WorldWideScience

Sample records for hanford supernate waste

  1. Supplemental Report: Technetium-99 On-Line Monitoring by Beta Counting for Hanford Supernate Waste Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, R.A.

    2000-08-23

    SRTC is investigating approaches for near-real-time monitoring of 99Tc at selected points in the proposed pretreatment process for Hanford supernate waste solutions. The desired monitoring points include both the feed to and decontaminated product from a technetium-removal column. A Cs-removal column precedes technetium decontamination in the proposed process. Our earlier report (Ref. 1) showed that a simple flow-through beta counting system can easily meet 99Tc detection limit goals for solutions that do not contain interfering radionuclides; however, concentrations of residual interferences were too high in process solutions at the desired monitoring points. That is, technetium can not be measured without additional purification. In this supplement, ADS evaluated ion exchange cartridges to remove radionuclides that interfere with 99Tc beta measurements. Tests on radioactive standard solutions and on Hanford Envelope B (AZ-102) pretreated process solutions show that 99Tc passes through the cation removal cartridge to an on-line beta counter, and that interfering radionuclides were nearly totally removed. Envelope B solutions included both the process's Cs-removed feed to the Tc-removal column and product from the column. Analyses of these solutions before and after the cation exchange cartridge show that the concentration of the primary interference, 137Cs, was reduced to about 1/250th of the feed concentration.

  2. Distributions of 14 elements into 10 liquid extractants from simulated acid-dissolved sludge and acidified supernate solutions of Hanford high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F. [Sandia National Labs., Albuquerque, NM (United States); Svitra, Z.V.; Bowen, S.M. [Los Alamos National Lab., NM (United States)

    1994-02-01

    The distributions of 14 elements into ten extractants were measured from simulant solutions that represent acidic dissolved sludge and acidified supernate from Hanford HLW Tank 102-SY. The extractants: LIX{sup TM}-26, LIX{sup TM}-54, LIX{sup TM}-84, LIX{sup TM}-1010, Cyanex{sup TM} 272, Cyanex{sup TM} 923, Aliquat{sup TM} 336, DHDECMP, DHDECMP-DIPB, and CMPO-DIPB, were sorbed on porous carbon beads to provide dry-appearing beads that would be suitable for column operations. The selected elements, which represent fission products: Ce, Cs, Sr, Tc, and Y; actinides: U, Pu, and Am; and matrix elements: Cr, Co, Fe, Mn, Zn, and Zr; were traced by radionuclides and measured by gamma spectrometry. Distribution coefficients for each of 280 element/absorber/solution combinations were measured for dynamic contact periods of 30 minutes, 2 hours, and 6 hours to provide sorption kinetics information for the selected elements from these complex media. The resulting 840 measured distribution coefficients are presented.

  3. Technetium in alkaline, high-salt, radioactive tank waste supernate: Preliminary characterization and removal

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, D.L. Jr.; Brown, G.N.; Conradson, S.D. [and others

    1997-01-01

    This report describes the initial work conducted at Pacific Northwest National Laboratory to study technetium (Tc) removal from Hanford tank waste supernates and Tc oxidation state in the supernates. Filtered supernate samples from four tanks were studied: a composite double shell slurry feed (DSSF) consisting of 70% from Tank AW-101, 20% from AP-106, and 10% from AP-102; and three complexant concentrate (CC) wastes (Tanks AN-107, SY-101, ANS SY-103) that are distinguished by having a high concentration of organic complexants. The work included batch contacts of these waste samples with Reillex{trademark}-HPQ (anion exchanger from Reilly Industries) and ABEC 5000 (a sorbent from Eichrom Industries), materials designed to effectively remove Tc as pertechnetate from tank wastes. A short study of Tc analysis methods was completed. A preliminary identification of the oxidation state of non-pertechnetate species in the supernates was made by analyzing the technetium x-ray absorption spectra of four CC waste samples. Molybdenum (Mo) and rhenium (Re) spiked test solutions and simulants were tested with electrospray ionization-mass spectrometry to evaluate the feasibility of the technique for identifying Tc species in waste samples.

  4. Hydroxide depletion in dilute supernates stored in waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T.

    1985-10-10

    Free hydroxide ion in dilute supernates are depleted by reaction with atmospheric carbon dioxide to form bicarbonate and carbonate species and by reaction with acidic compounds formed by the radiolytic decomposition of tetraphenylborate salts. A model of the kinetics and thermodynamics of absorption of carbon dioxide in the waste tanks has been developed. Forecasts of the rate of hydroxide depletion and the requirements for sodium hydroxide to maintain technical standards have been made for the washed sludge and washed precipitate storage tanks. Hydroxide depletion is predicted to have a minimal impact on sludge processing operations. However, in-tank precipitation and downstream DWPF operations are predicted to be significantly affected by hydroxide depletion in Tank 49H. The installation of a carbon dioxide scrubber on Tank 49H may be justified in view of the decrease in alkali content and variation in the melter feed.

  5. Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1993-10-01

    Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated.

  6. Task Technical and Quality Assurance Plan for Determining Uranium and Plutonium Solubility in Actual Tank Waste Supernates

    Energy Technology Data Exchange (ETDEWEB)

    King, William D.

    2005-06-28

    Savannah River Site tank waste supernates contain small quantities of dissolved uranium and plutonium. Due to the large volume of supernates, significant quantities of dissolved uranium and plutonium are managed as part of waste transfers, evaporation and pretreatment at the Savannah River Site in tank farm operations, the Actinide Removal Project (ARP), and the Salt Waste Processing Facility (SWPF). Previous SRNL studies have investigated the effect of temperature and major supernate components on the solubility of uranium and plutonium. Based on these studies, equations were developed for the prediction of U and Pu solubility in tank waste supernates. The majority of the previous tests were conducted with simulated waste solutions. The current testing is intended to determine solubility in actual tank waste samples (as-received, diluted, and combinations of tank samples) as a function of composition and temperature. Results will be used to validate and build on the existing solubility equations.

  7. Chemical species of plutonium in Hanford radioactive tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Barney, G.S.

    1997-10-22

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other

  8. Investigations in Ceramicrete Stabilization of Hanford Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, A. S.; Antink, A.; Maloney, M. D.; Thomson, G. H.

    2003-02-26

    This paper provides a summary of investigations done on feasibility of using Ceramicrete technology to stabilize high level salt waste streams typical of Hanford and other sites. We used two non-radioactive simulants that covered the range of properties from low activity to high level liquids and sludges. One represented tank supernate, containing Cr, Pb, and Ag as the major hazardous metals, and Cs as the fission products; the other, a waste sludge, contained Cd, Cr, Ag, Ni, and Ba as the major hazardous contaminants, and Cs, and Tc as the fission products.

  9. Hanford Waste Physical and Rheological Properties: Data and Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Kurath, Dean E.; Mahoney, Lenna A.; Onishi, Yasuo; Huckaby, James L.; Cooley, Scott K.; Burns, Carolyn A.; Buck, Edgar C.; Tingey, Joel M.; Daniel, Richard C.; Anderson, K. K.

    2011-08-01

    The Hanford Site in Washington State manages 177 underground storage tanks containing approximately 250,000 m3 of waste generated during past defense reprocessing and waste management operations. These tanks contain a mixture of sludge, saltcake and supernatant liquids. The insoluble sludge fraction of the waste consists of metal oxides and hydroxides and contains the bulk of many radionuclides such as the transuranic components and 90Sr. The saltcake, generated by extensive evaporation of aqueous solutions, consists primarily of dried sodium salts. The supernates consist of concentrated (5-15 M) aqueous solutions of sodium and potassium salts. The 177 storage tanks include 149 single-shell tanks (SSTs) and 28 double -hell tanks (DSTs). Ultimately the wastes need to be retrieved from the tanks for treatment and disposal. The SSTs contain minimal amounts of liquid wastes, and the Tank Operations Contractor is continuing a program of moving solid wastes from SSTs to interim storage in the DSTs. The Hanford DST system provides the staging location for waste feed delivery to the Department of Energy (DOE) Office of River Protection’s (ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP is being designed and constructed to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks.

  10. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-12-14

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  11. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  12. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  13. HANFORD WASTE MINERALOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  14. Degradation of dome cutting minerals in Hanford waste

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jacob G.; Huber, Heinz J.; Cooke, Gary A.

    2013-01-11

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes

  15. Degradation of Dome Cutting Minerals in Hanford Waste - 13100

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jacob G.; Cooke, Gary A.; Huber, Heinz J. [Washington River Protection Solutions, LLC, P.O. Box 850, Richland, WA 99352 (United States)

    2013-07-01

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg. C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high

  16. Hanford waste tank cone penetrometer

    Energy Technology Data Exchange (ETDEWEB)

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ``waste`` data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment.

  17. Hanford Site Secondary Waste Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.

    2009-01-29

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and

  18. Experimental Determination and Thermodynamic Modeling of Electrical Conductivity of SRS Waste Tank Supernate

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-01

    SRS High Level Waste Tank Farm personnel rely on conductivity probes for detection of incipient overflow conditions in waste tanks. Minimal information is available concerning the sensitivity that must be achieved such that that liquid detection is assured. Overly sensitive electronics results in numerous nuisance alarms for these safety-related instruments. In order to determine the minimum sensitivity required of the probe, Tank Farm Engineering personnel need adequate conductivity data to improve the existing designs. Little or no measurements of liquid waste conductivity exist; however, the liquid phase of the waste consists of inorganic electrolytes for which the conductivity may be calculated. Savannah River Remediation (SRR) Tank Farm Facility Engineering requested SRNL to determine the conductivity of the supernate resident in SRS waste Tank 40 experimentally as well as computationally. In addition, SRNL was requested to develop a correlation, if possible, that would be generally applicable to liquid waste resident in SRS waste tanks. A waste sample from Tank 40 was analyzed for composition and electrical conductivity as shown in Table 4-6, Table 4-7, and Table 4-9. The conductivity for undiluted Tank 40 sample was 0.087 S/cm. The accuracy of OLI Analyzer™ was determined using available literature data. Overall, 95% of computed estimates of electrical conductivity are within ±15% of literature values for component concentrations from 0 to 15 M and temperatures from 0 to 125 °C. Though the computational results are generally in good agreement with the measured data, a small portion of literature data deviates as much as ±76%. A simplified model was created that can be used readily to estimate electrical conductivity of waste solution in computer spreadsheets. The variability of this simplified approach deviates up to 140% from measured values. Generally, this model can be applied to estimate the conductivity within a factor of two. The comparison of the

  19. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  20. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  1. Separation, Concentration, and Immobilization of Technetium and Iodine from Alkaline Supernate Waste

    Energy Technology Data Exchange (ETDEWEB)

    James Harvey; Michael Gula

    1998-12-07

    Development of remediation technologies for the characterization, retrieval, treatment, concentration, and final disposal of radioactive and chemical tank waste stored within the Department of Energy (DOE) complex represents an enormous scientific and technological challenge. A combined total of over 90 million gallons of high-level waste (HLW) and low-level waste (LLW) are stored in 335 underground storage tanks at four different DOE sites. Roughly 98% of this waste is highly alkaline in nature and contains high concentrations of nitrate and nitrite salts along with lesser concentrations of other salts. The primary waste forms are sludge, saltcake, and liquid supernatant with the bulk of the radioactivity contained in the sludge, making it the largest source of HLW. The saltcake (liquid waste with most of the water removed) and liquid supernatant consist mainly of sodium nitrate and sodium hydroxide salts. The main radioactive constituent in the alkaline supernatant is cesium-137, but strontium-90, technetium-99, and transuranic nuclides are also present in varying concentrations. Reduction of the radioactivity below Nuclear Regulatory Commission (NRC) limits would allow the bulk of the waste to be disposed of as LLW. Because of the long half-life of technetium-99 (2.1 x 10 5 y) and the mobility of the pertechnetate ion (TcO 4 - ) in the environment, it is expected that technetium will have to be removed from the Hanford wastes prior to disposal as LLW. Also, for some of the wastes, some level of technetium removal will be required to meet LLW criteria for radioactive content. Therefore, DOE has identified a need to develop technologies for the separation and concentration of technetium-99 from LLW streams. Eichrom has responded to this DOE-identified need by demonstrating a complete flowsheet for the separation, concentration, and immobilization of technetium (and iodine) from alkaline supernatant waste.

  2. Intermediate-Scale Ion Exchange Removal of Technetium from Savannah River Site Tank 44 F Supernate Solution

    Energy Technology Data Exchange (ETDEWEB)

    King, W.D.

    2000-08-23

    As part of the Hanford River Protection Project waste Treatment facility design contracted to BNFL, Inc., a sample of Savannah River Site (SRS) Tank 4 F waste solution was treated for the removal of technetium (as pertechnetate ion). Interest in treating the SRS sample for Tc removal resulted from the similarity between the Tank 44 F supernate composition and Hanford Envelope A supernate solutions. The Tank 44 F sample was available as a by-product of tests already conducted at the Savannah River Technology Center (SRTC) as part of the Alternative Salt Disposition Program for treatment of SRS wastes. Testing of the SRS sample resulted in considerable cost-savings since it was not necessary to ship a sample of Hanford supernate to SRS.

  3. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  4. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  5. Preliminary assessment of blending Hanford tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications.

  6. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  7. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  8. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of the 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  9. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  10. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    2000-12-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package

  11. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    2000-12-06

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package

  12. Hanford facility dangerous waste permit application

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-09-18

    This document, Set 2, the Hanford Facility Dangerous Waste Part B Permit Application, consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 CFR 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of WAC 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. This permit application contains umbrella- type'' documentation with overall application to the Hanford Facility. This documentation is broad in nature and applies to all TSD units that have final status under the Hanford Facility Permit.

  13. Hanford Waste Vitrification Plant technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E. [ed.; Watrous, R.A.; Kruger, O.L. [and others

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  14. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

  15. Production of a High-Level Waste Glass from Hanford Waste Samples

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Farrara, D.M.; Ha, B.C.; Bibler, N.E.

    1998-09-01

    The HLW glass was produced from a HLW sludge slurry (Envelope D Waste), eluate waste streams containing high levels of Cs-137 and Tc-99, solids containing both Sr-90 and transuranics (TRU), and glass-forming chemicals. The eluates and Sr-90/TRU solids were obtained from ion-exchange and precipitation pretreatments, respectively, of other Hanford supernate samples (Envelopes A, B and C Waste). The glass was vitrified by mixing the different waste streams with glass-forming chemicals in platinum/gold crucibles and heating the mixture to 1150 degree C. Resulting glass analyses indicated that the HLW glass waste form composition was close to the target composition. The targeted waste loading of Envelope D sludge solids in the HLW glass was 30.7 wt percent, exclusive of Na and Si oxides. Condensate samples from the off-gas condenser and off-gas dry-ice trap indicated that very little of the radionuclides were volatilized during vitrification. Microstructure analysis of the HLW glass using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDAX) showed what appeared to be iron spinel in the HLW glass. Further X-Ray Diffraction (XRD) analysis confirmed the presence of nickel spinel trevorite (NiFe2O4). These crystals did not degrade the leaching characteristics of the glass. The HLW glass waste form passed leach tests that included a standard 90 degree C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP).

  16. Hanford Site Waste Storage Tank Information Notebook

    Energy Technology Data Exchange (ETDEWEB)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*.

  17. HANFORD FACILITY ANNUAL DANGEROUS WASTE REPORT CY2005

    Energy Technology Data Exchange (ETDEWEB)

    SKOLRUD, J.O.

    2006-02-15

    The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCR4 Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. An electronic database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes, In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, the report is also transmitted electronically to a web site maintained by the Washington State Department of Ecology.

  18. Review Of Rheology Modifiers For Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. M.

    2013-09-30

    As part of Savannah River National Laboratory (SRNL)'s strategic development scope for the Department of Energy - Office of River Protection (DOE-ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste feed acceptance and product qualification scope, the SRNL has been requested to recommend candidate rheology modifiers to be evaluated to adjust slurry properties in the Hanford Tank Farm. SRNL has performed extensive testing of rheology modifiers for use with Defense Waste Processing Facility (DWPF) simulated melter feed - a high undissolved solids (UDS) mixture of simulated Savannah River Site (SRS) Tank Farm sludge, nitric and formic acids, and glass frit. A much smaller set of evaluations with Hanford simulated waste have also been completed. This report summarizes past work and recommends modifiers for further evaluation with Hanford simulated wastes followed by verification with actual waste samples. Based on the review of available data, a few compounds/systems appear to hold the most promise. For all types of evaluated simulated wastes (caustic Handford tank waste and DWPF processing samples with pH ranging from slightly acidic to slightly caustic), polyacrylic acid had positive impacts on rheology. Citric acid also showed improvement in yield stress on a wide variety of samples. It is recommended that both polyacrylic acid and citric acid be further evaluated as rheology modifiers for Hanford waste. These materials are weak organic acids with the following potential issues: The acidic nature of the modifiers may impact waste pH, if added in very large doses. If pH is significantly reduced by the modifier addition, dissolution of UDS and increased corrosion of tanks, piping, pumps, and other process equipment could occur. Smaller shifts in pH could reduce aluminum solubility, which would be expected to increase the yield stress of the sludge. Therefore, it is expected that use of an acidic modifier would be limited to concentrations that

  19. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  20. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  1. DETERMINATION OF PERRHENATE ADSORPTION KINETICS FROM HANFORD WASTE SIMULANTS USING SUPERLING 639 RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, C.; King, W.; Hamm, L.

    2002-04-02

    This report describes the results of SuperLig{reg_sign} 639 sorption kinetics tests conducted at the Savannah River Technology Center (SRTC) in support of the Hanford River Protection Project - Waste Treatment Plant (RPP-WTP). The RPP-WTP contract was awarded to Bechtel for the design, construction, and initial operation of a plant for the treatment and vitrification of millions of gallons of radioactive waste currently stored in tanks at Hanford, WA. Part of the current treatment process involves the removal of technetium from tank supernate solutions using columns containing SuperLig{reg_sign} 639 resin. This report is part of a body of work intended to quantify and optimize the operation of the technetium removal columns with regard to various parameters (such as liquid flow rate, column aspect ratio, resin particle size, loading and elution temperature, etc.). The tests were conducted using nonradioactive simulants of the actual tank waste samples containing rhenium as a chemical surrogate for the technetium in the actual waste. Previous column tests evaluated the impacts of liquid flow rate, bed aspect ratio, solution temperature and composition upon SuperLig{reg_sign} 639 column performance (King et al., 2000, King et al., 2003). This report describes the results of kinetics tests to determine the impacts of resin particle size, solution composition, and temperature on the rate of uptake of perrhenate ions.

  2. Chemical Stabilization of Hanford Tank Residual Waste

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Um, Wooyong; Williams, Benjamin D.; Bowden, Mark E.; Gartman, Brandy N.; Lukens, Wayne W.; Buck, Edgar C.; Mausolf, Edward J.

    2014-03-01

    Three different chemical treatment methods were tested for their ability to stabilize residual waste from Hanford tank C-202 for reducing contaminant release (Tc, Cr, and U in particular). The three treatment methods tested were lime addition [Ca(OH)2], an in-situ Ceramicrete waste form based on chemically bonded phosphate ceramics, and a ferrous iron/goethite treatment. These approaches rely on formation of insoluble forms of the contaminants of concern (lime addition and ceramicrete) and chemical reduction followed by co-precipitation (ferrous iron/goethite incorporation treatment). The results have demonstrated that release of the three most significant mobile contaminants of concern from tank residual wastes can be dramatically reduced after treatment compared to contact with simulated grout porewater without treatment. For uranium, all three treatments methods reduced the leachable uranium concentrations by well over three orders of magnitude. In the case of uranium and technetium, released concentrations were well below their respective MCLs for the wastes tested. For tank C-202 residual waste, chromium release concentrations were above the MCL but were considerably reduced relative to untreated tank waste. This innovative approach has the potential to revolutionize Hanford’s tank retrieval process, by allowing larger volumes of residual waste to be left in tanks while providing an acceptably low level of risk with respect to contaminant release that is protective of the environment and human health. Such an approach could enable DOE to realize significant cost savings through streamlined retrieval and closure operations.

  3. Chemical stabilization of Hanford tank residual waste

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J., E-mail: kirk.cantrell@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Um, Wooyong; Williams, Benjamin D.; Bowden, Mark E.; Gartman, Brandy [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lukens, Wayne W. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Buck, Edgar C.; Mausolf, Edward J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2014-03-15

    Three different chemical treatment methods were tested for their ability to stabilize residual waste from Hanford tank C-202 for reducing contaminant release (Tc, Cr, and U in particular). The three treatment methods tested were lime addition [Ca(OH){sub 2}], an in situ Ceramicrete waste form based on chemically bonded phosphate ceramics, and a ferrous iron/goethite treatment. These approaches rely on formation of insoluble forms of the contaminants of concern (lime addition and Ceramicrete) and chemical reduction followed by co-precipitation (ferrous iron/goethite incorporation treatment). The results have demonstrated that release of uranium from tank residual wastes can be dramatically reduced after treatment compared to contact with simulated grout porewater without treatment. All three treatments methods reduced the leachable uranium concentrations by well over three orders of magnitude. In the case of uranium and technetium, released concentrations were well below their respective Maximum Contaminant Levels (MCLs) for the wastes tested. For tank C-202 residual waste, chromium release concentrations were above the MCL but were considerably reduced relative to untreated tank waste. This innovative approach has the potential to revolutionize Hanford’s tank retrieval process, by allowing larger volumes of residual waste to be left in tanks while providing an acceptably low level of risk with respect to contaminant release that is protective of the environment and human health. Such an approach could enable DOE to realize significant cost savings through streamlined retrieval and closure operations.

  4. Chemical stabilization of Hanford tank residual waste

    Science.gov (United States)

    Cantrell, Kirk J.; Um, Wooyong; Williams, Benjamin D.; Bowden, Mark E.; Gartman, Brandy; Lukens, Wayne W.; Buck, Edgar C.; Mausolf, Edward J.

    2014-03-01

    Three different chemical treatment methods were tested for their ability to stabilize residual waste from Hanford tank C-202 for reducing contaminant release (Tc, Cr, and U in particular). The three treatment methods tested were lime addition [Ca(OH)2], an in situ Ceramicrete waste form based on chemically bonded phosphate ceramics, and a ferrous iron/goethite treatment. These approaches rely on formation of insoluble forms of the contaminants of concern (lime addition and Ceramicrete) and chemical reduction followed by co-precipitation (ferrous iron/goethite incorporation treatment). The results have demonstrated that release of uranium from tank residual wastes can be dramatically reduced after treatment compared to contact with simulated grout porewater without treatment. All three treatments methods reduced the leachable uranium concentrations by well over three orders of magnitude. In the case of uranium and technetium, released concentrations were well below their respective Maximum Contaminant Levels (MCLs) for the wastes tested. For tank C-202 residual waste, chromium release concentrations were above the MCL but were considerably reduced relative to untreated tank waste.

  5. Physical Properties of Hanford Transuranic Waste

    Energy Technology Data Exchange (ETDEWEB)

    Berg, John C.

    2010-03-25

    The research described herein was undertaken to provide needed physical property descriptions of the Hanford transuranic tank sludges under conditions that might exist during retrieval, treatment, packaging and transportation for disposal. The work addressed the development of a fundamental understanding of the types of systems represented by these sludge suspensions through correlation of the macroscopic rheological properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of the work have advanced existing understanding of the sedimentation and aggregation properties of complex colloidal suspensions. Bench scale models were investigated with respect to their structural, colloidal and rheological properties that should be useful for the development and optimization of techniques to process the wastes at various DOE sites.

  6. Thermal properties of simulated Hanford waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington USA; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington USA; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington USA; Canfield, Nathan L. [Pacific Northwest National Laboratory, Richland Washington USA; Rönnebro, Ewa C. E. [Pacific Northwest National Laboratory, Richland Washington USA; Vienna, John D. [Pacific Northwest National Laboratory, Richland Washington USA; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington

    2017-03-20

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will vitrify the mixed hazardous wastes generated from 45 years of plutonium production. The molten glasses will be poured into stainless steel containers or canisters and subsequently quenched for storage and disposal. Such highly energy-consuming processes require precise thermal properties of materials for appropriate facility design and operations. Key thermal properties (heat capacity, thermal diffusivity, and thermal conductivity) of representative high-level and low-activity waste glasses were studied as functions of temperature in the range of 200 to 800°C (relevant to the cooling process), implementing simultaneous differential scanning calorimetry-thermal gravimetry (DSC-TGA), Xe-flash diffusivity, pycnometry, and dilatometry. The study showed that simultaneous DSC-TGA would be a reliable method to obtain heat capacity of various glasses at the temperature of interest. Accurate thermal properties from this study were shown to provide a more realistic guideline for capacity and time constraint of heat removal process, in comparison to the design basis conservative engineering estimates. The estimates, though useful for design in the absence measured physical properties, can now be supplanted and the measured thermal properties can be used in design verification activities.

  7. Pre-1970 transuranic solid waste at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, W.O.

    1995-05-23

    The document is based on a search of pre-1970 Hanford Solid Waste Records. The available data indicates seven out of thirty-one solid waste burial sites used for pre-1970 waste appear to be Transuranic (TRU). A burial site defined to be TRU contains >100 nCi/gm Transuranic nuclides.

  8. Hanford low-level tank waste interim performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1996-09-16

    The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single- and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and its performance as early as possible in the project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives.

  9. Hanford low-level tank waste interim performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1997-09-12

    The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and performance early in the disposal system project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives.

  10. Review Of Rheology Models For Hanford Waste Blending

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Stone, M.

    2013-09-26

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to

  11. Review Of Rheology Models For Hanford Waste Blending

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Stone, M.

    2013-09-26

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to

  12. Estimate of Hanford Waste Rheology and Settling Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Poloski, Adam P.; Wells, Beric E.; Tingey, Joel M.; Mahoney, Lenna A.; Hall, Mark N.; Thomson, Scott L.; Smith, Gary Lynn; Johnson, Michael E.; Meacham, Joseph E.; Knight, Mark A.; Thien, Michael G.; Davis, Jim J.; Onishi, Yasuo

    2007-10-26

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. Piping, pumps, and mixing vessels have been selected to transport, store, and mix the high-level waste slurries in the WTP. This report addresses the analyses performed by the Rheology Working Group (RWG) and Risk Assessment Working Group composed of Pacific Northwest National Laboratory (PNNL), Bechtel National Inc. (BNI), CH2M HILL, DOE Office of River Protection (ORP) and Yasuo Onishi Consulting, LLC staff on data obtained from documented Hanford waste analyses to determine a best-estimate of the rheology of the Hanford tank wastes and their settling behavior. The actual testing activities were performed and reported separately in referenced documentation. Because of this, many of the required topics below do not apply and are so noted.

  13. Hanford Waste Vitrification Plant hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    King, R.B.; King, A.D. Jr.; Bhattacharyya, N.K. [and others

    1996-02-01

    The most promising method for the disposal of highly radioactive nuclear wastes is a vitrification process in which the wastes are incorporated into borosilicate glass logs, the logs are sealed into welded stainless steel canisters, and the canisters are buried in suitably protected burial sites for disposal. The purpose of the research supported by the Hanford Waste Vitrification Plant (HWVP) project of the Department of Energy through Battelle Pacific Northwest Laboratory (PNL) and summarized in this report was to gain a basic understanding of the hydrogen generation process and to predict the rate and amount of hydrogen generation during the treatment of HWVP feed simulants with formic acid. The objectives of the study were to determine the key feed components and process variables which enhance or inhibit the.production of hydrogen. Information on the kinetics and stoichiometry of relevant formic acid reactions were sought to provide a basis for viable mechanistic proposals. The chemical reactions were characterized through the production and consumption of the key gaseous products such as H{sub 2}. CO{sub 2}, N{sub 2}0, NO, and NH{sub 3}. For this mason this research program relied heavily on analyses of the gases produced and consumed during reactions of the HWVP feed simulants with formic acid under various conditions. Such analyses, used gas chromatographic equipment and expertise at the University of Georgia for the separation and determination of H{sub 2}, CO, CO{sub 2}, N{sub 2}, N{sub 2}O and NO.

  14. Physical Properties of Hanford Transuranic Waste Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Berg, John C.

    2005-06-01

    Equipment that was purchased in the abbreviated year 1 of this project has been used during year 2 to study the fundamental behavior of materials that simulate the behavior of the Hanford transuranic waste sludge. Two significant results have been found, and each has been submitted for publication. Both studies found non-DLVO behavior in simulant systems. These separate but related studies were performed concurrently. It was previously shown in Rassat et al.'s report Physical and Liquid Chemical Simulant Formulations for Transuranic Wastes in Hanford Single-Shell Tanks that colloidal clays behave similarly to transuranic waste sludge (PNNL-14333, National Technical Information Service, U.S. Dept. of Commerce). Rassat et al. also discussed the pH and salt content of actual waste materials. It was shown that these materials exist at high pHs, generally above 10, and at high salt content, approximately 1.5 M from a mixture of different salts. A type of clay commonly studied, due to its uniformity, is a synthetic hectorite, Laponite. Therefore the work performed over the course of the last year was done mainly using suspensions of Laponite at high pH and involving high salt concentrations. One study was titled ''Relating Clay Rheology to Colloidal Parameters''. It has been submitted to the Journal of Colloid and INterface Science and is currently in the review process. The idea was to gain the ability to use measurable quantities to predict the flow behavior of clay systems, which should be similar to transuranic waste sludge. Leong et al. had previously shown that the yield stress of colloidal slurries of titania and alumina could be predicted, given the measurement of the accessible parameter zeta potential (Leong YK et al. J Chem Soc Faraday Trans, 19 (1993) 2473). Colloidal clays have a fundamentally different morphology and surface charge distribution than the spheroidal, uniformly charged colloids previously studied. This study was

  15. DuraLith Alkali-Aluminosilicate Geopolymer Waste Form Testing for Hanford Secondary Waste

    Energy Technology Data Exchange (ETDEWEB)

    Gong, W. L.; Lutz, Werner; Pegg, Ian L.

    2011-07-21

    The primary objective of the work reported here was to develop additional information regarding the DuraLith alkali aluminosilicate geopolymer as a waste form for liquid secondary waste to support selection of a final waste form for the Hanford Tank Waste Treatment and Immobilization Plant secondary liquid wastes to be disposed in the Integrated Disposal Facility on the Hanford Site. Testing focused on optimizing waste loading, improving waste form performance, and evaluating the robustness of the waste form with respect to waste variability.

  16. Characterization Of Supernate Samples From High Level Waste Tanks 13H, 30H, 37H, 39H, 45F, 46F and 49H

    Energy Technology Data Exchange (ETDEWEB)

    Stallings, M. E.; Barnes, M. J.; Peters, T. B.; Diprete, D. P.; Hobbs, D. T.; Fink, S. D.

    2005-06-15

    This document presents work conducted in support of technical needs expressed, in part, by the Engineering, Procurement, and Construction Contractor for the Salt Waste Processing Facility (SWPF). The Department of Energy (DOE) requested that Savannah River National Laboratory (SRNL) analyze and characterize supernate waste from seven selected High Level Waste (HLW) tanks to allow: classification of feed to be sent to the SWPF; verification that SWPF processes will be able to meet Saltstone Waste Acceptance Criteria (WAC); and updating of the Waste Characterization System (WCS) database. This document provides characterization data of samples obtained from Tanks 13H, 30H, 37H, 39H, 45F, 46F, and 49H and discusses results. Characterization of the waste tank samples involved several treatments and analysis at various stages of sample processing. These analytical stages included as-received liquid, post-dilution to 6.44 M sodium (target), post-acid digestion, post-filtration (at 3 filtration pore sizes), and after cesium removal using ammonium molybdophosphate (AMP). All tanks will require cesium removal as well as treatment with Monosodium Titanate (MST) for {sup 90}Sr (Strontium) decontamination. A small filtration effect for 90Sr was observed for six of the seven tank wastes. No filtration effects were observed for Pu (Plutonium), Np (Neptunium), U (Uranium), or Tc (Technetium); {sup 137}Cs (Cesium) concentration is ~E+09 pCi/mL for all the tank wastes. Tank 37H is significantly higher in {sup 90}Sr than the other six tanks. {sup 237}Np in the F-area tanks (45F and 46F) are at least 1 order of magnitude less than the H-Area tank wastes. The data indicate a constant ratio of {sup 99}Tc to Cs in the seven tank wastes. This indicates the Tc remains largely soluble in Savannah River Site (SRS) waste and partitions similarly with Cs. {sup 241}Am (Americium) concentration was low in the seven tank wastes. The majority of data were detection limit values, the largest being

  17. A short history of waste management at the Hanford Site

    Science.gov (United States)

    Gephart, Roy E.

    The world’s first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of southeastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford’s last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford’s only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book “Hanford: A Conversation about Nuclear Waste and Cleanup.” ( Gephart, 2003).

  18. Hanford land disposal restrictions plan for mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

  19. Hanford Site annual dangerous waste report, calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This report is a compilation of data on the disposition of hazardous wastes generated on the Hanford Reservation. This information is on EPA requirement every two years. Wastes include: tank simulant waste; alkaline batteries; lead-based paints; organic solvents; light bulbs containing lead and/or mercury; monitoring well drilling wastes; soils contaminated with trace metals, halogenated organics, or other pollutants; Ni-Cd batteries; pesticides; waste oils and greases; wastes from the cleanup of fuel/gasoline spills; filters; metals; and other.

  20. Hanford long-term high-level waste management program

    Energy Technology Data Exchange (ETDEWEB)

    Wodrich, D.D.

    1976-06-24

    An overview of the Hanford Long-Term High-Level Waste Management Program is presented. Four topics are discussed: first, the kinds and quantities of waste that will exist and are included in this program; second, how the plan is structured to solve this problem; third, the alternative waste management methods being considered; and fourth, the technology program that is in progress to carry out this plan. (LK)

  1. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    2000-12-06

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  2. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena. (JRD)

  3. Hanford Site organic waste tanks: History, waste properties, and scientific issues. Hanford Tank Safety Project

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, D.M.; Schulz, W.W.; Reynolds, D.A.

    1993-01-01

    Eight Hanford single-shell waste tanks are included on a safety watch list because they are thought to contain significant concentrations of various organic chemical. Potential dangers associated with the waste in these tanks include exothermic reaction, combustion, and release of hazardous vapors. In all eight tanks the measured waste temperatures are in the range 16 to 46{degree}C, far below the 250 to 380{degree}C temperatures necessary for onset of rapid exothermic reactions and initiation of deflagration. Investigation of the possibility of vapor release from Tank C-103 has been elevated to a top safety priority. There is a need to obtain an adequate number of truly representative vapor samples and for highly sensitive and capable methods and instruments to analyze these samples. Remaining scientific issues include: an understanding of the behavior and reaction of organic compounds in existing underground tank environments knowledge of the types and amounts of organic compounds in the tanks knowledge of selected physical and chemical properties of organic compounds source, composition, quality, and properties of the presently unidentified volatile organic compound(s) apparently evolving from Tank C-103.

  4. TANK WASTE RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    DODD, R.A.

    2006-01-17

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the US Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60% of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring the waste to the DST system since 1997 as part of the interim stabilization program. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. This paper presents lessons learned from retrieval of tank waste at the Hanford Site and discusses how this information is used to optimize retrieval system efficiency, improve overall cost effectiveness of retrieval operations, and ensure that HFFACO requirements are met.

  5. Hanford Waste Tank Bump Accident and Consequence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    BRATZEL, D.R.

    2000-06-20

    This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks.

  6. OCCURRENCE & CHEMISTRY OF ORGANIC COMPOUNDS IN HANFORD SITE WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    STOCK, L.M.; MEACHAM, J.E.

    2004-07-29

    Volatile and semivolatile organic compounds continuously evolve from the waste tanks at the Hanford Site. Some are identical to the compounds originally transferred to tanks and others are formed through interdependent chemical and radiolytic reactions. This document provides a technical basis for understanding the chemical consequences of long term storage, sluicing, the addition of chemicals, and the prediction of other organic compounds that may be present in the wastes.

  7. Summary of tank waste physical properties at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Q.H.

    1994-04-01

    This report summarizes the physical parameters measured from Hanford Site tank wastes. Physical parameters were measured to determine the physical nature of the tank wastes to develop simulants and design in-tank equipment. The physical parameters were measured mostly from core samples obtained directly below tank risers. Tank waste physical parameters were collected through a database search, interviewing and selecting references from documents. This report shows the data measured from tank waste but does not describe how the analyses wee done. This report will be updated as additional data are measured or more documents are reviewed.

  8. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  9. Hanford facility dangerous waste permit application, general information portion

    Energy Technology Data Exchange (ETDEWEB)

    Hays, C.B.

    1998-05-19

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in this report).

  10. Removing Phosphate from Hanford High-Phosphate Tank Wastes: FY 2010 Results

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Braley, Jenifer C.; Edwards, Matthew K.; Qafoku, Odeta; Felmy, Andrew R.; Carter, Jennifer C.; MacFarlan, Paul J.

    2010-09-22

    The U.S. Department of Energy (DOE) is responsible for environmental remediation at the Hanford Site in Washington State, a former nuclear weapons production site. Retrieving, processing, immobilizing, and disposing of the 2.2 × 105 m3 of radioactive wastes stored in the Hanford underground storage tanks dominates the overall environmental remediation effort at Hanford. The cornerstone of the tank waste remediation effort is the Hanford Tank Waste Treatment and Immobilization Plant (WTP). As currently designed, the capability of the WTP to treat and immobilize the Hanford tank wastes in the expected lifetime of the plant is questionable. For this reason, DOE has been pursuing supplemental treatment options for selected wastes. If implemented, these supplemental treatments will route certain waste components to processing and disposition pathways outside of WTP and thus will accelerate the overall Hanford tank waste remediation mission.

  11. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-09-01

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  12. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2012-07-10

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  13. Hanford facility dangerous waste permit application, general information portion

    Energy Technology Data Exchange (ETDEWEB)

    Price, S.M., Westinghouse Hanford

    1996-07-29

    The `Hanford Facility Dangerous Waste Permit Application` is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit- Specific Portion. The scope of the General Information Portion includes information that could be used to discuss operating units, units undergoing closure, or units being dispositioned through other options. Documentation included in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units. A checklist indicating where information is contained in the General Information Portion, in relation to the Washington State Department of Ecology guidance documentation, is located in the Contents Section. The intent of the General Information Portion is: (1) to provide an overview of the Hanford Facility; and (2) to assist in streamlining efforts associated with treatment, storage, and/or disposal unit-specific Part B permit application, preclosure work plan, closure work plan, closure plan, closure/postclosure plan, or postclosure permit application documentation development, and the `Hanford Facility Resource Conservation and Recovery Act Permit` modification process. Revision 2 of the General Information Portion of the `Hanford Facility Dangerous Waste Permit Application` contains information current as of May 1, 1996. This document is a complete submittal and supersedes Revision 1.

  14. SYSTEM PLANNING WITH THE HANFORD WASTE OPERATIONS SIMULATOR

    Energy Technology Data Exchange (ETDEWEB)

    CRAWFORD TW; CERTA PJ; WELLS MN

    2010-01-14

    At the U. S. Department of Energy's Hanford Site in southeastern Washington State, 216 million liters (57 million gallons) of nuclear waste is currently stored in aging underground tanks, threatening the Columbia River. The River Protection Project (RPP), a fully integrated system of waste storage, retrieval, treatment, and disposal facilities, is in varying stages of design, construction, operation, and future planning. These facilities face many overlapping technical, regulatory, and financial hurdles to achieve site cleanup and closure. Program execution is ongoing, but completion is currently expected to take approximately 40 more years. Strategic planning for the treatment of Hanford tank waste is by nature a multi-faceted, complex and iterative process. To help manage the planning, a report referred to as the RPP System Plan is prepared to provide a basis for aligning the program scope with the cost and schedule, from upper-tier contracts to individual facility operating plans. The Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulation and mass balance computer model, is used to simulate the current planned RPP mission, evaluate the impacts of changes to the mission, and assist in planning near-term facility operations. Development of additional modeling tools, including an operations research model and a cost model, will further improve long-term planning confidence. The most recent RPP System Plan, Revision 4, was published in September 2009.

  15. CHALLENGES WITH RETRIEVING TRANSURANIC WASTE FROM THE HANFORD BURIAL GROUNDS

    Energy Technology Data Exchange (ETDEWEB)

    SWAN, R.J.; LAKES, M.E.

    2007-08-06

    The U.S. DOE's Hanford Reservation produced plutonium and other nuclear materials for the nation's defense starting in World War II. The defense mission generated wastes that were either retrievably stored (i.e. retrievably stored waste) and/or disposed of in burial grounds. Challenges have emerged from retrieving suspect TRU waste including adequacy of records, radiological concerns, container integrity, industrial hygiene and safety issues, the lack of processing/treatment facilities, and the integration of regulatory requirements. All retrievably stored waste is managed as mixed waste and assumed to be TRU waste, unless documented otherwise. Mixed waste is defined as radioactive waste that contains hazardous constituents. The Atomic Energy Act governs waste with radionuclides, and the Resource Conservation and Recovery Act (RCRA) governs waste with hazardous constituents. Waste may also be governed by the Toxic Substances Control Act (TSCA), and a portion may be managed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1970, TRU waste was required to be placed in 20-year retrievable storage and segregated from other Waste. Prior to that date, segregation did not occur. Because of the changing definition of TRU over the years, and the limitations of early assay equipment, all retrievably stored waste in the burial grounds is managed as suspect TRU. Experience has shown that some of this waste will be characterized as low-level (non-TRU) waste after assay. The majority of the retrieved waste is not amenable to sampling due to waste type and/or radiological issues. Key to waste retrieval and disposition are characterization, historical investigation and research, knowledge of past handling and packaging, as well as a broad understanding and application of the regulations.

  16. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  17. 78 FR 75913 - Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site...

    Science.gov (United States)

    2013-12-13

    ... Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland... addressed the Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact... in the following paragraphs. As stated in the Final TC&WM EIS, for the actions related to tank waste...

  18. Hanford facility dangerous waste permit application, PUREX storage tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Haas, C. R.

    1997-09-08

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24).

  19. Hanford immobilized low-activity tank waste performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  20. Hanford Facility dangerous waste permit application, general information. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The current Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, number DOE/RL-91-28) and a treatment, storage, and/or disposal Unit-Specific Portion, which includes documentation for individual TSD units (e.g., document numbers DOE/RL-89-03 and DOE/RL-90-01). Both portions consist of a Part A division and a Part B division. The Part B division consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. Documentation contained in the General Information Portion (i.e., this document, number DOE/RL-91-28) is broader in nature and applies to all treatment, storage, and/or disposal units for which final status is sought. Because of its broad nature, the Part A division of the General Information Portion references the Hanford Facility Dangerous Waste Part A Permit Application (document number DOE/RL-88-21), a compilation of all Part A documentation for the Hanford Facility.

  1. Hanford tank waste operation simulator operational waste volume projection verification and validation procedure

    Energy Technology Data Exchange (ETDEWEB)

    HARMSEN, R.W.

    1999-10-28

    The Hanford Tank Waste Operation Simulator is tested to determine if it can replace the FORTRAN-based Operational Waste Volume Projection computer simulation that has traditionally served to project double-shell tank utilization. Three Test Cases are used to compare the results of the two simulators; one incorporates the cleanup schedule of the Tri Party Agreement.

  2. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers

  3. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  4. A Short History of Hanford Waste Generation, Storage, and Release

    Energy Technology Data Exchange (ETDEWEB)

    Gephart, Roy E.

    2003-10-01

    Nine nuclear reactors and four reprocessing plants at Hanford produced nearly two-thirds of the plutonium used in the United States for government purposes . These site operations also created large volumes of radioactive and chemical waste. Some contaminants were released into the environment, exposing people who lived downwind and downstream. Other contaminants were stored. The last reactor was shut down in 1987, and the last reprocessing plant closed in 1990. Most of the human-made radioactivity and about half of the chemicals remaining onsite are kept in underground tanks and surface facilities. The rest exists in the soil, groundwater, and burial grounds. Hanford contains about 40% of all the radioactivity that exists across the nuclear weapons complex. Today, environmental restoration activities are under way.

  5. Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Steven E.

    2013-11-11

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

  6. Hanford site solid waste management environmental impact statement technical information document [SEC 1 THRU 4

    Energy Technology Data Exchange (ETDEWEB)

    FRITZ, L.L.

    2003-04-01

    This Technical Information Document (TID) provides engineering data to support DOE/EIS-0286, ''Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement,'' including assumptions and waste volumes calculation data.

  7. Approach for tank safety characterization of Hanford site waste

    Energy Technology Data Exchange (ETDEWEB)

    Meacham, J.E.; Babad, H.; Cash, R.J.; Dukelow, G.T.; Eberlein, S.J.; Hamilton, D.W.; Johnson, G.D.; Osborne, J.W.; Payne, M.A.; Sherwood, D.J. [and others

    1995-03-01

    The overall approach and associated technical basis for characterizing Hanford Site waste to help identify and resolve Waste Tank Safety Program safety issues has been summarized. The safety issues include flammable gas, noxious vapors, organic solvents, condensed-phase exothermic reactions (ferrocyanide and organic complexants), criticality, high heat, and safety screening. For the safety issues involving chemical reactions (i.e., flammable gas, organic solvents, ferrocyanide, and organic complexants), the approach to safety characterization is based on the fact that rapid exothermic reactions cannot occur if either fuel, oxidizer, or temperature (initiators) is not sufficient or controlled. The approach to characterization has been influenced by the progress made since mid-1993: (1) completion of safety analyses on ferrocyanide, criticality, organic solvent in tank 241-C-103, and sludge dryout. (2) successful mitigation of tank 241-SY-101; (3) demonstration of waste aging in laboratory experiments and from waste sampling, and (4) increased understanding of the information that can be obtained from headspace sampling. Headspace vapor sampling is being used to confirm that flammable gas does not accumulate in the single-shell tanks, and to determine whether organic solvents are present. The headspaces of tanks that may contain significant quantities of flammable gas will be monitored continuously using standard hydrogen monitors. For the noxious vapors safety issue, characterization will consist of headspace vapor sampling of most of the Hanford Site waste tanks. Sampling specifically for criticality is not required to confirm interim safe storage; however, analyses for fissile material will be conducted as waste samples are obtained for other reasons. High-heat tanks will be identified through temperature monitoring coupled with thermal analyses.

  8. Hanford low-level waste process chemistry testing data package

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Tracey, E.M.; Darab, J.G.; Smith, P.A.

    1996-03-01

    Recently, the Tri-Party Agreement (TPA) among the State of Washington Department of Ecology, U.S. Department of Energy (DOE) and the US Environmental Protection Agency (EPA) for the cleanup of the Hanford Site was renegotiated. The revised agreement specifies vitrification as the encapsulation technology for low level waste (LLW). A demonstration, testing, and evaluation program underway at Westinghouse Hanford Company to identify the best overall melter-system technology available for vitrification of Hanford Site LLW to meet the TPA milestones. Phase I is a {open_quotes}proof of principle{close_quotes} test to demonstrate that a melter system can process a simulated highly alkaline, high nitrate/nitrite content aqueous LLW feed into a glass product of consistent quality. Seven melter vendors were selected for the Phase I evaluation: joule-heated melters from GTS Duratek, Incorporated (GDI); Envitco, Incorporated (EVI); Penberthy Electomelt, Incorporated (PEI); and Vectra Technologies, Incorporated (VTI); a gas-fired cyclone burner from Babcock & Wilcox (BCW); a plasma torch-fired, cupola furnace from Westinghouse Science and Technology Center (WSTC); and an electric arc furnace with top-entering vertical carbon electrodes from the U.S. Bureau of Mines (USBM).

  9. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-08-15

    'The Hanford double-shell tank (DST) system provides the staging location for waste feed delivery to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hall (2008) includes WTP acceptance criteria that describe physical and chemical characteristics of the waste that must be certified as acceptable before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST. The objectives of Washington River Protection Solutions' (WRPS) Small Scale Mixing Demonstration (SSMD) project are to understand and demonstrate the DST sampling and batch transfer performance at multiple scales using slurry simulants comprised of UDS particles and liquid (Townson 2009). The SSMD project utilizes geometrically scaled DST feed tanks to generate mixing, sampling, and transfer test data. In Phase 2 of the testing, RPP-49740, the 5-part simulant defined in RPP-48358 was used as the waste slurry simulant. The Phase 2 test data are being used to estimate the expected performance of the prototypic systems in the full-scale DSTs. As such, understanding of the how the small-scale systems as well as the simulant relate to the full-scale DSTs and actual waste is required. The focus of this report is comparison of the size and density of the 5-part SSMD simulant to that of the Hanford waste. This is accomplished by computing metrics for particle mobilization, suspension, settling, transfer line intake, and pipeline transfer from the characterization of the 5-part SSMD simulant and characterizations of the Hanford waste. In addition, the effects of the suspending fluid characteristics on the test results are considered, and a computational fluid dynamics tool useful to quantify uncertainties from simulant selections is discussed.'

  10. Iron Phosphate Glass-Containing Hanford Waste Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.; Schweiger, Michael J.; Kim, Dong-Sang

    2011-08-01

    Resolution of the nation’s high level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron phosphate-based glass with a selected waste composition that is high in sulfates (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis as related to the implementation of phosphate-based glasses for Hanford low activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, and Mo-Sci Corporation.

  11. Iron Phosphate Glass-Containing Hanford Waste Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.; Schweiger, M. J.; Rodriguez, Carmen P.; Kim, Dong-Sang; Riley, Brian J.

    2012-01-18

    Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that is high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.

  12. HANFORD SITE SOLID WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT TECHNICAL INFORMATION DOCUMENT [SEC 1 THRU 4

    Energy Technology Data Exchange (ETDEWEB)

    FRITZ, L.L.

    2004-03-25

    This Technical Information Document (TID) provides engineering data to support DOE/EIS-0286, ''Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement''. Assumptions and waste volumes used to calculate engineering data are also provided in this document. This chapter provides a brief description of: the Solid Waste Management Program (including a description of waste types and known characteristics of waste covered under the program), the Hanford Site (including a general discussion of the operating areas), and the alternatives analyzed. The Hanford Site Solid Waste Management Program and DOE/EIS-0286 address solid radioactive waste types generated by various activities from both onsite and offsite generators. The Environmental Restoration (ER) waste management activities are not within the scope of DOE/EIS-0286 or this TID. Activities for processing and disposal of immobilized low-activity waste (ILAW) are not within the scope of the Solid Waste Management Program and this TID.

  13. Electrochemical reduction removal of technetium-99 from Hanford tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, W.E.; Blanchard, D.L. Jr.; Kurath, D.E.

    1997-09-01

    The removal of technetium ({sup 99}Tc) from Hanford tank waste supernatant liquids has been demonstrated using an electrochemical-based separation process. A potential cleanup strategy is to retrieve the waste and separate components into high-level and low-level waste fractions. However, some of the tanks contain technetium-99 ({sup 99}Tc) at concentrations deemed to be unacceptable for ultimate processing and disposal. Conventional extraction processes have been shown to be inefficient at removal of {sup 99}Tc due to the presence of nonpertechnetate species. Electrochemical processing, has been shown to oxidize the nonextractable species and subsequently separate the {sup 99}Tc by electrodeposition. The data obtained were used to support a comparison of ion exchange and electrochemical processing as removal methods. The electrochemical process has the flexibility to serve as a stand-alone process or to support conventional processes as a pretreatment step for the oxidation of nonextractable {sup 99}Tc and/or organic decomplexation. A separation procedure developed by AEA Technologies (AEAT) for simulated Hanford tank supernatant liquids was adapted for the actual waste studies conducted at Pacific Northwest National Laboratory (PNNTL). Prior to electroreduction separation of {sup 99}Tc from the supernatant liquid, an electrochemical oxidation was carried out in which nonpertechnetate or nonextractable {sup 99}Tc was oxidized to more readily extractable species such as pertechnetate, and the organic content was decreased. After oxidation, an electroreduction was performed to remove the {sup 99}Tc from the supernatant liquid as Tc or CO{sub 2} deposited on the cathode.

  14. Hanford Site River Protection Project High-Level Waste Safe Storage and Retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Aromi, E. S.; Raymond, R. E.; Allen, D. I.; Payne, M. A.; DeFigh-Price, C.; Kristofzski, J. G.; Wiegman, S. A.

    2002-02-25

    This paper provides an update from last year and describes project successes and issues associated with the management and work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of mixed and high-level waste currently in aging tanks at the Hanford Site. The Hanford Site is a 560 square-mile area in southeastern Washington State near Richland, Washington.

  15. Hanford facility dangerous waste permit application, PUREX storage tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Price, S.M.

    1997-09-08

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997.

  16. 1999 Report on Hanford Site land disposal restriction for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    BLACK, D.G.

    1999-03-25

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

  17. 1996 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

  18. PROGRESS & CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    Energy Technology Data Exchange (ETDEWEB)

    HEWITT, W.M.; SCHEPENS, R.

    2006-01-23

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m{sup 3} (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m{sup 3} (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We

  19. Treatability studies for decontamination of Melton Valley Storage Tank supernate

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W.D.; Fowler, V.L.; Perona, J.J.; McTaggart, D.R.

    1992-08-01

    Liquid low-level waste, primarily nitric acid contaminated with radionuclides and minor concentrations of organics and heavy metals, is neutralized with sodium hydroxide, concentrated by evaporation, and stored for processing and disposal. The evaporator concentrate separates into sludge and supernate phases upon cooling. The supernate is 4 to 5 mol/L sodium nitrate contaminated with soluble radionuclides, principally {sup 137}Cs, {sup 90}Sr, and {sup 14}C, while the sludge consists of precipitated carbonates and hydroxides of metals and transuranic elements. Methods for treatment and disposal of this waste are being developed. In studies to determine the feasibility of removing {sup 137}Cs from the supernates before solidification campaigns, batch sorption measurements were made from four simulated supernate solutions with four different samples of potassium hexacyanocobalt ferrate (KCCF). Cesium decontamination factors of 1 to 8 were obtained with different KCCF batches from a highly-salted supernate at pH 13. Decontamination factors as high as 50 were measured from supernates with lower salt content and pH, in fact, the pH had a greater effect than the solution composition on the decontamination factors. The decontamination factors were highest after 1 to 2 d of mixing and decreased with longer mixing times due to decomposition of the KCCF in the alkaline solution. The decontamination factors decreased with settling time and were lower for the same total contact time (mixing + settling) for the longer mixing times, indicating more rapid KCCF decomposition during mixing than during settling. There was no stratification of cesium in the tubes as the KCCF decomposed.

  20. Hanford/Rocky Flats collaboration on development of supercritical carbon dioxide extraction to treat mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W.; Biyani, R.K. [Westinghouse Hanford Co., Richland, WA (United States); Brown, C.M.; Teter, W.L. [Kaiser-Hill Co., Golden, CO (United States)

    1995-11-01

    Proposals for demonstration work under the Department of Energy`s Mixed Waste Focus Area, during the 1996 through 1997 fiscal years included two applications of supercritical carbon dioxide to mixed waste pretreatment. These proposals included task RF15MW58 of Rocky Flats and task RL46MW59 of Hanford. Analysis of compatibilities in wastes and work scopes yielded an expectation of substantial collaboration between sites whereby Hanford waste streams may undergo demonstration testing at Rocky Flats, thereby eliminating the need for test facilities at Hanford. This form of collaboration is premised the continued deployment at Rocky Flats and the capability for Hanford samples to be treated at Rocky Flats. The recent creation of a thermal treatment contract for a facility near Hanford may alleviate the need to conduct organic extraction upon Rocky Flats wastes by providing a cost effective thermal treatment alternative, however, some waste streams at Hanford will continue to require organic extraction. Final site waste stream treatment locations are not within the scope of this document.

  1. Hanford/Rocky Flats collaboration on development of supercritical carbon dioxide extraction to treat mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W.; Biyani, R.K. [Westinghouse Hanford Co., Richland, WA (United States); Brown, C.M.; Teter, W.L. [Kaiser-Hill Co., Golden, CO (United States)

    1995-11-01

    Proposals for demonstration work under the Department of Energy`s Mixed Waste Focus Area, during the 1996 through 1997 fiscal years included two applications of supercritical carbon dioxide to mixed waste pretreatment. These proposals included task RF15MW58 of Rocky Flats and task RL46MW59 of Hanford. Analysis of compatibilities in wastes and work scopes yielded an expectation of substantial collaboration between sites whereby Hanford waste streams may undergo demonstration testing at Rocky Flats, thereby eliminating the need for test facilities at Hanford. This form of collaboration is premised the continued deployment at Rocky Flats and the capability for Hanford samples to be treated at Rocky Flats. The recent creation of a thermal treatment contract for a facility near Hanford may alleviate the need to conduct organic extraction upon Rocky Flats wastes by providing a cost effective thermal treatment alternative, however, some waste streams at Hanford will continue to require organic extraction. Final site waste stream treatment locations are not within the scope of this document.

  2. Foaming in Hanford River Protection Project Waste Treatment Plant LAW Evaporation Processes - FY01 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Calloway, T.B.

    2002-07-23

    The LAW evaporation processes currently being designed for the Hanford River Protection Project Waste Treatment Plant are subject to foaming. Experimental simulant studies have been conducted in an effort to achieve an effective antifoam agent suitable to mitigate such foaming.

  3. Summary report on the development of a cement-based formula to immobilize Hanford facility waste

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M.; McDaniel, E.W.; Dole, L.R.; Friedman, H.A.; Loflin, J.A.; Mattus, A.J.; Morgan, I.L.; Tallent, O.K.; West, G.A.

    1987-09-01

    This report recommends a cement-based grout formula to immobilize Hanford Facility Waste in the Transportable Grout Facility (TGF). Supporting data confirming compliance with all TGF performance criteria are presented. 9 refs., 24 figs., 50 tabs.

  4. SUMMARY PLAN FOR BENCH-SCALE REFORMER AND PRODUCT TESTING TREATABILITY STUDIES USING HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    ROBBINS RA

    2011-02-11

    This paper describes the sample selection, sample preparation, environmental, and regulatory considerations for shipment of Hanford radioactive waste samples for treatability studies of the FBSR process at the Savannah River National Laboratory and the Pacific Northwest National Laboratory.

  5. Effects of Globally Waste Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Charles W.; Fountain, Matthew S.; Huckaby, James L.; Mahoney, Lenna A.; Meyer, Perry A.; Wells, Beric E.

    2005-08-02

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  6. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification. Revision 3, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program.

  7. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy`s (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.

  8. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy's (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.

  9. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    Energy Technology Data Exchange (ETDEWEB)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  10. Hanford site as it relates to an alternative site for the Waste Isolation Pilot Plant: an environmental description

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, K.R. (ed.)

    1978-12-01

    The use of basalt at Hanford as an alternative for the Waste Isolation Pilot Plant (WIPP) would require that the present Basalt Waste Isolation Program (BWIP) at Hanford be expanded to incorporate the planned WIPP functions, namely the permanent storage of transuranic (TRU) wastes. This report discusses: program costs, demography, ecology, climatology, physiography, hydrology, geology, seismology, and historical and archeological sites. (DLC)

  11. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    Energy Technology Data Exchange (ETDEWEB)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  12. Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103

    Energy Technology Data Exchange (ETDEWEB)

    Pool, K.H.; Bean, R.M.

    1994-03-01

    A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices).

  13. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    Energy Technology Data Exchange (ETDEWEB)

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  14. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  15. Hanford Site waste tank farm facilities design reconstitution program plan

    Energy Technology Data Exchange (ETDEWEB)

    Vollert, F.R.

    1994-09-06

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

  16. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  17. Testing of organic waste surrogate materials in support of the Hanford organic tank program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D.A. [Westinghouse Hanford Co., Richland, WA (United States); Miron, Y. [Bureau of Mines (United States)

    1994-01-01

    To address safety issues regarding effective waste management efforts of underground organic waste storage tanks at the Hanford Site, the Bureau of Mines conducted a series of tests, at the request of the Westinghouse Hanford company. In this battery of tests, the thermal and explosive characteristics of surrogate materials, chosen by Hanford, were determined. The surrogate materials were mixtures of inorganic and organic sodium salts, representing fuels and oxidants. The oxidants were sodium nitrate and sodium nitrite. The fuels were sodium salts of oxalate, citrate and ethylenediamine tetraacetic acid (EDTA). Polyethylene powder was also used as a fuel with the oxidant(s). Sodium aluminate was used as a diluent. In addition, a sample of FeCN, supplied by Hanford was also investigated.

  18. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  19. Soil load above Hanford waste storage tanks (2 volumes)

    Energy Technology Data Exchange (ETDEWEB)

    Pianka, E.W. [Advent Engineering Services, Inc., San Ramon, CA (United States)

    1995-01-25

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.

  20. Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    DEROSA, D.C.

    2000-01-13

    This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping.

  1. Supplemental report on population estimates for Hanford Defense waste draft environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Yandon, K.E.; Burlison, J.S.; Rau, R.G.

    1980-10-01

    The research reported here supplies population data for ongoing environmental evaluations of the Hanford Site's waste management programs. The population figures in this report will be used to calculate dose to population from waste management operations for up to 10,000 years after 1990.

  2. Chemistry of application of calcination/dissolution to the Hanford tank waste inventory

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H.; Elcan, T.D.; Hey, B.E.

    1994-05-01

    Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel are stored in underground tanks at the Hanford Site in Washington State. Fractionation of the waste into low-level waste (LLW) and high-level waste (HLW) streams is envisioned via partial water dissolution and limited radionuclide extraction operations. Under optimum conditions, LLW would contain most of the chemical bulk while HLW would contain virtually all of the transuranic and fission product activity. Calcination at around 850 C, followed by water dissolution, has been proposed as an alternative initial treatment of Hanford Site waste to improve waste dissolution and the envisioned LLW/HLW split. Results of literature and laboratory studies are reported on the application of calcination/dissolution (C/D) to the fractionation of the Hanford Site tank waste inventory. Both simulated and genuine Hanford Site waste materials were used in the lab tests. To evaluation confirmed that C/D processing reduced the amount of several components from the waste. The C/D dissolutions of aluminum and chromium allow redistribution of these waste components from the HLW to the LLW fraction. Comparisons of simple water-washing with C/D processing of genuine Hanford Site waste are also reported based on material (radionuclide and chemical) distributions to solution and solid residue phases. The lab results show that C/D processing yielded superior dissolution of aluminum and chromium sludges compared to simple water dissolution. 57 refs., 26 figs., 18 tabs.

  3. 1998 report on Hanford Site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1998-04-10

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities

  4. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  5. Hanford Waste Vitrification Plant technical background document for toxics best available control technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This document provides information on toxic air pollutant emissions to support the Notice of Construction for the proposed Hanford Waste Vitrification Plant (HWVP) to be built at the the Department of Energy Hanford Site near Richland, Washington. Because approval must be received prior to initiating construction of the facility, state and federal Clean Air Act Notices of construction are being prepared along with necessary support documentation.

  6. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  7. Preventing Buoyant Displacement Gas Release Events in Hanford Double-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Stewart, Charles W.

    2001-01-01

    This report summarizes the predictive methods used to ensure that waste transfer operations in Hanford waste tanks do not create waste configurations that lead to unsafe gas release events. The gas release behavior of the waste in existing double-shell tanks has been well characterized, and the flammable gas safety issues associated with safe storage of waste in the current configuration are being formally resolved. However, waste is also being transferred between double-shell tanks and from single-shell tanks into double-shell tanks by saltwell pumping and sluicing that create new wastes and waste configurations that have not been studied as well. Additionally, planning is underway for various waste transfer scenarios to support waste feed delivery to the proposed vitrification plant. It is critical that such waste transfers do not create waste conditions with the potential for dangerous gas release events.

  8. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  9. STRONTIUM-90 LIQUID CONCENTRATION SOLUBILITY CORRELATION IN THE HANFORD TANK WASTE OPERATIONS SIMULATOR

    Energy Technology Data Exchange (ETDEWEB)

    HOHL, T.; PLACE, D.; WITTMAN, R.

    2004-08-05

    A new correlation was developed to estimate the concentration of strontium-90 in a waste solution based on total organic carbon. This correlation replaces the strontium-90 wash factors, and when applied in the Hanford Tank Waste Operations Simulator, significantly reduced the estimated quantity of strontium-90 in the delivered low-activity waste feed. This is thought to be a more realistic estimate of strontium-90 than using the wash-factor method.

  10. Toxicity assessment of Hanford Site wastes by bacterial bioluminescence. [Photobacter phosphoreum:a3

    Energy Technology Data Exchange (ETDEWEB)

    Rebagay, T.V.; Dodd, D.A.; Voogd, J.A.

    1991-09-01

    This paper examines the toxicity of the nonradioactive component of low-level wastes stored in tanks on the Hanford reservation. The use of a faster, cheaper bioassay to replace the 96 hour fish acute toxicity test is examined. The new bioassay is based on loss of bioluminescence of {und Photobacter phosphoreum} (commonly called Microtox) following exposure to toxic materials. This bioassay is calibrated and compares well to the standard fish acute toxicity test for characterization of Hanford Wastes. 4 refs., 11 figs., 11 tabs. (MHB)

  11. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading.

  12. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A., Westinghouse Hanford

    1996-07-17

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  13. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A.

    1996-09-20

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  14. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, E. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Herman, C. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, C. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, N. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neeway, J. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valenta, M. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, G. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swanberg, D. J. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Robbins, R. A. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Thompson, L. E. [Washington River Protection Solutions (WRPS), Richland, WA (United States)

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  15. A Review of Iron Phosphate Glasses and Recommendations for Vitrifying Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Delbert E. Ray; Chandra S. Ray

    2013-11-01

    This report contains a comprehensive review of the research conducted, world-wide, on iron phosphate glass over the past ~30 years. Special attention is devoted to those iron phosphate glass compositions which have been formulated for the purpose of vitrifying numerous types of nuclear waste, with special emphasis on the wastes stored in the underground tanks at Hanford WA. Data for the structural, chemical, and physical properties of iron phosphate waste forms are reviewed for the purpose of understanding their (a) outstanding chemical durability which meets all current DOE requirements, (b) high waste loadings which can exceed 40 wt% (up to 75 wt%) for several Hanford wastes, (c) low melting temperatures, can be as low as 900°C for certain wastes, and (d) high tolerance for “problem” waste components such as sulfates, halides, and heavy metals (chromium, actinides, noble metals, etc.). Several recommendations are given for actions that are necessary to smoothly integrate iron phosphate glass technology into the present waste treatment plans and vitrification facilities at Hanford.

  16. 1995 Report on Hanford site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1995-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

  17. Simulation and characterization of a Hanford high-level waste slurry

    Energy Technology Data Exchange (ETDEWEB)

    Russell, R.L.; Smith, H.D.

    1996-09-01

    The baseline waste used for this simulant is a blend of wastes from tanks 101-AZ, 102-AZ, 106-C, and 102-AY that have been through water washing. However, the simulant used in this study represents a combination of tank waste slurries and should be viewed as an example of the slurries that might be produced by blending waste from various tanks. It does not imply that this is representative of the actual waste that will be delivered to the privatization contractor(s). This blended waste sludge simulant was analyzed for grain size distribution, theological properties both as a function of concentration and aging, and calcining characteristics. The grain size distribution allows a comparison with actual waste with respect to theological properties. Slurries with similar grain size distributions of the same phases are expected to exhibit similar theological properties. Rheological properties may also change because of changes in the slurry`s particulate supernate chemistry due to aging. Low temperature calcination allows the potential for hazardous gas generation to be investigated.

  18. DuraLith geopolymer waste form for Hanford secondary waste: Correlating setting behavior to hydration heat evolution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hui; Gong, Weiliang, E-mail: gongw@vsl.cua.edu; Syltebo, Larry; Lutze, Werner; Pegg, Ian L.

    2014-08-15

    Highlights: • Quantitative correlations firstly established for cementitious waste forms. • Quantitative correlations firstly established for geopolymeric materials. • Ternary DuraLith geopolymer waste forms for Hanford radioactive wastes. • Extended setting times which improve workability for geopolymer waste forms. • Reduced hydration heat release from DuraLith geopolymer waste forms. - Abstract: The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results.

  19. DEWATERING TREATMENT SCALE-UP TESTING RESULTS OF HANFORD TANK WASTES

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR

    2008-01-23

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low-activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualified the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process.

  20. Oxidation, characterization, and separation of non-pertechnetate species in Hanford wastes

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, N.C. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Under DOE`s privatization initiative, Lockheed Martin and British Nuclear Fuels Limited are preparing to stabilize the caustic tank waste generated from plutonium production at the Hanford Site. Pretreatment of Hanford tank waste will separate it into low-level waste (LLW) and high-level waste (HLW) fractions. The scope of the technetium problem is indicated by its inventory in the waste: {approximately}2000 kg. Technetium would normally exist as the pertechnetate anion, TcO{sub 4}{sup {minus}}, in aqueous solution. However, evidence obtained at Los Alamos National Laboratory (LANL) indicates that the combination of radiolysis, heat, organic complexants, and time may have reduced and complexed a significant fraction of the technetium in the tank waste. These species are in a form that is not amenable to current separation techniques based on pertechnetate removal. Thus, it is crucial that methods be developed to set technetium to pertechnetate so these technologies can meet the required technetium decontamination factor. If this is not possible, then alternative separation processes will need to be developed to remove these non-pertechnetate species from the waste. The simplest, most cost-effective approach to this problem is to convert the non-pertechnetate species to pertechnetate. Chemical, electrochemical, and photochemical oxidation methods, as well as hydrothermal treatment, are being applied to Hanford waste samples to ensure that the method works on the unknown technetium species in the waste. The degree of oxidation will be measured by determining the technetium distribution coefficient, {sup Tc}K{sub d}, between the waste and Reillex{trademark}-HPQ resin, and comparing it to the true pertechnetate K{sub d} value for the waste matrix. Other species in the waste, including all the organic material, could be oxidized by these methods, thus selective oxidation is desirable to minimize the cost, time, and secondary waste generation.

  1. TECHNICAL ASSESSMENT OF FRACTIONAL CRYSTALLIZATION FOR TANK WASTE PRETREATMENT AT THE DOE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    HAMILTON, D.W.

    2006-01-03

    Radioactive wastes from one hundred seventy-seven underground storage tanks in the 200 Area of the Department of Energy (DOE) Hanford Site in Washington State will be retrieved, treated and stored either on site or at an approved off-site repository. DOE is currently planning to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions, which would be treated and permanently disposed in separate facilities. A significant volume of the wastes in the Hanford tanks is currently classified as medium Curie waste, which will require separation and treatment at the Waste Treatment Plant (WTP). Because of the specific challenges associated with treating this waste stream, DOE EM-21 funded a project to investigate the feasibility of using fractional crystallization as a supplemental pretreatment technology. The two process requirements for fractional crystallization to be successfully applied to Hanford waste include: (1) evaporation of water from the aqueous solution to enrich the activity of soluble {sup 137}Cs, resulting in a higher activity stream to be sent to the WTP, and (2) separation of the crystalline salts that are enriched in sodium, carbonate, sulfate, and phosphate and sufficiently depleted in {sup 137}Cs, to produce a second stream to be sent to Bulk Vitrification. Phase I of this project has just been completed by COGEMA/Georgia Institute of Technology. The purpose of this report is to document an independent expert review of the Phase I results with recommendations for future testing. A team of experts with significant experience at both the Hanford and Savannah River Sites was convened to conduct the review at Richland, Washington the week of November 14, 2005.

  2. SUMMARY PLAN FOR BENCH-SCALE REFORMER AND PRODUCT TESTING TREATABILITY STUDIES USING HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB

    2010-08-19

    This paper describes the sample selection, sample preparation, environmental, and regulatory considerations for shipment of Hanford radioactive waste samples for treatability studies of the FBSR process at the Savannah River National Laboratory and the Pacific Northwest National Laboratory. The U.S. Department of Energy (DOE) Hanford tank farms contain approximately 57 million gallons of wastes, most of which originated during the reprocessing of spent nuclear fuel to produce plutonium for defense purposes. DOE intends to pre-treat the tank waste to separate the waste into a high level fraction, that will be vitrified and disposed of in a national repository as high-level waste (HLW), and a low-activity waste (LAW) fraction that will be immobilized for on-site disposal at Hanford. The Hanford Waste Treatment and Immobilization Plant (WTP) is the focal point for the treatment of Hanford tank waste. However, the WTP lacks the capacity to process all of the LAW within the regulatory required timeframe. Consequently, a supplemental LAW immobilization process will be required to immobilize the remainder of the LAW. One promising supplemental technology is Fluidized Bed Steam Reforming (FBSR) to produce a sodium-alumino-silicate (NAS) waste form. The NAS waste form is primarily composed of nepheline (NaAlSiO{sub 4}), sodalite (Nas[AlSiO{sub 4}]{sub 6}Cl{sub 2}), and nosean (Na{sub 8}[AlSiO{sub 4}]{sub 6}SO{sub 4}). Semivolatile anions such as pertechnetate (TcO{sub 4}{sup -}) and volatiles such as iodine as iodide (I{sup -}) are expected to be entrapped within the mineral structures, thereby immobilizing them (Janzen 2008). Results from preliminary performance tests using surrogates, suggests that the release of semivolatile radionuclides {sup 99}Tc and volatile {sup 129}I from granular NAS waste form is limited by Nosean solubility. The predicted release of {sup 99}Tc from the NAS waste form at a 100 meters down gradient well from the Integrated Disposal Facility (IDF

  3. Structural integrity and potential failure modes of hanford high-level waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Han, F.C.

    1996-09-30

    Structural Integrity of the Hanford High-Level Waste Tanks were evaluated based on the existing Design and Analysis Documents. All tank structures were found adequate for the normal operating and seismic loads. Potential failure modes of the tanks were assessed by engineering interpretation and extrapolation of the existing engineering documents.

  4. HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    HERTING DL

    2008-09-16

    The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

  5. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2011-01-06

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  6. Technology Evaluation for Conditioning of Hanford Tank Waste Using Solids Segregation and Size Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Restivo, Michael L.; Stone, M. E.; Herman, D. T.; Lambert, Daniel P.; Duignan, Mark R.; Smith, Gary L.; Wells, Beric E.; Lumetta, Gregg J.; Enderlin, Carl W.; Adkins, Harold E.

    2014-04-24

    The Savannah River National Laboratory and the Pacific Northwest National Laboratory team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm. The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application. Any technology selected would require testing to verify the ability to meet the High-Level Waste Feed Waste Acceptance Criteria to the Hanford Tank Waste Treatment and Immobilization Plant Pretreatment Facility.

  7. Solid secondary waste testing for maintenance of the Hanford Integrated Disposal Facility Performance Assessment - FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Ralph L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, Kenneth L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-01

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being constructed to treat 56 million gallons of radioactive waste currently stored in underground tanks at the Hanford site. Operation of the WTP will generate several solid secondary waste (SSW) streams including used process equipment, contaminated tools and instruments, decontamination wastes, high-efficiency particulate air filters (HEPA), carbon adsorption beds, silver mordenite iodine sorbent beds, and spent ion exchange resins (IXr) all of which are to be disposed in the Integrated Disposal Facility (IDF). An applied research and development program was developed using a phased approach to incrementally develop the information necessary to support the IDF PA with each phase of the testing building on results from the previous set of tests and considering new information from the IDF PA calculations. This report contains the results from the exploratory phase, Phase 1 and preliminary results from Phase 2. Phase 3 is expected to begin in the fourth quarter of FY17.

  8. Hanford Tank Waste to WIPP - Maximizing the Value of our National Repository Asset

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Allan R.; Wheeler, Martin

    2013-11-11

    Preplanning scope for the Hanford tank transuranic (TRU) waste project was authorized in 2013 by the Department of Energy (DOE) Office of River Protection (ORP) after a project standby period of eight years. Significant changes in DOE orders, Hanford contracts, and requirements at the Waste Isolation Pilot Plant (WIPP) have occurred during this time period, in addition to newly implemented regulatory permitting, re-evaluated waste management strategies, and new commercial applications. Preplanning has identified the following key approaches for reactivating the project: qualification of tank inventory designations and completion of all environmental regulatory permitting; identifying program options to accelerate retrieval of key leaking tank T-111; planning fully compliant implementation of DOE Order 413.3B, and DOE Standard 1189 for potential on-site treatment; and re-evaluation of commercial retrieval and treatment technologies for better strategic bundling of permanent waste disposal options.

  9. Corrosion Management of the Hanford High-Level Nuclear Waste Tanks

    Science.gov (United States)

    Beavers, John A.; Sridhar, Narasi; Boomer, Kayle D.

    2014-03-01

    The Hanford site is located in southeastern Washington State and stores more than 200,000 m3 (55 million gallons) of high-level radioactive waste resulting from the production and processing of plutonium. The waste is stored in large carbon steel tanks that were constructed between 1943 and 1986. The leak and structurally integrity of the more recently constructed double-shell tanks must be maintained until the waste can be removed from the tanks and encapsulated in glass logs for final disposal in a repository. There are a number of corrosion-related threats to the waste tanks, including stress-corrosion cracking, pitting corrosion, and corrosion at the liquid-air interface and in the vapor space. This article summarizes the corrosion management program at Hanford to mitigate these threats.

  10. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.; Heasler, Patrick G.; Mercier, Theresa M.; Russell, Renee L.; Cozzi, Alex; Daniel, William E.; Eibling, Russell E.; Hansen, E. K.; Reigel, Marissa M.; Swanberg, David J.

    2013-09-30

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF

  11. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    Energy Technology Data Exchange (ETDEWEB)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  12. Transuranic advanced disposal systems: preliminary /sup 239/Pu waste-disposal criteria for Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Aaberg, R.L.; Napier, B.A.; Soldat, J.K.

    1982-09-01

    This report contains the draft results of a study sponsored by the US Department of Energy (DOE) to determine preliminary /sup 239/Pu waste disposal criteria for the Hanford Site. The purpose of this study is to provide a preliminary evaluation of the feasibility of various defense TRU advanced disposal options at the Hanford Site. Advanced waste disposal options include those developed to provide greater confinement than provided by shallow-land burial. They will be used to complement the waste geologic disposal in achieving permanent disposal of selected TRU wastes. An example systems analysis is discussed with assumed performance objectives and Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for /sup 239/Pu are determined by applying the Allowable Residual Contamination Level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. A 10,000-year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/yr to any exposed individual. Preliminary waste disposal criteria derived by this method for /sup 239/Pu in soils at the Hanford Site are: 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth. 5 figures, 7 tables.

  13. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    Energy Technology Data Exchange (ETDEWEB)

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  14. Tank Waste Transport Stability: Summaries of Hanford Slurry and Salt-Solution Studies in FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Welch, T.D.

    2002-07-08

    This report is a collection of summary articles on FY 2000 studies of slurry transport and salt-well pumping related to Hanford tank waste transfers. These studies are concerned with the stability (steady, uninterrupted flow) of tank waste transfers, a subset of the Department of Energy (DOE) Tanks Focus Area Tank (TFA) Waste Chemistry effort. This work is a collaborative effort of AEA Technology plc, the Diagnostic Instrumentation and Analysis Laboratory at Mississippi State University (DIAL-MSU), the Hemispheric Center for Environmental Technology at Florida International University (HCET-FIU), Numatec Hanford Corporation (NHC), and the Oak Ridge National Laboratory (ORNL). The purpose of this report is to provide, in a single document, an overview of these studies to help the reader identify contacts and resources for obtaining more detailed information and to help promote useful interchanges between researchers and users. Despite over 50 years of experience in transporting radioactive tank wastes to and from equipment and tanks at the Department of Energy's Hanford, Savannah River, and Oak Ridge sites, waste slurry transfer pipelines and process piping become plugged on occasion. At Hanford, several tank farm pipelines are no longer in service because of plugs. At Savannah River, solid deposits in the outlet line of the 2H evaporator have resulted in an unplanned extended downtime. Although waste transfer criteria and guidelines intended to prevent pipeline plugging are in place, they are not always adequate. To avoid pipeline plugging in the future, other factors that are not currently embodied in the transfer criteria may need to be considered. The work summarized here is being conducted to develop a better understanding of the chemical and waste flow dynamics during waste transfer. The goal is to eliminate pipeline plugs by improving analysis and engineering tools in the field that incorporate this understanding.

  15. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter, and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents.

  16. Hanford Site organic waste tanks: History, waste properties, and scientific issues

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, D.M.; Schulz, W.W.; Reynolds, D.A.

    1993-01-01

    Eight Hanford single-shell waste tanks are included on a safety watch list because they are thought to contain significant concentrations of various organic chemical. Potential dangers associated with the waste in these tanks include exothermic reaction, combustion, and release of hazardous vapors. In all eight tanks the measured waste temperatures are in the range 16 to 46[degree]C, far below the 250 to 380[degree]C temperatures necessary for onset of rapid exothermic reactions and initiation of deflagration. Investigation of the possibility of vapor release from Tank C-103 has been elevated to a top safety priority. There is a need to obtain an adequate number of truly representative vapor samples and for highly sensitive and capable methods and instruments to analyze these samples. Remaining scientific issues include: an understanding of the behavior and reaction of organic compounds in existing underground tank environments knowledge of the types and amounts of organic compounds in the tanks knowledge of selected physical and chemical properties of organic compounds source, composition, quality, and properties of the presently unidentified volatile organic compound(s) apparently evolving from Tank C-103.

  17. Advanced disposal systems for transuranic waste: Preliminary disposal criteria for Plutonium-239 at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E.; Napier, B.A.; Soldat, J.K.

    1983-01-01

    An evaluation of the feasibility and potential application of advanced disposal systems is being conducted for defense transuranic (TRU) wastes at the Hanford site. The advanced waste disposal options include those developed to provide ''greater confinement'' than provided by shallow-land burial. An example systems analysis is discussed with assumed performance objectives and various Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for /sup 239/Pu are determined by applying the allowable residual contamination level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site specific analysis of the potential for radiation exposure to individuals. A 10,000-year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/yr to any exposed individual. Preliminary waste disposal criteria derived by this method for /sup 239/Pu in soils at the Hanford Site are 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth.

  18. Transuranic advanced disposal systems: preliminary /sup 239/Pu waste-disposal criteria for Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1982-08-01

    An evaluation of the feasibility and potential application of advanced disposal systems is being conducted for defense transuranic (TRU) wastes at the Hanford Site. The advanced waste disposal options include those developed to provide greater confinement than provided by shallow-land burial. An example systems analysis is discussed with assumed performance objectives and various Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for /sup 239/Pu are determined by applying the Allowable Residual Contamination Level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. A 10,000 year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/y to any exposed individual. Preliminary waste disposal criteria derived by this method for /sup 239/Pu in soils at the Hanford Site are: 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth. 2 figures, 5 tables.

  19. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

  20. Hanford tank initiative vehicle/based waste retrieval demonstration report phase II, track 2

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, E.J.

    1997-07-31

    Using the versatile TracPUMpTm, Environmental Specialties Group, LLC (ES) performed a successful Phase 11 demonstration of a Vehicle- Based Waste Retrieval System (VWRS) for removal of waste material and residual liquid found in the Hanford Underground Storage Tanks (ousts). The purpose of this demonstration was to address issues pertaining to the use of a VWRS in OUSTS. The demonstration also revealed the waste removal capabilities of the TracPumpTm and the most effective techniques and equipment to safely and effectively remove waste simulants. ES successfully addressed the following primary issues: I . Dislodge and convey the waste forms present in the Hanford OUSTS; 2. Access the UST through tank openings as small as twenty-four inches in diameter; 3. Traverse a variety of terrains including slopes, sludges, rocks and hard, slippery surfaces without becoming mired; 4. Dislodge and convey waste within the confinement of the Decontamination Containment Capture Vessel (DCCV) and with minimal personnel exposure; 5. Decontaminate equipment to acceptable limits during retrieval from the UST; 6. Perform any required maintenance within the confinement of the DCCV; and 7. Maintain contaminate levels ``as low as reasonably achievable`` (ALARA) within the DCCV due to its crevice and comer-free design. The following materials were used to simulate the physical characteristics of wastes found in Hanford`s OUSTS: (1) Hardpan: a clay-type material that has high shear strength; (2) Saltcake: a fertilizer-based material that has high compressive strength; and (3) Wet Sludge.- a sticky, peanut- butter- like material with low shear strength. Four test beds were constructed of plywood and filled with a different simulant to a depth of eight to ten inches. Three of the test beds were of homogenous simulant material, while the fourth bed consisted of a mixture of all three simulant types.

  1. Hydrothermal processing of Hanford tank waste. Organic destruction technology development task annual report -- FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Orth, R.J.; Schmidt, A.J.; Zacher, A.H. [and others

    1993-09-01

    Low-temperature hydrothermal processing (HTP) is a thermal-chemical autogenous processing method that can be used to destroy organics and ferrocyanide in Hanford tank waste at temperatures from 250 C to 400 C. With HTP, organics react with oxidants, such as nitrite and nitrate, already present in the waste. Ferrocyanides and free cyanide will hydrolyze at similar temperatures and may also react with nitrates or other oxidants in the waste. No air or oxygen or additional chemicals need to be added to the autogenous HTP system. However, enhanced kinetics may be realized by air addition, and, if desired, chemical reductants can be added to the system to facilitate complete nitrate/nitrate destruction. Tank waste can be processed in a plug-flow, tubular reactor, or a continuous-stirred tank reactor system designed to accommodate the temperature, pressure, gas generation, and heat release associated with decomposition of the reactive species. The work described in this annual report was conducted in FY 1993 for the Organic Destruction Technology Development Task of Hanford`s Tank Waste Remediation System (TWRS). This task is part of an overall program to develop organic destruction technologies originally funded by TWRS to meet tank safety and waste form disposal criteria and condition the feed for further pretreatment. During FY 1993 the project completed seven experimental test plans, a 30-hr pilot-scale continuous run, over 200 hr of continuous bench-scale HTP testing, and 20 batch HTP tests; two contracts were established with commercial vendors, and a commercial laboratory reactor was procured and installed in a glovebox for HTP testing with actual Hanford tank waste.

  2. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  3. DuraLith geopolymer waste form for Hanford secondary waste: correlating setting behavior to hydration heat evolution.

    Science.gov (United States)

    Xu, Hui; Gong, Weiliang; Syltebo, Larry; Lutze, Werner; Pegg, Ian L

    2014-08-15

    The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results.

  4. RETRIEVING SUSPECT TRANSURANIC (TRU) WASTE FROM THE HANFORD BURIAL GROUNDS PROGRESS PLANS & CHALLENGES

    Energy Technology Data Exchange (ETDEWEB)

    FRENCH, M.S.

    2006-02-01

    This paper describes the scope and status of the program for retrieval of suspect transuranic (TRU) waste stored in the Hanford Site low-level burial grounds. Beginning in 1970 and continuing until the late 1980's, waste suspected of containing significant quantities of transuranic isotopes was placed in ''retrievable'' storage in designated modules in the Hanford burial grounds, with the intent that the waste would be retrieved when a national repository for disposal of such waste became operational. Approximately 15,000 cubic meters of waste, suspected of being TRU, was placed in storage modules in four burial grounds. With the availability of the national repository (the Waste Isolation Pilot Plant), retrieval of the suspect TRU waste is now underway. Retrieval efforts, to date, have been conducted in storage modules that contain waste, which is in general, contact-handled, relatively new (1980's and later), is stacked in neat, engineered configurations, and has a relatively good record of waste characteristics. Even with these optimum conditions, retrieval personnel have had to deal with a large number of structurally degraded containers, radioactive contamination issues, and industrial hazards (including organic vapors). Future retrieval efforts in older, less engineered modules are expected to present additional hazards and difficult challenges.

  5. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1996-09-01

    Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

  6. An Integrated Site-Wide Assessment of Nuclear Wastes to Remain at the Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J.G.; Bryce, R.W.; Hildebrand, R.D.; Kincaid, C.T.

    2004-10-06

    Since its creation in 1943 until 1988, the Hanford Site, a facility in the U.S. Department of Energy (DOE) nuclear weapons complex was dedicated to the production of weapons grade plutonium and other special nuclear materials. The Hanford Site is located in eastern Washington State and is bordered on the north and east by the Columbia River. Decades of creating fuel, irradiating it in reactors, and processing it to recover nuclear material left numerous waste sites that involved the discharge of contaminated liquids and the disposal of contaminated solid waste. Today, the primary mission of the Hanford Site is to safely cleanup and manage the site's legacy waste. A site-wide risk assessment methodology has been developed to assist the DOE, as well as state and federal regulatory agencies, in making decisions regarding needed remedial actions at past waste sites, and safe disposal of future wastes. The methodology, referred to as the System Assessment Capability (SAC), utilizes an integrated set of models that track potential contaminants from inventory through vadose zone, groundwater, Columbia River and air pathways to human and ecological receptors.

  7. The Continued Need for Modeling and Scaled Testing to Advance the Hanford Tank Waste Mission

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, Loni M.; Fort, James A.; Rector, David R.

    2013-09-03

    Hanford tank wastes are chemically complex slurries of liquids and solids that can exhibit changes in rheological behavior during retrieval and processing. The Hanford Waste Treatment and Immobilization Plant (WTP) recently abandoned its planned approach to use computational fluid dynamics (CFD) supported by testing at less than full scale to verify the design of vessels that process these wastes within the plant. The commercial CFD tool selected was deemed too difficult to validate to the degree necessary for use in the design of a nuclear facility. Alternative, but somewhat immature, CFD tools are available that can simulate multiphase flow of non-Newtonian fluids. Yet both CFD and scaled testing can play an important role in advancing the Hanford tank waste mission—in supporting the new verification approach, which is to conduct testing in actual plant vessels; in supporting waste feed delivery, where scaled testing is ongoing; as a fallback approach to design verification if the Full Scale Vessel Testing Program is deemed too costly and time-consuming; to troubleshoot problems during commissioning and operation of the plant; and to evaluate the effects of any proposed changes in operating conditions in the future to optimize plant performance.

  8. RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area C at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Duane G.; Narbutovskih, Susan M.

    2001-01-01

    This document describes the groundwater monitoring plan for Waste Management Area C located in the 200 East Area of the DOE Hanford Site. This plan is required under Resource Conservation and Recovery Act of 1976 (RCRA).

  9. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Herborn, D.I.

    1993-11-01

    Westinghouse Hanford Company (WHC) is the Integrating Contractor for the Hanford Waste Vitrification Plant (HWVP) Project, and as such is responsible for preparation of the HWVP Preliminary Safety Analysis Report (PSAR). The HWVP PSAR was prepared pursuant to the requirements for safety analyses contained in US Department of Energy (DOE) Orders 4700.1, Project Management System (DOE 1987); 5480.5, Safety of Nuclear Facilities (DOE 1986a); 5481.lB, Safety Analysis and Review System (DOE 1986b) which was superseded by DOE order 5480-23, Nuclear Safety Analysis Reports, for nuclear facilities effective April 30, 1992 (DOE 1992); and 6430.lA, General Design Criteria (DOE 1989). The WHC procedures that, in large part, implement these DOE requirements are contained in WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual. This manual describes the overall WHC safety analysis process in terms of requirements for safety analyses, responsibilities of the various contributing organizations, and required reviews and approvals.

  10. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  11. X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS METHOD DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jurgensen, A; David Missimer, D; Ronny Rutherford, R

    2007-08-08

    The x-ray fluorescence laboratory (XRF) in the Analytical Development Directorate (ADD) of the Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop an XRF analytical method that provides rapid turnaround time (<8 hours), while providing sufficient accuracy and precision to determine variations in waste.

  12. Waste Tank Size Determination for the Hanford River Protection Project Cold Test, Training, and Mockup Facility

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Wells, Beric E.; Kuhn, William L.

    2001-03-30

    The objective of the study was to determine the minimum tank size for the Cold Test Facility process testing of Hanford tank waste. This facility would support retrieval of waste in 75-ft-diameter DSTs with mixer pumps and SSTs with fluidic mixers. The cold test model will use full-scale mixer pumps, transfer pumps, and equipment with simulated waste. The study evaluated the acceptability of data for a range of tank diameters and depths and included identifying how the test data would be extrapolated to predict results for a full-size tank.

  13. Hanford facility dangerous waste permit application, general information portion. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Sonnichsen, J.C.

    1997-08-21

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy`s contractors are identified as ``co-operators`` and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ``operator`` elsewhere in the application is not meant to conflict with the contractors` designation as co-operators but rather is based on the contractors` contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit, which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which

  14. Analysis of organic carbon and moisture in Hanford single-shell tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Toth, J.J.; Heasler, P.G.; Lerchen, M.E.; Hill, J.G.; Whitney, P.D.

    1995-05-01

    This report documents a revised analysis performed by Pacific Northwest Laboratory involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTs) obtained from a review of the laboratory analytical data. This activity has as its objective to provide a best-estimate, including confidence levels, of total organic carbon (TOC) and moisture in each of the 149 SSTs at Hanford. The TOC and moisture information presented in this report is useful as part of the criteria to identify SSTs for additional measurements, or monitoring for the Organic Safety Program. In April 1994, an initial study of the organic carbon in Hanford single-shell tanks was completed at PNL. That study reflected the estimates of TOC based on tank characterizations datasets that were available at the time. Also in that study, estimation of dry basis TOC was based on generalized assumptions pertaining to the moisture of the tank wastes. The new information pertaining to tank moisture and TOC data that has become available from the current study influences the best estimates of TOC in each of the SSTs. This investigation of tank TOC and moisture has resulted in improved estimates based on waste phase: saltcake, sludge, or liquid. This report details the assumptions and methodologies used to develop the estimates of TOC and moisture in each of the 149 SSTs at Hanford.

  15. Evaluation of existing Hanford buildings for the storage of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, M.C.; Hodgson, R.D.; Sabin, J.C.

    1993-05-01

    Existing storage space at the Hanford Site for solid low-level mixed waste (LLMW) will be filled up by 1997. Westinghouse Hanford Company (WHC) has initiated the project funding cycle for additional storage space to assure that new facilities are available when needed. In the course of considering the funding request, the US Department of Energy (DOE) has asked WHC to identify and review any existing Hanford Site facilities that could be modified and used as an alternative to constructing the proposed W-112 Project. This report documents the results of that review. In summary, no buildings exist at the Hanford Site that can be utilized for storage of solid LLMW on a cost-effective basis when compared to new construction. The nearest approach to an economically sensible conversion would involve upgrade of 100,000 ft{sup 2} of space in the 2101-M Building in the 200 East Area. Here, modified storage space is estimated to cost about $106 per ft{sup 2} while new construction will cost about $50 per ft{sup 2}. Construction costs for the waste storage portion of the W-112 Project are comparable with W-016 Project actual costs, with escalation considered. Details of the cost evaluation for this building and for other selected candidate facilities are presented in this report. All comparisons presented address the potential decontamination and decommissioning (D&D) cost avoidances realized by using existing facilities.

  16. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-12-14

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP).

  17. Hanford tank waste simulants specification and their applicability for the retrieval, pretreatment, and vitrification processes

    Energy Technology Data Exchange (ETDEWEB)

    GR Golcar; NG Colton; JG Darab; HD Smith

    2000-04-04

    A wide variety of waste simulants were developed over the past few years to test various retrieval, pretreatment and waste immobilization technologies and unit operations. Experiments can be performed cost-effectively using non-radioactive waste simulants in open laboratories. This document reviews the composition of many previously used waste simulants for remediation of tank wastes at the Hanford reservation. In this review, the simulants used in testing for the retrieval, pretreatment, and vitrification processes are compiled, and the representative chemical and physical characteristics of each simulant are specified. The retrieval and transport simulants may be useful for testing in-plant fluidic devices and in some cases for filtration technologies. The pretreatment simulants will be useful for filtration, Sr/TRU removal, and ion exchange testing. The vitrification simulants will be useful for testing melter, melter feed preparation technologies, and for waste form evaluations.

  18. Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

    2012-10-22

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

  19. Hanford Tanks 241-C-202 and 241-C-203 Residual Waste Contaminant Release Models and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Mattigod, Shas V.; Schaef, Herbert T.; Arey, Bruce W.

    2007-09-13

    As directed by Congress, the U. S. Department of Energy (DOE) established the Office of River Protection in 1998 to manage DOE's largest, most complex environmental cleanup project – retrieval of radioactive waste from Hanford tanks for treatment and eventual disposal. Sixty percent by volume of the nation's high-level radioactive waste is stored at Hanford in aging deteriorating tanks. If not cleaned up, this waste is a threat to the Columbia River and the Pacific Northwest. CH2M Hill Hanford Group, Inc., is the Office of River Protection's prime contractor responsible for the storage, retrieval, and disposal of Hanford's tank waste. As part of this effort, CH2M HILL Hanford Group, Inc. contracted with Pacific Northwest National Laboratory (PNNL) to develop release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for DOE.

  20. 1997 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1997-04-07

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones.

  1. Advances in the Glass Formulations for the Hanford Tank Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Vienna, John D.; Kim, Dong Sang

    2015-01-14

    The Department of Energy-Office of River Protection (DOE-ORP) is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to treat radioactive waste currently stored in underground tanks at the Hanford site in Washington. The WTP that is being designed and constructed by a team led by Bechtel National, Inc. (BNI) will separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW) fractions with the majority of the mass (~90%) directed to LAW and most of the activity (>95%) directed to HLW. The pretreatment process, envisioned in the baseline, involves the dissolution of aluminum-bearing solids so as to allow the aluminum salts to be processed through the cesium ion exchange and report to the LAW Facility. There is an oxidative leaching process to affect a similar outcome for chromium-bearing wastes. Both of these unit operations were advanced to accommodate shortcomings in glass formulation for HLW inventories. A by-product of this are a series of technical challenges placed upon materials selected for the processing vessels. The advances in glass formulation play a role in revisiting the flow sheet for the WTP and hence, the unit operations that were being imposed by minimal waste loading requirements set forth in the contract for the design and construction of the plant. Another significant consideration to the most recent revision of the glass models are the impacts on resolution of technical questions associated with current efforts for design completion.

  2. Reactivity of Peroxynitrite: Implications for Hanford Waste Management and Remediation

    Energy Technology Data Exchange (ETDEWEB)

    James K. Hurst

    2003-11-06

    The purpose of this grant has been to provide basic chemical research in support of a major project undertaken at Brookhaven National Laboratory (BNL) whose purpose was to provide better understanding of the complex chemical processes occurring an nuclear storage tanks on the Hanford reservation. More specifically, the BNL grant was directed at evaluating the extend of radiation-induced formation of peroxynitrite anion (ONOO) in the tanks and its possible use in was incorporated as a subcontract EMSP 73824, but was later changed to an independent grant to avoid unnecessary duplication of administrative support at both WSU and BNL.

  3. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton J. [U.S. Department of Energy, Office of River Protection, Post Office Box 550, Richland, Washington 99352 (United States); Kacich, Richard M. [Bechtel National, Inc., 2435 Stevens Center Place, Richland, Washington 99354 (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Post Office Box 850, Richland, Washington 99352 (United States)

    2013-07-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines

  4. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  5. Value-based performance measures for Hanford Tank Waste Remedition System (TWRS) Program

    Energy Technology Data Exchange (ETDEWEB)

    Keeney, R.L.; von Winterfeldt, D.

    1996-01-01

    The Tank Waste Remediation Systems (TWRS) Program is responsible for the safe storage, retrieval, treatment, and preparation for disposal of high-level waste currently stored in underground storage tanks at the Hanford site in Richland. The TWRS program has adopted a logical approach to decision making that is based on systems engineering and decision analysis (Westinghouse Hanford Company, 1995). This approach involves the explicit consideration of stakeholder values and an evaluation of the TWRS alternatives in terms of these values. Such evaluations need to be consistent across decisions. Thus, an effort was undertaken to develop a consistent, quantifiable set of measures that can be used by TVVRS to assess alternatives against the stakeholder values. The measures developed also met two additional requirements: 1) the number of measure should be relatively small; and 2) performance with respect to the measures should be relatively easy to estimate.

  6. Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2005-06-03

    CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL.

  7. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  8. Caustic Recycle from Hanford Tank Waste Using Large Area NaSICON Structures (LANS)

    Energy Technology Data Exchange (ETDEWEB)

    Fountain, Matthew S.; Sevigny, Gary J.; Balagopal, S.; Bhavaraju, S.

    2009-03-31

    This report presents the results of a 5-day test of an electrochemical bench-scale apparatus using a proprietary (NAS-GY) material formulation of a (Na) Super Ion Conductor (NaSICON) membrane in a Large Area NaSICON Structures (LANS) configuration. The primary objectives of this work were to assess system performance, membrane seal integrity, and material degradation while removing Na from Group 5 and 6 tank waste from the Hanford Site.

  9. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Garth M. [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States); Saunders, Scott A. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States)

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation

  10. A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests

    Energy Technology Data Exchange (ETDEWEB)

    Thien, Mike G. [Washington River Protection Solutions, LLC, Richland, WA (United States); Barnes, Steve M. [URS, Richland, WA (United States)

    2013-01-17

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described.

  11. Glass optimization for vitrification of Hanford Site low-level tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr. [and others

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design.

  12. Comprehensive testing to measure the response of fluorocarbon rubber (FKM) to Hanford tank waste simulant

    Energy Technology Data Exchange (ETDEWEB)

    NIGREY,PAUL J.; BOLTON,DENNIS L.

    2000-02-01

    This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the authors performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 Krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposures to the waste simulant at 18, 50, and 60 C. Fluorocarbon (FKM) rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. From the analyses, they determined that FKM rubber is not a good seal material to withstand aqueous mixed wastes having similar composition to the one used in this study. They have determined that FKM rubber has limited chemical durability after exposure to gamma radiation followed by exposure to the Hanford tank simulant mixed waste at elevated temperatures above 18 C.

  13. Contaminant Release Data Package for Residual Waste in Single-Shell Hanford Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.

    2007-12-01

    The Hanford Federal Facility Agreement and Consent Order requires that a Resource Conservation and Recovery Act (RCRA) Facility Investigation report be submitted to the Washington State Department of Ecology. The RCRA Facility Investigation report will provide a detailed description of the state of knowledge needed for tank farm performance assessments. This data package provides detailed technical information about contaminant release from closed single-shell tanks necessary to support the RCRA Facility Investigation report. It was prepared by Pacific Northwest National Laboratory (PNNL) for CH2M HILL Hanford Group, Inc., which is tasked by the U.S. Department of Energy (DOE) with tank closure. This data package is a compilation of contaminant release rate data for residual waste in the four Hanford single-shell tanks (SSTs) that have been tested (C-103, C-106, C-202, and C-203). The report describes the geochemical properties of the primary contaminants of interest from the perspective of long-term risk to groundwater (uranium, technetium-99, iodine-129, chromium, transuranics, and nitrate), the occurrence of these contaminants in the residual waste, release mechanisms from the solid waste to water infiltrating the tanks in the future, and the laboratory tests conducted to measure release rates.

  14. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.

  15. Overview of Hanford Site High-Level Waste Tank Gas and Vapor Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, James L.; Mahoney, Lenna A.; Droppo, James G.; Meacham, Joseph E.

    2004-08-31

    Hanford Site processes associated with the chemical separation of plutonium from uranium and other fission products produced a variety of volatile, semivolatile, and nonvolatile organic and inorganic waste chemicals that were sent to high-level waste tanks. These chemicals have undergone and continue to undergo radiolytic and thermal reactions in the tanks to produce a wide variety of degradation reaction products. The origins of the organic wastes, the chemical reactions they undergo, and their reaction products have recently been examined by Stock (2004). Stock gives particular attention to explaining the presence of various types of volatile and semivolatile organic species identified in headspace air samples. This report complements the Stock report by examining the storage of volatile and semivolatile species in the waste, their transport through any overburden of waste to the tank headspaces, the physical phenomena affecting their concentrations in the headspaces, and their eventual release into the atmosphere above the tanks.

  16. FRACTIONAL CRYSTALLIZATION OF HANFORD SINGLE SHELL TANK (SST) WASTES FROM CONCEPT TO PILOT PLANT

    Energy Technology Data Exchange (ETDEWEB)

    GENIESSE, D.J.; NELSON, E.A.; HAMILTON, D.W.; MAJORS, J.H.; NORDAHL, T.K.

    2006-12-08

    The Hanford site has 149 underground single-shell tanks (SST) storing mostly soluble, multi-salt mixed wastes resulting from Cold War era weapons material production. These wastes must be retrieved and the salts immobilized before the tanks can be closed to comply with an overall site-closure consent order entered into by the US Department of Energy, the Environmental Protection Agency, and the State of Washington. Water will be used to retrieve the wastes and the resulting solution will be pumped to a proposed pretreatment process where a high-curie (primarily {sup 137}Cs) waste fraction will be separated from the other waste constituents. The separated waste streams will then be vitrified to allow for safe storage as an immobilized high-level waste, or low-level waste, borosilicate glass. Fractional crystallization, a common unit operation for production of industrial chemicals and pharmaceuticals, was proposed as the method to separate the salt wastes; it works by evaporating excess water until the solubilities of various species in the solution are exceeded (the solubility of a particular species depends on its concentration, temperature of the solution, and the presence of other ionic species in the solution). By establishing the proper conditions, selected pure salts can be crystallized and separated from the radioactive liquid phase. The aforementioned parameters, along with evaporation rate, proper agitation, and residence time, determine nucleation and growth kinetics and the resulting habit and size distribution of the product crystals. These crystals properties are important considerations for designing the crystallizer and solid/liquid separation equipment. A structured program was developed to (a) demonstrate that fractional crystallization could be used to pre-treat Hanford tank wastes and (b) provide data to develop a pilot plant design.

  17. Thermophysical properties of Hanford high-level tank wastes: A preliminary survey of recent data

    Energy Technology Data Exchange (ETDEWEB)

    Willingham, C.E.

    1994-03-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) involving thermophysical properties of Hanford high-level tank wastes. PNL has gathered and summarized the available information on density, viscosity, thermal conductivity, heat capacity, particle size, shear strength, and heat generation. The information was compiled from documented characterization reports of Hanford single-shell and double-shell tanks. The report summarizes the thermophysical properties of the various waste materials, the anticipated range for the various waste forms, and estimates of the variability of the measured data. The thermophysical information compiled in this study is useful as input to sensitivity and parametric studies for the Multi-Function Waste Tank Facility Project. Information from only 33 of the 177 high-level waste storage tanks was compiled. Density data are well characterized for the tanks selected in this study. It was found that the reported viscosity of the wastes varies widely and that a single value should not be used to represent viscosity for all waste. Significant variations in reported shear strength and heat generation values were also found. Very few of the tank characterization reports described information on waste heat capacity. In addition, there was no supernatant vapor pressure information reported in the waste characterization reports examined in this study. Although thermal conductivity measurements were made for a number of tanks, most of the measurements were made in 1975. Finally, particle size distribution measurements of waste in 20 tanks were compiled. The analyst must be cognizant of differences between the number and volume distributions reported for particle size.

  18. Oxidative Stability of Tc(I) Tricarbonyl Species Relevant to the Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sayandev [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hall, Gabriel B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walter, Eric D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washton, Nancy M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-17

    Technetium (Tc), which exists predominately in the liquid supernatant and salt cake fractions of the nuclear tank waste stored at the U.S. DOE Hanford Site, is one of the most difficult contaminants to dispose of and/or remediate. In the strongly alkaline environments prevalent in the tank waste, its dominant chemical form is pertechnetate (TcO4-, oxidation state +7). However, based on experimentation to-date, a significant fraction of the soluble Tc cannot be effectively separated from the wastes and may be present as a non-pertechnetate species. The presence of a non pertechnetate species significantly complicates disposition of low-activity waste (LAW), and the development of methods to either convert them to pertechnetate or to separate the non-pertechnetate species directly is needed. The challenge is the uncertainty regarding the nature and stability of the alkaline-soluble, low-valence, non pertechnetate species in the liquid tank waste. One objective of the Tc management project is to address this knowledge gap. This fiscal year (FY) 2015 report summarizes experimental work exploring the oxidative stability of model low-valence Tc(I) tricarbonyl species, derived from the [Tc(CO)3]+ moiety. These compounds are of interest due to their implied presence in several Hanford tank waste supernatants. Work in part was initiated in FY 2014, and a series of samples containing non-pertechnetate Tc generated ex situ or in situ in pseudo-Hanford tank supernatant simulant solutions was prepared and monitored for oxidation to Tc(VII) (Levitskaia et al. 2014). This experimentation continued in FY 2015, and new series of samples containing Tc(I) as [Tc(CO)3]+•Ligand was tested. The monitoring method used for these studies was a combination of 99Tc NMR and EPR spectroscopies.

  19. Strategy for product composition control in the Hanford Waste Vitrification Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M.F.; Piepel, G.F.

    1996-03-01

    The Hanford Waste Vitrification Plant (HWVP) will immobilize transuranic and high-level radioactive waste in borosilicate glass. The major objective of the Process/Product Model Development (PPMD) cost account of the Pacific Northwest Laboratory HWVP Technology Development (PHTD) Project is the development of a system for guiding control of feed slurry composition (which affects glass properties) and for checking and documenting product quality. This document lays out the broad structure of HWVP`s product composition control system, discusses five major algorithms and technical issues relevant to this system, and sketches the path of development and testing.

  20. Evaluation of no-MST operations in the SRS ARP for Hanford LAWPS

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-11-14

    The Savannah River Site (SRS) Actinide Removal Process has been processing salt waste since 2008. This process includes a filtration step in the 512-S facility. Initial operations included the addition, or strike, of monosodium titanate (MST) to remove soluble actinides and strontium. The added MST and any entrained sludge solids were then separated from the supernate by cross flow filtration. During this time, the filter operations have, on many occasions, been the bottleneck process limiting the rate of salt processing. Recently, 512-S- has started operations utilizing “No-MST” where the MST actinide removal strike was not performed and the supernate was simply pre-filtered prior to Cs removal processing. Direct filtration of decanted tank supernate, as demonstrated in 512-S, is the proposed method of operation for the Hanford Low Activity Waste Pretreatment System (LAWPS) facility. Processing decanted supernate without MST solids has been demonstrated for cross flow filtration to provide a significant improvement in production with the SRS Salt Batches 8 and 9 feed chemistries. The average filtration rate for the first 512-S batch processing cycle using No-MST has increased filtrate production by over 35% of the historical average. The increase was sustained for more than double the amount of filtrate batches processed before cleaning of the filter was necessary. While there are differences in the design of the 512-S and Hanford filter systems, the 512-S system should provide a reasonable indication of LAWPS filter performance with similar feed properties. Based on the data from the 512-S facility and with favorable feed properties, the LAWPS filter, as currently sized at over twice the size of the 512-S filter (532 square feet filtration area versus 235 square feet), has the potential to provide sustained filtrate production at the upper range of the planned LAWPS production rate of 17 gpm.

  1. Preliminary Performance Assessment for the Waste Management Area C at the Hanford Site in Southeast Washington

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Marcel P. [Washington River Protection Solutions LLC, Richland, WA (United States); Singleton, Kristin M. [Washington River Protection Solutions LLC, Richland, WA (United States); Eberlein, Susan J. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2015-01-07

    A performance assessment (PA) of Single-Shell Tank (SST) Waste Management Area C (WMA C) located at the U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington is being conducted to satisfy the requirements of the Hanford Federal Facility Agreement and Consent Order (HFFACO), as well as other Federal requirements and State-approved closure plans and permits. The WMP C PA assesses the fate, transport, and impacts of radionuclides and hazardous chemicals within residual wastes left in tanks and ancillary equipment and facilities in their assumed closed configuration and the subsequent risks to humans into the far future. The part of the PA focused on radiological impacts is being developed to meet the requirements for a closure authorization under DOE Order 435.1 that includes a waste incidental to reprocessing determination for residual wastes remaining in tanks, ancillary equipment, and facilities. An additional part of the PA will evaluate human health and environmental impacts from hazardous chemical inventories in residual wastes remaining in WMA C tanks, ancillary equipment, and facilities needed to meet the requirements for permitted closure under RCRA.

  2. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate

  3. Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyun-Shik; Um, Wooyong; Rod, Kenton A.; Serne, R. Jeffrey; Thompson, Aaron; Perdrial, Nicolas; Steefel, Carl I.; Chorover, Jon

    2011-10-01

    Leaching behavior of Sr and Cs in the vadose zone of Hanford site (WA, USA) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10-5 and 10-3 molal representative of LO- and HI-sediment, respectively) as surrogates for 90Sr and 137Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the major byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.

  4. HIGH-LEVEL WASTE FEED CERTIFICATION IN HANFORD DOUBLE-SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    THIEN MG; WELLS BE; ADAMSON DJ

    2010-01-14

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (l million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing ofHLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch-to-batch operational adjustments that reduce operating efficiency and have the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

  5. Trade study of leakage detection, monitoring, and mitigation technologies to support Hanford single-shell waste retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Hertzel, J.S.

    1996-03-01

    The U.S. Department of Energy has established the Tank Waste Remediation System to safely manage and dispose of low-level, high-level, and transuranic wastes currently stored in underground storage tanks at the Hanford Site in Eastern Washington. This report supports the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone No. M-45-08-T01 and addresses additional issues regarding single-shell tank leakage detection, monitoring, and mitigation technologies and provide an indication of the scope of leakage detection, monitoring, and mitigation activities necessary to support the Tank Waste Remedial System Initial Single-shell Tank Retrieval System project.

  6. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.

    Science.gov (United States)

    Reynolds, Jacob G; Huber, Heinz J; Cooke, Gary A; Pestovich, John A

    2014-08-15

    The United States Department of Energy Hanford Site, near Richland, Washington, USA, processed plutonium between 1944 and 1987. Fifty-six million gallons of waste of various origins remain, including waste from removing zircaloy fuel cladding using the so-called Zirflex process. The speciation of zirconium and fluoride in this waste is important because of the corrosivity and reactivity of fluoride as well as the (potentially) high density of Zr-phases. This study evaluates the solid-phase speciation of zirconium and fluoride using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Two waste samples were analyzed: one waste sample that is relatively pure zirconium cladding waste from tank 241-AW-105 and another that is a blend of zirconium cladding wastes and other high-level wastes from tank 241-C-104. Villiaumite (NaF) was found to be the dominant fluoride species in the cladding waste and natrophosphate (Na7F[PO4]2 · 19H2O) was the dominant species in the blended waste. Most zirconium was present as a sub-micron amorphous Na-Zr-O phase in the cladding waste and a Na-Al-Zr-O phase in the blended waste. Some zirconium was present in both tanks as either rounded or elongated crystalline needles of Na-bearing ZrO2 that are up to 200 μm in length. These results provide waste process planners the speciation data needed to develop disposal processes for this waste.

  7. Assessment of concentration mechanisms for organic wastes in underground storage tanks at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.A.; Burger, L.L.; Nelson, D.A.; Ryan, J.L. (Pacific Northwest Lab., Richland, WA (United States)); Zollars, R.L. (Washington State Univ., Pullman, WA (United States))

    1992-09-01

    Pacific Northwest Laboratory (PNL) has conducted an initial conservative evaluation of physical and chemical processes that could lead to significant localized concentrations of organic waste constituents in the Hanford underground storage tanks (USTs). This evaluation was part of ongoing studies at Hanford to assess potential safety risks associated with USTs containing organics. Organics in the tanks could pose a potential problem if localized concentrations are high enough to propagate combustion and are in sufficient quantity to produce a large heat and/or gas release if in contact with a suitable oxidant. The major sources of oxidants are oxygen in the overhead gas space of the tanks and sodium nitrate and nitrite either as salt cake solids or dissolved in the supernatant and interstitial liquids.

  8. Proposed Occupational Exposure Limits for Non-Carcinogenic Hanford Waste Tank Vapor Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Poet, Torka S.; Timchalk, Chuck

    2006-03-24

    A large number of volatile chemicals have been identified in the headspaces of tanks used to store mixed chemical and radioactive waste at the U.S. Department of Energy (DOE) Hanford Site, and there is concern that vapor releases from the tanks may be hazardous to workers. Contractually established occupational exposure limits (OELs) established by the Occupational Safety and Health Administration (OSHA) and American Conference of Governmental Industrial Hygienists (ACGIH) do not exist for all chemicals of interest. To address the need for worker exposure guidelines for those chemicals that lack OSHA or ACGIH OELs, a procedure for assigning Acceptable Occupational Exposure Limits (AOELs) for Hanford Site tank farm workers has been developed and applied to a selected group of 57 headspace chemicals.

  9. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.

  10. Materials selection for process equipment in the Hanford waste vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, M R; Jensen, G A

    1991-07-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify defense liquid high-level wastes and transuranic wastes stored at Hanford. The HWVP Functional Design Criteria (FDC) requires that materials used for fabrication of remote process equipment and piping in the facility be compatible with the expected waste stream compositions and process conditions. To satisfy FDC requirements, corrosion-resistant materials have been evaluated under simulated HWVP-specific conditions and recommendations have been made for HWVP applications. The materials recommendations provide to the project architect/engineer the best available corrosion rate information for the materials under the expected HWVP process conditions. Existing data and sound engineering judgement must be used and a solid technical basis must be developed to define an approach to selecting suitable construction materials for the HWVP. This report contains the strategy, approach, criteria, and technical basis developed for selecting materials of construction. Based on materials testing specific to HWVP and on related outside testing, this report recommends for constructing specific process equipment and identifies future testing needs to complete verification of the performance of the selected materials. 30 refs., 7 figs., 11 tabs.

  11. Ammonia in simulated Hanford double-shell tank wastes: Solubility and effects on surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Norton, J.D.; Pederson, L.R.

    1994-09-01

    Radioactive and wastes left from defense materials production activities are temporarily stored in large underground tanks at the Hanford Site in south central Washington State (Tank Waste Science Panel 1991). Some of these wastes are in the form of a thick slurry (``double-shell slurry``) containing sodium nitrate, sodium nitrite, sodium aluminate, sodium hydroxide, sodium carbonate, organic complexants and buffering agents, complexant fragments and other minor components (Herting et al. 1992a; Herting et al. 1992b; Campbell et al. 1994). As a result of thermal and radiolytic processes, a number of gases are known to be produced by some of these stored wastes, including ammonia, nitrous oxide, nitrogen, hydrogen, and methane (Babad et al. 1991; Ashby et al. 1992; Meisel et al. 1993; Ashby et al. 1993; Ashby et al. 1994; Bryan et al. 1993; US Department of Energy 1994). Before the emplacement of a mixer pump, these gases were retained in and periodically released from Tank 241-SY-101, a double-shell tank at the Hanford Site (Babad et al. 1992; US Department of Energy 1994). Gases are believed to be retained primarily in the form of bubbles attached to solid particles (Bryan, Pederson, and Scheele 1992), with very little actually dissolved in the liquid. Ammonia is an exception. The relation between the concentration of aqueous ammonia in such concentrated, caustic mixtures and the ammonia partial pressure is not well known, however.

  12. Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2006-09-01

    The CH2M HILL Hanford Group, Inc. (CH2M HILL) is producing risk/performance assessments to support the closure of single-shell tanks at the U.S. Department of Energy's Hanford Site. As part of this effort, staff at Pacific Northwest National Laboratory were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. Initial work to produce release models was conducted on residual tank sludge using pure water as the leaching agent. The results were reported in an earlier report. The decision has now been made to close the tanks after waste retrieval with a cementitious grout to minimize infiltration and maintain the physical integrity of the tanks. This report describes testing of the residual waste with a leaching solution that simulates the composition of water passing through the grout and contacting the residual waste at the bottom of the tank.

  13. Integrated DWPF Melter System (IDMS) campaign report: Hanford Waste Vitrification Plan (HWVP) process demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, N.D.

    1992-08-10

    Vitrification facilities are being developed worldwide to convert high-level nuclear waste to a durable glass form for permanent disposal. Facilities in the United States include the Department of Energy`s Defense Waste Processing Facility (DWPF) at the Savannah River Site, the Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the West Valley Demonstration Project (WVDP) at West Valley, NY. At each of these sites, highly radioactive defense waste will be vitrified to a stable borosilicate glass. The DWPF and WVDP are near physical completion while the HWVP is in the design phase. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. Because of the similarities of the DWPF and HWVP processes, the IDMS facility has also been used to characterize the processing behavior of a reference NCAW simulant. The demonstration was undertaken specifically to determine material balances, to characterize the evolution of offgas products (especially hydrogen), to determine the effects of noble metals, and to obtain general HWVP design data. The campaign was conducted from November, 1991 to February, 1992.

  14. Spectroscopic Properties of Tc(I) Tricarbonyl Species Relevant to the Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Andersen, Amity [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chatterjee, Sayandev [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hall, Gabriel B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walter, Eric D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washton, Nancy M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-04

    Technetium-99 (Tc) exists predominately in soluble forms in the liquid supernatant and salt cake fractions of the nuclear tank waste stored at the U.S. DOE Hanford Site. In the strongly alkaline environments prevalent in the tank waste, its dominant chemical form is pertechnetate (TcO4-, oxidation state +7). However, attempts to remove Tc from the Hanford tank waste using ion-exchange processes specific to TcO4- only met with limited success, particularly processing tank waste samples containing elevated concentrations of organic complexants. This suggests that a significant fraction of the soluble Tc can be present as non-pertechnetate low-valent Tc (oxidation state < +7) (non-pertechnetate). The chemical identities of these non-pertechnetate species are poorly understood. Previous analysis of the SY-101 and SY-103 tank waste samples provided strong evidence that non-pertechnetate can be comprised of [Tc(CO)3]+ complexes containing Tc in oxidation state +1 (Lukens et al. 2004). During the last two years, our team has expanded this work and demonstrated that high-ionic-strength solutions typifying tank waste supernatants promote oxidative stability of the [Tc(CO)3]+ species (Rapko et al. 2013; Levitskaia et al. 2014). It also was observed that high-ionic-strength alkaline matrices stabilize Tc(VI) and potentially Tc(IV) oxidation states, particularly in presence organic chelators, suggesting that the relevant Tc compounds can serve as important redox intermediates facilitating the reduction of Tc(VII) to Tc(I). Designing strategies for effective Tc processing, including separation and immobilization, necessitates understanding the molecular structure of these non-pertechnetate species and their identification in the actual tank waste samples. To-date, only limited information exists regarding the nature and characterization of the Tc(I), Tc(IV), and Tc(VI) species. One objective of this project is to

  15. Hanford site tank waste remediation system programmatic environmental review report

    Energy Technology Data Exchange (ETDEWEB)

    Haass, C.C.

    1998-09-03

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

  16. ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENERATION FROM HANFORD TANK WASTE BY LITHIUM HYDROTALCITE PRECIPITATION SUMMARY OF PRIOR LAB-SCALE TESTING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; GUILLOT S

    2011-01-27

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  17. Leach test of cladding removal waste grout using Hanford groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Martin, W.J.; Legore, V.L.

    1995-09-01

    This report describes laboratory experiments performed during 1986-1990 designed to produce empirical leach rate data for cladding removal waste (CRW) grout. At the completion of the laboratory work, funding was not available for report completion, and only now during final grout closeout activities is the report published. The leach rates serve as inputs to computer codes used in assessing the potential risk from the migration of waste species from disposed grout. This report discusses chemical analyses conducted on samples of CRW grout, and the results of geochemical computer code calculations that help identify mechanisms involved in the leaching process. The semi-infinite solid diffusion model was selected as the most representative model for describing leaching of grouts. The use of this model with empirically derived leach constants yields conservative predictions of waste release rates, provided no significant changes occur in the grout leach processes over long time periods. The test methods included three types of leach tests--the American Nuclear Society (ANS) 16.1 intermittent solution exchange test, a static leach test, and a once-through flow column test. The synthetic CRW used in the tests was prepared in five batches using simulated liquid waste spiked with several radionuclides: iodine ({sup 125}I), carbon ({sup 14}C), technetium ({sup 99}Tc), cesium ({sup 137}Cs), strontium ({sup 85}Sr), americium ({sup 241}Am), and plutonium ({sup 238}Pu). The grout was formed by mixing the simulated liquid waste with dry blend containing Type I and Type II Portland cement, class F fly ash, Indian Red Pottery clay, and calcium hydroxide. The mixture was allowed to set and cure at room temperature in closed containers for at least 46 days before it was tested.

  18. AX tank farm waste inventory study for the Hanford Tanks Initiative (HTI) project

    Energy Technology Data Exchange (ETDEWEB)

    Becker, D.L.

    1997-12-22

    In May of 1996, the US Department of Energy implemented a four-year demonstration project identified as the Hanford Tanks Initiative (HTI). The HTI mission is to minimize technical uncertainties and programmatic risks by conducting demonstrations to characterize and remove tank waste using technologies and methods that will be needed in the future to carry out tank waste remediation and tank farm closure at the Hanford Site. Included in the HTI scope is the development of retrieval performance evaluation criteria supporting readiness to close single-shell tanks in the future. A path forward that includes evaluation of closure basis alternatives has been outlined to support the development of retrieval performance evaluation criteria for the AX Farm, and eventual preparation of the SEIS for AX Farm closure. This report documents the results of the Task 4, Waste Inventory study performed to establish the best-basis inventory of waste contaminants for the AX Farm, provides a means of estimating future soil inventories, and provides data for estimating the nature and extent of contamination (radionuclide and chemical) resulting from residual tank waste subsequent to retrieval. Included in the report are a best-basis estimate of the existing radionuclide and chemical inventory in the AX Farm Tanks, an estimate of the nature and extent of existing radiological and chemical contamination from past leaks, a best-basis estimate of the radionuclide and chemical inventory in the AX Farm Tanks after retrieval of 90 percent, 99 percent, and 99.9 percent of the waste, and an estimate of the nature and extent of radionuclide and chemical contamination resulting from retrieval of waste for an assumed leakage from the tanks during retrieval.

  19. Determination of Erosion/Corrosion Rates in Hanford Tank Farms Radioactive Waste Transfer System Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.; Page, J. A.; Engeman, J. K.; Gunter, J. R.; Johnson, J. M.; Baide, D. G.; Cooke, G. A.; Larson, J. D.; Castleberry, J. L.; Boomer, K. D.

    2015-11-05

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy’s Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until the 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.

  20. Engineering study of the potential uses of salts from selective crystallization of Hanford tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W.

    1996-04-30

    The Clean Salt Process (CSP) is the fractional crystallization of nitrate salts from tank waste stored on the Hanford Site. This study reviews disposition options for a CSP product made from Hanford Site tank waste. These options range from public release to onsite low-level waste disposal to no action. Process, production, safety, environment, cost, schedule, and the amount of CSP material which may be used are factors considered in each option. The preferred alternative is offsite release of clean salt. Savings all be generated by excluding the material from low-level waste stabilization. Income would be received from sales of salt products. Savings and income from this alternative amount to $1,027 million, excluding the cost of CSP operations. Unless public sale of CSP products is approved, the material should be calcined. The carbonate form of the CSP could then be used as ballast in tank closure and stabilization efforts. Not including the cost of CSP operations, savings of $632 million would be realized. These savings would result from excluding the material from low-level waste stabilization and reducing purchases of chemicals for caustic recycle and stabilization and closure. Dose considerations for either alternative are favorable. No other cost-effective alternatives that were considered had the capacity to handle significant quantities of the CSP products. If CSP occurs, full-scale tank-waste stabilization could be done without building additional treatment facilities after Phase 1 (DOE 1996). Savings in capital and operating cost from this reduction in waste stabilization would be in addition to the other gains described.

  1. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1994-03-02

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

  2. Criteria for temperature monitoring in ferrocyanide waste tanks at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, K.D.; Dukelow, G.T.

    1994-09-01

    This report is relevant to the twenty underground waste storage tanks at the Hanford Site that have been identified as potentially containing a significant amount of ferrocyanide compounds. Tanks believed to contain > 1,000 gram moles of ferrocyanide have been classified as Watch List tanks. This report addresses temperature monitoring criteria for the Ferrocyanide Watch List tanks. These criteria must comply with governing regulations to ensure that safe continued storage of the tank wastes is not jeopardized. Temperature monitoring is defined in this report as the routine as the routine continuous measurement of a waste tank temperature with an output that is tied to an actively interrogated information collection system that includes an automated warning of temperature increases beyond the established limits.

  3. In situ rheology and gas volume in Hanford double-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, C.W.; Alzheimer, J.M.; Brewster, M.E.; Chen, G.; Reid, H.C.; Shepard, C.L.; Terrones, G. [Pacific Northwest National Lab., Richland, WA (United States); Mendoza, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-09-01

    This report is a detailed characterization of gas retention and release in 6 Hanford DS waste tanks. The results came from the ball rheometer and void fraction instrument in (flammable gas watch list) tanks SY-101, SY-103, AW-101, AN-103, AN-104, and AN-105 are presented. Instrument operation and derivation of data reduction methods are presented. Gas retention and release information is summarized for each tank and includes tank fill history and instrumentation, waste configuration, gas release, void fraction distribution, gas volumes, rheology, and photographs of the waste column from extruded core samples. Potential peak burn pressure is computed as a function of gas release fraction to portray the `hazard signature` of each tank. It is shown that two tanks remain well below the maximum allowable pressure, even if the entire gas content were released and ignited, and that none of the others present a hazard with their present gas release behavior.

  4. Demonstrating compliance with WAPS 1.3 in the Hanford waste vitrification plant process

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M.F.; Piepel, G.F.; Simpson, D.B.

    1996-03-01

    The high-level waste (HLW) vitrification plant at the Hanford Site was being designed to immobilize transuranic and high-level radioactive waste in borosilicate glass. This document describes the statistical procedure to be used in verifying compliance with requirements imposed by Section 1.3 of the Waste Acceptance Product Specifications (WAPS, USDOE 1993). WAPS 1.3 is a specification for ``product consistency,`` as measured by the Product Consistency Test (PCT, Jantzen 1992b), for each of three elements: lithium, sodium, and boron. Properties of a process batch and the resulting glass are largely determined by the composition of the feed material. Empirical models are being developed to estimate some property values, including PCT results, from data on feed composition. These models will be used in conjunction with measurements of feed composition to control the HLW vitrification process and product.

  5. Field lysimeter studies for performance evaluation of grouted Hanford defense wastes

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Serne, R.J.; LeGore, V.L.

    1995-02-01

    The Grout Waste Test Facility (GWTF) consisted of four large field lysimeters designed to test the leaching and migration rates of grout-solidified low-level radioactive wastes generated by Hanford Site operations. Each lysimeter was an 8-m-deep by 2-media closed-bottom caisson that was placed in the ground such that the uppermost rim remained just above grade. Two of these lysimeters were used; the other two remained empty. The two lysimeters that were used (A-1 and B-1) were backfilled with a two-layer soil profile representative of the proposed grout disposal site. The proposed grout disposal site (termed the Grout Treatment Facility Landfill) is located immediately east of the Hanford Site`s 200 East Area. This soil profile consisted of a coarse sand into which the grout waste forms were placed and covered by 4 m of a very fine sand. The A-1 lysimeter was backfilled in March 1985, with a grout-solidified phosphate/sulfate liquid waste from N Reactor decontamination and ion exchange resin regeneration. The B-1 lysimeter was backfilled in September 1985 and received a grout-solidified simulated cladding removal waste representative of waste generated from fuel reprocessing operations at the head end of the Plutonium Uranium Extraction (PUREX) plant. Routine monitoring and leachate collection activities were conducted for over three years, terminating in January 1989. Drainage was collected sporadically between January 1989 and December 1992. Decontamination and decommissioning of these lysimeters during the summer of 1994, confirmed the presence of a 15 to 20-cm-long hairline crack in one of the bottom plate welds. This report discusses the design and construction of the GWTF, presents the routine data collected from this facility through January 1989 and subsequent data collected sporadically between 1989 and 1993, and provides a brief discussion concerning preliminary interpretation of the results.

  6. Distributions of 12 elements on 64 absorbers from simulated Hanford Neutralized Current Acid Waste (NCAW)

    Energy Technology Data Exchange (ETDEWEB)

    Svitra, Z.V.; Bowen, S.M. [Los Alamos National Lab., NM (United States); Marsh, S.F. [Sandia National Labs., Albuquerque, NM (United States)

    1994-12-01

    As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 64 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford neutralized current acid waste (NCAW) (pH 14.2). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Cs, Sr, Tc, and Y) and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 768 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2304 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing NCAW solutions.

  7. Probabilistic safety assessment for Hanford high-level waste tank 241-SY-101

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W. [Los Alamos National Lab., NM (United States); Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J. [PLG, Inc., Newport Beach, CA (United States)

    1994-05-01

    Los Alamos National Laboratory (Los Alamos) is performing a comprehensive probabilistic safety assessment (PSA), which will include consideration of external events for the 18 tank farms at the Hanford Site. This effort is sponsored by the Department of Energy (DOE/EM, EM-36). Even though the methodology described herein will be applied to the entire tank farm, this report focuses only on the risk from the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases ({open_quotes}burps{close_quotes}) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed first because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is being conducted in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. At the Hanford Site there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/salt cake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is about 60 million gal., which contains approximately 120 million Ci of radioactivity.

  8. Laboratory leach tests of phosphate/sulfate waste grout and leachate adsorption tests using Hanford sediment

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Martin, W.J.; McLaurine, S.B.; Airhart, S.P.; LeGore, V.L.; Treat, R.L.

    1987-12-01

    An assessment of the long-term risks posed by grout disposal at Hanford requires data on the ability of grout to resist leaching of waste species contained in the grout via contact with water that percolates through the ground. Additionally, data are needed on the ability of Hanford sediment (soil) surrounding the grout and concrete vault to retard migration of any wastes released from the grout. This report describes specific laboratory experiments that are producing empirical leach rate data and leachate-sediment adsorption data for Phosphate-Sulfate Waste (PSW) grout. The leach rate and adsorption values serve as inputs to computer codes used to forecast potential risk resulting from the use of ground water containing leached species. In addition, the report discusses other chemical analyses and geochemical computer code calculations that were used to identify mechanisms that control leach rates and adsorption potential. Knowledge of the controlling chemical and physical processes provides technical defensibility for using the empirical laboratory data to extrapolate the performance of the actual grout disposal system to the long time periods of interest. 59 refs., 83 figs., 18 tabs.

  9. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.; Barnes, T. J.; Duncan, K. G.

    2015-01-07

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service following deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.

  10. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-07-09

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  11. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  12. DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

    2011-01-13

    Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

  13. Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms

    Energy Technology Data Exchange (ETDEWEB)

    Aurah, Mirwaise Y.; Roberts, Mark A.

    2013-12-12

    Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

  14. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. (Ebasco Services, Inc., Bellevue, WA (USA))

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

  15. Static internal pressure capacity of Hanford Single-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Julyk, L.J.

    1994-07-19

    Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability.

  16. Chemical compatibility study of Cooley L18KU, Herculite, and Elephant Mat with Hanford tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, J.E.

    1998-06-23

    An independent chemical compatibility review of various wrapping and absorbent/padding materials was conducted to evaluate resistance to chemicals and constituents present in liquid waste from the Hanford underground tanks. These materials will be used to wrap long-length contaminated equipment when such equipment is removed from the tanks and prepared for transportation and subsequent disposal or storage. The materials studied were Cooley L18KU, Herculite, and Elephant Mat. The study concludes that these materials are appropriate for use in this application.

  17. Soil weight (lbf/ft{sup 3}) at Hanford waste storage locations (2 volumes)

    Energy Technology Data Exchange (ETDEWEB)

    Pianka, E.W.

    1994-12-01

    Hanford Reservation waste storage tanks are fabricated in accordance with approved construction specifications. After an underground tank has been constructed in the excavation prepared for it, soil is place around the tank and compacted by an approved compaction procedure. To ensure compliance with the construction specifications, measurements of the soil compaction are taken by QA inspectors using test methods based on American Society for the Testing and Materials (ASTM) standards. Soil compaction tests data taken for the 241AP, 241AN, and 241AW tank farms constructed between 1978 and 1986 are included. The individual data values have been numerically processed to obtain average soil density values for each of these tank farms.

  18. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  19. Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cooley, Scott K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-24

    This report discusses the development of an experimental design for the initial phase of the Hanford low-activity waste (LAW) enhanced glass study. This report is based on a manuscript written for an applied statistics journal. Appendices A, B, and E include additional information relevant to the LAW enhanced glass experimental design that is not included in the journal manuscript. The glass composition experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC involving 15 LAW glass components. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this report. One of the glass components, SO3, has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO3 solubility limit had previously been modeled by a partial quadratic mixture model expressed in the relative proportions of the 14 other components. The partial quadratic mixture model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This report describes how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study. A layered design consists of points on an outer layer, and inner layer, and a center point. There were 18 outer-layer glasses chosen using optimal experimental design software to augment 147 existing glass compositions that were within the LAW glass composition experimental region. Then 13 inner-layer glasses were chosen with the software to augment the existing and outer

  20. Vitrification and Testing of Hanford Pretreated Low Activity Waste.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary Lynn L.(BATTELLE (PACIFIC NW LAB)); Smith, Harry D.(BATTELLE (PACIFIC NW LAB)); Schweiger, Michael J.(BATTELLE (PACIFIC NW LAB)); Piepel, Gregory F.(BATTELLE (PACIFIC NW LAB)); Gary L. Smith, S.K. Sundaram, and Dane R. Spearing

    2002-04-01

    Actual pretreated LAW samples were vitrified to demonstrate the RPP-WTP projects ability to satisfy the LAW product ORP Phase B-1 contract requirements concerning, chemical and radionuclide reporting, waste loading, identification and quantification of crystalline and non-crystalline phases, and waste form leachability. Chemical compositions of two LAW glasses (i.e. elements (excluding oxygen) present in concentrations greater than 0.5 percent by weight) were measured using KOH and Na2O2 fusion preparation procedures. The measured wt% sodium oxide content for the AW-101 and AN-107 glasses are 17.7 and 18.3 respectively; however, it is argued herein that process knowledge, i.e. the target sodium oxide content, is better than the analytical measurement. Therefore for both LAW glasses the target oxide loading for sodium of 20 wt% is accepted. At these levels the glass meets or exceeds both the RPP-WTP glass specification and the DOE ORG contract requirement for waste sodium loading. The concentrations of 137Cs, 90Sr, 99Tc and transuranic (TRU) radionuclides for AW-101 and AN-107 are: (1) 0.231 and 0.292 Ci/m3, 0.435 and 0.005 Ci/m3, 0.019 and 0.129 Ci/m3, and< 0.16 and< 2.6 nCi/g, respectively. The ORP contract criteria for 137Cs, 90Sr and TRU (shall be less than 3 Ci/m3, 20 Ci/m3, and 100 nCi/g, respectively) are met in both glasses. The ORP contract criteria for 99Tc (shall be less than 0.1 Ci/m3) is met explicitly by AW-101 and will be met for the AN-107 glass by averaging its 99Tc content over the previous LAW glasses produced to meet the contract. After canister centerline cooling, no crystals were observed in the AW-101 and AN-107 glasses by XRD, optical examination and SEM analysis. The normalized PCT release rates of sodium, silicon, and boron at both 40 and 90 C from the AW-101 and AN-107 glasses are less than 2.0 g/m2 the ORP contract criteria.

  1. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  2. Performance Assessment Monitoring Plan for the Hanford Site Low Level Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    SONNICHSEN, J.C.

    2000-11-15

    As directed by the U.S. Department of Energy (DOE), Richland Operations Office (DOE-RL), Fluor Hanford, Inc. will implement the requirements of DOE Order 435.1, Radioactive Waste Management, as the requirements relate to the continued operation of the low-level waste disposal facilities on the Hanford Site. DOE Order 435.1 requires a disposal authorization statement authorizing operation (or continued operation) of a low-level waste disposal facility. The objective of this Order is to ensure that all DOE radioactive waste is managed in a manner that protects the environment and personnel and public health and safety. The manual (DOE Order 435.1 Manual) implementing the Order states that a disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980 documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility. Failure to obtain a disposal authorization statement shall result in shutdown of an operational disposal facility. In fulfillment of the requirements of DOE Order 435.1, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area and the 200 West Area Low-Level Burial Grounds. The disposal authorization statement constitutes approval of the performance assessment and composite analysis, authorizes operation of the facility, and includes conditions that the disposal facility must meet. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area Low-Level Burial Grounds be written and approved by the DOE-RL. The monitoring plan is to be updated and implemented within 1 year following issuance of the disposal authorization statement to

  3. Preliminary Assessment of the Hanford Tank Waste Feed Acceptance and Product Qualification Programs

    Energy Technology Data Exchange (ETDEWEB)

    Herman, C. C.; Adamson, Duane J.; Herman, D. T.; Peeler, David K.; Poirier, Micheal R.; Reboul, S. H.; Stone, M. E.; Peterson, Reid A.; Chun, Jaehun; Fort, James A.; Vienna, John D.; Wells, Beric E.

    2013-04-01

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Savannah River National Laboratory (SRNL) and Pacific Northwest National Laboratory (PNNL) have been chartered to implement a science and technology program addressing Hanford Tank waste feed acceptance and product qualification. As a first step, the laboratories examined the technical risks and uncertainties associated with the planned waste feed acceptance and qualification testing for Hanford tank wastes. Science and technology gaps were identified for work associated with 1) feed criteria development with emphasis on identifying the feed properties and the process requirements, 2) the Tank Waste Treatment and Immobilization Plant (WTP) process qualification program, and 3) the WTP HLW glass product qualification program. Opportunities for streamlining the accetpance and qualification programs were also considered in the gap assessment. Technical approaches to address the science and technology gaps and/or implement the opportunities were identified. These approaches will be further refined and developed as strong integrated teams of researchers from national laboratories, contractors, industry, and academia are brought together to provide the best science and technology solutions. Pursuing the identified approaches will have immediate and long-term benefits to DOE in reducing risks and uncertainties associated with tank waste removal and preparation, transfers from the tank farm to the WTP, processing within the WTP Pretreatment Facility, and in producing qualified HLW glass products. Additionally, implementation of the identified opportunities provides the potential for long-term cost savings given the anticipated

  4. TESTING OF THE SPINTEK ROTARY MICROFILTER USING ACTUAL HANFORD WASTE SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    HUBER HJ

    2010-04-13

    The SpinTek rotary microfilter was tested on actual Hanford tank waste. The samples were a composite of archived Tank 241-AN-105 material and a sample representing single-shell tanks (SST). Simulants of the two samples have been used in non-rad test runs at the 222-S laboratory and at Savannah River National Laboratory (SRNL). The results of these studies are compared in this report. Two different nominal pore sizes for the sintered steel rotating disk filter were chosen: 0.5 and 0.1 {micro}m. The results suggest that the 0.5-{micro}m disk is preferable for Hanford tank waste for the following reasons: (1) The filtrate clarity is within the same range (<<4 ntu for both disks); (2) The filtrate flux is in general higher for the 0.5-{micro}m disk; and (3) The 0.1-{micro}m disk showed a higher likelihood of fouling. The filtrate flux of the actual tank samples is generally in the range of 20-30% compared to the equivalent non-rad tests. The AN-105 slurries performed at about twice the filtrate flux of the SST slurries. The reason for this difference has not been identified. Particle size distributions in both cases are very similar; comparison of the chemical composition is not conclusive. The sole hint towards what material was stuck in the filter pore holes came from the analysis of the dried flakes from the surface of the fouled 0.1-{micro}m disk. A cleaning approach developed by SRNL personnel to deal with fouled disks has been found adaptable when using actual Hanford samples. The use of 1 M nitric acid improved the filtrate flux by approximately two times; using the same simulants as in the non-rad test runs showed that the filtrate flux was restored to 1/2 of its original amount.

  5. Performance assessment on grouted double-shell tank waste at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.H; McNair, G.W. [Pacific Northwest Lab., Richland, WA (United States); Allison, J.M. [Westinghouse Hanford Co., Richland, WA (United States)

    1989-11-01

    The low-level fraction of liquid waste stored in double-shell tanks at Hanford will be solidified in a cementitious matrix (grout) and disposed in subsurface vaults. This paper discusses activities related to the preparation of a site-specific performance assessment as required by DOE Order 5820.2A. A draft performance assessment has been prepared for the planned grout disposal system at Hanford using site-specific data. The assessment estimates the incremental increase in the dose to future populations who, after loss of institutional control at the site, use groundwater downgradient of the disposal site. Increases in nonradiological species in water from a hypothetical well are also estimated. Two-dimensional transport models were used to estimate contaminant concentrations in groundwater. Based on diffusional release from the waste package, the projected radiological dose to an individual on a hypothetical farm using water from a well at the disposal facility boundary is estimated at less than one percent of the 25 mrem/yr standard in Order 5820.2. Technetium accounted for about 95% of the dose. Nitrate was the principle chemical contaminant at 0.3% to 0.5% of apportioned drinking water standards. Sensitivity studies on various parameters are in progress. This performance assessment will be updated as additional data become available.

  6. Probability, consequences, and mitigation for lightning strikes of Hanford high level waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Zach, J.J.

    1996-06-05

    The purpose of this report is to summarize selected lightning issues concerning the Hanford Waste Tanks. These issues include the probability of a lightning discharge striking the area immediately adjacent to a tank including a riser, the consequences of significant energy deposition from a lightning strike in a tank, and mitigating actions that have been or are being taken. The major conclusion of this report is that the probability of a lightning strike deposition sufficient energy in a tank to cause an effect on employees or the public is unlikely;but there are insufficient, quantitative data on the tanks and waste to prove that. Protection, such as grounding of risers and air terminals on existing light poles, is recommended.

  7. Probability, consequences, and mitigation for lightning strikes to Hanford site high-level waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Zach, J.J.

    1996-08-01

    The purpose of this report is to summarize selected lightning issues concerning the Hanford Waste Tanks. These issues include the probability of lightning discharge striking the area immediately adjacent to a tank including a riser, the consequences of significant energy deposition from a lightning strike in a tank, and mitigating actions that have been or are being taken. The major conclusion of this report is that the probability of a lightning strike depositing sufficient energy in a tank to cause an effect on employees or the public is unlikely;but there are insufficient, quantitative data on the tanks and waste to prove that. Protection, such as grounding of risers and air terminals on existing light poles, is recommended.

  8. GTS Duratek, phase I Hanford low-level waste melter tests: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, W.C.

    1995-10-26

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense waste stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the final report on testing performed by GTS Duratek Inc. in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The report contains description of the tests, observations, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. The document also contains summaries of the melter offgas reports issued as separate documents for the 100 kg melter (WHC-SD-WM-VI-028) and for the 1000 kg melter (WHC-SD-WM-VI-029).

  9. Selection of a computer code for Hanford low-level waste engineered-system performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, B.P.; Mahoney, L.A.

    1995-10-01

    Planned performance assessments for the proposed disposal of low-level waste (LLW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. Currently available computer codes were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical process expected to affect LLW glass corrosion and the mobility of radionuclides. The highest ranked computer code was found to be the ARES-CT code developed at PNL for the US Department of Energy for evaluation of and land disposal sites.

  10. Human Factors engineering criteria and design for the Hanford Waste Vitrification Plant preliminary safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Wise, J.A.; Schur, A.; Stitzel, J.C.L.

    1993-09-01

    This report provides a rationale and systematic methodology for bringing Human Factors into the safety design and operations of the Hanford Waste Vitrification Plant (HWVP). Human Factors focuses on how people perform work with tools and machine systems in designed settings. When the design of machine systems and settings take into account the capabilities and limitations of the individuals who use them, human performance can be enhanced while protecting against susceptibility to human error. The inclusion of Human Factors in the safety design of the HWVP is an essential ingredient to safe operation of the facility. The HWVP is a new construction, nonreactor nuclear facility designed to process radioactive wastes held in underground storage tanks into glass logs for permanent disposal. Its design and mission offer new opposites for implementing Human Factors while requiring some means for ensuring that the Human Factors assessments are sound, comprehensive, and appropriately directed.

  11. High-performance gamma spectroscopy for equipment retrieval from Hanford high-level nuclear waste tanks

    Science.gov (United States)

    Troyer, Gary L.; Hillesand, K. E.; Goodwin, S. G.; Kessler, S. F.; Killian, E. W.; Legare, D.; Nelson, Joseph V., Jr.; Richard, R. F.; Nordquist, E. M.

    1999-01-01

    The cleanup of high level defense nuclear waste at the Hanford site presents several progressive challenges. Among these is the removal and disposal of various components from buried active waste tanks to allow new equipment insertion or hazards mitigation. A unique automated retrieval system at the tank provides for retrieval, high pressure washing, inventory measurement, and containment for disposal. Key to the inventory measurement is a three detector HPGe high performance gamma spectroscopy system capable of recovering data at up to ninety per cent saturation (200,000 counts per second). Data recovery is based on a unique embedded electronic pulser and specialized software to report the inventory. Each of the detectors have different shielding specified through Monte Carlo simulation with the MCNP program. This shielding provides performance over a dynamic range of eight orders of magnitude. System description, calibration issues and operational experiences are discussed.

  12. Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Price, S.M.

    1997-04-30

    This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.

  13. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline

  14. Ostwald Ripening and Its Effect on PuO2 Particle Size in Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.

    2011-09-29

    Between 1944 and 1989, the Hanford Site produced 60 percent (54.5 metric tons) of the United States weapons plutonium and produced an additional 12.9 metric tons of fuels-grade plutonium. High activity wastes, including plutonium lost from the separations processes used to isolate the plutonium, were discharged to underground storage tanks during these operations. Plutonium in the Hanford tank farms is estimated to be {approx}700 kg but may be up to {approx}1000 kg. Despite these apparent large quantities, the average plutonium concentration in the {approx}200 million liter tank waste volume is only about 0.003 grams per liter ({approx}0.0002 wt%). The plutonium is largely associated with low solubility metal hydroxide/oxide sludges where its low concentration and intimate mixture with neutron-absorbing elements (e.g., iron) are credited in nuclear criticality safety. However, concerns have been expressed that plutonium, in the form of plutonium hydrous oxide, PuO{sub 2} {center_dot} xH{sub 2}O, could undergo sufficient crystal growth through Ostwald ripening in the alkaline tank waste to potentially be separable from neutron absorbing constituents by settling or sedimentation. It was found that plutonium that entered the alkaline tank waste by precipitation through neutralization from acid solution is initially present as 2- to 3-nm (0.002- to 0.003-{mu}m) scale PuO{sub 2} {center_dot} xH{sub 2}O crystallite particles and grows from that point at exceedingly slow rates, posing no risk to physical segregation. These conclusions are reached by both general considerations of Ostwald ripening and specific observations of the behaviors of PuO{sub 2} and PuO{sub 2} {center_dot} xH{sub 2}O upon aging in alkaline solution.

  15. Simulant Development for Hanford Double-Shell Tank Mixing and Waste Feed Delivery Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Tran, Diana N.; Buchmiller, William C.

    2012-09-24

    The U.S. Department of Energy Office of River Projection manages the River Protection Project, which has the mission to retrieve and treat the Hanford tank waste for disposal and close the tank farms (Certa et al. 2011). Washington River Protection Solutions, LLC (WRPS) is responsible for a primary objective of this mission which is to retrieve and transfer tank waste to the Hanford Waste Treatment and Immobilization Plant (WTP). A mixing and sampling program with four separate demonstrations is currently being conducted to support this objective and also to support activities in a plan for addressing safety concerns identified by the Defense Nuclear Facilities Safety Board related to the ability of the WTP to mix, sample, and transfer fast settling particles. Previous studies have documented the objectives, criteria, and selection of non-radioactive simulants for these four demonstrations. The identified simulants include Newtonian suspending liquids with densities and viscosities that span the range expected in waste feed tanks. The identified simulants also include non-Newtonian slurries with Bingham yield stress values that span a range that is expected to bound the Bingham yield stress in the feed delivery tanks. The previous studies identified candidate materials for the Newtonian and non-Newtonian suspending fluids, but did not provide specific recipes for obtaining the target properties and information was not available to evaluate the compatibility of the fluids and particles or the potential for salt precipitation at lower temperatures. The purpose of this study is to prepare small batches of simulants in advance of the demonstrations to determine specific simulant recipes, to evaluate the compatibility of the liquids and particles, and to determine if the simulants are stable for the potential range of test temperatures. The objective of the testing, which is focused primarily on the Newtonian and non-Newtonian fluids, is to determine the composition of

  16. Simulant Development for Hanford Double-Shell Tank Mixing and Waste Feed Delivery Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Tran, Diana N.; Buchmiller, William C.

    2012-09-24

    The U.S. Department of Energy Office of River Projection manages the River Protection Project, which has the mission to retrieve and treat the Hanford tank waste for disposal and close the tank farms (Certa et al. 2011). Washington River Protection Solutions, LLC (WRPS) is responsible for a primary objective of this mission which is to retrieve and transfer tank waste to the Hanford Waste Treatment and Immobilization Plant (WTP). A mixing and sampling program with four separate demonstrations is currently being conducted to support this objective and also to support activities in a plan for addressing safety concerns identified by the Defense Nuclear Facilities Safety Board related to the ability of the WTP to mix, sample, and transfer fast settling particles. Previous studies have documented the objectives, criteria, and selection of non-radioactive simulants for these four demonstrations. The identified simulants include Newtonian suspending liquids with densities and viscosities that span the range expected in waste feed tanks. The identified simulants also include non-Newtonian slurries with Bingham yield stress values that span a range that is expected to bound the Bingham yield stress in the feed delivery tanks. The previous studies identified candidate materials for the Newtonian and non-Newtonian suspending fluids, but did not provide specific recipes for obtaining the target properties and information was not available to evaluate the compatibility of the fluids and particles or the potential for salt precipitation at lower temperatures. The purpose of this study is to prepare small batches of simulants in advance of the demonstrations to determine specific simulant recipes, to evaluate the compatibility of the liquids and particles, and to determine if the simulants are stable for the potential range of test temperatures. The objective of the testing, which is focused primarily on the Newtonian and non-Newtonian fluids, is to determine the composition of

  17. Response of ethylene propylene diene monomer rubber (EPDM) to simulant Hanford tank waste

    Energy Technology Data Exchange (ETDEWEB)

    NIGREY,PAUL J.

    2000-02-01

    This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the author performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposures to the waste simulant at 18, 50, and 60 C. Ethylene propylene diene monomer (EPDM) rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. The author has determined that EPDM rubber has excellent resistance to radiation, this simulant, and a combination of these factors. These results suggest that EPDM is an excellent seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.

  18. Comprehensive testing to measure the response of butyl rubber to Hanford tank waste simulant

    Energy Technology Data Exchange (ETDEWEB)

    NIGREY,PAUL J.

    2000-05-01

    This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the authors performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposures to the waste simulant at 18, 50, and 60 C. Butyl rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. From the analyses, they determined that butyl rubber has relatively good resistance to radiation, this simulant, and a combination of these factors. These results suggest that butyl rubber is a relatively good seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.

  19. Statements of work for FY 1996 to 2001 for the Hanford Low-Level Tank Waste Performance Assessment Project

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1995-06-07

    The statements of work for each activity and task of the Hanford Low-Level Tank Waste Performance Assessment project are given for the fiscal years 1996 through 2001. The end product of this program is approval of a final performance assessment by the Department of Energy in the year 2000.

  20. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    1999-09-22

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant.

  1. Minutes of the Tank Waste Science Panel meeting, November 11--13, 1991. Hanford Tank Safety Project

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, D.M. [comp.

    1992-04-01

    The sixth meeting of the Tank Waste Science Panel was held November 11--13, 1991, in Pasco and Richland, Washington. Participating scientists presented the results of recent work on various aspects of issues relating to the generation and release of gases from Tank 241-SY-101 and the presence of ferrocyanide in other tanks at Hanford. Results are discussed.

  2. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  3. Interim Status Groundwater Monitoring Plan for Low-Level Waste Management Areas 1 to 4, RCRA Facilities, Hanford,Washington

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P Evan

    2004-10-25

    This document describes the monitoring plan to meet the requirements for interim status groundwater monitoring at Hanford Site low-level waste burial grounds as specified by 40 CFR 265, incorporated by reference in WAC 173-303-400. The monitoring will take place at four separate low-level waste management areas in the 200-West and 200-East Areas, in the central part of the site. This plan replaces the previous monitoring plan.

  4. Technetium Incorporation in Glass for the Hanford Tank Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Kim, Dong Sang

    2015-01-14

    A priority of the United States Department of Energy (U.S. DOE) is to dispose of nuclear wastes accumulated in 177 underground tanks at the Hanford Nuclear Reservation in eastern Washington State. These nuclear wastes date from the Manhattan Project of World War II and from plutonium production during the Cold War. The DOE plans to separate high-level radioactive wastes from low activity wastes and to treat each of the waste streams by vitrification (immobilization of the nuclides in glass) for disposal. The immobilized low-activity waste will be disposed of here at Hanford and the immobilized high-level waste at the national geologic repository. Included in the inventory of highly radioactive wastes is large volumes of 99Tc (~9 × 10E2 TBq or ~2.5 × 104 Ci or ~1500 kg). A problem facing safe disposal of Tc-bearing wastes is the processing of waste feed into in a chemically durable waste form. Technetium incorporates poorly into silicate glass in traditional glass melting. It readily evaporates during melting of glass feeds and out of the molten glass, leading to a spectrum of high-to-low retention (ca. 20 to 80%) in the cooled glass product. DOE-ORP currently has a program at Pacific Northwest National Laboratory (PNNL), in the Department of Materials Science and Engineering at Rutgers University and in the School of Mechanical and Materials Engineering at Washington State University that seeks to understand aspects of Tc retention by means of studying Tc partitioning, molten salt formation, volatilization pathways, and cold cap chemistry. Another problem involves the stability of Tc in glass in both the national geologic repository and on-site disposal after it has been immobilized. The major environmental concern with 99Tc is its high mobility in addition to a long half-life (2.1×105 yrs). The pertechnetate ion (TcO4-) is highly soluble in water and does not adsorb well onto the surface of minerals and so migrates nearly at the same velocity as groundwater

  5. Reengineering Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Badalamente, R.V.; Carson, M.L.; Rhoads, R.E.

    1995-03-01

    The Department of Energy Richland Operations Office is in the process of reengineering its Hanford Site operations. There is a need to fundamentally rethink and redesign environmental restoration and waste management processes to achieve dramatic improvements in the quality, cost-effectiveness, and timeliness of the environmental services and products that make cleanup possible. Hanford is facing the challenge of reengineering in a complex environment in which major processes cuts across multiple government and contractor organizations and a variety of stakeholders and regulators have a great influence on cleanup activities. By doing the upfront work necessary to allow effective reengineering, Hanford is increasing the probability of its success.

  6. A Brief Review of Filtration Studies for Waste Treatment at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Richard C.; Schonewill, Philip P.; Shimskey, Rick W.; Peterson, Reid A.

    2010-12-01

    This document completes the requirements of Milestone 1-2, PNNL Draft Literature Review, discussed in the scope of work outlined in the EM-31 Support Project task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to enhance filtration and cleaning efficiencies, thereby increasing process throughput and reducing the sodium demand (through acid neutralization). Developing the processes for fulfilling the cleaning/backpulsing requirements will result in more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby increasing throughput by limiting cleaning cycles. The purpose of this document is to summarize Pacific Northwest National Laboratory’s (PNNL’s) literature review of historical filtration testing at the laboratory and of testing found in peer-reviewed journals. Eventually, the contents of this document will be merged with a literature review by SRS to produce a summary report for DOE of the results of previous filtration testing at the laboratories and the types of testing that still need to be completed to address the questions about improved filtration performance at WTP and SRS. To this end, this report presents 1) a review of the current state of crossflow filtration knowledge available in the peer-reviewed literature, 2) a detailed review of PNNL-related filtration studies specific to the Hanford site, and 3) an overview of current waste filtration models developed by PNNL and suggested avenues for future model development.

  7. Laboratory Demonstration of the Pretreatment Process with Caustic and Oxidative Leaching Using Actual Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.

    2009-01-01

    This report describes the bench-scale pretreatment processing of actual tank waste materials through the entire baseline WTP pretreatment flowsheet in an effort to demonstrate the efficacy of the defined leaching processes on actual Hanford tank waste sludge and the potential impacts on downstream pretreatment processing. The test material was a combination of reduction oxidation (REDOX) tank waste composited materials containing aluminum primarily in the form of boehmite and dissolved S saltcake containing Cr(III)-rich entrained solids. The pretreatment processing steps tested included • caustic leaching for Al removal • solids crossflow filtration through the cell unit filter (CUF) • stepwise solids washing using decreasing concentrations of sodium hydroxide with filtration through the CUF • oxidative leaching using sodium permanganate for removing Cr • solids filtration with the CUF • follow-on solids washing and filtration through the CUF • ion exchange processing for Cs removal • evaporation processing of waste stream recycle for volume reduction • combination of the evaporated product with dissolved saltcake. The effectiveness of each process step was evaluated by following the mass balance of key components (such as Al, B, Cd, Cr, Pu, Ni, Mn, and Fe), demonstrating component (Al, Cr, Cs) removal, demonstrating filterability by evaluating filter flux rates under various processing conditions (transmembrane pressure, crossflow velocities, wt% undissolved solids, and PSD) and filter fouling, and identifying potential issues for WTP. The filterability was reported separately (Shimskey et al. 2008) and is not repeated herein.

  8. Quality assurance program description: Hanford Waste Vitrification Plant, Part 1. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This document describes the Department of Energy`s Richland Field Office (DOE-RL) quality assurance (QA) program for the processing of high-level waste as well as the Vitrification Project Quality Assurance Program for the design and construction of the Hanford Waste Vitrification Plant (HWVP). It also identifies and describes the planned activities that constitute the required quality assurance program for the HWVP. This program applies to the broad scope of quality-affecting activities associated with the overall HWVP Facility. Quality-affecting activities include designing, purchasing, fabricating, handling, shipping, storing, cleaning, erecting, installing, inspecting, testing, maintaining, repairing, and modifying. Also included are the development, qualification, and production of waste forms which may be safely used to dispose of high-level radioactive waste resulting from national defense activities. The HWVP QA program is made up of many constituent programs that are being implemented by the participating organizations. This Quality Assurance program description is intended to outline and define the scope and application of the major programs that make up the HWVP QA program. It provides a means by which the overall program can be managed and directed to achieve its objectives. Subsequent parts of this description will identify the program`s objectives, its scope, application, and structure.

  9. Clean option: An alternative strategy for Hanford Tank Waste Remediation. Volume 2, Detailed description of first example flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, J.L.

    1993-09-01

    Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and waste minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.

  10. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    WEBER RA

    2009-01-16

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as

  11. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    FOWLER KD

    2007-12-27

    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient

  12. Westinghouse Hanford Company effluent discharges and solid waste management report for calendar year 1989: 200/600 Areas

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.J.; P' Pool, R.K.; Thomas, S.P.

    1990-05-01

    This report presents calendar year 1989 radiological and nonradiological effluent discharge data from facilities in the 200 Areas and the 600 Area of the Hanford Site. Both summary and detailed effluent data are presented. In addition, radioactive and nonradioactive solid waste storage and disposal data for calendar year 1989 are furnished. Where appropriate, comparisons to previous years are made. The intent of the report is to demonstrate compliance of Westinghouse Hanford Company-operated facilities with administrative control values for radioactive constituents and applicable guidelines and standards (including Federal permit limits) for nonradioactive constituents. 11 refs., 20 tabs.

  13. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

  14. Statement of Work (SOW) for FY 2001 to FY 2006 for the Hanford Low Activity Tank Waste Performance Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    PUIGH, R.J.

    2000-07-25

    This document describes the tasks included in the Hanford Low-Activity Tank Waste Performance Assessment activity though the close of the project in 2028. Near-term (2001-2006) tasks are described in detail, while tasks further in the future are simply grouped by year. The major tasks are displayed in the table provided. The major goals of the performance assessment activity are to provide the technical basis for the Department of Energy to continue to authorize the construction of disposal facilities, the onsite disposal of immobilized low-activity Hanford tank waste in those facilities, and the closure of the disposal facilities. Other significant goals are to provide the technical basis for the setting of the specifications of the immobilized waste and to support permitting of the disposal facilities.

  15. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update - 15302

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, D. J.; Johnson, J. M.

    2014-12-22

    Tank AY-102 was the first of 28 double-shell radioactive waste storage tanks constructed at the U. S. Department of Energy’s Hanford Site, near Richland, WA. The tank was completed in 1970, and entered service in 1971. In August, 2012, an accumulation of material was discovered at two sites on the floor of the annulus that separates the primary tank from the secondary liner. The material was sampled and determined to originate from the primary tank. This paper summarizes the changes in leak behavior that have occurred during the past two years, inspections to determine the capability of the secondary liner to continue safely containing the leakage, and the initial results of testing to determine the leak mechanism.

  16. A review of potential alternatives for air cleaning at the Hanford Waste Vitrification Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sehmel, G.A.

    1990-07-01

    Pacific Northwest Laboratory conducted this review in support of the Hanford Waste Vitrification Plant (HWVP) being designed by Fluor Daniel Inc. for the US Department of Energy (DOE). The literature on air cleaning systems is reviewed to identify potential air cleaning alternatives that might be included in the design of HWVP. An overview of advantages/disadvantages of the various air cleaning technologies follows. Information and references are presented for the following potential air cleaning alternatives: deep-bed glass-fiber filters (DBGF), high-efficiency particulate air filters (HEPA), remote modular filter systems, high-efficiency mist eliminators (HEME), electrostatic precipitators, and the sand filter. Selected information is summarized for systems in the United States, Belgium, Japan, and West Germany. This review addresses high-capacity air cleaning systems currently used in the nuclear industry and emphasizes recent developments. 10 refs., 9 figs., 3 tabs.

  17. TECHNOLOGY EVALUATION FOR CONDITIONING OF HANFORD TANK WASTE USING SOLIDS SEGREGATION AND SIZE REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Restivo, M.; Stone, M.; Herman, D.; Lambert, D.; Duignan, M.; SMITH, G.; WELLS, B.; LUMETTA, G.; ENDRELIN, C.; ADKINS, H.

    2014-04-15

    The Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm (HTF). The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy (DOE) facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application.

  18. Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2007-05-23

    This report was revised in May 2007 to correct values in Section 3.4.1.7, second paragraph, last sentence; 90Sr values in Tables 3.22 and 3.32; and 99Tc values Table 4.3 and in Chapter 5. In addition, the tables in Appendix F were updated to reflect corrections to the 90Sr values. The rest of the text remains unchanged from the original report issued in May 2005. CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contam¬inants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL.

  19. Unit environmental transport assessment of contaminants from Hanford`s past-practice waste sites. Hanford Remedial Action Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, G.; Buck, J.W.; Castleton, K.J. [and others

    1995-06-01

    The US Department of Energy, Richland Operations Office (DOE-RL) contracted Pacific Northwest Laboratory (PNL) to provide support to Advanced Sciences, Incorporated (ASI) in implementing tile regional no-action risk assessment in the Hanford Remedial Action Environmental Impact Statement. Researchers at PNL were charged with developing unit concentrations for soil, groundwater, surface water, and air at multiple locations within an 80-km radius from the center of tile Hanford installation. Using the Multimedia Environmental Pollutant Assessment System (MEPAS), PNL simulated (1) a unit release of one ci for each radionuclide and one kg for each chemical from contaminated soils and ponded sites, (2) transport of the contaminants in and through various environmental media and (3) exposure/risk of four exposure scenarios, outlined by the Hanford Site Baseline Remedial Action Methodology. These four scenarios include residential, recreational, industrial, and agricultural exposures. Spacially and temporally distributed environmental concentrations based on unit releases of radionuclides and chemicals were supported to ASI in support of the HRA-EIS. Risk for the four exposure scenarios, based on unit environment concentrations in air, water, and soil. were also supplied to ASI. This report outlines the procedure that was used to implement the unit transport portion of the HRA-EIS baseline risk assessment. Deliverables include unit groundwater, surface water, air, and soil concentrations at multiple locations within an 80-km radius from the center of the Hanford installation.

  20. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  1. First-order study of property/composition relationships for Hanford Waste Vitrification Plant glasses

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, G.F.; Hrma, P.R.; Bates, S.O.; Schweiger, M.J.; Smith, D.E.

    1993-01-01

    A first-order composition variability study (CVS-I) was conducted for the Hanford Waste Vitrification Plant (HWVP) program to preliminarily characterize the effects on key glass properties of variations i selected glass (waste and frit) components. The components selected were Si0{sub 2},B{sub 2}O{sub 3},A1{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O,Li{sub 2}O,CaO,MgO, and Others (all remaining waste components). A glass composition region was selected for study based on the expected range of glass compositions and the results of a previous series of scoping and solubility studies. Then, a 23-glass statistically-designed mixture experiment was conducted and data obtained for viscosity, electrical conductivity, glass transition temperature, thermal expansion, crystallinity, and durability [Materials Characterization Center (MCC-1) 28-day leach test and the 7-day Product Consistency Test (PCT)]. These data were modeled using first-order functions of composition, and the models were used to investigate the effects of the components on glass and melt properties. The CVS-I data and models will also be used to support the second-order composition variability study (CVS-II).

  2. First-order study of property/composition relationships for Hanford Waste Vitrification Plant glasses

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, G.F.; Hrma, P.R.; Bates, S.O.; Schweiger, M.J.; Smith, D.E.

    1993-01-01

    A first-order composition variability study (CVS-I) was conducted for the Hanford Waste Vitrification Plant (HWVP) program to preliminarily characterize the effects on key glass properties of variations i selected glass (waste and frit) components. The components selected were Si0[sub 2],B[sub 2]O[sub 3],A1[sub 2]O[sub 3], Fe[sub 2]O[sub 3], ZrO[sub 2], Na[sub 2]O,Li[sub 2]O,CaO,MgO, and Others (all remaining waste components). A glass composition region was selected for study based on the expected range of glass compositions and the results of a previous series of scoping and solubility studies. Then, a 23-glass statistically-designed mixture experiment was conducted and data obtained for viscosity, electrical conductivity, glass transition temperature, thermal expansion, crystallinity, and durability [Materials Characterization Center (MCC-1) 28-day leach test and the 7-day Product Consistency Test (PCT)]. These data were modeled using first-order functions of composition, and the models were used to investigate the effects of the components on glass and melt properties. The CVS-I data and models will also be used to support the second-order composition variability study (CVS-II).

  3. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    Energy Technology Data Exchange (ETDEWEB)

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  4. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates

  5. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Augmented Formulation Matrix Tests

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hansen, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Roberts, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-20

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in Washington State. The HLW will be vitrified in the HLW facility for ultimate disposal at an offsite federal repository. A portion (~35%) of the LAW will be vitrified in the LAW vitrification facility for disposal onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize all of the wastes destined for those facilities. However, a second facility will be needed for the expected volume of LAW requiring immobilization. Cast Stone, a cementitious waste form, is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. A testing program was developed in fiscal year (FY) 2012 describing in detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW. A statistically designed test matrix was used to evaluate the effects of key parameters on the properties of the Cast Stone as it is initially prepared and after curing. For the processing properties, the water-to-dry-blend mix ratio was the most significant parameter in affecting the range of values observed for each property. The single shell tank (SST) Blend simulant also showed differences in measured properties compared to the other three simulants tested. A review of the testing matrix and results indicated that an additional set of tests would be beneficial to improve the understanding of the impacts noted in the Screening

  6. Progress and future direction for the interim safe storage and disposal of Hanford high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Kinzer, J.E.; Wodrich, D.D. [Dept. of Energy, Richland, WA (United States); Bacon, R.F. [Westinghouse Hanford Company, Richland, WA (United States)] [and others

    1996-12-31

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times of budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.

  7. Continued Evaluation of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Burns, Carolyn A.; Schonewill, Philip P.; Hopkins, Derek F.; Thien, Michael G.; Wooley, Theodore A.

    2012-04-01

    Laboratory (PNNL) conducted an extensive evaluation of the ability of three ultrasonic instruments to detect critical velocity for a broad range of simulated Hanford nuclear waste streams containing particles with mean particle sizes of >50 microns. Evaluations were perform using the pipe loop at the Process Development Laboratory – East (PDL-E) at PNNL that was designed and built to evaluate the pipeline plugging issue during slurry transfer operations at the Hanford Waste Treatment Plant. In 2011 the ability of the ultrasonic PulseEcho system to detect critical velocity continued to be evaluated using the PDL-E flow loop and new simulants containing high-density particles with a mean particle size of < 15 microns. The PDL-E flow loop was modified for the 2011 testing to include a new test section that contained 5-MHz and 10-MHz ultrasonic transducers non-invasively mounted to schedule 40 pipe. The test section also contained reference instrumentation to facilitate direct comparison of the real-time PulseEcho transducer responses with experimentally observed critical velocities. This paper presents the results from the 2011 PulseEcho evaluation using a variety of simulated Hanford nuclear waste streams that were selected to encompass the expected high-level waste feed properties.

  8. Development Of A Macro-Batch Qualification Strategy For The Hanford Tank Waste Treatment And Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Connie C.

    2013-09-30

    The Savannah River National Laboratory (SRNL) has evaluated the existing waste feed qualification strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) based on experience from the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) waste qualification program. The current waste qualification programs for each of the sites are discussed in the report to provide a baseline for comparison. Recommendations on strategies are then provided that could be implemented at Hanford based on the successful Macrobatch qualification strategy utilized at SRS to reduce the risk of processing upsets or the production of a staged waste campaign that does not meet the processing requirements of the WTP. Considerations included the baseline WTP process, as well as options involving Direct High Level Waste (HLW) and Low Activity Waste (LAW) processing, and the potential use of a Tank Waste Characterization and Staging Facility (TWCSF). The main objectives of the Hanford waste feed qualification program are to demonstrate compliance with the Waste Acceptance Criteria (WAC), determine waste processability, and demonstrate unit operations at a laboratory scale. Risks to acceptability and successful implementation of this program, as compared to the DWPF Macro-Batch qualification strategy, include: Limitations of mixing/blending capability of the Hanford Tank Farm; The complexity of unit operations (i.e., multiple chemical and mechanical separations processes) involved in the WTP pretreatment qualification process; The need to account for effects of blending of LAW and HLW streams, as well as a recycle stream, within the PT unit operations; and The reliance on only a single set of unit operations demonstrations with the radioactive qualification sample. This later limitation is further complicated because of the 180-day completion requirement for all of the necessary waste feed qualification steps. The primary recommendations/changes include the

  9. High-temperature vitrification of Hanford residual-liquid waste in a continuous melter

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, S.M.

    1980-04-01

    Over 270 kg of high-temperature borosilicate glass have been produced in a series of three short-term tests in the High-Temperature Ceramic Melter vitrification system at PNL. The glass produced was formulated to vitrify simulated Hanford residual-liquid waste. The tests were designed to (1) demonstrate the feasibility of utilizing high-temperature, continuous-vitrification technology for the immobilization of the residual-liquid waste, (2) test the airlift draining technique utilized by the high-temperature melter, (3) compare glass produced in this process to residual-liquid glass produced under laboratory conditions, (4) investigate cesium volatility from the melter during waste processing, and (5) determine the maximum residual-liquid glass production rate in the high-temperature melter. The three tests with the residual-liquid composition confirmed the viability of the continuous-melting vitrification technique for the immobilization of this waste. The airlift draining technique was demonstrated in these tests and the glass produced from the melter was shown to be less porous than the laboratory-produced glass. The final glass produced from the second test was compared to a glass of the same composition produced under laboratory conditions. The comparative tests found the glasses to be indistinguishable, as the small differences in the test results fell within the precision range of the characterization testing equipment. The cesium volatility was examined in the final test. This examination showed that 0.44 wt % of the cesium (assumed to be cesium oxide) was volatilized, which translates to a volatilization rate of 115 mg/cm/sup 2/-h.

  10. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  11. Baseline Risk Assessment Supporting Closure at Waste Management Area C at the Hanford Site Washington

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Kristin M. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2015-01-07

    The Office of River Protection under the U.S. Department of Energy is pursuing closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C under the requirements of the Hanford Federal Facility Agreement and Consent Order (HFFACO). A baseline risk assessment (BRA) of current conditions is based on available characterization data and information collected at WMA C. The baseline risk assessment is being developed as a part of a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI)/Corrective Measures Study (CMS) at WMA C that is mandatory under Comprehensive Environmental Response, Compensation, and Liability Act and RCRA corrective action. The RFI/CMS is needed to identify and evaluate the hazardous chemical and radiological contamination in the vadose zone from past releases of waste from WMA C. WMA C will be under Federal ownership and control for the foreseeable future, and managed as an industrial area with restricted access and various institutional controls. The exposure scenarios evaluated under these conditions include Model Toxics Control Act (MTCA) Method C, industrial worker, maintenance and surveillance worker, construction worker, and trespasser scenarios. The BRA evaluates several unrestricted land use scenarios (residential all-pathway, MTCA Method B, and Tribal) to provide additional information for risk management. Analytical results from 13 shallow zone (0 to 15 ft. below ground surface) sampling locations were collected to evaluate human health impacts at WMA C. In addition, soil analytical data were screened against background concentrations and ecological soil screening levels to determine if soil concentrations have the potential to adversely affect ecological receptors. Analytical data from 12 groundwater monitoring wells were evaluated between 2004 and 2013. A screening of groundwater monitoring data against background concentrations and Federal maximum concentration levels was used to determine vadose zone

  12. Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)

    Energy Technology Data Exchange (ETDEWEB)

    DI Kaplan; RJ Serne

    2000-02-24

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct

  13. Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)

    Energy Technology Data Exchange (ETDEWEB)

    DI Kaplan; RJ Serne

    2000-02-24

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct

  14. ALUMINUM READINESS EVALUATION FOR ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENRATION FROM HANFORD TANK WASTE BY LITHIUM HYDROTALCITE PRECIPITATION

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; MASSIE HL

    2011-01-27

    A Technology Readiness Evaluation (TRE) performed by AREV A Federal Services, LLC (AFS) for Washington River Protection Solutions, LLC (WRPS) shows the lithium hydrotalcite (LiHT) process invented and patented (pending) by AFS has reached an overall Technology Readiness Level (TRL) of 3. The LiHT process removes aluminum and regenerates sodium hydroxide. The evaluation used test results obtained with a 2-L laboratory-scale system to validate the process and its critical technology elements (CTEs) on Hanford tank waste simulants. The testing included detailed definition and evaluation for parameters of interest and validation by comparison to analytical predictions and data quality objectives for critical subsystems. The results of the TRE would support the development of strategies to further mature the design and implementation of the LiHT process as a supplemental pretreatment option for Hanford tank waste.

  15. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter. Preliminary settling and resuspension testing

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    The full-scale, room-temperature Hanford Tank Waste Treatment and Immobilization Plant (WTP) High-Level Waste (HLW) melter riser test system was successfully operated with silicone oil and magnetite particles at a loading of 0.1 vol %. Design and construction of the system and instrumentation, and the selection and preparation of simulant materials, are briefly reviewed. Three experiments were completed. A prototypic pour rate was maintained, based on the volumetric flow rate. Settling and accumulation of magnetite particles were observed at the bottom of the riser and along the bottom of the throat after each experiment. The height of the accumulated layer at the bottom of the riser, after the first pouring experiment, approximated the expected level given the solids loading of 0.1 vol %. More detailed observations of particle resuspension and settling were made during and after the third pouring experiment. The accumulated layer of particles at the bottom of the riser appeared to be unaffected after a pouring cycle of approximately 15 minutes at the prototypic flow rate. The accumulated layer of particles along the bottom of the throat was somewhat reduced after the same pouring cycle. Review of the time-lapse recording showed that some of the settling particles flow from the riser into the throat. This may result in a thicker than expected settled layer in the throat.

  16. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter. Preliminary settling and resuspension testing

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    The full scale, room temperature Hanford Tank Waste Treatment and Immobilization Plant (WTP) High-Level Waste (HLW) melter riser test system was successfully operated with silicone oil and magnetite particles at a loading of 0.1 vol %. Design and construction of the system and instrumentation, and the selection and preparation of simulant materials, are briefly reviewed. Three experiments were completed. A prototypic pour rate was maintained, based on the volumetric flow rate. Settling and accumulation of magnetite particles were observed at the bottom of the riser and along the bottom of the throat after each experiment. The height of the accumulated layer at the bottom of the riser, after the first pouring experiment, approximated the expected level given the solids loading of 0.1 vol %. More detailed observations of particle resuspension and settling were made during and after the third pouring experiment. The accumulated layer of particles at the bottom of the riser appeared to be unaffected after a pouring cycle of approximately 15 minutes at the prototypic flow rate. The accumulated layer of particles along the bottom of the throat was somewhat reduced after the same pouring cycle. Review of the time-lapse recording showed that some of the settling particles flow from the riser into the throat. This may result in a thicker than expected settled layer in the throat.

  17. Ion Exchange Modeling Of Cesium Removal From Hanford Waste Using Spherical Resorcinol-Formaldehyde Resin

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2007-06-27

    This report discusses the expected performance of spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from alkaline Hanford radioactive waste. Predictions of full scale column performance in a carousel mode are made for the Hot Commissioning, Envelope B, and Subsequent Operations waste compositions under nominal operating conditions and for perturbations from the nominal. Only the loading phase of the process cycle is addressed in this report. Pertinent bench-scale column tests, kinetic experiments, and batch equilibrium experiments are used to estimate model parameters and to benchmark the ion-exchange model. The methodology and application presented in this report reflect the expected behavior of spherical RF resin manufactured at the intermediate-scale (i.e., approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary some. As such, the full-scale facility predictions provided within this report should provide reasonable estimates of production-scale column performance.

  18. Gas retention and release behavior in Hanford single-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large ({approximately}100 m{sup 3}) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given.

  19. Comparison or organic and inorganic ion exchange materials for removal of cesium and strontium from Hanford waste

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    This work is part of an ESP-CP task to develop and evaluate high-capacity, selective, solid extractants for the uptake of cesium, strontium, and technetium (Cs, Sr, and Tc) from nuclear wastes. Pacific Northwest National Laboratory (PNNL) staff, in collaboration with researchers from industry, academia, and national laboratories are investigating these and other novel and commercial ion exchangers for use in nuclear waste remediation of groundwater, HLW, and LLW. Since FY 1995, experimental work at PNNL has focused on small-scale batch distribution (K{sub d}) testing of numerous solid sorbents with actual and simulated Hanford wastes, chemical and radiolytic stability of various organic ion exchanger resins, bench-scale column ion exchange testing in actual and simulated Complexant Concentrate (CC) and Neutralized Current Acid Waste (NCAW), and Tc and Sr removal from groundwater and LLW. In addition, PNNL has continued to support various site demonstrations at the Idaho National Engineering Laboratory, Savannah River Site, West Valley Nuclear Services, Hanford N-Springs, and Hanford N-Basin using technologies developed by their industrial partners. This summary will focus on batch distribution results from the actual waste tests. The data collected in these development and testing tasks provide a rational basis for the selection and direct comparison of various ion exchange materials in simulated and actual HLW, LLW, and groundwater. In addition, prediction of large-scale column loading performance for the materials tested is possible using smaller volumes of actual waste solution. The method maximizes information while minimizing experimental expense, time, and laboratory and process wastes.

  20. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  1. Value tradeoffs for the Hanford Tank Waste Remediation System (TWRS) program

    Energy Technology Data Exchange (ETDEWEB)

    Keeney, R.L.; Winterfeldt, D. von [Decision Insights, Inc., Irvine, CA (United States)

    1997-09-01

    The Tank Waste Remediation System (TWRS) program at the Hanford Site of the Department of Energy has adopted a logical approach to making decisions that uses decision analysis to structure and analyze decision alternatives and public values to evaluate them. This report is the third in a series to support this effort. The first identified a set of objectives (called {open_quotes}ends objectives{close_quotes}) that characterize the ultimate goals and desires of Hanford decision makers and stakeholders. The second report developed operational measures for these ends objectives (called {open_quotes}ends measures{close_quotes}) and it also developed a set of performance objectives and associated performance measures that are more directly related to how well decision alternatives in the TWRS program perform to achieve the ends objectives. The present report describes the development of quantitative value tradeoffs for both the ends measures and the performance measures. First, five national value experts were interviewed to obtain value tradeoffs for units of the ends measures identified in Keeney and von Winterfeldt (1996). The results of this assessment are shown in Table S1. Second, the implied value tradeoffs for the units of the performance measures were calculated from the value tradeoffs for units of the ends measures provided by the national experts. When calculating the value tradeoffs for the units of the performance measures, very simple quantitative relationships between ends and performance measures were assumed. The results of this calculation are shown in Table S2. The results of this report shown in Tables S1 and S2 should be considered preliminary and largely illustrative of the principles for developing value tradeoffs. The report lists several important caveats and recommendations for how future work can improve on the assessment of value tradeoffs.

  2. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  3. Laboratory Optimization Tests of Decontamination of Cs, Sr, and Actinides from Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-06

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also substantially decrease the LAW vitrification mission duration and quantity of glass waste.

  4. Addendum to Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Marcel P.; Freeman, Eugene J.; Wurstner, Signe K.; Kincaid, Charles T.; Coony, Mike M.; Strenge, Dennis L.; Aaberg, Rosanne L.; Eslinger, Paul W.

    2001-09-28

    This report summarizes efforts to complete an addendum analysis to the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis). This document describes the background and performance objectives of the Composite Analysis and this addendum analysis. The methods used, results, and conclusions for this Addendum analysis are summarized, and recommendations are made for work to be undertaken in anticipation of a second analysis.

  5. STEADY-STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HU TA

    2007-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The methodology of flammability analysis for Hanford tank waste is developed. The hydrogen generation rate model was applied to calculate the gas generation rate for 177 tanks. Flammability concentrations and the time to reach 25% and 100% of the lower flammability limit, and the minimum ventilation rate to keep from 100 of the LFL are calculated for 177 tanks at various scenarios.

  6. Performance evaluation of rotating pump jet mixing of radioactive wastes in Hanford Tanks 241-AP-102 and -104

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Recknagle, K.P.

    1998-07-01

    The purpose of this study was to confirm the adequacy of a single mixer pump to fully mix the wastes that will be stored in Tanks 241-AP-102 and -104. These Hanford double-shell tanks (DSTs) will be used as staging tanks to receive low-activity wastes from other Hanford storage tanks and, in turn, will supply the wastes to private waste vitrification facilities for eventual solidification. The TEMPEST computer code was applied to Tanks AP-102 and -104 to simulate waste mixing generated by the 60-ft/s rotating jets and to determine the effectiveness of the single rotating pump to mix the waste. TEMPEST simulates flow and mass/heat transport and chemical reactions (equilibrium and kinetic reactions) coupled together. Section 2 describes the pump jet mixing conditions the authors evaluated, the modeling cases, and their parameters. Section 3 reports model applications and assessment results. The summary and conclusions are presented in Section 4, and cited references are listed in Section 5.

  7. Vitrification of Hanford wastes in a joule-heated ceramic melter and evaluation of resultant canisterized product

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, C.C.; Buelt, J.L.; Slate, S.C.; Katayama, Y.B.; Bunnell, L.R.

    1979-08-01

    Experience gained in the week-long vitrification test and characterization of the glass produced in the run support the following conclusions: The Hanford waste simulated in this test can be readily vitrified in a joule-heated ceramic melter. Physical properties of the molten glass were entirely compatible with melter operation. The average feed rate of 106 kg/h is high enough to make the ceramic melter a feasible piece of equipment for vitrifying Hanford wastes. The glass produced in this trial had good chemical durability, 6(10)/sup -5/ g/cm/sup 2/-d. When one of the canisters was purposely dropped onto a steel pad, the damage was limited to deformation of the steel can in the impact area, cracking of a weld, and fracturing of glass in the immediate vicinity of the impact area. No glass was released from the canister as a result of the drop test. The results of this vitrification test support the technical feasibility of vitrifying Hanford wastes by means of a joule-heated ceramic melter. Surface area for large glass castings is equivalent to the mass median particle diameters between 4.27 cm (1.75 in.) and 8.91 cm (3.51 in.) even when allowed to cool rapidly by standing in ambient air. Large canisters (up to 0.91 m in dia) can be cast without large voids while standing in air if the fill rate is over 100 kg/h. 34 figures, 10 tables.

  8. Geology and hydrology of radioactive solid-waste burial grounds at the Hanford Reservation, Washington

    Science.gov (United States)

    LaSala, Albert Mario; Doty, Gene C.

    1976-01-01

    The geology and hydrology of radioactive solid waste burial grounds at the Hanford Reservation were investigated, using existing data, by the U.S. Geological Survey as part of the waste management plan of the Richland Operations Office of the Energy Research and Development Administration. The purpose of the investigation was to assist the operations office in characterizing the burial sites as to present environmental safety and as to their suitability for long-term storage (several thousand to tens of thousands of years) of radioactive sol id wastes. The burial ground sites fall into two classifications: (1) those on the low stream terraces adjacent to the Columbia River, mainly in the 100 Areas and 300 Area, and (2) those lying on the high terraces south of Gable Mountain in the 200 Areas. Evaluation of the suitability of the burial grounds for long-term storage was made almost entirely on hydrologic, geologic, and topographic criteria. Of greatest concern was the possibility that radionuclides might be leached from the buried wastes by infiltrating water and carried downward to the water table. The climate is semi-arid and the average annual precipitation is 6.4 inches at the Hanford Meteorological Station. However, the precipitation is seasonally distributed with about 50 percent occurring during the months of November, December, January, and February when evapotranspiration is negligible and conditions for infiltration are most favorable. None of the burial grounds are instrumented with monitoring devices that could be used to determine if radionuclides derived from them are reaching the water table. Burial grounds on the low stream terraces are mainly underlain by permeable materials and the water table lies at relatively shallow depths. Radionuclides conceivably could be leached from these burial grounds by percolating soil water, and radionuclides might reach the Columbia River in a relatively short time. These sites could also be inundated by erosion

  9. Methods for estimation of covariance matrices and covariance components for the Hanford Waste Vitrification Plant Process

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M.F.; Piepel, G.F.; Simpson, D.B.

    1996-03-01

    The high-level waste (HLW) vitrification plant at the Hanford Site was being designed to transuranic and high-level radioactive waste in borosilicate class. Each batch of plant feed material must meet certain requirements related to plant performance, and the resulting class must meet requirements imposed by the Waste Acceptance Product Specifications. Properties of a process batch and the resultlng glass are largely determined by the composition of the feed material. Empirical models are being developed to estimate some property values from data on feed composition. Methods for checking and documenting compliance with feed and glass requirements must account for various types of uncertainties. This document focuses on the estimation. manipulation, and consequences of composition uncertainty, i.e., the uncertainty inherent in estimates of feed or glass composition. Three components of composition uncertainty will play a role in estimating and checking feed and glass properties: batch-to-batch variability, within-batch uncertainty, and analytical uncertainty. In this document, composition uncertainty and its components are treated in terms of variances and variance components or univariate situations, covariance matrices and covariance components for multivariate situations. The importance of variance and covariance components stems from their crucial role in properly estimating uncertainty In values calculated from a set of observations on a process batch. Two general types of methods for estimating uncertainty are discussed: (1) methods based on data, and (2) methods based on knowledge, assumptions, and opinions about the vitrification process. Data-based methods for estimating variances and covariance matrices are well known. Several types of data-based methods exist for estimation of variance components; those based on the statistical method analysis of variance are discussed, as are the strengths and weaknesses of this approach.

  10. FLUIDIZED BED STEAM REFORMING TECHNOLOGY FOR ORGANIC AND NITRATE SALT SUPERNATE

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael02 Smith, M

    2007-03-30

    About two decades ago a process was developed at the Savannah River Site (SRS) to remove Cs137 from radioactive high level waste (HLW) supernates so the supernates could be land disposed as low activity waste (LAW). Sodium tetraphenylborate (NaTPB) was used to precipitate Cs{sup 137} as CsTPB. The flowsheet called for destruction of the organic TPB by acid hydrolysis so that the Cs{sup 137} enriched residue could be mixed with other HLW sludge, vitrified, and disposed of in a federal geologic repository. The precipitation process was demonstrated full scale with actual HLW waste and a 2.5 wt% Cs137 rich precipitate containing organic TPB was produced admixed with 240,000 gallons of salt supernate. Organic destruction by acid hydrolysis proved to be problematic and other disposal technologies were investigated. Fluidized Bed Steam Reforming (FBSR), which destroys organics by pyrolysis, is the current baseline technology for destroying the TPB and the waste nitrates prior to vitrification. Bench scale tests were designed and conducted at the Savannah River National Laboratory (SRNL) to reproduce the pyrolysis reactions. The formation of alkali carbonate phases that are compatible with DWPF waste pre-processing and vitrification were demonstrated in the bench scale tests. Test parameters were optimized for a pilot scale FBSR demonstration that was performed at the SAIC Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003. An engineering scale demonstration was completed by THOR{reg_sign} Treatment Technologies (TTT) and SRNL in 2006 at the Hazen Research, Inc. test facility in Golden, CO. The same mineral carbonate phases, the same organic destruction (>99.99%) and the same nitrate/nitrite destruction (>99.99%) were produced at the bench scale, pilot scale, and engineering scale although different sources of carbon were used during testing.

  11. Synthesis and Characterization of Tc(I) Carbonyl Nitrosyl Species Relevant to the Hanford Tank Waste: FY 2016 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Gabriel B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chatterjee, Sayandev [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martin, Thibaut J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wall, Nathalie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walter, Eric D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-24

    Among long-lived radioactive constituents in the Hanford tank waste, Tc presents a unique challenge in that it exists predominantly in the liquid phase, generally in the anionic form of pertechnetate, TcO4-, which is highly volatile at low-activity waste (LAW) vitrification melter temperatures and mobile in the Hanford site’s subsurface environment. The complex behavior of Tc under storage, treatment, and immobilization conditions significantly affects its management options, which to-date remain uncertain. In strongly alkaline environments, Tc exists as pertechnetate, TcO4- (oxidation state +7), and in the reduced forms (oxidation state < +7) collectively known as non-pertechnetate species. Pertechnetate is a well-characterized, anionic Tc species that can be removed from LAW by anion exchange or solvent extraction methods. There is no definitive information on the origin of the non-pertechnetate Tc species, nor is there a comprehensive description of their composition and behavior. It has been recently proposed that the non-pertechnetate species can comprise Tc(I) metal center and carbonyl or mixed carbonyl nitrosyl ligands stabilizing low-valent Tc. Recent work by our group has significantly expanded this previous work, generating a series of Tc(I) carbonyl compounds and demonstrating that they can be generated from reduction of TcO4- in the simulated Hanford tank waste in presence of CO at elevated temperature (Levitskaia et al. 2014). These results are consistent with the previous proposal that [Tc(CO)3]+ species can be present in the Hanford tank waste and suggest that the low Tc(I) oxidation state is stabilized by the π-accepting ability of the CO ligands. The continuation work has been initiated to develop model Tc carbonyl nitrosyl compounds and investigate their potential presence in the Hanford tank wastes. This report summarizes our to-date results.

  12. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  13. Hanford waste vitrification plant hydrogen generation study: Preliminary evaluation of alternatives to formic acid

    Energy Technology Data Exchange (ETDEWEB)

    King, R.B.; Bhattacharyya, N.K.; Kumar, V.

    1996-02-01

    Oxalic, glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids as well as glycine have been evaluated as possible substitutes for formic acid in the preparation of feed for the Hanford waste vitrification plant using a non-radioactive feed stimulant UGA-12M1 containing substantial amounts of aluminum and iron oxides as well as nitrate and nitrite at 90C in the presence of hydrated rhodium trichloride. Unlike formic acid none of these carboxylic acids liberate hydrogen under these conditions and only malonic and citric acids form ammonia. Glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids all appear to have significant reducing properties under the reaction conditions of interest as indicated by the observation of appreciable amounts of N{sub 2}O as a reduction product of,nitrite or, less likely, nitrate at 90C. Glyoxylic, pyruvic, and malonic acids all appear to be unstable towards decarboxylation at 90C in the presence of Al(OH){sub 3}. Among the carboxylic acids investigated in this study the {alpha}-hydroxycarboxylic acids glycolic and lactic acids appear to be the most interesting potential substitutes for formic acid in the feed preparation for the vitrification plant because of their failure to produce hydrogen or ammonia or to undergo decarboxylation under the reaction conditions although they exhibit some reducing properties in feed stimulant experiments.

  14. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Coleman, R.

    2011-03-31

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  15. ION EXCHANGE MODELING FOR REMOVAL OF CESIUM FROM HANFORD WASTE USING SUPERLIG 644 RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L

    2004-05-01

    The expected performance of a proposed ion exchange column using SuperLig{reg_sign} 644 resin for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report represents a final report on the ability and knowledge with regard to modeling the Cesium-SuperLig{reg_sign} 644 resin ion exchange system. Only the loading phase of the cycle process is addressed within this report. Pertinent bench-scale column tests and batch equilibrium experiments are addressed. The methodology employed and sensitivity analyses are also included (i.e., existing methodology employed is referenced to prior developmental efforts while updated methodology is discussed). Pilot-scale testing is not assessed since no pilot-scale testing was available at the time of this report. Column performance predictions are made considering three selected feed compositions under nominal operating conditions. The sensitivity analyses provided help to identify key parameters that aid in resin procurement acceptance criteria. The methodology and application presented within this report reflect the expected behavior of SuperLig{reg_sign} 644 resin manufactured at the production-scale (i.e, 250 gallon batch size level). The primary objective of this work was, through modeling and verification based on experimental assessments, to predict the cesium removal performance of SuperLig{reg_sign} 644 resin for application in the RPP pretreatment facility.

  16. First-order model for durability of Hanford waste glasses as a function of composition

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, P.; Piepel, G.F.; Schweiger, M.J.; Smith, D.E.

    1992-04-01

    Two standard chemical durability tests, the static leach test MCC-1 and product consistency test PCT, were conducted on simulated borosilicate glasses that encompass the expected range of compositions to be produced in the Hanford Waste Vitrification Plant (HWVP). A first-order empirical model was fitted to the data from each test method. The results indicate that glass durability is increased by addition of Al{sub 2}O{sub 3}, moderately increased by addition of ZrO{sub 2} and SiO{sub 2}, and decreased by addition of Li{sub 2}O, Na{sub 2}O, B{sub 2}O{sub 3}, and MgO. Addition of Fe{sub 2}O{sub 3} and CaO produce an indifferent or reducing effect on durability according to the test method. This behavior and a statistically significant lack of fit are attributed to the effects of multiple chemical reactions occurring during glass-water interaction. Liquid-liquid immiscibility is suspected to be responsible for extremely low durability of some glasses.

  17. Preliminary Feed Test Algorithm for the Hanford Waste Vitrification Plant product composition control system

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M.F.; Piepel, G.F.

    1996-03-01

    The Feed Test Algorithm (FTA) will test the acceptability (conformance with requirements) of process batches in the Hanford Waste Vitrification Plant (HWVP). Although requirements and constraints will be imposed on properties of the material in the melter and the resulting glass, the FTA must test acceptability while the batch is still in the Slurry Mix Evaporator (SME), i.e., before material is transferred to the Melter Feed Tank. Hence, some properties upon which requirements will be imposed must be estimated from data available on the feed slurry. The major type of data to be used in this estimation is feed composition, usually expressed in terms of nine oxide mass fractions and a catchall tenth category, Others. Uncertainties are inherent in the HWVP process. The two major or types of uncertainty are composition uncertainty (that related to measurement and estimation of feed composition and other quantities) and model uncertainty (uncertainty inherent in the models developed to relate melt/glass properties to feed composition). Types of uncertainties, representation of uncertainty, and a method for combining uncertainties are discussed. The FTA must account for these uncertainties in testing acceptability; hence it must be statistical in nature. Three types of statistical intervals (confidence, prediction, and tolerance) are defined, and their roles in acceptance testing are discussed.

  18. Strategy for addressing composition uncertainties in a Hanford high-level waste vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M.F.; Piepel, G.F.

    1996-03-01

    Various requirements will be imposed on the feed material and glass produced by the high-level waste (HLW) vitrification plant at the Hanford Site. A statistical process/product control system will be used to control the melter feed composition and to check and document product quality. Two general types of uncertainty are important in HLW vitrification process/product control: model uncertainty and composition uncertainty. Model uncertainty is discussed by Hrma, Piepel, et al. (1994). Composition uncertainty includes the uncertainties inherent in estimates of feed composition and other process measurements. Because feed composition is a multivariate quantity, multivariate estimates of composition uncertainty (i.e., covariance matrices) are required. Three components of composition uncertainty will play a role in estimating and checking batch and glass attributes: batch-to-batch variability, within-batch uncertainty, and analytical uncertainty. This document reviews the techniques to be used in estimating and updating composition uncertainties and in combining these composition uncertainties with model uncertainty to yield estimates of (univariate) uncertainties associated with estimates of batch and glass properties.

  19. Transuranium removal from Hanford high level waste simulants using sodium permanganate and calcium

    Science.gov (United States)

    Wilmarth, W. R.; Rosencrance, S. W.; Nash, C. A.; Fonduer, F. F.; DiPrete, D. P.; DiPrete, C. C.

    2000-07-01

    Plutonium and americium are present in the Hanford high level liquid waste complexant concentrate (CC) due to the presence of complexing agents including di-(2-ethylhexyl) phosphoric acid (D2EHPA), tributylphosphate (TBP), hydroxyethylene diamine triacetic acid (HEDTA), ethylene diamine tetraacetic acid (EDTA), citric acid, glycolic acid, and sodium gluconate. The transuranic concentrations approach 600 nCi/g and require processing prior to encapsulation into low activity glass. BNFL's (British Nuclear Fuels Limited's) original process was a ferric co-precipitation method based on earlier investigations by Herting and Orth, et al. Furthermore, flocculation and precipitation are widely used for clarification in municipal water treatment. Co-precipitation of Np, Am, and Pu with ferric hydroxide is also used within an analytical method for the sum of those analytes. Tests to evaluate BNFL's original precipitation process indicated the measured decontamination factors (DFs) and filter fluxes were too low. Therefore, an evaluation of alternative precipitation agents to replace ferric ion was undertaken. Agents tested included various transition metals, lanthanide elements, uranium species, calcium, strontium, and permanganate.

  20. ON THE ANODIC POLARIZATION BEHAVIOR OF CARBON STEEL IN HANFORD NUCLEAR WASTES

    Energy Technology Data Exchange (ETDEWEB)

    BOOMER, K.D.

    2007-01-31

    The effect of the important chemical constituents in the Hanford nuclear waste simulant on the anodic behavior of carbon steel was studied. Specifically, the effect of pH, nitrite concentration, nitrite/nitrate concentration ratios, total organic carbon and the chloride concentration on the open circuit potential, pitting potential and repassivation potential was evaluated. It was found that pH adjusting, although capable of returning the tank chemistry back to specification, did not significantly reduce the corrosivity of the stimulant compared to the present condition. Nitrite was found to be a potent inhibitor for carbon steel. A critical concentration of approximately 1.2M appeared to be beneficial to increase the difference of repassivation potential and open circuit potential considerably and thus prevent pitting corrosion from occurring. No further benefit was gained when increasing nitrite concentration to a higher level. The organic compounds were found to be weak inhibitors in the absence of nitrite and the change of chloride from 0.05M to 0.2M did not alter the anodic behavior dramatically.

  1. Issues associated with manipulator-based waste retrieval from Hanford underground storage tanks with a preliminary review of commercial concepts

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, E.J.

    1996-09-17

    Westinghouse Hanford Company (WHC) is exploring commercial methods for retrieving waste from the underground storage tanks at the Hanford site in south central Washington state. WHC needs data on commercial retrieval systems equipment in order to make programmatic decisions for waste retrieval. Full system testing of retrieval processes is to be demonstrated in phases through September 1997 in support of programs aimed to Acquire Commercial Technology for Retrieval (ACTR) and at the Hanford Tanks Initiative (HTI). One of the important parts of the integrated testing will be the deployment of retrieval tools using manipulator-based systems. WHC requires an assessment of a number of commercial deployment systems that have been identified by the ACTR program as good candidates to be included in an integrated testing effort. Included in this assessment should be an independent evaluation of manipulator tests performed to date, so that WHC can construct an integrated test based on these systems. The objectives of this document are to provide a description of the need, requirements, and constraints for a manipulator-based retrieval system; to evaluate manipulator-based concepts and testing performed to date by a number of commercial organizations; and to identify issues to be resolved through testing and/or analysis for each concept.

  2. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of FY2016 experiements

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States); Miller, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-12-01

    Five experiments were completed with the full-scale, room temperature Hanford Waste Treatment and Immobilization Plant (WTP) high-level waste (HLW) melter riser test system to observe particle flow and settling in support of a crystal tolerant approach to melter operation. A prototypic pour rate was maintained based on the volumetric flow rate. Accumulation of particles was observed at the bottom of the riser and along the bottom of the throat after each experiment. Measurements of the accumulated layer thicknesses showed that the settled particles at the bottom of the riser did not vary in thickness during pouring cycles or idle periods. Some of the settled particles at the bottom of the throat were re-suspended during subsequent pouring cycles, and settled back to approximately the same thickness after each idle period. The cause of the consistency of the accumulated layer thicknesses is not year clear, but was hypothesized to be related to particle flow back to the feed tank. Additional experiments reinforced the observation of particle flow along a considerable portion of the throat during idle periods. Limitations of the system are noted in this report and may be addressed via future modifications. Follow-on experiments will be designed to evaluate the impact of pouring rate on particle re-suspension, the influence of feed tank agitation on particle accumulation, and the effect of changes in air lance positioning on the accumulation and re-suspension of particles at the bottom of the riser. A method for sampling the accumulated particles will be developed to support particle size distribution analyses. Thicker accumulated layers will be intentionally formed via direct addition of particles to select areas of the system to better understand the ability to continue pouring and re-suspend particles. Results from the room temperature system will be correlated with observations and data from the Research Scale Melter (RSM) at Pacific Northwest National Laboratory

  3. Evidence for dawsonite in Hanford high-level nuclear waste tanks.

    Science.gov (United States)

    Reynolds, Jacob G; Cooke, Gary A; Herting, Daniel L; Warrant, R Wade

    2012-03-30

    Gibbsite [Al(OH)(3)] and boehmite (AlOOH) have long been assumed to be the most prevalent aluminum-bearing minerals in Hanford high-level nuclear waste sludge. The present study shows that dawsonite [NaAl(OH)(2)CO(3)] is also a common aluminum-bearing phase in tanks containing high total inorganic carbon (TIC) concentrations and (relatively) low dissolved free hydroxide concentrations. Tank samples were probed for dawsonite by X-ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM-EDS) and Polarized Light Optical Microscopy. Dawsonite was conclusively identified in four of six tanks studied. In a fifth tank (AN-102), the dawsonite identification was less conclusive because it was only observed as a Na-Al bearing phase with SEM-EDS. Four of the five tank samples with dawsonite also had solid phase Na(2)CO(3) · H(2)O. The one tank without observable dawsonite (Tank C-103) had the lowest TIC content of any of the six tanks. The amount of TIC in Tank C-103 was insufficient to convert most of the aluminum to dawsonite (Al:TIC mol ratio of 20:1). The rest of the tank samples had much lower Al:TIC ratios (between 2:1 and 0.5:1) than Tank C-103. One tank (AZ-102) initially had dawsonite, but dawsonite was not observed in samples taken 15 months after NaOH was added to the tank surface. When NaOH was added to a laboratory sample of waste from Tank AZ-102, the ratio of aluminum to TIC in solution was consistent with the dissolution of dawsonite. The presence of dawsonite in these tanks is of significance because of the large amount of OH(-) consumed by dawsonite dissolution, an effect confirmed with AZ-102 samples.

  4. Macroencapsulation of mixed waste debris at the Hanford Nuclear Reservation -- Final project report by AST Environmental Services, LLC

    Energy Technology Data Exchange (ETDEWEB)

    Baker, T.L.

    1998-02-25

    This report summarizes the results of a full-scale demonstration of a high density polyethylene (HDPE) package, manufactured by Arrow Construction, Inc. of Montgomery, Alabama. The HDPE package, called ARROW-PAK, was designed and patented by Arrow as both a method to macroencapsulation of radioactively contaminated lead and as an improved form of waste package for treatment and interim and final storage and/or disposal of drums of mixed waste. Mixed waste is waste that is radioactive, and meets the criteria established by the United States Environmental Protection Agency (US EPA) for a hazardous material. Results from previous testing conducted for the Department of Energy (DOE) at the Idaho National Engineering Laboratory in 1994 found that the ARROW-PAK fabrication process produces an HDPE package that passes all helium leak tests and drop tests, and is fabricated with materials impervious to the types of environmental factors encountered during the lifetime of the ARROW-PAK, estimated to be from 100 to 300 years. Arrow Construction, Inc. has successfully completed full-scale demonstration of its ARROW-PAK mixed waste macroencapsulation treatment unit at the DOE Hanford Site. This testing was conducted in accordance with Radiological Work Permit No. T-860, applicable project plans and procedures, and in close consultation with Waste Management Federal Services of Hanford, Inc.`s project management, health and safety, and quality assurance representatives. The ARROW-PAK field demonstration successfully treated 880 drums of mixed waste debris feedstock which were compacted and placed in 149 70-gallon overpack drums prior to macroencapsulation in accordance with the US EPA Alternate Debris Treatment Standards, 40 CFR 268.45. Based on all of the results, the ARROW-PAK process provides an effective treatment, storage and/or disposal option that compares favorably with current mixed waste management practices.

  5. Macroencapsulation of mixed waste debris at the Hanford Nuclear Reservation -- Final project report by AST Environmental Services, LLC

    Energy Technology Data Exchange (ETDEWEB)

    Baker, T.L.

    1998-02-25

    This report summarizes the results of a full-scale demonstration of a high density polyethylene (HDPE) package, manufactured by Arrow Construction, Inc. of Montgomery, Alabama. The HDPE package, called ARROW-PAK, was designed and patented by Arrow as both a method to macroencapsulation of radioactively contaminated lead and as an improved form of waste package for treatment and interim and final storage and/or disposal of drums of mixed waste. Mixed waste is waste that is radioactive, and meets the criteria established by the United States Environmental Protection Agency (US EPA) for a hazardous material. Results from previous testing conducted for the Department of Energy (DOE) at the Idaho National Engineering Laboratory in 1994 found that the ARROW-PAK fabrication process produces an HDPE package that passes all helium leak tests and drop tests, and is fabricated with materials impervious to the types of environmental factors encountered during the lifetime of the ARROW-PAK, estimated to be from 100 to 300 years. Arrow Construction, Inc. has successfully completed full-scale demonstration of its ARROW-PAK mixed waste macroencapsulation treatment unit at the DOE Hanford Site. This testing was conducted in accordance with Radiological Work Permit No. T-860, applicable project plans and procedures, and in close consultation with Waste Management Federal Services of Hanford, Inc.`s project management, health and safety, and quality assurance representatives. The ARROW-PAK field demonstration successfully treated 880 drums of mixed waste debris feedstock which were compacted and placed in 149 70-gallon overpack drums prior to macroencapsulation in accordance with the US EPA Alternate Debris Treatment Standards, 40 CFR 268.45. Based on all of the results, the ARROW-PAK process provides an effective treatment, storage and/or disposal option that compares favorably with current mixed waste management practices.

  6. Formulation and preparation on Hanford Waste Treatment Plan direct feed low activity waste effluent management facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  7. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  8. Work plan for the identification of techniques for in-situ sensing of layering/interfaces of Hanford high level waste tank

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, G.F. Jr.

    1995-06-16

    The purpose of this work scope is to identify a specific potential technology/device/instrument/ideas that would provide the tank waste data. A method is needed for identifying layering and physical state within the large waste tanks at the Hanford site in Washington State. These interfaces and state changes can adversely impact sampling and characterization activities.

  9. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  10. Cesium removal demonstration utilizing crystalline silicotitanate sorbent for processing Melton Valley Storage Tank supernate: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.F. Jr.; Taylor, P.A.; Cummins, R.L. [and others

    1998-03-01

    This report provides details of the Cesium Removal Demonstration (CsRD), which was conducted at Oak Ridge National Laboratory (ORNL) on radioactive waste from the Melton Valley Storage Tanks. The CsRD was the first large-scale use of state-of-the-art sorbents being developed by private industry for the selective removal of cesium and other radionuclides from liquid wastes stored across the DOE complex. The crystalline silicotitanate sorbent used in the demonstration was chosen because of its effectiveness in laboratory tests using bench-scale columns. The demonstration showed that the cesium could be removed from the supernate and concentrated on a small-volume, solid waste form that would meet the waste acceptance criteria for the Nevada Test Site. During this project, the CsRD system processed > 115,000 L (30,000 gal) of radioactive supernate with minimal operational problems. Sluicing, drying, and remote transportation of the sorbent, which could not be done on a bench scale, were successfully demonstrated. The system was then decontaminated to the extent that it could be contact maintained with the use of localized shielding only. By utilizing a modular, transportable design and placement within existing facilities, the system can be transferred to different sites for reuse. The initial unit has now been removed from the process building and is presently being reinstalled for use in baseline operations at ORNL.

  11. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat

  12. X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Jurgensen, A; David Missimer, D; Ronny Rutherford, R

    2006-05-08

    Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (<8 hours) requested by the WTP, while providing sufficient accuracy and precision to determine waste composition variations. For Phase 1a, SRNL (1) evaluated, selected, and procured an XRF instrument for WTP installation, (2) investigated three XRF sample methods for preparing the LAW sub-sample for XRF analysis, and (3) initiated scoping studies on AN-105 (Envelope A) simulant to determine the instrument's capability, limitations, and optimum operating parameters. After preliminary method development on simulants and the completion of Phase 1a activities, SRNL received approval from WTP to begin Phase 1b activities with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in < 1hr after sample delivery. Except for sodium, the method detection limits (MDLs) for the most important analytes in solution, the hold point elements, were achieved by this method. The XRF detection limits are generally adequate for glass former batching and product composition reporting, but may be inadequate for some species (Hg, Cd, and Ba) important

  13. Groundwater quality assessment plan for single-shell waste management area B-BX-BY at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    SM Narbutovskih

    2000-03-31

    Pacific Northwest National Laboratory conducted a first determination groundwater quality assessment at the Hanford Site. This work was performed for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement during the time period 1996--1998. The purpose of the assessment was to determine if waste from the Single-Shell Tank (SST) Waste Management Area (WMA) B-BX-BY had entered the groundwater at levels above the drinking water standards (DWS). The resulting assessment report documented evidence demonstrating that waste from the WMA has, most likely, impacted groundwater quality. Based on 40 CFR 265.93 [d] paragraph (7), the owner-operator must continue to make the minimum required determinations of contaminant level and of rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.

  14. Annual Status Report (FY2008) Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [Hanford Site (HNF), Richland, WA (United States)

    2009-12-18

    In accordance with the U.S. Department of Energy (DOE) requirements in DOE 0 435.1, Radioactive to be considered or purposes of Waste Management, and implemented by DOE/RL-2000-292, Maintenance Plan for the Composite Analysis of the Hanford Site, Southeast Washington, the DOE Richland Operations Office has prepared this annual report for fiscal year 2008 of PNNL-1 1800, Composite Analysis for the Low-Level Waste Disposal in the 200-Area Plateau of the Hanford Site, hereafter referred to as the Composite Analysis. The main emphasis of DOE/RL-2000-29 Is to identify additional data and information to enhance the Composite Analysis and the subsequent PNNL- 11800 Addendum, Addendum to Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site, hereafter referred to as the Addendum, and to address secondary issues identified during the review of the Composite Analysis.

  15. Development and Demonstration of a Sulfate Precipitation Process for Hanford Waste Tank 241-AN-107

    Energy Technology Data Exchange (ETDEWEB)

    SK Fiskum; DE Kurath; BM Rapko

    2000-08-16

    A series of precipitation experiments were conducted on Hanford waste tank 241-AN-107 samples in an effort to remove sulfate from the matrix. Calcium nitrate was added directly to AN-107 sub-samples to yield several combinations of Ca:CO{sub 3} mole ratios spanning a range of 0:1 to 3:1 to remove carbonate as insoluble CaCO{sub 3}. Similarly barium nitrate was added directly to the AN-107 aliquots, or to the calcium pretreated AN-107 aliquots, giving of Ba:SO{sub 4} mole ratios spanning a range of 1:1 to 5:1 to precipitate sulfate as BaSO{sub 4}. Initial bulk carbonate removal was required for successful follow-on barium sulfate precipitation. A {ge} 1:1 mole ratio of Ca:CO{sub 3} was found to lower the carbonate concentration such that Ba would react preferentially with the sulfate. A follow-on 1:1 mole ratio of Ba:SO{sub 4} resulted in 70% sulfate removal. The experiment was scaled up with a 735-mL aliquot of AN-107 for more complete testing. Calcium carbonate and barium sulfate settling rates were determined and fates of selected cations, anions, and radionuclides were followed through the various process steps. Seventy percent of the sulfate was removed in the scale-up test while recovering 63% of the filtrate volume. Surprisingly, during the scale-up test a sub-sample of the CaCO{sub 3}/241-AN-107 slurry was found to lose fluidity upon standing for {le} 2 days. Metathesis with BaCO{sub 3} at ambient temperature was also evaluated using batch contacts at various BaCO{sub 3}:SO{sub 4} mole ratios with no measurable success.

  16. Estimation of Hanford SX tank waste compositions from historically derived inventories

    Science.gov (United States)

    Lichtner, Peter C.; Felmy, Andrew R.

    2003-04-01

    Migration of radionuclides under the SX-tank farm at the Hanford nuclear waste complex involves interaction of sediments with concentrated NaOH-NaNO 3-NaNO 2 solutions that leaked from the tanks. This study uses a reaction path calculation to estimate tank supernatant compositions from historical tank inventory data. The Pitzer activity coefficient algorithm based on the computer code GMIN is combined with the reactive transport code FLOTRAN to carry out the simulations. An extended version of the GMIN database is used which includes Al and Si species. In order for the reaction path calculations to converge, a pseudo-kinetic approach employing a rate limiter for precipitation kinetics is introduced. The rate limiter enables calculations to be carried out with the reaction path approach which previously could only be accomplished using a Gibbs free energy minimization technique. Because the final equilibrium state is independent of the reaction path, the value used for the rate limiter does not affect the calculation for the tank supernatant composition. Three different tanks are considered: SX-108, SX-109 and SX-115, with supernatant compositions ranging from extremely to moderately concentrated. Results of the simulations indicate that sodium concentrations much higher than previously expected are possible for the SX-108 tank. This result has important implications for the migration of cesium released from the tank within the vadose zone. The mineral cancrinite was predicted to form in all three tanks consistent with recent experiments. The calculated supernatant pH ranged from 14 to 12.8 for the tanks considered and Eh was mildly reducing determined by the redox couple NO 3-NO 2.

  17. Chemical composition analysis and product consistency tests to support enhanced Hanford waste glass models: Results for the January, March, and April 2015 LAW glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Best, D. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-03

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the January, March, and April 2015 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  18. Chemical composition analysis and product consistency tests to support Enhanced Hanford Waste Glass Models. Results for the Augusta and October 2014 LAW Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Best, D. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-07

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the August and October 2014 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  19. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  20. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  1. Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Martin G.; Price, Randall K.

    2007-02-01

    During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

  2. Hanford Waste Vitrification Program process development: Melt testing subtask, pilot-scale ceramic melter experiment, run summary

    Energy Technology Data Exchange (ETDEWEB)

    Nakaoka, R.K.; Bates, S.O.; Elmore, M.R.; Goles, R.W.; Perez, J.M.; Scott, P.A.; Westsik, J.H.

    1996-03-01

    Hanford Waste Vitrification Program (HWVP) activities for FY 1985 have included engineering and pilot-scale melter experiments HWVP-11/HBCM-85-1 and HWVP-12/PSCM-22. Major objectives designated by HWVP fo these tests were to evaluate the processing characteristics of the current HWVP melter feed during actual melter operation and establish the product quality of HW-39 borosilicate glass. The current melter feed, defined during FY 85, consists of reference feed (HWVP-RF) and glass-forming chemicals added as frit.

  3. Hanford waste-form release and sediment interaction: A status report with rationale and recommendations for additional studies

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J. (Pacific Northwest Lab., Richland, WA (USA)); Wood, M.I. (Westinghouse Hanford Co., Richland, WA (USA))

    1990-05-01

    This report documents the currently available geochemical data base for release and retardation for actual Hanford Site materials (wastes and/or sediments). The report also recommends specific laboratory tests and presents the rationale for the recommendations. The purpose of this document is threefold: to summarize currently available information, to provide a strategy for generating additional data, and to provide recommendations on specific data collection methods and tests matrices. This report outlines a data collection approach that relies on feedback from performance analyses to ascertain when adequate data have been collected. The data collection scheme emphasizes laboratory testing based on empiricism. 196 refs., 4 figs., 36 tabs.

  4. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  5. Rationale for Selection of Pesticides, Herbicides, and Related Compounds from the Hanford SST/DST Waste Considered for Analysis in Support of the Regulatory DQO (Privatization)

    Energy Technology Data Exchange (ETDEWEB)

    Wiemers, K.D.; Daling, P.; Meier, K.

    1999-01-04

    Regulated pesticides, herbicides, miticides, and fungicides were evaluated for their potential past and current use at the Hanford Site. The starting list of these compounds is based on regulatory analyte input lists discussed in the Regulatory DQO. Twelve pesticide, herbicide, miticide, and fungicide compounds are identified for analysis in the Hanford SST and DST waste in support of the Regulatory DQO. The compounds considered for additional analyses are non-detected, considered stable in the tank waste matrix, and of higher toxicity/carcinogenicity.

  6. Rationale for Selection of Pesticides, Herbicides, and Related Compounds from the Hanford SST/DST Waste Considered for Analysis in Support of the Regulatory DQO (Privatization)

    Energy Technology Data Exchange (ETDEWEB)

    Wiemers, K.D.; Daling, P.; Meier, K.

    1999-01-04

    Regulated pesticides, herbicides, miticides, and fungicides were evaluated for their potential past and current use at the Hanford Site. The starting list of these compounds is based on regulatory analyte input lists discussed in the Regulatory DQO. Twelve pesticide, herbicide, miticide, and fungicide compounds are identified for analysis in the Hanford SST and DST waste in support of the Regulatory DQO. The compounds considered for additional analyses are non-detected, considered stable in the tank waste matrix, and of higher toxicity/carcinogenicity.

  7. Annual Status Report (FY2010) Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2011-01-11

    In accordance with the U.S. Department of Energy (DOE) requirements in DOE O 435.1 Chg 1, Radioactive Waste Management, and implemented by DOE/RL-2000-29, Maintenance Plan for the Composite Analysis of the Hanford Site, Southeast Washington, the DOE Richland Operations Office (DOE-RL), also known as RL, has prepared this annual status report for fiscal year (FY) 2010 of PNNL-11800, Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site, hereafter referred to as the Composite Analysis.

  8. Annual Status Report (FY2009) Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2010-02-10

    In accordance with the U.S. Department of Energy (DOE) requirements in DOE O 435.1, Radioactive Waste Management, and implemented by DOE/RL-2000-29, Maintenance Plan for the Composite Analysis of the Hanford Site, Southeast Washington, the DOE Richland Operations Office has prepared this annual status report for fiscal year (FY) 2009 of PNNL-11800, Composite Analysis for the Low-Level Waste Disposal in the 200-Area Plateau of the Hanford Site, hereafter referred to as the Composite Analysis.

  9. Hanford facility dangerous waste Part A, Form 3 and Part B permit application documentation, Central Waste Complex (WA7890008967)(TSD: TS-2-4)

    Energy Technology Data Exchange (ETDEWEB)

    Saueressig, D.G.

    1998-05-20

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998.

  10. Retrieval Of Hanford's Single Shell Nuclear Waste Tanks Using Technologies Foreign And Domestic

    Energy Technology Data Exchange (ETDEWEB)

    Eacker, J. A.; Thompson, W. T.; Gibbons, P. W.

    2003-02-26

    Significant progress has been made on the Hanford single shell tank (SST) retrieval projects since they were initiated as part of the modified Hanford Federal Facility Agreement and Consent Order (Tri-party Agreement) in 2000. Four of the 149 SSTs at the U.S. Department of Energy (DOE) Office of River Protection (ORP) Hanford facility are being retrieved to meet Tri-Party Agreement commitments. An additional tank is being retrieved to demonstrate an alternate technical approach. As the Hanford Site transitions to an accelerated retrieval and closure mission, these methods will be the baseline methods for SST retrieval. The five SSTs are located within the Hanford 200- Area tank farms operated by CH2M HILL Hanford Group (CH2M HILL) for ORP. Included in this paper will be discussions on the technologies selected for retrieval of each tank; electrical resistance technologies that are being evaluated for ex-tank leak detection and monitoring; and the Cold Test Training Facility (CTTF) used for testing of and training on the different retrieval systems.

  11. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE [SEC 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    HU, T.A.

    2003-09-30

    Flammable gases such as hydrogen, ammonia, and methane are observed in the tank dome space of the Hanford Site high-level waste tanks. This report assesses the steady-state flammability level under normal and off-normal ventilation conditions in the tank dome space for 177 double-shell tanks and single-shell tanks at the Hanford Site. The steady-state flammability level was estimated from the gas concentration of the mixture in the dome space using estimated gas release rates, Le Chatelier's rule and lower flammability limits of fuels in an air mixture. A time-dependent equation of gas concentration, which is a function of the gas release and ventilation rates in the dome space, has been developed for both soluble and insoluble gases. With this dynamic model, the time required to reach the specified flammability level at a given ventilation condition can be calculated. In the evaluation, hydrogen generation rates can be calculated for a given tank waste composition and its physical condition (e.g., waste density, waste volume, temperature, etc.) using the empirical rate equation model provided in Empirical Rate Equation Model and Rate Calculations of Hydrogen Generation for Hanford Tank Waste, HNF-3851. The release rate of other insoluble gases and the mass transport properties of the soluble gas can be derived from the observed steady-state gas concentration under normal ventilation conditions. The off-normal ventilation rate is assumed to be natural barometric breathing only. A large body of data is required to do both the hydrogen generation rate calculation and the flammability level evaluation. For tank waste that does not have sample-based data, a statistical-based value from probability distribution regression was used based on data from tanks belonging to a similar waste group. This report (Revision 3) updates the input data of hydrogen generation rates calculation for 177 tanks using the waste composition information in the Best-Basis Inventory Detail

  12. CHEMICAL COMPOSITION AND PCT DATA FOR THE INITIAL SET OF HANFORD ENHANCED WASTE LOADING GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2014-06-02

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test results for 20 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation ranges of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. Two components of the study glasses, fluorine and silver, were not measured since each of these species would have required the use of an additional preparation method and their measured values were likely to be near or below analytical detection limits. Some of the glasses were difficult to prepare for chemical analysis. A sodium peroxide fusion dissolution method was successful in completely dissolving the glasses. Components present in the glasses in minor concentrations can be difficult to measure using this dissolution method due to dilution requirements. The use of a lithium metaborate preparation method for the minor components (planned for use since it is typically successful in digesting Defense Waste Processing Facility HLW glasses) resulted in an unacceptable amount of undissolved solids remaining in the sample solutions. An acid dissolution method was used instead, which provided more thorough dissolution of the glasses, although a small amount of undissolved material remained for some of the study glasses. The undissolved material was analyzed to determine those components of the glasses that did not fully dissolve. These components (e.g., calcium and chromium) were present in sufficient quantities to be reported from the measurements resulting from the sodium peroxide fusion preparation method, which did not leave undissolved material. Overall, the analyses resulted in sums of

  13. CHEMICAL COMPOSITION AND PCT DATA FOR THE INITIAL SET OF HANFORD ENHANCED WASTE LOADING GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2014-06-02

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test results for 20 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation ranges of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. Two components of the study glasses, fluorine and silver, were not measured since each of these species would have required the use of an additional preparation method and their measured values were likely to be near or below analytical detection limits. Some of the glasses were difficult to prepare for chemical analysis. A sodium peroxide fusion dissolution method was successful in completely dissolving the glasses. Components present in the glasses in minor concentrations can be difficult to measure using this dissolution method due to dilution requirements. The use of a lithium metaborate preparation method for the minor components (planned for use since it is typically successful in digesting Defense Waste Processing Facility HLW glasses) resulted in an unacceptable amount of undissolved solids remaining in the sample solutions. An acid dissolution method was used instead, which provided more thorough dissolution of the glasses, although a small amount of undissolved material remained for some of the study glasses. The undissolved material was analyzed to determine those components of the glasses that did not fully dissolve. These components (e.g., calcium and chromium) were present in sufficient quantities to be reported from the measurements resulting from the sodium peroxide fusion preparation method, which did not leave undissolved material. Overall, the analyses resulted in sums of

  14. Removal of strontium and transuranics from Hanford waste via hydrothermal processing -- FY 1994/95 test results

    Energy Technology Data Exchange (ETDEWEB)

    Orth, R.J.; Schmidt, A.J.; Elmore, M.R.; Hart, T.R.; Neuenschwander, G.G.; Gano, S.R. [Pacific Northwest Lab., Richland, WA (United States); Lehmann, R.W.; Momont, J.A. [Zimpro Environmental, Inc. (United States)

    1995-09-01

    Under the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project, Pacific Northwest Laboratory (PNL) is evaluating and developing organic destruction technologies that may be incorporated into the Initial Pretreatment Module (IPM) to treat Hanford tank waste. Organic (and ferrocyanide) destruction removes the compounds responsible for waste safety issues, and conditions the supernatant for low-level waste disposal by removing compounds that may be responsible for promoting strontium and transuranic (TRU) components solubility. Destruction or defunctionalization of complexing organics in tank wastes eliminates organic species that can reduce the efficiency of radionuclide (E.g., {sup 90}Sr) separation processes, such as ion exchange, solvent extraction, and precipitation. The technologies being evaluated and tested for organic destruction are low-temperature hydrothermal processing (HTP) and wet air oxidation (WAO). Four activities are described: Batch HTP/WAO testing with Actual Tank Waste (Section 3.0), Batch HTP Testing with Simulant (Section 4.0), Batch WAO testing with Simulant (Section 5.0), and Continuous Bench-scale WAO Testing with Simulant (Section 6.0). For each of these activities, the objectives, test approach, results, status, and direction of future investigations are discussed. The background and history of the HTP/WAO technology is summarized below. Conclusions and Recommendations are provided in Section 2.0. A continuous HTP off-gas safety evaluation conducted in FY 1994 is included as Appendix A.

  15. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hall, H. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  16. Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.N., Westinghouse Hanford

    1996-06-27

    Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  17. PERFORMANCE ASSESSMENT TO SUPPORT CLOSURE OF SINGLE-SHELL TANK WASTE MANAGEMENT AREA C AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BERGERON MP

    2010-01-14

    Current proposed regulatory agreements (Consent Decree) at the Hanford Site call for closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C in the year 2019. WMA C is part of the SST system in 200 East area ofthe Hanford Site and is one of the first tank farm areas built in mid-1940s. In order to close WMA C, both tank and facility closure activities and corrective actions associated with existing soil and groundwater contamination must be performed. Remedial activities for WMA C and corrective actions for soils and groundwater within that system will be supported by various types of risk assessments and interim performance assessments (PA). The U.S. Department of Energy, Office of River Protection (DOE-ORP) and the State ofWashington Department of Ecology (Ecology) are sponsoring a series of working sessions with regulators and stakeholders to solicit input and to obtain a common understanding concerning the scope, methods, and data to be used in the planned risk assessments and PAs to support closure of WMA C. In addition to DOE-ORP and Ecology staff and contractors, working session members include representatives from the U.S. Enviromnental Protection Agency, the U.S. Nuclear Regulatory Commission (NRC), interested tribal nations, other stakeholders groups, and members of the interested public. NRC staff involvement in the working sessions is as a technical resource to assess whether required waste determinations by DOE for waste incidental to reprocessing are based on sound technical assumptions, analyses, and conclusions relative to applicable incidental waste criteria.

  18. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.D. (comp.)

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  19. Alkaline-side extraction of technetium from tank waste using crown ethers and other extractants

    Energy Technology Data Exchange (ETDEWEB)

    Bonnesen, P.V.; Moyer, B.A.; Presley, D.J.; Armstrong, V.S.; Haverlock, T.J.; Counce, R.M.; Sachleben, R.A.

    1996-06-01

    The chemical development of a new crown-ether-based solvent-extraction process for the separation of (Tc) from alkaline tank-waste supernate is ready for counter-current testing. The process addresses a priority need in the proposed cleanup of Hanford and other tank wastes. This need has arisen from concerns due to the volatility of Tc during vitrification, as well as {sup 99}Tc`s long half-life and environmental mobility. The new process offers several key advantages that direct treatability--no adjustment of the waste composition is needed; economical stripping with water; high efficiency--few stages needed; non-RCRA chemicals--no generation of hazardous or mixed wastes; co-extraction of {sup 90}Sr; and optional concentration on a resin. A key concept advanced in this work entails the use of tandem techniques: solvent extraction offers high selectivity, while a subsequent column sorption process on the aqueous stripping solution serves to greatly concentrate the Tc. Optionally, the stripping solution can be evaporated to a small volume. Batch tests of the solvent-extraction and stripping components of the process have been conducted on actual melton Valley Storage Tank (MVST) waste as well as simulants of MVST and Hanford waste. The tandem process was demonstrated on MVST waste simulants using the three solvents that were selected the final candidates for the process. The solvents are 0.04 M bis-4,4{prime}(5{prime})[(tert-butyl)cyclohexano]-18-crown-6 (abbreviated di-t-BuCH18C6) in a 1:1 vol/vol blend of tributyl phosphate and Isopar{reg_sign} M (an isoparaffinic kerosene); 0.02 M di-t-BuCH18C6 in 2:1 vol/vol TBP/Isopar M and pure TBP. The process is now ready for counter-current testing on actual Hanford tank supernates.

  20. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hall, H. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  1. THE ROLE OF LIQUID WASTE PRETREATMENT TECHNOLOGIES IN SOLVING THE DOE CLEAN-UP MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, B; Sheryl Bush, S

    2008-10-31

    The objective of this report is to describe the pretreatment solutions that allow treatment to be tailored to specific wastes, processing ahead of the completion schedules for the main treatment facilities, and reduction of technical risks associated with future processing schedules. Wastes stored at Hanford and Savannah River offer challenging scientific and engineering tasks. At both sites, space limitations confound the ability to effectively retrieve and treat the wastes. Additionally, the radiation dose to the worker operating and maintaining the radiochemical plants has a large role in establishing the desired radioactivity removal. However, the regulatory requirements to treat supernatant and saltcake tank wastes differ at the two sites. Hanford must treat and remove radioactivity from the tanks based on the TriParty Agreement and Waste Incidental to Reprocessing (WIR) documentation. These authorizing documents do not specify treatment technologies; rather, they specify endstate conditions. Dissimilarly, Waste Determinations prepared at SRS in accordance with Section 3116 of the 2005 National Defense Authorization Act along with state operating permits establish the methodology and amounts of radioactivity that must be removed and may be disposed of in South Carolina. After removal of entrained solids and site-specific radionuclides, supernatant and saltcake wastes are considered to be low activity waste (LAW) and are immobilized in glass and disposed of at the Hanford Site Integrated Disposal Facility (IDF) or formulated into a grout for disposal at the Savannah River Site Saltstone Disposal Facility. Wastes stored at the Hanford Site or SRS comprise saltcake, supernate, and sludges. The supernatant and saltcake waste fractions contain primarily sodium salts, metals (e.g., Al, Cr), cesium-137 (Cs-137), technetium-99 (Tc-99) and entrained solids containing radionuclides such as strontium-90 (Sr-90) and transuranic elements. The sludges contain many of the

  2. CHALLENGES AND OPPORTUNITIES--INTEGRATED LIFE-CYCLE OPTIMIZATION INITIATIVES FOR THE HANFORD RIVER PROTECTION PROJECT--WASTE TREATMENT PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Auclair, K. D.

    2002-02-25

    This paper describes the ongoing integrated life-cycle optimization efforts to achieve both design flexibility and design stability for activities associated with the Waste Treatment Plant at Hanford. Design flexibility is required to support the Department of Energy Office of River Protection Balance of Mission objectives, and design stability to meet the Waste Treatment Plant construction and commissioning requirements in order to produce first glass in 2007. The Waste Treatment Plant is a large complex project that is driven by both technology and contractual requirements. It is also part of a larger overall mission, as a component of the River Protection Project, which is driven by programmatic requirements and regulatory, legal, and fiscal constraints. These issues are further complicated by the fact that both of the major contractors involved have a different contract type with DOE, and neither has a contract with the other. This combination of technical and programmatic drivers, constraints, and requirements will continue to provide challenges and opportunities for improvement and optimization. The Bechtel National, Inc. team is under contract to engineer, procure, construct, commission and test the Waste Treatment Plant on or ahead of schedule, at or under cost, and with a throughput capacity equal to or better than specified. The Department of Energy is tasked with the long term mission of waste retrieval, treatment, and disposal. While each mission is a compliment and inextricably linked to one another, they are also at opposite ends of the spectrum, in terms of expectations of one another. These mission requirements, that are seemingly in opposition to one another, pose the single largest challenge and opportunity for optimization: one of balance. While it is recognized that design maturation and optimization are the normal responsibility of any engineering firm responsible for any given project, the aspects of integrating requirements and the management

  3. Preliminary flowsheet: Ion exchange process for the separation of cesium from Hanford tank waste using Duolite{trademark} CS-100 resin

    Energy Technology Data Exchange (ETDEWEB)

    Eager, K.M.; Penwell, D.L.; Knutson, B.J.

    1994-12-01

    This preliminary flowsheet document describes an ion exchange process which uses Duolite{trademark} CS-100 resin to remove cesium from Hanford Tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. Process alternatives, unresolved issues, and development needs are discussed which relate to the process.

  4. Steady State Flammable Gas Release Rate Calculation and Lower Flammability Level Evaluation for Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    HU, T.A.

    2000-04-27

    This work is to assess the steady-state flammability level at normal and off-normal ventilation conditions in the tank dome space for 177 double-shell and single-shell tanks at Hanford. Hydrogen generation rate was calculated for 177 tanks using rate equation model developed recently.

  5. Hanford Tank 241-C-103 Residual Waste Contaminant Release Models and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.; Schaef, Herbert T.; Geiszler, Keith N.; Arey, Bruce W.

    2008-01-15

    This report tabulates data generated by laboratory characterization and testing of three samples collected from tank C-103. The data presented here will form the basis for a release model that will be developed for tank C-103. These release models are being developed to support the tank risk assessments performed by CH2M HILL Hanford Group, Inc. for DOE.

  6. Mineral transformation controls speciation and pore-fluid transmission of contaminants in waste-weathered Hanford sediments

    Science.gov (United States)

    Perdrial, Nicolas; Thompson, Aaron; O'Day, Peggy A.; Steefel, Carl I.; Chorover, Jon

    2014-09-01

    Portions of the Hanford Site (WA, USA) vadose zone were subjected to weathering by caustic solutions during documented releases of high level radioactive waste (containing Sr, Cs and I) from leaking underground storage tanks. Previous studies have shown that waste-sediment interactions can promote variable incorporation of contaminants into neo-formed mineral products (including feldspathoids and zeolites), but processes regulating the subsequent contaminant release from these phases into infiltrating background pore waters remain poorly known. In this paper, reactive transport experiments were conducted with Hanford sediments previously weathered for one year in simulated hyper-alkaline waste solutions containing high or low 88Sr, 127I, and 133Cs concentrations, with or without CO2(aq). These waste-weathered sediments were leached in flow-through column experiments with simulated background pore water (characteristic of meteoric recharge) to measure contaminant release from solids formed during waste-sediment interaction. Contaminant sorption-desorption kinetics and mineral transformation reactions were both monitored using continuous-flow and wet-dry cycling regimes for ca. 300 pore volumes. Less than 20% of contaminant 133Cs and 88Sr mass and less than 40% 127I mass were released over the course of the experiment. To elucidate molecular processes limiting contaminant release, reacted sediments were studied with micro- (TEM and XRD) and molecular- (Sr K-edge EXAFS) scale methods. Contaminant dynamics in column experiments were principally controlled by rapid dissolution of labile solids and competitive exchange reactions. In initially feldspathoidic systems, time-dependent changes in the local zeolitic bonding environment observed with X-ray diffraction and EXAFS are responsible for limiting contaminant release. Linear combination fits and shell-by-shell analysis of Sr K-edge EXAFS data revealed modification in Sr-Si/Al distances within the zeolite cage. Wet

  7. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

    2014-01-10

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

  8. IMPROVEMENTS IN CONTAINER MANAGEMENT OF TRANSURANIC (TRU) AND LOW LEVEL RADIOACTIVE WASTE STORED AT THE CENTRAL WASTE COMPLEX (CWC) AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    UYTIOCO EM

    2007-11-14

    The Central Waste Complex (CWC) is the interim storage facility for Resource Conservation & Recovery Act (RCRA) mixed waste, transuranic waste, transuranic mixed waste, low-level and low-level mixed radioactive waste at the Department of Energy's (DOE'S) Hanford Site. The majority of the waste stored at the facility is retrieved from the low-level burial grounds in the 200 West Area at the Site, with minor quantities of newly generated waste from on-site and off-site waste generators. The CWC comprises 18 storage buildings that house 13,000 containers. Each waste container within the facility is scanned into its location by building, module, tier and position and the information is stored in a site-wide database. As waste is retrieved from the burial grounds, a preliminary non-destructive assay is performed to determine if the waste is transuranic (TRU) or low-level waste (LLW) and subsequently shipped to the CWC. In general, the TRU and LLW waste containers are stored in separate locations within the CWC, but the final disposition of each waste container is not known upon receipt. The final disposition of each waste container is determined by the appropriate program as process knowledge is applied and characterization data becomes available. Waste containers are stored within the CWC based on their physical chemical and radiological hazards. Further segregation within each building is done by container size (55-gallon, 85-gallon, Standard Waste Box) and waste stream. Due to this waste storage scheme, assembling waste containers for shipment out of the CWC has been time consuming and labor intensive. Qualitatively, the ratio of containers moved to containers in the outgoing shipment has been excessively high, which correlates to additional worker exposure, shipment delays, and operational inefficiencies. These inefficiencies impacted the LLW Program's ability to meet commitments established by the Tri-Party Agreement, an agreement between the State

  9. Soil moisture transport in arid site vadose zones. [Evaluation of Hanford as national site for radioactive waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Brownell, L.E.; Backer, J.G.; Isaacson, R.E.; Brown, D.J.

    1975-07-01

    Data are presented from measurements of soil moisture at the Hanford Reservation. Possible mechanisms for moisture transport in arid and semi-arid climates were studied. Measurements for the lysimeter experiment and the thermocouple psychrometer experiment were continued with a new series of measurements using closely spaced sensors installed to a depth of 1.52 meters. During the 1973-1974 water year the percolation envelope of higher moisture content penetrated to a depth of four meters in the closed-bottom lysimeter and then was eliminated by upward transport of water in late summer. Precipitation during the 1973-1974 water year percolated to a depth of about six meters in the open-bottom lysimeter and remains as a residual perched envelope. The increase over normal percolation was due in part to a residual envelope of higher moisture content from the previous water year. Results obtained indicate the advantages of Hanford as a site for a national repository for radioactive waste. (CH)

  10. RCRA Assessment Plan for Single-Shell Tank Waste Management Area S-SX at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Chou, C.J.; Johnson, V.G.

    1999-10-06

    A groundwater quality assessment plan was prepared for waste management area S-SX at the Hanford Site. Groundwater monitoring is conducted at this facility in accordance with Title 40, Code of Federal Regulation (CFR) Part 265, Subpart F [and by reference of Washington Administrative Code (WAC) 173-303-400(3)]. The facility was placed in assessment groundwater monitoring program status after elevated waste constituents and indicator parameter measurements (i.e., chromium, technetium-99 and specific conductance) in downgradient monitoring wells were observed and confirmed. A first determination, as allowed under 40 CFR 265.93(d), provides the owner/operator of a facility an opportunity to demonstrate that the regulated unit is not the source of groundwater contamination. Based on results of the first determination it was concluded that multiple source locations in the waste management area could account for observed spatial and temporal groundwater contamination patterns. Consequently, a continued investigation is required. This plan, developed using the data quality objectives process, is intended to comply with the continued investigation requirement. Accordingly, the primary purpose of the present plan is to determine the rate and extent of dangerous waste (hexavalent chromium and nitrate) and radioactive constituents (e.g., technetium-99) in groundwater and to determine their concentrations in groundwater beneath waste management area S-SX. Comments and concerns expressed by the Washington State Department of Ecology on the initial waste management area S-SX assessment report were addressed in the descriptive narrative of this plan as well as in the planned activities. Comment disposition is documented in a separate addendum to this plan.

  11. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  12. Screening values for Non-Carcinogenic Hanford Waste Tank Vapor Chemicals that Lack Established Occupational Exposure Limits

    Energy Technology Data Exchange (ETDEWEB)

    Poet, Torka S.; Mast, Terryl J.; Huckaby, James L.

    2006-02-06

    Over 1,500 different volatile chemicals have been reported in the headspaces of tanks used to store high-level radioactive waste at the U.S. Department of Energy's Hanford Site. Concern about potential exposure of tank farm workers to these chemicals has prompted efforts to evaluate their toxicity, identify chemicals that pose the greatest risk, and incorporate that information into the tank farms industrial hygiene worker protection program. Established occupation exposure limits for individual chemicals and petroleum hydrocarbon mixtures have been used elsewhere to evaluate about 900 of the chemicals. In this report headspace concentration screening values were established for the remaining 600 chemicals using available industrial hygiene and toxicological data. Screening values were intended to be more than an order of magnitude below concentrations that may cause adverse health effects in workers, assuming a 40-hour/week occupational exposure. Screening values were compared to the maximum reported headspace concentrations.

  13. Effect of composition and temperature on viscosity and electrical conductivity of borosilicate glasses for Hanford nuclear waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, P.; Piepel, G.F.; Smith, D.E.; Redgate, P.E.; Schweiger, M.J.

    1993-04-01

    Viscosity and electrical conductivity of 79 simulated borosilicate glasses in the expected range of compositions to be produced in the Hanford Waste Vitrification Plant were measured within the temperature span from 950 to 1250[degree]C. The nine major oxide components were SiO[sub 2], B[sub 2]O[sub 3], Li[sub 2]O, Na[sub 2]O, CaO, MgO, Fe[sub 2]O[sub 3], Al[sub 2]O[sub 3], and ZrO[sub 2]. The test compositions were generated statistically. The data were fitted by Fulcher and Arrhenius equations with temperature coefficients being multilinear functions of the mass fractions of the oxide components. Mixture models were also developed for the natural logarithm of viscosity and that of electrical conductivity at 1150[degree]C. Least squares regression was used to obtain component coefficients for all the models.

  14. HANFORD MEDIUM & LOW CURIE WASTE PRETREATMENT PROJECT PHASE 1 LAB REPORT

    Energy Technology Data Exchange (ETDEWEB)

    HAMILTON, D.W.

    2006-01-30

    A fractional crystallization (FC) process is being developed to supplement tank waste pretreatment capabilities provided by the Waste Treatment and Immobilization Plant (WTP). FC can process many tank wastes, separating wastes into a low-activity fraction (LAW) and high-activity fraction (HLW). The low-activity fraction can be immobilized in a glass waste form by processing in the bulk vitrification (BV) system.

  15. Hanford facility dangerous waste permit application, low-level burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, R.H.

    1997-08-12

    The Hanford Facility Dangerous Plaste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the Low-Level Burial Grounds (this document, DOE/RL-88-20).

  16. Cancrinite and sodalite formation in the presence of cesium, potassium, magnesium, calcium and strontium in Hanford tank waste simulants

    Energy Technology Data Exchange (ETDEWEB)

    Deng Youjun [Department of Crop and Soil Sciences, Center for Multiphase Environmental Research, Washington State University, Pullman, WA 99164-6420 (United States); Flury, Markus [Department of Crop and Soil Sciences, Center for Multiphase Environmental Research, Washington State University, Pullman, WA 99164-6420 (United States); Harsh, James B. [Department of Crop and Soil Sciences, Center for Multiphase Environmental Research, Washington State University, Pullman, WA 99164-6420 (United States)]. E-mail: harsh@wsu.edu; Felmy, Andrew R. [Pacific Northwest National Laboratory, Environmental Molecular Science laboratory, Richland, WA 99352 (United States); Qafoku, Odeta [Pacific Northwest National Laboratory, Environmental Molecular Science laboratory, Richland, WA 99352 (United States)

    2006-12-15

    High-level radioactive tank waste solutions that have leaked into the subsurface at the US Department of Energy Hanford Site, Washington, are chemically complex. Here, the effect of five cations, Cs{sup +}, K{sup +}, Sr{sup 2+}, Ca{sup 2+} and Mg{sup 2+}, on mineral formation and transformation pathways under conditions mimicking Hanford tank leaks is investigated. Sodium silicate was used to represent the dissolved silicate from sediments. The silicate was added into a series of simulants that contained 0.5M aluminate, 1M or 16M NaOH, and the NO{sub 3}{sup -} salts of the cations. The precipitates were monitored by X-ray diffraction, scanning electron microscopy, and X-ray energy dispersive spectroscopy. In the 1M NaOH simulants, low concentration of Cs{sup +} (<100mM) did not affect the formation of lepispheric cancrinite and sodalite, whereas only highly crystalline cancrinite formed when Cs{sup +} concentration was >=250mM. An unidentified feldspathoid or zeolite intermediate phase was observed in the presence of high concentrations of Cs{sup +} (500mM). The presence of K{sup +} did not alter, but slowed, the formation of cancrinite and sodalite. The presence of divalent cations led to the formation of metastable or stable silicates, aluminates, hydroxides, or aluminosilicates. The formation of these intermediate phases slowed the formation of cancrinite and sodalite by consuming OH{sup -}, silicate, or aluminate. Compared with the concentrations used in this study, the concentrations of radioactive Cs{sup +} and Sr{sup 2+} in the tank solutions are much lower and divalent cations (Ca{sup 2+} and Mg{sup 2+}) released from sediments likely precipitate out as hydroxides, silicates or aluminates; therefore, the authors do not expect that the presence of these monovalent and divalent cations significantly affect the formation of cancrinite and sodalite in the sediments underneath the leaking waste tanks.

  17. Cancrinite and Sodalite Formation in the Presence of Cesium, Potassium, Magnesium, Calcium and Strontium in Hanford Tank Waste Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Youjun; Flury, Markus; Harsh, James B.; Felmy, Andrew R.; Qafoku, Odeta

    2006-12-01

    High-level radioactive tank waste solutions that have leaked into the subsurface at the US Department of Energy Hanford Site, Washington, are chemically complex. Here, the effect of five cations, Cs⁺, K⁺, Sr²⁺, Ca²⁺ and Mg²⁺, on mineral formation and transformation pathways under conditions mimicking Hanford tank leaks is investigated. Sodium silicate was used to represent the dissolved silicate from sediments. The silicate was added into a series of simulants that contained 0.5 M aluminate, 1M or 16 M NaOH, and the NO⁻₃ salts of the cations. The precipitates were monitored by X-ray diffraction, scanning electron microscopy, and X-ray energy dispersive spectroscopy. In the 1M NaOH simulants, low concentration of Cs⁺ (<100 mM) did not affect the formation of lepispheric cancrinite and sodalite, whereas only highly crystalline cancrinite formed when Cs⁺ concentration was ≥250 mM. An unidentified feldspathoid or zeolite intermediate phase was observed in the presence of high concentrations of Cs⁺ (500 mM). The presence of K⁺ did not alter, but slowed, the formation of cancrinite and sodalite. The presence of divalent cations led to the formation of metastable or stable silicates, aluminates, hydroxides, or aluminosilicates. The formation of these intermediate phases slowed the formation of cancrinite and sodalite by consuming OH⁻, silicate, or aluminate. Compared with the concentrations used in this study, the concentrations of radioactive Cs+ and Sr²⁺ in the tank solutions are much lower and divalent cations (Ca²⁺ and Mg²⁺) released from sediments likely precipitate out as hydroxides, silicates or aluminates; therefore, the authors do not expect that the presence of these monovalent and divalent cations significantly affect the formation of cancrinite and sodalite in the sediments underneath the leaking waste tanks.

  18. RCRA Assessment Plan for Single-Shell Tank Waste Management Area B-BX-BY at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Narbutovskih, Susan M.

    2006-09-29

    This document was prepared as a groundwater quality assessment plan revision for the single-shell tank systems in Waste Management Area B-BX-BY at the Hanford Site. Groundwater monitoring is conducted at this facility in accordance with 40 CFR Part 265, Subpart F. In FY 1996, the groundwater monitoring program was changed from detection-level indicator evaluation to a groundwater quality assessment program when elevated specific conductance in downgradient monitoring well 299 E33-32 was confirmed by verification sampling. During the course of the ensuing investigation, elevated technetium-99 and nitrate were observed above the drinking water standard at well 299-E33-41, a well located between 241-B and 241-BX Tank Farms. Earlier observations of the groundwater contamination and tank farm leak occurrences combined with a qualitative analysis of possible solutions, led to the conclusion that waste from the waste management area had entered the groundwater and were observed in this well. Based on 40 CFR 265.93 [d] paragraph (7), the owner-operator must continue to make the minimum required determinations of contaminant level and rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.

  19. Physical, Hydraulic, and Transport Properties of Sediments and Engineered Materials Associated with Hanford Immobilized Low-Activity Waste

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Z. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Philip D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomle, Jonathan N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-28

    Current plans for treatment and disposal of immobilized low-activity waste (ILAW) from Hanford’s underground waste storage tanks include vitrification and storage of the glass waste form in a nearsurface disposal facility. This Integrated Disposal Facility (IDF) is located in the 200 East Area of the Hanford Central Plateau. Performance assessment (PA) of the IDF requires numerical modeling of subsurface flow and reactive transport processes over very long periods (thousands of years). The models used to predict facility performance require parameters describing various physical, hydraulic, and transport properties. This report provides updated estimates of physical, hydraulic, and transport properties and parameters for both near- and far-field materials, intended for use in future IDF PA modeling efforts. Previous work on physical and hydraulic property characterization for earlier IDF PA analyses is reviewed and summarized. For near-field materials, portions of this document and parameter estimates are taken from an earlier data package. For far-field materials, a critical review is provided of methodologies used in previous data packages. Alternative methods are described and associated parameters are provided.

  20. Hazard Ranking System evaluation of CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) inactive waste sites at Hanford: Volume 1, Evaluation methods and results

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, R.D.; Cramer, K.H.; Higley, K.A.; Jette, S.J.; Lamar, D.A.; McLaughlin, T.J.; Sherwood, D.R.; Van Houten, N.C.

    1988-10-01

    The purpose of this report is to formally document the individual site Hazard Ranking System (HRS) evaluations conducted as part of the preliminary assessment/site inspection (PA/SI) activities at the US Department of Energy (DOE) Hanford Site. These activities were carried out pursuant to the DOE orders that describe the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Program addressing the cleanup of inactive waste sites. These orders incorporate the US Environmental Protection Agency methodology, which is based on the Superfund Amendments and Reauthorization Act of 1986 (SARA). The methodology includes six parts: PA/SI, remedial investigation/feasibility study, record of decision, design and implementation of remedial action, operation and monitoring, and verification monitoring. Volume 1 of this report discusses the CERCLA inactive waste-site evaluation process, assumptions, and results of the HRS methodology employed. Volume 2 presents the data on the individual CERCLA engineered-facility sites at Hanford, as contained in the Hanford Inactive Site Surveillance (HISS) Data Base. Volume 3 presents the data on the individual CERCLA unplanned-release sites at Hanford, as contained in the HISS Data Base. 34 refs., 43 figs., 47 tabs.

  1. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the

  2. Performance of a Surface Barrier for Waste Isolation and Flux Reduction at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Wellman, Dawn M.; Morse, John G.; Leary, Kevin D.; Freshley, Mark D.

    2016-05-13

    Based on the knowledge gained from a decade of laboratory, field, and numerical studies, the Prototype Hanford Barrier (PHB) was designed and constructed between late 1993 and late 1994 over the 216-B-57 Crib in the 200-BP-1 Operable Unit at the Hanford Site. The PHB has been monitored since 1994 to evaluate the physical, hydrologic, and ecological performance. Two stress tests were carried out in the past: (1) an enhanced (about 3 times the multi-year average of 160 mm/year) precipitation test from water year (WY) 1995 to WY1997, which included a man-made 1000-year return 24-hour rainstorms in March each year, and (2) a controlled fire test in 2008. The purpose of this article is to present the main findings of the PHB demonstration since 1994. From 1994 to present, the PHB has limited drainage of less than 0.2 mm yr-1, which is below the 0.5 mm yr-1 design goal, and minimized erosion. The observations suggest the PHB is robust enough to endure the hydrological stress of three times average precipitation and 1000-year return 24-hour rainstorms. After the controlled fire, far less vegetation grows and grasses are the dominant vegetation (compared to shrubs on the unburned section). Even so, the grasses can remove nearly all the stored water in the burned section, although during a longer period of time than in the unburned section. The findings at the PHB are useful for the design and monitoring of future surface barriers at Hanford and elsewhere.

  3. Assessment of New Calculation Method for Toxicological Sums-of-Fractions for Hanford Tank Farm Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A.

    2006-10-18

    The toxicological source terms used for potential accident assessment in the Hanford Tank Farms DSA are based on toxicological sums-of-fractions (SOFs) that were calculated based on the Best Basis Inventory (BBI) from May 2002, using a method that depended on thermodynamic equilibrium calculations of the compositions of liquid and solid phases. The present report describes a simplified SOF-calculation method that is to be used in future toxicological updates and assessments and compares its results (for the 2002 BBI) to those of the old method.

  4. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, John M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-29

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  5. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BARKER, S.A.

    2006-07-27

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  6. Contaminant Leach Testing of Hanford Tank 241-C-104 Residual Waste

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M.V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buck, Edgar C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-01

    Leach testing of Tank C-104 residual waste was completed using batch and column experiments. Tank C-104 residual waste contains exceptionally high concentrations of uranium (i.e., as high as 115 mg/g or 11.5 wt.%). This study was conducted to provide data to develop contaminant release models for Tank C-104 residual waste and Tank C-104 residual waste that has been treated with lime to transform uranium in the waste to a highly insoluble calcium uranate (CaUO4) or similar phase. Three column leaching cases were investigated. In the first case, C-104 residual waste was leached with deionized water. In the second case, crushed grout was added to the column so that deionized water contacted the grout prior to contacting the waste. In the third case, lime was mixed in with the grout. Results of the column experiments demonstrate that addition of lime dramatically reduces the leachability of uranium from Tank C-104 residual waste. Initial indications suggest that CaUO4 or a similar highly insoluble calcium rich uranium phase forms as a result of the lime addition. Additional work is needed to definitively identify the uranium phases that occur in the as received waste and the waste after the lime treatment.

  7. Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using SuperLig 644 Resin

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    2000-08-23

    A proposed facility is being designed for the immobilization of Hanford high-level radioactive waste. One unit process in the facility is designed to remove radioactive cesium by ion-exchange from the strongly alkaline aqueous phase. A resin specifically designed with high selectivity of cesium under alkaline conditions is being investigated. The resin also is elutable under more acidic conditions. The proposed design of the facility consists of two sets of two packed columns placed in series (i.e., a lead column followed by a lag (guard) column configuration). During operation, upon reaching a specified cesium concentration criterion at the exit of the lag column, operation is switched to the second set of lead and lag columns. The cesium-loaded lead column is processed (i.e., washed and eluted) and switched to the lag position. the previous lag column is then placed in the lead position (without eluting) and the system is ready for use in the next cycle. For a well designed process, the loading and elution processes result in significant volume reductions in aqueous high-level waste.

  8. Selection of a computer code for Hanford low-level waste engineered-system performance assessment. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, B.P.; Bacon, D.H.

    1998-02-01

    Planned performance assessments for the proposed disposal of low-activity waste (LAW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. The available computer codes with suitable capabilities at the time Revision 0 of this document was prepared were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical processes expected to affect LAW glass corrosion and the mobility of radionuclides. This analysis was repeated in this report but updated to include additional processes that have been found to be important since Revision 0 was issued and to include additional codes that have been released. The highest ranked computer code was found to be the STORM code developed at PNNL for the US Department of Energy for evaluation of arid land disposal sites.

  9. Comparative ecology of nuclear waste ponds and streams on the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Emery, R.M.; McShane, M.C.

    1978-10-01

    Limnological and radiological parameters were investigated in ponds and streams on the Hanford Site to develop comprehensive radioecological profiles. While Hanford ponds and streams can be grouped into three categories of nuclide content, only one system (100-N trench) has dose rates exceeding 1 R/week. However, maximum ..cap alpha.. concentrations in Z-19 ditch water and maximum ..beta..-..gamma.. concentrations in 100-N trench water both exceeded 10/sup 4/ pCi/l. These aquatic environments support populations of commonly occurring algae, macrophytes, invertebrates, and in some cases, fish. Although the variety in algal populations is reduced in 100-N trench and Z-19 ditch, variety in other types of biota are not apparently associated with amounts of radioactivity. The productivity rates of plant life, invertebrates and fish in these systems resemble those in aquatic environments not associated with nuclear activities. Only 100-N trench contains enough radioactivity to be potentially harmful to some aquatic organisms and terrestrial communities. 7 figures, 7 tables.

  10. Recharge Data Package for Hanford Single-Shell Tank Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, Michael J.; Keller, Jason M.

    2007-09-24

    Pacific Northwest National Laboratory (PNNL) assists CH2M HILL Hanford Group, Inc., in its preparation of the Resource Conservation and Recovery Act (RCRA) Facility Investigation report. One of the PNNL tasks is to use existing information to estimate recharge rates for past and current conditions as well as future scenarios involving cleanup and closure of tank farms. The existing information includes recharge-relevant data collected during activities associated with a host of projects, including those of RCRA, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the CH2M HILL Tank Farm Vadose Zone Project, and the PNNL Remediation and Closure Science Project. As new information is published, the report contents can be updated. The objective of this data package was to use published data to provide recharge estimates for the scenarios being considered in the RCRA Facility Investigation. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). The recharge estimates supplement the estimates provided by PNNL researchers in 2006 for the Hanford Site using additional field measurements and model analysis using weather data through 2006.

  11. Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process

    Energy Technology Data Exchange (ETDEWEB)

    Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

    2009-02-20

    A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes.

  12. Hanford Site Tank 241-C-108 Residual Waste Contaminant Release Models and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Arey, Bruce W.; Schaef, Herbert T.

    2010-06-18

    This report presents the results of laboratory characterization, testing, and analysis for a composite sample (designated 20578) of residual waste collected from single-shell tank C-108 during the waste retrieval process after modified sluicing. These studies were completed to characterize concentration and form of contaminant of interest in the residual waste; assess the leachability of contaminants from the solids; and develop release models for contaminants of interest. Because modified sluicing did not achieve 99% removal of the waste, it is expected that additional retrieval processing will take place. As a result, the sample analyzed here is not expected to represent final retrieval sample.

  13. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.; Ryan, Joseph V.; Qafoku, Nikolla

    2014-08-04

    The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans to immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).

  14. Hanford Waste Simulants Created to Support the Research and Development on the River Protection Project - Waste Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R.E.

    2001-07-26

    The development of nonradioactive waste simulants to support the River Protection Project - Waste Treatment Plant bench and pilot-scale testing is crucial to the design of the facility. The report documents the simulants development to support the SRTC programs and the strategies used to produce the simulants.

  15. Work plan for defining a standard inventory estimate for wastes stored in Hanford site underground tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kupfer, M.J.

    1995-09-29

    This work plan addresses the methodology for defining a tank waste database that will provide a best basis estimate of waste characteristics for each underground storage tank. The resulting database is expected to be in place in a network accessible electronic form by September 1996.

  16. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, Dennis J. [Washington River Protection Solutions, Richland, WA (United States)

    2015-02-03

    The presentation outline is: Briefly review leak integrity status of tank AY-102 and current leak behavior; Summarize recent initiatives to understand leak mechanism and to verify integrity of remaining waste confinement structures; describe planned waste recovery activities; and, introduce other papers on tank AY-102 topics.

  17. Removal of floating organic in Hanford Waste Tank 241-C-103 restart plan

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T.R.; Hanson, C.

    1994-10-03

    The decision whether or not to remove the organic layer from Waste Tank 241-C-103 was deferred until May, 1995. The following restart plan was prepared for removal of the organic if the decision is to remove the organic from the waste tank 241-C-103.

  18. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    TU, T.A.

    2007-01-04

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  19. Scoring methods and results for qualitative evaluation of public health impacts from the Hanford high-level waste tanks. Integrated Risk Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Buck, J.W.; Gelston, G.M.; Farris, W.T.

    1995-09-01

    The objective of this analysis is to qualitatively rank the Hanford Site high-level waste (HLW) tanks according to their potential public health impacts through various (groundwater, surface water, and atmospheric) exposure pathways. Data from all 149 single-shell tanks (SSTs) and 23 of the 28 double-shell tanks (DSTs) in the Tank Waste Remediation System (TWRS) Program were analyzed for chemical and radiological carcinogenic as well as chemical noncarcinogenic health impacts. The preliminary aggregate score (PAS) ranking system was used to generate information from various release scenarios. Results based on the PAS ranking values should be considered relative health impacts rather than absolute risk values.

  20. Candidate Low-Temperature Glass Waste Forms for Technetium-99 Recovered from Hanford Effluent Management Facility Evaporator Concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Mei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tang, Ming [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rim, Jung Ho [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chamberlin, Rebecca M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-24

    Alternative treatment and disposition options may exist for technetium-99 (99Tc) in secondary liquid waste from the Hanford Direct-Feed Low-Activity Waste (DFLAW) process. One approach includes development of an alternate glass waste form that is suitable for on-site disposition of technetium, including salts and other species recovered by ion exchange or precipitation from the EMF evaporator concentrate. By recovering the Tc content from the stream, and not recycling the treated concentrate, the DFLAW process can potentially be operated in a more efficient manner that lowers the cost to the Department of Energy. This report provides a survey of candidate glass formulations and glass-making processes that can potentially incorporate technetium at temperatures <700 °C to avoid volatilization. Three candidate technetium feed streams are considered: (1) dilute sodium pertechnetate loaded on a non-elutable ion exchange resin; (2) dilute sodium-bearing aqueous eluent from ion exchange recovery of pertechnetate, or (3) technetium(IV) oxide precipitate containing Sn and Cr solids in an aqueous slurry. From the technical literature, promising candidate glasses are identified based on their processing temperatures and chemical durability data. The suitability and technical risk of three low-temperature glass processing routes (vitrification, encapsulation by sintering into a glass composite material, and sol-gel chemical condensation) for the three waste streams was assessed, based on available low-temperature glass data. For a subset of candidate glasses, their long-term thermodynamic behavior with exposure to water and oxygen was modeled using Geochemist’s Workbench, with and without addition of reducing stannous ion. For further evaluation and development, encapsulation of precipitated TcO2/Sn/Cr in a glass composite material based on lead-free sealing glasses is recommended as a high priority. Vitrification of pertechnetate in aqueous anion exchange eluent solution

  1. Mechanisms of gas retention and release: Experimental results for Hanford single-shell waste tanks 241-A-101, 241-S-106, and 241-U-103

    Energy Technology Data Exchange (ETDEWEB)

    Rassat, S.D.; Caley, S.M.; Bredt, P.R.; Gauglitz, P.A.; Rinehart, D.E.; Forbes, S.V.

    1998-09-01

    The 177 underground waste storage tanks at the Hanford Site contain millions of gallons of radioactive waste resulting from the purification of nuclear materials and related processes. Through various mechanisms, flammable gas mixtures of hydrogen, ammonia, methane, and nitrous oxide are generated and retained in significant quantities within the waste in many ({approximately}25) of these tanks. The potential for large releases of retained gas from these wastes creates a flammability hazard. It is a critical component of the effort to understand the flammability hazard and a primary goal of this laboratory investigation to establish an understanding of the mechanisms of gas retention and release in these wastes. The results of bubble retention experimental studies using waste samples from several waste tanks and a variety of waste types support resolution of the Flammable Gas Safety Issue. Gas bubble retention information gained in the pursuit of safe storage will, in turn, benefit future waste operations including salt-well pumping, waste transfers, and sluicing/retrieval.

  2. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  3. Analysis of consequences of postulated solvent fires in Hanford site waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, W.L., Westinghouse Hanford

    1996-08-12

    This document contains the calculations that support the accident analyses for accidents involving organic solvents. This work was performed to support the Basis for Interim Operation (BIO) and the Final Safety Analysis Report (FSAR) for Tank Waste Remediation Systems (TWRS).

  4. Exposure Scenarios and Unit Dose Factors for the Hanford Immobilized Low Activity Tank Waste Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    RITTMANN, P.D.

    1999-12-29

    Exposure scenarios are defined to identify potential pathways and combinations of pathways that could lead to radiation exposure from immobilized tank waste. Appropriate data and models are selected to permit calculation of dose factors for each exposure

  5. Hanford enhanced waste glass characterization. Influence of composition on chemical durability

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    This report provides a review of the complete high-level waste (HLW) and low-activity waste (LAW) data sets for the glasses recently fabricated at Pacific Northwest National Laboratory and characterized at Savannah River National Laboratory (SRNL). The review is from the perspective of relating the chemical durability performance to the compositions of these study glasses, since the characterization work at SRNL focused on chemical analysis and ASTM Product Consistency Test (PCT) performance.

  6. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL DYNAMIC RESPONSE TO THE WASTE ELASTIC PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; ABATT FG; JOHNSON KI

    2009-01-16

    The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10{sup 3} Pa and 4.135 x 10{sup 9} Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks

  7. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL DYNAMIC RESPONSE TO THE WASTE ELASTIC PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; ABATT FG; JOHNSON KI

    2009-01-16

    The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10{sup 3} Pa and 4.135 x 10{sup 9} Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks

  8. Establishment of a Cost-Effective and Robust Planning Basis for the Processing of M-91 Waste at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Wayne L.; Parker, Brian M.

    2004-07-30

    This report identifies and evaluates viable alternatives for the accelerated processing of Hanford Site transuranic (TRU) and mixed low-level wastes (MLLW) that cannot be processed using existing site capabilities. Accelerated processing of these waste streams will lead to earlier reduction of risk and considerable life-cycle cost savings. The processing need is to handle both oversized MLLW and TRU containers as well as containers with surface contact dose rates greater than 200 mrem/hr. This capability is known as the ''M-91'' processing capability required by the Tri-Party Agreement milestone M-91--01. The new, phased approach proposed in this evaluation would use a combination of existing and planned processing capabilities to treat and more easily manage contact-handled waste streams first and would provide for earlier processing of these wastes.

  9. Removal of strontium and transuranics from Hanford tank waste via addition of metal cations and chemical oxidant: FY 1995 test results

    Energy Technology Data Exchange (ETDEWEB)

    Orth, R.J.; Zacher, A.H.; Schmidt, A.J.; Elmore, M.R.; Elliott, K.R.; Neuenschwander, G.G.; Gano, S.R.

    1995-09-01

    Chelating organics and some of their degradation products in the Hanford tank waste, such as EDTA, HEDTA, and NTA act to solubilize strontium and transuranics (TRU) in the tank waste supernatant. Displacement of strontium and TRU will facilitate the removal of these radionuclides via precipitation/filtration, ion exchange, or solvent extraction so that low-level waste feed specifications can be met. Pacific Northwest Laboratory has investigated two methods for releasing organic-complexed strontium and TRU components to allow for effective pretreatment of tank waste supernatant: metal cation addition (to promote displacement and flocculation) and chemical oxidant (pennanganate) addition (to promote chelator destruction/defunctionalization and possibly flocculation). These methods, which can be conducted at near-ambient. temperatures and pressures, could be deployed as intank processes.

  10. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  11. Implementation of Recommendations from the One System Comparative Evaluation of the Hanford Tank Farms and Waste Treatment Plant Safety Bases

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Richard L.; Niemi, Belinda J.; Paik, Ingle K.; Buczek, Jeffrey A.; Lietzow, J.; McCoy, F.; Beranek, F.; Gupta, M.

    2013-11-07

    A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Farms) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25 recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved.

  12. Pulling History from the Waste Stream: Identification and Collection of Manhattan Project and Cold War Era Artifacts on the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Marceau, Thomas E.; Watson, Thomas L.

    2013-11-13

    One man's trash is another man's treasure. Not everything called "waste" is meant for the refuse pile. The mission of the Curation Program is at direct odds with the remediation objectives of the Hanford Site. While others are busily tearing down and burying the Site's physical structures and their associated contents, the Curation Program seeks to preserve the tangible elements of the Site's history from these structures for future generations before they flow into the waste stream. Under the provisions of a Programmatic Agreement, Cultural Resources staff initiated a project to identify and collect artifacts and archives that have historic or interpretive value in documenting the role of the Hanford Site throughout the Manhattan Project and Cold War Era. The genesis of Hanford's modern day Curation Program, its evolution over nearly two decades, issues encountered, and lessons learned along the way -- particularly the importance of upper management advocacy, when and how identification efforts should be accomplished, the challenges of working within a radiological setting, and the importance of first hand information -- are presented.

  13. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

  14. Hanford Tank Farms Waste Feed Flow Loop Phase VI: PulseEcho System Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.

    2012-11-21

    This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

  15. Hanford double shell waste tank corrosion studies - final report FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fuentes, R. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-19

    SRNL tasks for FY14 included studies to evaluate the susceptibility of carbon steel to vapor space corrosion (VSC), liquid-air interface (LAI) corrosion, and pitting corrosion. Additionally, SRNL evaluated the susceptibility of carbon steel to pitting corrosion under buffered waste conditions, with the objective of determining the adequate amount of inhibitor (e.g., nitrite) necessary to mitigate pitting corrosion. Other CPP experiments were performed in historical waste simulants and the results were compared to previously gathered results. The results of these activities were utilized to assess the robustness of the standardized CPP protocol

  16. Self-Flammability of Gases Generated by Hanford Tank Waste and the Potential of Nitrogen Inerting to Eliminate Flammability Safety Concerns

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-12

    Through radiolytic and thermolytic reactions, Hanford tank wastes generate and retain a variety of gases, including hydrogen, nitrous oxide, methane (and other hydrocarbons), ammonia, and nitrogen. This gas generation can be expected to continue during processing in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The generation rates in the WTP will change from those for the in-situ tank waste because of different process temperatures, different dose rates produced by in-process changes in the proportions of solid and liquid, and dilution of the waste liquid. The flammability of the generated gas that is continuously released, and of any retained gas that might be released into a vessel headspace in quantity due to a spontaneous release, depends on the concentrations not only of the fuel gases—primarily hydrogen (H2), methane, other hydrocarbons, and ammonia—but of the oxidizer nitrous oxide (N2O). As a result of high concentrations of N2O, some gas mixtures are “self-flammable” (i.e., ignition can occur when no air is present because N2O provides the only oxidizer needed). Self-flammability could potentially reduce the effectiveness of using a nitrogen (N2) purge in the headspace as a flammability control, if its effects are not accounted for. A given amount of inertant gas (N2) can accommodate only a certain amount of a generated self-flammable gas before the mixture with inertant gas becomes flammable.

  17. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the

  18. Identification of Non-Pertechnetate Species In Hanford Tank Waste, Their Synthesis, Characterization, And Fundamental Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth R. Ashely; Norman Schroeder; Jose A. Olivares; Brian Scott

    2004-12-10

    This proposal had three major goals: (1) develop capillary electrophoresis mass spectrometry as a characterization technique, (2) separate a non-pertechnetate fraction from a waste sample and identify the non-pertechnetate species in it by CEMS, and (3) synthesize and characterize bulk quantities of the identified non-pertechnetate species and study their ligand substitution and redox chemistry.

  19. Stabilization of in-tank residual wastes and external tank soil contamination for the Hanford tank closure program: application to the AX tank farm

    Energy Technology Data Exchange (ETDEWEB)

    SONNICHSEN, J.C.

    1998-10-12

    Mixed high-level waste is currently stored in underground tanks at the US Department of Energy's (DOE's) Hanford Site. The plan is to retrieve the waste, process the water, and dispose of the waste in a manner that will provide less long-term health risk. The AX Tank Farm has been identified for purposes of demonstration. Not all the waste can be retrieved from the tanks and some waste has leaked from these tanks into the underlying soil. Retrieval of this waste could result in additional leakage. During FY1998, the Sandia National Laboratory was under contract to evaluate concepts for immobilizing the residual waste remaining in tanks and mitigating the migration of contaminants that exist in the soil column. Specifically, the scope of this evaluation included: development of a layered tank fill design for reducing water infiltration; development of in-tank getter technology; mitigation of soil contamination through grouting; sequestering of specific radionuclides in soil; and geochemical and hydrologic modeling of waste-water-soil interactions. A copy of the final report prepared by Sandia National Laboratory is attached.

  20. Tc Reductant Chemistry and Crucible Melting Studies with Simulated Hanford Low-Activity Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Soderquist, Chuck Z.; Icenhower, Jonathan P.; McGrail, B PETER.; Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.; Schweiger, Michael J.; Crum, Jarrod V.; Yeager, John D.; Matyas, Josef; Darnell, Lori P.; Schaef, Herbert T.; Owen, Antionette T.; Kozelisky, Anne E.; Snow, Lanee A.; Steele, Marilyn J.

    2005-03-30

    The FY 2003 risk assessment (RA) of bulk vitrification (BV) waste packages used 0.3 wt% of the technetium (Tc) inventory as a leachable salt and found it sufficient to create a significant peak in the groundwater concentration in a 100-meter down-gradient well. Although this peak met regulatory limits, considering uncertainty in the actual Tc salt fraction, peak concentrations could exceed the maximum concentration limit (MCL) under some scenarios so reducing the leachable salt inventory is desirable. The main objective of this study was to reduce the mobile Tc species available within a BV disposal package by reducing the oxidation state of the Tc in the waste feed and/or during melting because Tc in its reduced form of Tc(IV) has a much lower volatility than Tc(VII). Reduced Tc volatility has a secondary benefit of increasing the Tc retention in glass.

  1. Hanford Double Shell Waste Tank Corrosion Studies - Final Report FY2015

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, R. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    During FY15, SRNL performed corrosion testing that supported Washington River Protection Solutions (WRPS) with their double shell tank (DST) integrity program. The testing investigated six concerns including, 1) the possibility of corrosion of the exterior of the secondary tank wall; 2) the effect of ammonia on vapor space corrosion (VSC) above waste simulants; 3) the determination of the minimum required nitrite and hydroxide concentrations that prevent pitting in concentrated nitrate solutions (i.e., waste buffering); 4) the susceptibility to liquid air interface (LAI) corrosion at proposed stress corrosion cracking (SCC) inhibitor concentrations; 5) the susceptibility of carbon steel to pitting in dilute solutions that contain significant quantities of chloride and sulfate; and 6) the effect of different heats of A537 carbon steel on the corrosion response. For task 1, 2, and 4, the effect of heat treating and/ or welding of the materials was also investigated.

  2. Proposed strategy for leak detection, monitoring, and mitigation during Hanford single-shell tank waste retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Hertzel, J.S.

    1996-07-18

    The objective of this document is to propose a strategy for addressing applicable LDMM-related criteria in order to determine an allowable leakage volume for SSTs targeted for waste retrieval using sluicing. A strategy is required to work through the individual ALV criterion (and related issues) in a prioritized,orderly, and efficient manner. All components of the strategy are based upon LDMM-related issues, functions and requirements,and technology alternatives.

  3. Final closure cover for a Hanford radioactive mixed waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.D.

    1996-02-06

    This study provides a preliminary design for a RCRA mixed waste landfill final closure cover. The cover design was developed by a senior class design team from Seattle University. The design incorporates a layered design of indigenous soils and geosynthetics in a layered system to meet final closure cover requirements for a landfill as imposed by the Washington Administrative Code WAC-173-303 implementation of the Resource Conservation and Recovery Act.

  4. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.

  5. Topical report on release scenario analysis of long-term management of high-level defense waste at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, R.W.; Landstrom, D.K.; Blair, S.C.; Howes, B.W.; Robkin, M.A.; Benson, G.L.; Reisenauer, A.E.; Walters, W.H.; Zimmerman, M.G.

    1980-11-01

    Potential release scenarios for the defense high-level waste (HLW) on the Hanford Site are presented. Presented in this report are the three components necessary for evaluating the various alternatives under consideration for long-term management of Hanford defense HLW: identification of scenarios and events which might directly or indirectly disrupt radionuclide containment barriers; geotransport calculations of waste migration through the site media; and consequence (dose) analyses based on groundwater and air pathways calculations. The scenarios described in this report provide the necessary parameters for radionuclide transport and consequence analysis. Scenarios are categorized as either bounding or nonbounding. Bounding scenarios consider worst case or what if situations where an actual and significant release of waste material to the environment would happen if the scenario were to occur. Bounding scenarios include both near-term and long-term scenarios. Near-term scenarios are events which occur at 100 years from 1990. Long term scenarios are potential events considered to occur at 1000 and 10,000 years from 1990. Nonbounding scenarios consider events which result in insignificant releases or no release at all to the environment. Three release mechanisms are described in this report: (1) direct exposure of waste to the biosphere by a defined sequence of events (scenario) such as human intrusion by drilling; (2) radionuclides contacting an unconfined aquifer through downward percolation of groundwater or a rising water table; and (3) cataclysmic or explosive release of radionuclides by such mechanisms as meteorite impact, fire and explosion, criticality, or seismic events. Scenarios in this report present ways in which these release mechanisms could occur at a waste management facility. The scenarios are applied to the two in-tank waste management alternatives: in-situ disposal and continued present action.

  6. Assessment of New Calculation Method for Toxicological Sums-of-Fractions for Hanford Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A.

    2006-09-26

    The toxicological source terms used for potential accident assessment in the Tank Farms DSA are based on toxicological sums-of-fractions (SOFs) that were calculated in fiscal years 2002 and 2003 based on the Best Basis Inventory (BBI) from May 2002, using the method described by Cowley et al. (2003). The present report describes a modified SOF-calculation method that is to be used in future toxicological updates and assessments and compares its results (for the 2002 BBI) to those of the old method. The new method generally calculated different (usually larger) SOFs than the old. The dominant reason was the more conservative way in which the new method represents concentration variability, in that it uses the waste layer with the maximum SOF to represent the tank SOF. The old method had used a tank-average waste composition and SOF. Differences between thermodynamically modeled and BBI solubilities were the next most common reason for differences between old (modeled) and new (BBI) SOFs, particularly in the liquid phase. The solubility-related changes in SOF were roughly equally distributed between increases and decreases. Changes in the effective toxicities of TOC and lead, which resulted from changes in the compounds in which these analytes were considered to be present, were the third most common reason. These toxicity changes increased SOFs and therefore were in a conservative direction.

  7. Introduction to the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal.

  8. Proposed strategy for leak detection, monitoring, and mitigation (LDMM) during Hanford single-shell tank waste retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Iwatate, D.F., Westinghouse Hanford

    1996-07-08

    This document proposes a strategy to address issues related to leakage from single-shell tanks (SSTs) during sluicing. A set of criteria are proposed to capture the relevant issues pertaining to leak detection, monitoring, and mitigation (LDMM), and allow DOE-RL, the Contractor, Ecology, and Hanford Stakeholders to reach consensus on allowable leakage volumes (ALVs). Technical studies and findings that support the proposed strategy, and ALV criteria, are summarized and referenced. This document specifically addresses LDMM for SSTs at Hanford, Washington.

  9. Hanford tanks initiative plan

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  10. Long-Time Performance of a Stainless Steel Crossflow Filter with Simulated Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Schonewill, Philip P.; Daniel, Richard C.; Shimskey, Rick W.; Burns, Carolyn A.; Billing, Justin M.; Peterson, Reid A.

    2015-10-01

    The long-time (>100 hours of operation) flux was measured for a set of tests where slurry waste simulant was separated and continuously recycled in a stainless steel crossflow filter. The tests were conducted at various constant axial velocities and transmembrane pressures. In all five tests, the flux continued to decay at long times and did not reach a steady-state. The long-time slope of the decay was unaffected by the axial velocity, and larger transmembrane pressure resulted in a larger slope. The experimental results are compared to theoretical predictions of the time to initiate cake formation and the time to reach steady-state, both of which do not imply long-time phenomena would be expected. A more reasonable match between theory and experiment was achieved using a model based on the principles of dead-end filtration.

  11. Examination of Simulated Non-Compliant Waste from Hanford Single-Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, Richard; Page, J. S.; Venetz, T. J.; Cooke, G. A.

    2014-07-10

    This report summarizes the electrochemical testing results for the aggressive layers testing recommended by the single-shell tank integrity expert panel. From single-shell chemistry data, 39 layers were identified as possible aggressive waste layers and were grouped by aggressive ion and inhibitor ions. From those groups 18 segments were identified as representative segments and tested. The testing reported here showed pitting corrosion for six aggressive layers, and one layer showed a propensity for crevice corrosion. In these cases there was a lack of inhibitors, an abundance of aggressive ions, or both. A good prediction for pitting corrosion could be made by considering the pH value of the layer. When the pH was less than 12, there was a high probability for pitting to occur. However, the pH of the solution was not always an indicator, and the inhibitor ion and aggressive ion concentrations then needed to be considered.

  12. ALUMINUM REMOVAL FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION - LABORATORY SCALE VALIDATION ON WASTE SIMULANTS TEST REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SAMS T; HAGERTY K

    2011-01-27

    To reduce the additional sodium hydroxide and ease processing of aluminum bearing sludge, the lithium hydrotalcite (LiHT) process has been invented by AREV A and demonstrated on a laboratory scale to remove alumina and regenerate/recycle sodium hydroxide prior to processing in the WTP. The method uses lithium hydroxide (LiOH) to precipitate sodium aluminate (NaAI(OH){sub 4}) as lithium hydrotalcite (Li{sub 2}CO{sub 3}.4Al(OH){sub 3}.3H{sub 2}O) while generating sodium hydroxide (NaOH). In addition, phosphate substitutes in the reaction to a high degree, also as a filterable solid. The sodium hydroxide enriched leachate is depleted in aluminum and phosphate, and is recycled to double-shell tanks (DSTs) to leach aluminum bearing sludges. This method eliminates importing sodium hydroxide to leach alumina sludge and eliminates a large fraction of the total sludge mass to be treated by the WTP. Plugging of process equipment is reduced by removal of both aluminum and phosphate in the tank wastes. Laboratory tests were conducted to verify the efficacy of the process and confirm the results of previous tests. These tests used both single-shell tank (SST) and DST simulants.

  13. Long-term degradation (or improvement?) of cementitious grout/concrete for waste disposal at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Piepho, M.G. [Daniel B. Stephens & Associates, Inc., Richland, WA (United States)

    1997-12-31

    If grout and/or concrete barriers and containments are considered for long-term (500 yrs to 100,000 ) waste disposal, then long-term degradation of grout/cement materials (and others) need to be studied. Long-term degradations of a cementitious grout monolith (15.4mW x 10.4mH x 37.6mL) and its containment concrete shell and asphalt shell (each 1-m thick) were analyzed. The main degradation process of the concrete shell was believed to be fractures due to construction joints, shrinkage, thermal stress, settlement, and seismic events. A scenario with fractures was modeled (flow and transport model) for long-term risk performance (out to a million yrs). Even though the concrete/grout is expected to fracture, the concrete/grout chemistry, which has high Ph value, is very beneficial in causing calcite deposits from calcium in the water precipitating in the fractures. These calcite deposits will tend to plug the fracture and keep water from entering. The effectiveness of such plugging needs to be studied more. It`s possible that the plugged fractures are more impermeable than the original concrete/grout. The long-term performance of concrete/grout barriers will be determined by its chemistry, not its mechanical properties.

  14. CORROSION MONITORING IN HANFORD NUCLEAR WASTE STORAGE TANKS DESIGN AND DATA FROM 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    ANDA VS; EDGEMON GL; HAGENSEN AR; BOOMER KD; CAROTHERS KG

    2009-01-08

    In 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was installed in double-shell tank 241-AN-102 on the U.S. Department of Energy's Hanford Site in Washington State. Developmental design work included laboratory testing in simulated tank 241-AN-102 waste to evaluate metal performance for installation on the MPCMS as secondary metal reference electrodes. The MPCMS design includes coupon arrays as well as a wired probe which facilitates measurement of tank potential as well as corrosion rate using electrical resistance (ER) sensors. This paper presents the MPCMS design, field data obtained following installation of the MPCMS in tank 241-AN-102, and a comparison between laboratory potential data obtained using simulated waste and tank potential data obtained following field installation.

  15. A risk-based focused decision-management approach for justifying characterization of Hanford tank waste. June 1996, Revision 1; April 1997, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; Gephart, R.E.; Hunter, V.L.; Janata, J.; Morgan, L.G.

    1997-12-31

    This report describes a disciplined, risk-based decision-making approach for determining characterization needs and resolving safety issues during the storage and remediation of radioactive waste stored in Hanford tanks. The strategy recommended uses interactive problem evaluation and decision analysis methods commonly used in industry to solve problems under conditions of uncertainty (i.e., lack of perfect knowledge). It acknowledges that problem resolution comes through both the application of high-quality science and human decisions based upon preferences and sometimes hard-to-compare choices. It recognizes that to firmly resolve a safety problem, the controlling waste characteristics and chemical phenomena must be measurable or estimated to an acceptable level of confidence tailored to the decision being made.

  16. WASTE LOADING ENHANCEMENTS FOR HANFORD LAW GLASSES VLS-10R1790-1 FINAL REPORT REV 0 12/1/2010

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MULLER IS; JOSEPH I; MATLACK KS; GAN H; PEGG IL

    2010-12-28

    About 50 million gallons of high-level mixed waste is currently stored in underground tanks at The United States Department of Energy's (DOE's) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE's Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility on the Hanford site while the IHLW product will likely be directed to a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. The Office of River Protection is currently examining options to optimize the Low Activity Waste (LAW) Facility and LAW glass waste form. One option under evaluation is to enhance the waste processing rate of the vitrification plant currently under construction. It is likely that the capacity of the LAW vitrification plant can be increased incrementally by implementation of a variety of low-risk, high-probability changes, either separately or in combination. These changes include: (1) Operating at the higher processing rates demonstrated at the LAW pilot melter; (2) Increasing the glass pool surface area within the existing external melter envelope; (3) Increasing the glass waste loading; and (4) Operating the melter at a slightly higher temperature. The Vitreous State Laboratory (VSL) of The Catholic University of America (CUA) and Energy Solutions, Inc. have evaluated several of these potential incremental improvements for ORP in support of its evaluation of WTP LAW facility optimization. Some of these incremental

  17. THE USE OF VAPOR EXTRACTION SYSTEM AND ITS SUBSEQUENT REDUCTION OF WORKER EXPOSURE TO CARBON TETRACHLORIDE DURING RETRIEVAL OF HANFORDS LEGACY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    PITTS DA

    2008-03-18

    The Hanford Site is a decommissioned nuclear productions complex located in south eastern Washington and is operated by the Department of Energy (DOE). From 1955 to 1973, carbon tetrachloride (CCl{sub 4}), used in mixtures with other organic compounds, was used to recover plutonium from aqueous streams at Z Plant located on the Hanford Site. The aqueous and organic liquid waste that remained at the end of this process was discharged to soil columns in waste cribs located near Z Plant. Included in this waste slurry along with CCl{sub 4} were tributyl phosphate, dibutyl butyl phosphate, and lard oil. (Truex et al., 2001). In the mid 1980's, CCl{sub 4} was found in the unconfined aquifer below the 200 West Area and subsequent ground water monitoring indicated that the plume was widespread and that the concentrations were increasing. It has been estimated that approximately 750,000 kg (826.7 tons) of CCl{sub 4} was discharged to the soil from 1955 to 1973. (Truex et al., 2001). With initial concentration readings of approximately 30,000 parts per million by volume (ppmv) in one well field alone, soil vapor extraction began in 1992 in an effort to remove the CCl{sub 4} from the soil. (Rohay, 1999). Since 1992, approximately 78,607.6 kg (86.65 tons) of CCl{sub 4} have been extracted from the soil through the process of soil vapor extraction and 9,409.8 kg (10.37 tons) have been removed from the groundwater. (EPA, 2006). The success of this environmental cleanup process benefited not only the environment but also workers who were later involved in the retrieval of solid waste from trenches that were in or near the CCl{sub 4} plume. Solid waste was buried in trenches near Z Plant from 1967 to 1990. The solid waste, some of which was chemically and/or radioactively contaminated, was buried in trenches in steel or fiber drums, fiberboard boxes, fiberglass-reinforced plywood boxes, and steel, concrete, or wooden boxes. Much of this waste was buried with the intention of

  18. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    McGhan, V.L.; Damschen, D.W.

    1977-06-01

    The Hanford Site contains about 2200 wells constructed from pre-Hanford Works days to the present. As of June 1977, about 1900 wells still exist, and about 850 of these existing wells were drilled to the ground-water table. About 700 of these wells (including about 24 farm wells) still contain water. The others have become dry through infiltration of sediments or a general lowering of the water table in their vicinity. This report, providing the most complete documentation of wells in and adjacent to the Hanford Site, supersedes all previous compilations of Hanford wells.

  19. Chromium speciation and mobility in a high level nuclear waste vadose zone plume

    Science.gov (United States)

    Zachara, John M.; Ainsworth, Calvin C.; Brown, Gordon E.; Catalano, Jeffrey G.; McKinley, James P.; Qafoku, Odeta; Smith, Steven C.; Szecsody, James E.; Traina, Sam J.; Warner, Jeffrey A.

    2004-01-01

    Radioactive core samples containing elevated concentrations of Cr from a high level nuclear waste plume in the Hanford vadose zone were studied to asses the future mobility of Cr. Cr(VI) is an important subsurface contaminant at the Hanford Site. The plume originated in 1969 by leakage of self-boiling supernate from a tank containing REDOX process waste. The supernate contained high concentrations of alkali (NaOH ≈ 5.25 mol/L), salt (NaNO 3/NaNO 2 >10 mol/L), aluminate [Al(OH) 4- = 3.36 mol/L], Cr(VI) (0.413 mol/L), and 137Cs + (6.51 × 10 -5 mol/L). Water and acid extraction of the oxidized subsurface sediments indicated that a significant portion of the total Cr was associated with the solid phase. Mineralogic analyses, Cr valence speciation measurements by X-ray adsorption near edge structure (XANES) spectroscopy, and small column leaching studies were performed to identify the chemical retardation mechanism and leachability of Cr. While X-ray diffraction detected little mineralogic change to the sediments from waste reaction, scanning electron microscopy (SEM) showed that mineral particles within 5 m of the point of tank failure were coated with secondary, sodium aluminosilicate precipitates. The density of these precipitates decreased with distance from the source (e.g., beyond 10 m). The XANES and column studies demonstrated the reduction of 29-75% of the total Cr to insoluble Cr(III), and the apparent precipitation of up to 43% of the Cr(VI) as an unidentified, non-leachable phase. Both Cr(VI) reduction and Cr(VI) precipitation were greater in sediments closer to the leak source where significant mineral alteration was noted by SEM. These and other observations imply that basic mineral hydrolysis driven by large concentrations of OH - in the waste stream liberated Fe(II) from the otherwise oxidizing sediments that served as a reductant for CrO 42-. The coarse-textured Hanford sediments contain silt-sized mineral phases (biotite, clinochlore, magnetite, and

  20. Report on the handling of safety information concerning flammable gases and ferrocyanide at the Hanford waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    This report discusses concerns safety issues, and management at Hanford Tank Farm. Concerns center on the issue of flammable gas generation which could ignite, and on possible exothermic reactions of ferrocyanide compounds which were added to single shell tanks in the 1950's. It is believed that information concerning these issues has been mis-handled and the problems poorly managed. (CBS)

  1. Development of a Remotely Operated NDE System for Inspection of Hanford's Double Shell Waste Tank Knuckle Regions

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, Allan F.; Alzheimer, James M.; Crawford, Susan L.; Diaz, Aaron A.; Gervais, Kevin L.; Harris, Robert V.; Riechers, Douglas M.; Samuel, Todd J.; Schuster, George J.; Tucker, Joseph C.; Roberts, R. A.

    2001-09-28

    This report documents work performed at the PNNL in FY01 to support development of a Remotely Operated NDE (RONDE) system capable of inspecting the knuckle region of Hanford's DSTs. The development effort utilized commercial off-the-shelf (COTS) technology wherever possible and provided a transport and scanning device for implementing the SAFT and T-SAFT techniques.

  2. Annual Status Report (FY2104) Composite Analysis of Low Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2015-03-24

    In accordance with U.S. Department of Energy requirements in DOE O 435.1 and as implemented by DOE/RL-2009-29, the DOE Richland Operations Office has prepared this annul summary of the Hanford Site Composite Analysis for fiscal year 2014.

  3. Annual Status Report (FY2016) Composite Analysis for Low Level Waste Disposal in the Central Plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M. C. [INTERA, Inc., Austin, TX (United States); Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2017-03-14

    In accordance with U.S. Department of Energy (DOE) requirements in DOE O 435.1 and as implemented by DOE/RL-2009-29, the DOE Richland Operations Office has prepared this annual summary of the Hanford Site Composite Analysis for fiscal year 2016.

  4. Annual Status Report (FY2015) Composite Analysis for Low Level Waste Disposal in the Central Plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2016-03-24

    In accordance with U.S. Department of Energy (DOE) requirements in DOE O 435.1, and as implemented by DOE/RL-2000-29, the DOE Richland Operations Office has prepared this annual summary of the Hanford Site Composite Analysis for fiscal year 2015.

  5. Annual Status Report (FY2013 Composite Analysis of Low Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2014-03-25

    In accordance with U.S. Department of Energy (DOE) requirements in DOE O 435.1, 3 Chg. 11, and as implemented by DOE/RL-2000-29, Rev. 22, the DOE Richland Operations 4 Office (DOE-RL) has prepared this annual summary of the Hanford Site Composite Analysis 5 for fiscal year (FY) 2013.

  6. Large-Scale Testing of Effects of Anti-Foam Agent on Gas Holdup in Process Vessels in the Hanford Waste Treatment Plant - 8280

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A.; Alzheimer, James M.; Arm, Stuart T.; Guzman-Leong, Consuelo E.; Jagoda, Lynette K.; Stewart, Charles W.; Wells, Beric E.; Yokuda, Satoru T.

    2008-06-03

    The Hanford Waste Treatment Plant (WTP) will vitrify the radioactive wastes stored in underground tanks. These wastes generate and retain hydrogen and other flammable gases that create safety concerns for the vitrification process tanks in the WTP. An anti-foam agent (AFA) will be added to the WTP process streams. Prior testing in a bubble column and a small-scale impeller-mixed vessel indicated that gas holdup in a high-level waste chemical simulant with AFA was up to 10 times that in clay simulant without AFA. This raised a concern that major modifications to the WTP design or qualification of an alternative AFA might be required to satisfy plant safety criteria. However, because the mixing and gas generation mechanisms in the small-scale tests differed from those expected in WTP process vessels, additional tests were performed in a large-scale prototypic mixing system with in situ gas generation. This paper presents the results of this test program. The tests were conducted at Pacific Northwest National Laboratory in a ¼-scale model of the lag storage process vessel using pulse jet mixers and air spargers. Holdup and release of gas bubbles generated by hydrogen peroxide decomposition were evaluated in waste simulants containing an AFA over a range of Bingham yield stresses and gas gen geration rates. Results from the ¼-scale test stand showed that, contrary to the small-scale impeller-mixed tests, gas holdup in clay without AFA is comparable to that in the chemical waste simulant with AFA. The test stand, simulants, scaling and data-analysis methods, and results are described in relation to previous tests and anticipated WTP operating conditions.

  7. HANFORD TANK CLEANUP UPDATE

    Energy Technology Data Exchange (ETDEWEB)

    BERRIOCHOA MV

    2011-04-07

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  8. Final evaluation report for Westinghouse Hanford Company, WRAP-1,208 liter waste drum, docket 94-35-7A, type A packaging

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.L., Westinghouse Hanford

    1996-06-12

    This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance test results of the Westinghouse Hanford Company, Waste Receiving and Processing Facility, Module 1 (WRAP-1) Drum. The WRAP-1 Drum was tested for DOE-HQ in August 1994, by Los Alamos National Laboratory, under docket number 94-35-7A. Additionally, comparison and evaluation of the approved, as-tested packaging configuration was performed by WHC in September 1995. The WRAP-1 Drum was evaluated against the performance of the DOT-17C, 208 1 (55-gal) steel drums tested and evaluated under dockets 89-13-7A/90-18-7A and 94-37-7A.

  9. Baseline milestone HWVP-87-V110202F: Preliminary evaluation of noble metal behavior in the Hanford waste vitrification plant reference glass HW-39

    Energy Technology Data Exchange (ETDEWEB)

    Geldart, R.W.; Bates, S.O.; Jette, S.J.

    1996-03-01

    The precipitation and aggregation of ruthenium (Ru), rhodium (RLh) and palladium (Pd) in the Hanford Waste Vitrification Plant (HWVP) low chromium reference glass HLW-39 were investigated to determine if there is a potential for formation of a noble metal sludge in the HWVP ceramic melter. Significant noble metal accumulations on the floor of the melter will result in the electrical shorting of the electrodes and premature failure of the melter. The purpose of this study was to obtain preliminary information on the characteristics of noble metals in a simulated HWVP glass. Following a preliminary literature view to obtain information concerning the noble metals behavior, a number of variability studies were initiated. The effects of glass redox conditions, melt temperature, melting time and noble metal concentration on the phase characteristics of these noble metals were examined.

  10. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    Energy Technology Data Exchange (ETDEWEB)

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  11. Structural acceptance criteria for the evaulation of existing double-shell waste storage tanks located at the Hanford site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Julyk, L.J.; Day, A.D.; Dyrness, A.D.; Moore, C.J.; Peterson, W.S.; Scott, M.A.; Shrivastava, H.P.; Sholman, J.S.; Watts, T.N.

    1995-09-01

    The structural acceptance criteria contained herein for the evaluation of existing underground double-shell waste storage tanks located at the Hanford Site is part of the Life Management/Aging Management Program of the Tank Waste Remediation System. The purpose of the overall life management program is to ensure that confinement of the waste is maintained over the required service life of the tanks. Characterization of the present condition of the tanks, understanding and characterization of potential degradation mechanisms, and development of tank structural acceptance criteria based on previous service and projected use are prerequisites to assessing tank integrity, to projecting the length of tank service, and to developing and applying prudent fixes or repairs. The criteria provided herein summarize the requirements for the analysis and structural qualification of the existing double-shell tanks for continued operation. Code reconciliation issues and material degradation under aging conditions are addressed. Although the criteria were developed for double-shell tanks, many of the provisions are equally applicable to single-shell tanks. However, the criteria do not apply to the evaluation of tank appurtenances and buried piping.

  12. Chemical composition analysis and product consistency tests to support enhanced Hanford waste glass models. Results for the third set of high alumina outer layer matrix glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-12-01

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for 14 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. All of the measured sums of oxides for the study glasses fell within the interval of 96.9 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. The PCT results were normalized to both the targeted and measured compositions of the study glasses. Several of the glasses exhibited increases in normalized concentrations (NCi) after the canister centerline cooled (CCC) heat treatment. Five of the glasses, after the CCC heat treatment, had NCB values that exceeded that of the Environmental Assessment (EA) benchmark glass. These results can be combined with additional characterization, including X-ray diffraction, to determine the cause of the higher release rates.

  13. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    BP McGrail, WL Ebert, DH Bacon, DM Strachan

    1998-02-18

    Privatized services are being procured to vitrify low-activity tank wastes for eventual disposal in a shallow subsurface facility at the Hanford Site. Over 500,000 metric tons of low-activity waste glass will be generated, which is among the largest volumes of waste within the U.S. Department of Energy (DOE) complex and is one of the largest inventories of long-lived radionuclides planned for disposal in a low-level waste facility. Before immobilized waste can be disposed, DOE must approve a "performance assessment," which is a document that describes the impacts of the disposal facility on public health and environmental resources. Because the release rate of radionuclides from the glass waste form is a key factor determining these impacts, a sound scientific basis for determining their long-term release rates must be developed if this disposal action is to be accepted by regulatory agencies, stakeholders, and the public. In part, the scientific basis is determined from a sound testing strategy. The foundation of the proposed testing strategy is a well accepted mechanistic model that is being used to calculate the glass corrosion behavior over the geologic time scales required for performance assessment. This model requires that six parameters be determined, and the testing program is defined by an appropriate set of laboratory experiments to determine these parameters, and is combined with a set of field experiments to validate the model as a whole. Three general classes of laboratory tests are proposed in this strategy: 1) characterization, 2) accelerated, and 3) service condition. Characterization tests isolate and provide specific information about processes or parameters in theoretical models. Accelerated tests investigate corrosion behavior that will be important over the regulated service life of a disposal system within a laboratory time frame of a few years or less. Service condition tests verify that the techniques used in accelerated tests do not change

  14. Small Column Testing of Superlig 639 for Removal of 99Tc from Hanford Tank Waste Envelope C (Tank 241-AN-107)

    Energy Technology Data Exchange (ETDEWEB)

    DL Blanchard; DE Kurath; BM Rapko

    2000-06-28

    The current BNFL Inc. flow sheet for pretreating Hanford High-Level tank wastes includes the use of Superlig(reg.sign)639 (SL-639) in a dual column system for removing technetium-99 ({sup 99}Tc) from the aqueous fraction of the waste. This sorbent material has been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. This report documents the results of testing the SL-639 sorbent with diluted waste [Na{sup +}] {approx} 5 M from Tank 241-AN-107 (an Envelope C waste, abbreviated AN-107) at Battelle Northwest Laboratories (BNW). The equilibrium behavior was assessed with batch contacts between the sorbent and the waste. Two AN-107 samples were used: (1) an archived sample from previous testing and (2) a more recent sample collected specifically for BNFL. A portion of the archive sample and all of the BNFL sample were treated to remove Sr-90 and transuranic elements (TRU). All samples had also been Cs decontaminated by ion exchange (IX), and were spiked with a technetium-95m ({sup 95m}Tc) pertechnetate tracer, {sup 95m}TcO{sub 4}{sup -}.The TcO{sub 4}{sup -} and total Tc K{sub d} values, assumed equal to the {sup 95m}Tc and {sup 99}Tc K{sub d}'s, respectively, are shown in Table S1. Values are averages of duplicates, which showed significant scatter. The total Tc K{sub d} for the BNFL sample is much lower than the TcO{sub 4}{sup -}, indicating that a large fraction of the {sup 99}Tc is not pertechnetate.

  15. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

  16. Data Packages for the Hanford Immobilized Low Activity Tank Waste Performance Assessment 2001 Version [SEC 1 THRU 5

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2000-03-02

    Data package supporting the 2001 Immobilized Low-Activity Waste Performance Analysis. Geology, hydrology, geochemistry, facility, waste form, and dosimetry data based on recent investigation are provided. Verification and benchmarking packages for selected software codes are provided.

  17. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  18. Volatility and entrainment of feed components and product glass characteristics during pilot-scale vitrification of simulated Hanford site low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Shade, J.W.

    1996-05-03

    Commercially available melter technologies were tested for application to vitrification of Hanford site low-level waste (LLW). Testing was conducted at vendor facilities using a non-radioactive LLW simulant. Technologies tested included four Joule-heated melter types, a carbon electrode melter, a cyclone combustion melter, and a plasma torch-fired melter. A variety of samples were collected during the vendor tests and analyzed to provide data to support evaluation of the technologies. This paper describes the evaluation of melter feed component volatility and entrainment losses and product glass samples produced during the vendor tests. All vendors produced glasses that met minimum leach criteria established for the test glass formulations, although in many cases the waste oxide loading was less than intended. Entrainment was much lower in Joule-heated systems than in the combustion or plasma torch-fired systems. Volatility of alkali metals, halogens, B, Mo, and P were severe for non-Joule-heated systems. While losses of sulfur were significant for all systems, the volatility of other components was greatly reduced for some configurations of Joule-heated melters. Data on approaches to reduce NO{sub x} generation, resulting from high nitrate and nitrite content in the double-shell slurry feed, are also presented.

  19. History of Hanford Site Defense Production (Brief)

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M S

    2001-02-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history.

  20. Hanford Tanks 241-C-203 and 241-C-204: Residual Waste Contaminant Release Model and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2004-10-28

    This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75 wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy.

  1. Hanford Tanks 241-C-203 and 241 C 204: Residual Waste Contaminant Release Model and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2007-05-23

    This report was revised in May 2007 to correct 90Sr values in Chapter 3. The changes were made on page 3.9, paragraph two and Table 3.10; page 3.16, last paragraph on the page; and Tables 3.21 and 3.31. The rest of the text remains unchanged from the original report issued in October 2004. This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75 wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy.

  2. DOE FG02-03ER63557: Final Technical Report: Reactivity of Primary Soil Minerals and Secondary Precipitates Beneath Leaking Hanford Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn L. Nagy

    2009-05-04

    The purpose of the project was to investigate rates and mechanisms of reactions between primary sediment minerals and key components of waste tank solutions that leaked into the subsurface at the Hanford Site. Results were expected to enhance understanding of processes that cause (1) changes in porosity and permeability of the sediment and resultant changes in flow paths of the contaminant plumes, (2) formation of secondary precipitates that can take up contaminants in their structures, and (3) release of mineral components that can drive redox reactions affecting dissolved contaminant mobility. Measured rates can also be used directly in reactive transport models. Project tasks included (1) measurement of the dissolution rates of biotite mica from low to high pH and over a range of temperature relevant to the Hanford subsurface, (2) measurement of dissolution rates of quartz at high pH and in the presence of dissolved alumina, (3) measurement of the dissolution rates of plagioclase feldspar in high pH, high nitrate, high Al-bearing solutions characteristic of the BX tank farms, (4) incorporation of perrhenate in iron-oxide minerals as a function of pH, and (5) initiation of experiments to measure the formation of uranium(VI)-silicate phases under ambient conditions. Task 2 was started under a previous grant from the Environmental Management Science Program and Task 4 was partially supported by a grant to the PI from the Geosciences Program, Office of Basic Energy Sciences. Task 5 was continued under a subsequent grant from the Environmental Remediation Sciences Program, Office of Biological and Environmental Research.

  3. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    McGhan, V.L.

    1989-06-01

    The Site Characterization and Assessment Section of the Geosciences Department at Pacific Northwest Laboratory (PNL) has compiled a list of wells located on or near the Hanford Site. Information has been updated on wells existing from the days before construction of the Hanford Works to the present. This work was funded by the US Department of Energy (DOE). The list of wells will be used by DOE contractors who need condensed, tabular information on well location, construction, and completion dates. This report does not include data on lithologic logs and ground-water contamination. Moreover, the completeness of this list is limited because of new well construction and existing well modifications, which are continually under way. Despite these limitations, this list represents the most complete description possible of data pertaining to wells on or adjacent to the Hanford Site. 7 refs., 1 fig., 2 tabs.

  4. The Hanford Site: An anthology of early histories

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1993-10-01

    This report discusses the following topics: Memories of War: Pearl Harbor and the Genesis of the Hanford Site; safety has always been promoted at the Hanford Site; women have an important place in Hanford Site history; the boom and bust cycle: A 50-year historical overview of the economic impacts of Hanford Site Operations on the Tri-Cities, Washington; Hanford`s early reactors