil kultur antera generasi pertama (DH1. Percobaan kedua menggunakan rancangan petak terpisah dengan perlakuan petak utama adalah galur haploid ganda hasil kultur antera dan perlakuan anak petaknya generasi galur haploid ganda kedua (DH2 hingga kelima (DDH5. Hasil percobaan menunjukkan bahwa setiap tanaman dalam galur yang sama memiliki karakter agronnomi seragam, sedangkan tanaman antar galur berbeda memiliki karakter agronomi beragam. Hasil evaluasi lebih lanjut terhadap tiga dari 111 galur haploid ganda yang berasal dari generasi kedua hingga kelima menunjukkan tidak terdapat perbedaan karakter antar generasi untuk setiap p galur yang sama. Hasil penelitian tersebut menunjukkan pula bahwa karakteristik agronomi galur haploid ganda stabil dari generasi ke generasi.

  14. Development of a doubled haploid system for wheat through wheat ...

    African Journals Online (AJOL)

    La variété de maïs Kelvedon glory, avait la meilleure réponse parmi les variétés des maïs. Des considérables différences variétales dans le rendement de production d'haploides étaient évidentes à la fois dans les variétés de blé et de maïs. Mots Clés: Plantes homozygènes, protocole de rendement, Tritium aestivum, Zea ...

  15. Transformation of haploid, microspore-derived cell suspension protoplasts of rice (Oryza sativa L.).

    Science.gov (United States)

    Chaïr, H; Legavre, T; Guiderdoni, E

    1996-06-01

    We compared the transient activity of three cereal gene-derived promoter-gus fusions and the efficiency of selection mediated by three different selectable genes in a polyethylene glycol transformation system with haploid cell suspension protoplasts of rice. The maize ubiquitin promoter was found to be the most active in transformed protoplasts, and selection on ammonium glufosinate mediated by the bar gene was the most efficient for producing resistant calluses. Cotransformation of protoplasts with two separate plasmids carrying the gus and the bar genes, at either a 2∶1 or 1∶1 ratio, led to 0.8 × 10(-5) and 1.6 × 10(-5) resistant callus recovery frequencies and 59.7 and 37.9 cotransformation efficiencies respectively. No escapes were detected in dot blot analyses of 100 resistant calluses with a probe consisting of the bar coding region. Cotransformation efficiency, based on resistance to basta and β-glucuronidase staining of the leaf tissue of 115 regenerated plants, was 47%. Resistance tests and Southern analysis of seed progenies of three diploid transgenic plants demonstrated homozygous integration of multiple copies of the transgene at one locus at least in the first plant, heterozygous integration at one locus in the second plant and heterozygous integration at two loci in the third plant.

  16. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  17. Meiosis and haploid gametes in the pathogen Trypanosoma brucei.

    Science.gov (United States)

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-20

    In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector and involves meiosis, but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human pathogens. By observing insect-derived trypanosomes during the window of peak expression of meiosis-specific genes, we identified promastigote-like (PL) cells that interacted with each other via their flagella and underwent fusion, as visualized by the mixing of cytoplasmic red and green fluorescent proteins. PL cells had a short, wide body, a very long anterior flagellum, and either one or two kinetoplasts, but only the anterior kinetoplast was associated with the flagellum. Measurement of nuclear DNA contents showed that PL cells were haploid relative to diploid metacyclics. Trypanosomes are among the earliest diverging eukaryotes, and our results support the hypothesis that meiosis and sexual reproduction are ubiquitous in eukaryotes and likely to have been early innovations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Genetical Studies On Haploid Production In Some Ornamental Plants

    International Nuclear Information System (INIS)

    MOSTAFA, M.A.M.

    2013-01-01

    Haploid are plants with a gametophytic chromosome number and doubled haploid are dihaploids that have undergone chromosome duplication. The production of haploid and doubled haploid (DHs) through gametic embryogenesis allows a single-step development of complete homozygous lines from heterozygous parents, shortening the time required to produce homozygous plants in comparison with the conventional breeding methods that employ several generations of selfing. The production of haploid and DHs provides a particularly attractive biotechnological tool, and the development of haploidy technology and protocols to produce homozygous plants has had a significant impact on agricultural systems. Nowadays, these bio technologies represent an integral part of the breeding programmes of many agronomically important crops. There are several available methods to obtain haploid and DHs, of which in vitro anther or isolated microspore culture are the most effective and widely used (Germana Maria 2011). Tissue culture techniques, particularly short-term culture procedures such as shoot-tip culture and regeneration from primary explants, have been proposed as methods for obtaining large numbers of plants identical to the plant used as an explant source( Evans et al., 1984). Nicotiana spp. are one of the most important commercial crops in the world ( Liu and Zhang, 2008). Nicotiana alata is member from family solanacea, it is ornamental plant and the diploid cells contains 18 chromosomes. Nitsch (1969) reported the first production of haploid plants through anther culture and regeneration of plants of Nicotiana alata, For these reasons they have been considered to suitable candidates for model species in somatic cell genetics research( Bourgin et al., 1979). Radiobiological studies on plant tissues in culture may provide information on the cell growth behavior, radiosensitivity and the induction of mutations. The radiosensitivity of plants and calli can be manifested mostly in three

  19. Functional role of a highly repetitive DNA sequence in anchorage of the mouse genome.

    Science.gov (United States)

    Neuer-Nitsche, B; Lu, X N; Werner, D

    1988-09-12

    The major portion of the eukaryotic genome consists of various categories of repetitive DNA sequences which have been studied with respect to their base compositions, organizations, copy numbers, transcription and species specificities; their biological roles, however, are still unclear. A novel quality of a highly repetitive mouse DNA sequence is described which points to a functional role: All copies (approximately 50,000 per haploid genome) of this DNA sequence reside on genomic Alu I DNA fragments each associated with nuclear polypeptides that are not released from DNA by proteinase K, SDS and phenol extraction. By this quality the repetitive DNA sequence is classified as a member of the sub-set of DNA sequences involved in tight DNA-polypeptide complexes which have been previously shown to be components of the subnuclear structure termed 'nuclear matrix'. From these results it has to be concluded that the repetitive DNA sequence characterized in this report represents or comprises a signal for a large number of site specific attachment points of the mouse genome in the nuclear matrix.

  20. Competition between the sperm of a single male can increase the evolutionary rate of haploid expressed genes.

    Science.gov (United States)

    Ezawa, Kiyoshi; Innan, Hideki

    2013-07-01

    The population genetic behavior of mutations in sperm genes is theoretically investigated. We modeled the processes at two levels. One is the standard population genetic process, in which the population allele frequencies change generation by generation, depending on the difference in selective advantages. The other is the sperm competition during each genetic transmission from one generation to the next generation. For the sperm competition process, we formulate the situation where a huge number of sperm with alleles A and B, produced by a single heterozygous male, compete to fertilize a single egg. This "minimal model" demonstrates that a very slight difference in sperm performance amounts to quite a large difference between the alleles' winning probabilities. By incorporating this effect of paternity-sharing sperm competition into the standard population genetic process, we show that fierce sperm competition can enhance the fixation probability of a mutation with a very small phenotypic effect at the single-sperm level, suggesting a contribution of sperm competition to rapid amino acid substitutions in haploid-expressed sperm genes. Considering recent genome-wide demonstrations that a substantial fraction of the mammalian sperm genes are haploid expressed, our model could provide a potential explanation of rapid evolution of sperm genes with a wide variety of functions (as long as they are expressed in the haploid phase). Another advantage of our model is that it is applicable to a wide range of species, irrespective of whether the species is externally fertilizing, polygamous, or monogamous. The theoretical result was applied to mammalian data to estimate the selection intensity on nonsynonymous mutations in sperm genes.

  1. Inter Simple Sequence Repeat DNA (ISSR) Polymorphism Utility in Haploid Nicotiana Alata Irradiated Plants for Finding Markers Associated with Gamma Irradiation and Salinity

    International Nuclear Information System (INIS)

    El-Fiki, A.; Adly, M.; El-Metabteb, G.

    2017-01-01

    Nicotiana alata is an ornamental plant. It is a member of family Solanasea. Tobacco (Nicotiana spp.) is one of the most important commercial crops in the world. Wild Nicotiana species, as a store house of genes for several diseases and pests, in addition to genes for several important phytochemicals and quality traits which are not present in cultivated varieties. Inter simple sequence repeat DNA (ISSR) analysis was used to determine the degree of genetic variation in treated haploid Nicotiana alata plants. Total genomic DNAs from different treated haploid plant lets were amplified using five specific primers. All primers were polymorphic. A total of 209 bands were amplified of which 135 (59.47%) polymorphic across the radiation treatments. Whilst, the level of polymorphism among the salinity treatments were 181 (85.6 %). Whereas, the polymorphism among the combined effects between gamma radiation doses and salinity concentrations were 283 ( 73.95% ). Treatments relationships were estimated through cluster analysis (UPGMA) based on ISSR data

  2. Quantum copying: A review

    Directory of Open Access Journals (Sweden)

    Mark Hillery

    2000-07-01

    Full Text Available Quantum information is stored in two-level quantum systems known as qubits. The no-cloning theorem states that the state of an unknown qubit cannot be copied. This is in contrast to classical information which can be copied. If one drops the requirement that the copies be perfect it is possible to design quantum copiers. This paper presents a short review of the theory of quantum copying.

  3. Construction of a nurse shark (Ginglymostoma cirratum) bacterial artificial chromosome (BAC) library and a preliminary genome survey.

    Science.gov (United States)

    Luo, Meizhong; Kim, Hyeran; Kudrna, Dave; Sisneros, Nicholas B; Lee, So-Jeong; Mueller, Christopher; Collura, Kristi; Zuccolo, Andrea; Buckingham, E Bryan; Grim, Suzanne M; Yanagiya, Kazuyo; Inoko, Hidetoshi; Shiina, Takashi; Flajnik, Martin F; Wing, Rod A; Ohta, Yuko

    2006-05-03

    Sharks are members of the taxonomic class Chondrichthyes, the oldest living jawed vertebrates. Genomic studies of this group, in comparison to representative species in other vertebrate taxa, will allow us to theorize about the fundamental genetic, developmental, and functional characteristics in the common ancestor of all jawed vertebrates. In order to obtain mapping and sequencing data for comparative genomics, we constructed a bacterial artificial chromosome (BAC) library for the nurse shark, Ginglymostoma cirratum. The BAC library consists of 313,344 clones with an average insert size of 144 kb, covering ~4.5 x 1010 bp and thus providing an 11-fold coverage of the haploid genome. BAC end sequence analyses revealed, in addition to LINEs and SINEs commonly found in other animal and plant genomes, two new groups of nurse shark-specific repetitive elements, NSRE1 and NSRE2 that seem to be major components of the nurse shark genome. Screening the library with single-copy or multi-copy gene probes showed 6-28 primary positive clones per probe of which 50-90% were true positives, demonstrating that the BAC library is representative of the different regions of the nurse shark genome. Furthermore, some BAC clones contained multiple genes, making physical mapping feasible. We have constructed a deep-coverage, high-quality, large insert, and publicly available BAC library for a cartilaginous fish. It will be very useful to the scientific community interested in shark genomic structure, comparative genomics, and functional studies. We found two new groups of repetitive elements specific to the nurse shark genome, which may contribute to the architecture and evolution of the nurse shark genome.

  4. Construction of a nurse shark (Ginglymostoma cirratum bacterial artificial chromosome (BAC library and a preliminary genome survey

    Directory of Open Access Journals (Sweden)

    Inoko Hidetoshi

    2006-05-01

    Full Text Available Abstract Background Sharks are members of the taxonomic class Chondrichthyes, the oldest living jawed vertebrates. Genomic studies of this group, in comparison to representative species in other vertebrate taxa, will allow us to theorize about the fundamental genetic, developmental, and functional characteristics in the common ancestor of all jawed vertebrates. Aims In order to obtain mapping and sequencing data for comparative genomics, we constructed a bacterial artificial chromosome (BAC library for the nurse shark, Ginglymostoma cirratum. Results The BAC library consists of 313,344 clones with an average insert size of 144 kb, covering ~4.5 × 1010 bp and thus providing an 11-fold coverage of the haploid genome. BAC end sequence analyses revealed, in addition to LINEs and SINEs commonly found in other animal and plant genomes, two new groups of nurse shark-specific repetitive elements, NSRE1 and NSRE2 that seem to be major components of the nurse shark genome. Screening the library with single-copy or multi-copy gene probes showed 6–28 primary positive clones per probe of which 50–90% were true positives, demonstrating that the BAC library is representative of the different regions of the nurse shark genome. Furthermore, some BAC clones contained multiple genes, making physical mapping feasible. Conclusion We have constructed a deep-coverage, high-quality, large insert, and publicly available BAC library for a cartilaginous fish. It will be very useful to the scientific community interested in shark genomic structure, comparative genomics, and functional studies. We found two new groups of repetitive elements specific to the nurse shark genome, which may contribute to the architecture and evolution of the nurse shark genome.

  5. Exact Markov chains versus diffusion theory for haploid random mating.

    Science.gov (United States)

    Tyvand, Peder A; Thorvaldsen, Steinar

    2010-05-01

    Exact discrete Markov chains are applied to the Wright-Fisher model and the Moran model of haploid random mating. Selection and mutations are neglected. At each discrete value of time t there is a given number n of diploid monoecious organisms. The evolution of the population distribution is given in diffusion variables, to compare the two models of random mating with their common diffusion limit. Only the Moran model converges uniformly to the diffusion limit near the boundary. The Wright-Fisher model allows the population size to change with the generations. Diffusion theory tends to under-predict the loss of genetic information when a population enters a bottleneck. 2010 Elsevier Inc. All rights reserved.

  6. Improvement of ethanol-tolerance of haploid Saccharomyces diastaticus

    International Nuclear Information System (INIS)

    Song, S.H.; Kim, K.; Lee, M.W.

    1994-01-01

    Several mutation procedures have been compared to obtain an ethanol-tolerant Saccharomyces diastaticus strain secreting glucoamylase. These procedures include spontaneous mutation, EMS treatment, UV irradiation, and combination of EMS treatment and UV irradiation. All these methods were followed by adaptation of the yeast cells to gradually higher ethanol concentration. Among these procedures, the combined method of EMS treatment and UV irradiation gave the promising result, i.e. the ethanol tolerance of the yeast increased from 11.5%(v/v) to 14.0%(v/v). Respiratory deficient petite mutants of industrial and ethanol-tolerant yeast strains have been isolated and hybridized with haploid S. diastaticus strains. The resulting hybrids showed increased ethanol tolerance and starch-fermentability

  7. Techniques of radiation induced haploid breeding of wheat

    International Nuclear Information System (INIS)

    Xuan Pu; Xu Liyuan; Qu Shihong; Yu Guirong; Yin Chunrong; Yue Chunfang

    2000-01-01

    With the treatment of different doses of 60 Co γ-ray irradiation to F 1 hybrid seeds and donor plants from M 1 F 1 or M 2 F 2 , wheat anther culture was made based on the media of MW 14 and modified MS. A series of studies on the applied doses of radiation induction, low temperature treatment on donor spikes and calli, variable temperature induced incubation and yield of pollen callus and calli giving green plant lets, pollen plant lets control over summertime and pollen plant let transplantation were carried out in order to increase the efficiency of obtaining double haploid-pure diploid plant lets of wheat with stable heredity and propagation. Theses plant lets could be used directly in rapid breeding

  8. Mutagenesis and haploid culture for disease resistance in Brassica napus

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M V; Ahmad, I; Ingram, D S [Botany School, University of Cambridge, Cambridge (United Kingdom)

    1990-01-01

    Full text: Most winter oilseed rape cultivars share parentage and therefore show little genetic diversity. There is no known resistance to Alternaria spp. in oilseed rape or in any related Brassica species. Experiments with tissue culture yielded only transient, non-genetic resistance. Therefore, mutagenesis may be used to generate heritable resistance to Alternaria spp. Gamma irradiation was applied to seeds of 'Bienvenue', secondary embryoids of cvs 'Primor' and 'Rapora', and buds of cvs 'Primor' and 'Ariana'. Isolated microspores from cv 'Ariana' and rapid cycling B. napus were also treated. The doses used ranged from 0-100 Gy for isolated microspores and buds, up to 600 Gy for seeds and 960 Gy for secondary embryoids. EMS was used to treat seeds of line WRG-42 (supplied by Nickersons RPB) and microspores of cv 'Bienvenue' and rapid cycling B. napus. Seeds were treated with up to 2.0% EMS for 0.2 h. before plating them on the culture medium. Seed irradiation up to 600 Gy did not reduce germination. M{sub 1} and M{sub 2} progenies were tested both in the laboratory and in field trials, and none of these were found to be resistant to Alternaria. However, considerable variation for other characters was observed. Haploid cultures from these plants were extremely difficult to regenerate, and for this reason no regenerant plants have been tested for resistance. For irradiated secondary embryoids the regeneration capacity decreased with increasing dose. Regenerated plants have been tested for resistance to Alternaria, but stable resistance was not observed. Haploid cultures were obtained from irradiated buds, using both anther and microspore culture. Low irradiation treatment was beneficial to developing embryoids. Some regenerants have been obtained from EMS treated microspores and seeds. Four plants have repeatedly given increased levels of resistance to A. brassicicola, and progenies are being tested to determine the genetic nature of the resistance. (author)

  9. Generation of doubled haploid transgenic wheat lines by microspore transformation.

    Directory of Open Access Journals (Sweden)

    Rhoda A T Brew-Appiah

    Full Text Available Microspores can be induced to develop homozygous doubled haploid plants in a single generation. In the present experiments androgenic microspores of wheat have been genetically transformed and developed into mature homozygous transgenic plants. Two different transformation techniques were investigated, one employing electroporation and the other co-cultivation with Agrobacterium tumefaciens. Different tissue culture and transfection conditions were tested on nine different wheat cultivars using four different constructs. A total of 19 fertile transformants in five genotypes from four market classes of common wheat were recovered by the two procedures. PCR followed by DNA sequencing of the products, Southern blot analyses and bio/histo-chemical and histological assays of the recombinant enzymes confirmed the presence of the transgenes in the T0 transformants and their stable inheritance in homozygous T1∶2 doubled haploid progenies. Several decisive factors determining the transformation and regeneration efficiency with the two procedures were determined: (i pretreatment of immature spikes with CuSO4 solution (500 mg/L at 4°C for 10 days; (ii electroporation of plasmid DNA in enlarged microspores by a single pulse of ∼375 V; (iii induction of microspores after transfection at 28°C in NPB-99 medium and regeneration at 26°C in MMS5 medium; (iv co-cultivation with Agrobacterium AGL-1 cells for transfer of plasmid T-DNA into microspores at day 0 for <24 hours; and (v elimination of AGL-1 cells after co-cultivation with timentin (200-400 mg/L.

  10. Mutagenesis and haploid culture for disease resistance in Brassica napus

    International Nuclear Information System (INIS)

    MacDonald, M.V.; Ahmad, I.; Ingram, D.S.

    1990-01-01

    Full text: Most winter oilseed rape cultivars share parentage and therefore show little genetic diversity. There is no known resistance to Alternaria spp. in oilseed rape or in any related Brassica species. Experiments with tissue culture yielded only transient, non-genetic resistance. Therefore, mutagenesis may be used to generate heritable resistance to Alternaria spp. Gamma irradiation was applied to seeds of 'Bienvenue', secondary embryoids of cvs 'Primor' and 'Rapora', and buds of cvs 'Primor' and 'Ariana'. Isolated microspores from cv 'Ariana' and rapid cycling B. napus were also treated. The doses used ranged from 0-100 Gy for isolated microspores and buds, up to 600 Gy for seeds and 960 Gy for secondary embryoids. EMS was used to treat seeds of line WRG-42 (supplied by Nickersons RPB) and microspores of cv 'Bienvenue' and rapid cycling B. napus. Seeds were treated with up to 2.0% EMS for 0.2 h. before plating them on the culture medium. Seed irradiation up to 600 Gy did not reduce germination. M 1 and M 2 progenies were tested both in the laboratory and in field trials, and none of these were found to be resistant to Alternaria. However, considerable variation for other characters was observed. Haploid cultures from these plants were extremely difficult to regenerate, and for this reason no regenerant plants have been tested for resistance. For irradiated secondary embryoids the regeneration capacity decreased with increasing dose. Regenerated plants have been tested for resistance to Alternaria, but stable resistance was not observed. Haploid cultures were obtained from irradiated buds, using both anther and microspore culture. Low irradiation treatment was beneficial to developing embryoids. Some regenerants have been obtained from EMS treated microspores and seeds. Four plants have repeatedly given increased levels of resistance to A. brassicicola, and progenies are being tested to determine the genetic nature of the resistance. (author)

  11. Standing at the Gateway to Europe - The Genetic Structure of Western Balkan Populations Based on Autosomal and Haploid Markers

    Science.gov (United States)

    Kovacevic, Lejla; Tambets, Kristiina; Ilumäe, Anne-Mai; Kushniarevich, Alena; Yunusbayev, Bayazit; Solnik, Anu; Bego, Tamer; Primorac, Dragan; Skaro, Vedrana; Leskovac, Andreja; Jakovski, Zlatko; Drobnic, Katja; Tolk, Helle-Viivi; Kovacevic, Sandra; Rudan, Pavao; Metspalu, Ene; Marjanovic, Damir

    2014-01-01

    Contemporary inhabitants of the Balkan Peninsula belong to several ethnic groups of diverse cultural background. In this study, three ethnic groups from Bosnia and Herzegovina - Bosniacs, Bosnian Croats and Bosnian Serbs - as well as the populations of Serbians, Croatians, Macedonians from the former Yugoslav Republic of Macedonia, Montenegrins and Kosovars have been characterized for the genetic variation of 660 000 genome-wide autosomal single nucleotide polymorphisms and for haploid markers. New autosomal data of the 70 individuals together with previously published data of 20 individuals from the populations of the Western Balkan region in a context of 695 samples of global range have been analysed. Comparison of the variation data of autosomal and haploid lineages of the studied Western Balkan populations reveals a concordance of the data in both sets and the genetic uniformity of the studied populations, especially of Western South-Slavic speakers. The genetic variation of Western Balkan populations reveals the continuity between the Middle East and Europe via the Balkan region and supports the scenario that one of the major routes of ancient gene flows and admixture went through the Balkan Peninsula. PMID:25148043

  12. Standing at the gateway to Europe--the genetic structure of Western balkan populations based on autosomal and haploid markers.

    Science.gov (United States)

    Kovacevic, Lejla; Tambets, Kristiina; Ilumäe, Anne-Mai; Kushniarevich, Alena; Yunusbayev, Bayazit; Solnik, Anu; Bego, Tamer; Primorac, Dragan; Skaro, Vedrana; Leskovac, Andreja; Jakovski, Zlatko; Drobnic, Katja; Tolk, Helle-Viivi; Kovacevic, Sandra; Rudan, Pavao; Metspalu, Ene; Marjanovic, Damir

    2014-01-01

    Contemporary inhabitants of the Balkan Peninsula belong to several ethnic groups of diverse cultural background. In this study, three ethnic groups from Bosnia and Herzegovina - Bosniacs, Bosnian Croats and Bosnian Serbs - as well as the populations of Serbians, Croatians, Macedonians from the former Yugoslav Republic of Macedonia, Montenegrins and Kosovars have been characterized for the genetic variation of 660 000 genome-wide autosomal single nucleotide polymorphisms and for haploid markers. New autosomal data of the 70 individuals together with previously published data of 20 individuals from the populations of the Western Balkan region in a context of 695 samples of global range have been analysed. Comparison of the variation data of autosomal and haploid lineages of the studied Western Balkan populations reveals a concordance of the data in both sets and the genetic uniformity of the studied populations, especially of Western South-Slavic speakers. The genetic variation of Western Balkan populations reveals the continuity between the Middle East and Europe via the Balkan region and supports the scenario that one of the major routes of ancient gene flows and admixture went through the Balkan Peninsula.

  13. A review of methods for the production of haploids in seed plants

    International Nuclear Information System (INIS)

    Brunkener, L.

    1974-01-01

    This paper is a review of the methods which have been tried to produce haploids in seed plants. Because of their unique genetic constitution the haploids provide useful material for the study of various fundamental cytological and genetic problems. Thus the diploidization of haploids in conifers and subsequent intercrossing might allow the use of the same breeding technique as those which have been used with great success in maize breeding. Induced parthenogenesis in angiosperms has led to the formation of haploids in at least 25 genera but the number of plants obtained is generally too low for a practical utilization. The most promising method in angiosperms is in vitro cultivation of anthers which has hitherto yielded haploids in relatively large numbers in at least l5 genera but certainly can be applied with success in many more. Isolation of protoplasts or whole cells of diploid and haploid tissues and regeneration of entire plants from these protoplasts or cells have been accomplished in a few angiosperm genera. In gymnosperms all attempts to produce complete haploid plants have up to now failed. In this group there is possibly a relationship between polyembryonic seeds and the presence of small, haploid embryos. Therefore, the in vitro cultivation of small embryos of such seeds may result in the formation of independent haploid plants. In vitro cultivation of whole microsporangia or pollen has led to the production of calli in a few gymnosperm genera and in one case roots have even been induced. In some gymnosperms female gametophytes cultured on nutrient medium have yielded calli and in a few genera even root-like organs or small seedlings have arisen. (author)

  14. A Genome Wide Study of Copy Number Variation Associated with Nasopharyngeal Carcinoma in Malaysian Chinese Identifies CNVs at 11q14.3 and 6p21.3 as Candidate Loci

    Science.gov (United States)

    Low, Joyce Siew Yong; Chin, Yoon Ming; Mushiroda, Taisei; Kubo, Michiaki; Govindasamy, Gopala Krishnan; Pua, Kin Choo; Yap, Yoke Yeow; Yap, Lee Fah; Subramaniam, Selva Kumar; Ong, Cheng Ai; Tan, Tee Yong; Khoo, Alan Soo Beng; Ng, Ching Ching

    2016-01-01

    Background Nasopharyngeal carcinoma (NPC) is a neoplasm of the epithelial lining of the nasopharynx. Despite various reports linking genomic variants to NPC predisposition, very few reports were done on copy number variations (CNV). CNV is an inherent structural variation that has been found to be involved in cancer predisposition. Methods A discovery cohort of Malaysian Chinese descent (NPC patients, n = 140; Healthy controls, n = 256) were genotyped using Illumina® HumanOmniExpress BeadChip. PennCNV and cnvPartition calling algorithms were applied for CNV calling. Taqman CNV assays and digital PCR were used to validate CNV calls and replicate candidate copy number variant region (CNVR) associations in a follow-up Malaysian Chinese (NPC cases, n = 465; and Healthy controls, n = 677) and Malay cohort (NPC cases, n = 114; Healthy controls, n = 124). Results Six putative CNVRs overlapping GRM5, MICA/HCP5/HCG26, LILRB3/LILRA6, DPY19L2, RNase3/RNase2 and GOLPH3 genes were jointly identified by PennCNV and cnvPartition. CNVs overlapping GRM5 and MICA/HCP5/HCG26 were subjected to further validation by Taqman CNV assays and digital PCR. Combined analysis in Malaysian Chinese cohort revealed a strong association at CNVR on chromosome 11q14.3 (Pcombined = 1.54x10-5; odds ratio (OR) = 7.27; 95% CI = 2.96–17.88) overlapping GRM5 and a suggestive association at CNVR on chromosome 6p21.3 (Pcombined = 1.29x10-3; OR = 4.21; 95% CI = 1.75–10.11) overlapping MICA/HCP5/HCG26 genes. Conclusion Our results demonstrated the association of CNVs towards NPC susceptibility, implicating a possible role of CNVs in NPC development. PMID:26730743

  15. A Genome Wide Study of Copy Number Variation Associated with Nasopharyngeal Carcinoma in Malaysian Chinese Identifies CNVs at 11q14.3 and 6p21.3 as Candidate Loci.

    Directory of Open Access Journals (Sweden)

    Joyce Siew Yong Low

    Full Text Available Nasopharyngeal carcinoma (NPC is a neoplasm of the epithelial lining of the nasopharynx. Despite various reports linking genomic variants to NPC predisposition, very few reports were done on copy number variations (CNV. CNV is an inherent structural variation that has been found to be involved in cancer predisposition.A discovery cohort of Malaysian Chinese descent (NPC patients, n = 140; Healthy controls, n = 256 were genotyped using Illumina® HumanOmniExpress BeadChip. PennCNV and cnvPartition calling algorithms were applied for CNV calling. Taqman CNV assays and digital PCR were used to validate CNV calls and replicate candidate copy number variant region (CNVR associations in a follow-up Malaysian Chinese (NPC cases, n = 465; and Healthy controls, n = 677 and Malay cohort (NPC cases, n = 114; Healthy controls, n = 124.Six putative CNVRs overlapping GRM5, MICA/HCP5/HCG26, LILRB3/LILRA6, DPY19L2, RNase3/RNase2 and GOLPH3 genes were jointly identified by PennCNV and cnvPartition. CNVs overlapping GRM5 and MICA/HCP5/HCG26 were subjected to further validation by Taqman CNV assays and digital PCR. Combined analysis in Malaysian Chinese cohort revealed a strong association at CNVR on chromosome 11q14.3 (Pcombined = 1.54x10-5; odds ratio (OR = 7.27; 95% CI = 2.96-17.88 overlapping GRM5 and a suggestive association at CNVR on chromosome 6p21.3 (Pcombined = 1.29x10-3; OR = 4.21; 95% CI = 1.75-10.11 overlapping MICA/HCP5/HCG26 genes.Our results demonstrated the association of CNVs towards NPC susceptibility, implicating a possible role of CNVs in NPC development.

  16. The Art of Copying

    DEFF Research Database (Denmark)

    Christensen, Hans Dam

    2017-01-01

    This article discusses copies within the field of art museums by way of mapping strategies for copy practices. This mapping leans heavily towards parts of the writings of Jacques Derrida (1930–2004). Against the backdrop of this theoretical premise, the article distinguishes five main strategies....... An informational copy is just as unique as an original object of art, and at the same time, it defines the original and is itself defined by this opposition. Lastly, the strategy for the imagined relation between original and copy follows. This strategy is dependent upon several of the previous approaches, and...

  17. Expression of the hepatitis B virus genome in chronic hepatitis B carriers and patients with hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Bowyer, S.M.; Dusheiko, G.M.; Schoub, B.D.; Kew, M.C.

    1987-01-01

    The authors examined the methylation status of CCGG sites in hepatitis B virus (HBV) DNA to determine whether methylation could be responsible for the selective expression of the HBV surface gene in chronic hepatitis B infection and hepatocellular carcinoma. Infected liver tissue from patients with low levels of viral replication was analyzed for HBV DNA copy number per haploid cell genome. Total cellular DNA, with sufficient HBV DNA, was digested with the restriction endonucleases Msp I and Hpa II, to determine whether the HBV DNA was methylated, or HindIII, to determine whether the HBV DNA was integrated or episomal. The cleavage fragments were analyzed by Southern blotting and hybridization to 32 P-labeled HBV DNA. In replicative chronic hepatitis B, hypomethylation of the HBV genome correlated with HBV expression in both virions and infected tissue. In carriers with nonreplicative infection, it was difficult to ascertain the role of methylation as copy number was low. HBV DNA copy number was also low in 17 out of 29 of the rumor tissues tested and as many as 14 out of 16 of the adjacent non-neoplastic tissues tested. Integrated sequences were hypermethylated in the PLC/PRF/5 cell line and in six of the tumor tissues suggesting that methylation plays a role in HBV gene repression. However, since DNA from five other tumors was hypomethylated, the belief that methylation per se is an absolute determinant of HBV core gene repression does not hold for human hepatocellular carcinoma tissue

  18. Genomes

    National Research Council Canada - National Science Library

    Brown, T. A. (Terence A.)

    2002-01-01

    ... of genome expression and replication processes, and transcriptomics and proteomics. This text is richly illustrated with clear, easy-to-follow, full color diagrams, which are downloadable from the book's website...

  19. Haploid Barley from the Intergeneric Cross Hordeum vulgare x Psathyrostachys fragilis

    DEFF Research Database (Denmark)

    Bothmer, Roland; Jacobsen, Niels; Bagger Jørgensen, Rikke

    1984-01-01

    The intergeneric hybrid Hordeum vulgare x Psathyrostachys fragilis was fairly easily obtained. During each growing season the intermediate, perennial hybrid yielded haploid tillers of H. vulgare. Late in one season few, hybrid tillers headed. The morphology, cytology and enzymatic patterns...

  20. High production of wheat double haploids via anther culture

    Directory of Open Access Journals (Sweden)

    Kondić-Šipka Ankica

    2007-01-01

    Full Text Available Androgenous and regeneration abilities of 14 randomly selected F1 hybrids of wheat (Triticum aestivum L. were analyzed. Anthers were grown in vitro on a modified Potato-2 inductive medium. The hybrid NS111-95/Ana had the highest average values for androgenous capacity (33% and callus yield (119%, while the hybrid NS 92-250/Tiha had the lowest values for these traits (9 and 21%, respectively. Seven genotypes (50% had a frequency of green plants relative to the number of isolated anthers of over 10%, with the highest frequency of 21.3% (NS111-95/Sremica. This hybrid produced 12.8 doubled haploid (DH lines per spike used for isolation. In the other genotypes, the number of produced DH lines per spike ranged from 1 (30­Sc.Smoc.88-89/Hays-2 to 11.2 (NS111-95/Ana. As half of the randomly selected genotypes exhibited high green plant regeneration ability and a high production of DH lines per spike, it can be concluded that in vitro anther culture can be successfully used in breeding programs for rapid production of homozygous wheat lines.

  1. Creation of BAC genomic resources for cocoa ( Theobroma cacao L.) for physical mapping of RGA containing BAC clones.

    Science.gov (United States)

    Clément, D; Lanaud, C; Sabau, X; Fouet, O; Le Cunff, L; Ruiz, E; Risterucci, A M; Glaszmann, J C; Piffanelli, P

    2004-05-01

    We have constructed and validated the first cocoa ( Theobroma cacao L.) BAC library, with the aim of developing molecular resources to study the structure and evolution of the genome of this perennial crop. This library contains 36,864 clones with an average insert size of 120 kb, representing approximately ten haploid genome equivalents. It was constructed from the genotype Scavina-6 (Sca-6), a Forastero clone highly resistant to cocoa pathogens and a parent of existing mapping populations. Validation of the BAC library was carried out with a set of 13 genetically-anchored single copy and one duplicated markers. An average of nine BAC clones per probe was identified, giving an initial experimental estimation of the genome coverage represented in the library. Screening of the library with a set of resistance gene analogues (RGAs), previously mapped in cocoa and co-localizing with QTL for resistance to Phytophthora traits, confirmed at the physical level the tight clustering of RGAs in the cocoa genome and provided the first insights into the relationships between genetic and physical distances in the cocoa genome. This library represents an available BAC resource for structural genomic studies or map-based cloning of genes corresponding to important QTLs for agronomic traits such as resistance genes to major cocoa pathogens like Phytophthora spp ( palmivora and megakarya), Crinipellis perniciosa and Moniliophthora roreri.

  2. Systematic biases in DNA copy number originate from isolation procedures

    NARCIS (Netherlands)

    van Heesch, S.; Mokry, M.; Boskova, V.; Junker, W.; Mehon, R.; Toonen, P.; de Bruijn, E.; Shull, J.D.; Aitman, T.J.; Cuppen, E.; Guryev, V.

    2013-01-01

    BACKGROUND: The ability to accurately detect DNA copy number variation in both a sensitive and quantitative manner is important in many research areas. However, genome-wide DNA copy number analyses are complicated by variations in detection signal. RESULTS: While GC content has been used to correct

  3. Maximization of Markers Linked in Coupling for Tetraploid Potatoes via Monoparental Haploids

    Directory of Open Access Journals (Sweden)

    Annette M. Bartkiewicz

    2018-05-01

    Full Text Available Haploid potato populations derived from a single tetraploid donor constitute an efficient strategy to analyze markers segregating from a single donor genotype. Analysis of marker segregation in populations derived from crosses between polysomic tetraploids is complicated by a maximum of eight segregating alleles, multiple dosages of the markers and problems related to linkage analysis of marker segregation in repulsion. Here, we present data on two monoparental haploid populations generated by prickle pollination of two tetraploid cultivars with Solanum phureja and genotyped with the 12.8 k SolCAP single nucleotide polymorphism (SNP array. We show that in a population of monoparental haploids, the number of biallelic SNP markers segregating in linkage to loci from the tetraploid donor genotype is much larger than in putative crosses of this genotype to a diverse selection of 125 tetraploid cultivars. Although this strategy is more laborious than conventional breeding, the generation of haploid progeny for efficient marker analysis is straightforward if morphological markers and flow cytometry are utilized to select true haploid progeny. The level of introgressed fragments from S. phureja, the haploid inducer, is very low, supporting its suitability for genetic analysis. Mapping with single-dose markers allowed the analysis of quantitative trait loci (QTL for four phenotypic traits.

  4. Novel recurrent chromosomal aberrations detected in clonal plasma cells of light chain amyloidosis patients show potential adverse prognostic effect: first results from a genome-wide copy number array analysis.

    Science.gov (United States)

    Granzow, Martin; Hegenbart, Ute; Hinderhofer, Katrin; Hose, Dirk; Seckinger, Anja; Bochtler, Tilmann; Hemminki, Kari; Goldschmidt, Hartmut; Schönland, Stefan O; Jauch, Anna

    2017-07-01

    Immunoglobulin light chain (AL) amyloidosis is a rare plasma cell dyscrasia characterized by the deposition of abnormal amyloid fibrils in multiple organs, thus impairing their function. In the largest cohort studied up to now of 118 CD138-purified plasma cell samples from previously untreated immunoglobulin light chain amyloidosis patients, we assessed in parallel copy number alterations using high-density copy number arrays and interphase fluorescence in situ hybridization (iFISH). We used fluorescence in situ hybridization probes for the IgH translocations t(11;14), t(4;14), and t(14;16) or any other IgH rearrangement as well as numerical aberrations of the chromosome loci 1q21, 8p21, 5p15/5q35, 11q22.3 or 11q23, 13q14, 15q22, 17p13, and 19q13. Recurrent gains included chromosomes 1q (36%), 9 (24%), 11q (24%), as well as 19 (15%). Recurrent losses affected chromosome 13 (29% monosomy) and partial losses of 14q (19%), 16q (14%) and 13q (12%), respectively. In 88% of patients with translocation t(11;14), the hallmark chromosomal aberration in AL amyloidosis, a concomitant gain of 11q22.3/11q23 detected by iFISH was part of the unbalanced translocation der(14)t(11;14)(q13;q32) with the breakpoint in the CCND1/MYEOV gene region. Partial loss of chromosome regions 14q and 16q were significantly associated to gain 1q. Gain 1q21 detected by iFISH almost always resulted from a gain of the long arm of chromosome 1 and not from trisomy 1, whereas deletions on chromosome 1p were rarely found. Overall and event-free survival analysis found a potential adverse prognostic effect of concomitant gain 1q and deletion 14q as well as of deletion 1p. In conclusion, in the first whole genome report of clonal plasma cells in AL amyloidosis, novel aberrations and hitherto unknown potential adverse prognostic effects were uncovered. Copyright© 2017 Ferrata Storti Foundation.

  5. Molecular subtypes in stage II-III colon cancer defined by genomic instability: early recurrence-risk associated with a high copy-number variation and loss of RUNX3 and CDKN2A.

    Directory of Open Access Journals (Sweden)

    Marianne Berg

    Full Text Available We sought to investigate various molecular subtypes defined by genomic instability that may be related to early death and recurrence in colon cancer.We sought to investigate various molecular subtypes defined by instability at microsatellites (MSI, changes in methylation patterns (CpG island methylator phenotype, CIMP or copy number variation (CNV in 8 genes. Stage II-III colon cancers (n = 64 were investigated by methylation-specific multiplex ligated probe amplification (MS-MLPA. Correlation of CNV, CIMP and MSI, with mutations in KRAS and BRAFV600E were assessed for overlap in molecular subtypes and early recurrence risk by uni- and multivariate regression.The CIMP phenotype occurred in 34% (22/64 and MSI in 27% (16/60 of the tumors, with noted CIMP/MSI overlap. Among the molecular subtypes, a high CNV phenotype had an associated odds ratio (OR for recurrence of 3.2 (95% CI 1.1-9.3; P = 0.026. Losses of CACNA1G (OR of 2.9, 95% CI 1.4-6.0; P = 0.001, IGF2 (OR of 4.3, 95% CI 1.1-15.8; P = 0.007, CDKN2A (p16 (OR of 2.0, 95% CI 1.1-3.6; P = 0.024, and RUNX3 (OR of 3.4, 95% CI 1.3-8.7; P = 0.002 were associated with early recurrence, while MSI, CIMP, KRAS or BRAF V600E mutations were not. The CNV was significantly higher in deceased patients (CNV in 6 of 8 compared to survivors (CNV in 3 of 8. Only stage and loss of RUNX3 and CDKN2A were significant in the multivariable risk-model for early recurrence.A high copy number variation phenotype is a strong predictor of early recurrence and death, and may indicate a dose-dependent relationship between genetic instability and outcome. Loss of tumor suppressors RUNX3 and CDKN2A were related to recurrence-risk and warrants further investigation.

  6. The Cellular DNA Helicase ChlR1 Regulates Chromatin and Nuclear Matrix Attachment of the Human Papillomavirus 16 E2 Protein and High-Copy-Number Viral Genome Establishment.

    Science.gov (United States)

    Harris, Leanne; McFarlane-Majeed, Laura; Campos-León, Karen; Roberts, Sally; Parish, Joanna L

    2017-01-01

    In papillomavirus infections, the viral genome is established as a double-stranded DNA episome. To segregate the episomes into daughter cells during mitosis, they are tethered to cellular chromatin by the viral E2 protein. We previously demonstrated that the E2 proteins of diverse papillomavirus types, including bovine papillomavirus (BPV) and human papillomavirus 16 (HPV16), associate with the cellular DNA helicase ChlR1. This virus-host interaction is important for the tethering of BPV E2 to mitotic chromatin and the stable maintenance of BPV episomes. The role of the association between E2 and ChlR1 in the HPV16 life cycle is unresolved. Here we show that an HPV16 E2 Y131A mutant (E2 Y131A ) had significantly reduced binding to ChlR1 but retained transcriptional activation and viral origin-dependent replication functions. Subcellular fractionation of keratinocytes expressing E2 Y131A showed a marked change in the localization of the protein. Compared to that of wild-type E2 (E2 WT ), the chromatin-bound pool of E2 Y131A was decreased, concomitant with an increase in nuclear matrix-associated protein. Cell cycle synchronization indicated that the shift in subcellular localization of E2 Y131A occurred in mid-S phase. A similar alteration between the subcellular pools of the E2 WT protein occurred upon ChlR1 silencing. Notably, in an HPV16 life cycle model in primary human keratinocytes, mutant E2 Y131A genomes were established as episomes, but at a markedly lower copy number than that of wild-type HPV16 genomes, and they were not maintained upon cell passage. Our studies indicate that ChlR1 is an important regulator of the chromatin association of E2 and of the establishment and maintenance of HPV16 episomes. Infections with high-risk human papillomaviruses (HPVs) are a major cause of anogenital and oropharyngeal cancers. During infection, the circular DNA genome of HPV persists within the nucleus, independently of the host cell chromatin. Persistence of infection

  7. "Dear Teacher, Johnny Copied."

    Science.gov (United States)

    Jackson, Louise A.; And Others

    1987-01-01

    Presents the problem of intentional or unintentional plagiarism on the part of young students, several possible causes for it, and offers ways teachers can help students avoid copying and understand the value of owning one's writing. (JC)

  8. Gene expansion shapes genome architecture in the human pathogen Lichtheimia corymbifera: an evolutionary genomics analysis in the ancient terrestrial mucorales (Mucoromycotina.

    Directory of Open Access Journals (Sweden)

    Volker U Schwartze

    2014-08-01

    Full Text Available Lichtheimia species are the second most important cause of mucormycosis in Europe. To provide broader insights into the molecular basis of the pathogenicity-associated traits of the basal Mucorales, we report the full genome sequence of L. corymbifera and compared it to the genome of Rhizopus oryzae, the most common cause of mucormycosis worldwide. The genome assembly encompasses 33.6 MB and 12,379 protein-coding genes. This study reveals four major differences of the L. corymbifera genome to R. oryzae: (i the presence of an highly elevated number of gene duplications which are unlike R. oryzae not due to whole genome duplication (WGD, (ii despite the relatively high incidence of introns, alternative splicing (AS is not frequently observed for the generation of paralogs and in response to stress, (iii the content of repetitive elements is strikingly low (<5%, (iv L. corymbifera is typically haploid. Novel virulence factors were identified which may be involved in the regulation of the adaptation to iron-limitation, e.g. LCor01340.1 encoding a putative siderophore transporter and LCor00410.1 involved in the siderophore metabolism. Genes encoding the transcription factors LCor08192.1 and LCor01236.1, which are similar to GATA type regulators and to calcineurin regulated CRZ1, respectively, indicating an involvement of the calcineurin pathway in the adaption to iron limitation. Genes encoding MADS-box transcription factors are elevated up to 11 copies compared to the 1-4 copies usually found in other fungi. More findings are: (i lower content of tRNAs, but unique codons in L. corymbifera, (ii Over 25% of the proteins are apparently specific for L. corymbifera. (iii L. corymbifera contains only 2/3 of the proteases (known to be essential virulence factors in comparison to R. oryzae. On the other hand, the number of secreted proteases, however, is roughly twice as high as in R. oryzae.

  9. Gene expansion shapes genome architecture in the human pathogen Lichtheimia corymbifera: an evolutionary genomics analysis in the ancient terrestrial mucorales (Mucoromycotina).

    Science.gov (United States)

    Schwartze, Volker U; Winter, Sascha; Shelest, Ekaterina; Marcet-Houben, Marina; Horn, Fabian; Wehner, Stefanie; Linde, Jörg; Valiante, Vito; Sammeth, Michael; Riege, Konstantin; Nowrousian, Minou; Kaerger, Kerstin; Jacobsen, Ilse D; Marz, Manja; Brakhage, Axel A; Gabaldón, Toni; Böcker, Sebastian; Voigt, Kerstin

    2014-08-01

    Lichtheimia species are the second most important cause of mucormycosis in Europe. To provide broader insights into the molecular basis of the pathogenicity-associated traits of the basal Mucorales, we report the full genome sequence of L. corymbifera and compared it to the genome of Rhizopus oryzae, the most common cause of mucormycosis worldwide. The genome assembly encompasses 33.6 MB and 12,379 protein-coding genes. This study reveals four major differences of the L. corymbifera genome to R. oryzae: (i) the presence of an highly elevated number of gene duplications which are unlike R. oryzae not due to whole genome duplication (WGD), (ii) despite the relatively high incidence of introns, alternative splicing (AS) is not frequently observed for the generation of paralogs and in response to stress, (iii) the content of repetitive elements is strikingly low (<5%), (iv) L. corymbifera is typically haploid. Novel virulence factors were identified which may be involved in the regulation of the adaptation to iron-limitation, e.g. LCor01340.1 encoding a putative siderophore transporter and LCor00410.1 involved in the siderophore metabolism. Genes encoding the transcription factors LCor08192.1 and LCor01236.1, which are similar to GATA type regulators and to calcineurin regulated CRZ1, respectively, indicating an involvement of the calcineurin pathway in the adaption to iron limitation. Genes encoding MADS-box transcription factors are elevated up to 11 copies compared to the 1-4 copies usually found in other fungi. More findings are: (i) lower content of tRNAs, but unique codons in L. corymbifera, (ii) Over 25% of the proteins are apparently specific for L. corymbifera. (iii) L. corymbifera contains only 2/3 of the proteases (known to be essential virulence factors) in comparison to R. oryzae. On the other hand, the number of secreted proteases, however, is roughly twice as high as in R. oryzae.

  10. Measurement of locus copy number by hybridisation with amplifiable probes

    Science.gov (United States)

    Armour, John A. L.; Sismani, Carolina; Patsalis, Philippos C.; Cross, Gareth

    2000-01-01

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicroscopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader–Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications. PMID:10606661

  11. Measurement of locus copy number by hybridisation with amplifiable probes.

    Science.gov (United States)

    Armour, J A; Sismani, C; Patsalis, P C; Cross, G

    2000-01-15

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicro-scopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader-Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications.

  12. Semiconservative quasispecies equations for polysomic genomes: The general case

    Science.gov (United States)

    Itan, Eran; Tannenbaum, Emmanuel

    2010-06-01

    This paper develops a formulation of the quasispecies equations appropriate for polysomic, semiconservatively replicating genomes. This paper is an extension of previous work on the subject, which considered the case of haploid genomes. Here, we develop a more general formulation of the quasispecies equations that is applicable to diploid and even polyploid genomes. Interestingly, with an appropriate classification of population fractions, we obtain a system of equations that is formally identical to the haploid case. As with the work for haploid genomes, we consider both random and immortal DNA strand chromosome segregation mechanisms. However, in contrast to the haploid case, we have found that an analytical solution for the mean fitness is considerably more difficult to obtain for the polyploid case. Accordingly, whereas for the haploid case we obtained expressions for the mean fitness for the case of an analog of the single-fitness-peak landscape for arbitrary lesion repair probabilities (thereby allowing for noncomplementary genomes), here we solve for the mean fitness for the restricted case of perfect lesion repair.

  13. Whole-genome sequencing of spermatocytic tumors provides insights into the mutational processes operating in the male germline

    DEFF Research Database (Denmark)

    Giannoulatou, Eleni; Maher, Geoffrey J; Ding, Zhihao

    2017-01-01

    Adult male germline stem cells (spermatogonia) proliferate by mitosis and, after puberty, generate spermatocytes that undertake meiosis to produce haploid spermatozoa. Germ cells are under evolutionary constraint to curtail mutations and maintain genome integrity. Despite constant turnover...

  14. Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells.

    Science.gov (United States)

    Tokunaga, Masahiro; Kokubu, Chikara; Maeda, Yusuke; Sese, Jun; Horie, Kyoji; Sugimoto, Nakaba; Kinoshita, Taroh; Yusa, Kosuke; Takeda, Junji

    2014-11-24

    Genome-wide saturation mutagenesis and subsequent phenotype-driven screening has been central to a comprehensive understanding of complex biological processes in classical model organisms such as flies, nematodes, and plants. The degree of "saturation" (i.e., the fraction of possible target genes identified) has been shown to be a critical parameter in determining all relevant genes involved in a biological function, without prior knowledge of their products. In mammalian model systems, however, the relatively large scale and labor intensity of experiments have hampered the achievement of actual saturation mutagenesis, especially for recessive traits that require biallelic mutations to manifest detectable phenotypes. By exploiting the recently established haploid mouse embryonic stem cells (ESCs), we present an implementation of almost complete saturation mutagenesis in a mammalian system. The haploid ESCs were mutagenized with the chemical mutagen N-ethyl-N-nitrosourea (ENU) and processed for the screening of mutants defective in various steps of the glycosylphosphatidylinositol-anchor biosynthetic pathway. The resulting 114 independent mutant clones were characterized by a functional complementation assay, and were shown to be defective in any of 20 genes among all 22 known genes essential for this well-characterized pathway. Ten mutants were further validated by whole-exome sequencing. The predominant generation of single-nucleotide substitutions by ENU resulted in a gene mutation rate proportional to the length of the coding sequence, which facilitated the experimental design of saturation mutagenesis screening with the aid of computational simulation. Our study enables mammalian saturation mutagenesis to become a realistic proposition. Computational simulation, combined with a pilot mutagenesis experiment, could serve as a tool for the estimation of the number of genes essential for biological processes such as drug target pathways when a positive selection of

  15. The evolution of sex chromosomes in organisms with separate haploid sexes.

    Science.gov (United States)

    Immler, Simone; Otto, Sarah Perin

    2015-03-01

    The evolution of dimorphic sex chromosomes is driven largely by the evolution of reduced recombination and the subsequent accumulation of deleterious mutations. Although these processes are increasingly well understood in diploid organisms, the evolution of dimorphic sex chromosomes in haploid organisms (U/V) has been virtually unstudied theoretically. We analyze a model to investigate the evolution of linkage between fitness loci and the sex-determining region in U/V species. In a second step, we test how prone nonrecombining regions are to degeneration due to accumulation of deleterious mutations. Our modeling predicts that the decay of recombination on the sex chromosomes and the addition of strata via fusions will be just as much a part of the evolution of haploid sex chromosomes as in diploid sex chromosome systems. Reduced recombination is broadly favored, as long as there is some fitness difference between haploid males and females. The degeneration of the sex-determining region due to the accumulation of deleterious mutations is expected to be slower in haploid organisms because of the absence of masking. Nevertheless, balancing selection often drives greater differentiation between the U/V sex chromosomes than in X/Y and Z/W systems. We summarize empirical evidence for haploid sex chromosome evolution and discuss our predictions in light of these findings. © 2015 The Author(s).

  16. Use of intergeneric cross for production of doubled haploid wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Khan, M.A.; Shaukat, S.; Kashif, M.; Khan, A.S.

    2012-01-01

    The main purpose of conventional breeding or hybridisation is to bring about homozygosity, for which 6 to 7 years may be required. Wheat and maize crosses have proved to be more efficient in DH lines production than anther culture methods, because of its lower genetic specificity. Doubled haploid technique facilitates the development of homozygous plants within one generation. The system is developed through haploid production, followed by chromosome doubling, to produce homozygous plants in a single generation. For doubled haploid production method wheat and maize crossing system is better than anther culture and ovule culture because maize pollens are highly responsive and produce stable progeny population. Wheat is being used as female parent and maize as a male parent for the production of doubled haploid. Moreover, Silver Nitrate (AgNO/sub 3/) in tiller culture media can improve the frequency of haploid embryo production in this crossing system. Our result showed that DH production through wheat and maize crossing system was proved to be time saving (2 years) as compared to other conventional breeding methods (6 years). (author)

  17. A set of haploid strains available for genetic studies of Saccharomyces cerevisiae flor yeasts.

    Science.gov (United States)

    Coi, Anna Lisa; Legras, Jean-Luc; Zara, Giacomo; Dequin, Sylvie; Budroni, Marilena

    2016-09-01

    Flor yeasts of Saccharomyces cerevisiae have been extensively studied for biofilm formation, however the lack of specific haploid model strains has limited the application of genetic approaches such as gene knockout, allelic replacement and Quantitative Trait Locus mapping for the deciphering of the molecular basis of velum formation under biological ageing. The aim of this work was to construct a set of flor isogenic haploid strains easy to manipulate genetically. The analysis of the allelic variations at 12 minisatellite loci of 174 Saccharomyces cerevisiae strains allowed identifying three flor parental strains with different phylogenic positions. These strains were characterized for sporulation efficiency, growth on galactose, adherence to polystyrene, agar invasion, growth on wine and ability to develop a biofilm. Interestingly, the inability to grow on galactose was found associated with a frameshift in GAL4 gene that seems peculiar of flor strains. From these wild flor strains, isogenic haploid strains were constructed by deleting HO gene with a loxP-KanMX-loxP cassette followed by the removal of the kanamycin cassette. Haploid strains obtained were characterized for their phenotypic and genetic properties and compared with the parental strains. Preliminary results showed that the haploid strains represent new tools for genetic studies and breeding programs on biofilm formation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Efficiency of anther culture technique in the production of wheat double haploids

    Directory of Open Access Journals (Sweden)

    Kondić-Špika Ankica Đ.

    2008-01-01

    Full Text Available The objective of the study was to investigate efficiency of anther culture in the production of spontaneous double haploids from randomly selected heterozygous genotypes of wheat (Triticum aestivum L.. Anthers of 20 F1 wheat combinations were grown in vitro on a modified Potato-2 medium. All of the examined genotypes have shown the ability to produce pollen calluses as well as to regenerate green plants. On average for the whole experiment material, 47.2 calluses were produced per 100 cultured anthers. The green plant regeneration ranged from 0.8 to 13.4 green plants per spike, with an overall mean of 5.8. From the total of 582 regenerated green plants, 47.9% (279 were spontaneous double haploids. The final average yield from the study was 2.8 double haploids per spike.

  19. Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries

    Directory of Open Access Journals (Sweden)

    Kudrna David

    2011-03-01

    Full Text Available Abstract Background Eucalyptus species are among the most planted hardwoods in the world because of their rapid growth, adaptability and valuable wood properties. The development and integration of genomic resources into breeding practice will be increasingly important in the decades to come. Bacterial artificial chromosome (BAC libraries are key genomic tools that enable positional cloning of important traits, synteny evaluation, and the development of genome framework physical maps for genetic linkage and genome sequencing. Results We describe the construction and characterization of two deep-coverage BAC libraries EG_Ba and EG_Bb obtained from nuclear DNA fragments of E. grandis (clone BRASUZ1 digested with HindIII and BstYI, respectively. Genome coverages of 17 and 15 haploid genome equivalents were estimated for EG_Ba and EG_Bb, respectively. Both libraries contained large inserts, with average sizes ranging from 135 Kb (Eg_Bb to 157 Kb (Eg_Ba, very low extra-nuclear genome contamination providing a probability of finding a single copy gene ≥ 99.99%. Libraries were screened for the presence of several genes of interest via hybridizations to high-density BAC filters followed by PCR validation. Five selected BAC clones were sequenced and assembled using the Roche GS FLX technology providing the whole sequence of the E. grandis chloroplast genome, and complete genomic sequences of important lignin biosynthesis genes. Conclusions The two E. grandis BAC libraries described in this study represent an important milestone for the advancement of Eucalyptus genomics and forest tree research. These BAC resources have a highly redundant genome coverage (> 15×, contain large average inserts and have a very low percentage of clones with organellar DNA or empty vectors. These publicly available BAC libraries are thus suitable for a broad range of applications in genetic and genomic research in Eucalyptus and possibly in related species of Myrtaceae

  20. A comprehensive profile of DNA copy number variations in a Korean population: identification of copy number invariant regions among Koreans.

    Science.gov (United States)

    Jeon, Jae Pil; Shim, Sung Mi; Jung, Jong Sun; Nam, Hye Young; Lee, Hye Jin; Oh, Berm Seok; Kim, Kuchan; Kim, Hyung Lae; Han, Bok Ghee

    2009-09-30

    To examine copy number variations among the Korean population, we compared individual genomes with the Korean reference genome assembly using the publicly available Korean HapMap SNP 50 k chip data from 90 individuals. Korean individuals exhibited 123 copy number variation regions (CNVRs) covering 27.2 mb, equivalent to 1.0% of the genome in the copy number variation (CNV) analysis using the combined criteria of P value (Por= 0.25) among study subjects. In contrast, when compared to the Affymetrix reference genome assembly from multiple ethnic groups, considerably more CNVRs (n=643) were detected in larger proportions (5.0%) of the genome covering 135.1 mb even by more stringent criteria (Por=0.25), reflecting ethnic diversity of structural variations between Korean and other populations. Some CNVRs were validated by the quantitative multiplex PCR of short fluorescent fragment (QMPSF) method, and then copy number invariant regions were detected among the study subjects. These copy number invariant regions would be used as good internal controls for further CNV studies. Lastly, we demonstrated that the CNV information could stratify even a single ethnic population with a proper reference genome assembly from multiple heterogeneous populations.

  1. Segregation distortion in F2 and doubled haploid populations of ...

    Indian Academy of Sciences (India)

    2Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan. 3Institute of the Society .... population of 212 DH lines was developed through anther culture of the F1 ... 2001), and 10-base random primers (Operon Technolo- ... tific researches (public data in the Rice Genome Project,.

  2. Genetic control of the development of the haploid generation in Oenothera

    Directory of Open Access Journals (Sweden)

    Cornelia Harte

    2014-01-01

    Full Text Available The haploid generation of higher plants has to be considered in its own individuality. Special experimental designs are needed to investigate the developmental processes of the male and female gametophytes between meiosis and fertilization. Experiments on Oenothera demonstrate the existence of genes, which action can be described as influencing the competition between meiospores or between gametophytes, or as interaction between different individuals, the gametophytic-gametophytic and gametophytic-sporophytic incompatibility. The development of the haploid generation is regulated by genes. Some of these genes are active only in this phase of the life cycle.

  3. Hard Copy Market Overview

    Science.gov (United States)

    Testan, Peter R.

    1987-04-01

    A number of Color Hard Copy (CHC) market drivers are currently indicating strong growth in the use of CHC technologies for the business graphics marketplace. These market drivers relate to product, software, color monitors and color copiers. The use of color in business graphics allows more information to be relayed than is normally the case in a monochrome format. The communicative powers of full-color computer generated output in the business graphics application area will continue to induce end users to desire and require color in their future applications. A number of color hard copy technologies will be utilized in the presentation graphics arena. Thermal transfer, ink jet, photographic and electrophotographic technologies are all expected to be utilized in the business graphics presentation application area in the future. Since the end of 1984, the availability of color application software packages has grown significantly. Sales revenue generated by business graphics software is expected to grow at a compound annual growth rate of just over 40 percent to 1990. Increased availability of packages to allow the integration of text and graphics is expected. Currently, the latest versions of page description languages such as Postscript, Interpress and DDL all support color output. The use of color monitors will also drive the demand for color hard copy in the business graphics market place. The availability of higher resolution screens is allowing color monitors to be easily used for both text and graphics applications in the office environment. During 1987, the sales of color monitors are expected to surpass the sales of monochrome monitors. Another major color hard copy market driver will be the color copier. In order to take advantage of the communications power of computer generated color output, multiple copies are required for distribution. Product introductions of a new generation of color copiers is now underway with additional introductions expected

  4. Genetic Diversity in Haploid Nicotiana alata Induced by Gamma Irradiation, Salt Tolerance and Detection of These Differences by RAPD

    Directory of Open Access Journals (Sweden)

    Ayman EL-FIKI

    2016-03-01

    Full Text Available Haploid plants of Nicotiana alata were cultured in vitro on MS medium with IAA + KIN. The resulting plantlets were irradiated using gamma radiation doses of 10, 15, 20 and 25 Gy. Single node pieces were cut and transferred onto fresh MS medium. Gamma radiation doses caused the death of 9% and up to 28% of explants. NaCl concentrations caused the death of 8% up to 36% of explants, while the combined effect between gamma radiation doses and salinity had an impact suffused on the percentage of survival. The combined effect of gamma radiation doses 20 Gy and 25 Gy on NaCl concentrations of 100, 150 and 200 mM were deadly. Even more, the combined effect of gamma radiation doses and salinity had a severe negative impact on both the proline content and total soluble protein. Random amplified polymorphic DNA (RAPD analysis was used to determine the degree of genetic variation in treated haploid Nicotiana alata plants. Total genomic DNAs from different haploid plantlets treated were amplified using five arbitrary primers. Two hundred and seventy bands were detected from plantlets irradiated with doses of 15, 20 and 25 Gy, with polymorphic band number 226 (83.7%. The total number of bands resulted from plant grew on 150 mM and 200 mM NaCl were 260 bands with polymorphic bands 185 (85.6%. However, the total number of bands produced from combined effects between gamma rays and salinity (20 Gy X 50 mM NaCl, 20 Gy X 100 mM NaCl and 25 Gy X 50 mM NaCl were 270, with polymorphic band number 231 (85.5%. High similarity between treatments was revealed. Treatments relationships were estimated through cluster analysis (UPGMA based on RAPD data.

  5. NU-IN: Nucleotide evolution and input module for the EvolSimulator genome simulation platform

    Directory of Open Access Journals (Sweden)

    Barker Michael S

    2010-08-01

    Full Text Available Abstract Background There is increasing demand to test hypotheses that contrast the evolution of genes and gene families among genomes, using simulations that work across these levels of organization. The EvolSimulator program was developed recently to provide a highly flexible platform for forward simulations of amino acid evolution in multiple related lineages of haploid genomes, permitting copy number variation and lateral gene transfer. Synonymous nucleotide evolution is not currently supported, however, and would be highly advantageous for comparisons to full genome, transcriptome, and single nucleotide polymorphism (SNP datasets. In addition, EvolSimulator creates new genomes for each simulation, and does not allow the input of user-specified sequences and gene family information, limiting the incorporation of further biological realism and/or user manipulations of the data. Findings We present modified C++ source code for the EvolSimulator platform, which we provide as the extension module NU-IN. With NU-IN, synonymous and non-synonymous nucleotide evolution is fully implemented, and the user has the ability to use real or previously-simulated sequence data to initiate a simulation of one or more lineages. Gene family membership can be optionally specified, as well as gene retention probabilities that model biased gene retention. We provide PERL scripts to assist the user in deriving this information from previous simulations. We demonstrate the features of NU-IN by simulating genome duplication (polyploidy in the presence of ongoing copy number variation in an evolving lineage. This example is initiated with real genomic data, and produces output that we analyse directly with existing bioinformatic pipelines. Conclusions The NU-IN extension module is a publicly available open source software (GNU GPLv3 license extension to EvolSimulator. With the NU-IN module, users are now able to simulate both drift and selection at the nucleotide

  6. A mutation in the centriole-associated protein centrin causes genomic instability via increased chromosome loss in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Marshall Wallace F

    2005-05-01

    Full Text Available Abstract Background The role of centrioles in mitotic spindle function remains unclear. One approach to investigate mitotic centriole function is to ask whether mutation of centriole-associated proteins can cause genomic instability. Results We addressed the role of the centriole-associated EF-hand protein centrin in genomic stability using a Chlamydomonas reinhardtii centrin mutant that forms acentriolar bipolar spindles and lacks the centrin-based rhizoplast structures that join centrioles to the nucleus. Using a genetic assay for loss of heterozygosity, we found that this centrin mutant showed increased genomic instability compared to wild-type cells, and we determined that the increase in genomic instability was due to a 100-fold increase in chromosome loss rates compared to wild type. Live cell imaging reveals an increased rate in cell death during G1 in haploid cells that is consistent with an elevated rate of chromosome loss, and analysis of cell death versus centriole copy number argues against a role for multipolar spindles in this process. Conclusion The increased chromosome loss rates observed in a centrin mutant that forms acentriolar spindles suggests a role for centrin protein, and possibly centrioles, in mitotic fidelity.

  7. In vitro selection of rape variants resistant to oxalic acid using haploid stem apexes

    International Nuclear Information System (INIS)

    Wang Yifei; Huang Jianhua; Lu Ruiju; Sun Yuefang; Zhou Runmei; Zhou Zhijiang; Xie Zhujie; Liu Chenghong

    2002-01-01

    Mutagenic treatment was made of the haploid stem apexes rape strain '9841' and '9885' with Pingyangmycin. As a result of positive selection with oxalic acid providing selection pressure, variants with significantly higher tolerance to oxalic acid than the original ones were obtained. 3 germplasm with significantly higher resistance to Sclerotinia sclerotiorum than cultivar Hu You 12 were selected from field test

  8. Copies, Concepts and Time

    Directory of Open Access Journals (Sweden)

    Anne Eriksen

    2017-09-01

    Full Text Available Copies are defined by their relation to an original. The understanding and evaluation of this relationship has been changing over time. A main argument of this article is that originals and copies are phenomena with no "natural" or essential meaning outside of their specific historical settings. The idea to be explored is how changing historicity regimes have transformed notions of originals and copies over time and how these differences also are reflected in the intrinsically temporal relation between the two concepts. The discussion will be framed by two theory sets. The first is Alexander Nagel and Christopher Woods investigation of two kinds of temporality that vied for dominance in works of art in the late Middle Ages and the Renaissance. The second is Walter Benjamins discussion of artwork in the "age of mechanical reproduction", i.e. the twentieth century. The second half of the article seeks to add to the historical complexity described by both theory sets by introducing a concept of tradition and discussing the early modern ideals of exemplarity, emulation and copiousness.

  9. Reduced Self-Diploidization and Improved Survival of Semi-cloned Mice Produced from Androgenetic Haploid Embryonic Stem Cells through Overexpression of Dnmt3b

    Directory of Open Access Journals (Sweden)

    Wenteng He

    2018-02-01

    Full Text Available Summary: Androgenetic haploid embryonic stem cells (AG-haESCs hold great promise for exploring gene functions and generating gene-edited semi-cloned (SC mice. However, the high incidence of self-diploidization and low efficiency of SC mouse production are major obstacles preventing widespread use of these cells. Moreover, although SC mice generation could be greatly improved by knocking out the differentially methylated regions of two imprinted genes, 50% of the SC mice did not survive into adulthood. Here, we found that the genome-wide DNA methylation level in AG-haESCs is extremely low. Subsequently, downregulation of both de novo methyltransferase Dnmt3b and other methylation-related genes was determined to be responsible for DNA hypomethylation. We further demonstrated that ectopic expression of Dnmt3b in AG-haESCs could effectively improve DNA methylation level, and the high incidence of self-diploidization could be markedly rescued. More importantly, the developmental potential of SC embryos was improved, and most SC mice could survive into adulthood. : Ectopic expression of Dnmt3b could rescue DNA methylation level in repetitive sequences of hypomethylated AG-haESCs, suppress high incidence of self-diploidization, and promote developmental potential of SC embryos, and most SC mice could survive into adulthood. Keywords: androgenetic haploid embryonic stem cells, self-diploidization, semi-cloned mice, DNA methylation, Dnmt3b

  10. Survival and DNA repair in ultraviolet-irradiated haploid and diploid cultured frog cells

    International Nuclear Information System (INIS)

    Freed, J.J.; Hoess, R.H.; Angelosanto, F.A.; Massey, H.C. Jr.

    1979-01-01

    Survival and repair of DNA following ultraviolet (254-nm) radiation have been investigated in ICR 2A, a cultured cell line from haploid embryos of the grassfrog, Rana pipiens. Survival curves from cells recovering in the dark gave mean lethal dose value (D 0 ) in the range 1.5-1.7 Jm -2 for both haploid and diploid cell stocks. The only significant difference observed between haploids and diploids was in the extent of the shoulder at low fluence (Dsub(q)), the value for exponentially multiplying diploid cells (3.0 Jm -2 ) being higher than that found for haploids (1.2 Jm -2 ). Irradiation of cultures reversibly blocked in the G1 phase of the cell cycle gave survival-curve coefficients indistinguishable between haploids and diploids. Post-irradiation exposure to visible light restored colony-forming capacity and removed chromatographically estimated pyrimidine dimers from DNA at the same rates. After fluences killing 90% of the cells, complete restoration of survival was obtained after 60-min exposure to 500 foot-candles, indicating that in this range lethality is entirely photoreversible and therefore attributable to pyrimidine dimers in DNA. Dimer removal required illumination following ultraviolet exposure, intact cells and physiological temperature, implying that the photoreversal involved DNA photolyase activity. Excision-repair capacity was slight, since no loss of dimers could be detected chromoatographically during up to 48 h incubation in the dark and since autoradiographically detected 'unscheduled DNA synthesis' was limited to a 2-fold increase saturated at 10 Jm -2 . These properties make ICR 2A frog cells useful to explore how DNA-repair pathways influence mutant yield. (Auth.)

  11. Meiosis Drives Extraordinary Genome Plasticity in the Haploid Fungal Plant Pathogen Mycosphaerella Graminicola

    Science.gov (United States)

    Meiosis in the plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs an...

  12. Global gene transcription patterns in in vitro-cultured fertilized embryos and diploid and haploid murine parthenotes

    International Nuclear Information System (INIS)

    Cui Xiangshun; Li Xingyu; Kim, Nam-Hyung

    2007-01-01

    To gain insights into the roles the paternal genome and chromosome number play in pre-implantation development, we cultured fertilized embryos and diploid and haploid parthenotes (DPs and HPs, respectively), and compared their development and gene expression patterns. The DPs and fertilized embryos did not differ in developmental ability but HPs development was slower and characterized by impaired compaction and blastocoel formation. Microarray analysis revealed that fertilized blastocysts expressed several genes at higher levels than DP blastocysts; these included the Y-chromosome-specific gene eukaryotic translation initiation factor 2, subunit 3, structural gene Y-linked (Eif2s3y) and the imprinting gene U2 small nuclear ribonucleoprotein auxiliary factor 1, related sequence 1 (U2af1-rs1). We also found that when DPs and HPs were both harvested at 44 and 58 h of culture, they differed in the expression of 38 and 665 genes, respectively. However, when DPs and HPs were harvested at the midpoints of 4-cell stage (44 and 49 h, respectively), no differences in expression was observed. Similarly, when the DPs and HPs were harvested when they became blastocysts (102 and 138 h, respectively), only 15 genes showed disparate expression. These results suggest that while transcripts needed for early development are delayed in HPs, it does progress sufficiently for the generation of the various developmental stages despite the lack of genetic components

  13. Asexual populations of the human malaria parasite, Plasmodium falciparum, use a two-step genomic strategy to acquire accurate, beneficial DNA amplifications.

    Directory of Open Access Journals (Sweden)

    Jennifer L Guler

    Full Text Available Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes.

  14. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell

    Science.gov (United States)

    2009-01-01

    Background Eukaryotes are classified as either haplontic, diplontic, or haplo-diplontic, depending on which ploidy levels undergo mitotic cell division in the life cycle. Emiliania huxleyi is one of the most abundant phytoplankton species in the ocean, playing an important role in global carbon fluxes, and represents haptophytes, an enigmatic group of unicellular organisms that diverged early in eukaryotic evolution. This species is haplo-diplontic. Little is known about the haploid cells, but they have been hypothesized to allow persistence of the species between the yearly blooms of diploid cells. We sequenced over 38,000 expressed sequence tags from haploid and diploid E. huxleyi normalized cDNA libraries to identify genes involved in important processes specific to each life phase (2N calcification or 1N motility), and to better understand the haploid phase of this prominent haplo-diplontic organism. Results The haploid and diploid transcriptomes showed a dramatic differentiation, with approximately 20% greater transcriptome richness in diploid cells than in haploid cells and only ≤ 50% of transcripts estimated to be common between the two phases. The major functional category of transcripts differentiating haploids included signal transduction and motility genes. Diploid-specific transcripts included Ca2+, H+, and HCO3- pumps. Potential factors differentiating the transcriptomes included haploid-specific Myb transcription factor homologs and an unusual diploid-specific histone H4 homolog. Conclusions This study permitted the identification of genes likely involved in diploid-specific biomineralization, haploid-specific motility, and transcriptional control. Greater transcriptome richness in diploid cells suggests they may be more versatile for exploiting a diversity of rich environments whereas haploid cells are intrinsically more streamlined. PMID:19832986

  15. Robust Adaptable Video Copy Detection

    DEFF Research Database (Denmark)

    Assent, Ira; Kremer, Hardy

    2009-01-01

    in contrast). Our query processing combines filtering and indexing structures for efficient multistep computation of video copies under this model. We show that our model successfully identifies altered video copies and does so more reliably than existing models.......Video copy detection should be capable of identifying video copies subject to alterations e.g. in video contrast or frame rates. We propose a video copy detection scheme that allows for adaptable detection of videos that are altered temporally (e.g. frame rate change) and/or visually (e.g. change...

  16. A haploid genetic screen identifies the G1/S regulatory machinery as a determinant of Wee1 inhibitor sensitivity.

    Science.gov (United States)

    Heijink, Anne Margriet; Blomen, Vincent A; Bisteau, Xavier; Degener, Fabian; Matsushita, Felipe Yu; Kaldis, Philipp; Foijer, Floris; van Vugt, Marcel A T M

    2015-12-08

    The Wee1 cell cycle checkpoint kinase prevents premature mitotic entry by inhibiting cyclin-dependent kinases. Chemical inhibitors of Wee1 are currently being tested clinically as targeted anticancer drugs. Wee1 inhibition is thought to be preferentially cytotoxic in p53-defective cancer cells. However, TP53 mutant cancers do not respond consistently to Wee1 inhibitor treatment, indicating the existence of genetic determinants of Wee1 inhibitor sensitivity other than TP53 status. To optimally facilitate patient selection for Wee1 inhibition and uncover potential resistance mechanisms, identification of these currently unknown genes is necessary. The aim of this study was therefore to identify gene mutations that determine Wee1 inhibitor sensitivity. We performed a genome-wide unbiased functional genetic screen in TP53 mutant near-haploid KBM-7 cells using gene-trap insertional mutagenesis. Insertion site mapping of cells that survived long-term Wee1 inhibition revealed enrichment of G1/S regulatory genes, including SKP2, CUL1, and CDK2. Stable depletion of SKP2, CUL1, or CDK2 or chemical Cdk2 inhibition rescued the γ-H2AX induction and abrogation of G2 phase as induced by Wee1 inhibition in breast and ovarian cancer cell lines. Remarkably, live cell imaging showed that depletion of SKP2, CUL1, or CDK2 did not rescue the Wee1 inhibition-induced karyokinesis and cytokinesis defects. These data indicate that the activity of the DNA replication machinery, beyond TP53 mutation status, determines Wee1 inhibitor sensitivity, and could serve as a selection criterion for Wee1-inhibitor eligible patients. Conversely, loss of the identified S-phase genes could serve as a mechanism of acquired resistance, which goes along with development of severe genomic instability.

  17. On the effect of certain mutations on the radiosensitivity of haploid and diploid yeast cells

    International Nuclear Information System (INIS)

    Sokurova, E.N.; Korogodin, V.I.

    1978-01-01

    Mutation ade 1-6 in haploid cell Saccharomyces cerevisiae increases half as much against radioresistance of cells. Diploid cells lacking in adenine, homozygous by ade 1-6 mutation, are nearly twice as radiosensitive as prototrophic cells. Hence ade 1-6 mutation increases radioresistance of haploid cells and decreases that of diplois. These changes in radioresistance are not connected with variations in the extrapolation number of survival curve, the ability of cells to recover from radiation damages upon cultivation in an innutrient medium, and with the inactivation form ratio. Lack of adenine influences the radioresistance of diploid yeast irrespective of whether it is or it is not affected by homo- or heterozygosity by the locus of mating type

  18. Influence of time of auxin application on wheat haploid embrio formation

    Directory of Open Access Journals (Sweden)

    Prodanović Slaven

    2005-01-01

    Full Text Available A hybrid interspecies zygote appears after crosses between wheat and maize Zygote derived after usual self-fertilization in wheat is dividing by mitotic divisions into embryo. However, interspecies zygote aborts soon. Auxin treatment is widely used to promote its development. Growth hormones auxins have stimulative ortoxic effects on plant tissue sin relation to its concentration and the time of application. In this paper the effect of time of auxin dicamba application on embryo in wheat x maize crosses was investigated. Chromosomes of pollen donor parent are eliminated quickly in cells of such embryos and they become haploid. It was concluded that for the production of haploid embryos the best time for auxin application is one day after pollination with maize.

  19. Cellular heredity in haploid cultures of somatic cells, March 1968-April 1981. Final report

    International Nuclear Information System (INIS)

    Freed, J.J.

    1982-03-01

    An account is given of the development and application to cell-culture genetics of unique haploid cell lines from frog embryo developed in this laboratory. Since 1968, the main aim of this project has been to develop the haploid cell system for studies of mutagenesis in culture, particularly by ultraviolet radiation. In the course of this work we isolated chromosomally stable cell lines, derived and characterized a number of variants, and adapted cell hybridization and other methods to this material. Particular emphasis was placed on ultraviolet photobiology, including studies of cell survival, mutagenesis, and pathways of repair of uv-damaged DNA. Although at present less widely used for genetic experiments than mammalian cell lines, the frog cells offer the advantages of authentic haploidy and a favorable repertory of DNA repair pathways for study of uv mutagenesis

  20. The draft genome and transcriptome of Cannabis sativa.

    Science.gov (United States)

    van Bakel, Harm; Stout, Jake M; Cote, Atina G; Tallon, Carling M; Sharpe, Andrew G; Hughes, Timothy R; Page, Jonathan E

    2011-10-20

    Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored. We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of Δ9-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp. The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics.

  1. Mutation induction in haploid yeast after split-dose radiation-exposure. Pt. 1

    International Nuclear Information System (INIS)

    Schenk, K.; Zoelzer, F.; Kiefer, J.

    1989-01-01

    Mutation induction was investigated in wild-type haploid yeast Saccharomyces cerevisiae after split-dose UV-irradiation. Cells were exposed to fractionated 254 nm-UV-doses separated by intervals from 0 to 6 h with incubation either on non-nutrient or nutrient agar between. The test parameter was resistance to canavanine. If modifications of sensitivity due to incubation are appropriately taken into account there is no change of mutation frequency. (orig.)

  2. Stimulating effect of gamma radiation on haploid wheat production through microscope over co-culture system

    International Nuclear Information System (INIS)

    Naseri, M.; Rahimi, M.; Faramarz, M.

    2004-01-01

    Haploid production focuses on low plant regeneration in some wheat genotypes. Haploid application gamma ray as an electromagnetic ray has ionizing properties which can produce ions when passing through biological matter. It can produce genetic variation therefore, is applied in crop and ornamental improvement to enhance agronomic traits. The most important changes caused by gamma radiation is in DNA structure existing in the nucleus of cell. The desirable agronomic changes then will be passed on through generations. Another property of gamma ray can be it's stimulating effect which is the aim in this investigation. Microspore-overy co-culture of wheat along with application of low doses of gamma radiation 2,3 and 4 Gy as absorbing doses were implemented with the aim to evaluate wheat haploid production. Modified Morashig and Skoog medium was used as induction medium and 190-2 medium for regeneration. Two winter and two spring wheat cultivars were used as genetic material. Low doses of gamma radiation simulated microspore cell division and produced more calli relative to non-irradiated microspores only in winter type wheats. In microspore overy co-culture, filtered microspores were centrifuged and then plated in Petri dishes containing MMS+500 mg/I glutamine with 25 overies

  3. Effects of gamma irradiation of pollen on parthenogenetic haploid production in muskmelon (Cucumis melo L.)

    International Nuclear Information System (INIS)

    Cuny, F.; Grotte, M.; Dumas de Vaulx, R.; Rieu, A.

    1993-01-01

    The effects of increasing gamma ray exposures on muskmelon pollen of the Védrantais genotype were evaluated after autofertilization and hybridization with the F1.G1 genotype. Regardless of doses of between 0.15 and 1.6 kGy, fruit set and number of seeds per fruit were comparable to those of the control. The pollen tube from pollen irradiated with up to 2.5 kGy grew in styles and reached the ovules. When pollen was cultivated in vitro, relatively high doses of irradiation (1.6 kGy) were needed to reduce the level of germination. Radiation-induced changes in the generative nucleus led to the formation of two chromosomally unbalanced sperm cells (as indicated by the appearance of morphological dimorphism) which induced parthenogenetic development of the egg to form a haploid embryo. Haploid embryo production by gamma-irradiated pollen was genotype dependent. For exposures of between 0.15 and 2.5 kGy, the production of embryos was the same, about 3.4%; a maximum of 70% of these embryos placed in a specific culture medium produced haploid plants. The ploidy of the plantlets in vitro was determined by flow cytometry. No aneuploidy was detected. All resulting plants exhibited normal phenotypes. (author) [fr

  4. Characters that differ between diploid and haploid honey bee (Apis mellifera) drones.

    Science.gov (United States)

    Herrmann, Matthias; Trenzcek, Tina; Fahrenhorst, Hartmut; Engels, Wolf

    2005-12-30

    Diploid males have long been considered a curiosity contradictory to the haplo-diploid mode of sex determination in the Hymenoptera. In Apis mellifera, 'false' diploid male larvae are eliminated by worker cannibalism immediately after hatching. A 'cannibalism substance' produced by diploid drone larvae to induce worker-assisted suicide has been hypothesized, but it has never been detected. Diploid drones are only removed some hours after hatching. Older larvae are evidently not regarded as 'false males' and instead are regularly nursed by the brood-attending worker bees. As the pheromonal cues presumably are located on the surface of newly hatched bee larvae, we extracted the cuticular secretions and analyzed their chemical composition by gas chromatograph-mass spectrometry (GC-MS) analyses. Larvae were sexed and then reared in vitro for up to three days. The GC-MS pattern that was obtained, with alkanes as the major compounds, was compared between diploid and haploid drone larvae. We also examined some physical parameters of adult drones. There was no difference between diploid and haploid males in their weight at the day of emergence. The diploid adult drones had fewer wing hooks and smaller testes. The sperm DNA content was 0.30 and 0.15 pg per nucleus, giving an exact 2:1 ratio for the gametocytes of diploid and haploid drones, respectively. Vitellogenin was found in the hemolymph of both types of imaginal drones at 5 to 6 days, with a significantly lower titer in the diploids.

  5. Partitioning of copy-number genotypes in pedigrees

    Directory of Open Access Journals (Sweden)

    Andelfinger Gregor U

    2010-05-01

    Full Text Available Abstract Background Copy number variations (CNVs and polymorphisms (CNPs have only recently gained the genetic community's attention. Conservative estimates have shown that CNVs and CNPs might affect more than 10% of the genome and that they may be at least as important as single nucleotide polymorphisms in assessing human variability. Widely used tools for CNP analysis have been implemented in Birdsuite and PLINK for the purpose of conducting genetic association studies based on the unpartitioned total number of CNP copies provided by the intensities from Affymetrix's Genome-Wide Human SNP Array. Here, we are interested in partitioning copy number variations and polymorphisms in extended pedigrees for the purpose of linkage analysis on familial data. Results We have developed CNGen, a new software for the partitioning of copy number polymorphism using the integrated genotypes from Birdsuite with the Affymetrix platform. The algorithm applied to familial trios or extended pedigrees can produce partitioned copy number genotypes with distinct parental alleles. We have validated the algorithm using simulations on a complex pedigree structure using frequencies calculated from a real dataset of 300 genotyped samples from 42 pedigrees segregating a congenital heart defect phenotype. Conclusions CNGen is the first published software for the partitioning of copy number genotypes in pedigrees, making possible the use CNPs and CNVs for linkage analysis. It was implemented with the Python interpreter version 2.5.2. It was successfully tested on current Linux, Windows and Mac OS workstations.

  6. CoNVaQ: a web tool for copy number variation-based association studies

    DEFF Research Database (Denmark)

    Larsen, Simon Jonas; do Canto, Luisa Matos; Rogatto, Silvia Regina

    2018-01-01

    Copy number variations (CNVs) are large segments of the genome that are duplicated or deleted. Structural variations in the genome have been linked to many complex diseases. Similar to how genome-wide association studies (GWAS) have helped discover single-nucleotide polymorphisms linked to diseas...

  7. Study on the in vitro culture of cut plants in wheat haploid embryo induction by a wheat × maize cross

    Institute of Scientific and Technical Information of China (English)

    Jian GU; Kun LIU; Shaoxiang LI; Yuxian TIAN; Hexian YANG; Mujun YANG

    2008-01-01

    The wheat × maize system is one of the most effective ways to produce haploids in wheat. Whether and how it could be successfully applied in practical breeding mostly depends upon the efficiency of haploid embryo pro-duction. To perfect the protocols of haploid embryo induc-tion, the efficiency of haploid embryo production between in vitro culture of cut plant and intact plant growth for hybrid spikes with two F1 wheat hybrids and two maize varieties was compared. Effects of different cutting plant times and formulas of nutrient solutions for cut plant cul-ture on haploid embryo formation were also studied. Results indicated that the embryo rate of in vitro culture was 3.29 times that of intact plant growth, with the figures of 31.6% vs 9.6%, respectively. The optimal time for cut plant culture was 24 h after pollination. Formulas of nutri-ent solutions significantly affected the efficiency of haploid embryo induction. With an embryo rate of 0-35.5%, add-could raise the caryopsis and embryo rates. According to this study, the best medium for cut plant culture was: phate, with which a caryopsis rate of 95% and an embryo rate of about 30% could be obtained.

  8. Diploid, but not haploid, human embryonic stem cells can be derived from microsurgically repaired tripronuclear human zygotes

    Science.gov (United States)

    Fan, Yong; Li, Rong; Huang, Jin; Yu, Yang; Qiao, Jie

    2013-01-01

    Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells. PMID:23255130

  9. Schrödinger’s Cheshire Cat: Are Haploid Emiliania huxleyi Cells Resistant to Viral Infection or Not?

    Directory of Open Access Journals (Sweden)

    Gideon J. Mordecai

    2017-03-01

    Full Text Available Emiliania huxleyi is the main calcite producer on Earth and is routinely infected by a virus (EhV; a double stranded DNA (dsDNA virus belonging to the family Phycodnaviridae. E. huxleyi exhibits a haplodiploid life cycle; the calcified diploid stage is non-motile and forms extensive blooms. The haploid phase is a non-calcified biflagellated cell bearing organic scales. Haploid cells are thought to resist infection, through a process deemed the “Cheshire Cat” escape strategy; however, a recent study detected the presence of viral lipids in the same haploid strain. Here we report on the application of an E. huxleyi CCMP1516 EhV-86 combined tiling array (TA that further confirms an EhV infection in the RCC1217 haploid strain, which grew without any signs of cell lysis. Reverse transcription polymerase chain reaction (RT-PCR and PCR verified the presence of viral RNA in the haploid cells, yet indicated an absence of viral DNA, respectively. These infected cells are an alternative stage of the virus life cycle deemed the haplococcolithovirocell. In this instance, the host is both resistant to and infected by EhV, i.e., the viral transcriptome is present in haploid cells whilst there is no evidence of viral lysis. This superimposed state is reminiscent of Schrödinger’s cat; of being simultaneously both dead and alive.

  10. Schrödinger's Cheshire Cat: Are Haploid Emiliania huxleyi Cells Resistant to Viral Infection or Not?

    Science.gov (United States)

    Mordecai, Gideon J; Verret, Frederic; Highfield, Andrea; Schroeder, Declan C

    2017-03-18

    Emiliania huxleyi is the main calcite producer on Earth and is routinely infected by a virus (EhV); a double stranded DNA (dsDNA) virus belonging to the family Phycodnaviridae . E. huxleyi exhibits a haplodiploid life cycle; the calcified diploid stage is non-motile and forms extensive blooms. The haploid phase is a non-calcified biflagellated cell bearing organic scales. Haploid cells are thought to resist infection, through a process deemed the "Cheshire Cat" escape strategy; however, a recent study detected the presence of viral lipids in the same haploid strain. Here we report on the application of an E. huxleyi CCMP1516 EhV-86 combined tiling array (TA) that further confirms an EhV infection in the RCC1217 haploid strain, which grew without any signs of cell lysis. Reverse transcription polymerase chain reaction (RT-PCR) and PCR verified the presence of viral RNA in the haploid cells, yet indicated an absence of viral DNA, respectively. These infected cells are an alternative stage of the virus life cycle deemed the haplococcolithovirocell. In this instance, the host is both resistant to and infected by EhV, i.e., the viral transcriptome is present in haploid cells whilst there is no evidence of viral lysis. This superimposed state is reminiscent of Schrödinger's cat; of being simultaneously both dead and alive.

  11. Schrödinger’s Cheshire Cat: Are Haploid Emiliania huxleyi Cells Resistant to Viral Infection or Not?

    Science.gov (United States)

    Mordecai, Gideon J.; Verret, Frederic; Highfield, Andrea; Schroeder, Declan C.

    2017-01-01

    Emiliania huxleyi is the main calcite producer on Earth and is routinely infected by a virus (EhV); a double stranded DNA (dsDNA) virus belonging to the family Phycodnaviridae. E. huxleyi exhibits a haplodiploid life cycle; the calcified diploid stage is non-motile and forms extensive blooms. The haploid phase is a non-calcified biflagellated cell bearing organic scales. Haploid cells are thought to resist infection, through a process deemed the “Cheshire Cat” escape strategy; however, a recent study detected the presence of viral lipids in the same haploid strain. Here we report on the application of an E. huxleyi CCMP1516 EhV-86 combined tiling array (TA) that further confirms an EhV infection in the RCC1217 haploid strain, which grew without any signs of cell lysis. Reverse transcription polymerase chain reaction (RT-PCR) and PCR verified the presence of viral RNA in the haploid cells, yet indicated an absence of viral DNA, respectively. These infected cells are an alternative stage of the virus life cycle deemed the haplococcolithovirocell. In this instance, the host is both resistant to and infected by EhV, i.e., the viral transcriptome is present in haploid cells whilst there is no evidence of viral lysis. This superimposed state is reminiscent of Schrödinger’s cat; of being simultaneously both dead and alive. PMID:28335465

  12. Application of Doubled Haploid (DH) Technique in Mutation and Conventional Wheat Breeding in Kenya

    International Nuclear Information System (INIS)

    Njau, P.N.

    2002-01-01

    Wheat is the second most important staple cereal in Kenya after maize.over the last six years wheat improvement for various stresses and agronomic characteristics have been undertaken through various biotechnological approaches which have been used as complements to the traditional breeding methods. The prime objective in any breeding program is the prevention of the debilitating effects of breeding. In self-pollinated crops such as wheat selection is more efficient homozygous lines than in segregating population. During repeated selfing, to develop homozygousity the vigour of the F1 of M1 plats is lost. Application of biotechnology in crop movement has been suggested as the useful tool in a faster variety development. The double haploid (DH) technique does not only shorten the time of developing homozygous lines but also maintains the heterosis of the F 1 , increase the selection of the efficiency of selection in mutants and increase the effectiveness of selection. in this study DHs were developed from F1 and M4 generation developed from drought tolerance.This was accomplished through the following step: (i)F 1 crosses were produced by crossing three drought tolerant varieties namely Kenya Mbweha, Duma and Ngamia with two highly yielding commercial varieties namely Kenya Chiriku and Kwale in 1998 while mutants were developed through gamma ray irradiation in 1995. (ii) The haploids were produced through chromosome elimination by crossing the F 1 s and the M 4 with maize pollen and (iii) the Double Haploid (DH) were produced by treating the haploid with colchicine. Twenty DH lines were produced from F 1 haploid and 5 from M 4 ones. The DH technique tend to increase uniformity, stability and distinctiveness of the mutants and the segregating populations. Most of the DHs showed wide variation indicating high potential of selection for various agronomic characteristics. Heterosis was realized on a number of characteristics in the DH lines. Through this technique the

  13. Copy number variation of KIR genes influences HIV-1 control

    DEFF Research Database (Denmark)

    Pelak, Kimberly; Need, Anna C; Fellay, Jacques

    2011-01-01

    A genome-wide screen for large structural variants showed that a copy number variant (CNV) in the region encoding killer cell immunoglobulin-like receptors (KIR) associates with HIV-1 control as measured by plasma viral load at set point in individuals of European ancestry. This CNV encompasses t...

  14. Clinical findings and genetic screening for copy number variation ...

    African Journals Online (AJOL)

    to the Unified Parkinson's Disease Rating Scale (UPDRS), and patients were classified according to motor features. Genomic DNA was extracted and multiplex ligation-dependent probe amplification was used for detection of copy number variation (CNV) mutations in the known PD-causing genes. Results. Sixteen patients ...

  15. Hapsembler: An Assembler for Highly Polymorphic Genomes

    Science.gov (United States)

    Donmez, Nilgun; Brudno, Michael

    As whole genome sequencing has become a routine biological experiment, algorithms for assembly of whole genome shotgun data has become a topic of extensive research, with a plethora of off-the-shelf methods that can reconstruct the genomes of many organisms. Simultaneously, several recently sequenced genomes exhibit very high polymorphism rates. For these organisms genome assembly remains a challenge as most assemblers are unable to handle highly divergent haplotypes in a single individual. In this paper we describe Hapsembler, an assembler for highly polymorphic genomes, which makes use of paired reads. Our experiments show that Hapsembler produces accurate and contiguous assemblies of highly polymorphic genomes, while performing on par with the leading tools on haploid genomes. Hapsembler is available for download at http://compbio.cs.toronto.edu/hapsembler.

  16. Determination of the number of copies of genes coding for 5s-rRNA and tRNA in the genomes of 43 species of wheat and Aegilops

    International Nuclear Information System (INIS)

    Vakhitov, V.A.; Gimalov, F.R.; Nikonorov, Yu.M.

    1986-01-01

    The number of 5s-rRNA and tRNA genes has been studied in 43 species of wheat and Aegilops differing in ploidy level, genomic composition and origin. It has been demonstrated that the repeatability of the 5s-rRNA and tRNA genes increases in wheat with increasing ploidy level, but not in proportion to the genome size. In Aegilops, in distinction from wheat, the relative as well as absolute number of 5s-RNA genes increases with increasing ploidy level. The proportion of the sequences coding for tRNA in the dipoloid and polyploid Aegilops species is practically similar, while the number of tRNA genes increases almost 2-3 times with increasing ploidy level. Large variability has been recorded between the species with similar genomic composition and ploidy level in respect of the number of the 5s-rRNA and tRNA genes. It has been demonstrated that integration of the initial genomes of the amphidiploids is accompanied by elimination of a particular part of these genomes. It has been concluded that the mechanisms of establishment and evolution of genomes in the intra- and intergeneric allopolyploids are not identical

  17. A spatial haplotype copying model with applications to genotype imputation.

    Science.gov (United States)

    Yang, Wen-Yun; Hormozdiari, Farhad; Eskin, Eleazar; Pasaniuc, Bogdan

    2015-05-01

    Ever since its introduction, the haplotype copy model has proven to be one of the most successful approaches for modeling genetic variation in human populations, with applications ranging from ancestry inference to genotype phasing and imputation. Motivated by coalescent theory, this approach assumes that any chromosome (haplotype) can be modeled as a mosaic of segments copied from a set of chromosomes sampled from the same population. At the core of the model is the assumption that any chromosome from the sample is equally likely to contribute a priori to the copying process. Motivated by recent works that model genetic variation in a geographic continuum, we propose a new spatial-aware haplotype copy model that jointly models geography and the haplotype copying process. We extend hidden Markov models of haplotype diversity such that at any given location, haplotypes that are closest in the genetic-geographic continuum map are a priori more likely to contribute to the copying process than distant ones. Through simulations starting from the 1000 Genomes data, we show that our model achieves superior accuracy in genotype imputation over the standard spatial-unaware haplotype copy model. In addition, we show the utility of our model in selecting a small personalized reference panel for imputation that leads to both improved accuracy as well as to a lower computational runtime than the standard approach. Finally, we show our proposed model can be used to localize individuals on the genetic-geographical map on the basis of their genotype data.

  18. Identification of copy number variants in horses

    KAUST Repository

    Doan, R.

    2012-03-01

    Copy number variants (CNVs) represent a substantial source of genetic variation in mammals. However, the occurrence of CNVs in horses and their subsequent impact on phenotypic variation is unknown. We performed a study to identify CNVs in 16 horses representing 15 distinct breeds (Equus caballus) and an individual gray donkey (Equus asinus) using a whole-exome tiling array and the array comparative genomic hybridization methodology. We identified 2368 CNVs ranging in size from 197 bp to 3.5 Mb. Merging identical CNVs from each animal yielded 775 CNV regions (CNVRs), involving 1707 protein- and RNA-coding genes. The number of CNVs per animal ranged from 55 to 347, with median and mean sizes of CNVs of 5.3 kb and 99.4 kb, respectively. Approximately 6% of the genes investigated were affected by a CNV. Biological process enrichment analysis indicated CNVs primarily affected genes involved in sensory perception, signal transduction, and metabolism. CNVs also were identified in genes regulating blood group antigens, coat color, fecundity, lactation, keratin formation, neuronal homeostasis, and height in other species. Collectively, these data are the first report of copy number variation in horses and suggest that CNVs are common in the horse genome and may modulate biological processes underlying different traits observed among horses and horse breeds.

  19. In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization.

    Science.gov (United States)

    Turanlı-Yıldız, Burcu; Benbadis, Laurent; Alkım, Ceren; Sezgin, Tuğba; Akşit, Arman; Gökçe, Abdülmecit; Öztürk, Yavuz; Baykal, Ahmet Tarık; Çakar, Zeynep Petek; François, Jean M

    2017-09-01

    Microbial ethanol production is an important alternative energy resource to replace fossil fuels, but at high level, this product is highly toxic, which hampers its efficient production. Towards increasing ethanol-tolerance of Saccharomyces cerevisiae, the so far best industrial ethanol-producer, we evaluated an in vivo evolutionary engineering strategy based on batch selection under both constant (5%, v v -1 ) and gradually increasing (5-11.4%, v v -1 ) ethanol concentrations. Selection under increasing ethanol levels yielded evolved clones that could tolerate up to 12% (v v -1 ) ethanol and had cross-resistance to other stresses. Quite surprisingly, diploidization of the yeast population took place already at 7% (v v -1 ) ethanol level during evolutionary engineering, and this event was abolished by the loss of MKT1, a gene previously identified as being implicated in ethanol tolerance (Swinnen et al., Genome Res., 22, 975-984, 2012). Transcriptomic analysis confirmed diploidization of the evolved clones with strong down-regulation in mating process, and in several haploid-specific genes. We selected two clones exhibiting the highest viability on 12% ethanol, and found productivity and titer of ethanol significantly higher than those of the reference strain under aerated fed-batch cultivation conditions. This higher fermentation performance could be related with a higher abundance of glycolytic and ribosomal proteins and with a relatively lower respiratory capacity of the evolved strain, as revealed by a comparative transcriptomic and proteomic analysis between the evolved and the reference strains. Altogether, these results emphasize the efficiency of the in vivo evolutionary engineering strategy for improving ethanol tolerance, and the link between ethanol tolerance and diploidization. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Genetic mapping of centromeres in the nine Citrus clementina chromosomes using half-tetrad analysis and recombination patterns in unreduced and haploid gametes.

    Science.gov (United States)

    Aleza, Pablo; Cuenca, José; Hernández, María; Juárez, José; Navarro, Luis; Ollitrault, Patrick

    2015-03-08

    Mapping centromere locations in plant species provides essential information for the analysis of genetic structures and population dynamics. The centromere's position affects the distribution of crossovers along a chromosome and the parental heterozygosity restitution by 2n gametes is a direct function of the genetic distance to the centromere. Sexual polyploidisation is relatively frequent in Citrus species and is widely used to develop new seedless triploid cultivars. The study's objectives were to (i) map the positions of the centromeres of the nine Citrus clementina chromosomes; (ii) analyse the crossover interference in unreduced gametes; and (iii) establish the pattern of genetic recombination in haploid clementine gametes along each chromosome and its relationship with the centromere location and distribution of genic sequences. Triploid progenies were derived from unreduced megagametophytes produced by second-division restitution. Centromere positions were mapped genetically for all linkage groups using half-tetrad analysis. Inference of the physical locations of centromeres revealed one acrocentric, four metacentric and four submetacentric chromosomes. Crossover interference was observed in unreduced gametes, with variation seen between chromosome arms. For haploid gametes, a strong decrease in the recombination rate occurred in centromeric and pericentromeric regions, which contained a low density of genic sequences. In chromosomes VIII and IX, these low recombination rates extended beyond the pericentromeric regions. The genomic region corresponding to a genetic distance recombination pattern along each chromosome. However, regions with low recombination rates extended beyond the pericentromeric regions of some chromosomes into areas richer in genic sequences. The persistence of strong linkage disequilibrium between large numbers of genes promotes the stability of epistatic interactions and multilocus-controlled traits over successive generations but

  1. Dicer is required for haploid male germ cell differentiation in mice.

    Directory of Open Access Journals (Sweden)

    Hanna M Korhonen

    Full Text Available BACKGROUND: The RNase III endonuclease Dicer is an important regulator of gene expression that processes microRNAs (miRNAs and small interfering RNAs (siRNAs. The best-characterized function of miRNAs is gene repression at the post-transcriptional level through the pairing with mRNAs of protein-encoding genes. Small RNAs can also act at the transcriptional level by controlling the epigenetic status of chromatin. Dicer and other mediators of small RNA pathways are present in mouse male germ cells, and several miRNAs and endogenous siRNAs are expressed in the testis, suggesting that Dicer-dependent small RNAs are involved in the control of the precisely timed and highly organised process of spermatogenesis. PRINCIPAL FINDINGS: Being interested in the Dicer-mediated functions during spermatogenesis, we have analysed here a male germ cell-specific Dicer1 knockout mouse model, in which the deletion of Dicer1 takes place during early postnatal development in spermatogonia. We found that Dicer1 knockout testes were reduced in size and spermatogenesis within the seminiferous tubules was disrupted. Dicer1 knockout epididymides contained very low number of mature sperm with pronounced morphological abnormalities. Spermatogonial differentiation appeared unaffected. However, the number of haploid cells was decreased in knockout testes, and an increased number of apoptotic spermatocytes was observed. The most prominent defects were found during late haploid differentiation, and Dicer was demonstrated to be critical for the normal organization of chromatin and nuclear shaping of elongating spermatids. CONCLUSIONS/SIGNIFICANCE: We demonstrate that Dicer and Dicer-dependent small RNAs are imperative regulators of haploid spermatid differentiation and essential for male fertility.

  2. Response of haploid and diploid protoplasts from Datura innoxia Mill. and Petunia hybrida L. to treatment with X-rays and a chemical mutagen

    International Nuclear Information System (INIS)

    Krumbiegel, G.

    1979-01-01

    Haploid and diploid protoplasts of the two Solanaceous species Datura innoxia Mill. and Petunia Hybridia L., were exposed to two different mutagens, increased doses of X-rays and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). With both species the survival rates of haploid protoplasts decreased exponentially with increased doses of X-rays and increased concentrations of MNNG. Diploid protoplasts showed a higher resistance than haploids only at higher mutagen doses or concentrations. After the MNNG-treatment of haploid protoplasts from Datura innoxia, four mutants with altered pigment patterns were isolated. (author)

  3. Polyamine patterns in haploid and diploid tobacco tissues and in vitro cultures

    Directory of Open Access Journals (Sweden)

    Sílvia Bicudo Carone

    2010-04-01

    Full Text Available The aim of this work was to determine PAs levels in pith tissues and callus cultures from haploid and diploid tobacco plants, explanted from the apical and basal regions of the stem. These explants were cultured in an RM-64 medium supplied with IAA and kinetin, under light or in the dark, during successive subcultures. PAs levels followed a basipetal decrease in diploid and an increase in haploid, pith tissues. A similar pattern of total PAs (free + conjugated was observed for the callus of diploid and haploid plants maintained in the light, and for the haploid callus in the dark, whereas the diploid callus in the dark showed a constant increase in total PAs levels until the end of culture. The PA increase in the diploid callus in the dark was related to free Put levels increase. The ploidy status of the plants could express different PA gradients together with the plant pith and in vitro callus cultures.O objetivo deste trabalho foi determinar os níveis de PAs em tecidos de medula e cultura de calos de plantas haplóides e diplóides de tabaco, obtidas da região apical e basal do caule. Estes explantes foram cultivados em meio RM-64 suplementado com AIA e cinetina, na luz e no escuro, durante vários subcultivos. Nos tecidos medulares, os níveis de PAs apresentam um decréscimo basípeto em diplóides e um aumento em haplóides.Um padrão similar nos níveis de PAs totais (livres+ conjugadas foi observado em calos haplóides e diplóides mantidos na luz, e haplóides no escuro, enquanto os diplóides cultivados no escuro mostraram um aumento constante até o final do cultivo. O aumento no conteúdo de PAs nos calos diplóides no escuro, foi devido ao aumento do conteúdo de Put livre. Foi observado que a ploidia da planta pode expressar diferentes gradientes de PA ao longo do tecido medular e nas culturas de calos in vitro.

  4. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.

    Science.gov (United States)

    Kim, Soo Rin; Skerker, Jeffrey M; Kong, In Iok; Kim, Heejin; Maurer, Matthew J; Zhang, Guo-Chang; Peng, Dairong; Wei, Na; Arkin, Adam P; Jin, Yong-Su

    2017-03-01

    Many desired phenotypes for producing cellulosic biofuels are often observed in industrial Saccharomyces cerevisiae strains. However, many industrial yeast strains are polyploid and have low spore viability, making it difficult to use these strains for metabolic engineering applications. We selected the polyploid industrial strain S. cerevisiae ATCC 4124 exhibiting rapid glucose fermentation capability, high ethanol productivity, strong heat and inhibitor tolerance in order to construct an optimal yeast strain for producing cellulosic ethanol. Here, we focused on developing a general approach and high-throughput screening method to isolate stable haploid segregants derived from a polyploid parent, such as triploid ATCC 4124 with a poor spore viability. Specifically, we deleted the HO genes, performed random sporulation, and screened the resulting segregants based on growth rate, mating type, and ploidy. Only one stable haploid derivative (4124-S60) was isolated, while 14 other segregants with a stable mating type were aneuploid. The 4124-S60 strain inherited only a subset of desirable traits present in the parent strain, same as other aneuploids, suggesting that glucose fermentation and specific ethanol productivity are likely to be genetically complex traits and/or they might depend on ploidy. Nonetheless, the 4124-60 strain did inherit the ability to tolerate fermentation inhibitors. When additional genetic perturbations known to improve xylose fermentation were introduced into the 4124-60 strain, the resulting engineered strain (IIK1) was able to ferment a Miscanthus hydrolysate better than a previously engineered laboratory strain (SR8), built by making the same genetic changes. However, the IIK1 strain showed higher glycerol and xylitol yields than the SR8 strain. In order to decrease glycerol and xylitol production, an NADH-dependent acetate reduction pathway was introduced into the IIK1 strain. By consuming 2.4g/L of acetate, the resulting strain (IIK1A

  5. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  6. Copy-number variants in neurodevelopmental disorders: promises and challenges.

    LENUS (Irish Health Repository)

    Merikangas, Alison K

    2012-02-01

    Copy-number variation (CNV) is the most prevalent type of structural variation in the human genome. There is emerging evidence that copy-number variants (CNVs) provide a new vista on understanding susceptibility to neuropsychiatric disorders. Some challenges in the interpretation of current CNV studies include the use of overlapping samples, differing phenotypic definitions, an absence of population norms for CNVs and a lack of consensus in methods for CNV detection and analysis. Here, we review current CNV association study methods and results in autism spectrum disorders (ASD) and schizophrenia, and provide suggestions for design approaches to future studies that might maximize the translation of this work to etiological understanding.

  7. Apomixis and the problem of obtaining haploids and homozygote diploids in pear (Pyrus communis L.

    Directory of Open Access Journals (Sweden)

    Є. О. Долматов

    2013-02-01

    Full Text Available The article highlights results of research over simulative apomixes in pear and its utilization for obtaining haploids and homozygote diploids. It has been established that over 50% pear varieties with failed remote hybridization are capable of generating seeds of apomictic origin producing diploid plants. Genotypes displaying maximal inclination to apomixes have been singled out. Apomictic pear seedlings obtained from foreign pollination within the limits of the same combination are inherent in profound morphological diversity. Fruit-bearing apomicts originated from one and the same maternal plant differ to the same extent as hybrid seedlings of the same family. Genetic markers have enabled to establish that these are embryo sacs in which meiosis has completed that give rise to apomictic seeds. In vitro method as used for the purpose of increasing apomictic plants output has been illustrated. The greatest induction of apomictic shoots in vitro has been reached by alternation of BAP cytokinin at concentration of 1mg/l and 2 mg/l on the background of GA3 amounting to 1,5 mg/l. Grafting with shoots in vitro on non-sterile rootstocks of pear (Pyrus communis has increased the output of plants up to 80%. A cytological assessment of 9 apomictic samples is provided. The cytological analysis of samples of apomictic forms has certified the presence of simulative haploid parthenogenesis in pear.

  8. Brewing characteristics of haploid strains isolated from sake yeast Kyokai No. 7.

    Science.gov (United States)

    Katou, Taku; Kitagaki, Hiroshi; Akao, Takeshi; Shimoi, Hitoshi

    2008-11-01

    Sake yeast exhibit various characteristics that make them more suitable for sake brewing compared to other yeast strains. Since sake yeast strains are Saccharomyces cerevisiae heterothallic diploid strains, it is likely that they have heterozygous alleles on homologous chromosomes (heterozygosity) due to spontaneous mutations. If this is the case, segregation of phenotypic traits in haploid strains after sporulation and concomitant meiosis of sake yeast strains would be expected to occur. To examine this hypothesis, we isolated 100 haploid strains from Kyokai No. 7 (K7), a typical sake yeast strain in Japan, and compared their brewing characteristics in small-scale sake-brewing tests. Analyses of the resultant sake samples showed a smooth and continuous distribution of analytical values for brewing characteristics, suggesting that K7 has multiple heterozygosities that affect brewing characteristics and that these heterozygous alleles do segregate after sporulation. Correlation and principal component analyses suggested that the analytical parameters could be classified into two groups, indicating fermentation ability and sake flavour. (c) 2008 John Wiley & Sons, Ltd.

  9. DNA replication stress restricts ribosomal DNA copy number

    Science.gov (United States)

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  10. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  11. DNA replication stress restricts ribosomal DNA copy number.

    Directory of Open Access Journals (Sweden)

    Devika Salim

    2017-09-01

    Full Text Available Ribosomal RNAs (rRNAs in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  12. Inferring Variation in Copy Number Using High Throughput Sequencing Data in R.

    Science.gov (United States)

    Knaus, Brian J; Grünwald, Niklaus J

    2018-01-01

    Inference of copy number variation presents a technical challenge because variant callers typically require the copy number of a genome or genomic region to be known a priori . Here we present a method to infer copy number that uses variant call format (VCF) data as input and is implemented in the R package vcfR . This method is based on the relative frequency of each allele (in both genic and non-genic regions) sequenced at heterozygous positions throughout a genome. These heterozygous positions are summarized by using arbitrarily sized windows of heterozygous positions, binning the allele frequencies, and selecting the bin with the greatest abundance of positions. This provides a non-parametric summary of the frequency that alleles were sequenced at. The method is applicable to organisms that have reference genomes that consist of full chromosomes or sub-chromosomal contigs. In contrast to other software designed to detect copy number variation, our method does not rely on an assumption of base ploidy, but instead infers it. We validated these approaches with the model system of Saccharomyces cerevisiae and applied it to the oomycete Phytophthora infestans , both known to vary in copy number. This functionality has been incorporated into the current release of the R package vcfR to provide modular and flexible methods to investigate copy number variation in genomic projects.

  13. Copy number variation in obsessive-compulsive disorder and tourette syndrome: a cross-disorder study

    NARCIS (Netherlands)

    McGrath, Lauren M.; Yu, Dongmei; Marshall, Christian; Davis, Lea K.; Thiruvahindrapuram, Bhooma; Li, Bingbin; Cappi, Carolina; Gerber, Gloria; Wolf, Aaron; Schroeder, Frederick A.; Osiecki, Lisa; O'Dushlaine, Colm; Kirby, Andrew; Illmann, Cornelia; Haddad, Stephen; Gallagher, Patience; Fagerness, Jesen A.; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Bienvenu, O. Joseph; Black, Donald W.; Bloch, Michael H.; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Cath, Danielle C.; Cavallini, Maria C.; Chouinard, Sylvain; Coric, Vladimir; Cullen, Bernadette; Delorme, Richard; Denys, Damiaan; Derks, Eske M.; Dion, Yves; Rosário, Maria C.; Eapen, Valsama; Evans, Patrick; Falkai, Peter; Fernandez, Thomas V.; Garrido, Helena; Geller, Daniel; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Grünblatt, Edna; Heiman, Gary A.; Hemmings, Sian M. J.; Herrera, Luis D.; Hounie, Ana G.; Jankovic, Joseph; Kennedy, James L.; King, Robert A.; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Lochner, Christine; Lowe, Thomas L.; Lyon, Gholson J.; Macciardi, Fabio; Maier, Wolfgang; McCracken, James T.; McMahon, William; Murphy, Dennis L.; Naarden, Allan L.; Neale, Benjamin M.; Nurmi, Erika; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlos N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark; Robertson, Mary M.; Rosenberg, David; Rouleau, Guy A.; Ruhrmann, Stephan; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Tischfield, Jay A.; Vallada, Homero; Veenstra-Vanderweele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R.; Shugart, Yin Yao; Miguel, Euripedes C.; Nicolini, Humberto; Oostra, Ben A.; Moessner, Rainald; Wagner, Michael; Ruiz-Linares, Andres; Heutink, Peter; Nestadt, Gerald; Freimer, Nelson; Petryshen, Tracey; Posthuma, Danielle; Jenike, Michael A.; Cox, Nancy J.; Hanna, Gregory L.; Brentani, Helena; Scherer, Stephen W.; Arnold, Paul D.; Stewart, S. Evelyn; Mathews, Carol A.; Knowles, James A.; Cook, Edwin H.; Pauls, David L.; Wang, Kai; Scharf, Jeremiah M.

    2014-01-01

    Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare ( <1%) copy number variants (CNVs) in OCD and the largest genome-wide

  14. Prediction of a deletion copy number variant by a dense SNP panel

    NARCIS (Netherlands)

    Kadri, N.K.; Koks, P.D.; Meuwissen, T.H.E.

    2012-01-01

    Background: A newly recognized type of genetic variation, Copy Number Variation (CNV), is detected in mammalian genomes, e.g. the cattle genome. This form of variation can potentially cause phenotypic variation. Our objective was to determine whether dense SNP (single nucleotide polymorphisms)

  15. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts

    Science.gov (United States)

    Gorter de Vries, Arthur R.; Pronk, Jack T.

    2017-01-01

    ABSTRACT Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyces strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. PMID:28341679

  16. The Hegemony of the Copy

    DEFF Research Database (Denmark)

    Graulund, Rune

    2017-01-01

    This essay questions when the creative process leading tothe original can be said to be complete. When does the series of a pupil’sbotched attempts at perfection leading to “the” singular and unique object,text, tool, or artwork we recognise as the original expression of themaster craftsman stop......? Where is the cut-off point between the differentversions (copies) of earlier inferior iterations in the gestation process thatlead to the original, and final, superior original? This essay chiefly examinesthe manner in which text has been copied and stored in one particulartype of object, namely...... that of the book, in order to provide some fairlywell-known arguments regarding pre-mechanical as well as mechanical reproduction.In particular, it examines the differences between manuscriptculture and print culture as we see them expressed in the production (andreproduction) of master copies and subsequent...

  17. Getting DNA copy numbers without control samples

    Directory of Open Access Journals (Sweden)

    Ortiz-Estevez Maria

    2012-08-01

    Full Text Available Abstract Background The selection of the reference to scale the data in a copy number analysis has paramount importance to achieve accurate estimates. Usually this reference is generated using control samples included in the study. However, these control samples are not always available and in these cases, an artificial reference must be created. A proper generation of this signal is crucial in terms of both noise and bias. We propose NSA (Normality Search Algorithm, a scaling method that works with and without control samples. It is based on the assumption that genomic regions enriched in SNPs with identical copy numbers in both alleles are likely to be normal. These normal regions are predicted for each sample individually and used to calculate the final reference signal. NSA can be applied to any CN data regardless the microarray technology and preprocessing method. It also finds an optimal weighting of the samples minimizing possible batch effects. Results Five human datasets (a subset of HapMap samples, Glioblastoma Multiforme (GBM, Ovarian, Prostate and Lung Cancer experiments have been analyzed. It is shown that using only tumoral samples, NSA is able to remove the bias in the copy number estimation, to reduce the noise and therefore, to increase the ability to detect copy number aberrations (CNAs. These improvements allow NSA to also detect recurrent aberrations more accurately than other state of the art methods. Conclusions NSA provides a robust and accurate reference for scaling probe signals data to CN values without the need of control samples. It minimizes the problems of bias, noise and batch effects in the estimation of CNs. Therefore, NSA scaling approach helps to better detect recurrent CNAs than current methods. The automatic selection of references makes it useful to perform bulk analysis of many GEO or ArrayExpress experiments without the need of developing a parser to find the normal samples or possible batches within the

  18. Getting DNA copy numbers without control samples.

    Science.gov (United States)

    Ortiz-Estevez, Maria; Aramburu, Ander; Rubio, Angel

    2012-08-16

    The selection of the reference to scale the data in a copy number analysis has paramount importance to achieve accurate estimates. Usually this reference is generated using control samples included in the study. However, these control samples are not always available and in these cases, an artificial reference must be created. A proper generation of this signal is crucial in terms of both noise and bias.We propose NSA (Normality Search Algorithm), a scaling method that works with and without control samples. It is based on the assumption that genomic regions enriched in SNPs with identical copy numbers in both alleles are likely to be normal. These normal regions are predicted for each sample individually and used to calculate the final reference signal. NSA can be applied to any CN data regardless the microarray technology and preprocessing method. It also finds an optimal weighting of the samples minimizing possible batch effects. Five human datasets (a subset of HapMap samples, Glioblastoma Multiforme (GBM), Ovarian, Prostate and Lung Cancer experiments) have been analyzed. It is shown that using only tumoral samples, NSA is able to remove the bias in the copy number estimation, to reduce the noise and therefore, to increase the ability to detect copy number aberrations (CNAs). These improvements allow NSA to also detect recurrent aberrations more accurately than other state of the art methods. NSA provides a robust and accurate reference for scaling probe signals data to CN values without the need of control samples. It minimizes the problems of bias, noise and batch effects in the estimation of CNs. Therefore, NSA scaling approach helps to better detect recurrent CNAs than current methods. The automatic selection of references makes it useful to perform bulk analysis of many GEO or ArrayExpress experiments without the need of developing a parser to find the normal samples or possible batches within the data. The method is available in the open-source R package

  19. Re-annotation of the physical map of Glycine max for polyploid-like regions by BAC end sequence driven whole genome shotgun read assembly

    Directory of Open Access Journals (Sweden)

    Shultz Jeffry

    2008-07-01

    Full Text Available Abstract Background Many of the world's most important food crops have either polyploid genomes or homeologous regions derived from segmental shuffling following polyploid formation. The soybean (Glycine max genome has been shown to be composed of approximately four thousand short interspersed homeologous regions with 1, 2 or 4 copies per haploid genome by RFLP analysis, microsatellite anchors to BACs and by contigs formed from BAC fingerprints. Despite these similar regions,, the genome has been sequenced by whole genome shotgun sequence (WGS. Here the aim was to use BAC end sequences (BES derived from three minimum tile paths (MTP to examine the extent and homogeneity of polyploid-like regions within contigs and the extent of correlation between the polyploid-like regions inferred from fingerprinting and the polyploid-like sequences inferred from WGS matches. Results Results show that when sequence divergence was 1–10%, the copy number of homeologous regions could be identified from sequence variation in WGS reads overlapping BES. Homeolog sequence variants (HSVs were single nucleotide polymorphisms (SNPs; 89% and single nucleotide indels (SNIs 10%. Larger indels were rare but present (1%. Simulations that had predicted fingerprints of homeologous regions could be separated when divergence exceeded 2% were shown to be false. We show that a 5–10% sequence divergence is necessary to separate homeologs by fingerprinting. BES compared to WGS traces showed polyploid-like regions with less than 1% sequence divergence exist at 2.3% of the locations assayed. Conclusion The use of HSVs like SNPs and SNIs to characterize BACs wil improve contig building methods. The implications for bioinformatic and functional annotation of polyploid and paleopolyploid genomes show that a combined approach of BAC fingerprint based physical maps, WGS sequence and HSV-based partitioning of BAC clones from homeologous regions to separate contigs will allow reliable de

  20. Exploratory analysis of the copy number alterations in glioblastoma multiforme.

    Science.gov (United States)

    Freire, Pablo; Vilela, Marco; Deus, Helena; Kim, Yong-Wan; Koul, Dimpy; Colman, Howard; Aldape, Kenneth D; Bogler, Oliver; Yung, W K Alfred; Coombes, Kevin; Mills, Gordon B; Vasconcelos, Ana T; Almeida, Jonas S

    2008-01-01

    The Cancer Genome Atlas project (TCGA) has initiated the analysis of multiple samples of a variety of tumor types, starting with glioblastoma multiforme. The analytical methods encompass genomic and transcriptomic information, as well as demographic and clinical data about the sample donors. The data create the opportunity for a systematic screening of the components of the molecular machinery for features that may be associated with tumor formation. The wealth of existing mechanistic information about cancer cell biology provides a natural reference for the exploratory exercise. Glioblastoma multiforme DNA copy number data was generated by The Cancer Genome Atlas project for 167 patients using 227 aCGH experiments, and was analyzed to build a catalog of aberrant regions. Genome screening was performed using an information theory approach in order to quantify aberration as a deviation from a centrality without the bias of untested assumptions about its parametric nature. A novel Cancer Genome Browser software application was developed and is made public to provide a user-friendly graphical interface in which the reported results can be reproduced. The application source code and stand alone executable are available at (http://code.google.com/p/cancergenome) and (http://bioinformaticstation.org), respectively. The most important known copy number alterations for glioblastoma were correctly recovered using entropy as a measure of aberration. Additional alterations were identified in different pathways, such as cell proliferation, cell junctions and neural development. Moreover, novel candidates for oncogenes and tumor suppressors were also detected. A detailed map of aberrant regions is provided.

  1. Screening for common copy-number variants in cancer genes.

    Science.gov (United States)

    Tyson, Jess; Majerus, Tamsin M O; Walker, Susan; Armour, John A L

    2010-12-01

    For most cases of colorectal cancer that arise without a family history of the disease, it is proposed that an appreciable heritable component of predisposition is the result of contributions from many loci. Although progress has been made in identifying single nucleotide variants associated with colorectal cancer risk, the involvement of low-penetrance copy number variants is relatively unexplored. We have used multiplex amplifiable probe hybridization (MAPH) in a fourfold multiplex (QuadMAPH), positioned at an average resolution of one probe per 2 kb, to screen a total of 1.56 Mb of genomic DNA for copy number variants around the genes APC, AXIN1, BRCA1, BRCA2, CTNNB1, HRAS, MLH1, MSH2, and TP53. Two deletion events were detected, one upstream of MLH1 in a control individual and the other in APC in a colorectal cancer patient, but these do not seem to correspond to copy number polymorphisms with measurably high population frequencies. In summary, by means of our QuadMAPH assay, copy number measurement data were of sufficient resolution and accuracy to detect any copy number variants with high probability. However, this study has demonstrated a very low incidence of deletion and duplication variants within intronic and flanking regions of these nine genes, in both control individuals and colorectal cancer patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Cellular heredity in haploid cultures of somatic cells. Annual progress report, March 1, 1975--March 31, 1976. [UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Freed, J.J.

    1976-01-01

    In experiments with haploid and diploid derivatives from the haploid frog embryo cell line ICR 2A, we have investigated aspects of cell survival, DNA repair and mutant induction after exposure to 254 nm radiation. Survival curves for haploid and diploid cells in random growth or blocked in the Gl phase of the cell cycle were determined; the survival data do not differ sufficiently to permit the use of such comparisons as an index of recessive lethal induction. Studies of the induction of thymine dimers in DNA indicated that the incidence of dimers in DNA from haploid and diploid cells is similar after exposure of the cells to equal doses of ultraviolet. The cells are capable of photoreversing dimers but appear to be deficient in excision repair. In an attempt to examine the effect of the permitted mode of DNA repair on the yield of mutations, we compared the incidence of ouabain-resistant variants among survivors of ultraviolet exposure and of ultraviolet exposure followed by photoreversal. Although the yield of resistant colonies was small, the data suggest that photoreversal lowers the yield of resistant colonies and thus that the induction of this phenotype is related to dimer persistence in DNA. We have also observed by fluorescence microscopy that an acridine mustard mutagen, ICR 191, is preferentially accumulated in cytoplasmic granules having the intracellular distribution pattern of lysosomes. This form of incorporation may be significant in the apparently non-genetic early toxicity of this compound observed in experiments with cultured cells.

  3. Cellular heredity in haploid cultures of somatic cells. Annual progress report, March 1, 1975--March 31, 1976

    International Nuclear Information System (INIS)

    Freed, J.J.

    1976-01-01

    In experiments with haploid and diploid derivatives from the haploid frog embryo cell line ICR 2A, we have investigated aspects of cell survival, DNA repair and mutant induction after exposure to 254 nm radiation. Survival curves for haploid and diploid cells in random growth or blocked in the Gl phase of the cell cycle were determined; the survival data do not differ sufficiently to permit the use of such comparisons as an index of recessive lethal induction. Studies of the induction of thymine dimers in DNA indicated that the incidence of dimers in DNA from haploid and diploid cells is similar after exposure of the cells to equal doses of ultraviolet. The cells are capable of photoreversing dimers but appear to be deficient in excision repair. In an attempt to examine the effect of the permitted mode of DNA repair on the yield of mutations, we compared the incidence of ouabain-resistant variants among survivors of ultraviolet exposure and of ultraviolet exposure followed by photoreversal. Although the yield of resistant colonies was small, the data suggest that photoreversal lowers the yield of resistant colonies and thus that the induction of this phenotype is related to dimer persistence in DNA. We have also observed by fluorescence microscopy that an acridine mustard mutagen, ICR 191, is preferentially accumulated in cytoplasmic granules having the intracellular distribution pattern of lysosomes. This form of incorporation may be significant in the apparently non-genetic early toxicity of this compound observed in experiments with cultured cells

  4. Inheritance patterns of the response to in vitro doubled haploid induction in perennial ryegrass (Lolium perenne L.)

    Czech Academy of Sciences Publication Activity Database

    Begheyn, R. F.; Roulund, N.; Vangsgaard, K.; Kopecký, David; Studer, B.

    2017-01-01

    Roč. 130, č. 3 (2017), s. 667-679 ISSN 0167-6857 Institutional support: RVO:61389030 Keywords : Androgenesis * Androgenic capacity * Anther culture * Doubled haploid (DH) * Perennial ryegrass (Lolium perenne L.) Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 2.002, year: 2016

  5. Quantitative trait loci mapping of heat tolerance in a doubled haploid population of broccoli using genotyping-by-sequencing

    Science.gov (United States)

    Broccoli is a cool weather vegetable crop with a vernalization requirement to initiate and maintain floral development. Breeding for heat tolerance in broccoli has the potential to both expand viable production areas and extend the growing season. A doubled haploid (DH) population of broccoli (Bras...

  6. Cytomorphological studies in X-ray induced glandless haploids in Gossypium hirsutum L. (cotton)

    Energy Technology Data Exchange (ETDEWEB)

    Mehetre, S.S.; Thombre, M.V. (Mahatma Phule Krishi Vidyapeeth, Rahuri (India))

    1981-08-01

    Six haploid plants were obtained in M/sub 2/ generation of the 25 kr. X-ray irradiated Gossypium hirsutum L. cotton variety H.G. 108. The cytomorphological studies on these plants indicated highly irregular meiosis, giving on an average six bivalents, the range being 0-9. Unequal separation of chromosomes and chromatids at anaphase-1 and II respectively led to formation of abnormal tetrads and pollens with high size variations leading to high pollen sterility. These plants were characterized by miniature stature, shorter stem and internodes, smaller leaves, flowers and stomata with fewer chloroplasts, male and female sterility and halving of chromosomes. The reduction in morphological characters was nearly in the proportion of 1:2 as compared to their diploid counterparts. 31 refs.; 5 tables; 12 figures.

  7. Analysis of QTLs Associated with the Rice Quality Related Gene by Double Haploid Populations

    Science.gov (United States)

    Lee, Gyu-Ho; Yun, Byung-Wook

    2014-01-01

    We investigated the growth characteristics and analyzed the physicochemical properties of a doubled haploid population derived from a cross between “Cheongcheong” and “Nagdong” to breed a rice variety that tastes good after cooking and to detect quantitative trait loci (QTLs) associated with the taste of cooked rice. The results showed that these compounds also represent a normal distribution. Correlation analysis of the amylose, protein, and lipid contents indicated that each compound is related to the taste of cooked rice. The QTLs related to amylose content were 4 QTLs, protein content was 2 QTLs, and lipid content was 2 QTLs. Four of the QTLs associated with amylose content were detected on chromosomes 7 and 11. The index of coincidence for the QTLs related to amylose, protein, and lipid content was 70%, respectively. These markers showing high percentage of coincidence can be useful to select desirable lines for rice breeding. PMID:25478566

  8. Analysis of QTLs Associated with the Rice Quality Related Gene by Double Haploid Populations

    Directory of Open Access Journals (Sweden)

    Gyu-Ho Lee

    2014-01-01

    Full Text Available We investigated the growth characteristics and analyzed the physicochemical properties of a doubled haploid population derived from a cross between “Cheongcheong” and “Nagdong” to breed a rice variety that tastes good after cooking and to detect quantitative trait loci (QTLs associated with the taste of cooked rice. The results showed that these compounds also represent a normal distribution. Correlation analysis of the amylose, protein, and lipid contents indicated that each compound is related to the taste of cooked rice. The QTLs related to amylose content were 4 QTLs, protein content was 2 QTLs, and lipid content was 2 QTLs. Four of the QTLs associated with amylose content were detected on chromosomes 7 and 11. The index of coincidence for the QTLs related to amylose, protein, and lipid content was 70%, respectively. These markers showing high percentage of coincidence can be useful to select desirable lines for rice breeding.

  9. Effect of gamma-radiations on haploid cultured cells of Datura innoxia

    International Nuclear Information System (INIS)

    Jain, R.K.; Maherchandani, N.; Sharma, D.R.; Chowdhury, V.K.

    1981-01-01

    The effects of gamma-radiations were studied in haploid cultured cells of Datura innoxia. Growth of callus cultures and shoot differentiation were stimulated at low doses (0.2 and 1.0 kR), while the higher dose (5.0 kR) was inhibitory. Root differentiation was observed only in cultures exposed to 1.0 kR dose. Enzyme activities of alpha-amylase, peroxidase, malate dehydrogenase and phosphatases, and the amounts of buffer extractable proteins were stimulated at 0.2 and 1.0 kR and inhibited at 5.0 kR. Mitotic index too decreased at 5.0 kR. Mean nuclear volume increased with increase in radiation dose, probably due to increased ploidy. (author)

  10. Cellular heredity in haploid cultures of somatic cells. Comprehensive report, April 1975--June 1977

    International Nuclear Information System (INIS)

    Freed, J.J.

    1977-07-01

    This report reviews genetic studies carried out since 1975 on a haploid cultured cell line from frog embryos (ICR 2A). Although a single chromosome set would be expected to facilitate recovery of recessive mutants, experiments suggested that cell culture variants might arise through processes more complex than the selection of simple mutational changes. Therefore, the objectives of the work reported here have been to throw light on just how cell culture variants arise in this system. First, we have continued to characterize the ICR 2A line, with emphasis on stability of karyotype and DNA content. Second, we have studied in detail the origin of two classes of drug-resistant variants. Bromodeoxyuridine resistance of the thymidine deficiency type has been shown to arise through sequential loss of two forms of thymidine-phosphorylating enzyme; loss of the second form of enzyme is complex, suggesting that changes more complex than simple recessive mutations may be involved. Another form of resistance, in which tolerance of high levels of bromodeoxyuridine is found in cells that continue to express thymidine kinase, remains under study. Variants resistant to microtubule inhibitors were isolated. It was found that these haploid strains have properties distinguishing them from analogous resistant strains isolated from diploid mammalian cell cultures in other laboratories. In order to understand better how mutagens are involved in the origin of cell culture variants, we have examined the effect of different forms of DNA repair on the frequency of drug-resistant colonies induced by ultraviolet radiation. Preliminary experiments suggest that the frequency of such colonies is greater when repair takes place through (presumably error-prone) dark repair than when (error-free) photoreversal is allowed to occur. Such experiments can determine whether new phenotypes arise from alterations in DNA, and thus whether, in a broad sense, they are likely to be mutational in nature

  11. Cellular heredity in haploid cultures of somatic cells. Comprehensive report, April 1975--June 1977. [UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Freed, J.J.

    1977-07-01

    This report reviews genetic studies carried out since 1975 on a haploid cultured cell line from frog embryos (ICR 2A). Although a single chromosome set would be expected to facilitate recovery of recessive mutants, experiments suggested that cell culture variants might arise through processes more complex than the selection of simple mutational changes. Therefore, the objectives of the work reported here have been to throw light on just how cell culture variants arise in this system. First, we have continued to characterize the ICR 2A line, with emphasis on stability of karyotype and DNA content. Second, we have studied in detail the origin of two classes of drug-resistant variants. Bromodeoxyuridine resistance of the thymidine deficiency type has been shown to arise through sequential loss of two forms of thymidine-phosphorylating enzyme; loss of the second form of enzyme is complex, suggesting that changes more complex than simple recessive mutations may be involved. Another form of resistance, in which tolerance of high levels of bromodeoxyuridine is found in cells that continue to express thymidine kinase, remains under study. Variants resistant to microtubule inhibitors were isolated. It was found that these haploid strains have properties distinguishing them from analogous resistant strains isolated from diploid mammalian cell cultures in other laboratories. In order to understand better how mutagens are involved in the origin of cell culture variants, we have examined the effect of different forms of DNA repair on the frequency of drug-resistant colonies induced by ultraviolet radiation. Preliminary experiments suggest that the frequency of such colonies is greater when repair takes place through (presumably error-prone) dark repair than when (error-free) photoreversal is allowed to occur. Such experiments can determine whether new phenotypes arise from alterations in DNA, and thus whether, in a broad sense, they are likely to be mutational in nature.

  12. The genome of the fire ant Solenopsis invicta

    DEFF Research Database (Denmark)

    Wurm, Yannick; Wang, John; Riba-Grognuz, Oksana

    2011-01-01

    Ants have evolved very complex societies and are key ecosystem members. Some ants, such as the fire ant Solenopsis invicta, are also major pests. Here, we present a draft genome of S. invicta, assembled from Roche 454 and Illumina sequencing reads obtained from a focal haploid male and his brothe...

  13. Comparative genomics of Lactobacillus and other LAB

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M.; Lukjancenko, Oksana

    2014-01-01

    that of the others, with the two Streptococcus species having the shortest genomes. The widest distribution in genome content was observed for Lactobacillus. The number of tRNA and rRNA gene copies varied considerably, with exceptional high numbers observed for Lb. delbrueckii, while these numbers were relatively......The genomes of 66 LABs, belonging to five different genera, were compared for genome size and gene content. The analyzed genomes included 37 Lactobacillus genomes of 17 species, six Lactococcus lactis genomes, four Leuconostoc genomes of three species, six Streptococcus genomes of two species...

  14. GRAbB : Selective Assembly of Genomic Regions, a New Niche for Genomic Research

    NARCIS (Netherlands)

    Brankovics, Balázs; Zhang, Hao; van Diepeningen, Anne D; van der Lee, Theo A J; Waalwijk, Cees; de Hoog, G Sybren

    GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often

  15. Doubled haploid production from Spanish onion (Allium cepa L.) germplasm: embryogenesis induction, plant regeneration and chromosome doubling.

    Science.gov (United States)

    Fayos, Oreto; Vallés, María P; Garcés-Claver, Ana; Mallor, Cristina; Castillo, Ana M

    2015-01-01

    The use of doubled haploids in onion breeding is limited due to the low gynogenesis efficiency of this species. Gynogenesis capacity from Spanish germplasm, including the sweet cultivar Fuentes de Ebro, the highly pungent landrace BGHZ1354 and the two Valenciana type commercial varieties Recas and Rita, was evaluated and optimized in this study. The OH-1 population, characterized by a high gynogenesis induction, was used as control. Growing conditions of the donor plants were tested with a one-step protocol and field plants produced a slightly higher percentage of embryogenesis induction than growth chamber plants. A one-step protocol was compared with a two-step protocol for embryogenesis induction. Spanish germplasm produced a 2-3 times higher percentage of embryogenesis with the two-step protocol, Recas showing the highest percentage (2.09%) and Fuentes de Ebro the lowest (0.53%). These percentages were significantly lower than those from the OH-1 population, with an average of 15% independently of the protocol used. The effect of different containers on plant regeneration was tested using both protocols. The highest percentage of acclimated plants was obtained with the two-step protocol in combination with Eco2box (70%), whereas the lowest percentage was observed with glass tubes in the two protocols (20-23%). Different amiprofos-methyl (APM) treatments were applied to embryos for chromosome doubling. A similar number of doubled haploid plants were recovered with 25 or 50 μM APM in liquid medium. However, the application of 25 μM in solid medium for 24 h produced the highest number of doubled haploid plants. Somatic regeneration from flower buds of haploid and mixoploid plants proved to be a successful approach for chromosome doubling, since diploid plants were obtained from the four regenerated lines. In this study, doubled haploid plants were produced from the four Spanish cultivars, however further improvements are needed to increase their gynogenesis

  16. Doubled haploid production from Spanish onion (Allium cepa L. germplasm: embryogenesis induction, plant regeneration and chromosome doubling

    Directory of Open Access Journals (Sweden)

    Oreto eFayos

    2015-05-01

    Full Text Available The use of doubled haploids in onion breeding is limited due to the low gynogenesis efficiency of this species. Gynogenesis capacity from Spanish germplasm, including the sweet cultivar Fuentes de Ebro, the highly pungent landrace BGHZ1354 and the two Valenciana type commercial varieties Recas and Rita, was evaluated and optimized in this study. The OH-1 population, characterized by a high gynogenesis induction, was used as control. Growing conditions of the donor plants were tested with a one-step protocol and field plants produced a slightly higher percentage of embryogenesis induction than growth chamber plants. A one-step protocol was compared with a two-step protocol for embryogenesis induction. Spanish germplasm produced a 2 to 3 times higher percentage of embryogenesis with the two-step protocol, Recas showing the highest percentage (2.09% and Fuentes de Ebro the lowest (0.53%. These percentages were significantly lower than those from the OH-1 population, with an average of 15% independently of the protocol used. The effect of different containers on plant regeneration was tested using both protocols. The highest percentage of acclimated plants was obtained with the two-step protocol in combination with Eco2box (70%, whereas the lowest percentage was observed with glass tubes in the two protocols (20-23%. Different amiprofos-methyl (APM treatments were applied to embryos for chromosome doubling. A similar number of doubled haploid plants were recovered with 25 or 50 µM APM in liquid medium. However, the application of 25 µM in solid medium for 24 h produced the highest number of doubled haploid plants. Somatic regeneration from flower buds of haploid and mixoploid plants proved to be a successful approach for chromosome doubling, since diploid plants were obtained from the 4 regenerated lines. In this study, doubled haploid plants were produced from the four Spanish cultivars, however further improvements are needed to increase their

  17. Accurate measurement of gene copy number for human alpha-defensin DEFA1A3.

    Science.gov (United States)

    Khan, Fayeza F; Carpenter, Danielle; Mitchell, Laura; Mansouri, Omniah; Black, Holly A; Tyson, Jess; Armour, John A L

    2013-10-20

    Multi-allelic copy number variants include examples of extensive variation between individuals in the copy number of important genes, most notably genes involved in immune function. The definition of this variation, and analysis of its impact on function, has been hampered by the technical difficulty of large-scale but accurate typing of genomic copy number. The copy-variable alpha-defensin locus DEFA1A3 on human chromosome 8 commonly varies between 4 and 10 copies per diploid genome, and presents considerable challenges for accurate high-throughput typing. In this study, we developed two paralogue ratio tests and three allelic ratio measurements that, in combination, provide an accurate and scalable method for measurement of DEFA1A3 gene number. We combined information from different measurements in a maximum-likelihood framework which suggests that most samples can be assigned to an integer copy number with high confidence, and applied it to typing 589 unrelated European DNA samples. Typing the members of three-generation pedigrees provided further reassurance that correct integer copy numbers had been assigned. Our results have allowed us to discover that the SNP rs4300027 is strongly associated with DEFA1A3 gene copy number in European samples. We have developed an accurate and robust method for measurement of DEFA1A3 copy number. Interrogation of rs4300027 and associated SNPs in Genome-Wide Association Study SNP data provides no evidence that alpha-defensin copy number is a strong risk factor for phenotypes such as Crohn's disease, type I diabetes, HIV progression and multiple sclerosis.

  18. Performance of Molecular Inversion Probes (MIP) in Allele CopyNumber Determination

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuker; Moorhead, Martin; Karlin-Neumann, George; Wang,Nicolas J.; Ireland, James; Lin, Steven; Chen, Chunnuan; Heiser, LauraM.; Chin, Koei; Esserman, Laura; Gray, Joe W.; Spellman, Paul T.; Faham,Malek

    2007-05-14

    We have developed a new protocol for using MolecularInversion Probes (MIP) to accurately and specifically measure allele copynumber (ACN). The new protocol provides for significant improvementsincluding the reduction of input DNA (from 2?g) by more than 25 fold (to75ng total genomic DNA), higher overall precision resulting in one orderof magnitude lower false positive rate, and greater dynamic range withaccurate absolute copy number up to 60 copies.

  19. Engineered promoters enable constant gene expression at any copy number in bacteria.

    Science.gov (United States)

    Segall-Shapiro, Thomas H; Sontag, Eduardo D; Voigt, Christopher A

    2018-04-01

    The internal environment of growing cells is variable and dynamic, making it difficult to introduce reliable parts, such as promoters, for genetic engineering. Here, we applied control-theoretic ideas to design promoters that maintained constant levels of expression at any copy number. Theory predicts that independence to copy number can be achieved by using an incoherent feedforward loop (iFFL) if the negative regulation is perfectly non-cooperative. We engineered iFFLs into Escherichia coli promoters using transcription-activator-like effectors (TALEs). These promoters had near-identical expression in different genome locations and plasmids, even when their copy number was perturbed by genomic mutations or changes in growth medium composition. We applied the stabilized promoters to show that a three-gene metabolic pathway to produce deoxychromoviridans could retain function without re-tuning when the stabilized-promoter-driven genes were moved from a plasmid into the genome.

  20. Parallel or convergent evolution in human population genomic data revealed by genotype networks

    OpenAIRE

    Vahdati, Ali R; Wagner, Andreas

    2016-01-01

    Background Genotype networks are representations of genetic variation data that are complementary to phylogenetic trees. A genotype network is a graph whose nodes are genotypes (DNA sequences) with the same broadly defined phenotype. Two nodes are connected if they differ in some minimal way, e.g., in a single nucleotide. Results We analyze human genome variation data from the 1,000 genomes project, and construct haploid genotype (haplotype) networks for 12,235 protein coding genes. The struc...

  1. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies.

    Science.gov (United States)

    Roller, Benjamin R K; Stoddard, Steven F; Schmidt, Thomas M

    2016-09-12

    The potential for rapid reproduction is a hallmark of microbial life, but microbes in nature must also survive and compete when growth is constrained by resource availability. Successful reproduction requires different strategies when resources are scarce and when they are abundant 1,2 , but a systematic framework for predicting these reproductive strategies in bacteria has not been available. Here, we show that the number of ribosomal RNA operons (rrn) in bacterial genomes predicts two important components of reproduction-growth rate and growth efficiency-which are favoured under contrasting regimes of resource availability 3,4 . We find that the maximum reproductive rate of bacteria doubles with a doubling of rrn copy number, and the efficiency of carbon use is inversely related to maximal growth rate and rrn copy number. We also identify a feasible explanation for these patterns: the rate and yield of protein synthesis mirror the overall pattern in maximum growth rate and growth efficiency. Furthermore, comparative analysis of genomes from 1,167 bacterial species reveals that rrn copy number predicts traits associated with resource availability, including chemotaxis and genome streamlining. Genome-wide patterns of orthologous gene content covary with rrn copy number, suggesting convergent evolution in response to resource availability. Our findings imply that basic cellular processes adapt in contrasting ways to long-term differences in resource availability. They also establish a basis for predicting changes in bacterial community composition in response to resource perturbations using rrn copy number measurements 5 or inferences 6,7 .

  2. Spontaneous and UV-induced variations in the activity of biomass synthesis in Candida utilis haploid and diploid strains

    International Nuclear Information System (INIS)

    Kondrat'eva, T.F.; Lin'kova, M.A.; Lobacheva, N.A.

    1988-01-01

    Candida utilis diploid strains have greater variations induced by UV irradiation in the activity of biomass synthesis as compared with the parent haploid culture. Clones with an activity of the synthesis greater that the mean population one appear more frequently in the diploid strains. Mathematical analysis has confirmed the significance of the results and the hypothesis according to which the frequency of variants more active in biomass synthesis rises after the action of UV

  3. Mutation induction in haploid yeast after split-dose radiation-exposure. I. Fractionated UV-irradiation.

    Science.gov (United States)

    Schenk, K; Zölzer, F; Kiefer, J

    1989-01-01

    Mutation induction was investigated in wild-type haploid yeast Saccharomyces cerevisiae after split-dose UV-irradiation. Cells were exposed to fractionated 254 nm-UV-doses separated by intervals from 0 to 6 h with incubation either on non-nutrient or nutrient agar between. The test parameter was resistance to canavanine. If modifications of sensitivity due to incubation are appropriately taken into account there is no change of mutation frequency.

  4. Human DAZL, DAZ and BOULE genes modulate primordial germ cell and haploid gamete formation

    Science.gov (United States)

    Kee, Kehkooi; Angeles, Vanessa T; Flores, Martha; Nguyen, Ha Nam; Pera, Renee A Reijo

    2009-01-01

    The leading cause of infertility in men and women is quantitative and qualitative defects in human germ cell (oocyte and sperm) development. Yet, it has not been possible to examine the unique developmental genetics of human germ cell formation and differentiation due to inaccessibility of germ cells during fetal development. Although several studies have shown that germ cells can be differentiated from mouse and human embryonic stem cells, human germ cells differentiated in these studies generally did not develop beyond the earliest stages1-8. Here we used a germ cell reporter to quantitate and isolate primordial germ cells derived from both male and female hESCs. Then, by silencing and overexpressing genes that encode germ cell-specific cytoplasmic RNA-binding proteins (not transcription factors), we modulated human germ cell formation and developmental progression. We observed that human DAZL (Deleted in AZoospermia-Like) functions in primordial germ cell formation, whereas closely-related genes, DAZ and BOULE, promote later stages of meiosis and development of haploid gametes. These results are significant to the generation of gametes for future basic science and potential clinical applications. PMID:19865085

  5. Mapping of Novel QTL Regulating Grain Shattering Using Doubled Haploid Population in Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Gyu-Ho Lee

    2016-01-01

    Full Text Available The critical evolutionary step during domestication of major cereals was elimination of seed shattering because the easy-to-shatter trait in wild relatives results in a severe reduction in yield. In this study, we analyzed the QTLs associated with shattering employing a high-density genetic map in doubled haploid (DH population of rice (Oryza sativa L.. A genetic linkage map was generated with 217 microsatellite markers spanning 2082.4 cM and covering 12 rice chromosomes with an average interval of 9.6 cM between markers based on 120 DHLs derived from a cross between Cheongcheong indica type cultivar and Nagdong japonica type cultivar. In the QTL analysis, five QTLs pertaining to the breaking tensile strength (BTS were detected in 2013 and 2015. Two regions of the QTLs related to BTS on chromosome 1 and chromosome 6 were detected. Several important genes are distributed in 1 Mbp region of the QTL on chromosome 6 and they are related to the formation of abscission layer. We decide to name this QTL qSh6 and the candidate genes in the qSh6 region can be employed usefully in further research for cloning.

  6. Haploid deletion strains of Saccharomyces cerevisiae that determine survival during space flight

    Science.gov (United States)

    Johanson, Kelly; Allen, Patricia L.; Gonzalez-Villalobos, Romer A.; Nesbit, Jacqueline; Nickerson, Cheryl A.; Höner zu Bentrup, Kerstin; Wilson, James W.; Ramamurthy, Rajee; D'Elia, Riccardo; Muse, Kenneth E.; Hammond, Jeffrey; Freeman, Jake; Stodieck, Louis S.; Hammond, Timothy G.

    2007-02-01

    This study identifies genes that determine survival during a space flight, using the model eukaryotic organism, Saccharomyces cerevisiae. Select strains of a haploid yeast deletion series grew during storage in distilled water in space, but not in ground based static or clinorotation controls. The survival advantages in space in distilled water include a 133-fold advantage for the deletion of PEX19, a chaperone and import receptor for newly- synthesized class I peroxisomal membrane proteins, to 77-40 fold for deletion strains lacking elements of aerobic respiration, isocitrate metabolism, and mitochondrial electron transport. Following automated addition of rich growth media, the space flight was associated with a marked survival advantage of strains with deletions in catalytically active genes including hydrolases, oxidoreductases and transferases. When compared to static controls, space flight was associated with a marked survival disadvantage of deletion strains lacking transporter, antioxidant and catalytic activity. This study identifies yeast deletion strains with a survival advantage during storage in distilled water and space flight, and amplifies our understanding of the genes critical for survival in space.

  7. Exact Markov chain and approximate diffusion solution for haploid genetic drift with one-way mutation.

    Science.gov (United States)

    Hössjer, Ola; Tyvand, Peder A; Miloh, Touvia

    2016-02-01

    The classical Kimura solution of the diffusion equation is investigated for a haploid random mating (Wright-Fisher) model, with one-way mutations and initial-value specified by the founder population. The validity of the transient diffusion solution is checked by exact Markov chain computations, using a Jordan decomposition of the transition matrix. The conclusion is that the one-way diffusion model mostly works well, although the rate of convergence depends on the initial allele frequency and the mutation rate. The diffusion approximation is poor for mutation rates so low that the non-fixation boundary is regular. When this happens we perturb the diffusion solution around the non-fixation boundary and obtain a more accurate approximation that takes quasi-fixation of the mutant allele into account. The main application is to quantify how fast a specific genetic variant of the infinite alleles model is lost. We also discuss extensions of the quasi-fixation approach to other models with small mutation rates. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Assessment of mutagenic damage by monofunctional alkylating agents and gamma radiation in haploid and diploid frogs, Xenopus laevis

    International Nuclear Information System (INIS)

    Hart, D.R.; Armstrong, J.B.

    1984-01-01

    Adult male South African clawed frogs, Xenopus laevis, were mutagenized by 3-day immersion in aqueous solutions of ethyl methanesulfonate (EMS), diethyl nitrosamine (DEN), or ethyl nitrosourea (ENU), or by acute exposure to gamma radiation. They were then spawned repeatedly at 2-week intervals with untreated females, and embryonic survival of the progeny was used to assess genetic damage. Recessive lethal effects were assessed from reduced survival of androgenetic haploid progeny. Neither recessive nor dominant lethal effects were obtained after exposure to 100 mg/liter EMS or 2 g/liter DEN. At 250 mg/liter EMS, peak dominant lethality occurred 3-5 weeks after treatment. Most embryos hatched, but many were abnormal and died shortly after hatching. Haploid survival was significantly reduced over a broader period, from 1 to 13 weeks after mutagenesis. Treatment with 75 mg/liter ENU produced effects similar to the 250-mg/liter EMS mutagenesis. At 400 mg/liter EMS, the frequency and severity of the effects on both diploid and haploid embryos were increased over the lower dose. Gamma irradiation at 1500 R produced effects similar to the 400-mg/liter mutagenesis, except that peak dominant lethality extended from 1 to 7 weeks

  9. Production of haploid plant of 'Banpeiyu' pummelo [Citrus maxima (Burm.) Merr.] by pollination with soft X-ray-irradiated pollen

    International Nuclear Information System (INIS)

    Yahata, Masaki; Yasuda, Kiichi; Kunitake, Hisato; Nagasawa, Kohji; Harusaki, Seiichi; Komatsu, Haruki

    2010-01-01

    To induce haploid plants in Citrus maxima (Burm.) Merr. 'Banpeiyu', we evaluated the effect of pollination with soft X-ray-irradiated pollen on fruit set and seed development, and carried out ovule culture. When 'Banpeiyu' pummelo pistils were pollinated with X-ray-irradiated pollen of 'Fukuhara' sweet orange [C. sinensis (L.) Osbeck], the exposure doses affected the fruit set. The number of seeds per fruit was also affected by the exposure dose, and tended to decrease as the dose increased; however, all developed seeds obtained from these crosses were diploid. In the ovule culture of 'Banpeiyu' pummelo, six embryoids shown haploidy were obtained in all treatments. One haploid plantlet with 9 chromosomes was regenerated from an embryoid in a culture of ovules established 40 days after pollination with 400 Gray (Gy)-irradiated pollen of 'Tosa-buntan' pummelo (C. maxima). This haploid was suggested to be derived from 'Banpeiyu' pummelo by random amplified polymorphic DNA (RAPD) and cleaved amplified polymorphic sequence (CAPS) analysis. (author)

  10. Breeding of a xylose-fermenting hybrid strain by mating genetically engineered haploid strains derived from industrial Saccharomyces cerevisiae.

    Science.gov (United States)

    Inoue, Hiroyuki; Hashimoto, Seitaro; Matsushika, Akinori; Watanabe, Seiya; Sawayama, Shigeki

    2014-12-01

    The industrial Saccharomyces cerevisiae IR-2 is a promising host strain to genetically engineer xylose-utilizing yeasts for ethanol fermentation from lignocellulosic hydrolysates. Two IR-2-based haploid strains were selected based upon the rate of xylulose fermentation, and hybrids were obtained by mating recombinant haploid strains harboring heterogeneous xylose dehydrogenase (XDH) (wild-type NAD(+)-dependent XDH or engineered NADP(+)-dependent XDH, ARSdR), xylose reductase (XR) and xylulose kinase (XK) genes. ARSdR in the hybrids selected for growth rates on yeast extract-peptone-dextrose (YPD) agar and YP-xylose agar plates typically had a higher activity than NAD(+)-dependent XDH. Furthermore, the xylose-fermenting performance of the hybrid strain SE12 with the same level of heterogeneous XDH activity was similar to that of a recombinant strain of IR-2 harboring a single set of genes, XR/ARSdR/XK. These results suggest not only that the recombinant haploid strains retain the appropriate genetic background of IR-2 for ethanol production from xylose but also that ARSdR is preferable for xylose fermentation.

  11. Copy number variation of KIR genes influences HIV-1 control

    DEFF Research Database (Denmark)

    Pelak, Kimberly; Need, Anna C; Fellay, Jacques

    2011-01-01

    A genome-wide screen for large structural variants showed that a copy number variant (CNV) in the region encoding killer cell immunoglobulin-like receptors (KIR) associates with HIV-1 control as measured by plasma viral load at set point in individuals of European ancestry. This CNV encompasses...... the KIR3DL1-KIR3DS1 locus, encoding receptors that interact with specific HLA-Bw4 molecules to regulate the activation of lymphocyte subsets including natural killer (NK) cells. We quantified the number of copies of KIR3DS1 and KIR3DL1 in a large HIV-1 positive cohort, and showed that an increase in KIR3...... amounts of these activating and inhibitory KIR play a role in regulating the peripheral expansion of highly antiviral KIR3DS1+ NK cells, which may determine differences in HIV-1 control following infection....

  12. Chromosome copy analysis by single-cell comparative genomic hybridization technique based on primer extension preamplification and degenerate oligonucleotide primed-PCR%引物延伸预扩增结合简并引物PCR在单细胞比较基因组杂交分析染色体异常中的应用

    Institute of Scientific and Technical Information of China (English)

    谭珂; 狄玉芬; 程德华; 徐芳; 卢光绣; 谭跃球

    2010-01-01

    Objective To establish a single-cell whole genome amplification (WGA) technique, in combination with comparative genomic hybridization (CGH), for analyzing chromosomal copy number changes, and to explore its clinical application in preimplantation genetic diagnosis (PGD). Methods Twelve single cell samples with known karyotypes, including 5 chorionic villus samples, 4 human embryonic stem cell (hESC) samples and 3 peripheral lymphocyte samples, and 4 single blastomere samples carrying chromosomal abnormalities detected by PGD, were collected for whole genome amplification by combining primer extension preamplification (PEP) with degenerate oligonucleotide primed-PCR (DOP-PCR)amplification. The amplified products labeled by red fluorescence were mixed with control DNA labeled by green fluorescence, and then the mixture was analyzed by CGH. As a comparison, 10 single cell samples were amplified by DOP-PCR only and then CGH analysis was performed. Results The amplification using PEP-DOP-PCR was more stable than traditional DOP-PCR. The products of PEP-DOP-PCR range from 100 bp to 1000 bp, with the mean size being about 400 bp. The CGH results were consistent with analyses by other methods. However, only 6 out of 10 single cell samples were successfully amplified by DOP-PCR,and CGH analysis showed a high background and 2 samples showed inconsistent results from other methods. Conclusion PEP-DOP-PCR can effectively amplify the whole genome DNA of single cell.Combined with CGH, this WGA method can successfully detect single-cell chromosomal copy number changes, while DOP-PCR was easy to fail to amplify and amplify inhomogeneousty, and CGH analysis using this PCR product usually showed high background. These results suggest that PEP-DOP-CGH is a promising method for preimplantation genetic diagnosis.%目的 建立一种可信的单细胞全基因组扩增(whole genome amplification.WGA)技术,结合比较基因组杂交(comparative genomic hybridization,CGH)分析单细

  13. Local copying of orthogonal entangled quantum states

    International Nuclear Information System (INIS)

    Anselmi, Fabio; Chefles, Anthony; Plenio, Martin B

    2004-01-01

    In classical information theory one can, in principle, produce a perfect copy of any input state. In quantum information theory, the no cloning theorem prohibits exact copying of non-orthogonal states. Moreover, if we wish to copy multiparticle entangled states and can perform only local operations and classical communication (LOCC), then further restrictions apply. We investigate the problem of copying orthogonal, entangled quantum states with an entangled blank state under the restriction to LOCC. Throughout, the subsystems have finite dimension D. We show that if all of the states to be copied are non-maximally entangled, then novel LOCC copying procedures based on entanglement catalysis are possible. We then study in detail the LOCC copying problem where both the blank state and at least one of the states to be copied are maximally entangled. For this to be possible, we find that all the states to be copied must be maximally entangled. We obtain a necessary and sufficient condition for LOCC copying under these conditions. For two orthogonal, maximally entangled states, we provide the general solution to this condition. We use it to show that for D = 2, 3, any pair of orthogonal, maximally entangled states can be locally copied using a maximally entangled blank state. However, we also show that for any D which is not prime, one can construct pairs of such states for which this is impossible

  14. Fully-Automated High-Throughput NMR System for Screening of Haploid Kernels of Maize (Corn by Measurement of Oil Content.

    Directory of Open Access Journals (Sweden)

    Hongzhi Wang

    Full Text Available One of the modern crop breeding techniques uses doubled haploid plants that contain an identical pair of chromosomes in order to accelerate the breeding process. Rapid haploid identification method is critical for large-scale selections of double haploids. The conventional methods based on the color of the endosperm and embryo seeds are slow, manual and prone to error. On the other hand, there exists a significant difference between diploid and haploid seeds generated by high oil inducer, which makes it possible to use oil content to identify the haploid. This paper describes a fully-automated high-throughput NMR screening system for maize haploid kernel identification. The system is comprised of a sampler unit to select a single kernel to feed for measurement of NMR and weight, and a kernel sorter to distribute the kernel according to the measurement result. Tests of the system show a consistent accuracy of 94% with an average screening time of 4 seconds per kernel. Field test result is described and the directions for future improvement are discussed.

  15. Fully-Automated High-Throughput NMR System for Screening of Haploid Kernels of Maize (Corn) by Measurement of Oil Content

    Science.gov (United States)

    Xu, Xiaoping; Huang, Qingming; Chen, Shanshan; Yang, Peiqiang; Chen, Shaojiang; Song, Yiqiao

    2016-01-01

    One of the modern crop breeding techniques uses doubled haploid plants that contain an identical pair of chromosomes in order to accelerate the breeding process. Rapid haploid identification method is critical for large-scale selections of double haploids. The conventional methods based on the color of the endosperm and embryo seeds are slow, manual and prone to error. On the other hand, there exists a significant difference between diploid and haploid seeds generated by high oil inducer, which makes it possible to use oil content to identify the haploid. This paper describes a fully-automated high-throughput NMR screening system for maize haploid kernel identification. The system is comprised of a sampler unit to select a single kernel to feed for measurement of NMR and weight, and a kernel sorter to distribute the kernel according to the measurement result. Tests of the system show a consistent accuracy of 94% with an average screening time of 4 seconds per kernel. Field test result is described and the directions for future improvement are discussed. PMID:27454427

  16. Human Genome Sequencing in Health and Disease

    Science.gov (United States)

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  17. Exploratory analysis of the copy number alterations in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Pablo Freire

    Full Text Available The Cancer Genome Atlas project (TCGA has initiated the analysis of multiple samples of a variety of tumor types, starting with glioblastoma multiforme. The analytical methods encompass genomic and transcriptomic information, as well as demographic and clinical data about the sample donors. The data create the opportunity for a systematic screening of the components of the molecular machinery for features that may be associated with tumor formation. The wealth of existing mechanistic information about cancer cell biology provides a natural reference for the exploratory exercise.Glioblastoma multiforme DNA copy number data was generated by The Cancer Genome Atlas project for 167 patients using 227 aCGH experiments, and was analyzed to build a catalog of aberrant regions. Genome screening was performed using an information theory approach in order to quantify aberration as a deviation from a centrality without the bias of untested assumptions about its parametric nature. A novel Cancer Genome Browser software application was developed and is made public to provide a user-friendly graphical interface in which the reported results can be reproduced. The application source code and stand alone executable are available at (http://code.google.com/p/cancergenome and (http://bioinformaticstation.org, respectively.The most important known copy number alterations for glioblastoma were correctly recovered using entropy as a measure of aberration. Additional alterations were identified in different pathways, such as cell proliferation, cell junctions and neural development. Moreover, novel candidates for oncogenes and tumor suppressors were also detected. A detailed map of aberrant regions is provided.

  18. Patterns, correlates, and reduction of homework copying

    Directory of Open Access Journals (Sweden)

    David J. Palazzo

    2010-03-01

    Full Text Available Submissions to an online homework tutor were analyzed to determine whether they were copied. The fraction of copied submissions increased rapidly over the semester, as each weekly deadline approached and for problems later in each assignment. The majority of students, who copied less than 10% of their problems, worked steadily over the three days prior to the deadline, whereas repetitive copiers (those who copied >30% of their submitted problems exerted little effort early. Importantly, copying homework problems that require an analytic answer correlates with a 2(σ decline over the semester in relative score for similar problems on exams but does not significantly correlate with the amount of conceptual learning as measured by pretesting and post-testing. An anonymous survey containing questions used in many previous studies of self-reported academic dishonesty showed ∼1/3 less copying than actually was detected. The observed patterns of copying, free response questions on the survey, and interview data suggest that time pressure on students who do not start their homework in a timely fashion is the proximate cause of copying. Several measures of initial ability in math or physics correlated with copying weakly or not at all. Changes in course format and instructional practices that previous self-reported academic dishonesty surveys and/or the observed copying patterns suggested would reduce copying have been accompanied by more than a factor of 4 reduction of copying from ∼11% of all electronic problems to less than 3%. As expected (since repetitive copiers have approximately three times the chance of failing, this was accompanied by a reduction in the overall course failure rate. Survey results indicate that students copy almost twice as much written homework as online homework and show that students nationally admit to more academic dishonesty than MIT students.

  19. Critical mutation rate has an exponential dependence on population size in haploid and diploid populations.

    Directory of Open Access Journals (Sweden)

    Elizabeth Aston

    Full Text Available Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the

  20. Quantifying rooting at depth in a wheat doubled haploid population with introgression from wild emmer.

    Science.gov (United States)

    Clarke, Christina K; Gregory, Peter J; Lukac, Martin; Burridge, Amanda J; Allen, Alexandra M; Edwards, Keith J; Gooding, Mike J

    2017-09-01

    The genetic basis of increased rooting below the plough layer, post-anthesis in the field, of an elite wheat line (Triticum aestivum 'Shamrock') with recent introgression from wild emmer (T. dicoccoides), is investigated. Shamrock has a non-glaucous canopy phenotype mapped to the short arm of chromosome 2B (2BS), derived from the wild emmer. A secondary aim was to determine whether genetic effects found in the field could have been predicted by other assessment methods. Roots of doubled haploid (DH) lines from a winter wheat ('Shamrock' × 'Shango') population were assessed using a seedling screen in moist paper rolls, in rhizotrons to the end of tillering, and in the field post-anthesis. A linkage map was produced using single nucleotide polymorphism markers to identify quantitative trait loci (QTLs) for rooting traits. Shamrock had greater root length density (RLD) at depth than Shango, in the field and within the rhizotrons. The DH population exhibited diversity for rooting traits within the three environments studied. QTLs were identified on chromosomes 5D, 6B and 7B, explaining variation in RLD post-anthesis in the field. Effects associated with the non-glaucous trait on RLD interacted significantly with depth in the field, and some of this interaction mapped to 2BS. The effect of genotype was strongly influenced by the method of root assessment, e.g. glaucousness expressed in the field was negatively associated with root length in the rhizotrons, but positively associated with length in the seedling screen. To our knowledge, this is the first study to identify QTLs for rooting at depth in field-grown wheat at mature growth stages. Within the population studied here, our results are consistent with the hypothesis that some of the variation in rooting is associated with recent introgression from wild emmer. The expression of genetic effects differed between the methods of root assessment. © The Author 2017. Published by Oxford University Press on behalf of the

  1. Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics

    Science.gov (United States)

    Kevin Weitemier; Shannon C.K. Straub; Richard C. Cronn; Mark Fishbein; Roswitha Schmickl; Angela McDonnell; Aaron. Liston

    2014-01-01

    • Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. • Methods and Results: Genome and transcriptome assemblies for milkweed ( Asclepias syriaca ) were used to design enrichment probes for 3385...

  2. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data

    OpenAIRE

    Sep?lveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain5, Arnab; Clark, Taane G

    2013-01-01

    BACKGROUND: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poi...

  3. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats.

    Science.gov (United States)

    Armour, John A L; Palla, Raquel; Zeeuwen, Patrick L J M; den Heijer, Martin; Schalkwijk, Joost; Hollox, Edward J

    2007-01-01

    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies.

  4. Quantitative Trait Loci Mapping of Western Corn Rootworm (Coleoptera: Chrysomelidae) Host Plant Resistance in Two Populations of Doubled Haploid Lines in Maize (Zea mays L.).

    Science.gov (United States)

    Bohn, Martin O; Marroquin, Juan J; Flint-Garcia, Sherry; Dashiell, Kenton; Willmot, David B; Hibbard, Bruce E

    2018-02-09

    Over the last 70 yr, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera (LeConte; Coleoptera: Chrysomelidae), larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Selected genotypes were mostly characterized by large root systems and superior root regrowth after root damage caused by western corn rootworm larvae. However, no hybrids claiming native (i.e., host plant) resistance to western corn rootworm larval feeding are currently commercially available. We investigated the genetic basis of western corn rootworm resistance in maize materials with improved levels of resistance using linkage disequilibrium mapping approaches. Two populations of topcrossed doubled haploid maize lines (DHLs) derived from crosses between resistant and susceptible maize lines were evaluated for their level of resistance in three to four different environments. For each DHL topcross an average root damage score was estimated and used for quantitative trait loci (QTL) analysis. We found genomic regions contributing to western corn rootworm resistance on all maize chromosomes, except for chromosome 4. Models fitting all QTL simultaneously explained about 30 to 50% of the genotypic variance for root damage scores in both mapping populations. Our findings confirm the complex genetic structure of host plant resistance against western corn rootworm larval feeding in maize. Interestingly, three of these QTL regions also carry genes involved in ascorbate biosynthesis, a key compound we hypothesize is involved in the expression of western corn rootworm resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle

    Science.gov (United States)

    The diversity and population-genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analyzed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, Romagnola), sequenced to 11-fold...

  6. Copy number variation in obsessive-compulsive disorder and tourette syndrome : a cross-disorder study

    NARCIS (Netherlands)

    McGrath, Lauren M; Yu, Dongmei; Marshall, Christian; Davis, Lea K; Thiruvahindrapuram, Bhooma; Li, Bingbin; Cappi, Carolina; Gerber, Gloria; Wolf, Aaron; Schroeder, Frederick A; Osiecki, Lisa; O'Dushlaine, Colm; Kirby, Andrew; Illmann, Cornelia; Haddad, Stephen; Gallagher, Patience; Fagerness, Jesen A; Barr, Cathy L; Bellodi, Laura; Benarroch, Fortu; Bienvenu, O Joseph; Black, Donald W; Bloch, Michael H; Bruun, Ruth D; Budman, Cathy L; Camarena, Beatriz; Cath, Danielle C; Cavallini, Maria C; Chouinard, Sylvain; Coric, Vladimir; Cullen, Bernadette; Delorme, Richard; Denys, D.; Derks, Eske M; Dion, Yves; Rosário, Maria C; Eapen, Valsama; Evans, Patrick; Falkai, Peter; Fernandez, Thomas V; Garrido, Helena; Geller, Daniel; Grabe, Hans J; Grados, Marco A; Greenberg, Benjamin D; Gross-Tsur, Varda; Grünblatt, Edna; Heiman, Gary A; Hemmings, Sian M J; Herrera, Luis D; Hounie, Ana G; Jankovic, Joseph; Kennedy, James L; King, Robert A; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F; Lennertz, Leonhard; Lochner, Christine; Lowe, Thomas L; Lyon, Gholson J; Macciardi, Fabio; Maier, Wolfgang; McCracken, James T; McMahon, William; Murphy, Dennis L; Naarden, Allan L; Neale, Benjamin M; Nurmi, Erika; Pakstis, Andrew J; Pato, Michele T; Pato, Carlos N; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Reus, Victor I; Richter, Margaret A; Riddle, Mark; Robertson, Mary M; Rosenberg, David; Rouleau, Guy A; Ruhrmann, Stephan; Sampaio, Aline S; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S; Smit, Jan H; Stein, Dan J; Tischfield, Jay A; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R; Shugart, Yin Yao; Miguel, Euripedes C; Nicolini, Humberto; Oostra, Ben A; Moessner, Rainald; Wagner, Michael; Ruiz-Linares, Andres; Heutink, Peter; Nestadt, Gerald; Freimer, Nelson; Petryshen, Tracey; Posthuma, Danielle; Jenike, Michael A; Cox, Nancy J; Hanna, Gregory L; Brentani, Helena; Scherer, Stephen W; Arnold, Paul D; Stewart, S Evelyn; Mathews, Carol A; Knowles, James A; Cook, Edwin H; Pauls, David L; Wang, Kai; Scharf, Jeremiah M

    OBJECTIVE: Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest

  7. Copy number variation in obsessive-compulsive disorder and tourette syndrome: A cross-disorder study

    NARCIS (Netherlands)

    L.M. McGrath; D. Yu (D.); C.R. Marshall (Christian); L.K. Davis (Lea); B. Thiruvahindrapuram (Bhooma); B. Li (Bingbin); C. Cappi (Carolina); G. Gerber (Gloria); A. de Wolf (Anneke); F.A. Schroeder (Frederick); L. Osiecki (Lisa); C. O'Dushlaine (Colm); A. Kirby (Andrew); C. Illmann (Cornelia); S. Haddad (Stephen); P. Gallagher (Patience); J. Fagerness (Jesen); C.L. Barr (Cathy); L. Bellodi (Laura); F. Benarroch (Fortu); O.J. Bienvenu (Oscar); D.W. Black (Donald); J. Bloch (Jocelyne); R.D. Bruun (Ruth); C.L. Budman (Cathy); B. Camarena (Beatriz); D. Cath (Daniëlle); M.C. Cavallini (Maria); S. Chouinard; V. Coric (Vladimir); C. Cullen; R. Delorme (Richard); D.A.J.P. Denys (Damiaan); E.M. Derks (Eske); Y. Dion (Yves); M.C. Rosário (Maria); C.E. Eapen (Chundamannil Eapen); P. Evans; P. Falkai (Peter); T.V. Fernandez (Thomas); H. Garrido (Helena); D. Geller (Daniel); H.J. Grabe (Hans Jörgen); M. Grados (Marco); B.D. Greenberg (Benjamin); V. Gross-Tsur (Varda); E. Grünblatt (Edna); M.L. Heiman (Mark); S.M.J. Hemmings (Sian); L.D. Herrera (Luis); A.G. Hounie (Ana); J. Jankovic (Joseph); J.L. Kennedy; R.A. King; R. Kurlan; N. Lanzagorta (Nuria); M. Leboyer (Marion); J.F. Leckman; L. Lennertz (Leonhard); C. Lochner (Christine); T.L. Lowe (Thomas); H.N. Lyon (Helen); F. MacCiardi (Fabio); W. Maier (Wolfgang); J.T. McCracken (James); W.M. McMahon (William); D.L. Murphy (Dennis); A.L. Naarden (Allan); E. Nurmi (Erika); A.J. Pakstis; C. Pato (Carlos); C. Pato (Carlos); J. Piacentini (John); C. Pittenger (Christopher); M.N. Pollak (Michael); V.I. Reus (Victor); M.A. Richter (Margaret); M. Riddle (Mark); M.M. Robertson; D. Rosenberg (David); G.A. Rouleau; S. Ruhrmann (Stephan); A.S. Sampaio (Aline); J. Samuels (Jonathan); P. Sandor (Paul); B. Sheppard (Brooke); H.S. Singer (Harvey); J.H. Smit (Jan); D.J. Stein (Dan); J.A. Tischfield (Jay); H. Vallada (Homero); J. Veenstra-Vanderweele (Jeremy); S. Walitza (Susanne); Y. Wang (Ying); A. Wendland (Annika); Y.Y. Shugart; E.C. Miguel (Euripedes); H. Nicolini (Humberto); B.A. Oostra (Ben); R. Moessner (Rainald); M. Wagner (Michael); A. Ruiz-Linares (Andres); P. Heutink (Peter); G. Nestadt (Gerald); N.B. Freimer (Nelson); T.L. Petryshen (Tracey); D. Posthuma (Danielle); M.A. Jenike (Michael); N.J. Cox (Nancy); G.L. Hanna (Gregory); H. Brentani (Helena); S.W. Scherer (Stephen); P.D. Arnold (Paul); S.E. Stewart; C. Mathews; J.A. Knowles (James A); E.H. Cook (Edwin); D.L. Pauls (David); K. Wang (Kai); J.M. Scharf; B.M. Neale (Benjamin)

    2014-01-01

    textabstractObjective Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and

  8. Copy number variation in obsessive-compulsive disorder and tourette syndrome: a cross-disorder study.

    NARCIS (Netherlands)

    McGrath, L.M.; Yu, D.; Marshall, C.; Davis, L.K.; Thiruvahindrapuram, B.; Li, B.; Cappi, C.; Gerber, G.; Wolf, A.; Schroeder, F.A.; Osiecki, L.; O'Dushlaine, C.; Kirby, A.; Illmann, C.; Haddad, S.; Gallagher, P.; Fagerness, J.A.; Barr, C.L.; Bellodi, L.; Benarroch, F.; Bienvenu, O.J.; Black, D. W.; Bloch, M.H.; Bruun, R.D.; Budman, C.L.; Camarena, B.; Cath, D.C.; Cavallini, M.C.; Chouinard, S.; Coric, V.; Cullen, B.; Delorme, R.; Denys, D.; Derks, E.M.; Dion, Y.; Rosário, M.C.; Eapen, V.; Evans, P.; Falkai, P.; Fernandez, T.V.; Garrido, H.; Geller, D.; Grabe, H.J.; Grados, M.A.; Greenberg, B.D.; Gross-Tsur, V.; Grünblatt, E.; Heiman, G.A.; Hemmings, S.M.; Herrera, L.D.; Hounie, A.G.; Jankovic, J.; Kennedy, J.L.; King, R.A.; Kurlan, R.; Lanzagorta, N.; Leboyer, M.; Leckman, J.F.; Lennertz, L.; Lochner, C.; Lowe, T.L.; Lyon, G.J.; Macciardi, F.; Maier, W.; McCracken, J.T.; McMahon, W.; Murphy, D.L.; Naarden, A.L.; Neale, B. M.; Nurmi, E.; Pakstis, A.J.; Pato, M. T.; Piacentini, J.; Pittenger, C.; Pollak, Y.; Reus, V.I.; Richter, M.A.; Riddle, M.; Robertson, M.M.; Rosenberg, D.; Rouleau, G.A.; Ruhrmann, S.; Sampaio, A.S.; Samuels, J.; Sandor, P.; Sheppard, B.; Singer, H.S.; Smit, J.H.; Stein, D.J.; Tischfield, J.A.; Vallada, H.; Veenstra-Vanderweele, J.; Walitza, S.; Wang, Y.; Wendland, J.R.; Shugart, Y.Y.; Miguel, E.C.; Nicolini, H.; Oostra, B.A.; Moessner, R.; Wagner, M.; Ruiz-Linares, A.; Heutink, P.; Nestadt, G.; Freimer, N.; Petryshen, T.; Posthuma, D.; Jenike, M.A.; Cox, N.J.; Hanna, G.L.; Brentani, H.; Scherer, S.W.; Arnold, P.D.; Stewart, S.E.; Mathews, C.A.; Knowles, J.A.; Cook, E.H.; Pauls, D.L.; Wang, K.; Scharf, J.M.

    2014-01-01

    Objective Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest

  9. Phenotypic manifestations of copy number variation in chromosome 16p13.11

    NARCIS (Netherlands)

    Nagamani, Sandesh C. Sreenath; Erez, Ayelet; Bader, Patricia; Lalani, Seema R.; Scott, Daryl A.; Scaglia, Fernando; Plon, Sharon E.; Tsai, Chun-Hui; Reimschisel, Tyler; Roeder, Elizabeth; Malphrus, Amy D.; Eng, Patricia A.; Hixson, Patricia M.; Kang, Sung-Hae L.; Stankiewicz, Pawel; Patel, Ankita; Cheung, Sau Wai

    The widespread clinical utilization of array comparative genome hybridization, has led to the unraveling of many new copy number variations (CNVs). Although some of these CNVs are clearly pathogenic, the phenotypic consequences of others, such as those in 16p13.11 remain unclear. Whereas deletions

  10. Distribution and functional impact of DNA copy number variation in the rat.

    NARCIS (Netherlands)

    Guryev, V.; Saar, K.; Adamovic, T.; Verheul, M.; van Heesch, S.; Cook, S.; Pravenec, M.; Aitman, T.; Jacob, H.; Shull, J.D.; Hubner, N.; Cuppen, E.

    2008-01-01

    The abundance and dynamics of copy number variants (CNVs) in mammalian genomes poses new challenges in the identification of their impact on natural and disease phenotypes. We used computational and experimental methods to catalog CNVs in rat and found that they share important functional

  11. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats.

    NARCIS (Netherlands)

    Armour, J.A.; Palla, R.; Zeeuwen, P.L.J.M.; Heijer, M. den; Schalkwijk, J.; Hollox, E.J.

    2007-01-01

    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and

  12. DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Jackson Stuart

    2010-04-01

    Full Text Available Abstract Background DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. Results We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. Conclusion The described assay outputs absolute copy number, outputs an error estimate (p-value, and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.

  13. Estimating the Probability of Traditional Copying, Conditional on Answer-Copying Statistics.

    Science.gov (United States)

    Allen, Jeff; Ghattas, Andrew

    2016-06-01

    Statistics for detecting copying on multiple-choice tests produce p values measuring the probability of a value at least as large as that observed, under the null hypothesis of no copying. The posterior probability of copying is arguably more relevant than the p value, but cannot be derived from Bayes' theorem unless the population probability of copying and probability distribution of the answer-copying statistic under copying are known. In this article, the authors develop an estimator for the posterior probability of copying that is based on estimable quantities and can be used with any answer-copying statistic. The performance of the estimator is evaluated via simulation, and the authors demonstrate how to apply the formula using actual data. Potential uses, generalizability to other types of cheating, and limitations of the approach are discussed.

  14. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts.

    Science.gov (United States)

    Gorter de Vries, Arthur R; Pronk, Jack T; Daran, Jean-Marc G

    2017-06-01

    Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyce s strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. Copyright © 2017 Gorter de Vries et al.

  15. Hacking DNA copy number for circuit engineering.

    Science.gov (United States)

    Wu, Feilun; You, Lingchong

    2017-07-27

    DNA copy number represents an essential parameter in the dynamics of synthetic gene circuits but typically is not explicitly considered. A new study demonstrates how dynamic control of DNA copy number can serve as an effective strategy to program robust oscillations in gene expression circuits.

  16. Copy-Editing: The Cambridge Handbook.

    Science.gov (United States)

    Butcher, Judith

    This handbook is designed as a reference manual for copy editors who prepare typescript for printing. It deals with the following topics: the copy editor's function; the work to be done at each stage in the production process; some difficult points of spelling, capitalization, and other features collectively known as "house style"; the parts of a…

  17. The Role of Constitutional Copy Number Variants in Breast Cancer

    Science.gov (United States)

    Walker, Logan C.; Wiggins, George A.R.; Pearson, John F.

    2015-01-01

    Constitutional copy number variants (CNVs) include inherited and de novo deviations from a diploid state at a defined genomic region. These variants contribute significantly to genetic variation and disease in humans, including breast cancer susceptibility. Identification of genetic risk factors for breast cancer in recent years has been dominated by the use of genome-wide technologies, such as single nucleotide polymorphism (SNP)-arrays, with a significant focus on single nucleotide variants. To date, these large datasets have been underutilised for generating genome-wide CNV profiles despite offering a massive resource for assessing the contribution of these structural variants to breast cancer risk. Technical challenges remain in determining the location and distribution of CNVs across the human genome due to the accuracy of computational prediction algorithms and resolution of the array data. Moreover, better methods are required for interpreting the functional effect of newly discovered CNVs. In this review, we explore current and future application of SNP array technology to assess rare and common CNVs in association with breast cancer risk in humans. PMID:27600231

  18. Supervised classification of combined copy number and gene expression data

    Directory of Open Access Journals (Sweden)

    Riccadonna S.

    2007-12-01

    Full Text Available In this paper we apply a predictive profiling method to genome copy number aberrations (CNA in combination with gene expression and clinical data to identify molecular patterns of cancer pathophysiology. Predictive models and optimal feature lists for the platforms are developed by a complete validation SVM-based machine learning system. Ranked list of genome CNA sites (assessed by comparative genomic hybridization arrays – aCGH and of differentially expressed genes (assessed by microarray profiling with Affy HG-U133A chips are computed and combined on a breast cancer dataset for the discrimination of Luminal/ ER+ (Lum/ER+ and Basal-like/ER- classes. Different encodings are developed and applied to the CNA data, and predictive variable selection is discussed. We analyze the combination of profiling information between the platforms, also considering the pathophysiological data. A specific subset of patients is identified that has a different response to classification by chromosomal gains and losses and by differentially expressed genes, corroborating the idea that genomic CNA can represent an independent source for tumor classification.

  19. The importance of copy number variation in congenital heart disease

    Science.gov (United States)

    Costain, Gregory; Silversides, Candice K; Bassett, Anne S

    2016-01-01

    Congenital heart disease (CHD) is the most common class of major malformations in humans. The historical association with large chromosomal abnormalities foreshadowed the role of submicroscopic rare copy number variations (CNVs) as important genetic causes of CHD. Recent studies have provided robust evidence for these structural variants as genome-wide contributors to all forms of CHD, including CHD that appears isolated without extra-cardiac features. Overall, a CNV-related molecular diagnosis can be made in up to one in eight patients with CHD. These include de novo and inherited variants at established (chromosome 22q11.2), emerging (chromosome 1q21.1), and novel loci across the genome. Variable expression of rare CNVs provides support for the notion of a genetic spectrum of CHD that crosses traditional anatomic classification boundaries. Clinical genetic testing using genome-wide technologies (e.g., chromosomal microarray analysis) is increasingly employed in prenatal, paediatric and adult settings. CNV discoveries in CHD have translated to changes to clinical management, prognostication and genetic counselling. The convergence of findings at individual gene and at pathway levels is shedding light on the mechanisms that govern human cardiac morphogenesis. These clinical and research advances are helping to inform whole-genome sequencing, the next logical step in delineating the genetic architecture of CHD. PMID:28706735

  20. Specific functions of the Rep and Rep' proteins of porcine circovirus during copy-release and rolling-circle DNA replication

    Science.gov (United States)

    The roles of two porcine circovirus replication initiator proteins, Rep and Rep', in generating copy-release and rolling-circle DNA replication intermediates were determined. Rep uses the supercoiled closed-circular genome (ccc) to initiate leading-strand synthesis (identical to copy-release replica...

  1. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening.

    Science.gov (United States)

    Tyson, Jess; Majerus, Tamsin Mo; Walker, Susan; Armour, John Al

    2009-09-28

    Copy number variation (CNV) in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Multiplex Amplifiable Probe Hybridisation (MAPH) is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH") that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC) samples. QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  2. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening

    Directory of Open Access Journals (Sweden)

    Walker Susan

    2009-09-01

    Full Text Available Abstract Background Copy number variation (CNV in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Results Multiplex Amplifiable Probe Hybridisation (MAPH is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH" that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC samples. Conclusion QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  3. Genomic and karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae

    Directory of Open Access Journals (Sweden)

    Vladimir Gokhman

    2011-08-01

    Full Text Available Drosophila melanogaster Meigen, 1830 has served as a model insect for over a century. Sequencing of the 11 additional Drosophila Fallen, 1823 species marks substantial progress in comparative genomics of this genus. By comparison, practically nothing is known about the genome size or genome sequences of parasitic wasps of Drosophila. Here, we present the first comparative analysis of genome size and karyotype structures of Drosophila parasitoids of the Leptopilina Förster, 1869 and Ganaspis Förster, 1869 species. The gametic genome size of Ganaspis xanthopoda (Ashmead, 1896 is larger than those of the three Leptopilina species studied. The genome sizes of all parasitic wasps studied here are also larger than those known for all Drosophila species. Surprisingly, genome sizes of these Drosophila parasitoids exceed the average value known for all previously studied Hymenoptera. The haploid chromosome number of both Leptopilina heterotoma (Thomson, 1862 and L. victoriae Nordlander, 1980 is ten. A chromosomal fusion appears to have produced a distinct karyotype for L. boulardi (Barbotin, Carton et Keiner-Pillault, 1979 (n = 9, whose genome size is smaller than that of wasps of the L. heterotoma clade. Like L. boulardi, the haploid chromosome number for G. xanthopoda is also nine. Our studies reveal a positive, but non linear, correlation between the genome size and total chromosome length in Drosophila parasitoids. These Drosophila parasitoids differ widely in their host range, and utilize different infection strategies to overcome host defense. Their comparative genomics, in relation to their exceptionally well-characterized hosts, will prove to be valuable for understanding the molecular basis of the host-parasite arms race and how such mechanisms shape the genetic structures of insect communities.

  4. An in vitro, short-term culture method for mammalian haploid round spermatids amenable for molecular manipulation.

    Science.gov (United States)

    Dehnugara, Tushna; Dhar, Surbhi; Rao, M R Satyanarayana

    2012-01-01

    Extensive chromatin remodeling is a characteristic feature of mammalian spermiogenesis. To date, methods for the molecular manipulation of haploid spermatids are not available as there is a lack of a well-established culture system. Biochemical experiments and knockout studies reveal only the final outcome; studying the incremental details of the intricate mechanisms involved is still a challenge. We have established an in vitro culture system for pure haploid round spermatids isolated from rat testes that can be maintained with good viability for up to 72 hr. Changes in cell morphology and flagellar growth were also studied in the cultured spermatids. Further, we have demonstrated that upon treatment of cells with specific histone deacetylase inhibitors, sodium butyrate and trichostatin A, there is an increase in the hyperacetylation status of histone H4, mimicking an important event characteristic of histone replacement process that occurs during later stages of spermiogenesis. We have also tried various methods for introducing DNA and protein into these round spermatids in culture, and report that while DNA transfection is still a challenging task, protein transfection could be achieved using Chariot™ peptide as a transfection reagent. Thus, the method described here sets a stage to study the molecular roles of spermatid-specific proteins and chromatin remodelers in the cellular context. Copyright © 2011 Wiley Periodicals, Inc.

  5. Low AMY1 Gene Copy Number Is Associated with Increased Body Mass Index in Prepubertal Boys.

    Directory of Open Access Journals (Sweden)

    M Loredana Marcovecchio

    Full Text Available Genome-wide association studies have identified more than 60 single nucleotide polymorphisms associated with Body Mass Index (BMI. Additional genetic variants, such as copy number variations (CNV, have also been investigated in relation to BMI. Recently, the highly polymorphic CNV in the salivary amylase (AMY1 gene, encoding an enzyme implicated in the first step of starch digestion, has been associated with obesity in adults and children. We assessed the potential association between AMY1 copy number and a wide range of BMI in a population of Italian school-children.744 children (354 boys, 390 girls, mean age (±SD: 8.4±1.4years underwent anthropometric assessments (height, weight and collection of saliva samples for DNA extraction. AMY1 copies were evaluated by quantitative PCR.A significant increase of BMI z-score by decreasing AMY1 copy number was observed in boys (β: -0.117, p = 0.033, but not in girls. Similarly, waist circumference (β: -0.155, p = 0.003, adjusted for age was negatively influenced by AMY1 copy number in boys. Boys with 8 or more AMY1 copy numbers presented a significant lower BMI z-score (p = 0.04 and waist circumference (p = 0.01 when compared to boys with less than 8 copy numbers.In this pediatric-only, population-based study, a lower AMY1 copy number emerged to be associated with increased BMI in boys. These data confirm previous findings from adult studies and support a potential role of a higher copy number of the salivary AMY1 gene in protecting from excess weight gain.

  6. Evaluating the Production of Doubled Haploid Wheat Lines Using Various Methods of Wheat and Maize Crossing to Develop Heat-Tolerant Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Tayebeh BAKHSHI

    2017-02-01

    Full Text Available Abstract. In this study, chromosome elimination method was used to develop doubled haploid wheat lines via crosses with maize. The plant materials used included 11, F1 wheat genotypes and maize genotype BC572. In these crosses, the maize plant was used as the male parent.Three methods of haploid production in wheat comprising conventional (A, detached-tiller culture (B and intermediate (C techniques were used and compared. The traits such as the number of seeds set, the number of embryos obtained and the number of haploid seedlings produced were studied. Comparisons showed that among various methods of storing wheat spikes, method (C was better than other techniques in terms of the percentage of seed production, embryo formation and haploid seedling production. Also, in all three methods, the percentage of seed production, the percentage of embryo formation and the percentage of haploid seedling production were respectively equal to 76.84, 25.22 and 51.89. Among the wheat genotypes in all three methods, genotype DH-133 with 87.28 percent seed set and genotype DH-132 with 32.71 percent embryo formation and 65.08 percent haploid seedling production were the best genotypes. A total of 92 doubled haploid lines were produced. In the field evaluations of 86 doubled haploid lines, traits such as growing season, plant height, lodging, kernel yield and 1000 kernel weight were examined. Finally, 3 lines were selected for adaptation and stability testing under heat stress conditions.Keywords: Wheat, Doubled haploid, Chromosome elimination, Detached-tiller culture Özet. Bu çalışmada, mısır ile çaprazlarla çift katlı haploid buğday hatlarının geliştirilmesi için kromozom eliminasyon yöntemi kullanılmıştır. Kullanılan bitki materyalleri 11, F1 buğday genotipleri ve BC572 mısır genotipini içermektedir. Bu çaprazlarda, mısır bitkisi erkek ebeveyn olarak kullanılmıştır. Geleneksel (A, ayrık-yeke kültürü (B ve ara (C

  7. A large-scale survey of genetic copy number variations among Han Chinese residing in Taiwan

    Directory of Open Access Journals (Sweden)

    Wu Jer-Yuarn

    2008-12-01

    Full Text Available Abstract Background Copy number variations (CNVs have recently been recognized as important structural variations in the human genome. CNVs can affect gene expression and thus may contribute to phenotypic differences. The copy number inferring tool (CNIT is an effective hidden Markov model-based algorithm for estimating allele-specific copy number and predicting chromosomal alterations from single nucleotide polymorphism microarrays. The CNIT algorithm, which was constructed using data from 270 HapMap multi-ethnic individuals, was applied to identify CNVs from 300 unrelated Han Chinese individuals in Taiwan. Results Using stringent selection criteria, 230 regions with variable copy numbers were identified in the Han Chinese population; 133 (57.83% had been reported previously, 64 displayed greater than 1% CNV allele frequency. The average size of the CNV regions was 322 kb (ranging from 1.48 kb to 5.68 Mb and covered a total of 2.47% of the human genome. A total of 196 of the CNV regions were simple deletions and 27 were simple amplifications. There were 449 genes and 5 microRNAs within these CNV regions; some of these genes are known to be associated with diseases. Conclusion The identified CNVs are characteristic of the Han Chinese population and should be considered when genetic studies are conducted. The CNV distribution in the human genome is still poorly characterized, and there is much diversity among different ethnic populations.

  8. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride.

    Science.gov (United States)

    Matvienko, Marta; Kozik, Alexander; Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard

    2013-01-01

    Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce.

  9. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride.

    Directory of Open Access Journals (Sweden)

    Marta Matvienko

    Full Text Available Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC, which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce.

  10. Dynamic Copy Number Evolution of X- and Y-Linked Ampliconic Genes in Human Populations

    DEFF Research Database (Denmark)

    Lucotte, Elise A; Skov, Laurits; Jensen, Jacob Malte

    2018-01-01

    we explore the evolution of human X- and Y-linked ampliconic genes by investigating copy number variation (CNV) and coding variation between populations using the Simons Genome Diversity Project. We develop a method to assess CNVs using the read-depth on modified X and Y chromosome targets containing...... related Y haplogroups, that diversified less than 50,000 years ago. Moreover, X and Y-linked ampliconic genes seem to have a faster amplification dynamic than autosomal multicopy genes. Looking at expression data from another study, we also find that XY-linked ampliconic genes with extensive copy number...

  11. Preservation Copying Endangered Historic Negative Collections

    DEFF Research Database (Denmark)

    Kejser, Ulla Bøgvad

    2008-01-01

    This article discusses preservation copying of unstable B&W nitrate and acetate still photographic negatives. It focuses on evaluating two different strategies for preserving the copies from a point of view of quality and cost-effectiveness. The evaluated strategies are preservation of the master...... by describing essential characteristics of negatives, which must be passed on to the copies, and the required metadata and technical imaging specifications. Next the paper discusses strategies for preservation and makes an analysis with the LIFE2 Costing Model. The paper concludes that the most beneficial...... and cost-effective preservation solution for large format negatives is to keep the preservation copies as digital files. However, it also acknowledges that it is important to revisit such strategies regularly to monitor changes in user expectations, technologies and costs....

  12. Genome aliquoting with double cut and join

    Directory of Open Access Journals (Sweden)

    Sankoff David

    2008-01-01

    Full Text Available Abstract Background The genome aliquoting probem is, given an observed genome A with n copies of each gene, presumed to descend from an n-way polyploidization event from an ordinary diploid genome B, followed by a history of chromosomal rearrangements, to reconstruct the identity of the original genome B'. The idea is to construct B', containing exactly one copy of each gene, so as to minimize the number of rearrangements d(A, B' ⊕ B' ⊕ ... ⊕ B' necessary to convert the observed genome B' ⊕ B' ⊕ ... ⊕ B' into A. Results In this paper we make the first attempt to define and solve the genome aliquoting problem. We present a heuristic algorithm for the problem as well the data from our experiments demonstrating its validity. Conclusion The heuristic performs well, consistently giving a non-trivial result. The question as to the existence or non-existence of an exact solution to this problem remains open.

  13. Bead-probe complex capture a couple of SINE and LINE family from genomes of two closely related species of East Asian cyprinid directly using magnetic separation

    Science.gov (United States)

    Tong, Chaobo; Guo, Baocheng; He, Shunping

    2009-01-01

    Background Short and long interspersed elements (SINEs and LINEs, respectively), two types of retroposons, are active in shaping the architecture of genomes and powerful tools for studies of phylogeny and population biology. Here we developed special protocol to apply biotin-streptavidin bead system into isolation of interspersed repeated sequences rapidly and efficiently, in which SINEs and LINEs were captured directly from digested genomic DNA by hybridization to bead-probe complex in solution instead of traditional strategy including genomic library construction and screening. Results A new couple of SINEs and LINEs that shared an almost identical 3'tail was isolated and characterized in silver carp and bighead carp of two closely related species. These SINEs (34 members), designated HAmo SINE family, were little divergent in sequence and flanked by obvious TSD indicated that HAmo SINE was very young family. The copy numbers of this family was estimated to 2 × 105 and 1.7 × 105 per haploid genome by Real-Time qPCR, respectively. The LINEs, identified as the homologs of LINE2 in other fishes, had a conserved primary sequence and secondary structures of the 3'tail region that was almost identical to that of HAmo SINE. These evidences suggest that HAmo SINEs are active and amplified recently utilizing the enzymatic machinery for retroposition of HAmoL2 through the recognition of higher-order structures of the conserved 42-tail region. We analyzed the possible structures of HAmo SINE that lead to successful amplification in genome and then deduced that HAmo SINE, SmaI SINE and FokI SINE that were similar in sequence each other, were probably generated independently and created by LINE family within the same lineage of a LINE phylogeny in the genomes of different hosts. Conclusion The presented results show the advantage of the novel method for retroposons isolation and a pair of young SINE family and its partner LINE family in two carp fishes, which strengthened

  14. Bead-probe complex capture a couple of SINE and LINE family from genomes of two closely related species of East Asian cyprinid directly using magnetic separation

    Directory of Open Access Journals (Sweden)

    Guo Baocheng

    2009-02-01

    Full Text Available Abstract Background Short and long interspersed elements (SINEs and LINEs, respectively, two types of retroposons, are active in shaping the architecture of genomes and powerful tools for studies of phylogeny and population biology. Here we developed special protocol to apply biotin-streptavidin bead system into isolation of interspersed repeated sequences rapidly and efficiently, in which SINEs and LINEs were captured directly from digested genomic DNA by hybridization to bead-probe complex in solution instead of traditional strategy including genomic library construction and screening. Results A new couple of SINEs and LINEs that shared an almost identical 3'tail was isolated and characterized in silver carp and bighead carp of two closely related species. These SINEs (34 members, designated HAmo SINE family, were little divergent in sequence and flanked by obvious TSD indicated that HAmo SINE was very young family. The copy numbers of this family was estimated to 2 × 105 and 1.7 × 105 per haploid genome by Real-Time qPCR, respectively. The LINEs, identified as the homologs of LINE2 in other fishes, had a conserved primary sequence and secondary structures of the 3'tail region that was almost identical to that of HAmo SINE. These evidences suggest that HAmo SINEs are active and amplified recently utilizing the enzymatic machinery for retroposition of HAmoL2 through the recognition of higher-order structures of the conserved 42-tail region. We analyzed the possible structures of HAmo SINE that lead to successful amplification in genome and then deduced that HAmo SINE, SmaI SINE and FokI SINE that were similar in sequence each other, were probably generated independently and created by LINE family within the same lineage of a LINE phylogeny in the genomes of different hosts. Conclusion The presented results show the advantage of the novel method for retroposons isolation and a pair of young SINE family and its partner LINE family in two carp

  15. Genome size of 14 species of fireflies (Insecta, Coleoptera, Lampyridae

    Directory of Open Access Journals (Sweden)

    Gui-Chun Liu

    2017-11-01

    Full Text Available Eukaryotic genome size data are important both as the basis for comparative research into genome evolution and as estimators of the cost and difficulty of genome sequencing programs for non-model organisms. In this study, the genome size of 14 species of fireflies (Lampyridae (two genera in Lampyrinae, three genera in Luciolinae, and one genus in subfamily incertae sedis were estimated by propidium iodide (PI-based flow cytometry. The haploid genome sizes of Lampyridae ranged from 0.42 to 1.31 pg, a 3.1-fold span. Genome sizes of the fireflies varied within the tested subfamilies and genera. Lamprigera and Pyrocoelia species had large and small genome sizes, respectively. No correlation was found between genome size and morphological traits such as body length, body width, eye width, and antennal length. Our data provide additional information on genome size estimation of the firefly family Lampyridae. Furthermore, this study will help clarify the cost and difficulty of genome sequencing programs for non-model organisms and will help promote studies on firefly genome evolution.

  16. COPI is required for enterovirus 71 replication.

    Directory of Open Access Journals (Sweden)

    Jianmin Wang

    Full Text Available Enterovirus 71 (EV71, a member of the Picornaviridae family, is found in Asian countries where it causes a wide range of human diseases. No effective therapy is available for the treatment of these infections. Picornaviruses undergo RNA replication in association with membranes of infected cells. COPI and COPII have been shown to be involved in the formation of picornavirus-induced vesicles. Replication of several picornaviruses, including poliovirus and Echovirus 11 (EV11, is dependent on COPI or COPII. Here, we report that COPI, but not COPII, is required for EV71 replication. Replication of EV71 was inhibited by brefeldin A and golgicide A, inhibitors of COPI activity. Furthermore, we found EV71 2C protein interacted with COPI subunits by co-immunoprecipitation and GST pull-down assay, indicating that COPI coatomer might be directed to the viral replication complex through viral 2C protein. Additionally, because the pathway is conserved among different species of enteroviruses, it may represent a novel target for antiviral therapies.

  17. Sequence diversity and copy number variation of Mutator-like transposases in wheat

    Directory of Open Access Journals (Sweden)

    Nobuaki Asakura

    2008-01-01

    Full Text Available Partial transposase-coding sequences of Mutator-like elements (MULEs were isolated from a wild einkorn wheat, Triticum urartu, by degenerate PCR. The isolated sequences were classified into a MuDR or Class I clade and divided into two distinct subclasses (subclass I and subclass II. The average pair-wise identity between members of both subclasses was 58.8% at the nucleotide sequence level. Sequence diversity of subclass I was larger than that of subclass II. DNA gel blot analysis showed that subclass I was present as low copy number elements in the genomes of all Triticum and Aegilops accessions surveyed, while subclass II was present as high copy number elements. These two subclasses seemed uncapable of recognizing each other for transposition. The number of copies of subclass II elements was much higher in Aegilops with the S, Sl and D genomes and polyploid Triticum species than in diploid Triticum with the A genome, indicating that active transposition occurred in S, Sl and D genomes before polyploidization. DNA gel blot analysis of six species selected from three subfamilies of Poaceae demonstrated that only the tribe Triticeae possessed both subclasses. These results suggest that the differentiation of these two subclasses occurred before or immediately after the establishment of the tribe Triticeae.

  18. Integrative analysis of copy number and gene expression data suggests novel pathogenetic mechanisms in primary myelofibrosis.

    Science.gov (United States)

    Salati, Simona; Zini, Roberta; Nuzzo, Simona; Guglielmelli, Paola; Pennucci, Valentina; Prudente, Zelia; Ruberti, Samantha; Rontauroli, Sebastiano; Norfo, Ruggiero; Bianchi, Elisa; Bogani, Costanza; Rotunno, Giada; Fanelli, Tiziana; Mannarelli, Carmela; Rosti, Vittorio; Salmoiraghi, Silvia; Pietra, Daniela; Ferrari, Sergio; Barosi, Giovanni; Rambaldi, Alessandro; Cazzola, Mario; Bicciato, Silvio; Tagliafico, Enrico; Vannucchi, Alessandro M; Manfredini, Rossella

    2016-04-01

    Primary myelofibrosis (PMF) is a Myeloproliferative Neoplasm (MPN) characterized by megakaryocyte hyperplasia, progressive bone marrow fibrosis, extramedullary hematopoiesis and transformation to Acute Myeloid Leukemia (AML). A number of phenotypic driver (JAK2, CALR, MPL) and additional subclonal mutations have been described in PMF, pointing to a complex genomic landscape. To discover novel genomic lesions that can contribute to disease phenotype and/or development, gene expression and copy number signals were integrated and several genomic abnormalities leading to a concordant alteration in gene expression levels were identified. In particular, copy number gain in the polyamine oxidase (PAOX) gene locus was accompanied by a coordinated transcriptional up-regulation in PMF patients. PAOX inhibition resulted in rapid cell death of PMF progenitor cells, while sparing normal cells, suggesting that PAOX inhibition could represent a therapeutic strategy to selectively target PMF cells without affecting normal hematopoietic cells' survival. Moreover, copy number loss in the chromatin modifier HMGXB4 gene correlates with a concomitant transcriptional down-regulation in PMF patients. Interestingly, silencing of HMGXB4 induces megakaryocyte differentiation, while inhibiting erythroid development, in human hematopoietic stem/progenitor cells. These results highlight a previously un-reported, yet potentially interesting role of HMGXB4 in the hematopoietic system and suggest that genomic and transcriptional imbalances of HMGXB4 could contribute to the aberrant expansion of the megakaryocytic lineage that characterizes PMF patients. © 2015 UICC.

  19. ReadDepth: a parallel R package for detecting copy number alterations from short sequencing reads.

    Directory of Open Access Journals (Sweden)

    Christopher A Miller

    2011-01-01

    Full Text Available Copy number alterations are important contributors to many genetic diseases, including cancer. We present the readDepth package for R, which can detect these aberrations by measuring the depth of coverage obtained by massively parallel sequencing of the genome. In addition to achieving higher accuracy than existing packages, our tool runs much faster by utilizing multi-core architectures to parallelize the processing of these large data sets. In contrast to other published methods, readDepth does not require the sequencing of a reference sample, and uses a robust statistical model that accounts for overdispersed data. It includes a method for effectively increasing the resolution obtained from low-coverage experiments by utilizing breakpoint information from paired end sequencing to do positional refinement. We also demonstrate a method for inferring copy number using reads generated by whole-genome bisulfite sequencing, thus enabling integrative study of epigenomic and copy number alterations. Finally, we apply this tool to two genomes, showing that it performs well on genomes sequenced to both low and high coverage. The readDepth package runs on Linux and MacOSX, is released under the Apache 2.0 license, and is available at http://code.google.com/p/readdepth/.

  20. Draft genome sequence of the rubber tree Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Rahman Ahmad Yamin Abdul

    2013-02-01

    Full Text Available Abstract Background Hevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR. NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876. Results Here, we report the draft genome sequence of H. brasiliensis. The assembly spans ~1.1 Gb of the estimated 2.15 Gb haploid genome. Overall, ~78% of the genome was identified as repetitive DNA. Gene prediction shows 68,955 gene models, of which 12.7% are unique to Hevea. Most of the key genes associated with rubber biosynthesis, rubberwood formation, disease resistance, and allergenicity have been identified. Conclusions The knowledge gained from this genome sequence will aid in the future development of high-yielding clones to keep up with the ever increasing need for natural rubber.

  1. Transcript levels of ten caste-related genes in adult diploid males of Melipona quadrifasciata (Hymenoptera, Apidae: a comparison with haploid males, queens and workers

    Directory of Open Access Journals (Sweden)

    Andreia A. Borges

    2011-01-01

    Full Text Available In Hymenoptera, homozygosity at the sex locus results in the production of diploid males. In social species, these pose a double burden by having low fitness and drawing resources normally spent for increasing the work force of a colony. Yet, diploid males are of academic interest as they can elucidate effects of ploidy (normal males are haploid, whereas the female castes, the queens and workers, are diploid on morphology and life history. Herein we investigated expression levels of ten caste-related genes in the stingless bee Melipona quadrifasciata, comparing newly emerged and 5-day-old diploid males with haploid males, queens and workers. In diploid males, transcript levels for dunce and paramyosin were increased during the first five days of adult life, while those for diacylglycerol kinase and the transcriptional co-repressor groucho diminished. Two general trends were apparent, (i gene expression patterns in diploid males were overall more similar to haploid ones and workers than to queens, and (ii in queens and workers, more genes were up-regulated after emergence until day five, whereas in diploid and especially so in haploid males more genes were down-regulated. This difference between the sexes may be related to longevity, which is much longer in females than in males.

  2. Transcript levels of ten caste-related genes in adult diploid males of Melipona quadrifasciata (Hymenoptera, Apidae) - A comparison with haploid males, queens and workers.

    Science.gov (United States)

    Borges, Andreia A; Humann, Fernanda C; Oliveira Campos, Lucio A; Tavares, Mara G; Hartfelder, Klaus

    2011-10-01

    In Hymenoptera, homozygosity at the sex locus results in the production of diploid males. In social species, these pose a double burden by having low fitness and drawing resources normally spent for increasing the work force of a colony. Yet, diploid males are of academic interest as they can elucidate effects of ploidy (normal males are haploid, whereas the female castes, the queens and workers, are diploid) on morphology and life history. Herein we investigated expression levels of ten caste-related genes in the stingless bee Melipona quadrifasciata, comparing newly emerged and 5-day-old diploid males with haploid males, queens and workers. In diploid males, transcript levels for dunce and paramyosin were increased during the first five days of adult life, while those for diacylglycerol kinase and the transcriptional co-repressor groucho diminished. Two general trends were apparent, (i) gene expression patterns in diploid males were overall more similar to haploid ones and workers than to queens, and (ii) in queens and workers, more genes were up-regulated after emergence until day five, whereas in diploid and especially so in haploid males more genes were down-regulated. This difference between the sexes may be related to longevity, which is much longer in females than in males.

  3. The effects of quantitative fecundity in the haploid stage on reproductive success and diploid fitness in the aquatic peat moss Sphagnum macrophyllum.

    Science.gov (United States)

    Johnson, M G; Shaw, A J

    2016-06-01

    A major question in evolutionary biology is how mating patterns affect the fitness of offspring. However, in animals and seed plants it is virtually impossible to investigate the effects of specific gamete genotypes. In bryophytes, haploid gametophytes grow via clonal propagation and produce millions of genetically identical gametes throughout a population. The main goal of this research was to test whether gamete identity has an effect on the fitness of their diploid offspring in a population of the aquatic peat moss Sphagnum macrophyllum. We observed a heavily male-biased sex ratio in gametophyte plants (ramets) and in multilocus microsatellite genotypes (genets). There was a steeper relationship between mating success (number of different haploid mates) and fecundity (number of diploid offspring) for male genets compared with female genets. At the sporophyte level, we observed a weak effect of inbreeding on offspring fitness, but no effect of brood size (number of sporophytes per maternal ramet). Instead, the identities of the haploid male and haploid female parents were significant contributors to variance in fitness of sporophyte offspring in the population. Our results suggest that intrasexual gametophyte/gamete competition may play a role in determining mating success in this population.

  4. Obtaining apple haploid plants (Malus X domestica Borkh.) from in situ parthenogenesis induced by irradiated pollen and in vitro culture of immature seeds

    International Nuclear Information System (INIS)

    Zhang, Y.X.; Lespinasse, Y.; Chevreau, E.

    1988-01-01

    Two apple varieties, ''Erovan'' and ''Lodi'', have been pollinated with pollen carrying the marker gene R irradiated by gamma rays from Cobalt 60 with doses of 500, 1000 and 1500 Gy. By in vitro cultures of the immature seeds removed 7 to 13 weeks after pollination, haploid plants (2n=x=17) have been obtained from ''Erovan'' [fr

  5. Plant regeneration from haploid cell suspension-derived protoplasts of Mediterranean rice (Oryza sativa L. cv. Miara).

    Science.gov (United States)

    Guiderdoni, E; Chaïr, H

    1992-11-01

    More than 750 plants were regenerated from protoplasts isolated from microspore callus-derived cell suspensions of the Mediterranean japonica rice Miara, using a nurse-feeder technique and N6-based culture medium. The mean plating efficiency and the mean regeneration ability of the protocalluses were 0.5% and 49% respectively. Flow cytometric evaluation of the DNA contents of 7 month old-cell and protoplast suspensions showed that they were still haploid. Contrastingly, the DNA contents of leaf cell nuclei of the regenerated protoclones ranged from 1C to 5C including 60% 2C plants. This was consistent with the morphological type and the fertility of the mature plants. These results and the absence of chimeric plants suggest that polyploidization occurred during the early phase of protoplast culture.

  6. rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants

    Directory of Open Access Journals (Sweden)

    Elizabeth X. Kwan

    2016-09-01

    Full Text Available The Saccharomyces cerevisiae ribosomal DNA (rDNA locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae.

  7. rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants.

    Science.gov (United States)

    Kwan, Elizabeth X; Wang, Xiaobin S; Amemiya, Haley M; Brewer, Bonita J; Raghuraman, M K

    2016-09-08

    The Saccharomyces cerevisiae ribosomal DNA (rDNA) locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO) single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae. Copyright © 2016 Kwan et al.

  8. Construction of a dense genetic linkage map and mapping quantitative trait loci for economic traits of a doubled haploid population of Pyropia haitanensis (Bangiales, Rhodophyta).

    Science.gov (United States)

    Xu, Yan; Huang, Long; Ji, Dehua; Chen, Changsheng; Zheng, Hongkun; Xie, Chaotian

    2015-09-21

    Pyropia haitanensis is one of the most economically important mariculture crops in China. A high-density genetic map has not been published yet and quantitative trait locus (QTL) mapping has not been undertaken for P. haitanensis because of a lack of sufficient molecular markers. Specific length amplified fragment sequencing (SLAF-seq) was developed recently for large-scale, high resolution de novo marker discovery and genotyping. In this study, SLAF-seq was used to obtain mass length polymorphic markers to construct a high-density genetic map for P. haitanensis. In total, 120.33 Gb of data containing 75.21 M pair-end reads was obtained after sequencing. The average coverage for each SLAF marker was 75.50-fold in the male parent, 74.02-fold in the female parent, and 6.14-fold average in each double haploid individual. In total, 188,982 SLAFs were detected, of which 6731 were length polymorphic SLAFs that could be used to construct a genetic map. The final map included 4550 length polymorphic markers that were combined into 740 bins on five linkage groups, with a length of 874.33 cM and an average distance of 1.18 cM between adjacent bins. This map was used for QTL mapping to identify chromosomal regions associated with six economically important traits: frond length, width, thickness, fresh weight, growth rates of frond length and growth rates of fresh weight. Fifteen QTLs were identified for these traits. The value of phenotypic variance explained by an individual QTL ranged from 9.59 to 16.61 %, and the confidence interval of each QTL ranged from 0.97 cM to 16.51 cM. The first high-density genetic linkage map for P. haitanensis was constructed, and fifteen QTLs associated with six economically important traits were identified. The results of this study not only provide a platform for gene and QTL fine mapping, map-based gene isolation, and molecular breeding for P. haitanensis, but will also serve as a reference for positioning sequence scaffolds on a physical

  9. Beneficial effect of a high number of copies of salivary amylase AMY1 gene on obesity risk in Mexican children.

    Science.gov (United States)

    Mejía-Benítez, María A; Bonnefond, Amélie; Yengo, Loïc; Huyvaert, Marlène; Dechaume, Aurélie; Peralta-Romero, Jesús; Klünder-Klünder, Miguel; García Mena, Jaime; El-Sayed Moustafa, Julia S; Falchi, Mario; Cruz, Miguel; Froguel, Philippe

    2015-02-01

    Childhood obesity is a major public health problem in Mexico, affecting one in every three children. Genome-wide association studies identified genetic variants associated with childhood obesity, but a large missing heritability remains to be elucidated. We have recently shown a strong association between a highly polymorphic copy number variant encompassing the salivary amylase gene (AMY1 also known as AMY1A) and obesity in European and Asian adults. In the present study, we aimed to evaluate the association between AMY1 copy number and obesity in Mexican children. We evaluated the number of AMY1 copies in 597 Mexican children (293 obese children and 304 normal weight controls) through highly sensitive digital PCR. The effect of AMY1 copy number on obesity status was assessed using a logistic regression model adjusted for age and sex. We identified a marked effect of AMY1 copy number on reduced risk of obesity (OR per estimated copy 0.84, with the number of copies ranging from one to 16 in this population; p = 4.25 × 10(-6)). The global association between AMY1 copy number and reduced risk of obesity seemed to be mostly driven by the contribution of the highest AMY1 copy number. Strikingly, all children with >10 AMY1 copies were normal weight controls. Salivary amylase initiates the digestion of dietary starch, which is highly consumed in Mexico. Our current study suggests putative benefits of high number of AMY1 copies (and related production of salivary amylase) on energy metabolism in Mexican children.

  10. Copy number variation and autism: New insights and clinical implications

    Directory of Open Access Journals (Sweden)

    Brian Hon-Yin Chung

    2014-07-01

    Full Text Available Genomic research can lead to discoveries of copy number variations (CNVs which can be a susceptibility factor for autism spectrum disorder (ASD. The clinical translation is that this can improve the care of children with ASD. Chromosome microarray is now the first-tiered genetic investigation for ASD, with a detection rate exceeding conventional cytogenetics and any single gene testing. However, interpretation of the results is challenging and there is no consensus on “what” and “how much” to disclose. In this article, we will review how CNV studies have improved our understanding of ASD, the clinical applications, and related counseling issues. Future direction of autism genetic research is also discussed.

  11. Desenvolvimento de populações duplo-haplóides de cevada cervejeira associadas à atividade das enzimas (1-3, 1-4-β-glucanases Development of doubled-haploids populations in malting barley associated to activity of enzymes (1-3, 1-4-β-glucanases

    Directory of Open Access Journals (Sweden)

    Janaína Endres Georg-Kraemer

    2011-05-01

    culture protocol. Two crosses were performed with contrasting cultivars to (1-3, 1-4-β-glucanases activity. Parental cultivars used were 'MN 698' and 'CEV 97047' for the development of 'green malt' population (MV and Embrapa 127 and 'CEV 96025' for the development of "dry malt" population (MS. For the MS and MV populations, 10,734 and 4,139 anthers were cultured, respectively. MV population produced 50% more green seedlings as compared to MS population, which reflects the importance of genotype to the culturing of anthers and to regeneration. Most doubled-haploid adult plants were obtained by in vitro spontaneous duplication of the haploid genome, which occurred in 66% of plants from the MS population and 76% of plants from the MV population. Haploid, triploid and tetraploid individuals were also observed, though at low frequencies. The anther culture protocol afforded to develop 204 double-haploid lineages, of which 72 were generated by the 'dry malt' population and 132 from the "green malt" population. This material should be considered as important germplasm for barley genetic improvement.

  12. Impact of constitutional copy number variants on biological pathway evolution.

    Science.gov (United States)

    Poptsova, Maria; Banerjee, Samprit; Gokcumen, Omer; Rubin, Mark A; Demichelis, Francesca

    2013-01-23

    Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data. We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels. The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations.

  13. Genomics technologies to study structural variations in the grapevine genome

    Directory of Open Access Journals (Sweden)

    Cardone Maria Francesca

    2016-01-01

    Full Text Available Grapevine is one of the most important crop plants in the world. Recently there was great expansion of genomics resources about grapevine genome, thus providing increasing efforts for molecular breeding. Current cultivars display a great level of inter-specific differentiation that needs to be investigated to reach a comprehensive understanding of the genetic basis of phenotypic differences, and to find responsible genes selected by cross breeding programs. While there have been significant advances in resolving the pattern and nature of single nucleotide polymorphisms (SNPs on plant genomes, few data are available on copy number variation (CNV. Furthermore association between structural variations and phenotypes has been described in only a few cases. We combined high throughput biotechnologies and bioinformatics tools, to reveal the first inter-varietal atlas of structural variation (SV for the grapevine genome. We sequenced and compared four table grape cultivars with the Pinot noir inbred line PN40024 genome as the reference. We detected roughly 8% of the grapevine genome affected by genomic variations. Taken into account phenotypic differences existing among the studied varieties we performed comparison of SVs among them and the reference and next we performed an in-depth analysis of gene content of polymorphic regions. This allowed us to identify genes showing differences in copy number as putative functional candidates for important traits in grapevine cultivation.

  14. Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia

    DEFF Research Database (Denmark)

    Gunnarsson, Rebeqa; Mansouri, Larry; Isaksson, Anders

    2011-01-01

    High-resolution genomic microarrays enable simultaneous detection of copy-number aberrations such as the known recurrent aberrations in chronic lymphocytic leukemia [del(11q), del(13q), del(17p) and trisomy 12], and copy-number neutral loss of heterozygosity. Moreover, comparison of genomic...... profiles from sequential patients' samples allows detection of clonal evolution....

  15. Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia

    DEFF Research Database (Denmark)

    Gunnarsson, Rebeqa; Mansouri, Larry; Isaksson, Anders

    2011-01-01

    High-resolution genomic microarrays enable simultaneous detection of copy-number aberrations such as the known recurrent aberrations in chronic lymphocytic leukemia [del(11q), del(13q), del(17p) and trisomy 12], and copy-number neutral loss of heterozygosity. Moreover, comparison of genomic...

  16. Inferring mechanisms of copy number change from haplotype structures at the human DEFA1A3 locus.

    Science.gov (United States)

    Black, Holly A; Khan, Fayeza F; Tyson, Jess; Al Armour, John

    2014-07-21

    The determination of structural haplotypes at copy number variable regions can indicate the mechanisms responsible for changes in copy number, as well as explain the relationship between gene copy number and expression. However, obtaining spatial information at regions displaying extensive copy number variation, such as the DEFA1A3 locus, is complex, because of the difficulty in the phasing and assembly of these regions. The DEFA1A3 locus is intriguing in that it falls within a region of high linkage disequilibrium, despite its high variability in copy number (n = 3-16); hence, the mechanisms responsible for changes in copy number at this locus are unclear. In this study, a region flanking the DEFA1A3 locus was sequenced across 120 independent haplotypes with European ancestry, identifying five common classes of DEFA1A3 haplotype. Assigning DEFA1A3 class to haplotypes within the 1000 Genomes project highlights a significant difference in DEFA1A3 class frequencies between populations with different ancestry. The features of each DEFA1A3 class, for example, the associated DEFA1A3 copy numbers, were initially assessed in a European cohort (n = 599) and replicated in the 1000 Genomes samples, showing within-class similarity, but between-class and between-population differences in the features of the DEFA1A3 locus. Emulsion haplotype fusion-PCR was used to generate 61 structural haplotypes at the DEFA1A3 locus, showing a high within-class similarity in structure. Structural haplotypes across the DEFA1A3 locus indicate that intra-allelic rearrangement is the predominant mechanism responsible for changes in DEFA1A3 copy number, explaining the conservation of linkage disequilibrium across the locus. The identification of common structural haplotypes at the DEFA1A3 locus could aid studies into how DEFA1A3 copy number influences expression, which is currently unclear.

  17. Accurate measurement of transgene copy number in crop plants using droplet digital PCR.

    Science.gov (United States)

    Collier, Ray; Dasgupta, Kasturi; Xing, Yan-Ping; Hernandez, Bryan Tarape; Shao, Min; Rohozinski, Dominica; Kovak, Emma; Lin, Jeanie; de Oliveira, Maria Luiza P; Stover, Ed; McCue, Kent F; Harmon, Frank G; Blechl, Ann; Thomson, James G; Thilmony, Roger

    2017-06-01

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  18. New cytogenetically visible copy number variant in region 8q21.2

    Directory of Open Access Journals (Sweden)

    Ewers Elisabeth

    2011-01-01

    Full Text Available Abstract Background Cytogenetically visible unbalanced chromosomal abnormalities (UBCA, reported for >50 euchromatic regions of almost all human autosomes, are comprised of a few megabases of DNA, and carriers are in many cases clinically healthy. It may be speculated, that some of the UBCA may be similar or identical to copy number variants (CNV of the human genome. Results Here we report on a yet unreported cytogenetically visible copy number variant (CNV in the long arm of chromosome 8, region 8q21.2, detected in three unrelated clinically healthy carriers. Conclusion The first description of a cytogenetically visible CNV/UBCA in 8q21.2 shows that banding cytogenetics is far from being outdated. It is a cost efficient, up-to-date method for a single cell specific overview on the whole genome, still prepared to deliver unexpected findings.

  19. Gauge field copies and Higgs mechanism

    International Nuclear Information System (INIS)

    Gleiser, M.

    1982-07-01

    From the algebric classification of the possible solutions of the necessary and sufficient condition for the existence of gauge field copies in two possible classes the Higgs mechanism for the potential obtained from the difference between two copied potentials is applied. It is shown that for class I 'electric type' it is possible to construct a vector field that satisfies an electromagnetic wave equation. For class I 'magnetic type', a vector field that satisfies a non-linear equation as a consequence of the non-abelianity of the theory, is obtained. It is shown that for class II it's not possible to apply the Higgs mechanism. A possible physical interpretation for the 'gauge field copies' phenomenon, is obtained. (author) [pt

  20. The λ transformation and gravitational copies

    International Nuclear Information System (INIS)

    Silva, M.R. da.

    1984-01-01

    An Abelian symmetry already considered by Einstein with respect to his asymmetrical field theories is related to the gravitational and gauge field copy phenomenon. It is shown that gauge field copies arise out of a straightforward generalization of the λ - map. The connection between Einstein's work on the λ-transformation and the copy phenomenon is obtained with the help of the Frobenius Theorem on the existence of foliations on a differentiable manifold. A problem like the one above is usually treated within the language of (intrinsic) Differential Geometry; General Relativity and classical unified field theories are traditionally developed in a classical style, that gap, a long introduction is prepared where the same structures are studied from the traditional and from the more recent point of view. (author)

  1. Copying of holograms by spot scanning approach.

    Science.gov (United States)

    Okui, Makoto; Wakunami, Koki; Oi, Ryutaro; Ichihashi, Yasuyuki; Jackin, Boaz Jessie; Yamamoto, Kenji

    2018-05-20

    To replicate holograms, contact copying has conventionally been used. In this approach, a photosensitive material is fixed together with a master hologram and illuminated with a coherent beam. This method is simple and enables high-quality copies; however, it requires a large optical setup for large-area holograms. In this paper, we present a new method of replicating holograms that uses a relatively compact optical system even for the replication of large holograms. A small laser spot that irradiates only part of the hologram is used to reproduce the hologram by scanning the spot over the whole area of the hologram. We report on the results of experiments carried out to confirm the copy quality, along with a guide to design scanning conditions. The results show the potential effectiveness of the large-area hologram replication technology using a relatively compact apparatus.

  2. Genome-wide association study of multiplex schizophrenia pedigrees

    DEFF Research Database (Denmark)

    Levinson, Douglas F; Shi, Jianxin; Wang, Kai

    2012-01-01

    The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs).......The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs)....

  3. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle

    Science.gov (United States)

    Bickhart, Derek M.; Xu, Lingyang; Hutchison, Jana L.; Cole, John B.; Null, Daniel J.; Schroeder, Steven G.; Song, Jiuzhou; Garcia, Jose Fernando; Sonstegard, Tad S.; Van Tassell, Curtis P.; Schnabel, Robert D.; Taylor, Jeremy F.; Lewin, Harris A.; Liu, George E.

    2016-01-01

    The diversity and population genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analysed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, and Romagnola), sequenced to 11-fold coverage to identify 1,853 non-redundant CNV regions. Supported by high validation rates in array comparative genomic hybridization (CGH) and qPCR experiments, these CNV regions accounted for 3.1% (87.5 Mb) of the cattle reference genome, representing a significant increase over previous estimates of the area of the genome that is copy number variable (∼2%). Further population genetics and evolutionary genomics analyses based on these CNVs revealed the population structures of the cattle taurine and indicine breeds and uncovered potential diversely selected CNVs near important functional genes, including AOX1, ASZ1, GAT, GLYAT, and KRTAP9-1. Additionally, 121 CNV gene regions were found to be either breed specific or differentially variable across breeds, such as RICTOR in dairy breeds and PNPLA3 in beef breeds. In contrast, clusters of the PRP and PAG genes were found to be duplicated in all sequenced animals, suggesting that subfunctionalization, neofunctionalization, or overdominance play roles in diversifying those fertility-related genes. These CNV results provide a new glimpse into the diverse selection histories of cattle breeds and a basis for correlating structural variation with complex traits in the future. PMID:27085184

  4. Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine.

    Science.gov (United States)

    Tang, Wei; Newton, Ronald J; Weidner, Douglas A

    2007-01-01

    An efficient transgenic eastern white pine (Pinus strobus L.) plant regeneration system has been established using Agrobacterium tumefaciens strain GV3850-mediated transformation and the green fluorescent protein (gfp) gene as a reporter in this investigation. Stable integration of transgenes in the plant genome of pine was confirmed by polymerase chain reaction (PCR), Southern blot, and northern blot analyses. Transgene expression was analysed in pine T-DNA transformants carrying different numbers of copies of T-DNA insertions. Post-transcriptional gene silencing (PTGS) was mostly obtained in transgenic lines with more than three copies of T-DNA, but not in transgenic lines with one copy of T-DNA. In situ hybridization chromosome analysis of transgenic lines demonstrated that silenced transgenic lines had two or more T-DNA insertions in the same chromosome. These results suggest that two or more T-DNA insertions in the same chromosome facilitate efficient gene silencing in transgenic pine cells expressing green fluorescent protein. There were no differences in shoot differentiation and development between transgenic lines with multiple T-DNA copies and transgenic lines with one or two T-DNA copies.

  5. The Complete Chloroplast Genome of Catha edulis: A Comparative Analysis of Genome Features with Related Species

    Directory of Open Access Journals (Sweden)

    Cuihua Gu

    2018-02-01

    Full Text Available Qat (Catha edulis, Celastraceae is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis are limited, hindering studies regarding interspecific and intraspecific relationships. Herein, the complete chloroplast (cp genome of Catha edulis is reported. This genome is 157,960 bp in length with 37% GC content and is structurally arranged into two 26,577 bp inverted repeats and two single-copy areas. The size of the small single-copy and the large single-copy regions were 18,491 bp and 86,315 bp, respectively. The C. edulis cp genome consists of 129 coding genes including 37 transfer RNA (tRNA genes, 8 ribosomal RNA (rRNA genes, and 84 protein coding genes. For those genes, 112 are single copy genes and 17 genes are duplicated in two inverted regions with seven tRNAs, four rRNAs, and six protein coding genes. The phylogenetic relationships resolved from the cp genome of qat and 32 other species confirms the monophyly of Celastraceae. The cp genomes of C. edulis, Euonymus japonicus and seven Celastraceae species lack the rps16 intron, which indicates an intron loss took place among an ancestor of this family. The cp genome of C. edulis provides a highly valuable genetic resource for further phylogenomic research, barcoding and cp transformation in Celastraceae.

  6. The Complete Chloroplast Genome of Catha edulis: A Comparative Analysis of Genome Features with Related Species

    Science.gov (United States)

    Tembrock, Luke R.; Zheng, Shaoyu; Wu, Zhiqiang

    2018-01-01

    Qat (Catha edulis, Celastraceae) is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis are limited, hindering studies regarding interspecific and intraspecific relationships. Herein, the complete chloroplast (cp) genome of Catha edulis is reported. This genome is 157,960 bp in length with 37% GC content and is structurally arranged into two 26,577 bp inverted repeats and two single-copy areas. The size of the small single-copy and the large single-copy regions were 18,491 bp and 86,315 bp, respectively. The C. edulis cp genome consists of 129 coding genes including 37 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 84 protein coding genes. For those genes, 112 are single copy genes and 17 genes are duplicated in two inverted regions with seven tRNAs, four rRNAs, and six protein coding genes. The phylogenetic relationships resolved from the cp genome of qat and 32 other species confirms the monophyly of Celastraceae. The cp genomes of C. edulis, Euonymus japonicus and seven Celastraceae species lack the rps16 intron, which indicates an intron loss took place among an ancestor of this family. The cp genome of C. edulis provides a highly valuable genetic resource for further phylogenomic research, barcoding and cp transformation in Celastraceae. PMID:29425128

  7. Copy Number Variation in Hereditary Non-Polyposis Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Garry N. Hannan

    2013-09-01

    Full Text Available Hereditary non-polyposis colorectal cancer (HNPCC is the commonest form of inherited colorectal cancer (CRC predisposition and by definition describes families which conform to the Amsterdam Criteria or reiterations thereof. In ~50% of patients adhering to the Amsterdam criteria germline variants are identified in one of four DNA Mismatch repair (MMR genes MLH1, MSH2, MSH6 and PMS2. Loss of function of any one of these genes results in a failure to repair DNA errors occurring during replication which can be most easily observed as DNA microsatellite instability (MSI—a hallmark feature of this disease. The remaining 50% of patients without a genetic diagnosis of disease may harbour more cryptic changes within or adjacent to MLH1, MSH2, MSH6 or PMS2 or elsewhere in the genome. We used a high density cytogenetic array to screen for deletions or duplications in a series of patients, all of whom adhered to the Amsterdam/Bethesda criteria, to determine if genomic re-arrangements could account for a proportion of patients that had been shown not to harbour causative mutations as assessed by standard diagnostic techniques. The study has revealed some associations between copy number variants (CNVs and HNPCC mutation negative cases and further highlights difficulties associated with CNV analysis.

  8. Copy number determination of genetically-modified hematopoietic stem cells.

    Science.gov (United States)

    Schuesler, Todd; Reeves, Lilith; Kalle, Christof von; Grassman, Elke

    2009-01-01

    Human gene transfer with gammaretroviral, murine leukemia virus (MLV) based vectors has been shown to effectively insert and express transgene sequences at a level of therapeutic benefit. However, there are numerous reports of disruption of the normal cellular processes caused by the viral insertion, even of replication deficient gammaretroviral vectors. Current gammaretroviral and lentiviral vectors do not control the site of insertion into the genome, hence, the possibility of disruption of the target cell genome. Risk related to viral insertions is linked to the number of insertions of the transgene into the cellular DNA, as has been demonstrated for replication competent and replication deficient retroviruses in experiments. At high number of insertions per cell, cell transformation due to vector induced activation of proto-oncogenes is more likely to occur, in particular since more than one transforming event is needed for oncogenesis. Thus, determination of the vector copy number in bulk transduced populations, individual colony forming units, and tissue from the recipient of the transduced cells is an increasingly important safety assay and has become a standard, though not straightforward assay, since the inception of quantitative PCR.

  9. Exploration of large, rare copy number variants associated with psychiatric and neurodevelopmental disorders in individuals with anorexia nervosa

    NARCIS (Netherlands)

    Yilmaz, Zeynep; Szatkiewicz, Jin P; Crowley, James J; Ancalade, NaEshia; Brandys, Marek K; van Elburg, Annemarie; de Kovel, Carolien G F; Adan, Roger A H; Hinney, Anke; Hebebrand, Johannes; Gratacos, Monica; Fernandez-Aranda, Fernando; Escaramis, Georgia; Gonzalez, Juan R; Estivill, Xavier; Zeggini, Eleftheria; Sullivan, Patrick F; Bulik, Cynthia M; Genetic Consortium for Anorexia Nervosa, Wellcome Trust Case Control Consortium 3

    Anorexia nervosa (AN) is a serious and heritable psychiatric disorder. To date, studies of copy number variants (CNVs) have been limited and inconclusive because of small sample sizes. We conducted a case-only genome-wide CNV survey in 1983 female AN cases included in the Genetic Consortium for

  10. Curvature tensor copies in affine geometry

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1981-01-01

    The sets of space-time and spin-connections which give rise to the same curvature tensor are constructed. The corresponding geometries are compared. Results are illustrated by an explicit calculation and comment on the copies in Einstein-Cartan and Weyl-Cartan geometries. (Author) [pt

  11. Two new statistics to detect answer copying

    NARCIS (Netherlands)

    Meijer, R.R.; Sotaridona, Leonardo

    2001-01-01

    Two new indices to detect answer copying on a multiple-choice test, S(1) and S(2) (subscripts), are proposed. The S(1) index is similar to the K-index (P. Holland, 1996) and the K-overscore(2), (K2) index (L. Sotaridona and R. Meijer, in press), but the distribution of the number of matching

  12. Two new indices to detect answer copying

    NARCIS (Netherlands)

    Sotaridona, Leonardo; Meijer, R.R.

    2003-01-01

    Two new indices to detect answer copying on a multiple-choice test—S1 and S2—were proposed. The S1 index is similar to the K index (Holland, 1996) and the K2 index (Sotaridona & Meijer, 2002) but the distribution of the number of matching incorrect answers of the source and the copier is modeled by

  13. Local Reasoning about a Copying Garbage Collector

    DEFF Research Database (Denmark)

    Torp-Smith, Noah; Birkedal, Lars; Reynolds, John C.

    2008-01-01

    We present a programming language, model, and logic appropriate for implementing and reasoning about a memory management system. We state semantically what is meant by correctness of a copying garbage collector, and employ a variant of the novel separation logics to formally specify partial corre...

  14. A universal genomic coordinate translator for comparative genomics.

    Science.gov (United States)

    Zamani, Neda; Sundström, Görel; Meadows, Jennifer R S; Höppner, Marc P; Dainat, Jacques; Lantz, Henrik; Haas, Brian J; Grabherr, Manfred G

    2014-06-30

    Genomic duplications constitute major events in the evolution of species, allowing paralogous copies of genes to take on fine-tuned biological roles. Unambiguously identifying the orthology relationship between copies across multiple genomes can be resolved by synteny, i.e. the conserved order of genomic sequences. However, a comprehensive analysis of duplication events and their contributions to evolution would require all-to-all genome alignments, which increases at N2 with the number of available genomes, N. Here, we introduce Kraken, software that omits the all-to-all requirement by recursively traversing a graph of pairwise alignments and dynamically re-computing orthology. Kraken scales linearly with the number of targeted genomes, N, which allows for including large numbers of genomes in analyses. We first evaluated the method on the set of 12 Drosophila genomes, finding that orthologous correspondence computed indirectly through a graph of multiple synteny maps comes at minimal cost in terms of sensitivity, but reduces overall computational runtime by an order of magnitude. We then used the method on three well-annotated mammalian genomes, human, mouse, and rat, and show that up to 93% of protein coding transcripts have unambiguous pairwise orthologous relationships across the genomes. On a nucleotide level, 70 to 83% of exons match exactly at both splice junctions, and up to 97% on at least one junction. We last applied Kraken to an RNA-sequencing dataset from multiple vertebrates and diverse tissues, where we confirmed that brain-specific gene family members, i.e. one-to-many or many-to-many homologs, are more highly correlated across species than single-copy (i.e. one-to-one homologous) genes. Not limited to protein coding genes, Kraken also identifies thousands of newly identified transcribed loci, likely non-coding RNAs that are consistently transcribed in human, chimpanzee and gorilla, and maintain significant correlation of expression levels across

  15. Study of variation of tocochromanol and phytosterol contents in black and yellow seeds of Brassica napus L. doubled haploid populations.

    Science.gov (United States)

    Cegielska-Taras, Teresa; Nogala-Kałucka, Małgorzata; Szala, Laurencja; Siger, Aleksander

    2016-01-01

    In the study, an analysis of tocopherols, plastochomanol-8 and phytosterols was conducted using DH lines obtained from F1 hybrids of reciprocal crosses between yellow- and black-seeded lines. The biological material for the study consisted of two DH populations of winter oilseed rape obtained from F1 hybrids of reciprocal crosses between two DH lines: yellow- and black-seeded. Seed color was determined using a ColorFlex spectrophotometer. Fat content was determined via pulsed NMR. The levels of tocopherols, and plastochromanol-8 are analyzed using HPLC. Phytosterol contents and composition were determined by the GC method. The fat content of the black-seeded parental line was 49% and this was higher than that of the yellow-seeded parental line (44%). The fat content of DH line populations ranged from 44 to 51%. Total tocopherol content ranged from 460 to 602 mg/kg and the α-T/γ-T ratio was from 0.66 to 1.09. In parental lines H2-26 and Z-114 the total tocopherol content was 534 and 525 mg/kg, but the α-T/γ-T ratios were 0.81 and 1.21, respectively. The yellow-seeded parental line (Z-114) was characterized by a higher PC-8 content (81 mg/kg) than the H2-26 black-seeded parental line (58 mg/kg). The largest part of the total phytosterol content in seeds of both populations was β-sitosterol from 976 to 2148 mg/kg, followed by campasterol, from 636 to 1364 mg/kg, and brassicasterol from 375 to 678 mg/kg. The total tocopherol content ranged from 462 to 595 mg/kg (population HxZ) and from 460 to 602 mg/kg (population ZxH). Significantly positive correlations were observed between the seed color with α-T (r = 0.38, p phytosterol content were not noted. Considering the range of genetic variation among doubled haploids of two populations, selected DH lines may be good parents for further breeding programs focused on increasing the amount and improving the quality of oilseed rapeseed oil. However, further studies will also be made to determine the influence of the

  16. Genomic structure and evolution of the mating type locus in the green seaweed Ulva partita.

    Science.gov (United States)

    Yamazaki, Tomokazu; Ichihara, Kensuke; Suzuki, Ryogo; Oshima, Kenshiro; Miyamura, Shinichi; Kuwano, Kazuyoshi; Toyoda, Atsushi; Suzuki, Yutaka; Sugano, Sumio; Hattori, Masahira; Kawano, Shigeyuki

    2017-09-15

    The evolution of sex chromosomes and mating loci in organisms with UV systems of sex/mating type determination in haploid phases via genes on UV chromosomes is not well understood. We report the structure of the mating type (MT) locus and its evolutionary history in the green seaweed Ulva partita, which is a multicellular organism with an isomorphic haploid-diploid life cycle and mating type determination in the haploid phase. Comprehensive comparison of a total of 12.0 and 16.6 Gb of genomic next-generation sequencing data for mt - and mt + strains identified highly rearranged MT loci of 1.0 and 1.5 Mb in size and containing 46 and 67 genes, respectively, including 23 gametologs. Molecular evolutionary analyses suggested that the MT loci diverged over a prolonged period in the individual mating types after their establishment in an ancestor. A gene encoding an RWP-RK domain-containing protein was found in the mt - MT locus but was not an ortholog of the chlorophycean mating type determination gene MID. Taken together, our results suggest that the genomic structure and its evolutionary history in the U. partita MT locus are similar to those on other UV chromosomes and that the MT locus genes are quite different from those of Chlorophyceae.

  17. Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy

    DEFF Research Database (Denmark)

    Kaas, Christian Schrøder; Kristensen, Claus; Betenbaugh, Michael J.

    2015-01-01

    Background: The DHFR negative CHO DXB11 cell line (also known as DUX-B11 and DUKX) was historically the first CHO cell line to be used for large scale production of heterologous proteins and is still used for production of a number of complex proteins.  Results: Here we present the genomic sequence...... of the CHO DXB11 genome sequenced to a depth of 33x. Overall a significant genomic drift was seen favoring GC -> AT point mutations in line with the chemical mutagenesis strategy used for generation of the cell line. The sequencing depth for each gene in the genome revealed distinct peaks at sequencing...... in eight additional analyzed CHO genomes (15-20% haploidy) but not in the genome of the Chinese hamster. The dhfr gene is confirmed to be haploid in CHO DXB11; transcriptionally active and the remaining allele contains a G410C point mutation causing a Thr137Arg missense mutation. We find similar to 2...

  18. Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools.

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2015-07-01

    Full Text Available DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1 an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies, incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2 an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031 and waist-hip ratio (p-value = 2.4×10-5, but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits.

  19. Generation of meiomaps of genome-wide recombination and chromosome segregation in human oocytes

    DEFF Research Database (Denmark)

    Ottolini, Christian S; Capalbo, Antonio; Newnham, Louise

    2016-01-01

    We have developed a protocol for the generation of genome-wide maps (meiomaps) of recombination and chromosome segregation for the three products of human female meiosis: the first and second polar bodies (PB1 and PB2) and the corresponding oocyte. PB1 is biopsied and the oocyte is artificially......-nucleotide polymorphisms (SNPs) genome-wide by microarray. Informative maternal heterozygous SNPs are phased using a haploid PB2 or oocyte as a reference. A simple algorithm is then used to identify the maternal haplotypes for each chromosome, in all of the products of meiosis for each oocyte. This allows mapping...

  20. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations.

    Directory of Open Access Journals (Sweden)

    Brian B Tuch

    Full Text Available Due to growing throughput and shrinking cost, massively parallel sequencing is rapidly becoming an attractive alternative to microarrays for the genome-wide study of gene expression and copy number alterations in primary tumors. The sequencing of transcripts (RNA-Seq should offer several advantages over microarray-based methods, including the ability to detect somatic mutations and accurately measure allele-specific expression. To investigate these advantages we have applied a novel, strand-specific RNA-Seq method to tumors and matched normal tissue from three patients with oral squamous cell carcinomas. Additionally, to better understand the genomic determinants of the gene expression changes observed, we have sequenced the tumor and normal genomes of one of these patients. We demonstrate here that our RNA-Seq method accurately measures allelic imbalance and that measurement on the genome-wide scale yields novel insights into cancer etiology. As expected, the set of genes differentially expressed in the tumors is enriched for cell adhesion and differentiation functions, but, unexpectedly, the set of allelically imbalanced genes is also enriched for these same cancer-related functions. By comparing the transcriptomic perturbations observed in one patient to his underlying normal and tumor genomes, we find that allelic imbalance in the tumor is associated with copy number mutations and that copy number mutations are, in turn, strongly associated with changes in transcript abundance. These results support a model in which allele-specific deletions and duplications drive allele-specific changes in gene expression in the developing tumor.

  1. Detection of copy number variations and their effects in Chinese bulls

    KAUST Repository

    Zhang, Liangzhi

    2014-06-17

    Background: Copy number variations (CNVs) are a main source of genomic structural variations underlying animal evolution and production traits. Here, with one pure-blooded Angus bull as reference, we describe a genome-wide analysis of CNVs based on comparative genomic hybridization arrays in 29 Chinese domesticated bulls and examined their effects on gene expression and cattle growth traits.Results: We identified 486 copy number variable regions (CNVRs), covering 2.45% of the bovine genome, in 24 taurine (Bos taurus), together with 161 ones in 2 yaks (Bos grunniens) and 163 ones in 3 buffaloes (Bubalus bubalis). Totally, we discovered 605 integrated CNVRs, with more " loss" events than both " gain" and " both" ones, and clearly clustered them into three cattle groups. Interestingly, we confirmed their uneven distributions across chromosomes, and the differences of mitochondrion DNA copy number (gain: taurine, loss: yak & buffalo). Furthermore, we confirmed approximately 41.8% (253/605) and 70.6% (427/605) CNVRs span cattle genes and quantitative trait loci (QTLs), respectively. Finally, we confirmed 6 CNVRs in 9 chosen ones by using quantitative PCR, and further demonstrated that CNVR22 had significantly negative effects on expression of PLA2G2D gene, and both CNVR22 and CNVR310 were associated with body measurements in Chinese cattle, suggesting their key effects on gene expression and cattle traits.Conclusions: The results advanced our understanding of CNV as an important genomic structural variation in taurine, yak and buffalo. This study provides a highly valuable resource for Chinese cattle\\'s evolution and breeding researches. 2014 Zhang et al.; licensee BioMed Central Ltd.

  2. In vitro haploid zygotic embryogenesis due to pollination with maize pollen and induced in vitro androgenesis in Czech wheat breeding genotypes

    Czech Academy of Sciences Publication Activity Database

    Vagera, Jiří; Nesvadba, Z.; Martinek, P.; Ohnoutková, Ludmila

    2001-01-01

    Roč. 47, č. 5 (2001), s. 193-200 ISSN 0370-663X R&D Projects: GA ČR GA521/01/1383; GA ČR GV521/96/K117 Institutional research plan: CEZ:AV0Z5038910 Keywords : haploid zygote * embryogenesis * maize pollen Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.237, year: 2001

  3. Expression Patterns of ERF Genes Underlying Abiotic Stresses in Di-Haploid Populus simonii × P. nigra

    Directory of Open Access Journals (Sweden)

    Shengji Wang

    2014-01-01

    Full Text Available 176 ERF genes from Populus were identified by bioinformatics analysis, 13 of these in di-haploid Populus simonii × P. nigra were investigate by real-time RT-PCR, the results demonstrated that 13 ERF genes were highly responsive to salt stress, drought stress and ABA treatment, and all were expressed in root, stem, and leaf tissues, whereas their expression levels were markedly different in the various tissues. In roots, PthERF99, 110, 119, and 168 were primarily downregulated under drought and ABA treatment but were specifically upregulated under high salt condition. Interestingly, in poplar stems, all ERF genes showed the similar trends in expression in response to NaCl stress, drought stress, and ABA treatment, indicating that they may not play either specific or unique roles in stems in abiotic stress responses. In poplar leaves, PthERF168 was highly induced by ABA treatment, but was suppressed by high salinity and drought stresses, implying that PthERF168 participated in the ABA signaling pathway. The results of this study indicated that ERF genes could play essential but distinct roles in various plant tissues in response to different environment cues and hormonal treatment.

  4. Response of Barley Double Haploid Lines to the Grain Yield and Morphological Traits under Water Deficit Stress Conditions

    Directory of Open Access Journals (Sweden)

    Maroof Khalily

    2017-04-01

    Full Text Available To study the relationships of grain yield and some of agro-morphological traits in 40 doubled haploid (DH lines along with parental and three check genotypes in a randomized complete block design with two replications under two water regimes (normal and stress were evaluated during 2011-2012 and 2012-2013 growing seasons. Combined analysis of variance showed significant difference for all the traits in terms of the year, water regimes, lines, and and line × year. Comparison of group means, between non-stress and stress conditions, showed that DH lines had the lowest reduction percentage for the number of grains per spike, thousand grain weight, grain yield and biological yield as opposed to check genotypes. The correlation between grain yield with biological yield, harvest index, thousand grain weight, and hectoliter of kernel weight in both conditions, were highly significant and positive. Based on stepwise regression the peduncle length, number of seeds per spike, thousand seed weight, and hectoliter of kernel weight had important effect on increasing seed yield. The result of path analysis showed that these traits had the highest direct effect on grain yield. Based on mean comparisons of morphological characters as well as STI and GMP indices it can be concluded that lines No.11, 13, 14, 24, 29, 30, 35 and 39 were distinguished to be desirable lines for grain yield and their related traits and also tolerant lines in terms of response to drought stress conditions.

  5. Generation of single-copy transgenic mouse embryos directly from ES cells by tetraploid embryo complementation

    Directory of Open Access Journals (Sweden)

    Zhao Roong

    2001-12-01

    Full Text Available Abstract Background Transgenic mice have been used extensively to analyze gene function. Unfortunately, traditional transgenic procedures have only limited use in analyzing alleles that cause lethality because lines of founder mice cannot be established. This is frustrating given that such alleles often reveal crucial aspects of gene function. For this reason techniques that facilitate the generation of embryos expressing such alleles would be of enormous benefit. Although the transient generation of transgenic embryos has allowed limited analysis of lethal alleles, it is expensive, time consuming and technically challenging. Moreover a fundamental limitation with this approach is that each embryo generated is unique and transgene expression is highly variable due to the integration of different transgene copy numbers at random genomic sites. Results Here we describe an alternative method that allows the generation of clonal mouse embryos harboring a single-copy transgene at a defined genomic location. This was facilitated through the production of Hprt negative embryonic stem cells that allow the derivation of embryos by tetraploid embryo complementation. We show that targeting transgenes to the hprt locus in these ES cells by homologous recombination can be efficiently selected by growth in HAT medium. Moreover, embryos derived solely from targeted ES cells containing a single copy LacZ transgene under the control of the α-myosin heavy chain promoter exhibited the expected cardiac specific expression pattern. Conclusion Our results demonstrate that tetraploid embryo complementation by F3 hprt negative ES cells facilitates the generation of transgenic mouse embryos containing a single copy gene at a defined genomic locus. This approach is simple, extremely efficient and bypasses any requirement to generate chimeric mice. Moreover embryos generated by this procedure are clonal in that they are all derived from a single ES cell lines. This

  6. Duplication and relocation of the functional DPY19L2 gene within low copy repeats

    Directory of Open Access Journals (Sweden)

    Cheung Joseph

    2006-03-01

    Full Text Available Abstract Background Low copy repeats (LCRs are thought to play an important role in recent gene evolution, especially when they facilitate gene duplications. Duplicate genes are fundamental to adaptive evolution, providing substrates for the development of new or shared gene functions. Moreover, silencing of duplicate genes can have an indirect effect on adaptive evolution by causing genomic relocation of functional genes. These changes are theorized to have been a major factor in speciation. Results Here we present a novel example showing functional gene relocation within a LCR. We characterize the genomic structure and gene content of eight related LCRs on human Chromosomes 7 and 12. Two members of a novel transmembrane gene family, DPY19L, were identified in these regions, along with six transcribed pseudogenes. One of these genes, DPY19L2, is found on Chromosome 12 and is not syntenic with its mouse orthologue. Instead, the human locus syntenic to mouse Dpy19l2 contains a pseudogene, DPY19L2P1. This indicates that the ancestral copy of this gene has been silenced, while the descendant copy has remained active. Thus, the functional copy of this gene has been relocated to a new genomic locus. We then describe the expansion and evolution of the DPY19L gene family from a single gene found in invertebrate animals. Ancient duplications have led to multiple homologues in different lineages, with three in fish, frogs and birds and four in mammals. Conclusion Our results show that the DPY19L family has expanded throughout the vertebrate lineage and has undergone recent primate-specific evolution within LCRs.

  7. Production of haploid plants from ten hybrids of bread wheat (Triticum aestivum L. through wide hybridization with maize (Zea mays L. Producción de plantas haploides a partir de 10 híbridos de trigo para pan (Triticum aestivum L. mediante hibridación interespecífica con maíz (Zea mays L.

    Directory of Open Access Journals (Sweden)

    L.E. Torres

    2010-12-01

    Full Text Available The aim of this work was to obtain haploid plants of bread wheat through wide hybridization with maize. The experimental material included ten bread wheat hybrids (female parent and one population of maize (pollen donor. Two assays were carried out in two different seasons (summer and winter. Wheat spikes were manually emasculated, each spike was pollinated twice with fresh pollen of maize and a solution of 2,4-D (100 mg l-1 was sprayed on pollinated florets and injected in the upper internode. Fifteen and 21 days after pollination caryopses were removed and surface sterilized. Embryos were cultured in tubes containing B5 medium. The ten hybrid combinations produced caryopses, but only eight of these hybrids produced embryos and, in six of them, the recovered embryos developed into haploid plantlets. The results showed that there is genotypic influence of the wheat parents on the percentage of haploid embryo formation, in accordance with the results obtained by other authors. Regardless of the genotype, the sowing season and the harvest date, 69.4% of the pollinated flowers gave place to the formation of caryopses, 5.5% of these caryopses developed into presumably haploid embryos (for their morphological phenotypes and 26.1 % of the recovered embryos developed into haploid plantlets.El objetivo del presente trabajo fue obtener plantas haploides de trigo para pan mediante hibridación interespecífica con maíz. Se utilizaron 10 híbridos de trigo para pan (madre y una población de maíz (donante de polen; se llevaron a cabo dos ensayos en distintas estaciones de cultivo. Cada espiga de trigo fue emasculada manualmente y polinizada dos veces con polen fresco de maíz; las flores polinizadas se pulverizaron con una solución de 2,4-D (100 mg l-1, la que también se inyectó en la base de la espiga. Las semillas se cosecharon a los 15 y 21 días posteriores a la polinización. Los embriones recuperados se colocaron en tubos conteniendo medio de

  8. The double copy: gravity from gluons

    Science.gov (United States)

    White, C. D.

    2018-04-01

    Three of the four fundamental forces in nature are described by so-called gauge theories, which include the effects of both relativity and quantum mechanics. Gravity, on the other hand, is described by General Relativity, and the lack of a well-behaved quantum theory - believed to be relevant at the centre of black holes, and at the Big Bang itself - remains a notorious unsolved problem. Recently a new correspondence, the double copy, has been discovered between scattering amplitudes (quantities related to the probability for particles to interact) in gravity, and their gauge theory counterparts. This has subsequently been extended to other quantities, providing gauge theory analogues of e.g. black holes. We here review current research on the double copy, and describe some possible applications.

  9. Selection of Suitable Endogenous Reference Genes for Relative Copy Number Detection in Sugarcane

    Directory of Open Access Journals (Sweden)

    Bantong Xue

    2014-05-01

    Full Text Available Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants. Proper selection of endogenous reference genes is necessary for detection of genetic components in genetically modification (GM crops by quantitative real-time PCR (qPCR or by qualitative PCR approach, especially in sugarcane with polyploid and aneuploid genomic structure. qPCR technique has been widely accepted as an accurate, time-saving method on determination of copy numbers in transgenic plants and on detection of genetically modified plants to meet the regulatory and legislative requirement. In this study, to find a suitable endogenous reference gene and its real-time PCR assay for sugarcane (Saccharum spp. hybrids DNA content quantification, we evaluated a set of potential “single copy” genes including P4H, APRT, ENOL, CYC, TST and PRR, through qualitative PCR and absolute quantitative PCR. Based on copy number comparisons among different sugarcane genotypes, including five S. officinarum, one S. spontaneum and two S. spp. hybrids, these endogenous genes fell into three groups: ENOL-3—high copy number group, TST-1 and PRR-1—medium copy number group, P4H-1, APRT-2 and CYC-2—low copy number group. Among these tested genes, P4H, APRT and CYC were the most stable, while ENOL and TST were the least stable across different sugarcane genotypes. Therefore, three primer pairs of P4H-3, APRT-2 and CYC-2 were then selected as the suitable reference gene primer pairs for sugarcane. The test of multi-target reference genes revealed that the APRT gene was a specific amplicon, suggesting this gene is the most suitable to be used as an endogenous reference target for sugarcane DNA content quantification. These results should be helpful for establishing accurate and reliable qualitative and quantitative PCR analysis of GM sugarcane.

  10. Haplotype phasing and inheritance of copy number variants in nuclear families.

    Science.gov (United States)

    Palta, Priit; Kaplinski, Lauris; Nagirnaja, Liina; Veidenberg, Andres; Möls, Märt; Nelis, Mari; Esko, Tõnu; Metspalu, Andres; Laan, Maris; Remm, Maido

    2015-01-01

    DNA copy number variants (CNVs) that alter the copy number of a particular DNA segment in the genome play an important role in human phenotypic variability and disease susceptibility. A number of CNVs overlapping with genes have been shown to confer risk to a variety of human diseases thus highlighting the relevance of addressing the variability of CNVs at a higher resolution. So far, it has not been possible to deterministically infer the allelic composition of different haplotypes present within the CNV regions. We have developed a novel computational method, called PiCNV, which enables to resolve the haplotype sequence composition within CNV regions in nuclear families based on SNP genotyping microarray data. The algorithm allows to i) phase normal and CNV-carrying haplotypes in the copy number variable regions, ii) resolve the allelic copies of rearranged DNA sequence within the haplotypes and iii) infer the heritability of identified haplotypes in trios or larger nuclear families. To our knowledge this is the first program available that can deterministically phase null, mono-, di-, tri- and tetraploid genotypes in CNV loci. We applied our method to study the composition and inheritance of haplotypes in CNV regions of 30 HapMap Yoruban trios and 34 Estonian families. For 93.6% of the CNV loci, PiCNV enabled to unambiguously phase normal and CNV-carrying haplotypes and follow their transmission in the corresponding families. Furthermore, allelic composition analysis identified the co-occurrence of alternative allelic copies within 66.7% of haplotypes carrying copy number gains. We also observed less frequent transmission of CNV-carrying haplotypes from parents to children compared to normal haplotypes and identified an emergence of several de novo deletions and duplications in the offspring.

  11. Haplotype phasing and inheritance of copy number variants in nuclear families.

    Directory of Open Access Journals (Sweden)

    Priit Palta

    Full Text Available DNA copy number variants (CNVs that alter the copy number of a particular DNA segment in the genome play an important role in human phenotypic variability and disease susceptibility. A number of CNVs overlapping with genes have been shown to confer risk to a variety of human diseases thus highlighting the relevance of addressing the variability of CNVs at a higher resolution. So far, it has not been possible to deterministically infer the allelic composition of different haplotypes present within the CNV regions. We have developed a novel computational method, called PiCNV, which enables to resolve the haplotype sequence composition within CNV regions in nuclear families based on SNP genotyping microarray data. The algorithm allows to i phase normal and CNV-carrying haplotypes in the copy number variable regions, ii resolve the allelic copies of rearranged DNA sequence within the haplotypes and iii infer the heritability of identified haplotypes in trios or larger nuclear families. To our knowledge this is the first program available that can deterministically phase null, mono-, di-, tri- and tetraploid genotypes in CNV loci. We applied our method to study the composition and inheritance of haplotypes in CNV regions of 30 HapMap Yoruban trios and 34 Estonian families. For 93.6% of the CNV loci, PiCNV enabled to unambiguously phase normal and CNV-carrying haplotypes and follow their transmission in the corresponding families. Furthermore, allelic composition analysis identified the co-occurrence of alternative allelic copies within 66.7% of haplotypes carrying copy number gains. We also observed less frequent transmission of CNV-carrying haplotypes from parents to children compared to normal haplotypes and identified an emergence of several de novo deletions and duplications in the offspring.

  12. A sparse regulatory network of copy-number driven gene expression reveals putative breast cancer oncogenes.

    Science.gov (United States)

    Yuan, Yinyin; Curtis, Christina; Caldas, Carlos; Markowetz, Florian

    2012-01-01

    Copy number aberrations are recognized to be important in cancer as they may localize to regions harboring oncogenes or tumor suppressors. Such genomic alterations mediate phenotypic changes through their impact on expression. Both cis- and transacting alterations are important since they may help to elucidate putative cancer genes. However, amidst numerous passenger genes, trans-effects are less well studied due to the computational difficulty in detecting weak and sparse signals in the data, and yet may influence multiple genes on a global scale. We propose an integrative approach to learn a sparse interaction network of DNA copy-number regions with their downstream transcriptional targets in breast cancer. With respect to goodness of fit on both simulated and real data, the performance of sparse network inference is no worse than other state-of-the-art models but with the advantage of simultaneous feature selection and efficiency. The DNA-RNA interaction network helps to distinguish copy-number driven expression alterations from those that are copy-number independent. Further, our approach yields a quantitative copy-number dependency score, which distinguishes cis- versus trans-effects. When applied to a breast cancer data set, numerous expression profiles were impacted by cis-acting copy-number alterations, including several known oncogenes such as GRB7, ERBB2, and LSM1. Several trans-acting alterations were also identified, impacting genes such as ADAM2 and BAGE, which warrant further investigation. An R package named lol is available from www.markowetzlab.org/software/lol.html.

  13. The potential role for use of mitochondrial DNA copy number as predictive biomarker in presbycusis.

    Science.gov (United States)

    Falah, Masoumeh; Houshmand, Massoud; Najafi, Mohammad; Balali, Maryam; Mahmoudian, Saeid; Asghari, Alimohamad; Emamdjomeh, Hessamaldin; Farhadi, Mohammad

    2016-01-01

    Age-related hearing impairment, or presbycusis, is the most common communication disorder and neurodegenerative disease in the elderly. Its prevalence is expected to increase, due to the trend of growth of the elderly population. The current diagnostic test for detection of presbycusis is implemented after there has been a change in hearing sensitivity. Identification of a pre-diagnostic biomarker would raise the possibility of preserving hearing sensitivity before damage occurs. Mitochondrial dysfunction, including the production of reactive oxygen species and induction of expression of apoptotic genes, participates in the progression of presbycusis. Mitochondrial DNA sequence variation has a critical role in presbycusis. However, the nature of the relationship between mitochondrial DNA copy number, an important biomarker in many other diseases, and presbycusis is undetermined. Fifty-four subjects with presbycusis and 29 healthy controls were selected after ear, nose, throat examination and pure-tone audiometry. DNA was extracted from peripheral blood samples. The copy number of mitochondrial DNA relative to the nuclear genome was measured by quantitative real-time polymerase chain reaction. Subjects with presbycusis had a lower median mitochondrial DNA copy number than healthy subjects and the difference was statistically significant ( P =0.007). Mitochondrial DNA copy number was also significantly associated with degree of hearing impairment ( P =0.025) and audiogram configuration ( P =0.022). The findings of this study suggest that lower mitochondrial DNA copy number is responsible for presbycusis through alteration of mitochondrial function. Moreover, the significant association of mitochondrial DNA copy number in peripheral blood samples with the degree of hearing impairment and audiogram configuration has potential for use as a standard test for presbycusis, providing the possibility of the development of an easy-to-use biomarker for the early detection of

  14. Insights into structural variations and genome rearrangements in prokaryotic genomes.

    Science.gov (United States)

    Periwal, Vinita; Scaria, Vinod

    2015-01-01

    Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Gauge and non-gauge curvature tensor copies

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1982-10-01

    A procedure for constructing curvature tensor copies is discussed using the anholonomic geometrical framework. The corresponding geometries are compared and the notion of gauge copy is elucidated. An explicit calculation is also made. (author)

  16. The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome.

    Science.gov (United States)

    Barghini, Elena; Natali, Lucia; Cossu, Rosa Maria; Giordani, Tommaso; Pindo, Massimo; Cattonaro, Federica; Scalabrin, Simone; Velasco, Riccardo; Morgante, Michele; Cavallini, Andrea

    2014-04-01

    Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome.

  17. The positioning logic and copy number control of genes in bacteria under stress

    Science.gov (United States)

    Zhang, Qiucen; Austin, Robert; Vyawahare, Saurabh; Lau, Alexandra

    2013-03-01

    Escherichia coli (E. coli) cells when challenged with sublethal concentrations of the genotoxic antibiotic ciprofloxacin cease to divide and form long filaments which contain multiple bacterial chromosomes. These filaments are individual mesoscopic environmental niches which provide protection for a community of chromosomes (as opposed to cells) under mutagenic stress and can provide an evolutionary fitness advantage within the niche. We use comparative genomic hybridization to show that the mesoscopic niche evolves within 20 minutes of ciprofloxacin exposure via replication of multiple copies of genes expressing ATP dependent transporters. We show that this rapid genomic amplification is done in a time efficient manner via placement of the genes encoding the pumps near the origin of replication on the bacterial chromosome. The de-amplification of multiple copies back to the wild type number is a function of the duration is a function of the ciprofloxacin exposure duration: the longer the exposure, the slower the removal of the multiple copies. The project described was supported by the National Science Foundation and the National Cancer Institute

  18. Copy-Number Disorders Are a Common Cause of Congenital Kidney Malformations

    Science.gov (United States)

    Sanna-Cherchi, Simone; Kiryluk, Krzysztof; Burgess, Katelyn E.; Bodria, Monica; Sampson, Matthew G.; Hadley, Dexter; Nees, Shannon N.; Verbitsky, Miguel; Perry, Brittany J.; Sterken, Roel; Lozanovski, Vladimir J.; Materna-Kiryluk, Anna; Barlassina, Cristina; Kini, Akshata; Corbani, Valentina; Carrea, Alba; Somenzi, Danio; Murtas, Corrado; Ristoska-Bojkovska, Nadica; Izzi, Claudia; Bianco, Beatrice; Zaniew, Marcin; Flogelova, Hana; Weng, Patricia L.; Kacak, Nilgun; Giberti, Stefania; Gigante, Maddalena; Arapovic, Adela; Drnasin, Kristina; Caridi, Gianluca; Curioni, Simona; Allegri, Franca; Ammenti, Anita; Ferretti, Stefania; Goj, Vinicio; Bernardo, Luca; Jobanputra, Vaidehi; Chung, Wendy K.; Lifton, Richard P.; Sanders, Stephan; State, Matthew; Clark, Lorraine N.; Saraga, Marijan; Padmanabhan, Sandosh; Dominiczak, Anna F.; Foroud, Tatiana; Gesualdo, Loreto; Gucev, Zoran; Allegri, Landino; Latos-Bielenska, Anna; Cusi, Daniele; Scolari, Francesco; Tasic, Velibor; Hakonarson, Hakon; Ghiggeri, Gian Marco; Gharavi, Ali G.

    2012-01-01

    We examined the burden of large, rare, copy-number variants (CNVs) in 192 individuals with renal hypodysplasia (RHD) and replicated findings in 330 RHD cases from two independent cohorts. CNV distribution was significantly skewed toward larger gene-disrupting events in RHD cases compared to 4,733 ethnicity-matched controls (p = 4.8 × 10−11). This excess was attributable to known and novel (i.e., not present in any database or in the literature) genomic disorders. All together, 55/522 (10.5%) RHD cases harbored 34 distinct known genomic disorders, which were detected in only 0.2% of 13,839 population controls (p = 1.2 × 10−58). Another 32 (6.1%) RHD cases harbored large gene-disrupting CNVs that were absent from or extremely rare in the 13,839 population controls, identifying 38 potential novel or rare genomic disorders for this trait. Deletions at the HNF1B locus and the DiGeorge/velocardiofacial locus were most frequent. However, the majority of disorders were detected in a single individual. Genomic disorders were detected in 22.5% of individuals with multiple malformations and 14.5% of individuals with isolated urinary-tract defects; 14 individuals harbored two or more diagnostic or rare CNVs. Strikingly, the majority of the known CNV disorders detected in the RHD cohort have previous associations with developmental delay or neuropsychiatric diseases. Up to 16.6% of individuals with kidney malformations had a molecular diagnosis attributable to a copy-number disorder, suggesting kidney malformations as a sentinel manifestation of pathogenic genomic imbalances. A search for pathogenic CNVs should be considered in this population for the diagnosis of their specific genomic disorders and for the evaluation of the potential for developmental delay. PMID:23159250

  19. DR-Integrator: a new analytic tool for integrating DNA copy number and gene expression data.

    Science.gov (United States)

    Salari, Keyan; Tibshirani, Robert; Pollack, Jonathan R

    2010-02-01

    DNA copy number alterations (CNA) frequently underlie gene expression changes by increasing or decreasing gene dosage. However, only a subset of genes with altered dosage exhibit concordant changes in gene expression. This subset is likely to be enriched for oncogenes and tumor suppressor genes, and can be identified by integrating these two layers of genome-scale data. We introduce DNA/RNA-Integrator (DR-Integrator), a statistical software tool to perform integrative analyses on paired DNA copy number and gene expression data. DR-Integrator identifies genes with significant correlations between DNA copy number and gene expression, and implements a supervised analysis that captures genes with significant alterations in both DNA copy number and gene expression between two sample classes. DR-Integrator is freely available for non-commercial use from the Pollack Lab at http://pollacklab.stanford.edu/ and can be downloaded as a plug-in application to Microsoft Excel and as a package for the R statistical computing environment. The R package is available under the name 'DRI' at http://cran.r-project.org/. An example analysis using DR-Integrator is included as supplemental material. Supplementary data are available at Bioinformatics online.

  20. Integrative analysis of copy number alteration and gene expression profiling in ovarian clear cell adenocarcinoma.

    Science.gov (United States)

    Sung, Chang Ohk; Choi, Chel Hun; Ko, Young-Hyeh; Ju, Hyunjeong; Choi, Yoon-La; Kim, Nyunsu; Kang, So Young; Ha, Sang Yun; Choi, Kyusam; Bae, Duk-Soo; Lee, Jeong-Won; Kim, Tae-Joong; Song, Sang Yong; Kim, Byoung-Gie

    2013-05-01

    Ovarian clear cell adenocarcinoma (Ov-CCA) is a distinctive subtype of ovarian epithelial carcinoma. In this study, we performed array comparative genomic hybridization (aCGH) and paired gene expression microarray of 19 fresh-frozen samples and conducted integrative analysis. For the copy number alterations, significantly amplified regions (false discovery rate [FDR] q genes demonstrating frequent copy number alterations (>25% of samples) that correlated with gene expression (FDR genes were mainly located on 8p11.21, 8p21.2-p21.3, 8q22.1, 8q24.3, 17q23.2-q23.3, 19p13.3, and 19p13.11. Among the regions, 8q24.3 was found to contain the most genes (30 of 94 genes) including PTK2. The 8q24.3 region was indicated as the most significant region, as supported by copy number, GISTIC, and integrative analysis. Pathway analysis using differentially expressed genes on 8q24.3 revealed several major nodes, including PTK2. In conclusion, we identified a set of 94 candidate genes with frequent copy number alterations that correlated with gene expression. Specific chromosomal alterations, such as the 8q24.3 gain containing PTK2, could be a therapeutic target in a subset of Ov-CCAs. Copyright © 2013. Published by Elsevier Inc.

  1. Copy number variation analysis of matched ovarian primary tumors and peritoneal metastasis.

    Directory of Open Access Journals (Sweden)

    Joel A Malek

    Full Text Available Ovarian cancer is the most deadly gynecological cancer. The high rate of mortality is due to the large tumor burden with extensive metastatic lesion of the abdominal cavity. Despite initial chemosensitivity and improved surgical procedures, abdominal recurrence remains an issue and results in patients' poor prognosis. Transcriptomic and genetic studies have revealed significant genome pathologies in the primary tumors and yielded important information regarding carcinogenesis. There are, however, few studies on genetic alterations and their consequences in peritoneal metastatic tumors when compared to their matched ovarian primary tumors. We used high-density SNP arrays to investigate copy number variations in matched primary and metastatic ovarian cancer from 9 patients. Here we show that copy number variations acquired by ovarian tumors are significantly different between matched primary and metastatic tumors and these are likely due to different functional requirements. We show that these copy number variations clearly differentially affect specific pathways including the JAK/STAT and cytokine signaling pathways. While many have shown complex involvement of cytokines in the ovarian cancer environment we provide evidence that ovarian tumors have specific copy number variation differences in many of these genes.

  2. Diversity in copy number and structure of a silkworm morphogenetic gene as a result of domestication.

    Science.gov (United States)

    Sakudoh, Takashi; Nakashima, Takeharu; Kuroki, Yoko; Fujiyama, Asao; Kohara, Yuji; Honda, Naoko; Fujimoto, Hirofumi; Shimada, Toru; Nakagaki, Masao; Banno, Yutaka; Tsuchida, Kozo

    2011-03-01

    The carotenoid-binding protein (CBP) of the domesticated silkworm, Bombyx mori, a major determinant of cocoon color, is likely to have been substantially influenced by domestication of this species. We analyzed the structure of the CBP gene in multiple strains of B. mori, in multiple individuals of the wild silkworm, B. mandarina (the putative wild ancestor of B. mori), and in a number of other lepidopterans. We found the CBP gene copy number in genomic DNA to vary widely among B. mori strains, ranging from 1 to 20. The copies of CBP are of several types, based on the presence of a retrotransposon or partial deletion of the coding sequence. In contrast to B. mori, B. mandarina was found to possess a single copy of CBP without the retrotransposon insertion, regardless of habitat. Several other lepidopterans were found to contain sequences homologous to CBP, revealing that this gene is evolutionarily conserved in the lepidopteran lineage. Thus, domestication can generate significant diversity of gene copy number and structure over a relatively short evolutionary time. © 2011 by the Genetics Society of America

  3. Genome-wide identification of significant aberrations in cancer genome.

    Science.gov (United States)

    Yuan, Xiguo; Yu, Guoqiang; Hou, Xuchu; Shih, Ie-Ming; Clarke, Robert; Zhang, Junying; Hoffman, Eric P; Wang, Roger R; Zhang, Zhen; Wang, Yue

    2012-07-27

    Somatic Copy Number Alterations (CNAs) in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC), a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1) exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2) performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3) iteratively detecting Significant Copy Number Aberrations (SCAs) and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS) on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma). When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC) or tumor suppressor genes (e.g., CDKN2A/B). Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes. Open-source and platform-independent SAIC software is

  4. Genome-wide identification of significant aberrations in cancer genome

    Directory of Open Access Journals (Sweden)

    Yuan Xiguo

    2012-07-01

    Full Text Available Abstract Background Somatic Copy Number Alterations (CNAs in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC, a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1 exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2 performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3 iteratively detecting Significant Copy Number Aberrations (SCAs and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma. When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC or tumor suppressor genes (e.g., CDKN2A/B. Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes

  5. 40 CFR 265.53 - Copies of contingency plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Copies of contingency plan. 265.53... DISPOSAL FACILITIES Contingency Plan and Emergency Procedures § 265.53 Copies of contingency plan. A copy of the contingency plan and all revisions to the plan must be: (a) Maintained at the facility; and (b...

  6. 40 CFR 264.53 - Copies of contingency plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Copies of contingency plan. 264.53... Contingency Plan and Emergency Procedures § 264.53 Copies of contingency plan. A copy of the contingency plan... called upon to provide emergency services. [Comment: The contingency plan must be submitted to the...

  7. 36 CFR 1290.6 - Originals and copies.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Originals and copies. 1290.6... ASSASSINATION RECORDS COLLECTION ACT OF 1992 (JFK ACT) § 1290.6 Originals and copies. (a) For purposes of determining whether originals or copies of assassination records will be made part of the President John F...

  8. Readability as a Factor in Magazine Ad Copy Recall.

    Science.gov (United States)

    Wesson, David A.

    1989-01-01

    Examines the relationship between advertising copy readability and advertising effectiveness. Finds that recall is improved when the copy style is either fairly easy or fairly hard to read. Suggests the value of considering copy readability as a potential contributor, though a minor one, to the success of magazine advertising. (RS)

  9. Phenotypic diversity of diploid and haploid Emiliania huxleyi cells and of cells in different growth phases revealed by comparative metabolomics.

    Science.gov (United States)

    Mausz, Michaela A; Pohnert, Georg

    2015-01-01

    In phytoplankton a high species diversity of microalgae co-exists at a given time. But diversity is not only reflected by the species composition. Within these species different life phases as well as different metabolic states can cause additional diversity. One important example is the coccolithophore Emiliania huxleyi. Diploid cells play an important role in marine ecosystems since they can form massively abundant algal blooms but in addition the less abundant haploid life phase of E. huxleyi occurs in lower quantities. Both life phases may fulfill different functions in the plankton. We hypothesize that in addition to the functional diversity caused by this life phase transition the growth stage of cells can also influence the metabolic composition and thus the ecological impact of E. huxleyi. Here we introduce a metabolomic survey in dependence of life phases as well as different growth phases to reveal such changes. The comparative metabolomic approach is based on the extraction of intracellular metabolites from intact microalgae, derivatization and analysis by gas chromatography coupled to mass spectrometry (GC-MS). Automated data processing and statistical analysis using canonical analysis of principal coordinates (CAP) revealed unique metabolic profiles for each life phase. Concerning the correlations of metabolites to growth phases, complex patterns were observed. As for example the saccharide mannitol showed its highest concentration in the exponential phase, whereas fatty acids were correlated to stationary and sterols to declining phase. These results are indicative for specific ecological roles of these stages of E. huxleyi and are discussed in the context of previous physiological and ecological studies. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. The complete chloroplast genome sequence of Curcuma flaviflora (Curcuma).

    Science.gov (United States)

    Zhang, Yan; Deng, Jiabin; Li, Yangyi; Gao, Gang; Ding, Chunbang; Zhang, Li; Zhou, Yonghong; Yang, Ruiwu

    2016-09-01

    The complete chloroplast (cp) genome of Curcuma flaviflora, a medicinal plant in Southeast Asia, was sequenced. The genome size was 160 478 bp in length, with 36.3% GC content. A pair of inverted repeats (IRs) of 26 946 bp were separated by a large single copy (LSC) of 88 008 bp and a small single copy (SSC) of 18 578 bp, respectively. The cp genome contained 132 annotated genes, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes. And 19 of these genes were duplicated in inverted repeat regions.

  11. Contribution of Rare Copy Number Variants to Isolated Human Malformations

    Science.gov (United States)

    Serra-Juhé, Clara; Rodríguez-Santiago, Benjamín; Cuscó, Ivon; Vendrell, Teresa; Camats, Núria; Torán, Núria; Pérez-Jurado, Luis A.

    2012-01-01

    Background Congenital malformations are present in approximately 2–3% of liveborn babies and 20% of stillborn fetuses. The mechanisms underlying the majority of sporadic and isolated congenital malformations are poorly understood, although it is hypothesized that the accumulation of rare genetic, genomic and epigenetic variants converge to deregulate developmental networks. Methodology/Principal Findings We selected samples from 95 fetuses with congenital malformations not ascribed to a specific syndrome (68 with isolated malformations, 27 with multiple malformations). Karyotyping and Multiplex Ligation-dependent Probe Amplification (MLPA) discarded recurrent genomic and cytogenetic rearrangements. DNA extracted from the affected tissue (46%) or from lung or liver (54%) was analyzed by molecular karyotyping. Validations and inheritance were obtained by MLPA. We identified 22 rare copy number variants (CNV) [>100 kb, either absent (n = 7) or very uncommon (n = 15, malformations (21%), including 11 deletions and 11 duplications. One of the 9 tested rearrangements was de novo while the remaining were inherited from a healthy parent. The highest frequency was observed in fetuses with heart hypoplasia (8/17, 62.5%), with two events previously related with the phenotype. Double events hitting candidate genes were detected in two samples with brain malformations. Globally, the burden of deletions was significantly higher in fetuses with malformations compared to controls. Conclusions/Significance Our data reveal a significant contribution of rare deletion-type CNV, mostly inherited but also de novo, to human congenital malformations, especially heart hypoplasia, and reinforce the hypothesis of a multifactorial etiology in most cases. PMID:23056206

  12. Proteomic strategy for the identification of critical actors in reorganization of the post-meiotic male genome.

    Science.gov (United States)

    Govin, Jerome; Gaucher, Jonathan; Ferro, Myriam; Debernardi, Alexandra; Garin, Jerome; Khochbin, Saadi; Rousseaux, Sophie

    2012-01-01

    After meiosis, during the final stages of spermatogenesis, the haploid male genome undergoes major structural changes, resulting in a shift from a nucleosome-based genome organization to the sperm-specific, highly compacted nucleoprotamine structure. Recent data support the idea that region-specific programming of the haploid male genome is of high importance for the post-fertilization events and for successful embryo development. Although these events constitute a unique and essential step in reproduction, the mechanisms by which they occur have remained completely obscure and the factors involved have mostly remained uncharacterized. Here, we sought a strategy to significantly increase our understanding of proteins controlling the haploid male genome reprogramming, based on the identification of proteins in two specific pools: those with the potential to bind nucleic acids (basic proteins) and proteins capable of binding basic proteins (acidic proteins). For the identification of acidic proteins, we developed an approach involving a transition-protein (TP)-based chromatography, which has the advantage of retaining not only acidic proteins due to the charge interactions, but also potential TP-interacting factors. A second strategy, based on an in-depth bioinformatic analysis of the identified proteins, was then applied to pinpoint within the lists obtained, male germ cells expressed factors relevant to the post-meiotic genome organization. This approach reveals a functional network of DNA-packaging proteins and their putative chaperones and sheds a new light on the way the critical transitions in genome organizations could take place. This work also points to a new area of research in male infertility and sperm quality assessments.

  13. Selective regain of egfr gene copies in CD44+/CD24-/low breast cancer cellular model MDA-MB-468

    International Nuclear Information System (INIS)

    Agelopoulos, Konstantin; Buerger, Horst; Brandt, Burkhard; Greve, Burkhard; Schmidt, Hartmut; Pospisil, Heike; Kurtz, Stefan; Bartkowiak, Kai; Andreas, Antje; Wieczorek, Marek; Korsching, Eberhard

    2010-01-01

    Increased transcription of oncogenes like the epidermal growth factor receptor (EGFR) is frequently caused by amplification of the whole gene or at least of regulatory sequences. Aim of this study was to pinpoint mechanistic parameters occurring during egfr copy number gains leading to a stable EGFR overexpression and high sensitivity to extracellular signalling. A deeper understanding of those marker events might improve early diagnosis of cancer in suspect lesions, early detection of cancer progression and the prediction of egfr targeted therapies. The basal-like/stemness type breast cancer cell line subpopulation MDA-MB-468 CD44 high /CD24 -/low , carrying high egfr amplifications, was chosen as a model system in this study. Subclones of the heterogeneous cell line expressing low and high EGF receptor densities were isolated by cell sorting. Genomic profiling was carried out for these by means of SNP array profiling, qPCR and FISH. Cell cycle analysis was performed using the BrdU quenching technique. Low and high EGFR expressing MDA-MB-468 CD44 + /CD24 -/low subpopulations separated by cell sorting showed intermediate and high copy numbers of egfr, respectively. However, during cell culture an increase solely for egfr gene copy numbers in the intermediate subpopulation occurred. This shift was based on the formation of new cells which regained egfr gene copies. By two parametric cell cycle analysis clonal effects mediated through growth advantage of cells bearing higher egfr gene copy numbers could most likely be excluded for being the driving force. Subsequently, the detection of a fragile site distal to the egfr gene, sustaining uncapped telomere-less chromosomal ends, the ladder-like structure of the intrachromosomal egfr amplification and a broader range of egfr copy numbers support the assumption that dynamic chromosomal rearrangements, like breakage-fusion-bridge-cycles other than proliferation drive the gain of egfr copies. Progressive genome modulation

  14. Single-copy insertion of transgenes in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Frøkjaer-Jensen, Christian; Davis, M Wayne; Hopkins, Christopher E

    2008-01-01

    developed a method that inserts a single copy of a transgene into a defined site. Mobilization of a Mos1 transposon generates a double-strand break in noncoding DNA. The break is repaired by copying DNA from an extrachromosomal template into the chromosomal site. Homozygous single-copy insertions can...... be obtained in less than 2 weeks by injecting approximately 20 worms. We have successfully inserted transgenes as long as 9 kb and verified that single copies are inserted at the targeted site. Single-copy transgenes are expressed at endogenous levels and can be expressed in the female and male germlines....

  15. Association tests and software for copy number variant data

    Directory of Open Access Journals (Sweden)

    Plagnol Vincent

    2009-01-01

    Full Text Available Abstract Recent studies have suggested that copy number variation (CNV significantly contributes to genetic predisposition to several common disorders. These findings, combined with the imperfect tagging of CNVs by single nucleotide polymorphisms (SNPs, have motivated the development of association studies directly targeting CNVs. Several assays, including comparative genomic hybridisation arrays, SNP genotyping arrays, or DNA quantification through real-time polymerase chain reaction analysis, allow direct assessment of CNV status in cohorts sufficiently large to provide adequate statistical power for association studies. When analysing data provided by these assays, association tests for CNV data are not fundamentally different from SNP-based association tests. The main difference arises when the quality of the CNV assay is not sufficient to convert unequivocally the raw measurement into discrete calls -- a common issue, given the technological limitations of current CNV assays. When this is the case, association tests are more appropriately based on the raw continuous measurement provided by the CNV assay, instead of potentially inaccurate discrete calls, thus motivating the development of new statistical methods. Here, the programs available for CNV association testing for case control or family data are reviewed, using either discrete calls or raw continuous data.

  16. Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human

    NARCIS (Netherlands)

    S.L. Macrae (Sheila L.); Q. Zhang (Quanwei); C. Lemetre (Christophe); I. Seim (Inge); R.B. Calder (Robert B.); J.H.J. Hoeijmakers (Jan); Y. Suh (Yousin); V.N. Gladyshev (Vadim N.); A. Seluanov (Andrei); V. Gorbunova (Vera); J. Vijg (Jan); Z.D. Zhang (Zhengdong D.)

    2015-01-01

    textabstractGenome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM

  17. DUF1220 copy number is linearly associated with increased cognitive function as measured by total IQ and mathematical aptitude scores

    Science.gov (United States)

    Davis, Jonathon M.; Searles, Veronica B.; Anderson, Nathan; Keeney, Jonathon; Raznahan, Armin; Horwood, L. John; Fergusson, David M.; Kennedy, Martin A.; Giedd, Jay

    2014-01-01

    DUF1220 protein domains exhibit the greatest human lineage-specific copy number expansion of any protein-coding sequence in the genome, and variation in DUF1220 copy number has been linked to both brain size in humans and brain evolution among primates. Given these findings, we examined associations between DUF1220 subtypes CON1 and CON2 and cognitive aptitude. We identified a linear association between CON2 copy number and cognitive function in two independent populations of European descent. In North American males, an increase in CON2 copy number corresponded with an increase in WISC IQ (R2 = 0.13, p = 0.02), which may be driven by males aged 6–11 (R2 = 0.42, p = 0.003). We utilized ddPCR in a subset as a confirmatory measurement. This group had 26–33 copies of CON2 with a mean of 29, and each copy increase of CON2 was associated with a 3.3-point increase in WISC IQ (R2 = 0.22, p = 0.045). In individuals from New Zealand, an increase in CON2 copy number was associated with an increase in math aptitude ability (R2 = 0.10 p = 0.018). These were not confounded by brain size. To our knowledge, this is the first study to report a replicated association between copy number of a gene coding sequence and cognitive aptitude. Remarkably, dosage variations involving DUF1220 sequences have now been linked to human brain expansion, autism severity and cognitive aptitude, suggesting that such processes may be genetically and mechanistically inter-related. The findings presented here warrant expanded investigations in larger, well-characterized cohorts. PMID:25287832

  18. SNP detection for massively parallel whole-genome resequencing

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Li, Yingrui; Fang, Xiaodong

    2009-01-01

    -genome or target region resequencing. Here, we have developed a consensus-calling and SNP-detection method for sequencing-by-synthesis Illumina Genome Analyzer technology. We designed this method by carefully considering the data quality, alignment, and experimental errors common to this technology. All...... of this information was integrated into a single quality score for each base under Bayesian theory to measure the accuracy of consensus calling. We tested this methodology using a large-scale human resequencing data set of 36x coverage and assembled a high-quality nonrepetitive consensus sequence for 92.......25% of the diploid autosomes and 88.07% of the haploid X chromosome. Comparison of the consensus sequence with Illumina human 1M BeadChip genotyped alleles from the same DNA sample showed that 98.6% of the 37,933 genotyped alleles on the X chromosome and 98% of 999,981 genotyped alleles on autosomes were covered...

  19. Nuclear fusion and genome encounter during yeast zygote formation.

    Science.gov (United States)

    Tartakoff, Alan Michael; Jaiswal, Purnima

    2009-06-01

    When haploid cells of Saccharomyces cerevisiae are crossed, parental nuclei congress and fuse with each other. To investigate underlying mechanisms, we have developed assays that evaluate the impact of drugs and mutations. Nuclear congression is inhibited by drugs that perturb the actin and tubulin cytoskeletons. Nuclear envelope (NE) fusion consists of at least five steps in which preliminary modifications are followed by controlled flux of first outer and then inner membrane proteins, all before visible dilation of the waist of the nucleus or coalescence of the parental spindle pole bodies. Flux of nuclear pore complexes occurs after dilation. Karyogamy requires both the Sec18p/NSF ATPase and ER/NE luminal homeostasis. After fusion, chromosome tethering keeps tagged parental genomes separate from each other. The process of NE fusion and evidence of genome independence in yeast provide a prototype for understanding related events in higher eukaryotes.

  20. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster

    Science.gov (United States)

    Schrider, Daniel R.; Hahn, Matthew W.; Begun, David J.

    2016-01-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster. In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. PMID:26809315

  1. Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat.

    Science.gov (United States)

    Würschum, Tobias; Boeven, Philipp H G; Langer, Simon M; Longin, C Friedrich H; Leiser, Willmar L

    2015-07-29

    Copy number variation was found to be a frequent type of DNA polymorphism in the human genome often associated with diseases but its importance in crops and the effects on agronomic traits are still largely unknown. Here, we employed a large worldwide panel of 1110 winter wheat varieties to assess the frequency and the geographic distribution of copy number variants at the Photoperiod-B1 (Ppd-B1) and the Vernalization-A1 (Vrn-A1) loci as well as their effects on flowering time under field conditions. We identified a novel four copy variant of Vrn-A1 and based on the phylogenetic relationships among the lines show that the higher copy variants at both loci are likely to have arisen independently multiple times. In addition, we found that the frequency of the different copy number variants at both loci reflects the environmental conditions in the varieties' region of origin and based on multi-location field trials show that Ppd-B1 copy number has a substantial effect on the fine-tuning of flowering time. In conclusion, our results show the importance of copy number variation at Ppd-B1 and Vrn-A1 for the global adaptation of wheat making it a key factor for wheat success in a broad range of environments and in a wider context substantiate the significant role of copy number variation in crops.

  2. Genome sequencing and annotation of Stenotrophomonas sp. SAM8

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Stenotrophomonas sp. strain SAM8, isolated from environmental water. The draft genome size is 3,665,538 bp with a G + C content of 67.2% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDAV00000000.

  3. Genome sequencing and annotation of Proteus sp. SAS71

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Proteus sp. strain SAS71, isolated from water spring in Aljouf region, Saudi Arabia. The draft genome size is 3,037,704 bp with a G + C content of 39.3% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDIU00000000.

  4. Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae

    Directory of Open Access Journals (Sweden)

    Gonthier Lucy

    2010-08-01

    Full Text Available Abstract Background The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, i.e. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (Cichorium intybus L. constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae. Findings Two bacterial artificial chromosome (BAC libraries, CinS2S2 and CinS1S4, were constructed from HindIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and S2S2 for the S-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and S1S4. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers. Conclusions This

  5. Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae).

    Science.gov (United States)

    Gonthier, Lucy; Bellec, Arnaud; Blassiau, Christelle; Prat, Elisa; Helmstetter, Nicolas; Rambaud, Caroline; Huss, Brigitte; Hendriks, Theo; Bergès, Hélène; Quillet, Marie-Christine

    2010-08-11

    The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, i.e. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (Cichorium intybus L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae. Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from HindIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and S2S2 for the S-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and S1S4. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers. This indicated that both BAC libraries are valuable tools for molecular

  6. Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast

    Directory of Open Access Journals (Sweden)

    Hawthorn Lesleyann

    2010-08-01

    Full Text Available Abstract Background A major challenge in the interpretation of genomic profiling data generated from breast cancer samples is the identification of driver genes as distinct from bystander genes which do not impact tumorigenesis. One way to assess the relative importance of alterations in the transcriptome profile is to combine parallel analyses that assess changes in the copy number alterations (CNAs. This integrated analysis permits the identification of genes with altered expression that map within specific chromosomal regions which demonstrate copy number alterations, providing a mechanistic approach to identify the 'driver genes'. Methods We have performed whole genome analysis of CNAs using the Affymetrix 250K Mapping array on 22 infiltrating ductal carcinoma samples (IDCs. Analysis of transcript expression alterations was performed using the Affymetrix U133 Plus2.0 array on 16 IDC samples. Fourteen IDC samples were analyzed using both platforms and the data integrated. We also incorporated data from loss of heterozygosity (LOH analysis to identify genes showing altered expression in LOH regions. Results Common chromosome gains and amplifications were identified at 1q21.3, 6p21.3, 7p11.2-p12.1, 8q21.11 and 8q24.3. A novel amplicon was identified at 5p15.33. Frequent losses were found at 1p36.22, 8q23.3, 11p13, 11q23, and 22q13. Over 130 genes were identified with concurrent increases or decreases in expression that mapped to these regions of copy number alterations. LOH analysis revealed three tumors with whole chromosome or p arm allelic loss of chromosome 17. Genes were identified that mapped to copy neutral LOH regions. LOH with accompanying copy loss was detected on Xp24 and Xp25 and genes mapping to these regions with decreased expression were identified. Gene expression data highlighted the PPARα/RXRα Activation Pathway as down-regulated in the tumor samples. Conclusion We have demonstrated the utility of the application of

  7. Assessment of copy number variations in 120 patients with Poland syndrome.

    Science.gov (United States)

    Vaccari, Carlotta Maria; Tassano, Elisa; Torre, Michele; Gimelli, Stefania; Divizia, Maria Teresa; Romanini, Maria Victoria; Bossi, Simone; Musante, Ilaria; Valle, Maura; Senes, Filippo; Catena, Nunzio; Bedeschi, Maria Francesca; Baban, Anwar; Calevo, Maria Grazia; Acquaviva, Massimo; Lerone, Margherita; Ravazzolo, Roberto; Puliti, Aldamaria

    2016-11-25

    Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown. To investigate the prevalence of chromosomal imbalances in PS, standard cytogenetic and array-CGH analyses were performed in 120 PS patients. Following the application of stringent filter criteria, 14 rare copy number variations (CNVs) were identified in 14 PS patients in different regions outside known common copy number variations: seven genomic duplications and seven genomic deletions, enclosing the two previously reported PS associated chromosomal deletions. These CNVs ranged from 0.04 to 4.71 Mb in size. Bioinformatic analysis of array-CGH data indicated gene enrichment in pathways involved in cell-cell adhesion, DNA binding and apoptosis processes. The analysis also provided a number of candidate genes possibly causing the developmental defects observed in PS patients, among others REV3L, a gene coding for an error-prone DNA polymerase previously associated with Möbius Syndrome with variable phenotypes including pectoralis muscle agenesis. A number of rare CNVs were identified in PS patients, and these involve genes that represent candidates for further evaluation. Rare inherited CNVs may contribute to, or represent risk factors of PS

  8. Hard-copy versus soft-copy with and without simple image manipulation for detection of pulmonary nodules and masses

    International Nuclear Information System (INIS)

    Kosuda, S.; Kaji, T.; Iwasaki, Y.; Kusano, S.; Kobayashi, H.; Watanabe, M.

    2000-01-01

    To compare interpretation performance on soft-copy presentations, with and without simple image manipulation, and on unmodified hard-copy presentations with regard to detection of pulmonary nodules and masses. Material and Methods: Fifty chest digital radiograph combinations of patients with a total of 60 nodules, 32 of which were 2.0 cm in diameter, were selected for the study. Three readers evaluated three separate image formats: unmodified hard- and soft-copies, and soft-copies with simple image manipulation of lung and mediastinum window settings, and zooming. The screen display was 1600x1200 pixels with 8 bits/pixel. Results: The sensitivity, accuracy, detectability, and Az value of the soft-copy systems were clearly inferior to hard-copy evaluation. The mean Az values were 0.921 for unmodified hard-copy, 0.820 for image-manipulated soft-copy, and 0.781 for unmodified soft-copy. Conclusion: Soft-copy interpretations were not as sensitive in detecting pulmonary nodules and masses as hard-copy evaluation

  9. Segregation distortion in homozygous lines obtained via anther culture and maize doubled haploid methods in comparison to single seed descent in wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Tadeusz Adamski

    2014-01-01

    Conclusions: Segregation distortion in DH-AC populations was caused by the development of more than one plant of the same genotype from one callus. This distortion was minimized if only one plant per callus was included in the population. Selection of haploid wheat plants before chromosome doubling based on allele-specific markers allows us to choose genotypes that possess desirable Glu-1 alleles and to reduce the number of plants in the next steps of DH production. The SSD technique appeared to be the most advantageous in terms of Mendelian segregation, thus the occurrence of residual heterozygosity can be minimized by continuous selfing beyond the F6 generation.

  10. Sex bias in copy number variation of olfactory receptor gene family depends on ethnicity

    Directory of Open Access Journals (Sweden)

    Farideh eShadravan

    2013-03-01

    Full Text Available Gender plays a pivotal role in the human genetic identity and is also manifested in many genetic disorders particularly mental retardation. In this study its effect on copy number variation (CNV, known to cause genetic disorders was explored. As the olfactory receptor (OR repertoire comprises the largest human gene family, it was selected for this study, which was carried out within and between three populations, derived from 150 individuals from the 1000 Genome Project. Analysis of 3872 CNVs detected among 791 OR loci, in which 307 loci showed CNV, revealed the following novel findings: Sex bias in CNV was significantly more prevalent in uncommon than common CNV variants of OR pseudogenes, in which the male genome showed more CNVs; and in one-copy number loss compared to complete deletion of OR pseudogenes; both findings implying a more recent evolutionary role for gender. Sex bias in copy number gain was also detected. Another novel finding was that the observed six bias was largely dependent on ethnicity and was in general absent in East Asians. Using a CNV public database for sick children (ISCA the application of these findings for improving clinical molecular diagnostics is discussed by showing an example of sex bias in CNV among kids with autism. Additional clinical relevance is discussed, as the most polymorphic CNV-enriched OR cluster in the human genome, located on chr 15q11.2, is found near the PWS/AS bi-directionally imprinted region associated with two well-known mental retardation syndromes. As olfaction represents the primitive cognition in most mammals, arguably in competition with the development of a larger brain, the extensive retention of OR pseudogenes in females of this study, might point to a parent-of-origin indirect regulatory role for OR pseudogenes in the embryonic development of human brain. Thus any perturbation in the temporal regulation of olfactory system could lead to developmental delay disorders including

  11. Novel applications of array comparative genomic hybridization in molecular diagnostics.

    Science.gov (United States)

    Cheung, Sau W; Bi, Weimin

    2018-05-31

    In 2004, the implementation of array comparative genomic hybridization (array comparative genome hybridization [CGH]) into clinical practice marked a new milestone for genetic diagnosis. Array CGH and single-nucleotide polymorphism (SNP) arrays enable genome-wide detection of copy number changes in a high resolution, and therefore microarray has been recognized as the first-tier test for patients with intellectual disability or multiple congenital anomalies, and has also been applied prenatally for detection of clinically relevant copy number variations in the fetus. Area covered: In this review, the authors summarize the evolution of array CGH technology from their diagnostic laboratory, highlighting exonic SNP arrays developed in the past decade which detect small intragenic copy number changes as well as large DNA segments for the region of heterozygosity. The applications of array CGH to human diseases with different modes of inheritance with the emphasis on autosomal recessive disorders are discussed. Expert commentary: An exonic array is a powerful and most efficient clinical tool in detecting genome wide small copy number variants in both dominant and recessive disorders. However, whole-genome sequencing may become the single integrated platform for detection of copy number changes, single-nucleotide changes as well as balanced chromosomal rearrangements in the near future.

  12. The first genetic map of a synthesized allohexaploid Brassica with A, B and C genomes based on simple sequence repeat markers.

    Science.gov (United States)

    Yang, S; Chen, S; Geng, X X; Yan, G; Li, Z Y; Meng, J L; Cowling, W A; Zhou, W J

    2016-04-01

    We present the first genetic map of an allohexaploid Brassica species, based on segregating microsatellite markers in a doubled haploid mapping population generated from a hybrid between two hexaploid parents. This study reports the first genetic map of trigenomic Brassica. A doubled haploid mapping population consisting of 189 lines was obtained via microspore culture from a hybrid H16-1 derived from a cross between two allohexaploid Brassica lines (7H170-1 and Y54-2). Simple sequence repeat primer pairs specific to the A genome (107), B genome (44) and C genome (109) were used to construct a genetic linkage map of the population. Twenty-seven linkage groups were resolved from 274 polymorphic loci on the A genome (109), B genome (49) and C genome (116) covering a total genetic distance of 3178.8 cM with an average distance between markers of 11.60 cM. This is the first genetic framework map for the artificially synthesized Brassica allohexaploids. The linkage groups represent the expected complement of chromosomes in the A, B and C genomes from the original diploid and tetraploid parents. This framework linkage map will be valuable for QTL analysis and future genetic improvement of a new allohexaploid Brassica species, and in improving our understanding of the genetic control of meiosis in new polyploids.

  13. Copy-Number Disorders Are a Common Cause of Congenital Kidney Malformations

    OpenAIRE

    Sanna-Cherchi, Simone; Kiryluk, Krzysztof; Burgess, Katelyn E.; Bodria, Monica; Sampson, Matthew G.; Hadley, Dexter; Nees, Shannon N.; Verbitsky, Miguel; Perry, Brittany J.; Sterken, Roel; Lozanovski, Vladimir J.; Materna-Kiryluk, Anna; Barlassina, Cristina; Kini, Akshata; Corbani, Valentina

    2012-01-01

    We examined the burden of large, rare, copy-number variants (CNVs) in 192 individuals with renal hypodysplasia (RHD) and replicated findings in 330 RHD cases from two independent cohorts. CNV distribution was significantly skewed toward larger gene-disrupting events in RHD cases compared to 4,733 ethnicity-matched controls (p = 4.8 × 10−11). This excess was attributable to known and novel (i.e., not present in any database or in the literature) genomic disorders. All together, 55/522 (10.5%) ...

  14. Diversity in Copy Number and Structure of a Silkworm Morphogenetic Gene as a Result of Domestication

    OpenAIRE

    Sakudoh, Takashi; Nakashima, Takeharu; Kuroki, Yoko; Fujiyama, Asao; Kohara, Yuji; Honda, Naoko; Fujimoto, Hirofumi; Shimada, Toru; Nakagaki, Masao; Banno, Yutaka; Tsuchida, Kozo

    2011-01-01

    The carotenoid-binding protein (CBP) of the domesticated silkworm, Bombyx mori, a major determinant of cocoon color, is likely to have been substantially influenced by domestication of this species. We analyzed the structure of the CBP gene in multiple strains of B. mori, in multiple individuals of the wild silkworm, B. mandarina (the putative wild ancestor of B. mori), and in a number of other lepidopterans. We found the CBP gene copy number in genomic DNA to vary widely among B. mori strain...

  15. Building a model: developing genomic resources for common milkweed (Asclepias syriaca with low coverage genome sequencing

    Directory of Open Access Journals (Sweden)

    Weitemier Kevin

    2011-05-01

    Full Text Available Abstract Background Milkweeds (Asclepias L. have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L. could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. Results A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp and 5S rDNA (120 bp sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp, with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae unigenes (median coverage of 0.29× and 66% of single copy orthologs (COSII in asterids (median coverage of 0.14×. From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites and phylogenetics (low-copy nuclear genes studies were developed. Conclusions The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species

  16. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing.

    Science.gov (United States)

    Straub, Shannon C K; Fishbein, Mark; Livshultz, Tatyana; Foster, Zachary; Parks, Matthew; Weitemier, Kevin; Cronn, Richard C; Liston, Aaron

    2011-05-04

    Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first

  17. Comparing Android Applications to Find Copying

    Directory of Open Access Journals (Sweden)

    Larry Melling

    2012-03-01

    Full Text Available The Android smartphone operating system includes a Java mobile development platform that provides for rapid development and deployment of a wide variety of applications. The open nature of the platform means that reverse engineering of applications is relatively easy, and many developers are concerned as applications similar to their own show up in the Android marketplace and want to know if these applications are pirated. Fortunately, the same characteristics that make an Android application easy to reverse engineer and copy also provide opportunities for Android developers to compare downloaded applications to their own. This paper describes the process for comparing a developer’s application with a downloaded application and defines an identifiability metric to quantify the degree to which an application can be identified by its bytecode.

  18. The standardised copy of pentagons test

    Directory of Open Access Journals (Sweden)

    Terzoglou Vassiliki A

    2011-04-01

    Full Text Available Abstract Background The 'double-diamond copy' task is a simple paper and pencil test part of the Bender-Gestalt Test and the Mini Mental State Examination (MMSE. Although it is a widely used test, its method of scoring is crude and its psychometric properties are not adequately known. The aim of the present study was to develop a sensitive and reliable method of administration and scoring. Methods The study sample included 93 normal control subjects (53 women and 40 men aged 35.87 ± 12.62 and 127 patients suffering from schizophrenia (54 women and 73 men aged 34.07 ± 9.83. Results The scoring method was based on the frequencies of responses of healthy controls and proved to be relatively reliable with Cronbach's α equal to 0.61, test-retest correlation coefficient equal to 0.41 and inter-rater reliability equal to 0.52. The factor analysis produced two indices and six subscales of the Standardised Copy of Pentagons Test (SCPT. The total score as well as most of the individual items and subscales distinguished between controls and patients. The discriminant function correctly classified 63.44% of controls and 75.59% of patients. Discussion The SCPT seems to be a satisfactory, reliable and valid instrument, which is easy to administer, suitable for use in non-organic psychiatric patients and demands minimal time. Further research is necessary to test its psychometric properties and its usefulness and applications as a neuropsychological test.

  19. Intragenomic polymorphisms among high-copy loci: a genus-wide study of nuclear ribosomal DNA in Asclepias (Apocynaceae).

    Science.gov (United States)

    Weitemier, Kevin; Straub, Shannon C K; Fishbein, Mark; Liston, Aaron

    2015-01-01

    Despite knowledge that concerted evolution of high-copy loci is often imperfect, studies that investigate the extent of intragenomic polymorphisms and comparisons across a large number of species are rarely made. We present a bioinformatic pipeline for characterizing polymorphisms within an individual among copies of a high-copy locus. Results are presented for nuclear ribosomal DNA (nrDNA) across the milkweed genus, Asclepias. The 18S-26S portion of the nrDNA cistron of Asclepias syriaca served as a reference for assembly of the region from 124 samples representing 90 species of Asclepias. Reads were mapped back to each individual's consensus and at each position reads differing from the consensus were tallied using a custom perl script. Low frequency polymorphisms existed in all individuals (mean = 5.8%). Most nrDNA positions (91%) were polymorphic in at least one individual, with polymorphic sites being less frequent in subunit regions and loops. Highly polymorphic sites existed in each individual, with highest abundance in the "noncoding" ITS regions. Phylogenetic signal was present in the distribution of intragenomic polymorphisms across the genus. Intragenomic polymorphisms in nrDNA are common in Asclepias, being found at higher frequency than any other study to date. The high and variable frequency of polymorphisms across species highlights concerns that phylogenetic applications of nrDNA may be error-prone. The new analytical approach provided here is applicable to other taxa and other high-copy regions characterized by low coverage genome sequencing (genome skimming).

  20. Extreme genomes

    OpenAIRE

    DeLong, Edward F

    2000-01-01

    The complete genome sequence of Thermoplasma acidophilum, an acid- and heat-loving archaeon, has recently been reported. Comparative genomic analysis of this 'extremophile' is providing new insights into the metabolic machinery, ecology and evolution of thermophilic archaea.

  1. SINEs as driving forces in genome evolution.

    Science.gov (United States)

    Schmitz, J

    2012-01-01

    SINEs are short interspersed elements derived from cellular RNAs that repetitively retropose via RNA intermediates and integrate more or less randomly back into the genome. SINEs propagate almost entirely vertically within their host cells and, once established in the germline, are passed on from generation to generation. As non-autonomous elements, their reverse transcription (from RNA to cDNA) and genomic integration depends on the activity of the enzymatic machinery of autonomous retrotransposons, such as long interspersed elements (LINEs). SINEs are widely distributed in eukaryotes, but are especially effectively propagated in mammalian species. For example, more than a million Alu-SINE copies populate the human genome (approximately 13% of genomic space), and few master copies of them are still active. In the organisms where they occur, SINEs are a challenge to genomic integrity, but in the long term also can serve as beneficial building blocks for evolution, contributing to phenotypic heterogeneity and modifying gene regulatory networks. They substantially expand the genomic space and introduce structural variation to the genome. SINEs have the potential to mutate genes, to alter gene expression, and to generate new parts of genes. A balanced distribution and controlled activity of such properties is crucial to maintaining the organism's dynamic and thriving evolution. Copyright © 2012 S. Karger AG, Basel.

  2. The X Chromosome Is Necessary for Somatic Development in the Dioecious Silene latifolia: Cytogenetic and Molecular Evidence and Sequencing of a Haploid Genome

    Czech Academy of Sciences Publication Activity Database

    Soukupová, Magda; Nevrtalová, Eva; Čížková, Jana; Vogel, Ivan; Čegan, Radim; Hobza, Roman; Vyskot, Boris

    2014-01-01

    Roč. 143, 1-3 (2014), s. 96-103 ISSN 1424-8581 R&D Projects: GA ČR(CZ) GBP501/12/G090; GA ČR(CZ) GAP501/12/2220; GA ČR(CZ) GAP501/10/0102; GA MŠk(CZ) LM2010005; GA MŠk LO1204 Institutional support: RVO:68081707 Keywords : Anther culture * Cytometry * Dihaploids Subject RIV: BO - Biophysics; EF - Botanics (UEB-Q) Impact factor: 1.561, year: 2014

  3. Grass genomes

    OpenAIRE

    Bennetzen, Jeffrey L.; SanMiguel, Phillip; Chen, Mingsheng; Tikhonov, Alexander; Francki, Michael; Avramova, Zoya

    1998-01-01

    For the most part, studies of grass genome structure have been limited to the generation of whole-genome genetic maps or the fine structure and sequence analysis of single genes or gene clusters. We have investigated large contiguous segments of the genomes of maize, sorghum, and rice, primarily focusing on intergenic spaces. Our data indicate that much (>50%) of the maize genome is composed of interspersed repetitive DNAs, primarily nested retrotransposons that in...

  4. Multiple-copy entanglement transformation and entanglement catalysis

    International Nuclear Information System (INIS)

    Duan Runyao; Feng Yuan; Li Xin; Ying Mingsheng

    2005-01-01

    We prove that any multiple-copy entanglement transformation [S. Bandyopadhyay, V. Roychowdhury, and U. Sen, Phys. Rev. A 65, 052315 (2002)] can be implemented by a suitable entanglement-assisted local transformation [D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 3566 (1999)]. Furthermore, we show that the combination of multiple-copy entanglement transformation and the entanglement-assisted one is still equivalent to the pure entanglement-assisted one. The mathematical structure of multiple-copy entanglement transformations then is carefully investigated. Many interesting properties of multiple-copy entanglement transformations are presented, which exactly coincide with those satisfied by the entanglement-assisted ones. Most interestingly, we show that an arbitrarily large number of copies of state should be considered in multiple-copy entanglement transformations

  5. Structural genomic variation in ischemic stroke

    Science.gov (United States)

    Matarin, Mar; Simon-Sanchez, Javier; Fung, Hon-Chung; Scholz, Sonja; Gibbs, J. Raphael; Hernandez, Dena G.; Crews, Cynthia; Britton, Angela; Wavrant De Vrieze, Fabienne; Brott, Thomas G.; Brown, Robert D.; Worrall, Bradford B.; Silliman, Scott; Case, L. Douglas; Hardy, John A.; Rich, Stephen S.; Meschia, James F.; Singleton, Andrew B.

    2008-01-01

    Technological advances in molecular genetics allow rapid and sensitive identification of genomic copy number variants (CNVs). This, in turn, has sparked interest in the function such variation may play in disease. While a role for copy number mutations as a cause of Mendelian disorders is well established, it is unclear whether CNVs may affect risk for common complex disorders. We sought to investigate whether CNVs may modulate risk for ischemic stroke (IS) and to provide a catalog of CNVs in patients with this disorder by analyzing copy number metrics produced as a part of our previous genome-wide single-nucleotide polymorphism (SNP)-based association study of ischemic stroke in a North American white population. We examined CNVs in 263 patients with ischemic stroke (IS). Each identified CNV was compared with changes identified in 275 neurologically normal controls. Our analysis identified 247 CNVs, corresponding to 187 insertions (76%; 135 heterozygous; 25 homozygous duplications or triplications; 2 heterosomic) and 60 deletions (24%; 40 heterozygous deletions;3 homozygous deletions; 14 heterosomic deletions). Most alterations (81%) were the same as, or overlapped with, previously reported CNVs. We report here the first genome-wide analysis of CNVs in IS patients. In summary, our study did not detect any common genomic structural variation unequivocally linked to IS, although we cannot exclude that smaller CNVs or CNVs in genomic regions poorly covered by this methodology may confer risk for IS. The application of genome-wide SNP arrays now facilitates the evaluation of structural changes through the entire genome as part of a genome-wide genetic association study. PMID:18288507

  6. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies

    Czech Academy of Sciences Publication Activity Database

    Ivaničová, Zuzana; Valárik, Miroslav; Pánková, K.; Trávníčková, M.; Doležel, Jaroslav; Šafář, Jan; Milec, Zbyněk

    2017-01-01

    Roč. 12, č. 8 (2017), č. článku e0183745. E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * dna methylation * copy number * flowering time * human genome * se gene * vernalization * earliness * barley * region Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 2.806, year: 2016

  7. Bamgineer: Introduction of simulated allele-specific copy number variants into exome and targeted sequence data sets

    OpenAIRE

    Bruce, Jeff; Pugh, Trevor; Samadian, Soroush

    2017-01-01

    Somatic copy number variations (CNVs) play a crucial role in development of many human cancers. The broad availability of next-generation sequencing data has enabled the development of algorithms to computationally infer CNV profiles from a variety of data types including exome and targeted sequence data; currently the most prevalent types of cancer genomics data. However, systemic evaluation and comparison of these tools remains challenging due to a lack of ground truth reference sets. To ad...

  8. Figure 4 from Integrative Genomics Viewer: Visualizing Big Data | Office of Cancer Genomics

    Science.gov (United States)

    Gene-list view of genomic data. The gene-list view allows users to compare data across a set of loci. The data in this figure includes copy number, mutation, and clinical data from 202 glioblastoma samples from TCGA. Adapted from Figure 7; Thorvaldsdottir H et al. 2012

  9. Figure 2 from Integrative Genomics Viewer: Visualizing Big Data | Office of Cancer Genomics

    Science.gov (United States)

    Grouping and sorting genomic data in IGV. The IGV user interface displaying 202 glioblastoma samples from TCGA. Samples are grouped by tumor subtype (second annotation column) and data type (first annotation column) and sorted by copy number of the EGFR locus (middle column). Adapted from Figure 1; Robinson et al. 2011

  10. 38 CFR 1.526 - Copies of records and papers.

    Science.gov (United States)

    2010-07-01

    ... papers. 1.526 Section 1.526 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS... Copies of records and papers. (a) Any person desiring a copy of any record or document in the custody of... plain one-sided paper copies of a standard size (81/2″ × 11″; 81/2″ × 14″; 11″ × 14″) $0.15 per page...

  11. Comparison of Different Methods for Separation of Haploid Embryo Induced through Irradiated Pollen and Their Economic Analysis in Melon (Cucumis melo var. inodorus

    Directory of Open Access Journals (Sweden)

    Gökhan Baktemur

    2013-01-01

    Full Text Available Irradiated pollen technique is the most successful haploidization technique within Cucurbitaceae. After harvesting of fruits pollinated with irradiated pollen, classical method called as “inspecting the seeds one by one” is used to find haploid embryos in the seeds. In this study, different methods were used to extract the embryos more easily, quickly, economically, and effectively. “Inspecting the seeds one by one” was used as control treatment. Other four methods tested were “sowing seeds direct nutrient media,” “inspecting seeds in the light source,” “floating seeds on liquid media,” and “floating seeds on liquid media after surface sterilization.” Y2 and Y3 melon genotypes selected from the third backcross population of Yuva were used as plant material. Results of this study show that there is no statistically significant difference among methods “inspecting the seeds one by one,” “sowing seeds direct CP nutrient media,” and “inspecting seeds in the light source,” although the average number of embryos per fruit is slightly different. No embryo production was obtained from liquid culture because of infection. When considered together with labor costs and time required for embryo rescue, the best methods were “sowing seeds directly in the CP nutrient media“ and ”inspecting seeds in the light source.”

  12. Haploid genetic screens identify an essential role for PLP2 in the downregulation of novel plasma membrane targets by viral E3 ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Richard T Timms

    Full Text Available The Kaposi's sarcoma-associated herpesvirus gene products K3 and K5 are viral ubiquitin E3 ligases which downregulate MHC-I and additional cell surface immunoreceptors. To identify novel cellular genes required for K5 function we performed a forward genetic screen in near-haploid human KBM7 cells. The screen identified proteolipid protein 2 (PLP2, a MARVEL domain protein of unknown function, as essential for K5 activity. Genetic loss of PLP2 traps the viral ligase in the endoplasmic reticulum, where it is unable to ubiquitinate and degrade its substrates. Subsequent analysis of the plasma membrane proteome of K5-expressing KBM7 cells in the presence and absence of PLP2 revealed a wide range of novel K5 targets, all of which required PLP2 for their K5-mediated downregulation. This work ascribes a critical function to PLP2 for viral ligase activity and underlines the power of non-lethal haploid genetic screens in human cells to identify the genes involved in pathogen manipulation of the host immune system.

  13. CARAT: A novel method for allelic detection of DNA copy number changes using high density oligonucleotide arrays

    Directory of Open Access Journals (Sweden)

    Ishikawa Shumpei

    2006-02-01

    Full Text Available Abstract Background DNA copy number alterations are one of the main characteristics of the cancer cell karyotype and can contribute to the complex phenotype of these cells. These alterations can lead to gains in cellular oncogenes as well as losses in tumor suppressor genes and can span small intervals as well as involve entire chromosomes. The ability to accurately detect these changes is central to understanding how they impact the biology of the cell. Results We describe a novel algorithm called CARAT (Copy Number Analysis with Regression And Tree that uses probe intensity information to infer copy number in an allele-specific manner from high density DNA oligonuceotide arrays designed to genotype over 100, 000 SNPs. Total and allele-specific copy number estimations using CARAT are independently evaluated for a subset of SNPs using quantitative PCR and allelic TaqMan reactions with several human breast cancer cell lines. The sensitivity and specificity of the algorithm are characterized using DNA samples containing differing numbers of X chromosomes as well as a test set of normal individuals. Results from the algorithm show a high degree of agreement with results from independent verification methods. Conclusion Overall, CARAT automatically detects regions with copy number variations and assigns a significance score to each alteration as well as generating allele-specific output. When coupled with SNP genotype calls from the same array, CARAT provides additional detail into the structure of genome wide alterations that can contribute to allelic imbalance.

  14. The genetic effect of copy number variations on the risk of alcoholism in a Korean population.

    Science.gov (United States)

    Bae, Joon Seol; Jung, Myung Hun; Lee, Boung Chul; Cheong, Hyun Sub; Park, Byung Lae; Kim, Lyoung Hyo; Kim, Jeong-Hyun; Pasaje, Charisse Flerida A; Lee, Jin Sol; Jung, Kyoung Hwa; Chai, Young Gyu; Shin, Hyoung Doo; Choi, Ihn-Geun

    2012-01-01

    Alcoholism, a chronic behavioral disorder characterized by excessive alcohol consumption, has been a leading cause of morbidity and premature death. This condition is believed to be influenced by genetic factors. As copy number variation (CNV) has been recently discovered in human genome, genomic diversity of human genome is more frequent than previously thought. Many studies have reported evidences that CNV is associated with the development of complex diseases. In this study, we hypothesized that CNV can predict the risk of alcoholism. Using the Illumina HumanHap660W-Quad BeadChip (∼660 k markers), genome-wide genotyping was performed to obtain signal and allelic intensities from 116 alcoholic cases and 1,022 healthy controls (total n = 1,138) in a Korean population. To identify alcoholism-associated CNV regions, we performed a genome-wide association analysis, using multivariate logistic regression model controlling for age and gender. We identified a total of 255,732 individual CNVs and 3,261 CNV regions (1,067 common CNV regions, frequency > 1%) in this study. Results from multivariate logistic regression showed that the chr20:61195302-61195978 regions were significantly associated with the risk of alcoholism after multiple corrections (p = 5.02E-05, p(corr) = 0.04). Most of the identified variations in this study overlapped with the previously reported CNVs in the Database of Genomic Variants (95.3%). The identified CNVs, which encompassed 3,226 functional genes, were significantly enriched in the cellular part, in the membrane-bound organelle, in the cell part, in developmental processes, in cell communication, in neurological system process, in sensory perception of smell and chemical stimulus, and in olfactory receptor activity. This is the first genome-wide association study to investigate the relationship between common CNV and alcoholism. Our results suggest that the newly identified CNV regions may contribute to the development of alcoholism

  15. The complete chloroplast genome of the Dendrobium strongylanthum (Orchidaceae: Epidendroideae).

    Science.gov (United States)

    Li, Jing; Chen, Chen; Wang, Zhe-Zhi

    2016-07-01

    Complete chloroplast genome sequence is very useful for studying the phylogenetic and evolution of species. In this study, the complete chloroplast genome of Dendrobium strongylanthum was constructed from whole-genome Illumina sequencing data. The chloroplast genome is 153 058 bp in length with 37.6% GC content and consists of two inverted repeats (IRs) of 26 316 bp. The IR regions are separated by large single-copy region (LSC, 85 836 bp) and small single-copy (SSC, 14 590 bp) region. A total of 130 chloroplast genes were successfully annotated, including 84 protein coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic analyses showed that the chloroplast genome of Dendrobium strongylanthum is related to that of the Dendrobium officinal.

  16. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome.

    Directory of Open Access Journals (Sweden)

    Jian Li

    Full Text Available The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR mediated by low-copy repeats (LCRs. Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ~1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR-mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease.

  17. Phylogenomic approaches to common problems encountered in the analysis of low copy repeats: The sulfotransferase 1A gene family example

    Directory of Open Access Journals (Sweden)

    Benner Steven A

    2005-03-01

    Full Text Available Abstract Background Blocks of duplicated genomic DNA sequence longer than 1000 base p