WorldWideScience

Sample records for hanford site vadose

  1. Challenges for Deep Vadose Zone Remediation at the Hanford Site

    International Nuclear Information System (INIS)

    Morse, John G.; Charboneau, Briant L.; Lober, Robert W.; Triplett, Mark B.

    2008-01-01

    The 'deep vadose zone' is defined as the region below the practical depth of surface remedy influence (e.g., excavation or barrier). At the Hanford Site, this region of the Central Plateau poses unique challenges for characterization and remediation. The contaminants in this region also pose a potentially significant continuing or future threat to groundwater. Currently, deep vadose zone characterization efforts and remedy selection are spread over multiple waste site Operable Units and tank farm Waste Management Areas. A particular challenge for this effort is the situation in which past leaks from single-shell tanks have become commingled with discharges from nearby liquid disposal sites. The Hanford Site is working with all affected parties, including the Washington State Department of Ecology, the Environmental Protection Agency, DOE-RL, DOE-ORP, and multiple contractor organizations to develop a unified approach to conducting work and reaching remediation decisions. This effort addresses the complex and challenging technical and regulatory issues within this environment. A true inter-Agency effort is evaluating the best strategy or combination of strategies for focusing technical investigations, including treatability studies, and for attaining remedy decisions on the Hanford Site

  2. Tackling the Challenge of Deep Vadose Zone Remediation at the Hanford Site

    Science.gov (United States)

    Morse, J. G.; Wellman, D. M.; Gephart, R.

    2010-12-01

    The Central Plateau of the Hanford Site in Washington State contains some 800 waste disposal sites where 1.7 trillion liters of contaminated water was once discharged into the subsurface. Most of these sites received liquids from the chemical reprocessing of spent uranium fuel to recover plutonium. In addition, 67 single shell tanks have leaked or are suspected to have leaked 3.8 million liters of high alkali and aluminate rich cesium-contaminated liquids into the sediment. Today, this inventory of subsurface contamination contains an estimated 550,000 curies of radioactivity and 150 million kg (165,000 tons) of metals and hazardous chemicals. Radionuclides range from mobile 99Tc to more immobilized 137Cs, 241Am, uranium, and plutonium. A significant fraction of these contaminants likely remain within the deep vadose zone. Plumes of groundwater containing tritium, nitrate, 129I and other contaminants have migrated through the vadose zone and now extend outward from the Central Plateau to the Columbia River. During most of Hanford Site history, subsurface studies focused on groundwater monitoring and characterization to support waste management decisions. Deep vadose zone studies were not a priority because waste practices relied upon that zone to buffer contaminant releases into the underlying aquifer. Remediation of the deep vadose zone is now central to Hanford Site cleanup because these sediments can provide an ongoing source of contamination to the aquifer and therefore to the Columbia River. However, characterization and remediation of the deep vadose zone pose some unique challenges. These include sediment thickness; contaminant depth; coupled geohydrologic, geochemical, and microbial processes controlling contaminant spread; limited availability and effectiveness of traditional characterization tools and cleanup remedies; and predicting contaminant behavior and remediation performance over long time periods and across molecular to field scales. The U

  3. Vadose zone characterization of highly radioactive contaminated soil at the Hanford Site

    International Nuclear Information System (INIS)

    Buckmaster, M.A.

    1993-05-01

    The Hanford Site in south-central Washington State contains over 1500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy has initiated a remedial investigation/feasibility study at the 200-BP-1 operable unit. The 200-BP-1 remedial investigation is the first Comprehensive Environmental Response, Compensation, and Liability Act of 1980 investigation on the Hanford Site that involves drilling into highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste site within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling the waste site, chemical and physical analysis of samples, and development of a conceptual vadose zone model. Predicted modeling concentrations compared favorably to analytical data collected during the initial characterization activities

  4. TREATABILITY TEST PLAN FOR DEEP VADOSE ZONE REMEDIATION AT THE HANFORD'S SITE CENTRAL PLATEAU

    International Nuclear Information System (INIS)

    PETERSEN SW; MORSE JG; TRUEX MJ; LAST GV

    2007-01-01

    A treatability test plan has been prepared to address options for remediating portions of the deep vadose zone beneath a portion of the U.S. Department of Energy's (DOE's) Hanford Site. The vadose zone is the region of the subsurface that extends from the ground surface to the water table. The overriding objective of the treatability test plan is to recommend specific remediation technologies and laboratory and field tests to support the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and Resource Conservation and Recovery Act of 1976 remedial decision-making process in the Central Plateau of the Hanford Site. Most of the technologies considered involve removing water from the vadose zone or immobilizing the contaminants to reduce the risk of contaminating groundwater. A multi-element approach to initial treatability testing is recommended, with the goal of providing the information needed to evaluate candidate technologies. The proposed tests focus on mitigating two contaminants--uranium and technetium. Specific technologies are recommended for testing at areas that may affect groundwater in the future, but a strategy to test other technologies is also presented

  5. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  6. Deep Vadose Zone Characterization at the Hanford Site: Accomplishments from the Last Ten Years

    International Nuclear Information System (INIS)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-01

    The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments collected within/adjacent to the twelve single-shell tank farms contained within Hanford's Central Plateau region. This work has been performed under the Resource Conservation and Recovery Act (RCRA) Corrective Action Program and is associated with the Hanford Federal Facility Agreement and Consent Order. While there are many facets to the laboratory studies employed by PNNL, the four primary objectives of this work are to: identify the type and quantity of contamination present, understand the physical processes that affect the transport of contaminants in the vadose zone sediments, when practical, identify the source(s) of the contamination found in the sediment samples, and when practical, determine if a link can be made between the vadose zone contamination observed and any known groundwater contaminants in the vicinity. Since its inception in 1997, PNNL's Vadose Zone Characterization Project has evolved to better meet these four key objectives. The single-largest adaptation of the Vadose Zone Characterization Project over its ten years of operation was the advent of a tiered sample analysis approach. Use of a tiered approach allows resources to be focused on those samples/tests that provide the largest amount of scientific information to best meet the four key project objectives within the budget available. Another significant, but more recent, adaptation has been the implementation of a rapid turnaround characterization process in which sediment samples are analyzed in near real-time to aid drilling activities within the tank farms. This paper highlights details of the characterization activities performed as well

  7. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  8. Soil Desiccation Techniques Strategies For Immobilization Of Deep Vadose Contaminants At The Hanford Central Plateau

    International Nuclear Information System (INIS)

    Benecke, M.W.; Chronister, G.B.; Truex, M.J.

    2012-01-01

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site where processes and technologies are being developed and tested for use in the on-going effort to remediate mobile contamination in the deep vadose zone, the area deep beneath the surface. Historically, contaminants were discharged to the soil along with significant amounts of water, which continues to drive contaminants deeper in the vadose zone toward groundwater. Soil desiccation is a potential in situ remedial technology well suited for the arid conditions and the thick vadose zone at the Hanford Site. Desiccation techniques could reduce the advance of contaminants by removing the pore water to slow the rate of contaminants movement toward groundwater. Desiccation technologies have the potential to halt or slow the advance of contaminants in unsaturated systems, as well as aid in reduction of contaminants from these same areas. Besides reducing the water flux, desiccation also establishes capillary breaks that would require extensive rewetting to resume pore water transport. More importantly, these techniques have widespread application, whether the need is to isolate radio nuclides or address chemical contaminant issues. Three different desiccation techniques are currently being studied at Hanford.

  9. Geochemical Processes Data Package for the Vadose Zone in the Single-Shell Tank Waste Management Areas at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Zachara, John M.; Dresel, P. Evan; Krupka, Kenneth M.; Serne, R. Jeffrey

    2007-09-28

    This data package discusses the geochemistry of vadose zone sediments beneath the single-shell tank farms at the U.S. Department of Energy’s (DOE’s) Hanford Site. The purpose of the report is to provide a review of the most recent and relevant geochemical process information available for the vadose zone beneath the single-shell tank farms and the Integrated Disposal Facility. Two companion reports to this one were recently published which discuss the geology of the farms (Reidel and Chamness 2007) and groundwater flow and contamination beneath the farms (Horton 2007).

  10. Immobilization of Radionuclides in the Hanford Vadose Zone by Incorporation in Solid Phases

    International Nuclear Information System (INIS)

    Brown, Gordon E. Jr.; Catalano, Jeffrey G.; Warner, Jeffrey A.; Samual Shaw; Daniel Grolimund

    2005-01-01

    The Department of Energy's Hanford Nuclear Site located in Washington State has accumulated over 2 million curies of radioactive waste from activities related to the production of plutonium (Ahearne, 1997). Sixty-seven of the single-shelled tanks located at the site are thought to have leaked, allowing between 2 and 4 million liters of waste fluids into the underlying vadose zone. The chemical processes employed at the Hanford Site to extract plutonium, as well as the need to minimize corrosion of the high-carbon steel storage tanks, resulted in uncharacterized hyperalkaline waste streams rich in radionuclides as well as other species including significant amounts of sodium and aluminum

  11. IMPACT ASSESSMENT OF EXISTING VADOSE ZONE CONTAMINATION AT THE HANFORD SITE SX TANK FARM

    International Nuclear Information System (INIS)

    KHALEEL R

    2007-01-01

    The USDOE has initiated an impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm in southeastern Washington State. The assessment followed the Resource Conservation and Recovery Act (RCRA) Corrective Action process to address the impacts of past tank waste releases to the vadose zone at the single-shell tank farm. Numerical models were developed that consider the extent of contamination presently within the vadose zone and predict contaminant movement through the vadose zone to groundwater. The transport of representative mobile (technetium-99) and immobile (cesium-137) constituents was evaluated in modeling. The model considered the accelerated movement of moisture around and beneath single-shell tanks that is attributed to bare, gravel surfaces resulting from the construction of the underground storage tanks. Infiltration, possibly nearing 100 mm yr -1 , is further amplified in the tank farm because of the umbrella effect created by percolating moisture being diverted by the impermeable, sloping surface of the large, 24-m-diameter, buried tank domes. For both the base case (no-action alternative) simulation and a simulation that considered placement of an interim surface barrier to minimize infiltration, predicted, groundwater concentrations for technetium-99 at the SX tank farm boundary were exceedingly high, on the order of 10 6 pCi L -1 . The predicted concentrations are, however, somewhat conservative because of our use of two-dimensional modeling for a three-dimensional problem. A series of simulations were performed, using recharge rates of 50, 30, and 10 mm yr -1 , and compared to the basecase(100 mm yr -1 ) results. As expected, lowering meteoric recharge delayed peak arrival times and reduced peak concentrations at the tank farm boundary

  12. Impact Assessment of Existing Vadose Zone Contamination at the Hanford Site SX Tank Farm

    International Nuclear Information System (INIS)

    Khaleel, Raziuddin; White, Mark D.; Oostrom, Martinus; Wood, Marcus I.; Mann, Frederick M.; Kristofzski, John G.

    2007-01-01

    The USDOE has initiated an impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm in southeastern Washington State. The assessment followed the Resource Conservation and Recovery Act (RCRA) Corrective Action process to address the impacts of past tank waste releases to the vadose zone at the single-shell tank farm. Numerical models were developed that consider the extent of contamination presently within the vadose zone and predict contaminant movement through the vadose zone to groundwater. The transport of representative mobile (technetium-99) and immobile (cesium-137) constituents was evaluated in modeling. The model considered the accelerated movement of moisture around and beneath single-shell tanks that is attributed to bare, gravel surfaces resulting from the construction of the underground storage tanks. Infiltration, possibly nearing 100 mm yr -1 , is further amplified in the tank farm because of the umbrella effect created by percolating moisture being diverted by the impermeable, sloping surface of the large, 24-m-diameter, buried tank domes. For both the base case (no-action alternative) simulation and a simulation that considered placement of an interim surface barrier to minimize infiltration, predicted groundwater concentrations for technetium-99 at the SX tank farm boundary were exceedingly high, on the order of 106 pCi L-1. The predicted concentrations are, however, somewhat conservative because of our use of two-dimensional modeling for a three-dimensional problem. A series of simulations were performed, using recharge rates of 50, 30, and 10 mm yr -1 , and compared to the base case (100 mm yr -1 ) results. As expected, lowering meteoric recharge delayed peak arrival times and reduced peak concentrations at the tank farm boundary.

  13. A Site Wide Perspective on Uranium Geochemistry at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Brown, Christopher F.; Christensen, J. N.; Davis, Jim A.; Dresel, P. Evan; Liu, Chongxuan; Kelly, S. D.; McKinley, James P.; Serne, R. Jeffrey; Um, Wooyong

    2007-10-26

    Uranium (U) is an important risk-driving contaminant at the Hanford Site. Over 200,000 kg have been released to the vadose zone over the course of site operations, and a number of vadose zone and groundwater plumes containing the uranyl cation [UO22+, U(VI)] have been identified. U is recognized to be of moderate-to-high mobility, conditions dependent. The site is currently making decisions on several of these plumes with long-lasting implications, and others are soon to come. Uranium is one of nature’s most intriguing and chemically complex elements. The fate and transport of U(VI) has been studied over the long lifetime of the Hanford Site by various contractors, along with the Pacific Northwest National Laboratory (PNNL) and its collaborators. Significant research has more recently been contributed by the national scientific community with support from the U.S. Department of Energy’s (DOE) Office of Science through its Environmental Remediation Sciences Division (ERSD). This report represents a first attempt to integrate these findings into a cohesive view of the subsurface geochemistry of U at the Hanford Site. The objective is to inform all interested Hanford parties about the in-ground inventory of U and its geochemical behavior. This report also comments on the prospects for the development of a robust generic model to more accurately forecast future U(VI) migration at different Hanford waste sites, along with further research necessary to reach this goal.

  14. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

  15. Deep Vadose Zone Treatability Test of Soil Desiccation for the Hanford Central Plateau: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [CH2M Hill Plateau Remediation Co., Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greenwood, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peterson, John E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hubbard, Susan S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ward, Anderson L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-02-20

    Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths where direct exposure pathways are not of concern, but may need to be remediated to protect groundwater. The Department of Energy developed a treatability test program for technologies to address Tc-99 and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment, have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. The treatability test of desiccation described herein was conducted as an element of the deep vadose zone treatability test program. Desiccation was shown to be a potentially effective vadose zone remediation technology to protect groundwater when used in conjunction with a surface infiltration barrier.

  16. TECHNICAL EVALUATION OF ELECTRICAL RESISTIVITY METHODS AT THE DEPARTMENT OF ENERGY HANFORD SITE

    International Nuclear Information System (INIS)

    PETERSEN SW

    2008-01-01

    There is a continuing need for cost-effective subsurface characterization within the vadose zone and groundwater at the U.S. Department of Energy (DOE) Hanford Site, Richland, Washington. With more than 1600 liquid and solid waste sites and 200 burial sites, contaminants have migrated to and through the vadose zone. In addition, future groundwater plumes may be generated from contaminants presently in the vadose zone. Relatively low-cost geophysical techniques can provide spatially extensive data that may provide information about the presence and extent of some contaminants. Recent electrical resistivity surveys at Hanford have provided encouraging results for mapping of some contaminants, such as nitrate, in the vadose zone. Because mobile radionuclides and trace elements may have been transported with nitrate through the vadose zone, the method may be used to map some mobile contaminants of concern, such as technetium-99 (99Tc). Validation of these recent electrical resistivity survey results remains to be completed. Electrical resistivity surveys have been conducted at various waste sites in the 200 Area of the Hanford Site: BC Cribs and Trenches (BCCT), T, S, U, C, B Tank Farms and the Purex Plant. Surveys have been completed using surface and well-to-well (WTW) array configurations. The goals of the surveys, as described by Fluor Hanford and CH2MHill Hanford staff, were to test the applicability of resistivity methods in identifying the presence of and mapping approximate extent of contaminant plumes within the vadose zone. The overall goal of the project was to evaluate the utility of electrical resistivity methods for characterizing contaminants of potential concern in the vadose zone in the 200 Area of the Hanford Site. The panel was asked to perform the following activities: (1) Evaluate recently completed and ongoing electrical resistivity projects at Hanford in terms of methodology used, results obtained, and lessons learned, with specific focus on (a

  17. Hanford Site Groundwater Monitoring for Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2007-03-01

    This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

  18. Vadose Zone Infiltration Rate at Hanford, Washington, Inferred from Sr Isotope Measurements

    International Nuclear Information System (INIS)

    Maher, Katharine; DePaolo, Donald J.; Conrad, Mark E.; Serne, R. Jeffrey

    2003-01-01

    Sr isotope ratios were measured in the pore water, acid extracts, and sediments of a 70-m vadose zone core to obtain estimates of the long-term infiltration flux for a site in the Hanford/DOE complex in eastern Washington State. The 87Sr/86Sr values of the pore waters decrease systematically with depth, from a high value of 0.721 near the surface toward the bulk sediment average value of 0.711. Estimates of the bulk weathering rate combined with Sr isotopic data were used to constrain the long-term (century to millenial scale) natural diffuse infiltration flux for the site given both steady state and nonsteady state conditions. The models suggest that the infiltration fluc for the site is 7+- 3 mm/yr. The method shows potential for providing long-term in situ estimates of infiltration rates for deep heterogeneous vadose zones

  19. Hanford Site Groundwater Monitoring for Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2005-03-01

    This document presents the results of groundwater and vadose zone monitoring for fiscal year 2004 (October 2003 through September 2004)on the U.S. Department of Energy's Hanford Site in southeast Washington State.

  20. Evaluation of Soil Flushing for Application to the Deep Vadose Zone in the Hanford Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Oostrom, Martinus; Zhang, Z. F.; Carroll, Kenneth C.; Schramke, Janet A.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Gordon, Kathryn A.; Last, George V.

    2010-11-01

    Soil flushing was included in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau as a technology with the potential to remove contaminants from the vadose zone. Soil flushing operates through the addition of water, and if necessary an appropriate mobilizing agent, to mobilize contaminants and flush them from the vadose zone and into the groundwater where they are subsequently captured by a pump-and-treat system. There are uncertainties associated with applying soil flushing technology to contaminants in the deep vadose zone at the Hanford Central Plateau. The modeling and laboratory efforts reported herein are intended to provide a quantitative assessment of factors that impact water infiltration and contaminant flushing through the vadose zone and into the underlying groundwater. Once in the groundwater, capture of the contaminants would be necessary, but this aspect of implementing soil flushing was not evaluated in this effort. Soil flushing was evaluated primarily with respect to applications for technetium and uranium contaminants in the deep vadose zone of the Hanford Central Plateau.

  1. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results, Fiscal Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km2 (75 mi2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agencies (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  2. A study plan for determining recharge rates at the Hanford Site using environmental tracers

    International Nuclear Information System (INIS)

    Murphy, E.M.; Szercsody, J.E.; Phillips, S.J.

    1991-02-01

    This report presents a study plan for estimating recharge at the Hanford Site using environmental tracers. Past operations at the Hanford Site have led to both soil and groundwater contamination, and recharge is one of the primary mechanisms for transporting contaminants through the vadose zone and into the groundwater. An alternative to using fixed lysimeters for determining recharge rates in the vadose zone is to use environmental tracers. Tracers that have been used to study water movement in the vadose zone include total chloride, 36 Cl, 3 H, and 2 H/ 18 O. Atmospheric levels of 36 Cl and 3 H increased during nuclear bomb testing in the Pacific, and the resulting ''bomb pulse'' or peak concentration can be measured in the soil profile. Locally, past operations at the Hanford Site have resulted in the atmospheric release of numerous chemical and isotopic tracers, including nitrate, 129 I, and 99 Tc. Seven study sites on the Hanford Site have been selected, in two primary soil types that are believed to represent the extremes in recharge, the Quincy sand and the Warden silt loam. An additional background study site upwind of the Hanford facilities has been chosen at the Yakima Firing Center. Six tracer techniques (total chloride, 36 Cl, 3 H, nitrate, 129 I, and 99 Tc) will be tested on at least one site in the Quincy sand, one site in the Warden silt loam, and the background site, to determine which combination of tracers works best for a given soil type. In subsequent years, additional sites will be investigated. The use of environmental tracers is perhaps the only cost-effective method for estimating the spatial variability of recharge at a site as large as Hanford. The tracer techniques used at Hanford have wide applicability at other arid sites. 166 refs., 41 figs., 16 tabs

  3. Electrical resistivity tomography at the DOE Hanford site

    International Nuclear Information System (INIS)

    Narbutovskih, S.M.; Halter, T.D.; Sweeney, M.D.; Daily, W.; Ramirez, A.L.

    1996-01-01

    Recent work at the DOE Hanford site has established the potential of applying Electrical Resistivity Tomography (ERT) for early leak detection under hazardous waste storage facilities. Several studies have been concluded to test the capabilities and limitations of ERT for two different applications. First, field experiments have been conducted to determine the utility of ERT to detect and map leaks from underground storage tanks during waste removal processes. Second, the use of ERT for long term vadose zone monitoring has been tested under different field conditions of depth, installation design, acquisition mode/equipment and infiltration chemistry. This work involves transferring the technology from Lawrence Livermore National Laboratory (LLNL) to the Resource Conservation and Recovery Act (RCRA) program at the DOE Hanford Site. This paper covers field training studies relevant to the second application for long term vadose zone monitoring

  4. Geochemical Characterization of Chromate Contamination in the 100 Area Vadose Zone at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P. Evan; Qafoku, Nikolla; McKinley, James P.; Fruchter, Jonathan S.; Ainsworth, Calvin C.; Liu, Chongxuan; Ilton, Eugene S.; Phillips, J. L.

    2008-07-16

    The major objectives of the proposed study were to: 1.) determine the leaching characteristics of hexavalent chromium [Cr(VI)] from contaminated sediments collected from 100 Area spill sites; 2.) elucidate possible Cr(VI) mineral and/or chemical associations that may be responsible for Cr(VI) retention in the Hanford Site 100 Areas through the use of i.) macroscopic leaching studies and ii.) microscale characterization of contaminated sediments; and 3.) provide information to construct a conceptual model of Cr(VI) geochemistry in the Hanford 100 Area vadose zone. In addressing these objectives, additional benefits accrued were: (1) a fuller understanding of Cr(VI) entrained in the vadose zone that will that can be utilized in modeling potential Cr(VI) source terms, and (2) accelerating the Columbia River 100 Area corridor cleanup by providing valuable information to develop remedial action based on a fundamental understanding of Cr(VI) vadose zone geochemistry. A series of macroscopic column experiments were conducted with contaminated and uncontaminated sediments to study Cr(VI) desorption patterns in aged and freshly contaminated sediments, evaluate the transport characteristics of dichromate liquid retrieved from old pipelines of the 100 Area; and estimate the effect of strongly reducing liquid on the reduction and transport of Cr(VI). Column experiments used the < 2 mm fraction of the sediment samples and simulated Hanford groundwater solution. Periodic stop-flow events were applied to evaluate the change in elemental concentration during time periods of no flow and greater fluid residence time. The results were fit using a two-site, one dimensional reactive transport model. Sediments were characterized for the spatial and mineralogical associations of the contamination using an array of microscale techniques such as XRD, SEM, EDS, XPS, XMP, and XANES. The following are important conclusions and implications. Results from column experiments indicated that most

  5. Hanford Site groundwater monitoring for fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  6. Hanford Site groundwater monitoring for fiscal year 1996

    International Nuclear Information System (INIS)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V.

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems

  7. Scale-Up Information for Gas-Phase Ammonia Treatment of Uranium in the Vadose Zone at the Hanford Site Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomle, Jonathan N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Uranium is present in the vadose zone at the Hanford Central Plateau and is of concern for protection of groundwater. The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau identified gas-phase treatment and geochemical manipulation as potentially effective treatment approaches for uranium and technetium in the Hanford Central Plateau vadose zone. Based on laboratory evaluation, use of ammonia vapor was selected as the most promising uranium treatment candidate for further development and field testing. While laboratory tests have shown that ammonia treatment effectively reduces the mobility of uranium, additional information is needed to enable deployment of this technology for remediation. Of importance for field applications are aspects of the technology associated with effective distribution of ammonia to a targeted treatment zone, understanding the fate of injected ammonia and its impact on subsurface conditions, and identifying effective monitoring approaches. In addition, information is needed to select equipment and operational parameters for a field design. As part of development efforts for the ammonia technology for remediation of vadose zone uranium contamination, field scale-up issues were identified and have been addressed through a series of laboratory and modeling efforts. This report presents a conceptual description for field application of the ammonia treatment process, engineering calculations to support treatment design, ammonia transport information, field application monitoring approaches, and a discussion of processes affecting the fate of ammonia in the subsurface. The report compiles this information from previous publications and from recent research and development activities. The intent of this report is to provide technical information about these scale-up elements to support the design and operation of a field test for the ammonia treatment technology.

  8. Hanford Site Groundwater Monitoring for Fiscal Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2003-02-28

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

  9. Installation of a Hydrologic Characterization Network for Vadose Zone Monitoring of a Single-Shell Tank Farm at the U. S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Gee, Glendon W.; Ward, Anderson L.; Ritter, Jason C.; Sisson, James B.; Hubbell, Joel M.; Sydnor, Harold A.

    2001-01-01

    The Pacific Northwest National Laboratory, in collaboration with the Idaho National Engineering and Environmental Laboratory and Duratek Federal Services, deployed a suite of vadose-zone instruments at the B Tank Farm in the 200 E Area of the Hanford Site, near Richland, Washington, during the last quarter of FY 2001. The purpose of the deployment was to obtain in situ hydrologic characterization data within the vadose zone of a high-level-waste tank farm. Eight sensor nests, ranging in depth from 67 m (220 ft) below ground surface (bgs) to 0.9 m (3 ft) bgs were placed in contact with vadose-zone sediments inside a recently drilled, uncased, borehole (C3360) located adjacent to Tank B-110. The sensor sets are part of the Vadose Zone Monitoring System and include advanced tensiometers, heat dissipation units, frequency domain reflectometers, thermal probes, and vadose zone solution samplers. Within the top meter of the surface, a water flux meter was deployed to estimate net infiltration from meteoric water (rain and snowmelt) sources. In addition, a rain gage was located within the tank farm to document on-site precipitation events. All sensor units, with the exception of the solution samplers, were connected to a solar-powered data logger located within the tank farm. Data collected from these sensors are currently being accessed by modem and cell phone and will be analyzed as part of the DOE RL31SS31 project during the coming year (FY 2001)

  10. Vadose zone monitoring plan using geophysical nuclear logging for radionuclides discharged to Hanford liquid waste disposal facilities

    International Nuclear Information System (INIS)

    Price, R.K.

    1995-11-01

    During plutonium production at Hanford, large quantities of hazardous and radioactive liquid effluent waste have been discharged to the subsurface (vadose zone). These discharges at over 330 liquid effluent disposal facilities (ie. cribs, ditches, and ponds) account for over 3,000,000 curies of radioactive waste released into the subsurface. It is estimated that 10% of the contaminants have reached the groundwater in many places. Continuing migration may further impact groundwater quality in the future. Through the RCRA Operational Monitoring Program, a Radionuclide Logging System (RLS) has been obtained by Hanford Technical Services (HTS) and enhanced to measure the distribution of contaminants and monitor radionuclide movement in existing groundwater and vadose zone boreholes. Approximately 100 wells are logged by HTS each year in this program. In some cases, movement has been observed years after discharges were terminated. A similar program is in place to monitor the vadose zone at the Tank Farms. This monitoring plan describes Hanford Programs for monitoring the movement of radioactive contamination in the vadose zone. Program background, drivers, and strategy are presented. The objective of this program is to ensure that DOE-RL is aware of any migration of contaminants in the vadose zone, such that groundwater can be protected and early actions can be taken as needed

  11. Hanford Site groundwater monitoring for Fiscal Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E. [eds.] [and others

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium`s ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level.

  12. Hanford Site groundwater monitoring for Fiscal Year 1997

    International Nuclear Information System (INIS)

    Hartman, M.J.; Dresel, P.E.

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium's ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level

  13. Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.

    2009-08-20

    A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55 Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where

  14. A Study Plan for Determining Recharge Rates at the Hanford Site Using Environmental Tracers

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E. M.; Szecsody, J. E.; Phillips, S. J.

    1991-02-01

    This report presents a study plan tor estimating recharge at the Hanford Site using environmental tracers. Past operations at the Hanford Site have led to both soil and groundwater contamination, and recharge is one of the primary mechanisms for transporting contaminants through the vadose zone and into the groundwater. The prediction of contaminant movement or transport is one aspect of performance assessment and an important step in the remedial investigation/feasibility study (RI/FS) process. In the past, recharge has been characterized by collecting lysimeter data. Although lysimeters can generate important and reliable data, their limitations include 1) fixed location, 2) fixed sediment contents, 3) edge effects, 4) low rates, and 5) relatively short duration of measurement. These limitations impact the ability to characterize the spatial distribution of recharge at the Hanford Site, and thus the ability to predict contaminant movement in the vadose zone. An alternative to using fixed lysimeters for determining recharge rates in the vadose zone is to use environmental tracers. Tracers that have been used to study water movement in the vadose zone include total chloride, {sup 36}CI, {sup 3}H, and {sup 2}H/{sup 18}O. Atmospheric levels of {sup 36}CI and {sup 3}H increased during nuclear bomb testing in the Pacific, and the resulting "bomb pulse" or peak concentration can be measured in the soil profile. Locally, past operations at the Hanford Site have resu~ed in the atmospheric release of numerous chemical and isotopic tracers, including nitrate, {sup 129}I, and {sup 99}Tc. The radionuclides, in particular, reached a well-defined atmospheric peak in 1945. Atmospheric releases of {sup 129}I and {sup 99}Tc were greatly reduced by mid-1946, but nitrogen oxides continued to be released from the uranium separations facilities. As a result, the nitrate concentrations probably peaked in the mid-1950s, when the greatest number of separations facilities were operating

  15. Parallel inversion of a massive ERT data set to characterize deep vadose zone contamination beneath former nuclear waste infiltration galleries at the Hanford Site B-Complex (Invited)

    Science.gov (United States)

    Johnson, T.; Rucker, D. F.; Wellman, D.

    2013-12-01

    The Hanford Site, located in south-central Washington, USA, originated in the early 1940's as part of the Manhattan Project and produced plutonium used to build the United States nuclear weapons stockpile. In accordance with accepted industrial practice of that time, a substantial portion of relatively low-activity liquid radioactive waste was disposed of by direct discharge to either surface soil or into near-surface infiltration galleries such as cribs and trenches. This practice was supported by early investigations beginning in the 1940s, including studies by Geological Survey (USGS) experts, whose investigations found vadose zone soils at the site suitable for retaining radionuclides to the extent necessary to protect workers and members of the general public based on the standards of that time. That general disposal practice has long since been discontinued, and the US Department of Energy (USDOE) is now investigating residual contamination at former infiltration galleries as part of its overall environmental management and remediation program. Most of the liquid wastes released into the subsurface were highly ionic and electrically conductive, and therefore present an excellent target for imaging by Electrical Resistivity Tomography (ERT) within the low-conductivity sands and gravels comprising Hanford's vadose zone. In 2006, USDOE commissioned a large scale surface ERT survey to characterize vadose zone contamination beneath the Hanford Site B-Complex, which contained 8 infiltration trenches, 12 cribs, and one tile field. The ERT data were collected in a pole-pole configuration with 18 north-south trending lines, and 18 east-west trending lines ranging from 417m to 816m in length. The final data set consisted of 208,411 measurements collected on 4859 electrodes, covering an area of 600m x 600m. Given the computational demands of inverting this massive data set as a whole, the data were initially inverted in parts with a shared memory inversion code, which

  16. Model Package Report: Central Plateau Vadose Zone Geoframework Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Sarah D.

    2018-03-27

    The purpose of the Central Plateau Vadose Zone (CPVZ) Geoframework model (GFM) is to provide a reasonable, consistent, and defensible three-dimensional (3D) representation of the vadose zone beneath the Central Plateau at the Hanford Site to support the Composite Analysis (CA) vadose zone contaminant fate and transport models. The GFM is a 3D representation of the subsurface geologic structure. From this 3D geologic model, exported results in the form of point, surface, and/or volumes are used as inputs to populate and assemble the various numerical model architectures, providing a 3D-layered grid that is consistent with the GFM. The objective of this report is to define the process used to produce a hydrostratigraphic model for the vadose zone beneath the Hanford Site Central Plateau and the corresponding CA domain.

  17. Vadose zone transport field study: Detailed test plan for simulated leak tests

    International Nuclear Information System (INIS)

    AL Ward; GW Gee

    2000-01-01

    The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from these uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to

  18. System-Scale Model of Aquifer, Vadose Zone, and River Interactions for the Hanford 300 Area - Application to Uranium Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Parker, Kyle R.; Waichler, Scott R.; Williams, Mark D.

    2013-10-01

    This report represents a synthesis and integration of basic and applied research into a system-scale model of the Hanford 300 Area groundwater uranium plume, supported by the U.S. Department of Energy’s Richland Operations (DOE-RL) office. The report integrates research findings and data from DOE Office of Science (DOE-SC), Office of Environmental Management (DOE-EM), and DOE-RL projects, and from the site remediation and closure contractor, Washington Closure Hanford, LLC (WCH). The three-dimensional, system-scale model addresses water flow and reactive transport of uranium for the coupled vadose zone, unconfined aquifer, and Columbia River shoreline of the Hanford 300 Area. The system-scale model of the 300 Area was developed to be a decision-support tool to evaluate processes of the total system affecting the groundwater uranium plume. The model can also be used to address “what if” questions regarding different remediation endpoints, and to assist in design and evaluation of field remediation efforts. For example, the proposed cleanup plan for the Hanford 300 Area includes removal, treatment, and disposal of contaminated sediments from known waste sites, enhanced attenuation of uranium hot spots in the vadose and periodically rewetted zone, and continued monitoring of groundwater with institutional controls. Illustrative simulations of polyphosphate infiltration were performed to demonstrate the ability of the system-scale model to address these types of questions. The use of this model in conjunction with continued field monitoring is expected to provide a rigorous basis for developing operational strategies for field remediation and for defining defensible remediation endpoints.

  19. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    International Nuclear Information System (INIS)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm

  20. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    Energy Technology Data Exchange (ETDEWEB)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

  1. A Catalog of Vadose Zone Hydraulic Properties for the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Eugene J.; Khaleel, Raziuddin; Heller, Paula R.

    2002-09-30

    To predict contaminant release to the groundwater, it is necessary to understand the hydraulic properties of the material between the release point and the water table. Measurements of the hydraulic properties of the Hanford unsaturated sediments that buffer the water table are available from many areas of the site; however, the documentation is not well cataloged nor is it easily accessible. The purpose of this report is to identify what data is available for characterization of the unsaturated hydraulic properties at Hanford and Where these data can be found.

  2. Hanford Site Groundwater Monitoring for Fiscal Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2004-04-12

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon

  3. Hanford Site 100-N Area In Situ Bioremediation of UPR-100-N-17, Deep Petroleum Unplanned Release - 13245

    International Nuclear Information System (INIS)

    Saueressig, Daniel G.

    2013-01-01

    In 1965 and 1966, approximately 303 m 3 of Number 2 diesel fuel leaked from a pipeline used to support reactor operations at the Hanford Site's N Reactor. N Reactor was Hanford's longest operating reactor and served as the world's first dual purpose reactor for military and power production needs. The Interim Action Record of Decision for the 100-N Area identified in situ bioremediation as the preferred alternative to remediate the deep vadose zone contaminated by this release. A pilot project supplied oxygen into the vadose zone to stimulate microbial activity in the soil. The project monitored respiration rates as an indicator of active biodegradation. Based on pilot study results, a full-scale system is being constructed and installed to remediate the vadose zone contamination. (authors)

  4. Electrical resistivity tomography at the DOE Hanford site

    International Nuclear Information System (INIS)

    Narbutovskih, S.M.; Halter, T.D.; Sweeney, M.D.; Daily, W.; Ramirez, A.L.

    1996-01-01

    Recent work at the DOE Hanford site has established the potential of applying Electrical Resistivity Tomography (ERT) for early leak detection under hazardous waste storage facilities. Several studies have been concluded to test the capabilities and limitations of ERT for two different applications. First, field experiments have been conducted to determine the utility of ERT to detect and map leaks from underground storage tanks during waste removal processes. Second, the use of ERT for long term vadose zone monitoring has been tested under different field conditions of depth, installation design, acquisition mode/equipment and infiltration chemistry. This work involves transferring the technology from Lawrence Livermore National Laboratory (LLNL) to the Resource Conservation and Recovery Act (RCRA) program at the DOE Hanford Site. This paper covers field training studies relevant to the second application for long term vadose zone monitoring. Electrical resistivity tomography is a cross-borehole, imaging technique for mapping subsurface resistivity variations. Electrodes are placed at predetermined depths in an array of boreholes. Electrical current is introduced into one electrode pair located in one borehole while the resulting voltage change is detected between electrode pairs in other boreholes similar to a surface dipole-dipole array. These data are tomographically inverted to image temporal resistivity contrasts associated with an infiltration event. Thus a dynamic plume is spatially mapped as a function of time. As a long-term vadose zone monitoring method, different field conditions and performance requirements exist than those for short term tank leak detection. To test ERT under these conditions, two vertical electrode arrays were constructed to a depth of 160 feet with a linear surface array between boreholes

  5. Electrical resistivity tomography at the DOE Hanford site

    International Nuclear Information System (INIS)

    Narbutovskih, S.M.

    1996-01-01

    Recent work at the DOE Hanford site has established the potential of applying Electrical Resistivity Tomography (ERT) for early leak detection under hazardous waste storage facilities. Several studies have been concluded to test the capabilities and limitations of ERT for two different applications. First, field experiments have been conducted to determine the utility of ERT to detect and map leaks from underground storage tanks during waste removal processes. Second, the use of ERT for long term vadose zone monitoring has been tested under different field conditions of depth, installation design, acquisition mode/equipment and infiltration chemistry. This work involves transferring the technology from Lawrence Livermore National Laboratory (LLNL) to the Resource Conservation and Recovery Act (RCRA) program at the DOE Hanford Site. This paper covers field training studies relevant to the second application for long term vadose monitoring. Electrical resistivity tomography is a cross-borehole, imaging technique for mapping subsurface resistivity variations. Electrodes are placed at predetermined depths in an array of boreholes. Electrical current is introduced into one electrode pair located in one borehole while the resulting voltage change is detected between electrode pairs in other boreholes similar to a surface dipole-dipole array. These data are topographically inverted to image temporal resistivity contrasts associated with an infiltration event. Thus a dynamic plume is spatially mapped as a function of time. As a long-term vadose zone monitoring method, different field conditions and performance requirements exist than those for short term tank leak detection. To test ERT under these conditions, two vertical electrode arrays were constructed to a depth of 160 feet with a linear surface array between boreholes. The fielding was used to facilitate the technology transfer from LLNL to the Hanford RCRA program. Installation methods, commercial equipment and

  6. Hanford Site 100-N Area In Situ Bioremediation of UPR-100-N-17, Deep Petroleum Unplanned Release - 13245

    Energy Technology Data Exchange (ETDEWEB)

    Saueressig, Daniel G. [Washington Closure Hanford, 2620 Fermi, Richland, Washington, 99354 (United States)

    2013-07-01

    In 1965 and 1966, approximately 303 m{sup 3} of Number 2 diesel fuel leaked from a pipeline used to support reactor operations at the Hanford Site's N Reactor. N Reactor was Hanford's longest operating reactor and served as the world's first dual purpose reactor for military and power production needs. The Interim Action Record of Decision for the 100-N Area identified in situ bioremediation as the preferred alternative to remediate the deep vadose zone contaminated by this release. A pilot project supplied oxygen into the vadose zone to stimulate microbial activity in the soil. The project monitored respiration rates as an indicator of active biodegradation. Based on pilot study results, a full-scale system is being constructed and installed to remediate the vadose zone contamination. (authors)

  7. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28

    This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and

  8. Hanford Site background: Part 1, Soil background for nonradioactive analytes

    International Nuclear Information System (INIS)

    1993-04-01

    The determination of soil background is one of the most important activities supporting environmental restoration and waste management on the Hanford Site. Background compositions serve as the basis for identifying soil contamination, and also as a baseline in risk assessment processes used to determine soil cleanup and treatment levels. These uses of soil background require an understanding of the extent to which analytes of concern occur naturally in the soils. This report documents the results of sampling and analysis activities designed to characterize the composition of soil background at the Hanford Site, and to evaluate the feasibility for use as Sitewide background. The compositions of naturally occurring soils in the vadose Zone have been-determined for-nonradioactive inorganic and organic analytes and related physical properties. These results confirm that a Sitewide approach to the characterization of soil background is technically sound and is a viable alternative to the determination and use of numerous local or area backgrounds that yield inconsistent definitions of contamination. Sitewide soil background consists of several types of data and is appropriate for use in identifying contamination in all soils in the vadose zone on the Hanford Site. The natural concentrations of nearly every inorganic analyte extend to levels that exceed calculated health-based cleanup limits. The levels of most inorganic analytes, however, are well below these health-based limits. The highest measured background concentrations occur in three volumetrically minor soil types, the most important of which are topsoils adjacent to the Columbia River that are rich in organic carbon. No organic analyte levels above detection were found in any of the soil samples

  9. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  10. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah Sd.

    2001-01-01

    The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the first in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from RCRA borehole bore samples and composite samples. Intact cores from two RCRA boreholes (299-W22-48 and 299-W22-50) near the SX Tank Farm and four, large-quantity grab samples from outcrop sediment on and off the Hanford Site were sampled to better understand the fate of contaminants in the vadose zone beneath underground storage tanks at the Hanford Site. Borehole and outcrop samples analyzed for this report are located outside the tank farms, and therefore may be considered standard or background samples from which to compare contaminated sediments within the tank farms themselves. This report presents our interpretation of the physical, chemical, and mineralogical properties of the uncontaminated vadose zone sediments, and variations in the vertical distribution of these properties. The information presented in this report is intended to support preparation of the S-SX Field Investigation Report to be prepared by CH2M Hill Hanford Group, Inc. as well as future remediation actions at the S-SX Tank Farm

  11. Vadose Zone Hydrogeology Data Package for Hanford Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V.; Freeman, Eugene J.; Cantrell, Kirk J.; Fayer, Michael J.; Gee, Glendon W.; Nichols, William E.; Bjornstad, Bruce N.; Horton, Duane G.

    2006-06-01

    This data package documents the technical basis for selecting physical and geochemical parameters and input values that will be used in vadose zone modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc., Richland, Washington, and revised as part of the Characterization of Systems Project managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy, Richland Operations Office (DOE-RL). This data package describes the geologic framework, the physical, hydrologic, and contaminant transport properties of the geologic materials, and deep drainage (i.e., recharge) estimates, and builds on the general framework developed for the initial assessment conducted using the System Assessment Capability (SAC) (Bryce et al. 2002). The general approach for this work was to update and provide incremental improvements over the previous SAC data package completed in 2001. As with the previous SAC data package, much of the data and interpreted information were extracted from existing documents and databases. Every attempt was made to provide traceability to the original source(s) of the data or interpretations.

  12. Groundwater and vadose Zone Integration Project Nuclear Material Mass Flow and Accountability on the Hanford Site

    International Nuclear Information System (INIS)

    GRASHER, A.A.

    2001-01-01

    The purpose of this report is to provide a discussion of the accountable inventory of Hanford Site nuclear material (NM) over the operating period. This report does not provide judgments on impacts to the Hanford Site environs by the reported waste streams or inventory. The focus of this report is on the processes, facilities, and process streams that constituted the flow primarily of plutonium and uranium through the Hanford Site. The material balance reports (MBRS) are the basis of the NM accountable inventory maintained by each of the various contractors used by the U.S. Department of Energy (DOE) and its predecessors to operate the Hanford Site. The inventory was tracked in terms of a starting inventory, receipts, transfers, and ending inventory. The various components of the inventory are discussed as well as the uncertainty in the measurement values used to establish plant inventory and material transfers. The accountable NM inventory does not report all the NM on the Hanford Site and this difference is discussed relative to some representative nuclides. The composition and location of the current accountable inventory are provided, as well as the latest approved set (2000) of flow diagrams of the proposed disposition of the excess accountable NM inventory listed on the Idaho National Engineering and Environmental Laboratory (INEEL) web page

  13. 1999 vadose zone monitoring plan and guidance for subsequent years

    International Nuclear Information System (INIS)

    Horton, D.G.; Reidel, S.P.; Last, G.V.

    1998-08-01

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive waste in the US. The majority of the liquid waste was disposed to the soil column where much of it remains today. This document provides the rationale and general framework for vadose zone monitoring at cribs, ditches, trenches and other disposal facilities to detect new sources of contamination and track the movement of existing contamination in the vadose zone for the protection of groundwater. The document provides guidance for subsequent site-specific vadose zone monitoring plans and includes a brief description of past vadose monitoring activities (Chapter 3); the results of the Data Quality Objective process used for this plan (Chapter 4); a prioritization of liquid waste disposal sites for vadose monitoring (Chapter 5 and Appendix B); a general Monitoring and Analysis Plan (Chapter 6); a general Quality Assurance Project Plan (Appendix A), and a description of vadose monitoring activities planned for FY 1999 (Appendix C)

  14. Hanford Site Groundwater Monitoring for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    MJ Hartman; LF Morasch; WD Webber

    2000-05-10

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds

  15. Colloid Genesis/Transport and Flow Pathway Alterations Resulting From Interactions of Reactive Waste Solutions and Hanford Vadose Zone Sediments

    International Nuclear Information System (INIS)

    Wan, Jiamin; Tokunaga, Tetsu K.

    2001-01-01

    Leakage of underground tanks containing high-level nuclear waste solutions has been identified at various DOE facilities. The Hanford Site is one the main facilities of concern, with about 2,300 to 3,400 m3 of leaked waste liquids. Radionuclides and other contaminants have been found in elevated concentrations in the vadose zone and groundwater underneath single shell tank farms. We do not currently know the mechanisms responsible for the unexpected deep migration of some contaminants through the vadose zone, and such understanding is urgently needed for planning remediation. Due to the extreme chemical conditions of the tank waste solutions (very high pH, aluminum concentration, and ionic strength), interactions between the highly reactive waste solutions and sediments underneath the tanks can result in dissolution of primary minerals of the sediments and precipitation of secondary phases including colloidal particles. Contaminants can sorb onto and/or co-precipitate with the secondary phases. Therefore transport of strongly associated contaminants on mobile colloids can be substantially greater than without colloids. The overall objective of this research is to improve our understanding on the effects of interactions between the tank waste solution and sediments on deep contaminant migration under Hanford Site conditions. This objective will be achieved through the following four tasks: (1) colloid generation and transport studies, (2) studies on sediment permeability and chemical composition alterations, (3) quantifying associations of contaminants with secondary colloids, and (4) studies on the combined effects of the aforementioned processes on deep contaminant migration

  16. Hanford Site Solid Waste Landfill permit application. Revision 1

    International Nuclear Information System (INIS)

    1993-01-01

    Both nonhazardous and nonradioactive sanitary solid waste are generated at the Hanford Site. This permit application describes the manner in which the Solid Waste Landfill will be operated. A description is provided of the landfill, including applicable locational, general facility, and landfilling standards. The characteristics and quantity of the waste disposed of are discussed. The regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill are reviewed. A plan is included of operation, closure, and postclosure. This report addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill is discussed

  17. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm-13235

    International Nuclear Information System (INIS)

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R.

    2013-01-01

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit

  18. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm - 13235

    Energy Technology Data Exchange (ETDEWEB)

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R. [Washington River Protection Solutions, P.O. Box 850, Richland, WA, 99352 (United States)

    2013-07-01

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit. (authors)

  19. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  20. Geomicrobiology of High Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State

    International Nuclear Information System (INIS)

    Fredrickson, Jim K.; Zachara, John M.; Balkwill, David L.; Kennedy, David W.; Li, Shu-Mei W.; Kostandarithes, Heather M.; Daly, Michael J.; Romine, Margaret F.; Brockman, Fred J.

    2004-01-01

    Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ∼104 7 CFU g-1 but viable microorganisms were recovered from 11 of 16 samples including several of the most radioactive ones (e.g., > 10 ?Ci/g 137Cs). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known Gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples but other high G+C phyla were also represented including Rhodococcus and Nocardia. Two isolates from the second most radioactive sample (>20 ?Ci 137Cs g-1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20kGy. Many of the Gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that Gram-positive bacteria, predominantly high G+C phyla, are indigenous to Hanford vadose sediments and some are effective at surviving the extreme physical and chemical stress associated with radioactive waste

  1. TECHNICAL BASIS FOR EVALUATING SURFACE BARRIERS TO PROTECT GROUNDWATER FROM DEEP VADOSE ZONE CONTAMINATION

    International Nuclear Information System (INIS)

    Fayer, J.M.; Freedman, V.L.; Ward, A.L.; Chronister, G.B.

    2010-01-01

    The U.S. DOE and its predecessors released nearly 2 trillion liters (450 billion gallons) of contaminated liquid into the vadose zone at the Hanford Site. Some of the contaminants currently reside in the deeper parts of the vadose zone where they are much less accessible to characterization, monitoring, and typical remediation activities. The DOE Richland Operations Office (DOE-RL) prepared a treatability test plan in 2008 to examine remediation options for addressing contaminants in the deep vadose zone; one of the technologies identified was surface barriers (also known as engineered barriers, covers, and caps). In the typical configuration, the contaminants are located relatively close to the surface, generally within 15 m, and thus they are close to the base of the surface barrier. The proximity of the surface barrier under these conditions yielded few concerns about the effectiveness of the barrier at depth, particularly for cases in which the contaminants were in a lined facility. At Hanford, however, some unlined sites have contaminants located well below depths of 15 m. The issue raised about these sites is the degree of effectiveness of a surface barrier in isolating contaminants in the deep vadose zone. Previous studies by Hanford Site and PNNL researchers suggest that surface barriers have the potential to provide a significant degree of isolation of deep vadose zone contaminants. The studies show that the actual degree of isolation is site-specific and depends on many factors, including recharge rates, barrier size, depth of contaminants, geohydrologic properties ofthe sediments, and the geochemical interactions between the contaminants and the sediments. After the DOE-RL treatability test plan was published, Pacific Northwest National Laboratory was contracted to review the information available to support surface barrier evaluation for the deep vadose zone, identify gaps in the information and outcomes necessary to fill the data gaps, and outline

  2. DEEP VADOSE ZONE CONTAMINATION DUE TO RELEASES FROM HANFORD SITE TANKS

    International Nuclear Information System (INIS)

    JARAYSI MN

    2008-01-01

    CH2M HILL Hanford Group, Inc. (the Hanford Tank Farm Operations contractor) and the Department of Energy's Office of River Protection have just completed the first phase of the Hanford Single-Shell Tank RCRA Corrective Action Program. The focus of this first phase was to characterize the nature and extent of past Hanford single-shell tank releases and to characterize the resulting fate and transport of the released contaminants. Most of these plumes are below 20 meters, with some reaching groundwater (at 60 to 120 meters below ground surface [bgs])

  3. Vadose Zone Transport Field Study: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.; Fink, James B.; Freedman, Vicky L.; Gee, Glendon W.; Hoversten, Gary M.; Keller, Jason M.; Majer, Ernest L.; Murray, Christopher J.; White, Mark D.; Yabusaki, Steven B.; Zhang, Z. F.

    2006-07-31

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets to validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste

  4. Vadose Zone Modeling Workshop proceedings, March 29--30, 1993

    International Nuclear Information System (INIS)

    Khaleel, R.

    1993-08-01

    At the Hanford Site, the record of decision for remediation of CERCLA sites is largely based on results of the baseline risk and performance assessment of the remedial action alternatives. These assessments require the ability to predict the fate and transport of contaminants along appropriate exposure pathways which, in case of the Hanford Site, includes the migration of contaminants through the vadose zone to the water table. Listed below are some of the requirements, as prescribed by the regulators, relative to CERCLA risk and performance assessment at Hanford. A workshop was organized by the Environmental Risk and Performance Assessment Group, Westinghouse Hanford Company on March 29--30, 1993 at the Richland Best Western Tower Inn. During the workshop, an assessment was made of the need for and scope of various tasks being conducted or planned as part of the Hanford Site waste isolation performance assessment/risk assessment activities. Three external, nationally-recognized experts served as part of a review panel for the workshop: (a) Professor Lynn Gelhar of MIT; (b) Professor Peter Wierenga of University of Arizona; and (c) Dr. Rien van Genuchten of US Salinity Laboratory, Riverside, California. The technical experts provided their perspectives on the current state-of-the-art in vadose zone flow and transport modeling. In addition, the technical experts provided an outside independent assessment of the work being performed or planned in support of various activities identified in TPA Milestone M-29-02. This document includes the following: Recommendations from the three peer reviewers; areas of expertise of the three peer reviewers; workshop agenda; copies of viewgraphs (where available) from presenters at the workshop; workshop minutes; and list of workshop attendees

  5. A Catalog of Vadose Zone Hydraulic Properties for the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Eugene J.; Khaleel, Raziuddin; Heller, Paula R.

    2001-09-24

    The purpose of this catalog is to integrate all available soil physics data and information from vadose zone characterization and performance assessments into one useable, scientifically defensible document.

  6. Speciation, Mobility and Fate of Actinides in the Groundwater at the Hanford Site

    International Nuclear Information System (INIS)

    Buesseler, K.O.; Dai, M.; Repeta, D.; Wacker, J.F.; Kelley, J.M.

    2003-01-01

    Plutonium and other actinides represent important contaminants in the groundwater and vadose zone at Hanford and other DOE sites. The distribution and migration of these actinides in groundwater must be understood so that these sites can be carefully monitored and effectively cleaned up, thereby minimizing risks to the public. The objective of this project was to obtain field data on the chemical and physical forms of plutonium in groundwater at the Hanford site. We focused on the 100-k and 100-n areas near the Columbia River, where prior reactor operations and waste storage was in close proximity to the river. In particular, a unique set of technical approaches were combined to look at the details of Pu speciation in groundwater, as thus its chemical affinity for soil surfaces and solubility in groundwater, as these impact directly the migration rates off site and possible mitigation possibilities one might undertake to control, or at least better monitor these releases

  7. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1993-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides an existing and future land use plan for the Hanford Site. The HSDP is updated annually in accordance with DOE Order 4320.1B, Site Development Planning, to reflect the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  8. Vadose zone characterisation at industrial contaminated sites

    OpenAIRE

    Fernandez de Vera, Natalia; Dahan, Ofer; Dassargues, Alain; Vanclooster, Marnik; Nguyen, Frédéric; Brouyère, Serge

    2015-01-01

    In order to improve risk characterization and remediation measures for soil and groundwater contamination, there is a need to improve in situ vadose zone characterization. However, most available technologies have been developed in the context of agricultural soils. Such methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. To overcome such difficulties, a vadose zone experiment has been setup at a former industrial site in ...

  9. Hanford Site groundwater monitoring: Setting, sources and methods

    International Nuclear Information System (INIS)

    Hartman, M.J.

    2000-01-01

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports

  10. Hanford Site groundwater monitoring: Setting, sources and methods

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Hartman

    2000-04-11

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  11. Short-term and long-term Vadose zone monitoring: Current technologies, development, and applications

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    1999-01-01

    At Hanford, Savannah River, Oak Ridge, Idaho National Engineering and Environmental Laboratory (INEEL), and other DOE sites, field vadose zone observations have shown complex water seepage and mass transport behavior in a highly heterogeneous, thick vadose zone on a variety of scales. Recent investigation showed that severe contamination of soils and groundwater by organic contaminant and nuclear waste occurred because of water seepage and contaminant transport along localized, preferential, fast flow within the heterogeneous vadose zone. However, most of the existing characterization and monitoring methods are not able to locate these localized and persistent preferential pathways associated with specific heterogeneous geologic features, such as clastic dikes, caliche layers, or fractures. In addition, changes in the chemical composition of moving and indigenous solutes, particularly sodium concentration, redox conditions, biological transformation of organic materials, and high temperature, may significantly alter water, chemicals, and bio-transformation exchange between the zones of fast flow and the rest of the media. In this paper, using the data from Hanford and INEEL sites, we will (1) present evidence that central problems of the vadose zone investigations are associated with preferential, fast flow phenomena and accelerated migration of organic and radioactive elements, (2) identify gaps in current characterization and monitoring technologies, and (3) recommend actions for the development of advanced vadose zone characterization and monitoring methods using a combination of hydrologic, geochemical, and geophysical techniques

  12. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1992-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides a land use plan for the Hanford Site and presents a picture of what is currently known and anticipated in accordance with DOE Order 4320.1B. Site Development Planning. The HSDP wig be updated annually as future decisions further shape the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  13. Water Monitoring Report for the 200 W Area Tree Windbreak, Hanford Site Richland, Washington

    International Nuclear Information System (INIS)

    Gee, Glendon W.; Carr, Jennifer S.; Goreham, John O.; Strickland, Christopher E.

    2002-01-01

    Water inputs to the vadose zone from irrigation of a tree windbreak in the 200 W Area of the Hanford Site were monitored during the summer of 2002. Water flux and soil-water contents were measured within the windbreak and at two locations just east of the windbreak to assess the impact of the irrigation on the vadose zone and to assist in optimizing the irrigation applications. In May 2002, instrumentation was placed in auger holes and backfilled with local soil. Sensors were connected to a data acquisition system (DAS), and the data were telemetered to the laboratory via digital modem in late June 2002. Data files and graphics were made web accessible for instantaneous retrieval. Precipitation, drip irrigation, deep-water flux, soil-water content, and soil-water pressures have been monitored on a nearly continuous basis from the tree-line site since June 26, 2002.

  14. A comprehensive analysis of contaminant transport in the vadose zone beneath tank SX-109

    International Nuclear Information System (INIS)

    Ward, A.L.; Gee, G.W.; White, M.D.

    1997-02-01

    The Vadose Zone Characterization Project is currently investigating the subsurface distribution of gamma-emitting radionuclides in S and SX Waste Management Area (WMA-S-SX) located in the 200 West Area of the US Department of Energy's Hanford Site in southeastern Washington State. Spectral-gamma logging of boreholes has detected elevated 137 Cs concentrations as deep as 38 m, a depth considered excessive based on the assumed geochemistry of 137 Cs in Hanford sediments. Routine groundwater sampling under the Resource Conservation and Recovery Act (RCRA) have also detected elevated levels of site-specific contaminants downgradient of WMA-S-SX. The objective of this report is to explore the processes controlling the migration of 137 Cs, 99 Tc, and NO 3 through the vadose zone of WMA-S-SX, particularly beneath tank SX-109

  15. Vadose zone studies at an industrial contaminated site: the vadose zone monitoring system and cross-hole geophysics

    Science.gov (United States)

    Fernandez de Vera, Natalia; Beaujean, Jean; Jamin, Pierre; Nguyen, Frédéric; Dahan, Ofer; Vanclooster, Marnik; Brouyère, Serge

    2014-05-01

    In order to improve risk characterization and remediation measures for soil and groundwater contamination, there is a need to improve in situ vadose zone characterization. However, most available technologies have been developed in the context of agricultural soils. Such methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. In addition, most technologies are applicable only in the first meters of soils, leaving deeper vadose zones with lack of information, in particular on field scale heterogeneity. In order to overcome such difficulties, a vadose zone experiment has been setup at a former industrial site in Belgium. Industrial activities carried out on site left a legacy of soil and groundwater contamination in BTEX, PAH, cyanide and heavy metals. The experiment comprises the combination of two techniques: the Vadose Zone Monitoring System (VMS) and cross-hole geophysics. The VMS allows continuous measurements of water content and temperature at different depths of the vadose zone. In addition, it provides the possibility of pore water sampling at different depths. The system is formed by a flexible sleeve containing monitoring units along its depth which is installed in a slanted borehole. The flexible sleeve contains three types of monitoring units in the vadose zone: Time Domain Transmissometry (TDT), which allows water content measurements; Vadose Sampling Ports (VSP), used for collecting water samples coming from the matrix; the Fracture Samplers (FS), which are used for retrieving water samples from the fractures. Cross-hole geophysics techniques consist in the injection of an electrical current using electrodes installed in vertical boreholes. From measured potential differences, detailed spatial patterns about electrical properties of the subsurface can be inferred. Such spatial patterns are related with subsurface heterogeneities, water content and solute concentrations. Two VMS were

  16. Characterization of Vadose Zone Sediments from C Waste Management Area: Investigation of the C-152 Transfer Line Leak

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Valenta, Michelle M.; Lanigan, David C.; Vickerman, Tanya S.; Clayton, Ray E.; Geiszler, Keith N.; Iovin, Cristian; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2008-09-11

    The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in January 2007. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc., tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within waste management area (WMA) C. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data compiled on vadose zone sediment recovered from direct-push samples collected around the site of an unplanned release (UPR), UPR-200-E-82, adjacent to the 241-C-152 Diversion Box located in WMA C.

  17. Groundwater/Vadose Zone Integration Project Management Plan

    International Nuclear Information System (INIS)

    Hughes, M. C.

    1999-01-01

    This Project Management Plan (PMP) defines the authorities, roles, and responsibilities of the US Department of Energy (DOE), Richland Operations Office (RL) and those contractor organizations participating in the Hanford Site' s Groundwater/Vadose Zone (GW/VZ) Integration Project. The PMP also describes the planning and control systems, business processes, and other management tools needed to properly and consistently conduct the Integration Project scope of work

  18. Soil Water Balance and Recharge Monitoring at the Hanford Site - FY09 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Saunders, Danielle L.; Strickland, Christopher E.; Waichler, Scott R.; Clayton, Ray E.

    2009-09-28

    Recharge provides the primary driving force for transporting contaminants from the vadose zone to underlying aquifer systems. Quantification of recharge rates is important for assessing contaminant transport and fate and for evaluating remediation alternatives. This report describes the status of soil water balance and recharge monitoring performed by Pacific Northwest National Laboratory at the Hanford Site for Fiscal Year 2009. Previously reported data for Fiscal Years 2004 - 2008 are updated with data collected in Fiscal Year 2009 and summarized.

  19. Influence of Clastic Dikes on Vertical Migration of Contaminants in the Vadose Zonde at Hanford

    International Nuclear Information System (INIS)

    Murray, Christopher J.; Ward, Anderson L.; Wilson, John L.

    2004-01-01

    The purpose of this study was to examine the hypothesis that clastic dikes could form a preferential flow path through the vadose zone to the water table at the Hanford Site. Clastic dikes are subvertical structures that form within sedimentary sequences after deposition and cut across the original sedimentary layers. They are common throughout the Hanford Site, often occurring in organized polygonal networks. In the initial phase of the project, we analyzed the large-scale geometry of the clastic dikes and developed an algorithm for simulating their spatial distribution. This result will be useful in providing maps of the potential distribution of clastic dikes in areas where they are not exposed at the surface (e.g., where covered by windblown sand or construction of facilities like tank farms at the surface). In addition to the study of the large-scale distribution of the dikes, a major focus of the project was on field, laboratory, and modeling studies of the hydrogeological properties of the clastic dikes and the effect that they have on transport of water through the vadose zone. These studies were performed at two field locations at the Hanford Site. We performed an extensive series of field and laboratory measurements of a large number of samples from the clastic dikes, linked with infrared (IR) and visual imagery of the clastic dikes and surrounding matrix. We developed a series of correlations from the sample data that allowed us to estimate the unsaturated hydraulic conductivity of the dike and matrix at an extremely high resolution (approximately 1 mm). The resulting grids, each of which measured several meters on a side and included nearly four million grid nodes, were used to study the distribution of moisture between the clastic dike and surrounding matrix, as well as the relative velocities that moisture would have through the clastic dike and matrix for a number of different recharge scenarios. Results show the development of complex flow networks

  20. Hanford Site Infrastructure Plan

    International Nuclear Information System (INIS)

    1990-01-01

    The Hanford Site Infrastructure Plan (HIP) has been prepared as an overview of the facilities, utilities, systems, and services that support all activities on the Hanford Site. Its purpose is three-fold: to examine in detail the existing condition of the Hanford Site's aging utility systems, transportation systems, Site services and general-purpose facilities; to evaluate the ability of these systems to meet present and forecasted Site missions; to identify maintenance and upgrade projects necessary to ensure continued safe and cost-effective support to Hanford Site programs well into the twenty-first century. The HIP is intended to be a dynamic document that will be updated accordingly as Site activities, conditions, and requirements change. 35 figs., 25 tabs

  1. Summary report of Hanford Site well remediation and decommissioning activities for fiscal year 1994

    International Nuclear Information System (INIS)

    Reynolds, K.D.

    1994-01-01

    Remediation and decommissioning of Hanford Site wells has become an integral part of Hanford Site Environmental Restoration (ER) and Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring programs. A well remediation and decommissioning program was funded and implemented in fiscal year (FY) 1993 under the RCRA and Operational Monitoring (ROM) Program. Funding for this work increased in FY 1994. In FY 1994 well decommissioning activities conducted for the ROM program were centered around the 200 West Area; activities for the ER program were centered in the Fitzner/Eberhart Arid Land Ecology (ALE) (Reserve) unit and the Wahluke Slope (North Slope) area. A total of 116 wells and test borings were decommissioned between the two programs during FY 1994. Additionally, five wells were identified as in need of remediation and were successfully brought into compliance with regulatory requirements. As Hanford Site restoration and remediation efforts increase in scope, the well decommissioning program will remain dynamic. The program will aggressively seek to fulfill the needs of the various environmental cleanup and groundwater/vadose monitoring programs. Wells that do not meet regulatory requirements for preservation will continually be identified and remediated or decommissioned accordingly

  2. Geochemical Processes Controlling Migration of High Level Wastes in Hanford's Vadose Zone

    International Nuclear Information System (INIS)

    Zachara, John M.; Serne, R. Jeffrey; Freshley, Mark D.; Mann, Frederick M.; Anderson, Frank J.; Wood, Marcus I.; Jones, Thomas E.; Myers, David A.

    2007-01-01

    High level nuclear wastes (HLW) from Hanford's plutonium reprocessing are stored in massive, buried, single-shell tanks in eighteen tank farms. The wastes were initially hot because of radioactive decay, and many exhibited extreme chemical character in terms of pH, salinity, and radionuclide concentration. At present, 67 of the 149 single shell tanks are suspected to have released over 1.9 million L of tank waste to the vadose zone, with most leak events occurring between 1950 and 1975. Boreholes have been placed through the largest vadose zone plumes to define the extent of contaminant migration, and to develop conceptual models of processes governing the transformation, retardation, and overall transport of tank waste residuals. Laboratory studies with sediments so collected have shown that ion exchange, precipitation and dissolution, and surface complexation reactions have occurred between the HLW and subsurface sediments moderating their chemical character, and retarding the migration of select contaminants. Processes suspected to facilitate the far-field migration of immobile radionuclides including stable aqueous complex formation and mobile colloids were found to be potentially operative, but unlikely to occur in the field, with the exception of cyanide-facilitated migration of 60Co. Fission product oxyanions are the most mobile of tank waste constituents because their adsorption is suppressed by large concentrations of waste anions; the vadose zone clay fraction is negative in surface charge; and, unlike Cr, their reduced forms are unstable in oxidizing environments. Reaction/process-based transport modeling is beginning to be used for predictions of future contaminant mobility and plume evolution

  3. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  4. Feasibility of the Shallow High Resolution Seismic Reflection Technique for Use at the Hanford Site

    International Nuclear Information System (INIS)

    S.M., Narbutovskih.

    1993-01-01

    Data obtained during site characterization should be useful to assess the need for remediation, to evaluate and design effective remedial plans, and to allow long-term monitoring to discern remediation effectiveness. A valuable environmental tool that incorporates this data is a model that describes groundwater and vadose zone flow and transport characteristics. Data on geology and hydrology combined with information on contaminant sources are incorporated into these conceptual models that delineate the relative significance of the various fluid migration pathways. Downstream these same models also support risk assessment, remediation design, and long-term assessment of remediation effectiveness. Consequently, the building of coherent, accurate vadose zone and groundwater models is fundamental to a successful remediation. Among the important requirements for these models is accurate knowledge of flow domain boundaries and soil characteristics. At the Hanford Site, this knowledge is obtained primarily from borehole data, which provides information only at a point. In the high energy flood and fluvial deposits found at the Hanford Site, it can, at times, be difficult to correlate lithologic horizons between boreholes. Where there is no borehole control, our understanding of the geometry of hydrogeologic boundaries and thus of fluid migration paths is limited. Surface geophysical techniques are generally used to provide a measure of geologic control between boreholes. In particular, the seismic reflection method has the potential to provide the greatest resolution of the subsurface hydrogeology between and beyond boreholes

  5. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J.; Yancey, E.F.

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs

  6. Hanford Site Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  7. Evaluation of the field-scale cation exchange capacity of Hanford sediments

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, C.I.

    2003-02-01

    Three-dimensional simulations of unsaturated flow, transport, and multi-component, multi-site cation exchange in the vadose zone were used to analyze the migration of a plume resulting from a leak of the SX-115 tank at the Hanford site, USA. The match within about 0.5 meters of the positions of retarded sodium and potassium fronts suggests that the laboratory-derived parameters may be used in field-scale simulations of radionuclide migration at the Hanford site.

  8. Test plan for sonic drilling at the Hanford Site in FY 1993

    International Nuclear Information System (INIS)

    McLellan, G.W.

    1993-01-01

    This test plan describes the field demonstration of the sonic drilling system being conducted as a coordinated effort between the VOC-Arid ID (Integrated Demonstration) and the 200 West Area Carbon Tetrachloride ERA (Expedited Response Action) programs at Hanford. The purpose of this test is to evaluate the Water Development Corporation's drilling system, modify components as necessary and determine compatible drilling applications for the sonic drilling method for use at facilities in the DOE complex. The sonic demonstration is being conducted as the first field test under the Cooperative Research and Development Agreement (CRADA) which involves the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The sonic drilling system will be used to drill a 45 degree vadose zone well, two vertical wells at the VOC-Arid ID site, and several test holes at the Drilling Technology Test Site north of the 200 Area fire station. Testing at other locations will depend on the performance of the drilling method. Performance of this technology will be compared to the baseline drilling method (cable-tool)

  9. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kyle, Jennifer E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tfaily, Malak M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle MV [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martijn L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, Erin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sahajpal, Rahul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carroll, Matthew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chu, Rosalie K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cordova, Elsa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Hope [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaplan, Daniel I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Garcia, Whitney L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kerisit, Sebastien N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Odeta [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bowden, Mark E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Frances N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Toyoda, Jason G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Plymale, Andrew E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-01

    Isotopes of iodine were generated during plutonium production within the nine production reactors at the U.S. Department of Energy Hanford Site. The short half-life 131I that was released from the fuel into the atmosphere during the dissolution process (when the fuel was dissolved) in the Hanford Site 200 Area is no longer present at concentrations of concern in the environment. The long half-life 129I generated at the Hanford Site during reactor operations was (1) stored in single-shell and double-shell tanks, (2) discharged to liquid disposal sites (e.g., cribs and trenches), (3) released to the atmosphere during fuel reprocessing operations, or (4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater. There is also 129I remaining in the vadose zone beneath disposal or leak locations. The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. In addition, its behavior in subsurface is different from that of other more common and important contaminants (e.g., U, Cr and Tc) in terms of sorption (adsorption and precipitation), and aqueous phase species transformation via redox reactions. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and identify aspects about which additional information is needed to effectively support remedy decisions.

  10. Vadose Zone Infiltration Rates from Sr isotope Measurements

    Science.gov (United States)

    Maher, K.; Maher, K.; DePaolo, D. J.; DePaolo, D. J.; Conrad, M.

    2001-12-01

    Predicting infiltration rates and recharge through the vadose zone in arid regions is difficult and hence developing methods for the measurement of infiltration rates is important. We have been investigating the use of Sr isotope measurements for determining infiltration at the 200 Area plateau on the Hanford reservation in central Washington. In this context, infiltration affects the transport of contaminants to the water table as well as recharge of the groundwater system. Using Sr isotopes for this purpose requires drill core and water samples from the vadose zone, although leaches of the cores can substitute for water samples. Complementary information, including some constraints on regional recharge, can also be obtained using water samples from groundwater monitoring wells. The VZ method is based on the fact that the Sr isotope ratio of soil water just below the surface is often set by dissolution of aeolian material including carbonate, and this ratio is different from the average value in the deeper underlying vadose zone rock matrix. As water infiltrates, the Sr isotopic composition of the water changes toward the rock values as a result of Sr released from the rocks by weathering reactions. The rate of change with depth of the Sr isotope ratio of the vadose zone water is a function ultimately of q/R; the ratio of the infiltration flux (q) to the bulk rock weathering rate (R). Where it is possible to evaluate R, q can be estimated. As data accumulate it may be possible to improve the calibration of the method. At Hanford the vadose zone rock material is mostly unconsolidated sand, silt, and gravel of broadly granitic composition, which constitute the Hanford and Ringold formations. Annual precipitation is about 160 mm/yr. Drilling and coring of a ca. 70m hole to the water table in 1999 as part of the Hanford groundwater monitoring program, in a relatively undisturbed area of the site, allowed us to generate a unique Sr isotope data set. The Sr isotope

  11. Historical genesis of Hanford Site wastes

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1991-01-01

    This paper acquaints the audience with historical waste practices and policies as they changed over the years at the Hanford Site, and with the generation of the major waste streams of concern in Hanford Site clean-up today. The paper also describes the founding and basic operating history of the Hanford Site, including World War 11 construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), and some past suggestions and efforts to chemically treat, open-quotes fractionate,close quotes and/or immobilize Hanford's wastes. Recent events, including the designation of the Hanford Site as the open-quotes flagshipclose quotes of Department of Energy (DOE) waste remediation efforts and the signing of the landmark Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), have generated new interest in Hanford's history. Clean-up milestones dictated in this agreement demand information about how, when, in what quantities and mixtures, and under what conditions, Hanford Site wastes were generated and released. This paper presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  12. Development of a sitewide groundwater remediation strategy at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Goswami, D.

    1996-01-01

    Over 440 km 2 (170 mi 2 ) of groundwater beneath the Hanford Site are contaminated by hazardous and radioactive waste, out of which almost half is over state and federal drinking water standards. In addition to the complicated nature of these plumes, remediation is further obscured by limited application of available technologies and hydrogeologic information. This paper briefly describes the processes used by the Washington State Department of Ecology (Ecology), U.S. Environmental Protection Agency, and U.S. Department of Energy (USDOE) in developing a sitewide groundwater remediation strategy for Hanford and its outcome. As an initial approach to sitewide groundwater remediation, the strategy is to remediate the major plumes found in the reactor areas (100 Area) adjacent to the Columbia River and contain the major plumes found in the Central Plateau region (200 Area). This approach was based mainly on the qualitative risk, stakeholder's and tribe's values, and available technical feasibility. The strategy emphasizes the use of existing treatment and extraction technology for the remediation of groundwater in combination with proposed and existing site infrastructure. This work is being performed in parallel with ongoing risk and other feasibility activities. Under this strategy, innovative technologies being developed are in the areas of dense nonaqueous phase liquid identification and recovery, and problems associated with strontium-90, cesium-137, and plutonium in the vadose zone and groundwater. The final remediation strategy alternatives remain a product of risk assessment, technical feasibility, site use scenario, and cost consideration. In order to develop a strategy for the final cleanup, several issues such as aquifer restoration, natural attenuation, potential contamination of groundwater from the tank farms and from the existing contamination source in the vadose zone must be looked in detail in conjuction with public and stakeholder's values

  13. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    International Nuclear Information System (INIS)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R.

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the open-quotes as low as reasonably achievableclose quotes concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes

  14. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  15. Introduction to the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal.

  16. Introduction to the Hanford Site

    International Nuclear Information System (INIS)

    Cushing, C.E.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal

  17. Hanford site environment

    International Nuclear Information System (INIS)

    Isaacson, R.E.

    1976-01-01

    A synopsis is given of the detailed characterization of the existing environment at Hanford. The following aspects are covered: demography, land use, meteorology, geology, hydrology, and seismology. It is concluded that Hanford is one of the most extensively characterized nuclear sites

  18. Hanford Site Composite Analysis Technical Approach Description: Hanford Site Disposition Baseline.

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, M. A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Dockter, R. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2017-10-02

    The permeability of ground surfaces within the U.S. Department of Energy’s (DOE) Hanford Site strongly influences boundary conditions when simulating the movement of groundwater using the Subsurface Transport Over Multiple Phases model. To conduct site-wide modeling of cumulative impacts to groundwater from past, current, and future waste management activities, a site-wide assessment of the permeability of surface conditions is needed. The surface condition of the vast majority of the Hanford Site has been and continues to be native soils vegetated with dryland grasses and shrubs.

  19. Characterizing the Catalytic Potential of Deinococcus, Arthrobacter and other Robust Bacteria in Contaminated Subsurface Environments of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Daly, Michael J.

    2005-06-01

    Natural selection in highly radioactive waste sites may yield bacteria with favorable bioremediating characteristics. However, until recently the microbial ecology of such environments has remained unexplored because of the high costs and technical complexities associated with extracting and characterizing samples from such sites. We have examined the bacterial ecology within radioactive sediments from a high-level nuclear waste plume in the vadose zone on the DOE?s Hanford Site in south-central Washington state (Fredrickson et al, 2004). Manganese-dependent, radiation resistant bacteria have been isolated from this contaminated site including the highly Mn-dependent Deinococcus and Arthrobacter spp.

  20. Uranium (VI) Sorption and Transport in Unsaturated, Subsurface Hanford Site Sediments - Effect of Moisture Content and Sediment Texture: Final Report for Subtask 2b

    International Nuclear Information System (INIS)

    Gamerdinger, A.P.; Resch, C.T.; Kaplan, D.I.

    1998-01-01

    A series of experiments were conducted in fiscal year 1998 at the Pacific Northwest National Laboratory as part of the Immobilized Low-Activity Waste-Performance Assessment. These experiments evaluated the sorption and transport of uranium, U(VI), under conditions of partial moisture saturation that are relevant to arid region burial sites and vadose-zone far-field conditions at the Hanford Site. The focus was on measuring breakthrough curves (from which distribution coefficient [K d ] values can be calculated) for U(W) in three Hanford Site sediments that represent different texture classes in two unsaturated moisture conditions. Previous research showed that K d values measured during transport in unsaturated sediments varied with moisture saturation

  1. Hanford Site peak gust wind speeds

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1998-01-01

    Peak gust wind data collected at the Hanford Site since 1945 are analyzed to estimate maximum wind speeds for use in structural design. The results are compared with design wind speeds proposed for the Hanford Site. These comparisons indicate that design wind speeds contained in a January 1998 advisory changing DOE-STD-1020-94 are excessive for the Hanford Site and that the design wind speeds in effect prior to the changes are still appropriate for the Hanford Site

  2. The Hanford Site: An anthology of early histories

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1993-10-01

    This report discusses the following topics: Memories of War: Pearl Harbor and the Genesis of the Hanford Site; safety has always been promoted at the Hanford Site; women have an important place in Hanford Site history; the boom and bust cycle: A 50-year historical overview of the economic impacts of Hanford Site Operations on the Tri-Cities, Washington; Hanford`s early reactors were crucial to the sites`s history; T-Plant made chemical engineering history; the UO{sub 3} plant has a long history of service. PUREX Plant: the Hanford Site`s Historic Workhorse. PUREX Plant Waste Management was a complex challenge; and early Hanford Site codes and jargon.

  3. Determining flow, recharge, and vadose zone drainage in an unconfined aquifer from groundwater strontium isotope measurements, Pasco Basin, WA

    International Nuclear Information System (INIS)

    2004-01-01

    Strontium isotope compositions (87Sr/86Sr) measured in groundwater samples from 273 wells in the Pasco Basin unconfined aquifer below the Hanford Site show large and systematic variations that provide constraints on groundwater recharge, weathering rates of the aquifer host rocks, communication between unconfined and deeper confined aquifers, and vadose zone-groundwater interaction. The impact of millions of cubic meters of wastewater discharged to the vadose zone (103-105 times higher than ambient drainage) shows up strikingly on maps of groundwater 87Sr/86Sr. Extensive access through the many groundwater monitoring wells at the site allows for an unprecedented opportunity to evaluate the strontium geochemistry of a major aquifer, hosted primarily in unconsolidated sediments, and relate it to both long term properties and recent disturbances. Groundwater 87Sr/86Sr increases systematically from 0.707 to 0.712 from west to east across the Hanford Site, in the general direction of groundwater flow, as a result of addition of Sr from the weathering of aquifer sediments and from diffuse drainage through the vadose zone. The lower 87Sr/86Sr groundwater reflects recharge waters that have acquired Sr from Columbia River Basalts. Based on a steady-state model of Sr reactive transport and drainage, there is an average natural drainage flux of 0-1.4 mm/yr near the western margin of the Hanford Site, and ambient drainage may be up to 30 mm/yr in the center of the site assuming an average bulk rock weathering rate of 10-7.5 g/g/yr

  4. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  5. The Hanford Site: An anthology of early histories

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1993-10-01

    This report discusses the following topics: Memories of War: Pearl Harbor and the Genesis of the Hanford Site; safety has always been promoted at the Hanford Site; women have an important place in Hanford Site history; the boom and bust cycle: A 50-year historical overview of the economic impacts of Hanford Site Operations on the Tri-Cities, Washington; Hanford's early reactors were crucial to the sites's history; T-Plant made chemical engineering history; the UO 3 plant has a long history of service. PUREX Plant: the Hanford Site's Historic Workhorse. PUREX Plant Waste Management was a complex challenge; and early Hanford Site codes and jargon

  6. Hanford Site 1998 Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    RL Dirkes; RW Hanf; TM Poston

    1999-09-21

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

  7. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  8. Hanford Site technical baseline database. Revision 1

    International Nuclear Information System (INIS)

    Porter, P.E.

    1995-01-01

    This report lists the Hanford specific files (Table 1) that make up the Hanford Site Technical Baseline Database. Table 2 includes the delta files that delineate the differences between this revision and revision 0 of the Hanford Site Technical Baseline Database. This information is being managed and maintained on the Hanford RDD-100 System, which uses the capabilities of RDD-100, a systems engineering software system of Ascent Logic Corporation (ALC). This revision of the Hanford Site Technical Baseline Database uses RDD-100 version 3.0.2.2 (see Table 3). Directories reflect those controlled by the Hanford RDD-100 System Administrator. Table 4 provides information regarding the platform. A cassette tape containing the Hanford Site Technical Baseline Database is available

  9. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  10. Hanford Site Solid Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    1993-01-01

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  11. Hanford Site baseline risk assessment methodology

    International Nuclear Information System (INIS)

    1993-03-01

    This methodology has been developed to prepare human health and environmental evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act remedial investigations (RIs) and the Resource Conservation and Recovery Act facility investigations (FIs) performed at the Hanford Site pursuant to the Hanford Federal Facility Agreement and Consent Order referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies Site-specific risk assessment considerations and integrates them with approaches for evaluating human and environmental risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site

  12. Hanford Site Environmental Report 1999

    International Nuclear Information System (INIS)

    Poston, TM; Hanf, RW; Dirkes, RL

    2000-01-01

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality

  13. Hanford Site Environmental Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    TM Poston; RW Hanf; RL Dirkes

    2000-09-28

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.

  14. Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site, Washington State

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mark D.; Rockhold, Mark L.; Thorne, Paul D.; Chen, Yousu

    2008-09-01

    Researchers at Pacific Northwest National Laboratory developed field-scale groundwater flow and transport simulations of the 300 Area to support the 300-FF-5 Operable Unit Phase III Feasibility Study. The 300 Area is located in the southeast portion of the U.S. Department of Energy’s Hanford Site in Washington State. Historical operations involving uranium fuel fabrication and research activities at the 300 Area have contaminated engineered liquid-waste disposal facilities, the underlying vadose zone, and the uppermost aquifer with uranium. The main objectives of this research were to develop numerical groundwater flow and transport models to help refine the site conceptual model, and to assist assessment of proposed alternative remediation technologies focused on the 300 Area uranium plume.

  15. VADOSE ZONE STUDIES AT AN INDUSTRIAL CONTAMINATED SITE: THE VADOSE ZONE MONITORING SYSTEM AND CROSS-HOLE GEOPHYSICS

    OpenAIRE

    Fernandez de Vera, Natalia; Beaujean, Jean; Jamin, Pierre; Nguyen, Frédéric; Dahan, Ofer; Vanclooster, Marnik; Brouyère, Serge

    2014-01-01

    In situ vadose zone characterization is essential to improve risk characterization and remediation measures for soil and groundwater contamination. However, most available technologies have been developed in the context of agricultural soils. Most of these methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. In addition, they are applicable only in the first meters of soils, leaving deeper vadose zones with lack of informatio...

  16. The Hanford Site focus, 1994

    International Nuclear Information System (INIS)

    Peterson, J.M.

    1994-03-01

    This report describes what the Hanford Site will look like in the next two years. We offer thumbnail sketches of Hanford Site programs and the needs we are meeting through our efforts. We describe our goals, some recent accomplishments, the work we will do in fiscal year (FY) 1994, the major activities the FY 1995 budget request covers, and the economic picture in the next few years. The Hanford Site budget shows the type of work being planned. US Department of Energy (DOE) sites like the Hanford Site use documents called Activity Data Sheets to meet this need. These are building blocks that are included in the budget. Each Activity Data Sheet is a concise (usually 4 or 5 pages) summary of a piece of work funded by the DOE's Environmental Restoration and Waste Management budget. Each sheet describes a waste management or environmental restoration need over a 5-year period; related regulatory requirements and agreements; and the cost, milestones, and steps proposed to meet the need. The Hanford Site is complex and has a huge budget, and its Activity Data Sheets run to literally thousands of pages. This report summarizes the Activity Data Sheets in a less detailed and much more reader-friendly fashion

  17. Hanford Site sustainable development initiatives

    International Nuclear Information System (INIS)

    Sullivan, C.T.

    1994-05-01

    Since the days of the Manhattan Project of World War II, the economic well being of the Tri-Cities (Pasco, Kennewick, and Richland) of Washington State has been tied to the US Department of Energy missions at the nearby Hanford Site. As missions at the Site changed, so did the economic vitality of the region. The Hanford Site is now poised to complete its final mission, that of environmental restoration. When restoration is completed, the Site may be closed and the effect on the local economy will be devastating if action is not taken now. To that end, economic diversification and transition are being planned. To facilitate the process, the Hanford Site will become a sustainable development demonstration project

  18. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  19. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    International Nuclear Information System (INIS)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2008-01-01

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc

  20. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc.

  1. Integrating Risk Analyses and Tools at the DOE Hanford Site

    International Nuclear Information System (INIS)

    LOBER, R.W.

    2002-01-01

    Risk assessment and environmental impact analysis at the U.S. Department of Energy (DOE) Hanford Site in Washington State has made significant progress in refining the strategy for using risk analysis to support closing of several hundred waste sites plus 149 single-shell tanks at the Hanford Site. A Single-Shell Tank System Closure Work Plan outlines the current basis for closing the single-shell tank systems. An analogous site approach has been developed to address closure of aggregated groups of similar waste sites. Because of the complexity, decision time frames, proximity of non-tank farm waste sites to tank farms, scale, and regulatory considerations, various projects are providing integrated assessments to support risk analyses and decision-making. Projects and the tools that are being developed and applied at Hanford to support retrieval and cleanup decisions include: (1) Life Cycle Model (LCM) and Risk Receptor Model (RRM)--A site-level set of tools to support strategic analyses through scoping level risk management to assess different alternatives and options for tank closure. (2) Systems Assessment Capability for Integrated Groundwater Nadose Zone (SAC) and the Site-Wide Groundwater Model (SWGM)--A site-wide groundwater modeling system coupled with a risk-based uncertainty analysis of inventory, vadose zone, groundwater, and river interactions for evaluating cumulative impacts from individual and aggregate waste sites. (3) Retrieval Performance Evaluation (RPE)--A site-specific, risk-based methodology developed to evaluate performance of waste retrieval, leak detection and closure on a tank-specific basis as a function of past tank Leaks, potential leakage during retrieval operations, and remaining residual waste inventories following completion of retrieval operations. (4) Field Investigation Report (FIR)--A corrective action program to investigate the nature and extent of past tank leaks through characterization activities and assess future impacts to

  2. History of Hanford Site Defense Production (Brief)

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M S

    2001-02-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history.

  3. History of Hanford Site Defense Production (Brief)

    International Nuclear Information System (INIS)

    GERBER, M.S.

    2001-01-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  4. Vascular Plants of the Hanford Site

    International Nuclear Information System (INIS)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-01-01

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Brigham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations

  5. Hanford site transuranic waste sampling plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed

  6. Field trip guide to the Hanford Site

    International Nuclear Information System (INIS)

    Reidel, S.P.; Lindsey, K.A.; Fecht, K.R.

    1992-11-01

    This report is designed to provide a guide to the key geologic and hydrologic features of the US Department of Energy's Hanford Site located in south-central Washington. The guide is divided into two parts. The first part is a general introduction to the geology of the Hanford Site and its relation to the regional framework of south-central Washington. The second part is a road log that provides directions to important geologic features on the Hanford Site and descriptions of the locality. The exposures described were chosen for their accessibility and importance to the geologic history of the Hanford Site and to understanding the geohydrology of the Site

  7. Hanford Patrol Academy demolition sites closure plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

  8. Natural phenomena analyses, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1989-01-01

    Probabilistic seismic hazard studies completed for the Washington Public Power Supply System's Nuclear Plant 2 and for the US Department of Energy's N Reactor sites, both on the Hanford Site, suggested that the Lawrence Livermore National Laboratory seismic exposure estimates were lower than appropriate, especially for sites near potential seismic sources. A probabilistic seismic hazard assessment was completed for those areas that contain process and/or waste management facilities. the lower bound magnitude of 5.0 is used in the hazard analysis and the characteristics of small-magnitude earthquakes relatively common to the Hanford Site are addressed. The recommended ground motion for high-hazard facilities is somewhat higher than the Lawrence Livermore National Laboratory model and the ground motion from small-magnitude earthquakes is addressed separately from the moderate- to large-magnitude earthquake ground motion. The severe wind and tornado hazards determined for the Hanford Siste are in agreement with work completed independently using 43 years of site data. The low-probability, high-hazard, design-basis flood at the Hanford Site is dominated by dam failure on the Columbia River. Further evaluation of the mechanisms and probabilities of such flooding is in progress. The Hanford Site is downwind from several active Cascade volcanoes. Geologic and historical data are used to estimate the ashfall hazard

  9. Women and the Hanford Site

    Science.gov (United States)

    Gerber, Michele

    2014-03-01

    When we study the technical and scientific history of the Manhattan Project, women's history is sometimes left out. At Hanford, a Site whose past is rich with hard science and heavy construction, it is doubly easy to leave out women's history. After all, at the World War II Hanford Engineer Works - the earliest name for the Hanford Site - only nine percent of the employees were women. None of them were involved in construction, and only one woman was actually involved in the physics and operations of a major facility - Dr. Leona Woods Marshall. She was a physicist present at the startup of B-Reactor, the world's first full-scale nuclear reactor - now a National Historic Landmark. Because her presence was so unique, a special bathroom had to be built for her in B-Reactor. At World War II Hanford, only two women were listed among the nearly 200 members of the top supervisory staff of the prime contractor, and only one regularly attended the staff meetings of the Site commander, Colonel Franklin Matthias. Overall, women comprised less than one percent of the managerial and supervisory staff of the Hanford Engineer Works, most of them were in nursing or on the Recreation Office staff. Almost all of the professional women at Hanford were nurses, and most of the other women of the Hanford Engineer Works were secretaries, clerks, food-service workers, laboratory technicians, messengers, barracks workers, and other support service employees. The one World War II recruiting film made to attract women workers to the Site, that has survived in Site archives, is entitled ``A Day in the Life of a Typical Hanford Girl.'' These historical facts are not mentioned to criticize the past - for it is never wise to apply the standards of one era to another. The Hanford Engineer Works was a 1940s organization, and it functioned by the standards of the 1940s. Just as we cannot criticize the use of asbestos in constructing Hanford (although we may wish they hadn't used so much of it), we

  10. Hanford Site Environmental Report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K. [eds.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.

  11. Hanford Site Environmental Report 1993

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references

  12. Hanford well remediation and decommissioning plan

    International Nuclear Information System (INIS)

    Ledgerwood, R.K.

    1993-01-01

    Protection of Hanford Site groundwater resources and assessment of the effects of their use or contamination upon public safety are required by federal and state regulations and U.S. Department of Energy (DOE) policy, (DOE, 1989). Compliance with constraints applicable to the use of existing wells requires assessment as to the suitability for use and needs for rehabilitation, remediation or decommissioning of existing groundwater wells and other boreholes potentially affecting aquifers beneath the Hanford Site. Approximately 3,500 groundwater wells and vadose zone boreholes had been drilled on the Hanford Site prior to 1989, over 2,900 still exist. Most of these boreholes were drilled prior to 1987 and do not conform to presently accepted construction standards intended to protect groundwater resources. Approximately 260 wells have been installed since 1987. These wells were constructed to current standards for well construction which mandate seals between the permanent casing and the formation to prevent potential migration of contaminated liquid. Several programs presently construct and/or utilize existing and newly drilled wells to provide characterization and groundwater monitoring data. The programs are summarized

  13. Hanford Site Risk Assessment Methodology. Revision 3

    International Nuclear Information System (INIS)

    1995-05-01

    This methodology has been developed to prepare human health and ecological evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigations (RI) and the Resource conservation and Recovery Act of 1976 (RCRA) facility investigations (FI) performed at the Hanford Site pursuant to the hanford Federal Facility Agreement and Consent Order (Ecology et al. 1994), referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies site-specific risk assessment considerations and integrates them with approaches for evaluating human and ecological risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site

  14. Deep Vadose Zone Applied Field Research Center: Transformational Technology Development For Environmental Remediation

    International Nuclear Information System (INIS)

    Wellman, Dawn M.; Triplett, Mark B.; Freshley, Mark D.; Truex, Michael J.; Gephart, Roy E.; Johnson, Timothy C.; Chronister, Glen B.; Gerdes, Kurt D.; Chamberlain, Skip; Marble, Justin; Ramirez, Rosa

    2011-01-01

    DOE-EM, Office of Groundwater and Soil Remediation and DOE Richland, in collaboration with the Hanford site and Pacific Northwest National Laboratory, have established the Deep Vadose Zone Applied Field Research Center (DVZ-AFRC). The DVZ-AFRC leverages DOE investments in basic science from the Office of Science, applied research from DOE EM Office of Technology Innovation and Development, and site operation (e.g., site contractors [CH2M HILL Plateau Remediation Contractor and Washington River Protection Solutions], DOE-EM RL and ORP) in a collaborative effort to address the complex region of the deep vadose zone. Although the aim, goal, motivation, and contractual obligation of each organization is different, the integration of these activities into the framework of the DVZ-AFRC brings the resources and creativity of many to provide sites with viable alternative remedial strategies to current baseline approaches for persistent contaminants and deep vadose zone contamination. This cooperative strategy removes stove pipes, prevents duplication of efforts, maximizes resources, and facilitates development of the scientific foundation needed to make sound and defensible remedial decisions that will successfully meet the target cleanup goals for one of DOE EM's most intractable problems, in a manner that is acceptable by regulators.

  15. Hydraulic Conductivity Distributions for Anisotropic Systems and Application to Tc Transport at the U.S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Hunt, A. G.

    2006-01-01

    At the United States Department of Energy Hanford Site a spill of radioactive Technetium has been migrating horizontally in the vadose zone rather than flowing vertically to the water table. This result has been interpreted as being due to horizontal anisotropy in the hydraulic conductivity, K, (a tendency for fluids to migrate more easily in the horizontal direction) due to high horizontal connectivity of sedimentary deposits with a tendency for larger values of K. Such layers have larger components of silt and clay than the predominantly sandy soils at the Hanford site. It is generally accepted that effects of such anisotropy tend to be greater at smaller length scales, probably because of the lack of perfect correlations at large length scales. It has also been suggested that this anisotropy in K is maximized under relatively dry conditions when finer soils (with smaller pores) trap moisture more effectively than sands and gravels. The random component of the distribution of the Hanford flood deposits requires a probabilistic framework for the calculation of K. The work on this project had two main components: (1) to use continuum percolation theory applied to random fractal models to produce a general framework for calculating distributions of K under anisotropic conditions and as a function of system scale, (2) to apply the scheme for calculation to the Hanford site. The results of the general calculation (submitted for publication in Philosophical Magazine) are that the mean horizontal and vertical K values become equal in the limit of large system size (in agreement with general perception above) while the distributions of K values cause significant overlap of expected experimental values of K in the vertical and horizontal directions already at intermediate length scales. In order to make these calculation specific to the Hanford site, however, values of the appropriate length scales to describe the Hanford subsurface as well as to describe the maximum

  16. Historical research in the Hanford site waste cleanup

    International Nuclear Information System (INIS)

    Gerber, Michele S.

    1992-01-01

    This paper will acquaint the audience with role of historical research in the Hanford Site waste cleanup - the largest waste cleanup endeavor ever undertaken in human history. There were no comparable predecessors to this massive waste remediation effort, but the Hanford historical record can provide a partial road map and guide. It can be, and is, a useful tool in meeting the goal of a successful, cost-effective, safe and technologically exemplary waste cleanup. The Hanford historical record is rich and complex. Yet, it poses difficult challenges, in that no central and complete repository or data base exists, records contain obscure code words and code numbers, and the measurement systems and terminology used in the records change many times over the years. Still, these records are useful to the current waste cleanup in technical ways, and in ways that extend beyond a strictly scientific aspect. Study and presentations of Hanford Site history contribute to the huge educational and outreach tasks of helping the Site's work force deal with 'culture change' and become motivated for the cleanup work that is ahead, and of helping the public and the regulators to place the events at Hanford in the context of WWII and the Cold War. This paper traces historical waste practices and policies as they changed over the years at the Hanford Site, and acquaints the audience with the generation of the major waste streams of concern in Hanford Site cleanup today. It presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Examples of the strengths and limitations of the

  17. Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001

    International Nuclear Information System (INIS)

    Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

    2002-01-01

    During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): Electrical Resistivity Tomography (ERT); Cross-Borehole Electromagnetic Induction (CEMI) ; High-Resolution Resistivity (HRR); Cross-Borehole Radar (XBR); Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone

  18. Hanford Site radioactive mixed waste thermal treatment initiative

    International Nuclear Information System (INIS)

    Place, B.G.; Riddelle, J.G.

    1993-03-01

    This paper is a progress report of current Westinghouse Hanford Company engineering activities related to the implementation of a program for the thermal treatment of the Hanford Site radioactive mixed waste. Topics discussed include a site-specific engineering study, the review of private sector capability in thermal treatment, and thermal treatment of some of the Hanford Site radioactive mixed waste at other US Department of Energy sites

  19. Final Hanford Comprehensive Land-Use Plan Environmental Impact Statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-10-01

    This Final ''Hanford Comprehensive Land-Use Plan Environmental Impact Statement'' (HCP EIS) is being used by the Department of Energy (DOE) and its nine cooperating and consulting agencies to develop a comprehensive land-use plan (CLUP) for the Hanford Site. The DOE will use the Final HCP EIS as a basis for a Record of Decision (ROD) on a CLUP for the Hanford Site. While development of the CLUP will be complete with release of the HCP EIS ROD, full implementation of the CLUP is expected to take at least 50 years. Implementation of the CLUP would begin a more detailed planning process for land-use and facility-use decisions at the Hanford Site. The DOE would use the CLUP to screen proposals. Eventually, management of Hanford Site areas would move toward the CLUP land-use goals. This CLUP process could take more than 50 years to fully achieve the land-use goals.

  20. Vascular Plants of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-09-28

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Bringham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations on the biological environment, including impacts to rare habitats and to species listed as endangered or\\ threatened. This document includes a listing of plants currently listed as endangered, threatened, or otherwise of concern to the Washington Natural Heritage Program or the U.S. Fish and Wildlife Service, as well as those that are currently listed as noxious weeds by the State of Washington. Also provided is an overview of how plants on the Hanford Site can be used by people. This information may be useful in developing risk assessment models, and as supporting information for clean-up level and remediation decisions.

  1. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  2. Hanford Site environmental management specification

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.

    1998-06-10

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

  3. Hanford Site environmental management specification

    International Nuclear Information System (INIS)

    Grygiel, M.L.

    1998-01-01

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL's application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  4. Hanford Site baseline risk assessment methodology. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This methodology has been developed to prepare human health and environmental evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act remedial investigations (RIs) and the Resource Conservation and Recovery Act facility investigations (FIs) performed at the Hanford Site pursuant to the Hanford Federal Facility Agreement and Consent Order referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies Site-specific risk assessment considerations and integrates them with approaches for evaluating human and environmental risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site.

  5. Understanding Fluid and Contaminant Movement in the Unsaturated Zone Using the INEEL Vadose Zone Monitoring System

    International Nuclear Information System (INIS)

    Hubbell, J. M.; Mattson, E. D.; Sisson, J. B.; Magnuson, S. O.

    2002-01-01

    DOE has hundreds of contaminated facilities and waste sites requiring cleanup and/or long-term monitoring. These contaminated sites reside in unsaturated soils (i.e. the vadose zone) above the water table. Some of these sites will require active remediation activities or removal while other sites will be placed under institutional controls. In either case, evaluating the effectiveness of the remediation strategy or institutional controls will require monitoring. Classical monitoring strategies implemented at RCRA/CERCLA sites require ground water sampling for 30 years following closure. The overall effectiveness of ground water sampling is diminished due to the fact that by the time you detect chemical transport from a waste site, a major contamination plume likely exists in the vadose zone and the aquifer. This paper suggests a more effective monitoring strategy through monitoring near the contaminant sites within the vadose zone. Vadose zone monitoring allows for quicker detection of potential contaminant transport. The INEEL Vadose Zone Monitoring System (VZMS) is becoming an accepted, cost effective monitoring technology for assessing contaminant transport at DOE facilities. This paper describes the technologies employed in the VZMS and describes how it was used at several DOE facilities. The INEEL VZMS has provided the information in developing and validating both conceptual and risk assessment models of contaminant transport at the Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge National Laboratory (ORNL), Savannah River Site (SRS) and the Hanford site. These DOE sites exhibit a broad range of meteorologic, hydrologic and geologic conditions representative of various common geologic environments. The VZMS is comprised of advanced tensiometers, water content sensors, temperature sensors and soil and gas samplers. These instruments are placed at multiple depths in boreholes and allows for the detection of water movement in the

  6. Hanford Site Environmental Report for calendar year 1992

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E.

    1993-06-01

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality

  7. Hanford Site Environmental Report for calendar year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E. [eds.

    1993-06-01

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality.

  8. Vadose zone investigations at the Lawrence Livermore National Laboratory Superfund Site: An overview

    International Nuclear Information System (INIS)

    Iovenitti, J.L.; Nitao, J.J.; Bishop, D.J.

    1992-09-01

    Lawrence Livermore National Laboratory (LLNL)is investigating the fate and transport of vadose zone contaminants at their Livermore site in Livermore, California. The principal objectives of this work are to identify potential source areas at the Livermore site which require remediation, to prioritize those areas, and finally, to optimize the remediation process. Primary contaminants of interest for this investigation are volatile organic compounds (VOCs) and tritium. A fully integrated, three-part program, consisting of quantitative modeling, field studies, and laboratory measurements, is in progress. To evaluate and predict vadose zone contaminant migration, quantitative modeling is used. Our modeling capabilities are being enhanced through the development of a multicomponent,three-dimensional,nonaqueous phase liquid-liquid-vapor,nonisothermal flow and transport computer code. This code will be also used to evaluate vadose zone remediation requirements. Field studies to acquire LLNL site-specific soil (sediment) characteristics for computer code calibration and validation include subsurf ace lithologic and contaminant profiling, in situ soil moisture content, ground surface emission flux of VOCs and tritium, transpiration of tritium, and ground surface evapotranspiration of water. Multilevel vadose zone monitoring devices are used to monitor the gaseous and aqueous transport of contaminants

  9. Hanford Site Waste management units report

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes the operable units in several areas of the Hanford Site Waste Facility. Each operable unit has several waste units (crib, ditch, pond, etc.). The operable units are summarized by describing each was unit. Some of the descriptions are unit name, unit type, waste category start data, site description, etc. The descriptions will vary for each waste unit in each operable unit and area of the Hanford Site

  10. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  11. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP

  12. Accelerated clean-up at the Hanford Site

    International Nuclear Information System (INIS)

    Frain, J.M.; Johnson, W.L.

    1994-01-01

    The Hanford Site began operations in 1943 as one of the sites for plutonium production associated with the Manhattan Project. It has been used, in part, for nuclear reactor operation, reprocessing of spent fuel, and management of radioactive waste. The Hanford Site covers approximately 1,434 km 2 (560 mi 2 2) in southeastern Washington State. The subject of this paper, the 618-9 Burial Ground, is located on the Hanford Site approximately 1.6 km (1 mi) west of the Columbia River, and a few miles north of Richland, Washington. Throughout Hanford Site history, prior to legislation regarding disposal of chemical waste products, some chemical waste byproducts were disposed ,ia burial in trenches. One such trench was the 618-9 Burial Ground. This burial ground was suspected to contain approximately 19,000 L (5,000 gal) of uranium-contaminated organic solvent, disposed in standard 55-gal (208-L) metal drums. The waste was produced from research and development activities related to fuel reprocessing

  13. Hanford Site Performance Report - March 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U.S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  14. Hanford Site Performance Report - May 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U. S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  15. Hanford Site Performance Report - April 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U.S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  16. Management of Hanford Site non-defense production reactor spent nuclear fuel, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1997-03-01

    The US Department of Energy (DOE) needs to provide radiologically, and industrially safe and cost-effective management of the non-defense production reactor spent nuclear fuel (SNF) at the Hanford Site. The proposed action would place the Hanford Site's non-defense production reactor SNF in a radiologically- and industrially-safe, and passive storage condition pending final disposition. The proposed action would also reduce operational costs associated with storage of the non-defense production reactor SNF through consolidation of the SNF and through use of passive rather than active storage systems. Environmental, safety and health vulnerabilities associated with existing non-defense production reactor SNF storage facilities have been identified. DOE has determined that additional activities are required to consolidate non-defense production reactor SNF management activities at the Hanford Site, including cost-effective and safe interim storage, prior to final disposition, to enable deactivation of facilities where the SNF is now stored. Cost-effectiveness would be realized: through reduced operational costs associated with passive rather than active storage systems; removal of SNF from areas undergoing deactivation as part of the Hanford Site remediation effort; and eliminating the need to duplicate future transloading facilities at the 200 and 400 Areas. Radiologically- and industrially-safe storage would be enhanced through: (1) removal from aging facilities requiring substantial upgrades to continue safe storage; (2) utilization of passive rather than active storage systems for SNF; and (3) removal of SNF from some storage containers which have a limited remaining design life. No substantial increase in Hanford Site environmental impacts would be expected from the proposed action. Environmental impacts from postulated accident scenarios also were evaluated, and indicated that the risks associated with the proposed action would be small

  17. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  18. INITIAL SINGLE-SHELL TANK (SST) SYSTEM PERFORMANCE ASSESSMENT OF THE HANFORD SITE

    International Nuclear Information System (INIS)

    JARAYSI, M.N.

    2007-01-01

    The ''Initial Single-Shell Tank System Performance Assessment for the Hanford Site [1] (SST PA) presents the analysis of the long-term impacts of residual wastes assumed to remain after retrieval of tank waste and closure of the SST farms at the US Department of Energy (DOE) Hanford Site. The SST PA supports key elements of the closure process agreed upon in 2004 by DOE, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The SST PA element is defined in Appendix I of the ''Hanford Federal Facility Agreement and Consent Order'' (HFFACO) (Ecology et al. 1989) [2], the document that establishes the overall closure process for the SST and double-shell tank (DST) systems. The approach incorporated in the SST PA integrates substantive features of both hazardous and radioactive waste management regulations into a single analysis. The defense-in-depth approach used in this analysis defined two major engineering barriers (a surface barrier and the grouted tank structure) and one natural barrier (the vadose zone) that will be relied on to control waste release into the accessible environment and attain expected performance metrics. The analysis evaluates specific barrier characteristics and other site features that influence contaminant migration by the various pathways. A ''reference'' case and a suite of sensitivity/uncertainty cases are considered. The ''reference case'' evaluates environmental impacts assuming central tendency estimates of site conditions. ''Reference'' case analysis results show residual tank waste impacts on nearby groundwater, air resources; or inadvertent intruders to be well below most important performance objectives. Conversely, past releases to the soil, from previous tank farm operations, are shown to have groundwater impacts that re significantly above most performance objectives. Sensitivity/uncertainty cases examine single and multiple parameter variability along with plausible alternatives

  19. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  20. Hanford Site Raptor Nest Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John J. [Mission Support Alliance (MSA), Richland, WA (United States); Lindsey, Cole T. [Mission Support Alliance (MSA), Richland, WA (United States); Wilde, Justin W. [Mission Support Alliance (MSA), Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA. The Hanford Site supports a large and diverse community of raptorial birds (Fitzner et al. 1981), with 26 species of raptors observed on the Hanford Site.

  1. Hanford tank initiative test facility site selection study

    International Nuclear Information System (INIS)

    Staehr, T.W.

    1997-01-01

    The Hanford Tanks Initiative (HTI) project is developing equipment for the removal of hard heel waste from the Hanford Site underground single-shell waste storage tanks. The HTI equipment will initially be installed in the 241-C-106 tank where its operation will be demonstrated. This study evaluates existing Hanford Site facilities and other sites for functional testing of the HTI equipment before it is installed into the 241-C-106 tank

  2. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  3. Hanford Site National Environmental Policy Act (NEPA) Characterization

    International Nuclear Information System (INIS)

    Cushing, C.E.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided

  4. Hanford Site Environmental Report for Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2011-07-12

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2011 information is included where appropriate.

  5. Hanford Site Anuran Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, Justin W. [Mission Support Alliance LLC, Richland, WA (United States); Johnson, Scott J. [Mission Support Alliance LLC, Richland, WA (United States); Lindsey, Cole T. [Mission Support Alliance LLC, Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  6. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Antonio, Ernest J.; Eschbach, Tara O.; Fowler, Richard A.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast, Ellen L.; Rohay, Alan C.; Thorne, Paul D.

    2001-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  7. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Duncan, Joanne P.; Eschbach, Tara O.; Fowler, Richard A.; Fritz, Brad G.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2002-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  8. Modeling long-term risk to environmental and human systems at the Hanford Nuclear Reservation: Scope and findings from the initial model

    International Nuclear Information System (INIS)

    Scott, Michael J.; Brandt, Charles A.; Bunn, Amoret L.; Engel, David W.; Eslinger, Paul W.; Miley, Terri B.; Napier, Bruce A.; Prendergast-Kennedy, Ellen L.; Nieves, Leslie A.

    2005-01-01

    The Groundwater/Vadose Zone (GW/VZ) Integration Project at the U.S. Department of Energy's Hanford Site in Washington state is currently developing the tools and supporting data to assess the cumulative impact to human and ecological health and the region's economy and cultures from waste that will remain at the Hanford Site after the site closes. This integrated system of new and legacy models and data is known as the System Assessment Capability (SAC). The environmental transport modules of the SAC modeling system provide estimates of contaminant concentrations from Hanford Site sources in a time-dependent manner in the vadose zone, groundwater, and the Columbia River and its associated sediments. The Risk/Impact Module uses these estimates of media- and time-specific concentrations to estimate potential impacts on the ecology of the Columbia River corridor, the health of persons who might live in or use the corridor or the upland Hanford environment, the local economy, and the cultural resources. Preliminary Monte Carlo realizations from the SAC modeling system demonstrate the feasibility of large-scale uncertainty analysis of the complex relationships in environmental transport on the one hand and ecological, human, cultural, and economic risk on the other. Initial impact results show successful linking of codes and very small long-term risks for the 10 radionuclides and chemicals evaluated

  9. Software configuration management plan for the Hanford site technical database

    International Nuclear Information System (INIS)

    GRAVES, N.J.

    1999-01-01

    The Hanford Site Technical Database (HSTD) is used as the repository/source for the technical requirements baseline and programmatic data input via the Hanford Site and major Hanford Project Systems Engineering (SE) activities. The Hanford Site SE effort has created an integrated technical baseline for the Hanford Site that supports SE processes at the Site and project levels which is captured in the HSTD. The HSTD has been implemented in Ascent Logic Corporation (ALC) Commercial Off-The-Shelf (COTS) package referred to as the Requirements Driven Design (RDD) software. This Software Configuration Management Plan (SCMP) provides a process and means to control and manage software upgrades to the HSTD system

  10. 75 FR 6018 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-02-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford (known locally as the Hanford Advisory... and site management in the areas of environmental restoration, waste management, and related...

  11. Hanford Site Environmental Report for Calendar Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

    2003-09-01

    This report is prepared annually to satisfy the requirements of DOE Orders. The report provides an overview of activities at the Hanford Site during 2002 and demonstrates the site's compliance with applicable federal, state, and local environmental laws, regulations, executive orders, and DOE policies; and to summarize environmental data that characterize Hanford Site environmental management performance. The purpose of the report is to provide useful summary information to members of the public, public officials, regulators, Hanford contractors, and elected representatives.

  12. Review of geophysical characterization methods used at the Hanford Site

    International Nuclear Information System (INIS)

    GV Last; DG Horton

    2000-01-01

    This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ''all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts

  13. Hanford Site performance report - December 1998

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U. S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology support to the Environmental Management (EM) mission. This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. Currently, the report focuses on the EM mission, and will be expanded in the future to include non-EM activities. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a tabular performance profile with associated analyses, Critical Issues, Key Integration Activities, a look at Significant Trends, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators. The Site Summary is a compilation of performance data from all of the Mission Areas and the Projects that comprise these Mission Areas; the information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or the Site Summary sections. At the end of this report, a glossary of terms is provided

  14. Environmental assessment overview, Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization. 3 figs

  15. Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

    2002-03-01

    During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): (1) Electrical Resistivity Tomography (ERT); (2) Cross-Borehole Electromagnetic Induction (CEMI); (3) High-Resolution Resistivity (HRR); (4) Cross-Borehole Radar (XBR); and (5) Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone.

  16. HANFORD TANK FARM RESOURCE CONSERVATION and RECOVERY ACT (RCRA) CORRECTIVE ACTION PROGRAM

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.

    2007-01-01

    As a consequence of producing special nuclear material for the nation's defense, large amounts of extremely hazardous radioactive waste was created at the US Department of Energy's (DOE) Hanford Site in south central Washington State. A little over 50 million gallons of this waste is now stored in 177 large, underground tanks on Hanford's Central Plateau in tank farms regulated under the Atomic Energy Act and the Resource, Conservation, and Recovery Act (RCRA). Over 60 tanks and associated infrastructure have released or are presumed to have released waste in the vadose zone. In 1998, DOE's Office of River Protection established the Hanford Tank Farm RCRA Corrective Action Program (RCAP) to: (1) characterize the distribution and extent of the existing vadose zone contamination; (2) determine how the contamination will move in the future; (3) estimate the impacts of this contamination on groundwater and other media; (4) develop and implement mitigative measures; and (5) develop corrective measures to be implemented as part of the final closure of the tank farm facilities. Since its creation, RCAP has made major advances in each of these areas, which will be discussed in this paper

  17. Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan

    International Nuclear Information System (INIS)

    1993-12-01

    This document is the FY 1993 report on Hanford Site-specific science and technology (S ampersand T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford's highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S ampersand T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ''problem owners'' (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S ampersand T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders

  18. Hanford Site environmental report for calendar year 1990

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Hefty, M.G.; Lundgren, R.E.

    1991-01-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its new mission; summarize the status in 1990 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality

  19. Hanford Site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Hefty, M.G.; Lundgren, R.E. (eds.)

    1991-12-20

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its new mission; summarize the status in 1990 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality.

  20. HANFORD SITE SUSTAINABILITY PROGRAM RICHLAND WASHINGTON - 12464

    Energy Technology Data Exchange (ETDEWEB)

    FRITZ LL

    2012-01-12

    In support of implementation of Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance, the Hanford Site Sustainability Plan was developed to implement strategies and activities required to achieve the prescribed goals in the EO as well as demonstrate measurable progress in environmental stewardship at the Hanford Site. The Hanford Site Sustainability Program was developed to demonstrate progress towards sustainability goals as defined and established in Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance; EO 13423, Strengthening Federal Environmental, Energy and Transportation Management, and several applicable Energy Acts. Multiple initiatives were undertaken in Fiscal Year (FY) 2011 to implement the Program and poise the Hanford Site as a leader in environmental stewardship. In order to implement the Hanford Site Sustainability Program, a Sustainability Plan was developed in conjunction with prime contractors, two U.S. Department of Energy (DOE) Offices, and key stakeholders to serve as the framework for measuring progress towards sustainability goals. Based on the review of these metrics and future plans, several activities were initiated to proactively improve performance or provide alternatives for future consideration contingent on available funding. A review of the key metric associated with energy consumption for the Hanford Site in FY 2010 and 2011 indicated an increase over the target reduction of 3 percent annually from a baseline established in FY 2003 as illustrated in Figure 1. This slight increase was attributed primarily from the increased energy demand from the cleanup projects funded by the American Recovery and Reinvestment Act (ARRA) in FY 2010 and 2011. Although it is forecasted that the energy demand will decrease commensurate with the completion of ARRA projects, several major initiatives were launched to improve energy efficiency.

  1. Environmental Survey preliminary report, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1987-08-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Hanford Site, conducted August 18 through September 5, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Hanford Site. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Hanford Site, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the Hanford Site. The Interim Report will reflect the final determinations of the Hanford Site Survey. 44 refs., 88 figs., 74 tabs

  2. Environmental Survey preliminary report, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Hanford Site, conducted August 18 through September 5, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Hanford Site. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Hanford Site, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the Hanford Site. The Interim Report will reflect the final determinations of the Hanford Site Survey. 44 refs., 88 figs., 74 tabs.

  3. Vitrification technology for Hanford Site tank waste

    International Nuclear Information System (INIS)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy's (DOE) Hanford Site has an inventory of 217,000 m 3 of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing

  4. Hanford Site Environmental Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2009-09-15

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2009 information is included where appropriate.

  5. Hanford Site Environmental Report for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2010-09-01

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2010 information is included where appropriate.

  6. Hanford Site National Evnironmental Policy Act (NEPA) characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1991-12-01

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  7. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 8

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A. [ed.; Bjornstad, B.N.; Fosmire, C.J.; Fowler, R.A. [and others

    1996-08-01

    This eighth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, historical, archaeological and cultural resources, socioeconomics, and noise. Chapter 6 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. The following sections were updated in this revision: climate and meteorology; ecology (threatened and endangered species section only); historical; archaeological and cultural resources; and all of chapter 6. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the hanford Site and its past activities by which to evaluate projected activities and their impacts.

  8. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 8

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Bjornstad, B.N.; Fosmire, C.J.; Fowler, R.A.

    1996-08-01

    This eighth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, historical, archaeological and cultural resources, socioeconomics, and noise. Chapter 6 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. The following sections were updated in this revision: climate and meteorology; ecology (threatened and endangered species section only); historical; archaeological and cultural resources; and all of chapter 6. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the hanford Site and its past activities by which to evaluate projected activities and their impacts

  9. Environmental assessment: Reference repository location, Hanford site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization.

  10. Environmental assessment: Reference repository location, Hanford site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites available for characterization.

  11. Environmental assessment: Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization

  12. Environmental assessment: Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites available for characterization

  13. Summary of the Hanford Site Environmental Report for Calendar Year 2008

    International Nuclear Information System (INIS)

    Duncan, Joanne P.; Poston, Ted M.; Dirkes, Roger L.

    2009-01-01

    This summary booklet summarizes the 'Hanford Site Environmental Report for Calendar Year 2008'. The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of activities at the U.S. Department of Energy's (DOE) Hanford Site. The Hanford Site environmental report provides an overview of activities at the site; demonstrates the status of the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2009 information is included where appropriate.

  14. AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY2007

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2007-07-10

    The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation and closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address

  15. AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY 2007

    International Nuclear Information System (INIS)

    MANN, F.M.

    2007-01-01

    The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation and closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address residual wastes that will

  16. Site locality identification study: Hanford Site. Volume I. Methodology, guidelines, and screening

    International Nuclear Information System (INIS)

    1980-07-01

    Presented in this report are the results of the site locality identification study for the Hanford Site using a screening process. To enable evaluation of the entire Hanford Site, the screening process was applied to a somewhat larger area; i.e., the Pasco Basin. The study consisted of a series of screening steps that progressively focused on smaller areas which are within the Hanford Site and which had a higher potential for containing suitable repository sites for nuclear waste than the areas not included for further study. Five site localities, designated H-1, H-2, H-3, H-4, H-5 (Figure A), varying in size from approximately 10 to 50 square miles, were identified on the Hanford Site. It is anticipated that each site locality may contain one or more candidate sites suitable for a nuclear waste repository. The site locality identification study began with definition of objectives and the development of guidelines for screening. Three objectives were defined: (1) maximize public health and safety; (2) minimize adverse environmental and socioeconomic impacts; and (3) minimize system costs. The screening guidelines have numerical values that provided the basis for the successive reduction of the area under study and to focus on smaller areas that had a higher likelihood of containing suitable sites

  17. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    International Nuclear Information System (INIS)

    Eberlein, Susan J.; Parker, Danny L.; Tabor, Cynthia L.; Holm, Melissa J.

    2013-01-01

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms

  18. Technetium Inventory, Distribution, and Speciation in Hanford Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Rapko, Brian M.

    2014-05-02

    The purpose of this report is three fold: 1) assemble the available information regarding technetium (Tc) inventory, distribution between phases, and speciation in Hanford’s 177 storage tanks into a single, detailed, comprehensive assessment; 2) discuss the fate (distribution/speciation) of Tc once retrieved from the storage tanks and processed into a final waste form; and 3) discuss/document in less detail the available data on the inventory of Tc in other "pools" such as the vadose zone below inactive cribs and trenches, below single-shell tanks (SSTs) that have leaked, and in the groundwater below the Hanford Site. A thorough understanding of the inventory for mobile contaminants is key to any performance or risk assessment for Hanford Site facilities because potential groundwater and river contamination levels are proportional to the amount of contaminants disposed at the Hanford Site. Because the majority of the total 99Tc produced at Hanford (~32,600 Ci) is currently stored in Hanford’s 177 tanks (~26,500 Ci), there is a critical need for knowledge of the fate of this 99Tc as it is removed from the tanks and processed into a final solid waste form. Current flow sheets for the Hanford Waste Treatment and Immobilization Plant process show most of the 99Tc will be immobilized as low-activity waste glass that will remain on the Hanford Site and disposed at the Integrated Disposal Facility (IDF); only a small fraction will be shipped to a geologic repository with the immobilized high-level waste. Past performance assessment studies, which focused on groundwater protection, have shown that 99Tc would be the primary dose contributor to the IDF performance.

  19. Remedial Investigation of Hanford Site Releases to the Columbia River

    International Nuclear Information System (INIS)

    Lerch, J.A.

    2009-01-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts of Hanford Site hazardous substance releases to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The impacts are now being assessed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 via a remedial investigation. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River has been developed and issued to initiate the remedial investigation. The work plan establishes a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities began in October 2008 and are anticipated to continue into Fall 2009 over a 120 mile stretch of the Columbia River. Information gained from performing this remedial investigation will ultimately be used to help make final regulatory decisions for cleaning up Hanford Site contamination that exists in and along the Columbia River. (authors)

  20. Summary of the Hanford Site Environmental Report for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Joanne P.; Poston, Ted M.; Dirkes, Roger L.

    2010-09-30

    This summary booklet summarizes the "Hanford Site Environmental Report for Calendar Year 2009." The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of activities at the U.S. Department of Energy's (DOE) Hanford Site. The Hanford Site environmental report provides an overview of activities at the site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2010 information is included where appropriate.

  1. Summary of the Hanford Site environmental report for calendar year 1996

    International Nuclear Information System (INIS)

    Hanf, R.W.; O'Connor, G.P.; Dirkes, R.L.

    1997-08-01

    This report summarizes the 420-page Hanford Site Environmental Report for Calendar Year 1996. The Hanford Site environmental report is prepared annually to summarize environmental data and information, describe environmental management performance, demonstrate the status of compliance with environmental regulations, and highlight major environmental programs and efforts. The summary is designed to briefly: describe the Hanford Site and its mission; summarize the status in 1996 of compliance with environmental regulations; describe environmental programs at the Hanford Site; discuss estimated radionuclide exposure to the public from 1996 Hanford Site activities; present information on effluent monitoring and environmental surveillance, including groundwater protection and monitoring; and discuss activities to ensure quality

  2. Summary of the Hanford Site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, R.W.; O`Connor, G.P.; Dirkes, R.L. [eds.] [comps.

    1997-08-01

    This report summarizes the 420-page Hanford Site Environmental Report for Calendar Year 1996. The Hanford Site environmental report is prepared annually to summarize environmental data and information, describe environmental management performance, demonstrate the status of compliance with environmental regulations, and highlight major environmental programs and efforts. The summary is designed to briefly: describe the Hanford Site and its mission; summarize the status in 1996 of compliance with environmental regulations; describe environmental programs at the Hanford Site; discuss estimated radionuclide exposure to the public from 1996 Hanford Site activities; present information on effluent monitoring and environmental surveillance, including groundwater protection and monitoring; and discuss activities to ensure quality.

  3. Review of geophysical characterization methods used at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    GV Last; DG Horton

    2000-03-23

    This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ``all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts.

  4. Executive summary, Hanford Site Pollution Prevention Plan

    International Nuclear Information System (INIS)

    1992-08-01

    A pollution prevention plan is an organized, comprehensive, and continual effort to systematically reduce waste generation. The Hanford Site Pollution Prevention Plan is designed to eliminate or minimize pollutant releases to all environmental media from all aspects of Site operations. These efforts offer increased protection of public health and the environment. This plan reflects the goals and policies for pollution prevention at the Hanford Site and represents an ongoing effort to make pollution prevention part of the Site operating philosophy. The plan encompasses hazardous waste only and excludes radioactive waste and radioactive mixed waste

  5. Hanford Site Environmental Report for Calendar Year 1998

    International Nuclear Information System (INIS)

    Dirkes, Roger L.; Hanf, Robert W.; Poston, Ted M.

    1999-01-01

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; (6) discuss the activities to ensure quality. More detailed information can be found in the body of the report, the cited references, and the appendixes.

  6. Designation of facility usage categories for Hanford Site facilities

    International Nuclear Information System (INIS)

    Wodrich, D.; Ellingson, D.; Scott, M.; Schade, A.

    1991-01-01

    This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy orders and guidance. In particular, the Hanford Site approach to designating a suitable facility open-quotes Usage Category,close quotes is presented. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on the consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components

  7. Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516

    International Nuclear Information System (INIS)

    McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W.

    2013-01-01

    Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

  8. Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516

    Energy Technology Data Exchange (ETDEWEB)

    McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W. [S M Stoller Corporation, 2439 Robertson Drive, Richland, WA 99354 (United States)

    2013-07-01

    Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

  9. COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES THROUGH THE VADOSE ZONE

    International Nuclear Information System (INIS)

    Flury, Markus

    2003-01-01

    Contaminants have leaked into the vadose zone at the USDOE Hanford reservation. It is important to understand the fate and transport of these contaminants to design remediation strategies and long-term waste management plans at the Hanford reservation. Colloids may play an important role in fate and transport of strongly sorbing contaminants, such as Cs or Pu. This project seeks to improve the basic understanding of colloid and colloid-facilitated transport of contaminants in the vadose zone. The specific objectives addressed are: (1) Determine the structure, composition, and surface charge characteristics of colloidal particles formed under conditions similar to those occurring during leakage of waste typical of Hanford tank supernatants into soils and sediments surrounding the tanks. (2) Characterize the mutual interactions between colloids, contaminant, and soil matrix in batch experiments under various ionic strength and pH conditions. We will investigate the nature of the solid-liquid interactions and the kinetics of the reactions. (3) Evaluate mobility of colloids through soil under different degrees of water saturation and solution chemistry (ionic strength and pH). (4) Determine the potential of colloids to act as carriers to transport the contaminant through the vadose zone and verify the results through comparison with field samples collected under leaking tanks. (5) Improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for implementation into reactive chemical transport models. This project was in part supported by an NSF-IGERT grant to Washington State University. The IGERT grant provided funding for graduate student research and education, and two graduate students were involved in the EMSP project. The IGERT program also supported undergraduate internships. The project is part of a larger EMSP program to study fate and transport of contaminants under leaking Hanford waste tanks. The project has

  10. Hanford Site National Environmental Policy Act (NEPA) Characterization Report

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2004-09-22

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the sixteenth revision of the original document published in 1988 and is (until replaced by the seventeenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety and health, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  11. NHC's contribution to cleanup of the Hanford Site

    International Nuclear Information System (INIS)

    Chauve, H.D.

    1998-01-01

    The one billion dollars per year Project Hanford Management Contract (PHMC), managed by Fluor Daniel Hanford, calls for cleanup of the Hanford Site for the Department of Energy. Project Hanford comprises four major subprojects, each managed by a different major contractor. Numatec Hanford Corporation (NHC) is a fifth major subcontractor which provides energy and technology to each of the Hanford projects. NHC draws on the experience and capabilities of its parent companies, COGEMA and SGN, and relies on local support from its sister Company in Richland, COGEMA Engineering Corporation, to bring the best commercial practices and new technology to the Project

  12. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 10

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A. [ed.; Fosmire, C.J.; Fowler, R.A. [and others

    1998-09-01

    This document describes the US Department of Energy`s (DOE) Hanford Site environment and is numbered to correspond to the chapters where such information is presented in Hanford Site NEPA related documents. The document is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents that are being prepared by contractors. The two chapters in this document (Chapters 4 and 6) are numbered this way to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes the Hanford Site environment, and includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site.

  13. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 10

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Fosmire, C.J.; Fowler, R.A.

    1998-09-01

    This document describes the US Department of Energy's (DOE) Hanford Site environment and is numbered to correspond to the chapters where such information is presented in Hanford Site NEPA related documents. The document is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents that are being prepared by contractors. The two chapters in this document (Chapters 4 and 6) are numbered this way to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes the Hanford Site environment, and includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site

  14. Variability and scaling of hydraulic properties for 200 Area soils, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, R.; Freeman, E.J.

    1995-10-01

    Over the years, data have been obtained on soil hydraulic properties at the Hanford Site. Much of these data have been obtained as part of recent site characterization activities for the Environmental Restoration Program. The existing data on vadose zone soil properties are, however, fragmented and documented in reports that have not been formally reviewed and released. This study helps to identify, compile, and interpret all available data for the principal soil types in the 200 Areas plateau. Information on particle-size distribution, moisture retention, and saturated hydraulic conductivity (K{sub s}) is available for 183 samples from 12 sites in the 200 Areas. Data on moisture retention and K{sub s} are corrected for gravel content. After the data are corrected and cataloged, hydraulic parameters are determined by fitting the van Genuchten soil-moisture retention model to the data. A nonlinear parameter estimation code, RETC, is used. The unsaturated hydraulic conductivity relationship can subsequently be predicted using the van Genuchten parameters, Mualem`s model, and laboratory-measured saturated hydraulic conductivity estimates. Alternatively, provided unsaturated conductivity measurements are available, the moisture retention curve-fitting parameters, Mualem`s model, and a single unsaturated conductivity measurement can be used to predict unsaturated conductivities for the desired range of field moisture regime.

  15. Plutonium and Americium Geochemistry at Hanford: A Site Wide Review

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Felmy, Andrew R.

    2012-08-23

    This report was produced to provide a systematic review of the state-of-knowledge of plutonium and americium geochemistry at the Hanford Site. The report integrates existing knowledge of the subsurface migration behavior of plutonium and americium at the Hanford Site with available information in the scientific literature regarding the geochemistry of plutonium and americium in systems that are environmentally relevant to the Hanford Site. As a part of the report, key research needs are identified and prioritized, with the ultimate goal of developing a science-based capability to quantitatively assess risk at sites contaminated with plutonium and americium at the Hanford Site and the impact of remediation technologies and closure strategies.

  16. Hanford Site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E. (eds.)

    1992-06-01

    This report of the Hanford Reservation is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its mission; summarize the status in 1991 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality.

  17. Hanford Site environmental report for calendar year 1991

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E.

    1992-06-01

    This report of the Hanford Reservation is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its mission; summarize the status in 1991 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality

  18. Bald eagle site management plan for the Hanford Site, south-central Washington

    International Nuclear Information System (INIS)

    Fitzner, R.F.; Weiss, S.G.

    1994-12-01

    The CERCLA remedial investigations of waste sites on the Hanford Site will involve lands containing or adjacent to a bald eagle nest, winter concentration areas, or communal night roost. Because these CERCLA investigations may affect bald eagles, the DOE has prepared this Bald Eagle Site Management Plan (BESMP). However, it is intended that this BESMP be used or updated so as to be also applicable to future activities that affect bald eagles on the Hanford Site. Bald eagles regularly use the US Department of Energy's (DOE) Hanford Site in south-central Washington State during winter months for roosting, perching, and foraging. Each of these activities requires buffer zones to protect eagles from human disturbances. Buffer zones developed in this plan follow recommended guidelines and are intended to be used in planning. If Hanford Site activities in the vicinity of identified bald eagle use areas are carried out in accordance with this plan, such actions are not likely to adversely affect the eagles or their habitat. Activities that may be exceptions will involve informal or formal (whichever is appropriate) consultation with the US Fish and Wildlife Service as required by the Endangered Species Act

  19. Hanford Site Environmental Surveillance Data Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2009-08-11

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2008" (PNNL-18427), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  20. Hanford Site Environmental Surveillance Data Report for Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2008-10-13

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2007" (PNNL-17603), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  1. Summary of the Hanford Site Environmental Report for Calendar Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, Robert W.; Morasch, Launa F.; Poston, Ted M.; Dirkes, Roger L.

    2005-09-26

    This booklet summarizes the information contained in ''Hanford Site Environmental Report for Calendar Year 2004.'' The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of the activities at DOE's Hanford Site.

  2. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-01-01

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples

  3. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O' Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples.

  4. Hanford Site surface environmental surveillance

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1998-01-01

    Environmental surveillance of the Hanford Site and the surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to US Department of Energy (DOE) environmental protection policies, support DOE environmental management decisions, and provide information to the public. The Surface Environmental Surveillance Project (SESP) is a multimedia environmental monitoring program conducted to measure the concentrations of radionuclides and chemical contaminants in the environment and assess the integrated effects of these contaminants on the environment and the public. The monitoring program includes sampling air, surface water, sediments, soil, natural vegetation, agricultural products, fish, and wildlife. Functional elements inherent in the operation of the SESP include project management, quality assurance/control, training, records management, environmental sampling network design and implementation, sample collection, sample analysis, data management, data review and evaluation, exposure assessment, and reporting. The SESP focuses on those contaminant/media combinations calculated to have the highest potential for contributing to off-site exposure. Results of the SESP indicate that contaminant concentrations in the Hanford environs are very low, generally below environmental standards, at or below analytical detection levels, and indicative of environmental levels. However, areas of elevated contaminant concentrations have been identified at Hanford. The extent of these areas is generally limited to past operating areas and waste disposal sites

  5. Comparison Of Vented And Absolute Pressure Transducers For Water-Level Monitoring In Hanford Site Central Plateau Wells

    International Nuclear Information System (INIS)

    Mcdonald, J.P.

    2011-01-01

    Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The

  6. Hanford Site National Environmental Policy Act (NEPA) characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1988-09-01

    This document describes the Hanford Site environment (Chapter 4) and contains data in Chapter 5 and 6 which will guide users in the preparation of National Environmental Policy Act (NEPA)-related documents. Many NEPA compliance documents have been prepared and are being prepared by site contractors for the US Department of Energy, and examination of these documents reveals inconsistencies in the amount of detail presented and the method of presentation. Thus, it seemed necessary to prepare a consistent description of the Hanford environment to be used in preparing Chapter 4 of environmental impact statements and other site-related NEPA documentation. The material in Chapter 5 is a guide to the models used, including critical assumptions incorporated in these models, in previous Hanford NEPA documents. The users will have to select those models appropriate for the proposed action. Chapter 6 is essentially a definitive NEPA Chapter 6, which describes the applicable laws, regulations, and DOE and state orders. In this document, a complete description of the environment is presented in Chapter 4 without excessive tabular data. For these data, sources are provided. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information where it is available on the 100, 200, 300, and other Areas. This division will allow a person requiring information to go immediately to those sections of particular interest. However, site-specific information on each of these separate areas is not always complete or available. In this case, the general Hanford Site description should be used. 131 refs., 19 figs., 32 tabs.

  7. Raptors of the Hanford Site and nearby areas of southcentral Washington

    International Nuclear Information System (INIS)

    Fitzner, R.E.; Rickard, W.H.; Cadwell, L.L.; Rogers, L.E.

    1981-05-01

    This report is concerned with the birds of prey which use the Hanford Site not only during the nesting season but throughout the year. An ecological treatment of five nesting owls (great horned, long-eared, short-eared, barn and burrowing) and five nesting hawks (marsh hawk, red-tailed hawk, Swainson's hawk, prairie falcon and American kestrel) is provided and supportive information on non-nesting species is presented. Factors which control raptor densities and population dynamics throughout all seasons of the year are discussed. Information is also provided for raptors from other areas of southcentral Washington in order to yield a comprehensive picture of how the Hanford Site fits in with regional bird of prey populations. The following were the objectives of this study: (1) to determine the numbers of birds of prey nesting on the Hanford Site, (2) to document the reproductive chronology of each nesting raptor species, (3) to provide analyses of food habits of birds of prey on the Hanford Site coupled with prey abundance data, (4) to determine the productivity of the dominant large birds of prey on the Hanford Site, (5) to determine the distribution and land use patterns of all raptors on the Hanford Site, (6) to determine the kinds and relative abundance of non-nesting raptors on the Hanford Site and adjacent areas of southcentral Washington (7) to document present land use practices on the Hanford Site and their effects on raptors, (8) to document radionuclide levels in birds of prey on the Hanford Site, and (9) to determine the role of birds of prey in radioecological monitoring

  8. Raptors of the Hanford Site and nearby areas of southcentral Washington

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E.; Rickard, W.H.; Cadwell, L.L.; Rogers, L.E.

    1981-05-01

    This report is concerned with the birds of prey which use the Hanford Site not only during the nesting season but throughout the year. An ecological treatment of five nesting owls (great horned, long-eared, short-eared, barn and burrowing) and five nesting hawks (marsh hawk, red-tailed hawk, Swainson's hawk, prairie falcon and American kestrel) is provided and supportive information on non-nesting species is presented. Factors which control raptor densities and population dynamics throughout all seasons of the year are discussed. Information is also provided for raptors from other areas of southcentral Washington in order to yield a comprehensive picture of how the Hanford Site fits in with regional bird of prey populations. The following were the objectives of this study: (1) to determine the numbers of birds of prey nesting on the Hanford Site, (2) to document the reproductive chronology of each nesting raptor species, (3) to provide analyses of food habits of birds of prey on the Hanford Site coupled with prey abundance data, (4) to determine the productivity of the dominant large birds of prey on the Hanford Site, (5) to determine the distribution and land use patterns of all raptors on the Hanford Site, (6) to determine the kinds and relative abundance of non-nesting raptors on the Hanford Site and adjacent areas of southcentral Washington (7) to document present land use practices on the Hanford Site and their effects on raptors, (8) to document radionuclide levels in birds of prey on the Hanford Site, and (9) to determine the role of birds of prey in radioecological monitoring.

  9. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structure, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and addition additional information. 6 refs

  10. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and adding additional information. 6 refs

  11. Hanford Site environmental surveillance data report for calendar year 1995

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1996-07-01

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River Water and Sediment. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1995 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1995 by PNNL's Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface, river monitoring data, and chemical air data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data

  12. Hanford Site waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    Place, B.G.

    1998-01-01

    This plan, which is required by US Department of Energy (DOE) Order 5400. 1, provides waste minimization and pollution prevention guidance for all Hanford Site contractors. The plan is primary in a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, Prime contractor implementation plans, and the Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation (DOE-RL, 1997a) describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994). Items discussed include the pollution prevention policy and regulatory background, organizational structure, the major objectives and goals of Hanford Site's pollution prevention program, and an itemized description of the Hanford Site pollution prevention program. The document also includes US Department of Energy, Richland Operations Office's (RL's) statement of policy on pollution prevention as well as a listing of regulatory drivers that require a pollution prevention program

  13. Hanford Site environmental surveillance data report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, L.E.

    1996-07-01

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River Water and Sediment. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1995 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1995 by PNNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface, river monitoring data, and chemical air data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data.

  14. Hanford Site Environmental Report for Calendar Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

    2005-09-29

    This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2003; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.

  15. Hanford Site Environmental Report for Calendar Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

    2006-09-28

    This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2005; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.

  16. Simulation of the cleanup of the Hanford Site

    International Nuclear Information System (INIS)

    Ludowise, J.D.; Allen, G.K.

    1992-12-01

    The Hanford Site is a 1,450-km 2 (560-mi 2 ) tract of semiarid land in southeastern Washington State. Nuclear materials for the nation's defense programs were manufactured at the Hanford Site for more than 40 years. The waste generated by these activities has been treated, stored, or disposed of in a variety of ways. The Hanford Site strategic analysis provides a general comparison analysis tool to guide selection and future modification of the integrated Site cleanup plan. A key element of the Hanford strategic analysis is a material flow model that tracks 80 individual feed elements containing 60 componentsof interest through 50 functional processing blocks in 12 different configurations. The material flow model was developed for parametric analyses using separation factors and parameters specific to individual feeds. The model was constructed so that the effects of individual feed streams can be traced through a flowsheet, and the performance parameters of each functional block can be varied independently. The material flow model has five major elements: input database, process flow diagrams, sequential modular process simulation, output database, and output summing program

  17. Tank 241-AX-104 upper vadose zone cone penetrometer demonstration sampling and analysis plan

    International Nuclear Information System (INIS)

    FIELD, J.G.

    1999-01-01

    This sampling and analysis plan (SAP) is the primary document describing field and laboratory activities and requirements for the tank 241-AX-104 upper vadose zone cone penetrometer (CP) demonstration. It is written in accordance with Hanford Tank Initiative Tank 241-AX-104 Upper Vadose Zone Demonstration Data Quality Objective (Banning 1999). This technology demonstration, to be conducted at tank 241-AX-104, is being performed by the Hanford Tanks Initiative (HTI) Project as a part of Tank Waste Remediation System (TWRS) Retrieval Program (EM-30) and the Office of Science and Technology (EM-50) Tanks Focus Area. Sample results obtained as part of this demonstration will provide additional information for subsequent revisions to the Retrieval Performance Evaluation (RPE) report (Jacobs 1998). The RPE Report is the result of an evaluation of a single tank farm (AX Tank Farm) used as the basis for demonstrating a methodology for developing the data and analyses necessary to support making tank waste retrieval decisions within the context of tank farm closure requirements. The RPE includes a study of vadose zone contaminant transport mechanisms, including analysis of projected tank leak characteristics, hydrogeologic characteristics of tank farm soils, and the observed distribution of contaminants in the vadose zone in the tank farms. With limited characterization information available, large uncertainties exist as to the nature and extent of contaminants that may exist in the upper vadose zone in the AX Tank Farm. Traditionally, data has been collected from soils in the vadose zone through the installation of boreholes and wells. Soil samples are collected as the bore hole is advanced and samples are screened on site and/or sent to a laboratory for analysis. Some in-situ geophysical methods of contaminant analysis can be used to evaluate radionuclide levels in the soils adjacent to an existing borehole. However, geophysical methods require compensation for well

  18. Hanford Site air operating permit application

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  19. Hanford Site air operating permit application

    International Nuclear Information System (INIS)

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ''regulated'' pollutants. Regulated pollutants include ''criteria'' pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ''Hazardous'' Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995

  20. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, A.C.; Fosmire, C.J.; Neitzel, D.A.; Hoitink, D.J.; Harvey, D.W.; Antonio, E.J.; Wright, M.K.; Thorne, P.D.; Hendrickson, P.L.; Fowler, R.A.; Goodwin, S.M.; Poston, T.M.

    1999-09-28

    This document describes the US Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents being prepared by DOE contractors. No conclusions or recommendations are provided. This year's report is the eleventh revision of the original document published in 1988 and is (until replaced by the 12th revision) the only version that is relevant for use in the preparation of Hanford NEPA; SEPA and CERCLA documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomic; occupational safety, and noise. Sources for extensive tabular data related to these topics are provided in the chapter. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, of the 100,200,300, and other Areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) is essentially a definitive NEPA Chapter 6.0, which describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. People preparing environmental assessments and EISs should also be cognizant of the document entitled ''Recommendations for the Preparation of Environmental Assessments and Environmental Impact

  1. Characterization and remediation of highly radioactive contaminated soil at Hanford

    International Nuclear Information System (INIS)

    Buckmaster, M.A.; Erickson, J.K.

    1993-09-01

    The Hanford Site, Richland, Washington, contains over 1,500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy (DOE) has initiated a remedial investigation/feasibility study (RI/FS) at the 200-BP-1 operable unit. The 200-BP-1 RI/FS is the first Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) investigation on the Hanford Site that involves highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste sites within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling, chemical and physical analysis of samples, and development of a conceptual vadose zone model. These data were then used. to develop remedial alternatives during the FS evaluation. The preferred alternative resulting from the RI/FS process for the 200-BP-1 operable unit is to construct a surface isolation barrier. The multi-layered earthen barrier will be designed to prevent migration of contaminants resulting from water infiltration, biointrusion, and wind and water erosion

  2. Hanford Site Emergency Alerting System siren testing report

    International Nuclear Information System (INIS)

    Weidner, L.B.

    1997-01-01

    The purpose of the test was to determine the effective coverage of the proposed upgrades to the existing Hanford Site Emergency Alerting System (HSEAS). The upgrades are to enhance the existing HSEAS along the Columbia River from the Vernita Bridge to the White Bluffs Boat Launch as well as install a new alerting system in the 400 Area on the Hanford Site. Five siren sites along the Columbia River and two sites in the 400 Area were tested to determine the site locations that will provide the desired coverage

  3. Hanford Site National Environmental Policy Act (NEPA) Characterization. Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  4. Long-Term Stewardship At DOE's Hanford Site - 12575

    International Nuclear Information System (INIS)

    Moren, R.J.; Grindstaff, K.D.

    2012-01-01

    The U.S. Department of Energy's (DOE) Hanford Site is located in southeast Washington and consists of 1,518 square kilometers (586 square miles) of land. Established in 1943 as part of the Manhattan Project, Hanford workers produced plutonium for our nation's nuclear defense program until the mid 1980's. Since then, the site has been in cleanup mode that is being accomplished in phases. As we achieve remedial objectives and complete active cleanup, DOE will manage Hanford land under the Long-Term Stewardship (LTS) Program until completion of cleanup and the site becomes ready for transfer to the post cleanup landlord - currently planned for DOE's Office of Legacy Management (LM). We define Hanford's LTS Program in the ''Hanford Long-Term Stewardship Program Plan,'' (DOE/RL-201 0-35)(1), which describes the scope including the relationship between the cleanup projects and the LTS Program. DOE designed the LTS Program to manage and provide surveillance and maintenance (S and M) of institutional controls and associated monitoring of closed waste sites to ensure the protection of human health and the environment. DOE's Richland Operations Office (DOE-RL) and Hanford cleanup and operations contractors collaboratively developed this program over several years. The program's scope also includes 15 key activities that are identified in the DOE Program Plan (DOE/RL-2010-35). The LTS Program will transition 14 land segments through 2016. The combined land mass is approximately 570 square kilometers (220 square miles), with over 1,300 active and inactive waste sites and 3,363 wells. Land segments vary from buffer zone property with no known contamination to cocooned reactor buildings, demolished support facilities, and remediated cribs and trenches. DOE-RL will transition land management responsibilities from cleanup contractors to the Mission Support Contract (MSC), who will then administer the LTS Program for DOE-RL. This process requires an environment of cooperation

  5. Spectroscopic and Microscopic Characterization of Contaminant Uptake and Retention by Carbonates in the Soil and Vadose Zone

    International Nuclear Information System (INIS)

    Reeder, Richard J.; Fisher, Nicholas S.; Hess, Wayne P.; Beck, Kenneth M.

    2003-01-01

    The research focus of this previous EMSP grant was assessment of the role that carbonate minerals play in the uptake and sequestration of metal and radionuclide contaminants in soils and the vadose zone for conditions relevant to the Hanford Site and other sites in the DOE Complex. The project was a collaboration among researchers at SUNY-Stony Brook and EMSL/PNNL. Carbonates, particularly calcite, are present in the Hanford subsurface as grain coatings, disseminated particles, and dense caliche layers. Calcite is also predicted to be forming beneath leaking tanks. A range of metal and radionuclide species that pose risks at Hanford and other DOE sites were considered, including U(VI), Cr(CV), Cs, Pb(II), and selected lanthanides (as models for trivalent actinides). Batch sorption and co-precipitation experiments of these metals with pre-equilibrated calcite and selected uptake experiments on natural caliche formed the basis to determine the mechanisms of metal/radionuclide binding and to assess the effect on the stability of the sorbed species and the potential for remobilization. Our results provide ne information that can benefit DOE clean-up methodology and potentially provide new approaches for uptake of selected heavy metals

  6. 75 FR 13269 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act... is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  7. 75 FR 8050 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-02-23

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act... is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  8. 76 FR 4645 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2011-01-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  9. Hanford Site Black-Tailed Jackrabbit Monitoring Report for Fiscal Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Cole T. [Mission Support Alliance (MSA), Richland, WA (United States); Nugent, John J. [Mission Support Alliance (MSA), Richland, WA (United States); Wilde, Justin W. [Mission Support Alliance (MSA), Richland, WA (United States); Johnson, Scott J. [Mission Support Alliance (MSA), Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  10. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 7

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.; Baker, D.A.; Chamness, M.A. [and others

    1995-09-01

    This seventh revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology, hydrology, environmental monitoring, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors. Chapter 5.0 was not updated from the sixth revision (1994). It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE Orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  11. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.; Baker, D.A.; Chamness, M.A. [and others

    1994-08-01

    This sixth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors; Chapter 5.0 has been significantly updated from the fifth revision. It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions; The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be utilized directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  12. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 6

    International Nuclear Information System (INIS)

    Cushing, C.E.; Baker, D.A.; Chamness, M.A.

    1994-08-01

    This sixth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors; Chapter 5.0 has been significantly updated from the fifth revision. It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions; The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be utilized directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts

  13. Characterization of Vadose Zone Sediment: Slant Borehole SX-108 in the S-SX Waste Management Area

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-01-01

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the fourth in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a slant borehole installed beneath tank SX-108 (or simply SX-108 slant borehole)

  14. Characterization of Vadose Zone Sediment: Borehole 41-09-39 in the S-SX Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O' Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 5.15. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole 41-09-39 installed adjacent to tank SX-109.

  15. Characterization of Vadose Zone Sediment: Slant Borehole SX-108 in the S-SX Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O' Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the fourth in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a slant borehole installed beneath tank SX-108 (or simply SX-108 slant borehole).

  16. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of the 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  17. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  18. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  19. Hanford annual second quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-06-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (ENN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the second quarter of FY98 for stations in the HSN was 99.92%. The operational rate for the second quarter of FY98 for stations of the EWRN was 99.46%. For the second quarter of FY98, the acquisition computer triggered 159 times. Of these triggers 14 were local earthquakes: 7 (50%) in the Columbia River Basalt Group, 3 (21%) in the pre-basalt sediments, and 4 (29%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant seismic event for the second quarter was on March 23, 1998 when a 1.9 Mc occurred near Eltopia, WA and was felt by local residents. Although this was a small event, it was felt at the surface and is an indication of the potential impact on Hanford of seismic events that are common to the Site.

  20. Hanford Site National Environmental Policy Act (NEPA) Characterization, Revision 15

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Burk, Kenneth W.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Scott, Michael J.; Thorne, Paul D.; Woody, Dave M.

    2003-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  1. Designation of facility usage categories for Hanford Site facilities

    International Nuclear Information System (INIS)

    Woodrich, D.D.; Ellingson, D.R.; Scott, M.A.; Schade, A.R.

    1991-10-01

    This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy Orders and guidance. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on teh consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components. 4 refs., 9 figs., 1 tab

  2. Hanford Site Composite Analysis Technical Approach Description: Radionuclide Inventory and Waste Site Selection Process.

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Will E.; Mehta, Sunil

    2017-09-13

    The updated Hanford Site Composite Analysis will provide an all-pathways dose projection to a hypothetical future member of the public from all planned low-level radioactive waste disposal facilities and potential contributions from all other projected end-state sources of radioactive material left at Hanford following site closure. Its primary purpose is to support the decision-making process of the U.S. Department of Energy (DOE) under DOE O 435.1-1, Radioactive Waste Management (DOE, 2001), related to managing low-level waste disposal facilities at the Hanford Site.

  3. Integrated environmental monitoring program at the Hanford Site

    International Nuclear Information System (INIS)

    Jaquish, R.E.

    1990-08-01

    The US Department of Energy's Hanford Site, north of Richland, Washington, has a mission of defense production, waste management, environmental restoration, advanced reactor design, and research development. Environmental programs at Hanford are conducted by Pacific Northwest Laboratory (PNL) and the Westinghouse Hanford Company (WHC). The WHC environmental programs include the compliance and surveillance activities associated with site operations and waste management. The PNL environmental programs address the site-wide and the of-site areas. They include the environmental surveillance and the associated support activities, such as dose calculations, and also the monitoring of environmental conditions to comply with federal and state environmental regulations on wildlife and cultural resources. These are called ''independent environmental programs'' in that they are conducted completely separate from site operations. The Environmental Surveillance and Oversight Program consists of the following projects: surface environmental surveillance; ground-water surveillance; wildlife resources monitoring; cultural resources; dose overview; radiation standards and calibrations; meteorological and climatological services; emergency preparedness

  4. GPR Imaging of Clastic Dikes at the Hanford Site, Hanford, Washington

    International Nuclear Information System (INIS)

    Clement, William P.; Murray, Christopher J.

    2007-01-01

    We use ground penetrating radar (GPR) data to help determine the spatial distribution and the subsurface geometry of clastic injection dikes at the Hanford site. This information will help to improve the understanding of the hydrological role of these ubiquitous clastic dikes at the Hanford Site. We collected 100 MHz ground penetrating radar (GPR) 3D surface reflection data at two sites, the S-16 Pond and the Army Loop Road sites, and 2D reflection data along a 6.9 km linear transect near the Army Loop Road site. The dikes are distinguished in the GPR data by a strongly attenuated zone, disruptions in the continuity of reflections, and diffractions where reflections are disrupted. In general, the data quality is better at the Army Loop Road and Traverse sites than at the S-16 Pond site, probably due to the presence of cobbles at the S-16 Pond site. A high-moisture, fine-grained unit probably causes the strong reflections at the Army Loop Road site and the Traverse survey site. The signal penetration varies between 5 to 12 m below the land surface

  5. History of the Hanford Site: 1943-1990

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Harvey

    2000-09-01

    This booklet was developed to highlight the national and international historical events that occurred in association with the development of the Hanford Site. The purpose of the booklet is to increase the awareness Hanford Site employees have of the historical significance of the Site's contributions and missions during the Manhattan Project (1943-1946) and Cold War era (1946-1990). By increasing knowledge and understanding of the Site's unique heritage, it is hoped this publication will help generate an appreciation of the Site's historic buildings and structures, and, thus, instill a sense of ''ownership'' in these buildings. One cannot appreciate the historic significance of a place or building without first knowing its story.

  6. Colloid-Facilitated Transport of Radionuclides Through The Vadose Zone

    International Nuclear Information System (INIS)

    Markus Flury; James B. Harsh; John F. McCarthy' Peter C. Lichtner; John M. Zachara

    2007-01-01

    The main purpose of this project was to advance the basic scientific understanding of colloid and colloid-facilitated Cs transport of radionuclides in the vadose zone. We focused our research on the hydrological and geochemical conditions beneath the leaking waste tanks at the USDOE Hanford reservation. Specific objectives were (1) to determine the lability and thermodynamic stability of colloidal materials, which form after reacting Hanford sediments with simulated Hanford Tank Waste, (2) to characterize the interactions between colloidal particles and contaminants, i.e., Cs and Eu, (3) to determine the potential of Hanford sediments for in situ mobilization of colloids, (4) to evaluate colloid-facilitated radionuclide transport through sediments under unsaturated flow, (5) to implement colloid-facilitated contaminant transport mechanisms into a transport model, and (6) to improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for clean-up procedures and long-term risk assessment

  7. Catalog of borehole lithologic logs from the 600 Area, Hanford Site

    International Nuclear Information System (INIS)

    Fecht, K.R.; Lillie, J.T.

    1982-03-01

    Rockwell Hanford Operations (Rockwell) geoscientists are studying the Hanford Site subsurface environment to assure safe management operations, disposal, and storage of radioactive waste. As part of this effort, geoscientists have collected geotechnical data from about 3000 boreholes drilled on the Hanford Site since the early 1900s. These boreholes have been used for subsurface geologic, hydrologic, and engineering investigation, water supply, ground-water monitoring, and natural gas production. This report is a catalog of all obtainable (about 800) lithologic logs from boreholes in a portion of the Hanford Site known as the 600 Area

  8. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 9

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A. [ed.; Bjornstad, B.N.; Fosmire, C.J. [and others

    1997-08-01

    This ninth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4.0 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. Not all of the sections have been updated for this revision. The following lists the updated sections: climate and meteorology; ecology (threatened and endangered species section only); culture, archaeological, and historical resources; socioeconomics; all of Chapter 6.

  9. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 9

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Bjornstad, B.N.; Fosmire, C.J.

    1997-08-01

    This ninth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4.0 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. Not all of the sections have been updated for this revision. The following lists the updated sections: climate and meteorology; ecology (threatened and endangered species section only); culture, archaeological, and historical resources; socioeconomics; all of Chapter 6

  10. Determination of total cyanide in Hanford Site high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Winters, W.I. [Westinghouse Hanford Co., Richland, WA (United States); Pool, K.H. [Pacific Northwest Lab., Richland, WA (United States)

    1994-05-01

    Nickel ferrocyanide compounds (Na{sub 2-x}Cs{sub x}NiFe (CN){sub 6}) were produced in a scavenging process to remove {sup 137}Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described.

  11. Determination of total cyanide in Hanford Site high-level wastes

    International Nuclear Information System (INIS)

    Winters, W.I.; Pool, K.H.

    1994-05-01

    Nickel ferrocyanide compounds (Na 2-x Cs x NiFe (CN) 6 ) were produced in a scavenging process to remove 137 Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described

  12. Hanford Site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W. [eds.] [Pacific Northwest National Lab., Richland, WA (United States)

    1996-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. It also highlights environmental programs and efforts. It is written to meet reporting requirements and guidelines of DOE and to meet the needs of the public. Individual sections are designed to describe the Hanford Site and its mission, summarize the status in 1995 of compliance, describe the environmental programs, discuss estimated radionuclide exposure to the public from 1995 Hanford activities, present information on effluent monitoring and environmental surveillance (including ground- water protection and monitoring), and discuss activities to ensure quality.

  13. Hanford Site environmental report for calendar year 1995

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.

    1996-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. It also highlights environmental programs and efforts. It is written to meet reporting requirements and guidelines of DOE and to meet the needs of the public. Individual sections are designed to describe the Hanford Site and its mission, summarize the status in 1995 of compliance, describe the environmental programs, discuss estimated radionuclide exposure to the public from 1995 Hanford activities, present information on effluent monitoring and environmental surveillance (including ground- water protection and monitoring), and discuss activities to ensure quality

  14. HANFORD SITE RIVER CORRIDOR CLEANUP

    International Nuclear Information System (INIS)

    BAZZELL, K.D.

    2006-01-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km 2 Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal

  15. Hanford Site Wide Transportation Safety Document [SEC 1 Thru 3

    Energy Technology Data Exchange (ETDEWEB)

    MCCALL, D L

    2002-06-01

    This safety evaluation report (SER) documents the basis for the US Department of Energy (DOE), Richland Operations Office (RL) to approve the Hanford Sitewide Transportation Safety Document (TSD) for onsite Transportation and Packaging (T&P) at Hanford. Hanford contractors, on behalf of DOE-RL, prepared and submitted the Hanford Sitewide Transportation Safety Document, DOE/RL-2001-0036, Revision 0, (DOE/RL 2001), dated October 4, 2001, which is referred to throughout this report as the TSD. In the context of the TSD, Hanford onsite shipments are the activities of moving hazardous materials, substances, and wastes between DOE facilities and over roadways where public access is controlled or restricted and includes intra-area and inter-area movements. The TSD sets forth requirements and standards for onsite shipment of radioactive and hazardous materials and wastes within the confines of the Hanford Site on roadways where public access is restricted by signs, barricades, fences, or other means including road closures and moving convoys controlled by Hanford Site security forces.

  16. Hanford Site Groundwater Monitoring for Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J. [and others

    1999-03-24

    This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous

  17. Hanford Site National Evnironmental Policy Act (NEPA) characterization. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.

    1991-12-01

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  18. Legend and legacy: Fifty years of defense production at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1992-09-01

    Today, the Hanford Site is engaged in the largest waste cleanup effort ever undertaken in human history. That in itself makes the endeavor historic and unique. The Hanford Site has been designated the ``flagship`` of Department of Energy (DOE) waste remediation endeavors. And, just as the wartime Hanford Project remains unmatched in history, no counterpart exists for the current waste cleanup enterprise. This report provides a summary of the extensive historical record, however, which does give a partial road map. The science of environmental monitoring pioneered at the Hanford Site, and records of this type are the most complete of any in the world, from private companies or public agencies, for the early years of Site operations. The Hanford Site was unique for establishing a detailed, scientific, and multi-faceted environmental monitoring program.

  19. Legend and legacy: Fifty years of defense production at the Hanford Site

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1992-09-01

    Today, the Hanford Site is engaged in the largest waste cleanup effort ever undertaken in human history. That in itself makes the endeavor historic and unique. The Hanford Site has been designated the ''flagship'' of Department of Energy (DOE) waste remediation endeavors. And, just as the wartime Hanford Project remains unmatched in history, no counterpart exists for the current waste cleanup enterprise. This report provides a summary of the extensive historical record, however, which does give a partial road map. The science of environmental monitoring pioneered at the Hanford Site, and records of this type are the most complete of any in the world, from private companies or public agencies, for the early years of Site operations. The Hanford Site was unique for establishing a detailed, scientific, and multi-faceted environmental monitoring program

  20. Status of birds at the Hanford Site in southeastern Washington

    International Nuclear Information System (INIS)

    Landeen, D.S.; Johnson, A.R.; Mitchell, R.M.

    1992-06-01

    The US Department of Energy has entered into agreements with the Washington State Department of Ecology, the US Environmental Protection Agency, and Hanford Site contractors to focus work activities on cleanup and stabilization of radioactive and hazardous waste sites located at the Hanford Site in southeastern Washington. Ecological characterization is an essential part of the remediation process, and the identification of biotic components such as bird species that could be impacted by cleanup activities is an important part of the initial environmental characterizations. Site characterization work has resulted in this list of 238 birds that have been observed at the Hanford Site. This list is presented with a status rating for abundance and seasonal occurrence

  1. Hanford Site ground-water monitoring for 1995

    International Nuclear Information System (INIS)

    Dresel, P.E.; Rieger, J.T.; Webber, W.D.; Thorne, P.D.; Gillespie, B.M.; Luttrell, S.P.; Wurstner, S.K.; Liikala, T.L.

    1996-08-01

    This report presents the results of the Groundwater Surveillance Project monitoring for calendar year 1995 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that impacted groundwater quality on the site. Monitoring of water levels and groundwater chemistry is performed to track the extent of contamination, to note trends in contaminant concentrations,a nd to identify emerging groundwater quality problems. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of onsite groundwater quality. A three- dimensional, numerical, groundwater model is being developed to improve predictions of contaminant transport. The existing two- dimensional model was applied to predict contaminant flow paths and the impact of changes on site conditions. These activities were supported by limited hydrogeologic characterization. Water level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Radiological monitoring results indicated that many radioactive contaminants were above US Environmental Protection Agency or State of Washington drinking water standards at the Hanford Site. Nitrate, fluoride, chromium, cyanide, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichloroethylene were present in groundwater samples at levels above their US EPA or State of Washington maximum contaminant levels

  2. Hanford Site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W. [eds.

    1995-06-01

    This Hanford Site Environmental Report is prepared annually pursuant to DOE Order 5400.1 to summarize environmental data that characterize Hanford Site environmental management performance and demonstrate compliance status. The report also highlights significant environmental programs and efforts. More detailed environmental compliance, monitoring, surveillance, and study reports may be of value; therefore, to the extent practical, these additional reports have been referenced in the text. Individual papers have been indexed separately for the database.

  3. Hanford Site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.

    1995-06-01

    This Hanford Site Environmental Report is prepared annually pursuant to DOE Order 5400.1 to summarize environmental data that characterize Hanford Site environmental management performance and demonstrate compliance status. The report also highlights significant environmental programs and efforts. More detailed environmental compliance, monitoring, surveillance, and study reports may be of value; therefore, to the extent practical, these additional reports have been referenced in the text. Individual papers have been indexed separately for the database

  4. Hanford Site Environmental Report for Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2008-06-05

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights signifi cant environmental and public protection programs and efforts. Some historical and early 2008 information is included where appropriate.

  5. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  6. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  7. Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities

    International Nuclear Information System (INIS)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-09-01

    This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km 2 (570-mi 2 ) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation

  8. Hanford Site Welding Program Successfully Providing A Single Site Function For Use By Multiple Contractors

    International Nuclear Information System (INIS)

    Cannell, G.R.

    2009-01-01

    The Department of Energy, Richland Operations (DOE-RL) recently restructured its Hanford work scope, awarding two new contracts over the past several months for a total of three contracts to manage the sites cleanup efforts. DOE-RL met with key contractor personnel prior to and during contract transition to ensure site welding activities had appropriate oversight and maintained code compliance. The transition also provided an opportunity to establish a single site-wide function that would provide welding and materials engineering services to the Hanford site contractors: CH2M HILL Plateau Remediation Company (CHPRC); Mission Support Alliance (MSA); Washington River Protection Solutions (WRPS); and Washington Closure Hanford (WCH). Over the years, multiple and separate welding programs (amongst the several contractors) existed at the Hanford site leading to inefficiencies resulting from duplication of administrative efforts, maintenance of welding procedures, welder performance certifications, etc. The new, single program eliminates these inefficiencies. The new program, co-managed by two of the sites' new contractors, the CHPRC ('owner' of the program and responsible for construction welding services) and the MSA (provides maintenance welding services), provides more than just the traditional construction and maintenance welding services. Also provided, are welding engineering, specialty welding development/qualification for the closure of radioactive materials containers and materials evaluation/failure analysis. The following describes the new Hanford site welding program.

  9. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  10. Modeling potential migration of petroleum hydrocarbons from a mixed-waste disposal site in the vadose zone

    International Nuclear Information System (INIS)

    Rawson, S.A.; Walton, J.C.; Baca, R.G.

    1989-01-01

    Environmental monitoring of a mixed-waste disposal site at the Idaho National Engineering Laboratory has confirmed release and migration into the vadose zone of: (1) chlorinated hydrocarbons in the vapor phase and (2) trace levels of certain transuranic elements. The finding has prompted an evaluation of the potential role of waste petroleum hydrocarbons in mediating or influencing contaminant migration from the disposal site. Disposal records indicate that a large volume of machine oil contaminated with transuranic isotopes was disposed at the site along with the chlorinated solvents and other radioactive wastes. A multiphase flow model was used to assess the possible extent of oil and vapor movement through the 177 m thick vadose zone. One dimensional simulations were performed to estimate the vertical distribution of the vapor phase, the aqueous phase, and immiscible free liquid as a function of time. The simulations indicate that the oil may migrate slowly through the vadose zone, to potentially significant depths. Calculated transport rates support the following ranking with regard to relative mobility: vapor phase > aqueous phase > free liquid. 21 refs., 7 figs., 2 tabs

  11. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    International Nuclear Information System (INIS)

    Bergman, T.B.

    2011-01-01

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the ∼200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the

  12. Remedial Investigation of Hanford Site Releases to the Columbia River - 13603

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, J.A.; Hulstrom, L.C. [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States); Sands, J.P. [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

    2013-07-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation

  13. Draft environmental assessment for characterization of the Hanford Site pursuant to the Nuclear Waste Policy Act of 1982 (Public Law 97-425), Hanford Site, Richland, Benton County, Washington

    International Nuclear Information System (INIS)

    1983-02-01

    The Hanford Site is evaluated in this draft environmental assessment. The results of this evaluation are the basis for nominating the Hanford Site for site characterization leading to selection of the first repository site. The major conclusions are presented. 120 refs., 26 figs., 8 tabs

  14. Summary of the Hanford Site Environmental Report for Calendar Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, Robert W.; Morasch, Launa F.; Poston, Ted M.; Dirkes, Roger L.

    2006-09-28

    This small booklet provides highlights of the environmental monitoring at the Hanford Site during 2005. It is a summary of the information contained in the larger report: Hanford Site Environmental Monitoring for Calendar Year 2005.

  15. Retrospective assessment of personnel neutron dosimetry for workers at the Hanford Site

    International Nuclear Information System (INIS)

    Fix, J.J.; Wilson, R.H.; Baumgartner, W.B.

    1996-09-01

    This report was prepared to examine the specific issue of the potential for unrecorded neutron dose for Hanford workers, particularly in comparison with the recorded whole body (neutron plus photon) dose. During the past several years, historical personnel dosimetry practices at Hanford have been documented in several technical reports. This documentation provides a detailed history of the technology, radiation fields, and administrative practices used to measure and record dose for Hanford workers. Importantly, documentation has been prepared by personnel whose collective experience spans nearly the entire history of Hanford operations beginning in the mid-1940s. Evaluations of selected Hanford radiation dose records have been conducted along with statistical profiles of the recorded dose data. The history of Hanford personnel dosimetry is complex, spanning substantial evolution in radiation protection technology, concepts, and standards. Epidemiologic assessments of Hanford worker mortality and radiation dose data were initiated in the early 1960s. In recent years, Hanford data have been included in combined analyses of worker cohorts from several Department of Energy (DOE) sites and from several countries through the International Agency for Research on Cancer (IARC). Hanford data have also been included in the DOE Comprehensive Epidemiologic Data Resource (CEDR). In the analysis of Hanford, and other site data, the question of comparability of recorded dose through time and across the respective sites has arisen. DOE formed a dosimetry working group composed of dosimetrists and epidemiologists to evaluate data and documentation requirements of CEDR. This working group included in its recommendations the high priority for documentation of site-specific radiation dosimetry practices used to measure and record worker dose by the respective DOE sites

  16. Criticality codes migration to workstations at the Hanford site

    International Nuclear Information System (INIS)

    Miller, E.M.

    1993-01-01

    Westinghouse Hanford Company, Hanford Site Operations contractor, Richland, Washington, currently runs criticality codes on the Cray X-MP EA/232 computer but has recommended that US Department of Energy DOE-Richland replace the Cray with more economical workstations

  17. Summary of the Hanford Site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    Hanf, R.W.; Schrempf, R.E.; Dirkes, R.L.

    1996-01-01

    This report summarizes the 390-page Hanford Site Environmental Report for Calendar Year 1994. The Hanford Site Environmental Report is prepared annually to review and document environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts and is written to meet both the reporting requirements and guidelines of the US Department of energy (DOE) and the needs of the public. This report includes information on important Hanford Site compliance issues, environmental monitoring programs and results, and general information on the Site and the surrounding area

  18. PROTECTING GROUNDWATER & THE COLUMBIA RIVER AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M.S.

    2006-06-29

    Along the remote shores of the Columbia River in southeast Washington state, a race is on. Fluor Hanford, a prime cleanup contractor to the U.S. Department of Energy (DOE) at the Hanford Site, is managing a massive, multi-faceted project to remove contaminants from the groundwater before they can reach the Columbia. Despite the daunting nature and size of the problem--about 80 square miles of aquifer under the site contains long-lived radionuclides and hazardous chemicals--significant progress is being made. Many groups are watching, speaking out, and helping. A large. passionate, diverse, and geographically dispersed community is united in its desire to protect the Columbia River--the eighth largest in the world--and have a voice in Hanford's future. Fluor Hanford and the DOE, along with the US. Environmental Protection Agency (EPA) and the Washington Department of Ecology (Ecology) interact with all the stakeholders to make the best decisions. Together, they have made some remarkable strides in the battle against groundwater contamination under the site.

  19. Software recycling at the Hanford Site

    International Nuclear Information System (INIS)

    HINKELMAN, K.C.

    1999-01-01

    The Hanford Site was the first Department of Energy (DOE) complex to recycle excess software rather than dispose of it in the landfill. This plan, which took over a year to complete, was reviewed for potential legal conflicts, which could arise from recycling rather than disposal of software. It was determined that recycling was an approved method of destruction and therefore did not conflict with any of the licensing agreements that Hanford had with the software manufacturers. The Hanford Recycling Program Coordinator combined efforts with Pacific Northwest National Laboratory (PNNL) to recycle all Hanford software through a single contract, which went out for bid in January 1995. It was awarded to GreenDisk, Inc. located in Woodinville Washington and implemented in March 1995. The contract was later re-bid and awarded to EcoDisWGreenDisk in December 1998. The new contract included materials such as; software manuals, diskettes, tyvek wrapping, cardboard and paperboard packaging, compact disks (CDs), videotapes, reel-to-reel tapes, magnetic tapes, audio tapes, and many other types of media

  20. High Frequency Electromagnetic Impedance Imaging for Vadose Zone and Groundwater Characterization

    International Nuclear Information System (INIS)

    Newman, Greory A.; Alumbaugh, David L.; Hoversten, Michael; Nichols, Edward

    2003-01-01

    A geophysical experiment is described for characterizing the clastic dike systems, which are ubiquitous within the vadose zone at the Hanford Nuclear Reservation. because the dikes possess a significant electrical contrast from the insulating host medium, we have applied controlled source audio magnetotelluric (CSAMT) measurements to map their geometric extent and to further clarify if the dike complex acts as a conduit for contaminant transport within the vadose zone. Because of cost and weak natural field signal levels, we employed controlled field sourcing using the STRATGEM acquisition system. Use of artificial fields often goes with the assumption that the data required in the far-field of the transmitter

  1. Ozone destruction of Hanford Site tank waste organics

    International Nuclear Information System (INIS)

    Colby, S.A.

    1993-04-01

    Ozone processing is one of several technologies being developed to meet the intent of the Secretary of the US Department of Energy, Decision on the Programmatic Approach and Near-Term Actions for Management and Disposal of Hanford Tank Waste Decision Statement, dated December 20, 1991, which emphasizes the need to resolve tank safety issues by destroying or modifying the constituents (e.g., organics) that cause safety concerns. As a result, the major tank treatment objectives on the Hanford Site are to resolve the tank safety issues regarding organic compounds (and accompanying flammable gas generation), which all potentially can react to evolve heat and gases. This report contains scoping test results of an alkaline ozone oxidation process to destroy organic compounds found in the Hanford Site's radioactive waste storage tanks

  2. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  3. Hanford performance evaluation program for Hanford site analytical services

    International Nuclear Information System (INIS)

    Markel, L.P.

    1995-09-01

    The U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance, and Title 10 of the Code of Federal Regulations, Part 830.120, Quality Assurance Requirements, states that it is the responsibility of DOE contractors to ensure that ''quality is achieved and maintained by those who have been assigned the responsibility for performing the work.'' Hanford Analytical Services Quality Assurance Plan (HASQAP) is designed to meet the needs of the Richland Operations Office (RL) for maintaining a consistent level of quality for the analytical chemistry services provided by contractor and commmercial analytical laboratory operations. Therefore, services supporting Hanford environmental monitoring, environmental restoration, and waste management analytical services shall meet appropriate quality standards. This performance evaluation program will monitor the quality standards of all analytical laboratories supporting the Hanforad Site including on-site and off-site laboratories. The monitoring and evaluation of laboratory performance can be completed by the use of several tools. This program will discuss the tools that will be utilized for laboratory performance evaluations. Revision 0 will primarily focus on presently available programs using readily available performance evaluation materials provided by DOE, EPA or commercial sources. Discussion of project specific PE materials and evaluations will be described in section 9.0 and Appendix A

  4. Hanford Site annual waste reduction report

    International Nuclear Information System (INIS)

    Nichols, D.H.

    1992-03-01

    The US Department of Energy (DOE), Richland Field Office (RL) has developed and implemented a Hanford Site Waste Minimization and Pollution Prevention Awareness Plan that provides overall guidance and direction on waste minimization and pollution prevention awareness to the four contractors who manage and operate the Hanford Site for the RL. Waste reduction at the RL will be accomplished by following a hierarchy of environmental protection practices. First, waste generation will be eliminated or minimized through source reduction. Second, potential waste materials that cannot be eliminated or minimized will be recycled (i.e., used, reused, or reclaimed). Third, all waste that is nevertheless generated will be treated to reduce volume, toxicity, or mobility before storage or disposal. The scope of this waste reduction program will include nonhazardous, hazardous, radioactive mixed, and radioactive wastes

  5. Hanford site transuranic waste certification plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP)

  6. UPDATE HANFORD SITE D and D PROGRAMS ACCELERATE EXPAND

    International Nuclear Information System (INIS)

    GERBER, M.S.

    2004-01-01

    A large, new decontamination and decommissioning organization targeted toward rapid, focused work on aging and highly contaminated structures was formed at the DOE's Hanford Site in southeast Washington state in autumn 2003. Managed by prime contractor Fluor Hanford, the new organization has made significant progress during its first six months. Under the direction of Mike Lackey, who recently joined Fluor from the Portland General Electric Trojan Plant, the Fluor Hanford DandD organization is tackling the Plutonium Finishing Plant (PFP) complex and the Fast Flux Test Facility (FFTF), and is nearly finished demolishing the 233-S Plutonium Concentration Facility. In addition, the DandD organization is progressing through the development and public comment phases of its required environmental permitting, planning work and procurement services to DandD three other Hanford facilities: 224-T and 224-B Plutonium Concentration Facilities, and the U Plant radiochemical processing facility. It is also planning and beginning to DandD the spent fuel handling areas of the Site's 100-K Reactor Area. The 586-square mile Hanford Site, the oldest plutonium production center in the world, served as the ''workhorse'' of the American nuclear defense arsenal from 1944 through 1989. Hanford produced the special nuclear material for the plutonium cores of the Trinity (test) and Nagasaki explosions, and then went on to produce more than half of the weapons plutonium ever manufactured by the United States, and about one-fourth of that manufactured worldwide. As a result, Hanford, the top-secret ''Paul Bunyan'' in the desert, is one of the most contaminated areas in the world. Its cleanup agreement with state and federal regulators, known as the ''Tri-Party Agreement,'' celebrates its 15th anniversary this spring, at a time when operations dealing with unstable plutonium leftovers, corroded spent fuel, and liquids wastes in single-shelled tanks conclude. As these crucial jobs are coming to

  7. The Evolution of LTS at DOE's Hanford Site

    International Nuclear Information System (INIS)

    Moren, Richard J.; Grindstaff, Keith D.

    2013-01-01

    Hanford's Long-Term Stewardship (LTS) Program has evolved from a small, informal process, with minimal support, to a robust program that provides comprehensive transitions from cleanup contractors to long-term stewardship for post-cleanup requirements specified in the associated cleanup decision documents. The LTS Program has the responsibility for almost 100,000 acres of land, along with over 200 waste sites and will soon have six cocooned reactors. Close to 2,600 documents have been identified and tagged for storage in the LTS document library. The program has successfully completed six consecutive transitions over the last two years in support of the U.S. DOE Richland Operations Office's (DOE-RL) near-term cleanup objectives of significantly reducing the footprint of active cleanup operations for the River Corridor. The program has evolved from one that was initially responsible for defining and measuring Institutional Controls for the Hanford Site, to a comprehensive, post remediation surveillance and maintenance program that begins early in the transition process. In 2013, the first reactor area -- the cocooned 105-F Reactor and its surrounding 1,100 acres, called the F Area was transitioned. In another first, the program is expected to transition the five remaining cocooned reactors into the program through using a Transition and Turnover Package (TTP). As Hanford's LTS Program moves into the next few years, it will continue to build on a collaborative approach. The program has built strong relationships between contractors, regulators, tribes and stakeholders and with the U.S. Department of Energy's Office of Legacy Management (LM). The LTS Program has been working with LM since its inception. The transition process utilized LM's Site Transition Framework as one of the initial requirement documents and the Hanford Program continues to collaborate with LM today. One example of this collaboration is the development of the LTS Program's records management

  8. International Atomic Energy Agency/Hanford Site shared use of calorimeters

    International Nuclear Information System (INIS)

    Welsh, T.L.

    1997-01-01

    Hanford Site operators combine gamma ray isotopic and calorimetry measurements for nondestructive plutonium assay. Such measurements offer lower variability (particularly for heterogeneous materials) and decreased radiation exposure, cost, waste, intrusiveness, and material handling compared to destructive analysis. Until now, the International Atomic Energy Agency (IAEA) has relied on destructive analysis to perform the most accurate verification requirements for plutonium stored under safeguards at the Hanford Site. It was recognized that using calorimetry could significantly reduce the need for the IAEA to perform destructive analysis. To authorize the operator's calorimeters for routine IAEA use, however, it was necessary to develop authentication features and perform independent 1558 testing. Authentication features include IAEA control of the hardware and calorimeter operating system software, measurement of certified IAEA standards, sealing of calorimeter chambers, and limited destructive analysis of IAEA selected items. A field test of these authentication features was performed at the Hanford Site in June 1997. The field test also was meant to enhance the credibility the IAEA imputes to calorimetry prior to its implementation. Progress in shared use of the Hanford Site calorimeters is reported

  9. Laboratory information management system at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, W.; Barth, D.; Ibsen, T.; Newman, B.

    1994-03-01

    In January of 1994 an important new technology was brought on line to help in the monumental waste management and environmental restoration work at the Hanford Site. Cleanup at the Hanford Site depends on analytical chemistry information to identify contaminates, design and monitor cleanup processes, assure worker safety, evaluate progress, and prove completion. The new technology, a laboratory information management system (LIMS) called ``LABCORE,`` provides the latest systems to organize and communicate the analytical tasks: track work and samples; collect and process data, prepare reports, and store data in readily accessible electronic form.

  10. Laboratory information management system at the Hanford Site

    International Nuclear Information System (INIS)

    Leggett, W.; Barth, D.; Ibsen, T.; Newman, B.

    1994-03-01

    In January of 1994 an important new technology was brought on line to help in the monumental waste management and environmental restoration work at the Hanford Site. Cleanup at the Hanford Site depends on analytical chemistry information to identify contaminates, design and monitor cleanup processes, assure worker safety, evaluate progress, and prove completion. The new technology, a laboratory information management system (LIMS) called ''LABCORE,'' provides the latest systems to organize and communicate the analytical tasks: track work and samples; collect and process data, prepare reports, and store data in readily accessible electronic form

  11. Colloid-Facilitated Transport of Radionuclides through the Vadose Zone

    International Nuclear Information System (INIS)

    Flury, Markus; Harsh, James B.; Zachara, John M.; McCarthy, John F.; Lichtner, Peter C.

    2006-01-01

    This project seeks to improve the basic understanding of the role of colloids in facilitating the transport of contaminants in the vadose zone. We focus on three major thrusts: (1) thermodynamic stability and mobility of colloids formed by reactions of sediments with highly alkaline tank waste solutions, (2) colloid-contaminant interactions, and (3) in-situ colloid mobilization and colloid facilitated contaminant transport occurring in both contaminated and uncontaminated Hanford sediments

  12. Second ILAW Site Borehole Characterization Plan

    International Nuclear Information System (INIS)

    Reidel, S.P.

    2000-01-01

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford since 1944. Approximately 209,000 m 3 (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low-activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized. The low-activity vitrified waste will be disposed of in the 200 East Area of the Hanford Site. This report is a plan to drill and characterize the second borehole for the Performance Assessment. The first characterization borehole was drilled in 1998. The plan describes data collection activities for determining physical and chemical properties of the vadose zone and saturated zone on the northeast side of the proposed disposal site. These data will then be used in the 2005 Performance Assessment

  13. Wildlife studies on the Hanford site: 1994 Highlights report

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, L.L. [ed.

    1995-04-01

    The purposes of the project are to monitor and report trends in wildlife populations; conduct surveys to identify, record, and map populations of threatened, endangered, and sensitive plant and animal species; and cooperate with Washington State and federal and private agencies to help ensure the protection afforded by law to native species and their habitats. Census data and results of surveys and special study topics are shared freely among cooperating agencies. Special studies are also conducted as needed to provide additional information that may be required to assess, protect, or manage wildlife resources at Hanford. This report describes highlights of wildlife studies on the Site in 1994. Redd counts of fall chinook salmon in the Hanford Reach suggest that harvest restrictions directed at protecting Snake River salmon may have helped Columbia River stocks as well. The 1994 count (5619) was nearly double that of 1993 and about 63% of the 1989 high of approximately 9000. A habitat map showing major vegetation and land use cover types for the Hanford Site was completed in 1993. During 1994, stochastic simulation was used to estimate shrub characteristics (height, density, and canopy cover) across the previously mapped Hanford landscape. The information provided will be available for use in determining habitat quality for sensitive wildlife species. Mapping Site locations of plant species of concern continued during 1994. Additional sensitive plant species data from surveys conducted by TNC were archived. The 10 nesting pairs of ferruginous hawks that used the Hanford Site in 1993 represented approximately 25% of the Washington State population.

  14. Wildlife studies on the Hanford site: 1994 Highlights report

    International Nuclear Information System (INIS)

    Cadwell, L.L.

    1995-04-01

    The purposes of the project are to monitor and report trends in wildlife populations; conduct surveys to identify, record, and map populations of threatened, endangered, and sensitive plant and animal species; and cooperate with Washington State and federal and private agencies to help ensure the protection afforded by law to native species and their habitats. Census data and results of surveys and special study topics are shared freely among cooperating agencies. Special studies are also conducted as needed to provide additional information that may be required to assess, protect, or manage wildlife resources at Hanford. This report describes highlights of wildlife studies on the Site in 1994. Redd counts of fall chinook salmon in the Hanford Reach suggest that harvest restrictions directed at protecting Snake River salmon may have helped Columbia River stocks as well. The 1994 count (5619) was nearly double that of 1993 and about 63% of the 1989 high of approximately 9000. A habitat map showing major vegetation and land use cover types for the Hanford Site was completed in 1993. During 1994, stochastic simulation was used to estimate shrub characteristics (height, density, and canopy cover) across the previously mapped Hanford landscape. The information provided will be available for use in determining habitat quality for sensitive wildlife species. Mapping Site locations of plant species of concern continued during 1994. Additional sensitive plant species data from surveys conducted by TNC were archived. The 10 nesting pairs of ferruginous hawks that used the Hanford Site in 1993 represented approximately 25% of the Washington State population

  15. Hanford Site Waste Storage Tank Information Notebook

    International Nuclear Information System (INIS)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*

  16. Site-specific calibration of the Hanford personnel neutron dosimeter

    International Nuclear Information System (INIS)

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.; Rathbone, B.A.

    1994-10-01

    A new personnel dosimetry system, employing a standard Hanford thermoluminescent dosimeter (TLD) and a combination dosimeter with both CR-39 nuclear track and TLD-albedo elements, is being implemented at Hanford. Measurements were made in workplace environments in order to verify the accuracy of the system and establish site-specific factors to account for the differences in dosimeter response between the workplace and calibration laboratory. Neutron measurements were performed using sources at Hanford's Plutonium Finishing Plant under high-scatter conditions to calibrate the new neutron dosimeter design to site-specific neutron spectra. The dosimeter was also calibrated using bare and moderated 252 Cf sources under low-scatter conditions available in the Hanford Calibration Laboratory. Dose equivalent rates in the workplace were calculated from spectrometer measurements using tissue equivalent proportional counter (TEPC) and multisphere spectrometers. The accuracy of the spectrometers was verified by measurements on neutron sources with calibrations directly traceable to the National Institute of Standards and Technology (NIST)

  17. Plutonium Particle Migration in the Shallow Vadose Zone: The Nevada Test Site as an Analog Site

    Science.gov (United States)

    Hunt, J. R.; Smith, D. K.

    2004-12-01

    The upper meter of the vadose zone in desert environments is the horizon where wastes have been released and human exposure is determined through dermal, inhalation, and food uptake pathways. This region is also characterized by numerous coupled processes that determine contaminant transport, including precipitation infiltration, evapotranspiration, daily and annual temperature cycling, dust resuspension, animal burrowing, and geochemical weathering reactions. While there is considerable interest in colloidal transport of minerals, pathogenic organisms, and contaminants in the vadose zone, there are limited field sites where the actual occurrence of contaminant migration can be quantified over the appropriate spatial and temporal scales of interest. At the US Department of Energy Nevada Test Site, there have been numerous releases of radionuclides since the 1950's that have become field-scale tracer tests. One series of tests was the four safety shots conducted in an alluvial valley of Area 11 in the 1950's. These experiments tested the ability of nuclear materials to survive chemical explosions without initiating fission reactions. Four above-ground tests were conducted and they released plutonium and uranium on the desert valley floor with only one of the tests undergoing some fission. Shortly after the tests, the sites were surveyed for radionuclide distribution on the land surface using aerial surveys and with depth. Additional studies were conducted in the 1970's to better understand the fate of plutonium in the desert that included studies of depth distribution and dust resuspension. More recently, plutonium particle distribution in the soil profile was detected using autoradiography. The results to date demonstrate the vertical migration of plutonium particles to depths in excess of 30 cm in this arid vadose zone. While plutonium migration at the Nevada Test Site has been and continues to be a concern, these field experiments have become analog sites for the

  18. Evaluation of the Potential for Agricultural Development at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Robert G.; Hattendorf, Mary J.; Kincaid, Charles T.

    2000-02-25

    By 2050, when cleanup of the Hanford Site is expected to be completed, large worldwide demands to increase the global production of animal and fish protein, food, and fiber are anticipated, despite advancements in crop breeding, genetic engineering, and other technologies. The most likely large areas for expanded irrigation in the Pacific Northwest are the undeveloped East High areas of the Columbia Basin Project and non-restricted areas within the Hanford Site in south-central Washington State. The area known as the Hanford Site has all the components that favor successful irrigated farming. Constraints to agricultural development of the Hanford Site are political and social, not economic or technical. Obtaining adequate water rights for any irrigated development will be a major issue. Numerous anticipated future advances in irrigation and resource conservation techniques such as precision agriculture techniques, improved irrigation systems, and irrigation system controls will greatly minimize the negative environmental impacts of agricultural activities.

  19. Re-Inversion of Surface Electrical Resistivity Tomography Data from the Hanford Site B-Complex

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy C.; Wellman, Dawn M.

    2013-05-01

    This report documents the three-dimensional (3D) inversion results of surface electrical resistivity tomography (ERT) data collected over the Hanford Site B-Complex. The data were collected in order to image the subsurface distribution of electrically conductive vadose zone contamination resulting from both planned releases of contamination into subsurface infiltration galleries (cribs, trenches, and tile fields), as well as unplanned releases from the B, BX, and BY tank farms and/or associated facilities. Electrically conductive contaminants are those which increase the ionic strength of pore fluids compared to native conditions, which comprise most types of solutes released into the subsurface B-Complex. The ERT data were collected and originally inverted as described in detail in report RPP-34690 Rev 0., 2007, which readers should refer to for a detailed description of data collection and waste disposal history. Although the ERT imaging results presented in that report successfully delineated the footprint of vadose zone contamination in areas outside of the tank farms, imaging resolution was not optimized due to the inability of available inversion codes to optimally process the massive ERT data set collected at the site. Recognizing these limitations and the potential for enhanced ERT characterization and time-lapse imaging at contaminated sites, a joint effort was initiated in 2007 by the U.S. Department of Energy – Office of Science (DOE-SC), with later support by the Office of Environmental Management (DOE-EM), and the U.S. Department of Defense (DOD), to develop a high-performance distributed memory parallel 3D ERT inversion code capable of optimally processing large ERT data sets. The culmination of this effort was the development of E4D (Johnson et al., 2010,2012) In 2012, under the Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI), the U.S. Department of Energy – Richland Operations Office (DOE-RL) and CH2M Hill Plateau Remediation

  20. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  1. Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-09-01

    This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km{sup 2} (570-mi{sup 2}) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation.

  2. Environment, Safety and Health Progress Assessment of the Hanford Site

    International Nuclear Information System (INIS)

    1992-05-01

    This report documents the result of the US Department of Energy (DOE) Environment, Safety and Health (ES ampersand H) Progress Assessment of the Hanford Site, in Richland, Washington. The assessment, which was conducted from May 11 through May 22, 1992, included a selective-review of the ES ampersand H management systems and programs of the responsible DOE Headquarters Program Offices the DOE Richland Field Office, and the site contractors. The ES ampersand H Progress Assessments are part of the Secretary of Energy's continuing effort to institutionalize line management accountability and the self-assessment process throughout DOE and its contractor organizations. The purpose of the Hanford Site ES ampersand H Progress Assessment is to provide the Secretary with an independent assessment of the adequacy and effectiveness of the DOE and contractor management structures, resources, and systems to address ES ampersand H problems and requirements. They are not intended to be comprehensive compliance assessments of ES ampersand H activities. The point of reference for assessing programs at the Hanford Site was, for the most part, the Tiger Team Assessment of the Hanford Site, which was conducted from May 21 through July 18, 1990. A summary of issues and progress in the areas of environment, safety and health, and management is included

  3. Upper Basalt-Confined Aquifer System in the Southern Hanford Site

    International Nuclear Information System (INIS)

    Thorne, P.

    1999-01-01

    The 1990 DOE Tiger Team Finding GW/CF-202 found that the hydrogeologic regime at the Hanford Site was inadequately characterized. This finding also identified the need for completing a study of the confined aquifer in the central and southern portions of the Hanford Site. The southern portion of the site is of particular interest because hydraulic-head patterns in the upper basalt-confined aquifer system indicate that groundwater from the Hanford central plateau area, where contaminants have been found in the aquifer, flows southeast toward the southern site boundary. This results in a potential for offsite migration of contaminants through the upper basalt-confined aquifer system. Based on the review presented in this report, available hydrogeologic characterization information for the upper basalt-confined aquifer system in this area is considered adequate to close the action item. Recently drilled offsite wells have provided additional information on the structure of the aquifer system in and near the southern part of the Hanford Site. Information on hydraulic properties, hydrochemistry, hydraulic heads and flow directions for the upper basalt-confined aquifer system has been re-examined and compiled in recent reports including Spane and Raymond (1993), Spane and Vermeul ( 1994), and Spane and Webber (1995)

  4. Hanford Site background: Evaluation of existing soil radionuclide data

    International Nuclear Information System (INIS)

    1995-07-01

    This report is an evaluation of the existing data on radiological background for soils in the vicinity of the Hanford Site. The primary purpose of this report is to assess the adequacy of the existing data to serve as a radiological background baseline for use in environmental restoration and remediation activities at the Hanford Site. The soil background data compiled and evaluated in this report were collected by the Pacific Northwest Laboratory (PNL) and Washington State Department of Health (DOH) radiation surveillance programs in southeastern Washington. These two programs provide the largest well-documented, quantitative data sets available to evaluate background conditions at the Hanford Site. The data quality objectives (DQOs) considered in this evaluation include the amount of data, number of sampling localities, spatial coverage, number and types of radionuclides reported, frequency of reporting, documentation and traceability of sampling and laboratory methods used, and comparability between sets of data. Although other data on soil radionuclide abundances around the Hanford Site exist, they are generally limited in scope and lack the DQOs necessary for consideration with the PNL and DOH data sets. Collectively, these two sources provide data on the activities of 25 radionuclides and four other parameters (gross alpha, gross beta, total uranium, and total thorium). These measurements were made on samples from the upper 2.5 cm of soil at over 70 localities within the region

  5. Strategic plan for Hanford Site Environmental Restoration Information Management

    International Nuclear Information System (INIS)

    Cowley, P.J.; Beck, J.E.; Gephart, R.E.

    1994-06-01

    This strategic plan addresses information management for the Environmental Restoration (ER) Program at the Hanford Site. This Program leads the cleanup of the Hanford Site's soil, groundwater, buried waste, and the decontamination and decommissioning of facilities. The vision that drives this strategic plan is to ensure that quality information is available to the people who need it, when they need it, at a convenient location, in a usable form, and at an acceptable cost. Although investments are being made in managing the vast amounts of information, which include data, records and documents associated with the Hanford Site's production history and new cleanup mission, it is widely recognized that efforts to date have not accomplished the vision. Effective information management involves more than the compilation of massive amounts of electronic and non-electronic information. It also involves integrating information management into business processes that support user's needs and decisionmaking. Only then can information management complement and enable environmental restoration priorities and practices, help identify environmental restoration requirements, and enable communication within the Environmental Restoration Program and between the Program and its stakeholders. Successfully accomplishing the Hanford Site mission requires an integrated approach to information management that crosses organizational boundaries, streamlines existing systems, and builds new systems that support the needs of the future. This plan outlines that approach

  6. Best Available Technology (economically achievable) guidance document for the Hanford Site

    International Nuclear Information System (INIS)

    1988-07-01

    This document provides Westinghouse Hanford Company (Westinghouse Hanford) and the US Department of Energy (DOE) with a step-by-step procedure for the identification and documentation of the Best Available Technology (BAT) economically achievable for treating liquid effluents on the Hanford Site. The BAT determination is a key element in the DOE strategy to eliminate use of the soil column for contaminated effluents disposal. Following application of BAT, a liquid effluent is considered suitable for discharge to the environment, including the soil column. Liquid effluents on the Hanford Site are currently disposed of in accordance with DOE orders that require protection of public health and safety, and to the extent possible, minimize adverse impacts on the environment. The determination of BAT on a liquid effluent will only occur after the effluent meets all applicable release limits. As a result, the application of BAT may involve an additional level of control, as well as contribute to the overall Hanford Site as low as reasonably achievable (ALARA) program. 27 refs., 7 figs., 1 tab

  7. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  8. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997 - March 31, 1997

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report

  9. Geographic and Operational Site Parameters List (GOSPL) for Hanford Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V.; Nichols, William E.; Kincaid, Charles T.

    2006-06-01

    This data package was originally prepared to support a 2004 composite analysis (CA) of low-level waste disposal at the Hanford Site. The Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site (Kincaid et. al. 2004) identified the requirements for that analysis and served as the basis for initial preparation of this data package. Completion of the 2004 CA was later deferred, with the 2004 Annual Status Report for the Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site (DOE 2005) indicating that a comprehensive update to the CA was in preparation and would be submitted in 2006. However, the U.S. Department of Energy (DOE) has recently decided to further defer the CA update and will use the cumulative assessment currently under preparation for the environmental impact statement (EIS) being prepared for tank closure and other site decisions as the updated CA. Submittal of the draft EIS is currently planned for FY 2008. This data package describes the facility-specific parameters (e.g. location, operational dates, etc.) used to numerically simulate contaminant flow and transport in large-scale Hanford assessments. Kincaid et al. (2004) indicated that the System Assessment Capability (SAC) (Kincaid et al. 2000; Bryce et al. 2002; Eslinger 2002a, 2002b) would be used to analyze over a thousand different waste sites. A master spreadsheet termed the Geographic and Operational Site Parameters List (GOSPL) was assembled to facilitate the generation of keyword input files containing general information on each waste site/facility, its operational/disposal history, and its environmental settings (past, current, and future). This report briefly describes each of the key data fields, including the source(s) of data, and provides the resulting inputs to be used for large-scale Hanford assessments.

  10. Accelerating cleanup. Paths to closure Hanford Site

    International Nuclear Information System (INIS)

    Edwards, C.

    1998-01-01

    This document was previously referred to as the Draft 2006 Plan. As part of the DOE's national strategy, the Richland Operations Office's Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established

  11. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  12. Hanford annual first quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-02-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY98 for stations in the HSN was 98.5%. The operational rate for the first quarter of FY98 for stations of the EWRN was 99.1%. For the first quarter of FY98, the acquisition computer triggered 184 times. Of these triggers 23 were local earthquakes: 7 in the Columbia River Basalt Group, and 16 in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant earthquakes in this quarter were a series of six events which occurred in the Cold Creek depression (approximately 4 km SW of the 200 West Area), between November 6 and November 11, 1997. All events were deep (> 15 km) and were located in the crystalline basement. The first event was the largest, having a magnitude of 3.49 M{sub c}. Two events on November 9, 1997 had magnitudes of 2.81 and 2.95 M{sub c}, respectively. The other events had magnitudes between 0.7 and 1.2 M{sub c}.

  13. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  14. Hanford Site Waste Managements Units reports

    International Nuclear Information System (INIS)

    1992-01-01

    The Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC 1984). This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in this report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. The information in this report is extracted from the Waste Information Data System (WIDS). The WIDS provides additional information concerning the waste management units contained in this report and is maintained current with changes to these units. This report is updated annually if determined necessary per the Hanford Federal Facility Agreement and Consent Order Order (commonly referred to as the Tri-Party Agreement, Ecology et al. 1990). This report identifies 1,414 waste management units. Of these, 1,015 units are identified as solid waste management units (SWMU), and 342 are RCRA treatment, storage, and disposal units. The remaining 399 are comprised mainly of one-time spills to the environment, sanitary waste disposal facilities (i.e., septic tanks), and surplus facilities awaiting decontamination and decommissioning

  15. Hanford Site's Integrated Risk Assessment Program: No-intervention risk assessment

    International Nuclear Information System (INIS)

    Mahaffey, J.A.; Dukelow, J.S. Jr.; Stenner, R.D.

    1994-08-01

    The long-term goal of the Integrated Risk Assessment program (IRAP) is to estimate risks to workers, the public, organizations, and groups with reserved rights to Site access, the ecosystem, and natural resources to aid in managing environmental restoration and waste management at the Hanford Site. For each of these, information is needed about current risks, risks during cleanup, and endstate risks. The objective is three-fold: to determine if and when to remediate, and to what extent; to identify information unavailable but needed to make better cleanup decisions; to establish technology performance criteria for achieving desired cleanup levels; to understand costs and benefits of activities from a Site-wide perspective. The no-intervention risk, assessment is the initial evaluation of public health risks conducted under IRAP. The objective is to identify types of activities that the US Department of Energy (DOE) must accomplish for closure of the Hanford Site, defined as no further DOE intervention. There are two primary conclusions from the no-intervention risk assessment. First, some maintenance and operations activities at Hanford must be continued to protect the public from grave risks. However, when large Hanford expenditures are compared to cleanup progress, funds expended for maintenance and operations must be put in proper perspective. Second, stakeholder's emphasis on public risks at Hanford, as indicated by remediation priorities, are not in line with those estimated. The focus currently is on compliance with regulations, and on dealing with issues which are visible to stakeholders

  16. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn, SP Reidel, AC Rohay

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi~orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of zin earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.

  17. Hanford Site National Environmental Policy Act (NEPA) Characterization Report, Revision 17

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Rohay, Alan C.; Sackschewsky, Michael R.; Scott, Michael J.; Thorne, Paul D.

    2005-09-30

    This document describes the U.S. Department of Energy’s (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many environmental documents being prepared by DOE contractors concerning the National Environmental Policy Act (NEPA). No statements about significance or environmental consequences are provided. This year’s report is the seventeenth revision of the original document published in 1988 and is (until replaced by the eighteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (EISs) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology; air quality; geology; hydrology; ecology; cultural, archaeological, and historical resources; socioeconomics; noise; and occupational health and safety. Sources for extensive tabular data related to these topics are provided in the chapter. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, of the 100, 200, 300, and other areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities

  18. CALCULATING ECONOMIC RISK AFTER HANFORD CLEANUP

    International Nuclear Information System (INIS)

    Scott, Michael J.

    2003-01-01

    Since late 1997, researchers at the Hanford Site have been engaged in the Groundwater Protection Project (formerly, the Groundwater/Vadose Zone Project), developing a suite of integrated physical and environmental models and supporting data to trace the complex path of Hanford legacy contaminants through the environment for the next thousand years, and to estimate corresponding environmental, human health, economic, and cultural risks. The linked set of models and data is called the System Assessment Capability (SAC). The risk mechanism for economics consists of ''impact triggers'' (sequences of physical and human behavior changes in response to, or resulting from, human health or ecological risks), and processes by which particular trigger mechanisms induce impacts. Economic impacts stimulated by the trigger mechanisms may take a variety of forms, including changes in either costs or revenues for economic sectors associated with the affected resource or activity. An existing local economic impact model was adapted to calculate the resulting impacts on output, employment, and labor income in the local economy (the Tri-Cities Economic Risk Model or TCERM). The SAC researchers ran a test suite of 25 realization scenarios for future contamination of the Columbia River after site closure for a small subset of the radionuclides and hazardous chemicals known to be present in the environment at the Hanford Site. These scenarios of potential future river contamination were analyzed in TCERM. Although the TCERM model is sensitive to river contamination under a reasonable set of assumptions concerning reactions of the authorities and the public, the scenarios show low enough future contamination that the impacts on the local economy are small

  19. CALCULATING ECONOMIC RISK AFTER HANFORD CLEANUP

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.

    2003-02-27

    Since late 1997, researchers at the Hanford Site have been engaged in the Groundwater Protection Project (formerly, the Groundwater/Vadose Zone Project), developing a suite of integrated physical and environmental models and supporting data to trace the complex path of Hanford legacy contaminants through the environment for the next thousand years, and to estimate corresponding environmental, human health, economic, and cultural risks. The linked set of models and data is called the System Assessment Capability (SAC). The risk mechanism for economics consists of ''impact triggers'' (sequences of physical and human behavior changes in response to, or resulting from, human health or ecological risks), and processes by which particular trigger mechanisms induce impacts. Economic impacts stimulated by the trigger mechanisms may take a variety of forms, including changes in either costs or revenues for economic sectors associated with the affected resource or activity. An existing local economic impact model was adapted to calculate the resulting impacts on output, employment, and labor income in the local economy (the Tri-Cities Economic Risk Model or TCERM). The SAC researchers ran a test suite of 25 realization scenarios for future contamination of the Columbia River after site closure for a small subset of the radionuclides and hazardous chemicals known to be present in the environment at the Hanford Site. These scenarios of potential future river contamination were analyzed in TCERM. Although the TCERM model is sensitive to river contamination under a reasonable set of assumptions concerning reactions of the authorities and the public, the scenarios show low enough future contamination that the impacts on the local economy are small.

  20. Hanford Site Groundwater Protection Management Program: Revision 1

    International Nuclear Information System (INIS)

    1993-11-01

    Groundwater protection is a national priority that is promulgated in a variety of environmental regulations at local, state, and federal levels. To effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy has issued DOE Order 5400.1 (now under revision) that requires all US Department of Energy facilities to prepare separate groundwater protection program descriptions and plans. This document describes the Groundwater Protection Management Program for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the Groundwater Protection Management Program cover the following general topical areas: (1) documentation of the groundwater regime, (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. Many of the above elements are covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing groundwater protection activities. Additionally, it describes how information needs are identified and can be incorporated into existing or proposed new programs. The Groundwater Protection Management Program provides the general scope, philosophy, and strategies for groundwater protection/management at the Hanford Site. Subtier documents provide the detailed plans for implementing groundwater-related activities and programs. Related schedule and budget information are provided in the 5-year plan for environmental restoration and waste management at the Hanford Site

  1. Recharge at the Hanford Site: Status report

    International Nuclear Information System (INIS)

    Gee, G.W.

    1987-11-01

    A variety of field programs designed to evaluate recharge and other water balance components including precipitation, infiltration, evaporation, and water storage changes, have been carried out at the Hanford Site since 1970. Data from these programs have indicated that a wide range of recharge rates can occur depending upon specific site conditions. Present evidence suggests that minimum recharge occurs where soils are fine-textured and surfaces are vegetated with deep-rooted plants. Maximum recharge occurs where coarse soils or gravels exist at the surface and soils are kept bare. Recharge can occur in areas where shallow-rooted plants dominate the surface, particularly where soils are coarse-textured. Recharge estimates have been made for the site using simulation models. A US Geological Survey model that attempts to account for climate variability, soil storage parameters, and plant factors has calculated recharge values ranging from near zero to an average of about 1 cm/yr for the Hanford Site. UNSAT-H, a deterministic model developed for the site, appears to be the best code available for estimating recharge on a site-specific basis. Appendix I contains precipitation data from January 1979 to June 1987. 42 refs., 11 figs., 11 tabs

  2. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

  3. A Short History of Waste Management at the Hanford Site

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2010-01-01

    The world's first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford's last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford's only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book 'Hanford: A Conversation about Nuclear Waste and Cleanup.'

  4. Foam-Delivery of Remedial Amendments for Enhanced Vadose Zone Metals and Radionuclides Remediation

    International Nuclear Information System (INIS)

    Zhong, L.; Szecsody, J.E.; Dresel, P.E.; Zhang, Z.F.; Qafoku, N.P.

    2009-01-01

    The remediation of metals and radionuclides contamination, such as Cr(VI), Tc-99, and Sr-90 in the U.S. DOE Hanford Site vadose zone is a critical need. Water-based remedial amendments delivery to the deep vadose zone is facing significant technical challenges. Water-based delivery will easily leach out the highly mobile pollutants therefore contaminate the underlying aquifer. Preferential flow of the amendment-laden solution in the vadose zone due to the formation heterogeneity is difficult to overcome, resulting in bypassing of the less permeable zones. Foam has unique transport properties in the vadose zone that enable mitigation on the mobilization of mobile contaminants and enhance the sweeping over heterogeneous systems. Calcium polysulfide (CPS) is a remedial amendment that can be used to reduce and immobilize hexavalent chromium [Cr(VI)] and other redox-sensitive radionuclides/metals in the vadose zone. The delivery of CPS to the vadose zone using foam and the immobilization of Cr(VI) via reduction by the foam-delivered CPS was investigated in this study. Batch tests were conducted to select the foam-generating CPS-surfactant solutions, to determine the solution foamability and the reducing potential of CPS-containing foams, and to study the influence of foam quality, surfactant concentration, and CPS concentration on foam stability. Column experiments were performed to test the foam delivery of CPS to sediments under conditions similar to field vadose zone, to study the foam transport and interaction with sediments, and to determine the extent of Cr(VI) immobilization using this novel delivery approach. CPS-containing foams with high reducing potential were prepared based on the batch tests. Sediment reduction by foam-delivered CPS was observed in the column studies. Significant mobilization of Cr(VI) from sediments occurred when CPS was delivered in aqueous solution. The Cr(VI) mobilization was minimized when CPS was delivered by foams, resulting in

  5. Hanford Site Environmental Surveillance Data Report for Calendar Year 2002

    International Nuclear Information System (INIS)

    Bisping, Lynn E.

    2003-01-01

    This data report contains the actual raw data used in the annual Hanford Site environmental report (PNNL--14295). In addition to providing raw data collected during routine sampling in 2002, this report also includes data from special sampling studies performed by PNNL during 2002. Environmental surveillance at the Hanford Site, located in southeastern Washington State, is conducted by Pacific Northwest National Laboratory (PNNL), which is operated by Battelle for the U.S. Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River water and sediment. For more information regarding the 2002 sampling schedule for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project, refer to L. E. Bisping, Environmental Surveillance Master Sampling Schedule (PNNL--13418, Pacific Northwest National Laboratory, Richland, Washington). PNNL publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 2002 describes the site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. Sections of the annual environmental report include tables and summaries of offsite and onsite environmental surveillance data collected by PNNL during 2002. This data report contains the actual raw data used to create those tables and summaries. In addition to providing raw data collected during routine sampling efforts in 2002, this data report also includes data from special sampling studies performed by PNNL during 2002

  6. Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments

    International Nuclear Information System (INIS)

    Chang, Hyun-Shik; Um, Wooyong; Rod, Kenton A.; Serne, R. Jeffrey; Thompson, Aaron; Perdrial, Nicolas; Steefel, Carl I.; Chorover, Jon

    2011-01-01

    Leaching behavior of Sr and Cs in the vadose zone of Hanford site (WA, USA) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10-5 and 10-3 molal representative of LO- and HI-sediment, respectively) as surrogates for 90Sr and 137Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the major byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.

  7. Hanford Site waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    1994-05-01

    The Hanford Site WMin/P2 program is an organized, comprehensive, and continual effort to systematically reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary wastes; conserve resources; and prevent or minimize pollutant releases to all environmental media from all Site activities. The Hanford Site WMin/P2 program plan reflects national and DOE waste minimization and pollution prevention goals and policies, and represents an ongoing effort to make WMin/P2 part of the Site operating philosophy. In accordance with these policies, a hierarchical approach to environmental management has been adopted and is applied to all types of polluting and waste generating activities. Pollution prevention and waste minimization through source reduction are first priority in the Hanford WMin/P2 program, followed by environmentally safe recycling. Treatment to reduce the quantity, toxicity, and/or mobility will be considered only when prevention or recycling are not possible or practical. Environmentally safe disposal is the last option

  8. The Hanford Site generic component failure-rate database compared with other generic failure-rate databases

    International Nuclear Information System (INIS)

    Reardon, M.F.; Zentner, M.D.

    1992-11-01

    The Risk Assessment Technology Group, Westinghouse Hanford Company (WHC), has compiled a component failure rate database to be used during risk and reliability analysis of nonreactor facilities. Because site-specific data for the Hanford Site are generally not kept or not compiled in a usable form, the database was assembled using information from a variety of other established sources. Generally, the most conservative failure rates were chosen from the databases reviewed. The Hanford Site database has since been used extensively in fault tree modeling of many Hanford Site facilities and systems. The purpose of this study was to evaluate the reasonableness of the data chosen for the Hanford Site database by comparing the values chosen with the values from the other databases

  9. Hanford Site River Protection Project (RPP) High-Level Waste Storage

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.

    2000-01-01

    The CH2M HILL Hanford Group (CHG) conducts business to achieve the goals of the U.S. Department of Energy's (DOE) Office of River Protection at the Hanford Site. The CHG is organized to manage and perform work to safely store, retrieve, etc

  10. Strontium-90 at the Hanford Site and its ecological implications

    International Nuclear Information System (INIS)

    RE Peterson; TM Poston

    2000-01-01

    Strontium-90, a radioactive contaminant from historical operations at the U.S. Department of Energy (DOE) Hanford Site, enters the Columbia River at several locations associated with former plutonium production reactors at the Site. Strontium-90 is of concern to humans and the environment because of its moderately long half-life (29.1 years), its potential for concentrating in bone tissue, and its relatively high energy of beta decay. Although strontium-90 in the environment is not a new issue for the Hanford Site, recent studies of near-river vegetation along the shoreline near the 100 Areas raised public concern about the possibility of strontium-90-contaminated groundwater reaching the riverbed and fall chinook salmon redds. To address these concerns, DOE asked Pacific Northwest National Laboratory (PNNL) to prepare this report on strontium-90, its distribution in groundwater, how and where it enters the river, and its potential ecological impacts, particularly with respect to fall chinook salmon. The purpose of the report is to characterize groundwater contaminants in the near-shore environment and to assess the potential for ecological impact using salmon embryos, one of the most sensitive ecological indicators for aquatic organisms. Section 2.0 of the report provides background information on strontium-90 at the Hanford Site related to historical operations. Public access to information on strontium-90 also is described. Section 3.0 focuses on key issues associated with strontium-90 contamination in groundwater that discharges in the Hanford Reach. The occurrence and distribution of fall chinook salmon redds in the Hanford Reach and characteristics of salmon spawning are described in Section 4.0. Section 5.0 describes the regulatory standards and criteria used to set action levels for strontium-90. Recommendations for initiating additional monitoring and remedial action associated with strontium-90 contamination at the Hanford Site are presented in Section 6

  11. Strontium-90 at the Hanford Site and its ecological implications

    Energy Technology Data Exchange (ETDEWEB)

    RE Peterson; TM Poston

    2000-05-22

    Strontium-90, a radioactive contaminant from historical operations at the U.S. Department of Energy (DOE) Hanford Site, enters the Columbia River at several locations associated with former plutonium production reactors at the Site. Strontium-90 is of concern to humans and the environment because of its moderately long half-life (29.1 years), its potential for concentrating in bone tissue, and its relatively high energy of beta decay. Although strontium-90 in the environment is not a new issue for the Hanford Site, recent studies of near-river vegetation along the shoreline near the 100 Areas raised public concern about the possibility of strontium-90-contaminated groundwater reaching the riverbed and fall chinook salmon redds. To address these concerns, DOE asked Pacific Northwest National Laboratory (PNNL) to prepare this report on strontium-90, its distribution in groundwater, how and where it enters the river, and its potential ecological impacts, particularly with respect to fall chinook salmon. The purpose of the report is to characterize groundwater contaminants in the near-shore environment and to assess the potential for ecological impact using salmon embryos, one of the most sensitive ecological indicators for aquatic organisms. Section 2.0 of the report provides background information on strontium-90 at the Hanford Site related to historical operations. Public access to information on strontium-90 also is described. Section 3.0 focuses on key issues associated with strontium-90 contamination in groundwater that discharges in the Hanford Reach. The occurrence and distribution of fall chinook salmon redds in the Hanford Reach and characteristics of salmon spawning are described in Section 4.0. Section 5.0 describes the regulatory standards and criteria used to set action levels for strontium-90. Recommendations for initiating additional monitoring and remedial action associated with strontium-90 contamination at the Hanford Site are presented in Section 6

  12. Concrete structural analysis tools and properties for Hanford site waste tank evaluation

    International Nuclear Information System (INIS)

    Moore, C.J.; Peterson, W.S.; Winkel, B.V.; Weiner, E.O.

    1995-09-01

    As Hanford Site Contractors address maintenance and future structural demands on nuclear waste tanks built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice has building codes for reinforced concrete design guidelines, the tanks were not constructed to today's building codes and future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current practice. The Hanford Site engineering staff has embraced nonlinear finite-element modeling of concrete in an effort to obtain a more accurate understanding of the actual tank margins. This document brings together and integrates past Hanford Site nonlinear reinforced concrete analysis methods, past Hanford Site concrete testing, public domain research testing, and current concrete research directions. This document, including future revisions, provides the structural engineering overview (or survey) for a consistent, accurate approach to nonlinear finite-element modeling of reinforced concrete for Hanford Site waste storage tanks. This report addresses concrete strength and modulus degradation with temperature, creep, shrinkage, long-term sustained loads, and temperature degradation of rebar and concrete bonds. Recommendations are given for parameter studies and evaluation techniques for review of nonlinear finite-element analysis of concrete

  13. Draft site characterization analysis of the site characterization report for the Basalt Waste Isolation Project, Hanford, Washington site. Appendices E through W

    International Nuclear Information System (INIS)

    1983-03-01

    Volume 2 contains Appendices E through W: potential for large-scale pump tests in the Grande Ronde; review of hydrochemical characterization related to flow system interpretation in Hanford basalts; limitations of packer-testing for head evaluation in Hanford basalts; hydrogeologic data integration for conceptual groundwater flow models; drilling mud effects on hydrogeologic testing; site issue analyses related to the nature at the present groundwater system at the Hanford site, Washington; structural and stratigraphic characteristics related to groundwater flow at the Hanford site, Washington; seismic hazard and some examples of hazard studies at Hanford; earthquake swarms in the Columbia Plateau; seismic ground motion at depth; failure modes for the metallic waste package component; degradation mechanisms of borosilicate glass; transport and retardation of radionuclides in the waste package; determination and interpretation of redox conditions and changes in underground high-level repositories; determination and interpretation of sorption data applied to radionuclide migration in underground repositories; solubility of radionuclide compounds presented in the BWIP site characterization report; and release rate from engineered system

  14. Natural phenomena hazards, Hanford Site, south central Washington

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1996-01-01

    This document presents the natural phenomena hazard (NPH) loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, at the Hanford Site in south-central Washington State. The purpose of this document is twofold: (1) summarize the NPH that are important to the design and evaluation of structures, systems, and components at the Hanford Site; (2) develop the appropriate natural phenomena loads for use in the implementation of DOE Order 5480.28. The supporting standards, DOE-STD-1020-94, Natural Phenomena Hazards Design and Evaluation Criteria for Department of Energy Facilities (DOE 1994a); DOE-STD-1022-94, Natural Phenomena Hazards Site Characteristics Criteria (DOE 1994b); and DOE-STD-1023-95, Natural Phenomena Hazards Assessment Criteria (DOE 1995) are the basis for developing the NPH loads

  15. The Wahluke (North) Slope of the Hanford Site: History and present challenges

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1996-01-01

    The Hanford Site was founded in early 1943 for the top secret government mission of producing plutonium for the world's first atomic weapons. A great deal of land was needed, both to separate various Site facilities from each other, and to provide buffer zones for safety and security purposes. In total, 640 square miles were occupied by the original Hanford Site and its buffer zones. Much of this land had been earmarked for inclusion in the Columbia Basin Irrigation Project (CBP). After World War II ended, a series of national decisions led to a long-term mission for the Hanford Site, and area residents learned that the Site lands they had hoped to farm would be withheld from agricultural production for the foreseeable future. A long set of negotiations commenced between the federal management agency responsible for Hanford (the Atomic Energy Commission -- AEC), and the Bureau of Reclamation (BOR), Department of the Interior that managed the CBP. Some lands were turned back to agriculture, and other compromises made, in the Site's far northern buffer lands known as the Wahluke Slope, during the 1950s. In the mid-1960s, further negotiations were about to allow farming on lands just north of the Columbia River, opposite Hanford's reactors, when studies conducted by the BOR found drainage barriers to irrigation. As a result of these findings, two wildlife refuges were created on that land in 1971. Today, after the Hanford Site plutonium production mission has ended and as Site cleanup goes forward, the possibility of total release of Wahluke Slope lands from the control of the Department of Energy (DOE -- a successor agency to the AEC) is under discussion. Such discussion encompasses not just objective and clearly visible criteria, but it resurrects historical debates about the roles of farming and government presence in the Columbia Basin

  16. Advective Removal of Intraparticle Uranium from Contaminated Vadose Zone Sediments, Hanford, USA

    International Nuclear Information System (INIS)

    Ilton, Eugene S.; Qafoku, Nikolla; Liu, Chongxuan; Moore, D. A.; Zachara, John M.

    2008-01-01

    A column study on U contaminated vadose zone sediments from the Hanford Site, WA, was performed in order to aid the development of a model for predicting U(VI) release rates under a dynamic flow regime and for variable geochemical conditions. The sediments of interest are adjacent to and below tank BX-102, part of the BX tank farm that contained high level liquid radioactive waste. Two sediments, with different U(VI) loadings and intraparticle large fracture vs. smaller fracture ratios, were reacted with three different solutions. The primary reservoir for U(VI) appears to be a micron-sized nanocrystalline Na-U-Si phase, possibly Na-boltwoodite, that nucleated and grew on plagioclase grains that line fractures within sand-sized granitic clasts. The solutions were all calcite saturated and in equilibrium with atmospheric CO2, where one solution was simply DI-water, the second was a synthetic ground water (SGW) with elevated Na, and the third was the same SGW but with both elevated Na and Si. The latter two solutions were employed, in part, to test the effect of saturation state on U(VI) release. For both sediments and all three electrolytes, there was an initial rapid release of U(VI) to the advecting solution followed by a plateau of low U(VI) concentration. U(VI) effluent concentration increased during subsequent stop flow (SF) events. The electrolytes with elevated Na and Si appreciably depressed U(VI) concentrations relative to DI water. The effluent data for both sediments and all three electrolytes was simulated reasonably well by a three domain model (the advecting fluid, fractures, and matrix) that coupled U(VI) dissolution rates, intraparticle U(VI) diffusion, and interparticle advective transport of U(VI); where key transport and dissolution processes had been parameterized in previous batch studies. For the calcite-saturated DI-water, U(VI) concentrations in the effluent remained far below saturation with respect to Na-boltwoodite and release of U(VI) to

  17. A Demonstration of the System Assessment Capability (SAC) Rev. 1 Software for the Hanford Remediation Assessment Project

    International Nuclear Information System (INIS)

    Eslinger, Paul W.; Kincaid, Charles T.; Nichols, William E.; Wurstner, Signe K.

    2006-01-01

    The System Assessment Capability (SAC) is a suite of interrelated computer codes that provides the capability to conduct large-scale environmental assessments on the Hanford Site. Developed by Pacific Northwest National Laboratory for the Department of Energy, SAC models the fate and transport of radioactive and chemical contaminants, starting with the inventory of those contaminants in waste sites, simulating transport through the environment, and continuing on through impacts to the environment and humans. Separate modules in the SAC address inventory, release from waste forms, water flow and mass transport in the vadose zone, water flow and mass transport in the groundwater, water flow and mass transport in the Columbia River, air transport, and human and ecological impacts. The SAC supports deterministic analyses as well as stochastic analyses using a Monte Carlo approach, enabling SAC users to examine the effect of uncertainties in a number of key parameters. The initial assessment performed with the SAC software identified a number of areas where both the software and the analysis approach could be improved. Since that time the following six major software upgrades have been made: (1) An air pathway model was added to support all-pathway analyses. (2) Models for releases from glass waste forms, buried graphite reactor cores, and buried naval reactor compartments were added. (3) An air-water dual-phase model was added to more accurately track the movement of volatile contaminants in the vadose zone. (4) The ability to run analyses was extended from 1,000 years to 10,000 years or longer after site closure. (5) The vadose zone flow and transport model was upgraded to support two-dimensional or three-dimensional analyses. (6) The ecological model and human risk models were upgraded so the concentrations of contaminants in food products consumed by humans are produced by the ecological model. This report documents the functions in the SAC software and provides a

  18. A Demonstration of the System Assessment Capability (SAC) Rev. 1 Software for the Hanford Remediation Assessment Project

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, Paul W.; Kincaid, Charles T.; Nichols, William E.; Wurstner, Signe K.

    2006-11-06

    The System Assessment Capability (SAC) is a suite of interrelated computer codes that provides the capability to conduct large-scale environmental assessments on the Hanford Site. Developed by Pacific Northwest National Laboratory for the Department of Energy, SAC models the fate and transport of radioactive and chemical contaminants, starting with the inventory of those contaminants in waste sites, simulating transport through the environment, and continuing on through impacts to the environment and humans. Separate modules in the SAC address inventory, release from waste forms, water flow and mass transport in the vadose zone, water flow and mass transport in the groundwater, water flow and mass transport in the Columbia River, air transport, and human and ecological impacts. The SAC supports deterministic analyses as well as stochastic analyses using a Monte Carlo approach, enabling SAC users to examine the effect of uncertainties in a number of key parameters. The initial assessment performed with the SAC software identified a number of areas where both the software and the analysis approach could be improved. Since that time the following six major software upgrades have been made: (1) An air pathway model was added to support all-pathway analyses. (2) Models for releases from glass waste forms, buried graphite reactor cores, and buried naval reactor compartments were added. (3) An air-water dual-phase model was added to more accurately track the movement of volatile contaminants in the vadose zone. (4) The ability to run analyses was extended from 1,000 years to 10,000 years or longer after site closure. (5) The vadose zone flow and transport model was upgraded to support two-dimensional or three-dimensional analyses. (6) The ecological model and human risk models were upgraded so the concentrations of contaminants in food products consumed by humans are produced by the ecological model. This report documents the functions in the SAC software and provides a

  19. Hanford Site physical separations CERCLA treatability test plan

    International Nuclear Information System (INIS)

    1992-03-01

    This test plan describes specifications, responsibilities, and general procedures to be followed to conduct a physical separations soil treatability test in the North Process Pond of the 300-FF-1 Operable Unit at the Hanford Site, Washington. The objective of this test is to evaluate the use of physical separation systems as a means of concentrating chemical and radioactive contaminants into fine soil fractions and thereby minimizing waste volumes. If successful the technology could be applied to clean up millions of cubic meters of contaminated soils in waste sites at Hanford and other sites. It is not the intent of this test to remove contaminated materials from the fine soils. Physical separation is a simple and comparatively low cost technology to potentially achieve a significant reduction in the volume of contaminated soils. Organic contaminants are expected to be insignificant for the 300-FF-I Operable Unit test, and further removal of metals and radioactive contaminants from the fine fraction of soils will require secondary treatment such as chemical extraction, electromagnetic separation, or other technologies. Additional investigations/testing are recommended to assess the economic and technical feasibility of applying secondary treatment technologies, but are not within the scope of this test. This plan provides guidance and specifications for the treatability test to be conducted as a service contract. More detailed instructions and procedures will be provided as part of the vendors (sellers) proposal. The procedures will be approved by Westinghouse Hanford Company (Westinghouse Hanford) and finalized by the seller prior to initiating the test

  20. Hanford Site near-facility environmental monitoring data report for calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    DIEDIKER, L.P.

    1999-07-29

    This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  1. Hanford Site near-facility environmental monitoring data report for calendar year 1998

    International Nuclear Information System (INIS)

    DIEDIKER, L.P.

    1999-01-01

    This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years

  2. Groundwater remediation at the Hanford site

    International Nuclear Information System (INIS)

    Fries, W.

    1993-01-01

    Ion exchange resin and adsorption technology has been used successfully to treat diversified types of toxic waste water for many years. Even though the Hanford Site presents many unique problems, the author believes these technologies can remediate the groundwater at this site. However, treatment of the sludge in tanks generally is beyond the pale of these technologies except for the possibility of experimental studies being performed at the University of Idaho (Troescher)

  3. Collaboration in long-term stewardship at DOE Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Moren, R. J.; Zeisloft, J. H.; Feist, E. T.; Brown, D.; Grindstaff, K. D.

    2013-01-10

    The U.S. Department of Energy's (DOE) Hanford Site comprises approximately 1,517 km{sup 2} (586 mi{sup 2}) of land in southeastern Washington. The site was established in 1943 as part of the Manhattan Project to produce plutonium for the nation's nuclear weapons program. As the Cold War era came to an end, the mission of the site transitioned from weapons production to environmental cleanup. As the River Corridor area of the site cleanup is completed, the mission for that portion of the site will transition from active cleanup to continued protection of environment through the Long-Term Stewardship (LTS) Program. The key to successful transition from cleanup to LTS is the unique collaboration among three (3) different DOE Programs and three (3) different prime contractors with each contractor having different contracts. The LTS Program at the site is a successful model of collaboration resulting in efficient resolution of issues and accelerated progress that supports DOE's Richland Office 2015 Vision for the Hanford Site. The 2015 Vision for the Hanford Site involves shrinking the active cleanup footprint of the surface area of the site to approximately 20 mi{sup 2} on the Central Plateau. Hanford's LTS Program is defined in DOE's planning document, Hanford Long-Term Stewardship Program Plan, DOE/RL-2010-35 Rev 1. The Plan defines the relationship and respective responsibilities between the federal cleanup projects and the LTS Program along with their respective contractors. The LTS Program involves these different parties (cleanup program and contractors) who must work together to achieve the objective for transition of land parcels. Through the collaborative efforts with the prime contractors on site over the past two years, 253.8 km{sup 2} (98 mi{sup 2}) of property has been successfully transitioned from the cleanup program to the LTS Program upon completion of active surface cleanup. Upcoming efforts in the near term will include transitioning another large

  4. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Serne, R. JEFFREY; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2006-10-18

    The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to Tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. Sediments from borehole 299-E27-22 were considered to be background uncontaminated sediments against which to compare contaminated sediments for the C Tank Farm characterization effort. This report also presents our interpretation of the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the C Tank Farm. The information presented in this report supports the A-AX, C and U Waste Management Area field investigation report(a) in preparation by CH2M HILL Hanford Group, Inc. A core log was generated for both boreholes and a geologic evaluation of all core samples was performed at the time of opening. Aliquots of sediment from the borehole core samples were analyzed and characterized in the laboratory for the following parameters: moisture content, gamma-emitting radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Two key radiocontaminants

  5. Application of new technologies for characterization of Hanford Site high-level waste

    International Nuclear Information System (INIS)

    Winters, W.I.

    1998-01-01

    To support remediation of Hanford Site high-level radioactive waste tanks, new chemical and physical measurement technologies must be developed and deployed. This is a major task of the Chemistry Analysis Technology Support (CATS) group of the Hanford Corporation. New measurement methods are required for efficient and economical resolution of tank waste safety, waste retrieval, and disposal issues. These development and deployment activities are performed in cooperation with Waste Management Federal Services of Hanford, Inc. This paper provides an overview of current analytical technologies in progress. The high-level waste at the Hanford Site is chemically complex because of the numerous processes used in past nuclear fuel reprocessing there, and a variety of technologies is required for effective characterization. Programmatic and laboratory operational needs drive the selection of new technologies for characterizing Hanford Site high-level waste, and these technologies are developed for deployment in laboratories, hot cells or in the field. New physical methods, such as the propagating reactive systems screening tool (PRSST) to measure the potential for self-propagating reactions in stored wastes, are being implemented. Technology for sampling and measuring gases trapped within the waste matrix is being used to evaluate flammability hazards associated with gas releases from stored wastes. Application of new inductively coupled plasma and laser ablation mass spectrometry systems at the Hanford Site's 222-S Laboratory will be described. A Raman spectroscopy probe mounted in a cone penetrometer to measure oxyanions in wastes or soils will be described. The Hanford Site has used large volumes of organic complexants and acids in processing waste, and capillary zone electrophoresis (CZE) methods have been developed for determining several of the major organic components in complex waste tank matrices. The principles involved, system installation, and results from

  6. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E. [Pacific Northwest Lab., Richland, WA (United States); Weiss, S.G.; Stegen, J.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  7. Air pollution prevention at the Hanford Site: Status and recommendations

    International Nuclear Information System (INIS)

    Engel, J.A.

    1995-08-01

    With the introduction of the Clean Air Act Amendments of 1990 and other air and pollution prevention regulations, there has been increased focus on both pollution prevention and air emissions at US DOE sites. The Pollution Prevention (P2) Group of WHC reviewed the status of air pollution prevention with the goal of making recommendations on how to address air emissions at Hanford through pollution prevention. Using the air emissions inventory from Hanford's Title V permit, the P2 Group was able to identify major and significant air sources. By reviewing the literature and benchmarking two other DOE Sites, two major activities were recommended to reduce air pollution and reduce costs at the Hanford Site. First, a pollution prevention opportunity assessment (P2OA) should be conducted on the significant painting sources in the Maintenance group and credit should be taken for reducing the burning of tumbleweeds, another significant source of air pollution. Since they are significant sources, reducing these emissions will reduce air emission fees, as well as have the potential to reduce material and labor costs, and increase worker safety. Second, a P2OA should be conducted on alternatives to the three coal-fired powerhouses (steam plants) on-site, including a significant costs analysis of alternatives. This analysis could be of significant value to other DOE sites. Overall, these two activities would reduce pollution, ease regulatory requirements and fees, save money, and help Hanford take a leadership role in air pollution prevention

  8. Hanford site post-NPH building inspection plan

    International Nuclear Information System (INIS)

    Wagenblast, G.R. Westinghouse Hanford

    1996-01-01

    This plan establishes consistent post-NPH building inspection procedures and defines a procedure for prioritization of buildings for inspection to ensure the safety of facilities prior to reentry. Qualification of systems for restart of operation is not included. This plan takes advantage, where possible, of existing national procedures for post-NPH inspection of buildings, of existing structural design and evaluation documentation of Hanford facilities, and current and proposed seismic instrumentation located throughout the Hanford site. A list of buildings, prioritized according to current building safety function and building vulnerability (without regard for or information about a damaging natural forces event) is provided

  9. Hanford Site radioactive hazardous materials packaging directory

    International Nuclear Information System (INIS)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations ampersand Development (PO ampersand D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage

  10. Hanford Site radioactive hazardous materials packaging directory

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  11. Hanford/Tomsk reciprocal site visit: Plutonium agreement compliance talks

    International Nuclear Information System (INIS)

    Libby, R.A.; Sorenson, R.; Six, D.; Schiegel, S.C.

    1994-11-01

    The objective of the visit to Hanford Site was to: demonstrate equipment, technology, and methods for calculating Pu production, measuring integrated reactor power, and storing and safeguarding PuO 2 ; demonstrate the shutdown of Hanford production reactors; and foster openness and transparency of Hanford operations. The first day's visit was an introduction to Hanford and a review of the history of the reactors. The second day consisted of discussions on the production reactors, reprocessing operations, and PuO 2 storage. The group divided on the third day to tour facilities. Group A toured the N reactor, K-West reactor, K-West Basins, B reactor, and participated in a demonstration and discussion of reactor modeling computer codes. Group B toured the Hanford Pu Storage Facility, 200-East Area, N-cell (oxide loadout station), the Automated Storage Facility, and the Nondestructive Assay Measurement System. Group discussions were held during the last day of the visit, which included scheduling of a US visit to Russia

  12. Candidate reagents and procedures for the dissolution of Hanford Site single-shell tank sludges

    International Nuclear Information System (INIS)

    Schulz, W.W.; Kupfer, M.J.

    1991-10-01

    At least some of the waste in the 149 single-shell tanks (SST) at the US Department of Energy (DOE) Hanford Site will be retrieved, treated, and disposed of. Although the importance of devising efficient and cost-effective sludge dissolution procedures has long been recognized, a concerted bench-scale effort to devise and test such procedures with actual solids representative of those in Hanford Site SSTs has not been performed. Reagents that might be used, either individually or serially, to dissolve sludges include HNO 3 , HNO 3 -oxalic acid, and HNO 3 -HF. This report consolidates and updates perspectives and recommendations concerning reagents and procedures for dissolving Hanford Site SST and selected double-shell tank (DST) sludges. The principal objectives of this report are as follows: (1) Compile and review existing experimental data on dissolution of actual Hanford Site SST and DST sludges. (2) Further inform Hanford Site engineers and scientists concerning the utility of combinations of thermally unstable complexants (TUCS) reagents and various reducing agents for dissolving SST and DST sludges. (This latter technology has recently been explored at the Argonne National Laboratory.) (3) Provide guidance in laying out a comprehensive experimental program to develop technology for dissolving all types of Hanford Site SST and DST sludges. 6 refs., 1 fig., 4 tabs

  13. TANK WASTE RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    International Nuclear Information System (INIS)

    DODD, R.A.

    2006-01-01

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the US Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60% of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring the waste to the DST system since 1997 as part of the interim stabilization program. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. This paper presents lessons learned from retrieval of tank waste at the Hanford Site and discusses how this information is used to optimize retrieval system efficiency, improve overall cost effectiveness of retrieval operations, and ensure that HFFACO requirements are met

  14. Evaluation of groundwater monitoring results at the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.

    1998-09-01

    The Hanford Site 200 Area Treated Effluent Disposal Facility (TEDF) has operated since June 1995. Groundwater monitoring has been conducted quarterly in the three wells surrounding the facility since 1992, with contributing data from nearby B Pond System wells. Cumulative hydrologic and geochemical information from the TEDF well network and other surrounding wells indicate no discernable effects of TEDF operations on the uppermost aquifer in the vicinity of the TEDF. The lateral consistency and impermeable nature of the Ringold Formation lower mud unit, and the contrasts in hydraulic conductivity between this unit and the vadose zone sediments of the Hanford formation suggest that TEDF effluent is spreading laterally with negligible mounding or downward movement into the uppermost aquifer. Hydrographs of TEDF wells show that TEDF operations have had no detectable effects on hydraulic heads in the uppermost aquifer, but show a continuing decay of the hydraulic mound generated by past operations at the B Pond System. Comparison of groundwater geochemistry from TEDF wells and other, nearby RCRA wells suggests that groundwater beneath TEDF is unique; different from both effluent entering TEDF and groundwater in the B Pond area. Tritium concentrations, major ionic proportions, and lower-than-background concentrations of other species suggest that groundwater in the uppermost aquifer beneath the TEDF bears characteristics of water in the upper basalt confined aquifer system. This report recommends retaining the current groundwater well network at the TEDF, but with a reduction of sampling/analysis frequency and some modifications to the list of constituents sought

  15. List of currently classified documents relative to Hanford Production Facilities Operations originated on the Hanford Site between 1961 and 1972

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The United States Department of Energy (DOE) has declared that all Hanford plutonium production- and operations-related information generated between 1944 and 1972 is declassified. Any documents found and deemed useful for meeting Hanford Environmental Dose Reconstruction (HEDR) objectives may be declassified with or without deletions in accordance with DOE guidance by Authorized Derivative Declassifiers. The September 1992, letter report, Declassifications Requested by the Technical Steering Panel of Hanford Documents Produced 1944--1960, (PNWD-2024 HEDR UC-707), provides an important milestone toward achieving a complete listing of documents that may be useful to the HEDR Project. The attached listing of approximately 7,000 currently classified Hanford-originated documents relative to Hanford Production Facilities Operations between 1961 and 1972 fulfills TSP Directive 89-3. This list does not include such titles as the Irradiation Processing Department, Chemical Processing Department, and Hanford Laboratory Operations monthly reports generated after 1960 which have been previously declassified with minor deletions and made publicly available. Also Kaiser Engineers Hanford (KEH) Document Control determined that no KEH documents generated between January 1, 1961 and December 31, 1972 are currently classified. Titles which address work for others have not been included because Hanford Site contractors currently having custodial responsibility for these documents do not have the authority to determine whether other than their own staff have on file an appropriate need-to-know. Furthermore, these documents do not normally contain information relative to Hanford Site operations.

  16. Annual Hanford Site Environmental Permitting Status Report

    International Nuclear Information System (INIS)

    HOMAN, N.A.

    2000-01-01

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. This status report also addresses Permit Condition I.E.22, as interpreted in Section 12.1.25 of the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Rev. 4), that states this report will be prepared annually and a copy of this report will be placed in the Facility Operating Record, General Information file by October 1 of each year

  17. Progress on Footprint Reduction at the Hanford Site - 12406

    Energy Technology Data Exchange (ETDEWEB)

    McKenney, Dale E. [CH2M HILL, Plateau Remediation Company, Richland, Washington 99352 (United States); Seeley, Paul [Cenibark International, Inc., Richland, Washington 99352 (United States); Farabee, Al [U.S. Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

    2012-07-01

    The Department of Energy (DOE) Office of Environmental Management (EM) continues to reduce the footprint of legacy sites throughout the EM complex. Footprint reduction is being accomplished by focusing cleanup activities on decontamination and demolition of excess contaminated facilities, soil and groundwater remediation, and solid waste disposition. All of these initiatives are being accomplished with established technologies in proven regulatory frameworks. Ultimately, completion of these environmental cleanup activities will reduce the monitoring and maintenance costs associated with managing large federal facilities, allowing EM to place more focus on other high priority cleanup efforts and facilitate a successful transition to land-term stewardship of these sites. Through the American Recovery and Reinvestment Act (ARRA) investment, the Department's cleanup footprint has been reduced by 45 percent to date, from 2411 km{sup 2} (931 mi{sup 2}) to 1336 km{sup 2} (516 mi{sup 2}s). With this significant progress on footprint reduction, the Department is on track towards their goal to reduce its overall footprint by approximately 90 percent by 2015. In addition, some areas cleaned up may become available for alternate uses (i.e. recreation, conservation, preservation, industrialization or development). Much of the work to reduce the complex's footprint occurred at the Savannah River Site in South Carolina and the Hanford Site in Washington, but cleanup continues across the complex. Footprint reduction is progressing well at the Hanford Site, supported predominantly through ARRA investment. To date, 994 km{sup 2} (384 mi{sup 2}) (65%) of footprint reduction have been achieved at Hanford, with a goal to achieve a 90% reduction by Fiscal Year 2015. The DOE EM and DOE Richland Operations Office, continue to make great progress to reduce the legacy footprint of the Hanford Site. Footprint reduction is being accomplished by focusing cleanup activities on

  18. Hanford Site National Environmental Policy Act (NEPA) characterization

    International Nuclear Information System (INIS)

    Cushing, C.E.

    1987-12-01

    In this document, a complete description of the environment is presented in Section 4 without extensive tabular data. For these data, sources are provided. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information where it is available on the 100, 200, and 300 Areas. This division will allow a person requiring information to go immediately to those sections of particular interest. However, site-specific information on each of these separate areas is not always complete or available. In this case, the general Hanford Site description should be used. Certain subjects covered (e.g., threatened and endangered species, Tri-Cities populations) will be updated periodically and changes published annually. The updating also applies to the basic data when new information becomes available. To this end, Section 4 of this document is being made available in loose-leaf text and on an IBM-PC diskette in WordPerfect 4.2. 130 refs., 14 figs., 30 tabs

  19. Characterization of Vadose Zone Sediment: Borehole 299-E33-46 Near B 110 in the B BX-BY Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; mccain, r. G.; Lindenmeier, Clark W.; Orr, Robert D.; Legore, Virginia L.; Clayton, Ray E.; Lindberg, Michael J.; Kutynakov, I. V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

    2008-09-11

    This report was revised in September 2008 to remove acid-ectractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in December 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the B-BX-BY Waste Management Area. This report is the third in a series of three reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a borehole installed approximately 4.5 m (15 ft) northeast of tank B- 110 (borehole 299-E33-46).

  20. Hanford quarterly seismic report - 97C seismicity on and near the Hanford Site, Pasco Basin, Washington. Quarterly report, April 1, 1997--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1997-08-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 100% and for stations of the EWRN was 99.99%. For fiscal year (FY) 1997 third quarter (97C), the acquisition computer triggered 183. Of these triggers twenty one were local earthquakes: sixteen in the Columbus River Basalt Group, one in the pre-basalt sediments, and four in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  1. Hanford Analytical Services Management: One of the keys to effectively managing the Hanford Site in an environment of competing resources and priorities

    International Nuclear Information System (INIS)

    Wanek, D.M.; Mooers, G.C.; Schubert, S.A.

    1994-02-01

    The Quality Improvement Team recognized that a true partnership between RL and the Hanford Site contractors had to be established to (1) identify what the analytical needs were for the site, both short and long term, (2) determine how to meet those needs, whether by using onsite capability or contracting offsite services, and (3) ensure that all analytical services meet the high level of quality demanded by the end users of the data. The Hanford Analytical Services Management (HASM) organization was established from this concept. What makes HASM unique and virtually guarantees success is that all the participants within HASM, site contractors and RL, have parity. This ensures that the best interests of the Hanford Site are implemented and minimizes the normal parochialism when multiple contractors are competing for the same work. The HASM concept provides for consistent management to balance the analytical needs with the limited resources identified for analytical services at the Hanford Site. By contracting for analytical services, HASM provides a mechanism to meet site goals of increased commercialization

  2. Deficiencies in Vadose Zone Understanding at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas Ronald; Bates, Dona Louise; Bishop, Carolyn Wagoner; Heard, Robert Eugene; Hubbell, Joel Michael; Hull, Laurence Charles; Lehman, Richard Michael; Magnuson, Swen O; Mattson, Earl Douglas; Mccarthy, James Michael; Porro, Indrek; Ritter, Paul David; Roddy, Michael Scott; Singler, Robert Edward; Smith, Richard Paul

    2000-08-01

    Subsurface contamination in the vadose zone, that portion of the subsurface pathway between land surface and an underlying aquifer, poses environmental problems at the Idaho National Engineering and Environmental Laboratory (INEEL) in eastern Idaho and across the U.S. Department of Energy complex. Assessing potential adverse impacts from these contaminated sites requires an understanding of the mechanisms controlling contaminant transport. Currently, vadose zone experts at the INEEL cannot with confidence predict the movement of water and contaminants in the complex, heterogeneous, fractured subsurface at the INEEL, especially within the vadose zone. In the draft version (Revision 1) of the Vadose Zone Deficiencies document, deficiencies in scientific understanding of flow and transport processes in the vadose zone at the INEEL were identified and grouped into 13 categories and recommendations were provided to address each of the deficiencies. The draft document provided the basis for an INEEL Vadose Zone Workshop that was conducted October 20 and 21, 1999, in Idaho Falls, Idaho. The workshop was conducted to group and rank the previously identified deficiencies and for the subsequent development of science plans to address the deficiencies that limit reliable predictions of water and contaminant movement in the subsurface. The workshop participants, comprising INEEL and scientists and project managers and non-INEEL scientists knowledgeable about the vadose zone, developed science- and technology-based recommendations derived through a series of technical sessions at the workshop. In this document, the final version of the Vadose Zone Deficiencies document, the draft document has been incorporated, largely intact, as well as the results from the workshop. The workshop participants grouped the deficiencies in vadose zone understanding at the INEEL into seven categories. These seven categories will be the focus areas of five science plans that are being developed to

  3. Optimization of Remediation Conditions using Vadose Zone Monitoring Technology

    Science.gov (United States)

    Dahan, O.; Mandelbaum, R.; Ronen, Z.

    2010-12-01

    Success of in-situ bio-remediation of the vadose zone depends mainly on the ability to change and control hydrological, physical and chemical conditions of subsurface. These manipulations enables the development of specific, indigenous, pollutants degrading bacteria or set the environmental conditions for seeded bacteria. As such, the remediation efficiency is dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. Enhanced bioremediation of the vadose zone is achieved under field conditions through infiltration of water enriched with chemical additives. Yet, water percolation and solute transport in unsaturated conditions is a complex process and application of water with specific chemical conditions near land surface dose not necessarily result in promoting of desired chemical and hydraulic conditions in deeper sections of the vadose zone. A newly developed vadose-zone monitoring system (VMS) allows continuous monitoring of the hydrological and chemical properties of the percolating water along deep sections of the vadose zone. Implementation of the VMS at sites that undergoes active remediation provides real time information on the chemical and hydrological conditions in the vadose zone as the remediation process progresses. Manipulating subsurface conditions for optimal biodegradation of hydrocarbons is demonstrated through enhanced bio-remediation of the vadose zone at a site that has been contaminated with gasoline products in Tel Aviv. The vadose zone at the site is composed of 6 m clay layer overlying a sandy formation extending to the water table at depth of 20 m bls. The upper 5 m of contaminated soil were removed for ex-situ treatment, and the remaining 15 m vadose zone is treated in-situ through enhanced bioremedaition. Underground drip irrigation system was installed below the surface on the bottom of the excavation. Oxygen and nutrients releasing powder (EHCO, Adventus) was spread below the

  4. Hanford Site Pollution Prevention Plan progress report, 1994. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    This report tracks progress made during 1994 against the goals stated in DOE/RL-92-62, Executive Summary, Hanford Site Pollution Prevention Plan. The Executive Summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, Executive Summary, and the progress reports are elements of a pollution prevention planning program that is required by WAC 173-307, ''Plans,'' for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement RCW 70.95C, ''Waste Reduction,'' an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the in-process reuse or reclamation of valuable spent material. The Hanford Site is voluntarily complying with this state regulatory-mandated program. All treatment, storage, or disposal (TSD) facilities are exempt from participating; the Hanford Site is classified as a TSD

  5. Hanford Site Pollution Prevention Plan progress report, 1994. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This report tracks progress made during 1994 against the goals stated in DOE/RL-92-62, Executive Summary, Hanford Site Pollution Prevention Plan. The Executive Summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, Executive Summary, and the progress reports are elements of a pollution prevention planning program that is required by WAC 173-307, ``Plans,`` for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement RCW 70.95C, ``Waste Reduction,`` an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the in-process reuse or reclamation of valuable spent material. The Hanford Site is voluntarily complying with this state regulatory-mandated program. All treatment, storage, or disposal (TSD) facilities are exempt from participating; the Hanford Site is classified as a TSD.

  6. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  7. Collaboration in Long-Term Stewardship at DOE's Hanford Site - 13019

    International Nuclear Information System (INIS)

    Moren, Rick; Brown, David; Feist, Ella; Grindstaff, Keith; Zeisloft, Jamie

    2013-01-01

    The U.S. Department of Energy's (DOE) Hanford Site comprises approximately 1,517 km 2 (586 mi 2 ) of land in southeastern Washington. The site was established in 1943 as part of the Manhattan Project to produce plutonium for the nation's nuclear weapons program. As the Cold War era came to an end, the mission of the site transitioned from weapons production to environmental cleanup. As the River Corridor area of the site cleanup is completed, the mission for that portion of the site will transition from active cleanup to continued protection of environment through the Long-Term Stewardship (LTS) Program. The key to successful transition from cleanup to LTS is the unique collaboration among three (3) different DOE Programs and three (3) different prime contractors with each contractor having different contracts. The LTS Program at the site is a successful model of collaboration resulting in efficient resolution of issues and accelerated progress that supports DOE's Richland Office 2015 Vision for the Hanford Site. The 2015 Vision for the Hanford Site involves shrinking the active cleanup footprint of the surface area of the site to approximately 20 mi 2 on the Central Plateau. Hanford's LTS Program is defined in DOE's planning document, Hanford Long-Term Stewardship Program Plan [1]. The Plan defines the relationship and respective responsibilities between the federal cleanup projects and the LTS Program along with their respective contractors. The LTS Program involves these different parties (cleanup program and contractors) who must work together to achieve the objective for transition of land parcels. Through the collaborative efforts with the prime contractors on site over the past two years,, 253.8 km 2 (98 mi 2 ) of property has been successfully transitioned from the cleanup program to the LTS Program upon completion of active surface cleanup. Upcoming efforts in the near term will include transitioning another large parcel that includes one of the six (6

  8. Hanford Site environmental data for calendar year 1993--surface and Columbia River

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1994-06-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals. Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1993 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1993 by PNL's Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries

  9. Hanford Site environmental data for calendar year 1994: Surface and Columbia River

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1995-07-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the US Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals. Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1994 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1994 b PNL's Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries

  10. Hanford Site environmental data for calendar year 1994: Surface and Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, L.E.

    1995-07-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the US Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals. Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1994 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1994 b PNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries.

  11. Hanford Site environmental data for calendar year 1993--surface and Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, L.E.

    1994-06-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals. Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1993 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1993 by PNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries.

  12. Hanford site implementation plan for buried, transuranic-contaminated waste

    International Nuclear Information System (INIS)

    1987-05-01

    The GAO review of DOE's Defense Waste Management Plan (DWMP) identified deficiencies and provided recommendations. This report responds to the GAO recommendations with regard to the Hanford Site. Since the issuance of the DWMP, an extensive planning base has been developed for all high-level and transuranic waste at the Hanford Site. Thirty-three buried sites have been identified as possibly containing waste that can be classified as transuranic waste. Inventory reports and process flowsheets were used to provide an estimate of the radionuclide and hazardous chemical content of these sites and approximately 370 additional sites that can be classified as low-level waste. A program undertaken to characterize select sites suspected of having TRU waste to refine the inventory estimates. Further development and evaluation are ongoing to determine the appropriate remedial actions, with the objectives of balancing long-term risks with costs and complying with regulations. 18 refs., 7 figs., 6 tabs

  13. Residual herbicide study on selected Hanford Site roadsides

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.L.; Kemp, C.J.; Sackschewsky, M.R.

    1993-08-01

    Westinghouse Hanford Company routinely treats roadsides with herbicides to control undesirable plant growth. An experiment was conducted to test perennial grass germination in soils adjacent to roadways of the Hanford Site. The primary variable was the distance from the roadside. A simple germination test was executed in a controlled-environment chamber to determine the residual effects of these applications. As expected, the greatest herbicide activity was found directly adjacent to the roadway, approximately 0 to 20 ft (0 to 6.3 m) from the roadway.

  14. Protective barrier systems for final disposal of Hanford Waste Sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Hartley, J.N.

    1986-01-01

    A protecting barrier system is being developed for potential application in the final disposal of defense wastes at the Hanford Site. The functional requirements for the protective barrier are control of water infiltration, wind erosion, and plant and animal intrusion into the waste zone. The barrier must also be able to function without maintenance for the required time period (up to 10,000 yr). This paper summarizes the progress made and future plans in this effort to design and test protective barriers at the Hanford Site

  15. Wildlife studies on the Hanford Site: 1993 Highlights report

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, L.L. [ed.

    1994-04-01

    The Pacific Northwest Laboratory (PNL) Wildlife Resources Monitoring Project was initiated by DOE to track the status of wildlife populations to determine whether Hanford operations affected them. The project continues to conduct a census of wildlife populations that are highly visible, economically or aesthetically important, and rare or otherwise considered sensitive. Examples of long-term data collected and maintained through the Wildlife Resources Monitoring Project include annual goose nesting surveys conducted on islands in the Hanford Reach, wintering bald eagle surveys, and fall Chinook salmon redd (nest) surveys. The report highlights activities related to salmon and mollusks on the Hanford Reach of the Columbia River; describes efforts to map vegetation on the Site and efforts to survey species of concern; provides descriptions of shrub-steppe bird surveys, including bald eagles, Canada geese, and hawks; outlines efforts to monitor mule deer and elk populations on the Site; and describes development of a biological database management system.

  16. 1997 evaluation of tritium removal and mitigation technologies for Hanford Site wastewaters

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Biyani, R.K.; Duncan, J.B.; Flyckt, D.L.; Mohondro, P.C.; Sinton, G.L.

    1997-01-01

    This report contains results of a biennial assessment of tritium separation technology and tritium nitration techniques for control of tritium bearing wastewaters at the Hanford Site. Tritium in wastewaters at Hanford have resulted from plutonium production, fuel reprocessing, and waste handling operations since 1944. this assessment was conducted in response to the Hanford Federal Facility Agreement and Consent Order

  17. Hanford Site environmental report for calendar year 1989

    International Nuclear Information System (INIS)

    Jaquish, R.E.; Bryce, R.W.

    1990-05-01

    This report is a summary of the environmental status of the Hanford Site in 1989. It includes descriptions of the Site and its mission, the status of compliance with environmental regulations, planning and activities to accomplish compliance, environmental protection and restoration activities, and environmental monitoring. 97 refs., 67 figs., 14 tabs

  18. Hanford Site environmental report for calendar year 1989

    Energy Technology Data Exchange (ETDEWEB)

    Jaquish, R.E.; Bryce, R.W. (eds.)

    1990-05-01

    This report is a summary of the environmental status of the Hanford Site in 1989. It includes descriptions of the Site and its mission, the status of compliance with environmental regulations, planning and activities to accomplish compliance, environmental protection and restoration activities, and environmental monitoring. 97 refs., 67 figs., 14 tabs.

  19. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  20. Strategic plan for Hanford site information management

    International Nuclear Information System (INIS)

    1994-09-01

    The Hanford Site missions are to clean up the Site, to provide scientific knowledge and technology to meet global needs, and to partner in the economic diversification of the region. To achieve these long-term missions and increase confidence in the quality of the Site's decision making process, a dramatically different information management culture is required, consistent with US Department of Energy (DOE) mandates on increased safety, productivity, and openness at its sites. This plan presents a vision and six strategies that will move the Site toward an information management culture that will support the Site missions and address the mandates of DOE

  1. RADIONUCLIDE AIR EMISSIONS REPORT FOR THE HANFORD SITE CY2003

    International Nuclear Information System (INIS)

    ROKKAN, D.J.

    2004-01-01

    This report documents radionuclide air emissions from the US Department of Energy (DOE) Hanford Site in 2003 and the resulting effective dose equivalent (EDE) to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants, Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities''; Washington Administrative Code (WAC) Chapter 246-247, ''Radiation Protection-Air Emissions''; 10 CFR 830.120, Quality Assurance; DOE Order 414.1B, Quality Assurance; NQA-1, Quality Assurance Requirements for Nuclear Facility Application; EPA QA/R-2, EPA Requirements for Quality Management Plans; and EPA QA/R-5, Requirements for Quality Assurance Project Plans. The federal regulations in Subpart H of 40 CFR 61 require the measurement and reporting of radionuclides emitted from DOE facilities and the resulting public dose from those emissions. A standard of 10 mrem/yr EDE is not to be exceeded. The EDE to the MEI due to routine and nonroutine emissions in 2003 from Hanford Site point sources was 0.022 mrem (0.00022 mSv), or 0.22 percent of the federal standard. The portions of the Hanford Site MEI dose attributable to individual point sources as listed in Section 2.0 are appropriate for use in demonstrating the compliance of abated stack emissions with applicable terms of the Hanford Site Air Operating Permit and of Notices of Construction. The state has adopted the 40 CFR 61 standard of 10 mrem/yr EDE into their regulations, yet further requires that the EDE to the MEI be calculated not only from point source emissions but also from diffuse and fugitive sources of emissions. WAC 246-247 also requires the reporting of radionuclide emissions from all Hanford Site sources during routine as well as nonroutine operations. The EDE from

  2. Hanford Site Cleanup Challenges and Opportunities for Science and Technology - A Strategic Assessment

    International Nuclear Information System (INIS)

    Johnson, W.; Reichmuth, B.; Wood, T.; Glasper, M.; Hanson, J.

    2002-01-01

    In November 2000, the U.S. Department of Energy (DOE) Richland Operations Office (RL) initiated an effort to produce a single, strategic perspective of RL Site closure challenges and potential Science and Technology (S and T) opportunities. This assessment was requested by DOE Headquarters (HQ), Office of Science and Technology, EM-50, as a means to provide a site level perspective on S and T priorities in the context of the Hanford 2012 Vision. The objectives were to evaluate the entire cleanup lifecycle (estimated at over $24 billion through 2046), to identify where the greatest uncertainties exist, and where investments in S and T can provide the maximum benefit. The assessment identified and described the eleven strategic closure challenges associated with the cleanup of the Hanford Site. The assessment was completed in the spring of 2001 and provided to DOE-HQ and the Hanford Site Technology Coordination Group (STCG) for review and input. It is the first step in developing a Site-level S and T strategy for RL. To realize the full benefits of this assessment, RL and Site contractors will work with the Hanford STCG to ensure: identified challenges and opportunities are reflected in project baselines; detailed S and T program-level road maps reflecting both near- and long-term investments are prepared using this assessment as a starting point; and integrated S and T priorities are incorporated into Environmental Management (EM) Focus Areas, Environmental Management Science Program (EMSP) and other research and development (R and D) programs to meet near-term and longer-range challenges. Hanford is now poised to begin the detailed planning and road mapping necessary to ensure that the integrated Site level S and T priorities are incorporated into the national DOE S and T program and formally incorporated into the relevant project baselines. DOE-HQ's response to this effort has been very positive and similar efforts are likely to be undertaken at other sites

  3. TWRS vadose zone contamination issue expert panel report

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, D.S.

    1997-05-01

    When members were first canvassed for participation in the Vadose Zone Expert Panel the stated purpose for convening the Panel was to review a controversial draft report, the SX Tank Farm Report. This report was produced by a DOE Grand Junction Project Office (GJPO) contractor, RUST Geotech, now MACTEC-ERS, for the DOE Richland Office (DOERL). Three meetings were planned for June, July and August, 1995 to review the draft report and to complete a Panel report by mid-September. The Expert Panel has found its efforts confounded by various non-technical issues. The Expert Panel has chosen to address some of the non-technical issues in this Preface rather than to dilute the technical discussion that follows in the body of this independent expert panel status report (Panel Report). Rather than performing a straightforward manuscript review, the Panel was asked to resolve conflicting interpretations of gamma-ray logging measurements performed in vadose zone boreholes (drywells) surrounding the high-level radioactive wastes of the SX tank farm. There are numerous and complex technical issues that must be evaluated before the vertical and radial extent of contaminant migration at the SX tank farm can be accurately assessed. When the Panel first met in early June, 1996, it quickly became apparent that the scientific and technical issues were obscured by policy and institutional affairs which have polarized discussion among various segments of the Hanford organization. This situation reflects the kinds of institutional problems described separately in reports by the National Research Council of the National Academy of Sciences (NAS/NRC), The Hanford Tanks Environmental Impacts and Policy Choices and BmTiers to Science: Technical Management of the Department of Energy Environmental Remediation Program. The Vadose Zone Characterization Program, appears to be caught between conflicting pressures and organizational mandates, some imposed from outside DOE-RL and some self

  4. A dynamic simulation of the Hanford site grout facility

    International Nuclear Information System (INIS)

    Zimmerman, B.D.; Klimper, S.C.; Williamson, G.F.

    1992-01-01

    Computer-based dynamic simulation can be a powerful, low-cost tool for investigating questions concerning timing, throughput capability, and ability of engineering facilities and systems to meet established milestones. The simulation project described herein was undertaken to develop a dynamic simulation model of the Hanford site grout facility and its associated systems at the US Department of Energy's (DOE's) Hanford site in Washington State. The model allows assessment of the effects of engineering design and operation trade-offs and of variable programmatic constraints, such as regulatory review, on the ability of the grout system to meet milestones established by DOE for low-level waste disposal

  5. Radionuclide air emissions report for the Hanford Site -- calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.; Rhoads, K.

    1998-06-17

    This report documents radionuclide air emission from the Hanford Site in 1997, and the resulting effective dose equivalent to the maximally exposed member of the public, referred to as the MEI. The report has been prepared in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, National Emissions Standards for Hazardous Air Pollutants, Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities. This report has also been prepared in accordance with the reporting requirements of the Washington Administrative Code Chapter 246-247, Radiation Protection-Air Emissions. The effective dose equivalent to the MEI from the Hanford Site`s 1997 point source emissions was 1.2 E-03 mrem (1.2 E-05 mSv), which is well below the 40 CFR 61 Subpart H regulatory limit of 10 mrem/yr. Radon and thoron emissions, exempted from 40 CFR 61 Subpart H, resulted in an effective dose equivalent to the MEI of 2.5 E-03 mrem (2.5 E-05 mSv). The effective dose equivalent to the MEI attributable to diffuse and fugitive emissions was 2.2 E-02 mrem (2.2 E-04 mSv). The total effective dose equivalent from all of the Hanford Site`s air emissions was 2.6 E-02 mrem (2.6 E-04 mSv). The effective dose equivalent from all of the Hanford Site`s air emissions is well below the Washington Administrative Code, Chapter 246-247, regulatory limit of 10 mrem/yr.

  6. Hanford Site Guidelines for Preparation and Presentation of Geologic Information

    Energy Technology Data Exchange (ETDEWEB)

    Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

    2010-04-30

    A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

  7. Hanford Site existing irradiated fuel storage facilities description

    Energy Technology Data Exchange (ETDEWEB)

    Willis, W.L.

    1995-01-11

    This document describes facilities at the Hanford Site which are currently storing spent nuclear fuels. The descriptions provide a basis for the no-action alternatives of ongoing and planned National Environmental Protection Act reviews.

  8. Feasibility study for the processing of Hanford Site cesium and strontium isotopic sources in the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Watrous, R.A.; Nelson, J.L.; Perez, J.M.; Peters, R.D.; Peterson, M.E.

    1991-09-01

    The final environmental impact statement for the disposal of defense-related wastes at the Hanford Site (Final Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes [HDW-EIS] [DOE 1987]) states that the preferred alternative for disposal of cesium and strontium wastes at the Hanford Site will be to package and ship these wastes to the commercial high-level waste repository. The Record of Decision for this EIS states that before shipment to a geologic repository, these wastes will be packaged in accordance with repository waste acceptance criteria. However, the high cost per canister for repository disposal and uncertainty about the acceptability of overpacked capsules by the repository suggest that additional alternative means of disposal be considered. Vitrification of the cesium and strontium salts in the Hanford Waste Vitrification Plant (HWVP) has been identified as a possible alternative to overpacking. Subsequently, Westinghouse Hanford Company's (Westinghouse Hanford) Projects Technical Support Office undertook a feasibility study to determine if any significant technical issues preclude the vitrification of the cesium and strontium salts. Based on the information presented in this report, it is considered technically feasible to blend the cesium chloride and strontium fluoride salts with neutralized current acid waste (NCAW) and/or complexant concentrate (CC) waste feedstreams, or to blend the salts with fresh frit and process the waste through the HWVP

  9. Hanford Tank Farms Vadose Zone, Addendum to the TX Tank Farm Report

    International Nuclear Information System (INIS)

    Spatz, R.

    2000-01-01

    This addendum to the TX Tank Farm Report (GJO-97-13-TAR, GJO-HAN-11) published in September 1997 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TX Tank Farm at the DOE Hanford Site in the state of Washington

  10. Description of Work for Drilling at the 183-DR Site in Support of the In Situ Gaseous Reduction Test

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Edward C.; Olsen, Khris B.; Schalla, Ronald

    2000-06-26

    In Situ Gaseous Reduction is a technology currently being developed by DOE for the remediation of soil waste sites contaminated with hexavalent chromium. Prior work suggests that a candidate for application of this approach is the 183-DR site at Hanford. However, deep vadose zone drilling is needed to verify the presence of a hexavalent chromium source and to determine the concentration levels and spatial distribution of contamination. This document presents the requirements associated with drilling one to two vadose zone boreholes at the 183-DR site to obtain this information. If hexavalent chromium is determined to be present at levels of at least 10 ppm in the vadose zone in one of the initial boreholes, this hole will be completed for gas injection and six additional gas extraction boreholes will be drilled and completed. This network will be used as a flowcell for performing a gas treatment test at the site.

  11. T Tank Farm Interim Surface Barrier Demonstration--Vadose Zone Monitoring Plan

    International Nuclear Information System (INIS)

    Zhang, Z. F.; Keller, Jason M.; Strickland, Christopher E.

    2007-01-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank in 1973. Many of the contaminants from that leak still reside within the vadose zone beneath the T Tank Farm. CH2M Hill Hanford Group, Inc. seeks to minimize movement of this residual contaminant plume by placing an interim barrier on the surface. Such a barrier is expected to prevent infiltrating water from reaching the plume and moving it further. A plan has been prepared to monitor and determine the effectiveness of the interim surface barrier. Soil water content and water pressure will be monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. In fiscal year 2006, two instrument nests were installed. Each instrument nest contains a neutron probe access tube, a capacitance probe, four heat-dissipation units, and a drain gauge to measure soil water flux. A meteorological station has been installed outside of the fence. In fiscal year 2007, two additional instrument nests are planned to be installed beneath the proposed barrier.

  12. Hanford Site Climatological Summary 2004 with Historical Data

    International Nuclear Information System (INIS)

    Hoitink, Dana J.; Ramsdell, James V.; Burk, Kenneth W.; Shaw, William J.

    2005-01-01

    This document presents the climatological data measured on the DOE Hanford Site for calendar year 2004. This report contains updated historical information for temperature, precipitation, wind, and normal and extreme values of temperature, and precipitation

  13. 1996 Hanford site report on land disposal restrictions for mixed waste

    International Nuclear Information System (INIS)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site

  14. 1996 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

  15. Collaboration in long-term stewardship at DOE Hanford Site-13019

    International Nuclear Information System (INIS)

    Moren, R. J.; Zeisloft, J. H.; Feist, E. T.; Brown, D.; Grindstaff, K. D.

    2013-01-01

    The U.S. Department of Energy's (DOE) Hanford Site comprises approximately 1,517 km 2 (586 mi 2 ) of land in southeastern Washington. The site was established in 1943 as part of the Manhattan Project to produce plutonium for the nation's nuclear weapons program. As the Cold War era came to an end, the mission of the site transitioned from weapons production to environmental cleanup. As the River Corridor area of the site cleanup is completed, the mission for that portion of the site will transition from active cleanup to continued protection of environment through the Long-Term Stewardship (LTS) Program. The key to successful transition from cleanup to LTS is the unique collaboration among three (3) different DOE Programs and three (3) different prime contractors with each contractor having different contracts. The LTS Program at the site is a successful model of collaboration resulting in efficient resolution of issues and accelerated progress that supports DOE's Richland Office 2015 Vision for the Hanford Site. The 2015 Vision for the Hanford Site involves shrinking the active cleanup footprint of the surface area of the site to approximately 20 mi 2 on the Central Plateau. Hanford's LTS Program is defined in DOE's planning document, Hanford Long-Term Stewardship Program Plan, DOE/RL-2010-35 Rev 1. The Plan defines the relationship and respective responsibilities between the federal cleanup projects and the LTS Program along with their respective contractors. The LTS Program involves these different parties (cleanup program and contractors) who must work together to achieve the objective for transition of land parcels. Through the collaborative efforts with the prime contractors on site over the past two years, 253.8 km 2 (98 mi 2 ) of property has been successfully transitioned from the cleanup program to the LTS Program upon completion of active surface cleanup. Upcoming efforts in the near term will include transitioning another large parcel that includes one

  16. Comments on Hanford 2012 Accelerating Clean Up and Shrinking the Site

    International Nuclear Information System (INIS)

    SHERMAN, Y.T.

    2001-01-01

    In the late summer of 2000, the Department of Energy Richland Operations Office (RL) Manager, Keith Klein, announced his approach to cleanup of the Hanford Site in a document called ''Done in a Decade.'' He asked for comments and suggestions to improve the plan from employees and stakeholders. We received over 300 individual comments. Several of the comments and the Hanford Advisory Board objected to the title of the plan, leading us to change it to ''Hanford 2012 Accelerating Cleanup and Shrinking the Site.'' We addressed virtually all substantive comments, i.e. those that recommended a change in the text, better understanding of an Issue, or consideration of a new Mea, and incorporated editorial comments where appropriate. We thank all those who took time to comment. The new plan, ''Hanford 2012'', is a much better document because you did so. You will notice some things about the table: Comments are not quoted verbatim--most were paraphrased to conserve space; Comments were separated into one of four sections: general, the River, the Plateau, the Future; Commenters are not identified by name or organization; Comments are generally listed in the order in which they were received, several comments were repetitive, but differed slightly so we made an effort to respond to each one, despite apparent repetition; There are many acronyms used at the Hanford Site, most of which can be found on the Web at http:/Ewww.hanford.gov/acronyml. We have attempted to spell out each acronym the first time it's used in a comment/response with the following exceptions: DOE--Department of Energy; RL--Department of Energy, Richland Operations Office; and ORP--Department of Energy, Office of River Protection

  17. Hanford Site Environmental Report for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

    2001-09-25

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts.

  18. Hanford Site Environmental Report for Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

    2000-09-28

    The Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts.

  19. QUEST Hanford Site Computer Users - What do they do?

    Energy Technology Data Exchange (ETDEWEB)

    WITHERSPOON, T.T.

    2000-03-02

    The Fluor Hanford Chief Information Office requested that a computer-user survey be conducted to determine the user's dependence on the computer and its importance to their ability to accomplish their work. Daily use trends and future needs of Hanford Site personal computer (PC) users was also to be defined. A primary objective was to use the data to determine how budgets should be focused toward providing those services that are truly needed by the users.

  20. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196, and RCRA Borehole 299-W11-39

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Schaef, Herbert T.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28, and 4.52. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the second of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and from borehole 299-W-11-39 installed northeast of the T Tank Farm. Finally, the measurements on sediments from borehole C4104 are compared with a nearby borehole drilled in 1993, 299- W10-196, through the tank T-106 leak plume.

  1. Soil structural analysis tools and properties for Hanford site waste tank evaluation

    International Nuclear Information System (INIS)

    Moore, C.J.; Holtz, R.D.; Wagenblast, G.R.; Weiner, E.D.; Marlow, R.S.

    1995-09-01

    As Hanford Site contractors address future structural demands on nuclear waste tanks, built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice guidelines for soil modeling are suitable as preliminary design tools, future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current code based structural capabilities. For example, waste removal may include cutting a large hole in a tank. This report addresses both spring modeling of site soils and finite-element modeling of soils. Additionally seismic dynamic modeling of Hanford Site soils is also included. Of new and special interest is Section 2.2 that Professor Robert D. Holtz of the University of Washington wrote on plane strain soil testing versus triaxial testing with Hanford Site application to large buried waste tanks

  2. Soil structural analysis tools and properties for Hanford site waste tank evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Moore, C.J.; Holtz, R.D.; Wagenblast, G.R.; Weiner, E.D.; Marlow, R.S.

    1995-09-01

    As Hanford Site contractors address future structural demands on nuclear waste tanks, built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice guidelines for soil modeling are suitable as preliminary design tools, future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current code based structural capabilities. For example, waste removal may include cutting a large hole in a tank. This report addresses both spring modeling of site soils and finite-element modeling of soils. Additionally seismic dynamic modeling of Hanford Site soils is also included. Of new and special interest is Section 2.2 that Professor Robert D. Holtz of the University of Washington wrote on plane strain soil testing versus triaxial testing with Hanford Site application to large buried waste tanks.

  3. Registration for the Hanford Site: Sources of radioactive emissions

    International Nuclear Information System (INIS)

    Silvia, M.J.

    1993-04-01

    This Registration Application serves to renew the registration for all Hanford Site sources of radioactive air emissions routinely reported to the State of Washington Department of Health (DOH). The current registration expires on August 15, 1993. The Application is submitted pursuant to the Washington Administrative Code (WAC) Chapter 246--247, and is consistent with guidance provided by DOH for renewal. The Application subdivides the Hanford Site into six major production, processing or research areas. Those six areas are in the 100 Area, 200 East Area, 200 West Area, 300 Area, 400 Area, and 600 Area. Each major group of point sources within the six areas listed above is represented by a Source Registration for Radioactive Air Emissions form. Annual emissions. for the sources are listed in the ''Radionuclide Air Emissions Report for the Hanford Site,'' published annually. It is a requirement that the following Statement of Compliance be provided: ''The radioactive air emissions from the above sources do meet the emissions standards contained in Chapter 173-480-040 WAC, Ambient Air Quality Standards and Emissions Limits for Radionuclides. As the Statement of Compliance pertains to this submittal, the phrase ''above sources'' is to be understood as meaning the combined air emissions from all sources registered by this submittal

  4. Sorption of trace cesium on 21 Hanford Site sediment types

    International Nuclear Information System (INIS)

    Routson, R.C.; Barney, G.S.; Smith, R.M.; Delegard, C.A.

    1980-03-01

    Sorption of trace cesium (Cs) was measured on 21 Hanford Site sediment types. A Box-Behnken statistical design was used to develop empirical-statistical equations predicting 137 Cs sorption as a function of the equilibrium concentrations of macroions Na + , K + , and Ca +2 in solution over the concentration ranges of 3.0 to 0.001M, 0.2 to 0.002M, and 0.2 to 0.002M, respectively. These equations are required to estimate trace Cs transport from Hanford ground disposal sites. Average Cs sorption equations for the 21 sediments will be presented and discussed

  5. Deploying in situ bioremediation at the Hanford Site

    International Nuclear Information System (INIS)

    Truex, M.J.; Johnson, C.D.; Newcomer, D.R.; Doremus, L.A.; Hooker, B.S.; Peyton, B.M.; Skeen, R.S.; Chilakapati, A.

    1994-11-01

    An innovative in-situ bioremediation technology was developed by Pacific Northwest Laboratory (PNL) to destroy nitrate and carbon tetrachloride (CC1 4 ) in the Hanford ground water. The goal of this in-situ treatment process is to stimulate native microorganisms to degrade nitrate and CCl 4 . Nutrient solutions are distributed in the contaminated aquifer to create a biological treatment zone. This technology is being demonstrated at the US Department of Energy's Hanford Site to provide the design, operating, and cost information needed to assess its effectiveness in contaminated ground water. The process design and field operations for demonstration of this technology are influenced by the physical, chemical, and microbiological properties observed at the site. A description of the technology is presented including the well network design, nutrient injection equipment, and means for controlling the hydraulics and microbial reactions of the treatment process

  6. 300 Area Treatability Test: Laboratory Development of Polyphosphate Remediation Technology for In Situ Treatment of Uranium Contamination in the Vadose Zone and Capillary Fringe

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Pierce, Eric M.; Bacon, Diana H.; Oostrom, Martinus; Gunderson, Katie M.; Webb, Samuel M.; Bovaird, Chase C.; Cordova, Elsa A.; Clayton, Eric T.; Parker, Kent E.; Ermi, Ruby M.; Baum, Steven R.; Vermeul, Vincent R.; Fruchter, Jonathan S.

    2008-09-30

    This report presents results from bench-scale treatability studies conducted under site-specific conditions to optimize the polyphosphate amendment for implementation of a field-scale technology demonstration to stabilize uranium within the 300 Area vadose and smear zones of the Hanford Site. The general treatability testing approach consisted of conducting studies with site sediment and under site conditions, to develop an effective chemical formulation and infiltration approach for the polyphosphate amendment under site conditions. Laboratory-scale dynamic column tests were used to 1) quantify the retardation of polyphosphate and its degradation products as a function of water content, 2) determine the rate of polyphosphate degradation under unsaturated conditions, 3) develop an understanding of the mechanism of autunite formation via the reaction of solid phase calcite-bound uranium and aqueous polyphosphate remediation technology, 4) develop an understanding of the transformation mechanism, the identity of secondary phases, and the kinetics of the reaction between uranyl-carbonate and -silicate minerals with the polyphosphate remedy under solubility-limiting conditions, and 5) quantify the extent and rate of uranium released and immobilized based on the infiltration rate of the polyphosphate remedy and the effect of and periodic wet-dry cycling on the efficacy of polyphosphate remediation for uranium in the vadose zone and smear zone.

  7. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This is an interim report including about 2 years of post-desiccation monitoring data.

  8. DNFSB Recommendation 94-1 Hanford site integrated stabilization management plan, volumes 1 and 2

    International Nuclear Information System (INIS)

    Gerber, E.W.

    1996-01-01

    This document comprises the Hanford Site Integrated Stabilization Management Plan (SISMP). This document describes the DOE's plans at the Hanford Site to address concerns identified in Defense Nuclear Facilites Safety Board (DNFSB) Recommendation 94-1. This document also identifies plans for other spent nuclear fuel (SNF) inventories at the Hanford Site which are not within the scope of DNFSB Recommendation 94-1 for reference purposes because of their interrelationship with plans for SNF within the scope of DNFSB Recommendation 94-1. The SISMP was also developed to assist DOE in initial formulation of the Research and Development Plan and the Integrated Facilities Plan

  9. Strontium-90 migration in Hanford sediments, USA

    International Nuclear Information System (INIS)

    Steefel, C.I.; Yang, L.; Carroll, S.A.; Roberts, S.; Zachara, J.M.; Yabusaki, S.B.

    2005-01-01

    Full text of publication follows: Strontium-90 is an important risk-driving contaminant at the Hanford site in eastern Washington, USA. Disposal operations at the Hanford 100-N area released millions of liters of reactor cooling water containing high concentrations of strontium-90 into the vadose zone immediately adjacent to the Columbia River. The effectiveness of pump-and-treat methods for remediation have been questioned, largely because the strontium is strongly sorbed on subsurface sediments via ion exchange reactions and co-precipitation in carbonates. In addition, groundwater monitoring wells show a fluctuating seasonal behavior in which high strontium-90 concentrations correlate with high Columbia River stage, even while average concentrations remain approximately constant. A series of fully saturated reactive transport column experiments have been conducted to investigate the important controls on strontium migration in Hanford groundwater [1]. The experiments were designed to investigate the multicomponent cation exchange behavior of strontium in competition with the cations Na + , Ca +2 , and Mg +2 , the concentration of which differs between river water and groundwater. Reactive transport modeling of the experiments indicates that the Sr +2 selectivity coefficient becomes larger with increasing NaNO 3 concentration, a behavior also shown by the divalent cations Ca +2 and Mg +2 . A new set of column experiments investigates the effect of wetting and drying cycles on strontium- 90 sorption and migration by considering episodic flow in Hanford sediments. In addition, the effect of fluctuating aquifer chemistry as a result of changes in the Columbia River stage on Sr +2 sorption is addressed. Modeling of multicomponent reactive transport under variably saturated conditions is used to interpret the results of the episodic flow/chemistry experiments. [1] Experimental and modeling studies of the migration behavior of strontium in Hanford sediments, USA. C

  10. TWRS vadose zone contamination issue expert panel status report

    International Nuclear Information System (INIS)

    Shafer, D.S.

    1997-01-01

    When members were first canvassed for participation in the Vadose Zone Expert Panel the stated purpose for convening the Panel was to review a controversial draft report, the SX Tank Farm Report. This report was produced by a DOE Grand Junction Project Office (GJPO) contractor, RUST Geotech, now MACTEC-ERS, for the DOE Richland Office (DOERL). Three meetings were planned for June, July and August, 1995 to review the draft report and to complete a Panel report by mid-September. The Expert Panel has found its efforts confounded by various non-technical issues. The Expert Panel has chosen to address some of the non-technical issues in this Preface rather than to dilute the technical discussion that follows in the body of this independent expert panel status report (Panel Report). Rather than performing a straightforward manuscript review, the Panel was asked to resolve conflicting interpretations of gamma-ray logging measurements performed in vadose zone boreholes (drywells) surrounding the high-level radioactive wastes of the SX tank farm. There are numerous and complex technical issues that must be evaluated before the vertical and radial extent of contaminant migration at the SX tank farm can be accurately assessed. When the Panel first met in early June, 1996, it quickly became apparent that the scientific and technical issues were obscured by policy and institutional affairs which have polarized discussion among various segments of the Hanford organization. This situation reflects the kinds of institutional problems described separately in reports by the National Research Council of the National Academy of Sciences (NAS/NRC), The Hanford Tanks Environmental Impacts and Policy Choices and BmTiers to Science: Technical Management of the Department of Energy Environmental Remediation Program. The Vadose Zone Characterization Program, appears to be caught between conflicting pressures and organizational mandates, some imposed from outside DOE-RL and some self

  11. Deep Vadose Zone Treatability Test for the Hanford Central Plateau. Interim Post-Desiccation Monitoring Results, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    A field test of desiccation is being conducted as an element of the Deep Vadose Zone Treatability Test Program. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 4 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  12. Annual Hanford Site environmental permitting status report

    International Nuclear Information System (INIS)

    Sonnichsen, J.C.

    1998-01-01

    The information contained and/or referenced in this Annual Hanford Site Environmental Permitting Status Report (Status Report) addresses the State Environmental Policy Act (SEPA) of 1971 and Condition II.W. of the Resource Conservation and Recovery Act (RCRA) of 1976 Permit, Dangerous Waste Portion (DW Portion). Condition II.W. of the RCRA Permit specifies the Permittees are responsible for all other applicable federal, state, and local permits for the development and operation of the Hanford Facility. Condition II.W. of the RCRA Permit specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of permit condition, 'best efforts' means submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies. This Status Report includes information on all existing and anticipated environmental permitting. Environmental permitting required by RCRA, the Hazardous and Solid Waste Amendments (HSWA) of 1984, and non-RCRA permitting (solid waste handling, Clean Air Act Amendments of 1990, Clean Water Act Amendments of 1987, Washington State waste discharge, and onsite sewage system) is addressed. Information on RCRA and non-RCRA is current as of July 31, 1998. For the purposes of RCRA and the State of Washington Hazardous Waste Management Act of 1976 [as administered through the Dangerous Waste Regulations, Washington Active Code (WAC) 173-303], the Hanford Facility is considered a single facility. As such, the Hanford Facility has been issued one US Environmental Protection Agency (EPA)/State Identification Number (WA7890008967). This EPA/State identification number encompasses over 60 treatment, storage, and/or disposal (TSD) units. The Washington State Department of Ecology (Ecology) has been delegated authority by the EPA to administer the RCRA, including mixed waste authority. The RCRA permitting approach for

  13. Ground beetles (Coleoptera, Carabidae) of the Hanford Nuclear Site in south-central Washington State.

    Science.gov (United States)

    Looney, Chris; Zack, Richard S; Labonte, James R

    2014-01-01

    Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  14. Efficacy of rock doves at the Hanford site, Washington, as radiological indicators

    Energy Technology Data Exchange (ETDEWEB)

    Houser, M.R.

    1996-02-01

    Site faithfulness and general movement patterns of five rock dove (Columba livia) flocks were estimated in order to evaluate their efficacy as radiological indicators on the Hanford Site. Of 367 individually marked birds, 311 were resighted or recaptured at least once during onsite and offsite monitoring. Average site faithfulness for all flocks from resightings was 87.1% and was not significantly different than a hypothesized 90% site faithful distribution. Average site faithfulness from pooled resightings and recaptures was 91.3%, which was also not significantly different than a 90% distribution. Since Hanford rock doves exhibit site faithfulness and can be easily monitored, I conclude that they can be used as radiological indicators. I found 107 birds at 21 different locations during offsite surveys in agricultural areas adjacent to the Hanford Site. Mean movement distances from capture areas to offsite locations for each of the five flocks were significantly different. Mean movement distances from capture areas to offsite locations for each flock were highly correlated with closest possible distances for each flock. Mean movement directions from capture areas to offsite locations for each flock were significantly different than random movement patterns for each flock.

  15. Efficacy of rock doves at the Hanford site, Washington, as radiological indicators

    International Nuclear Information System (INIS)

    Houser, M.R.

    1996-02-01

    Site faithfulness and general movement patterns of five rock dove (Columba livia) flocks were estimated in order to evaluate their efficacy as radiological indicators on the Hanford Site. Of 367 individually marked birds, 311 were resighted or recaptured at least once during onsite and offsite monitoring. Average site faithfulness for all flocks from resightings was 87.1% and was not significantly different than a hypothesized 90% site faithful distribution. Average site faithfulness from pooled resightings and recaptures was 91.3%, which was also not significantly different than a 90% distribution. Since Hanford rock doves exhibit site faithfulness and can be easily monitored, I conclude that they can be used as radiological indicators. I found 107 birds at 21 different locations during offsite surveys in agricultural areas adjacent to the Hanford Site. Mean movement distances from capture areas to offsite locations for each of the five flocks were significantly different. Mean movement distances from capture areas to offsite locations for each flock were highly correlated with closest possible distances for each flock. Mean movement directions from capture areas to offsite locations for each flock were significantly different than random movement patterns for each flock

  16. Experience and improved techniques in radiological environmental monitoring at major DOE low-level waste disposal sites

    International Nuclear Information System (INIS)

    1986-09-01

    A summary of routine radiological environmental surveillance programs conducted at major active US Department of Energy (DOE) solid low-level waste (LLW) disposal sites is provided. The DOE disposal sites at which monitoring programs were reviewed include those located at Hanford, Idaho National Engineering Laboratory (INEL), Nevada Test Site (NTS), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL) and Savannah River Plant (SRP). The review is limited to activities conducted for the purpose of monitoring disposal site performance. Areas of environmental monitoring reviewed include air monitoring for particulates and gases, monitoring of surface water runoff, surface water bodies, ground water, monitoring of surface soils and the vadose zone, and monitoring of ambient penetrating radiation. Routine environmental surveillance is conducted at major LLW disposal sites at various levels of effort for specific environmental media. In summary, all sites implement a routine monitoring program for penetrating radiation. Four sites (INEL, NTS, LANL, and SRP) monitor particulates in air specifically at LLW disposal sites. Hanford monitors particulates at LLW sites in conjunction with monitoring of other site operations. Particulates are monitored on a reservationwide network at ORNL. Gases are monitored specifically at active LLW sites operated at NTS, LANL, and SRP. Ground water is monitored specifically at LLW sites at INEL, LANL, and SRP, in conjunction with other operations at Hanford, and as part of a reservationwide program at NTS and ORNL. Surface water is monitored at INEL, LANL, and SRP LLW sites. Surface soil is sampled and analyzed on a routine basis at INEL and LANL. Routine monitoring of the vadose zone is conducted at the INEL and SRP. Techniques and equipment in use are described and other aspects of environmental monitoring programs, such as quality assurance and data base management, are reviewed

  17. 1995 Report on Hanford site land disposal restrictions for mixed waste

    International Nuclear Information System (INIS)

    Black, D.G.

    1995-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report

  18. 1995 Report on Hanford site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1995-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

  19. Draft environmental assessment: reference repository location, Hanford Site, Washington. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the reference repository location at the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received on the draft EA. The reference repository location at Hanford is located in the Columbia Plateau, one of five distinct geohydrologic settings that are being considered for the first repository. On the basis of the evaluations reported in this draft EA, the DOE has found that the reference repository location at Hanford is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the reference repository location at Hanford as one of five sites suitable for characterization. Furthermore, having performed a comparative evaluation of the five sites proposed for nomination, the DOE has determined that the reference repository location at Hanford is one of three sites preferred for site characterization

  20. Stratigraphic Profiles for Selected Hanford Site Seismometer Stations and Other Locations

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-02-01

    Stratigraphic profiles were constructed for eight selected Hanford Site seismometer stations, five Hanford Site facility reference locations, and seven regional three-component broadband seismometer stations. These profiles provide interpretations of the subsurface layers to support estimation of ground motions from past earthquakes, and the prediction of ground motions from future earthquakes. In most cases these profiles terminated at the top of the Wanapum Basalt, but at selected sites profiles were extended down to the top of the crystalline basement. The composite one-dimensional stratigraphic profiles were based primarily on previous interpretations from nearby boreholes, and in many cases the nearest deep borehole is located kilometers away.

  1. Accelerated cleanup of mixed waste units on the Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Patterson, J.K.; Johnson, W.L.; Downey, H.D.

    1993-09-01

    This report provides a status of the expedited response action (ERA) projects currently being implemented at the Hanford Site. A detailed review of the accomplishments to date, the technologies employed, the problems encountered, and an analysis of the lessons learned are included. A total of nine ERAs have been initiated at the Hanford Site and are presented in a case study format with emphasis on the progress being made and the challenges ahead

  2. Pre-1970 transuranic solid waste at the Hanford Site

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1995-01-01

    The document is based on a search of pre-1970 Hanford Solid Waste Records. The available data indicates seven out of thirty-one solid waste burial sites used for pre-1970 waste appear to be Transuranic (TRU). A burial site defined to be TRU contains >100 nCi/gm Transuranic nuclides

  3. American coot (Fulica americana) on the Hanford Site. Part 1. Nesting biology

    International Nuclear Information System (INIS)

    Fitzner, R.E.; Schreckhise, R.G.

    1979-05-01

    The nesting biology of the American coot was studied on low-level radioactive waste ponds located on the Hanford DOE Site and on control ponds located in the Columbia National Wildlife Refuge in southeastern Washington from 1974 through 1976. The objective was to discover any differences in the nesting biology of the birds which could be attributed to the low-level radioactive wastes present in the Hanford DOE Site ponds. Coots nesting on the Hanford ponds and those nesting on the wildlife refuge were found to have similar nesting habits. Nesting habitats were also similar. There were no apparent differences in nesting chronology between birds from the different study sites. Clutch size also showed no significant differences. The average number of eggs per nest for all ponds was 6.7. Egg and chick weights and percent hatching success were similar among coots from both study sites. Feeding habits of the coots from the two sites did show some differences. However, this is probably related to the availability of food items in each pond

  4. 1995 annual epidemiologic surveillance report for Hanford Site

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. A number of DOE sites participate in the Epidemiologic Surveillance Program. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, disabilities and deaths among current workers. This report provides a summary of epidemiologic surveillance data collected from the Hanford Site from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at Hanford and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out. The information in the main body of the report provides a descriptive analysis of the data collected from the site, and the appendices provides additional detail. The report also contains an expanded Glossary and an Explanation of Diagnostic Categories which gives examples of health conditions in each of the diagnostic categories

  5. 1995 annual epidemiologic surveillance report for Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The US Department of Energy`s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. A number of DOE sites participate in the Epidemiologic Surveillance Program. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, disabilities and deaths among current workers. This report provides a summary of epidemiologic surveillance data collected from the Hanford Site from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at Hanford and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out. The information in the main body of the report provides a descriptive analysis of the data collected from the site, and the appendices provides additional detail. The report also contains an expanded Glossary and an Explanation of Diagnostic Categories which gives examples of health conditions in each of the diagnostic categories.

  6. Pollution prevention opportunity assessments. Guidance for the Hanford Site

    International Nuclear Information System (INIS)

    Engel, J.A.

    1994-10-01

    The purpose of this document is to provide help to you, Hanford waste generators, in finding ways to reduce waste through Pollution Prevention (P2) and Pollution Prevention Opportunity Assessments (P2OAs). It is based on guidance from other sites, and serves to compliment the Hanford-specific training on P2OAs offered by the Pollution Prevention group at Westinghouse Hanford Company (WHC). The chapters of this document include help on how to choose major waste generating activities, how to conduct a P2OA, how to get results, and how to show progress. There is also a chapter on special situations and problems your facility may encounter. This first chapter tells you why you should consider conducting P2OAs and why they may be required

  7. Remedial investigation for the 200-BP-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Buckmaster, M.A.

    1991-01-01

    The Hanford Site, Richland, Washington, contains over 1500 identified waste sites that will be characterized and remediated over the next 30 years. In support of the ''Hanford Federal Facility Agreement and Consent Order,'' the US Department of Energy has initiated a remedial investigation/feasibility study (RI/FS) at the 200-BP-1 operable unit. The 200-BP-1 RI is the first Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) investigation on the Hanford Site that involves drilling into highly radioactive and chemically contaminated soils. The initial phase of the site characterization is oriented toward determining the nature and extent of any contamination present in the vicinity of the 200-BP-1 operable unit. The major focus of the Phase I RI is the drilling and sampling of 10 inactive waste disposal units which received low level radioactive liquid waste

  8. Strategy for Meeting the Secretary of Energy and Hanford Site FY 2001 Pollution Prevention Goals

    International Nuclear Information System (INIS)

    CLARK, D.E.

    2000-01-01

    The purpose of this strategy is to identify the Fiscal Year (FY) 2001 Hanford Site waste reduction, sanitary recycling and affirmative procurement goals and identify the action required to ensure that the Secretary of Energy's FY 2005 pollution prevention and the FY 2001 Hanford Site goals are met. The strategy and plan to ensure that the Secretary of Energy's routine waste reduction, recycling, cleanup/stabilization waste and affirmative procurement goals are met consists of four phases. The first phase is to ensure that the infrastructure is in place to support planning and organization. This phase involves ensuring that roles and responsibilities are identified; requirement documents are current; goals and successes are communicated; and accurate and current waste information is available. Roles and responsibilities are identified and the RL requirement documents (i.e., the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan and Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation) will specify the Secretary of Energy's goals. Goals will be communicated formally and informally via the Hanford Reach, training sessions, meetings and correspondence. Sharing of pollution prevention successes and goal progress are encouraged at the Pollution Prevention/Waste Minimization (PZ/WMin) quarterly meetings. Existing site waste generation databases will be utilized to provide current waste generation data. The second phase of the strategy and plan is to establish and allocate goals by prime contractor (i.e. Fluor Hanford, Inc. (FH), Pacific Northwest National Laboratory (PNNL), Bechtel Hanford Inc. (BHI), and CH2MHill Hanford Group (CHG)). This requires determining current status toward meeting the Secretary of Energy's goals; establishing the Hanford Site FY goals, and allocating waste reduction goals by prime contractor. The third phase of the strategy and plan is goal implementation. This

  9. Managing Hanford Site solid waste through strict acceptance criteria

    International Nuclear Information System (INIS)

    Jasen, W.G.; Pierce, R.D.; Willis, N.P.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA) and the Resource Conservation and Recovery Act of 1976 (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, strict management programs have been implemented for the management of these wastes. Solid waste management is accomplished through a systems performance approach to waste management that used best-demonstrated available technology (BDAT) and best management practices. The solid waste program at the Hanford Site strives to integrate all aspects of management relative to the treatment, storage and disposal (TSD) of solid waste. Often there are many competing and important needs. It is a difficult task to balance these needs in a manner that is both equitable and productive. Management science is used to help the process of making decisions. Tools used to support the decision making process include five-year planning, cost estimating, resource allocation, performance assessment, waste volume forecasts, input/output models, and waste acceptance criteria. The purpose of this document is to describe how one of these tools, waste acceptance criteria, has helped the Hanford Site manage solid wastes

  10. Site support program plan for ICF Kaiser Hanford Company, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This document is the general administrative plan implemented by the Hanford Site contractor, ICF Kaiser Hanford Company. It describes the mission, administrative structure, projected staffing, to be provided by the contractor. The report breaks out the work responsibilities within the different units of the company, a baseline schedule for the different groups, and a cost summary for the different operating units.

  11. Site support program plan for ICF Kaiser Hanford Company, Revision 1

    International Nuclear Information System (INIS)

    1995-10-01

    This document is the general administrative plan implemented by the Hanford Site contractor, ICF Kaiser Hanford Company. It describes the mission, administrative structure, projected staffing, to be provided by the contractor. The report breaks out the work responsibilities within the different units of the company, a baseline schedule for the different groups, and a cost summary for the different operating units

  12. Risk management study for the Hanford Site facilities: Risk reduction cost comparison for the retired Hanford Site facilities

    International Nuclear Information System (INIS)

    Coles, G.A.; Egge, R.G.; Senger, E.; Shultz, M.W.; Taylor, W.E.

    1994-02-01

    This document provides a cost-comparison evaluation for implementing certain risk-reduction measures and their effect on the overall risk of the 100 and 200 Area retired, surplus facilities. The evaluation is based on conditions that existed at the time the risk evaluation team performed facility investigations, and does not acknowledge risk-reduction measures that occurred soon after risk identification. This evaluation is one part of an overall risk management study for these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1450-km 2 Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30 km southeast of the 200 Area. This cost-comparison evaluation (1) determines relative costs for reducing risk to acceptable levels; (2) compares the cost of reducing risk using different risk-reduction options; and (3) compares the cost of reducing risks at different facilities. The result is an identification of the cost effective risk-reduction measures. Supporting information required to develop costs of the various risk-reduction options also is included

  13. Hanford Site cleanup and transition: Risk data needs for decision making (Hanford risk data gap analysis decision guide)

    International Nuclear Information System (INIS)

    Gajewski, S.; Glantz, C.; Harper, B.; Bilyard, G.; Miller, P.

    1995-10-01

    Given the broad array of environmental problems, technical alternatives, and outcomes desired by different stakeholders at Hanford, DOE will have to make difficult resource allocations over the next few decades. Although some of these allocations will be driven purely by legal requirements, almost all of the major objectives of the cleanup and economic transition missions involve choices among alternative pathways. This study examined the following questions: what risk information is needed to make good decisions at Hanford; how do those data needs compare to the set(s) of risk data that will be generated by regulatory compliance activities and various non-compliance studies that are also concerned with risk? This analysis examined the Hanford Site missions, the Hanford Strategic Plan, known stakeholder values, and the most important decisions that have to be made at Hanford to determine a minimum domain of risk information required to make good decisions that will withstand legal, political, and technical scrutiny. The primary risk categories include (1) public health, (2) occupational health and safety, (3) ecological integrity, (4) cultural-religious welfare, and (5) socio-economic welfare

  14. Statistical application of groundwater monitoring data at the Hanford Site

    International Nuclear Information System (INIS)

    Chou, C.J.; Johnson, V.G.; Hodges, F.N.

    1993-09-01

    Effective use of groundwater monitoring data requires both statistical and geohydrologic interpretations. At the Hanford Site in south-central Washington state such interpretations are used for (1) detection monitoring, assessment monitoring, and/or corrective action at Resource Conservation and Recovery Act sites; (2) compliance testing for operational groundwater surveillance; (3) impact assessments at active liquid-waste disposal sites; and (4) cleanup decisions at Comprehensive Environmental Response Compensation and Liability Act sites. Statistical tests such as the Kolmogorov-Smirnov two-sample test are used to test the hypothesis that chemical concentrations from spatially distinct subsets or populations are identical within the uppermost unconfined aquifer. Experience at the Hanford Site in applying groundwater background data indicates that background must be considered as a statistical distribution of concentrations, rather than a single value or threshold. The use of a single numerical value as a background-based standard ignores important information and may result in excessive or unnecessary remediation. Appropriate statistical evaluation techniques include Wilcoxon rank sum test, Quantile test, ''hot spot'' comparisons, and Kolmogorov-Smirnov types of tests. Application of such tests is illustrated with several case studies derived from Hanford groundwater monitoring programs. To avoid possible misuse of such data, an understanding of the limitations is needed. In addition to statistical test procedures, geochemical, and hydrologic considerations are integral parts of the decision process. For this purpose a phased approach is recommended that proceeds from simple to the more complex, and from an overview to detailed analysis

  15. Investigation of anatomical anomalies in Hanford Site mule deer

    Energy Technology Data Exchange (ETDEWEB)

    Tiller, B.L.; Cadwell, L.L.; Poston, T.M. [and others

    1997-03-01

    Rocky Mountain mule deer (Odocoileus hemionus hemionus), common residents of the Hanford Site, are an important part of the shrub-steppe ecosystem as well as being valued for aesthetics and hunting. Because mule deer have been protected from hunting on the Site for 50 years, the herd has developed unique population characteristics, including a large number of old animals and males with either large or atypically developed antlers, in contrast to other herds in the semi-arid regions of the Northwest. Hanford Site mule deer have been studied since 1991 because of the herd`s unique nature and high degree of public interest. A special study of the mule deer herd was initiated in 1993 after observations were made of a relatively large number of male deer with atypical, velvet-covered antlers. This report specifically describes our analyses of adult male deer found on the Site with atypical antlers. The report includes estimates of population densities and composition; home ranges, habitat uses, and dietary habits; natural and human-induced causes of mortality; and the herd`s overall health and reproductive status.

  16. Investigation of anatomical anomalies in Hanford Site mule deer

    International Nuclear Information System (INIS)

    Tiller, B.L.; Cadwell, L.L.; Poston, T.M.

    1997-03-01

    Rocky Mountain mule deer (Odocoileus hemionus hemionus), common residents of the Hanford Site, are an important part of the shrub-steppe ecosystem as well as being valued for aesthetics and hunting. Because mule deer have been protected from hunting on the Site for 50 years, the herd has developed unique population characteristics, including a large number of old animals and males with either large or atypically developed antlers, in contrast to other herds in the semi-arid regions of the Northwest. Hanford Site mule deer have been studied since 1991 because of the herd's unique nature and high degree of public interest. A special study of the mule deer herd was initiated in 1993 after observations were made of a relatively large number of male deer with atypical, velvet-covered antlers. This report specifically describes our analyses of adult male deer found on the Site with atypical antlers. The report includes estimates of population densities and composition; home ranges, habitat uses, and dietary habits; natural and human-induced causes of mortality; and the herd's overall health and reproductive status

  17. Baseline mapping study of the Steed Pond aquifer and vadose zone beneath A/M Area, Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Jackson, D.G. Jr.

    2000-01-01

    This report presents the second phase of a baseline mapping project conducted for the Environmental Restoration Department (ERD) at Savannah River Site. The purpose of this second phase is to map the structure and distribution of mud (clay and silt-sized sediment) within the vadose zone beneath A/M Area. The results presented in this report will assist future characterization and remediation activities in the vadose zone and upper aquifer zones in A/M Area

  18. Uranium Phases in Contaminated Sediments Below Hanford's U Tank Farm

    International Nuclear Information System (INIS)

    Um, Wooyong; Wang, Zheming; Serne, R. Jeffrey; Williams, Benjamin D.; Brown, Christopher F.; Dodge, Cleveland J.; Francis, Arokiasamy J.

    2009-01-01

    Macroscopic and spectroscopic investigations (XAFS, XRF and TRLIF) on Hanford contaminated vadose zone sediments from the U-tank farm showed that U(VI) exists as different surface phases as a function of depth below ground surface (bgs). Dominant U(VI) silicate precipitates (boltwoodite and uranophane) were present in shallow-depth sediments (15-16 m bgs). In the intermediate depth sediments (20-25 m bgs), adsorbed U(VI) phases dominated but small amounts of surface precipitates consisting of polynuclear U(VI) surface complex were also identified. The deep depth sediments (> 28 m bgs) showed no signs of contact with tank wastes containing Hanford-derived U(VI), but natural uranium solid phases were observed. Most of the U(VI) was preferentially associated with the silt and clay size fractions and showed strong correlation with Ca, especially for the precipitated U(VI) silicate phase in the shallow depth sediments. Because U(VI) silicate precipitates dominate the U(VI) phases in the shallow depth sediments, macroscopic (bi)carbonate leaching should result in U(VI) releases from both desorption and dissolution processes. Having several different U(VI) surface phases in the Hanford contaminated sediments indicates that the U(VI) release mechanism could be complicated and that detailed characterization of the sediments would be needed to estimate U(VI) fate and transport in vadose zone

  19. Characterization of Direct Push Vadose Zone Sediments from the 241-U Single-Shell Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Valenta, Michelle M.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Iovin, Cristian; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-12-20

    The overall goals of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid, via collection of geochemical information and data, the future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank Waste Management Areas (WMAs). For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at WMA U are found in Crumpler (2003). To meet these goals, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses of vadose zone sediment collected within the U Single-Shell Tank Farm. Specifically, this report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from ten direct push characterization holes emplaced to investigate vadose zone contamination associated with potential leaks within the 241-U Single-Shell Tank Farm. Specific tanks targeted during this characterization campaign included tanks 241-U-104/241-U-105, 241-U-110, and 241-U-112. Additionally, this report compiles data from direct push samples collected north of tank 241-U-201, as well as sediment collected from the background borehole (C3393). After evaluating all the characterization and analytical data, there is no question that the vadose zone in the vicinity of tanks 241-U-104 and 241-U-105 has been contaminated by tank-related waste. This observation is not new, as gamma logging of drywells in the area has identified uranium contamination at the

  20. Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hulstrom, L.

    2011-02-07

    This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

  1. Ground beetles (Coleoptera, Carabidae of the Hanford Nuclear Site in south-central Washington State

    Directory of Open Access Journals (Sweden)

    Chris Looney

    2014-04-01

    Full Text Available In this paper we report on ground beetles (Coleoptera: Carabidae collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site, which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte, and Stenolophus lineola (Fabricius. Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  2. Radionuclide air emissions report for the Hanford Site. Calendar year 1997

    International Nuclear Information System (INIS)

    Gleckler, B.P.; Rhoads, K.

    1998-01-01

    This report documents radionuclide air emission from the Hanford Site in 1997, and the resulting effective dose equivalent to the maximally exposed member of the public, referred to as the MEI. The report has been prepared in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, National Emissions Standards for Hazardous Air Pollutants, Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities. This report has also been prepared in accordance with the reporting requirements of the Washington Administrative Code Chapter 246-247, Radiation Protection-Air Emissions. The effective dose equivalent to the MEI from the Hanford Site's 1997 point source emissions was 1.2 E-03 mrem (1.2 E-05 mSv), which is well below the 40 CFR 61 Subpart H regulatory limit of 10 mrem/yr. Radon and thoron emissions, exempted from 40 CFR 61 Subpart H, resulted in an effective dose equivalent to the MEI of 2.5 E-03 mrem (2.5 E-05 mSv). The effective dose equivalent to the MEI attributable to diffuse and fugitive emissions was 2.2 E-02 mrem (2.2 E-04 mSv). The total effective dose equivalent from all of the Hanford Site's air emissions was 2.6 E-02 mrem (2.6 E-04 mSv). The effective dose equivalent from all of the Hanford Site's air emissions is well below the Washington Administrative Code, Chapter 246-247, regulatory limit of 10 mrem/yr

  3. Hanford Site background: Part 1, Soil background for nonradioactive analytes

    International Nuclear Information System (INIS)

    1993-04-01

    Volume two contains the following appendices: Description of soil sampling sites; sampling narrative; raw data soil background; background data analysis; sitewide background soil sampling plan; and use of soil background data for the detection of contamination at waste management unit on the Hanford Site

  4. Review of Natural Phenomena Hazard (NPH) Assessments for the DOE Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Robert L.; Ross, Steven B.

    2011-09-15

    The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the DOE's Hanford Site, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. This review is an update and expansion to the September 2010 review of PNNL-19751, Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic).

  5. Graphics-based site information management at Hanford TRU burial grounds

    International Nuclear Information System (INIS)

    Rod, S.R.

    1992-04-01

    The objective of the project described in this paper is to demonstrate the use of integrated computer graphics and database techniques in managing nuclear waste facilities. The graphics-based site information management system (SIMS) combines a three- dimensional graphic model of the facility with databases which describe the facility's components and waste inventory. The SIMS can create graphic visualization of any site data. The SIMS described here is being used by Westinghouse Hanford Company (WHC) as part of its transuranic (TRU) waste retrieval program at the Hanford Reservation. It is being used to manage an inventory of over 38,000 containers, to validate records, and to help visualize conceptual designs of waste retrieval operations

  6. Graphics-based site information management at Hanford TRU burial grounds

    International Nuclear Information System (INIS)

    Rod, S.R.

    1992-01-01

    The objective of the project described in this paper is to demonstrate the use of integrated computer graphics and data base techniques in managing nuclear waste facilities. The graphics-based site information management system (SIMS) combines a three-dimensional graphic model of the facility with databases which describe the facility's components and waste inventory. The SIMS can create graphic visualizations of any site data. The SIMS described here is being used by Westinghouse Hanford Company (WHC) as part of its transuranic (TRU) waste retrieval program at the Hanford Reservation. It is being used to manage an inventory of over 38,000 containers, to validate records, and to help visualize conceptual designs of waste retrieval operations

  7. Status of outdoor radioactive contamination at the Hanford Site

    International Nuclear Information System (INIS)

    McKinney, S.M.; Markes, B.M.

    1994-12-01

    This document summarizes the status of outdoor radioactive contamination near Hanford Site facilities and disposal sites. It defines the nature and areal extend of the radioactively contaminated areas and describes the historical, ongoing, and planned radiological monitoring and control activities. Radioactive waste has been disposed of to the soil column since shortly after the reactors and production facilities began operating. Radioactive liquid wastes were placed directly into the ground via liquid discharges to cribs, ponds, ditches, and reverse wells. Solid wastes were placed in trenches, burial vaults, and caissons. Although the Hanford Site covers 1,450 km 2 , the radioactively contaminated area is only about 36 km 2 or 2.5% of the original site. Over time, contamination has migrated from some of the waste management sites through various vectors (e.g., burrowing animals, deep-rooted vegetation, erosion, containment system failure) or has been deposited to the surface soil via spills and unplanned releases (e.g., line leaks/breaks, tank leaks, and stack discharges) and created areas of outdoor radioactivity both on and below the surface. Currently 26 km 2 are posted as surface contamination and 10 km 2 are posted as underground contamination

  8. Optimization of remediation strategies using vadose zone monitoring systems

    Science.gov (United States)

    Dahan, Ofer

    2016-04-01

    In-situ bio-remediation of the vadose zone depends mainly on the ability to change the subsurface hydrological, physical and chemical conditions in order to enable development of specific, indigenous, pollutants degrading bacteria. As such the remediation efficiency is much dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. These conditions are usually determined in laboratory experiments where parameters such as the chemical composition of the soil water solution, redox potential and water content of the sediment are fully controlled. Usually, implementation of desired optimal degradation conditions in deep vadose zone at full scale field setups is achieved through infiltration of water enriched with chemical additives on the land surface. It is assumed that deep percolation into the vadose zone would create chemical conditions that promote biodegradation of specific compounds. However, application of water with specific chemical conditions near land surface dose not necessarily results in promoting of desired chemical and hydraulic conditions in deep sections of the vadose zone. A vadose-zone monitoring system (VMS) that was recently developed allows continuous monitoring of the hydrological and chemical properties of deep sections of the unsaturated zone. The VMS includes flexible time-domain reflectometry (FTDR) probes which allow continuous monitoring of the temporal variation of the vadose zone water content, and vadose-zone sampling ports (VSPs) which are designed to allow frequent sampling of the sediment pore-water and gas at multiple depths. Implementation of the vadose zone monitoring system in sites that undergoes active remediation provides real time information on the actual chemical and hydrological conditions in the vadose zone as the remediation process progresses. Up-to-date the system has been successfully implemented in several studies on water flow and contaminant transport in

  9. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  10. Standarized input for Hanford environmental impact statements. Part II: site description

    International Nuclear Information System (INIS)

    Jamison, J.D.

    1982-07-01

    Information is presented under the following section headings: summary description; location and physiography; geology; seismology; hydrology; meteorology; ecology; demography and land use; and radiological condition. Five appendixes are included on the 100N, 200 east, 200 west, 300, and 400 areas. This report is intended to provide a description of the Hanford Site against which the environmental impacts of new projects at Hanford can be assessed. It is expected that the summary description amplified with material from the appropriate appendix, will serve as the basic site description section of environmental impact statements prepared to address the requirements of the National Environmental Policy Act

  11. Hanford Site environmental data for calendar year 1989, surface and Columbia River

    International Nuclear Information System (INIS)

    Bisping, L.E.; Woodruff, R.K.

    1990-06-01

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the US Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor chemicals on the site and in the Columbia River. Pacific Northwest Laboratory publishes an annual environmental report Hanford Site Environmental Report for Calendar Year 1989. That report is a comprehensive source of offsite and onsite environmental monitoring data collected during 1989 by PNL's Environmental Monitoring Program. Appendix C of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries. Ground-water monitoring data will be available separately. Questions concerning the data appearing here can be directed to R. K. Woodruff, PNL Project Manager, Surface Environmental Surveillance Project

  12. Collaboration in Long-Term Stewardship at DOE's Hanford Site - 13019

    Energy Technology Data Exchange (ETDEWEB)

    Moren, Rick; Brown, David [Mission Support Alliance, LLC, Richland, WA (United States); Feist, Ella [Washington Closure Hanford, LLC, Richland WA (United States); Grindstaff, Keith; Zeisloft, Jamie [US Department of Energy, Richland Operations, Richland WA (United States)

    2013-07-01

    The U.S. Department of Energy's (DOE) Hanford Site comprises approximately 1,517 km{sup 2} (586 mi{sup 2}) of land in southeastern Washington. The site was established in 1943 as part of the Manhattan Project to produce plutonium for the nation's nuclear weapons program. As the Cold War era came to an end, the mission of the site transitioned from weapons production to environmental cleanup. As the River Corridor area of the site cleanup is completed, the mission for that portion of the site will transition from active cleanup to continued protection of environment through the Long-Term Stewardship (LTS) Program. The key to successful transition from cleanup to LTS is the unique collaboration among three (3) different DOE Programs and three (3) different prime contractors with each contractor having different contracts. The LTS Program at the site is a successful model of collaboration resulting in efficient resolution of issues and accelerated progress that supports DOE's Richland Office 2015 Vision for the Hanford Site. The 2015 Vision for the Hanford Site involves shrinking the active cleanup footprint of the surface area of the site to approximately 20 mi{sup 2} on the Central Plateau. Hanford's LTS Program is defined in DOE's planning document, Hanford Long-Term Stewardship Program Plan [1]. The Plan defines the relationship and respective responsibilities between the federal cleanup projects and the LTS Program along with their respective contractors. The LTS Program involves these different parties (cleanup program and contractors) who must work together to achieve the objective for transition of land parcels. Through the collaborative efforts with the prime contractors on site over the past two years,, 253.8 km{sup 2} (98 mi{sup 2}) of property has been successfully transitioned from the cleanup program to the LTS Program upon completion of active surface cleanup. Upcoming efforts in the near term will include transitioning another

  13. Hanford Site Climatological Data Summary 1999 with Historical Data

    International Nuclear Information System (INIS)

    Hoitink, Dana J; Burk, Kenneth W; Ramsdell, Jim V

    2000-01-01

    This document presents the climatological data measured at the Hanford Site for calendar year 1999. The information contained includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation and other meteorological parameters

  14. Overview of Chromium Remediation Technology Evaluations At The Hanford Site, Richland Washington

    Science.gov (United States)

    Morse, J. G.; Hanson, J. P.

    2009-12-01

    This paper will present an overview of the different technologies and the results to date for optimizing and improving the remediation of Cr+6 in the soil and groundwater at the Hanford Site. The Hanford Site, par of the U.S. Department of Energy's (DOE)nuclear weapons complex, encompasses approximately 586 square miles in southeast Washington State. The Columbia River flows through the site (Hanford Reach.) Reactors were located along the Hanford Reach as part of the production process. Sodium dichromate was used as a corrosion inhibitor in the cooling water for the reactors. As a result chromium (Cr+6) is present in the soil and groundwater. Since the mid 90's interim groundwater pump and treat systems have been in place to try and contain or mitigate the migration of contaminated groundwater into the Columbia River. The primary concern being the protection of aquatic spawning habitat for salmon and other species. In order to improve the effectiveness of the remedial actions a number of different technologies have been evaluated and/or deployed. These include, permeable reactive barriers, in-situ bio-stimulation, in-situ chemical reduction, zero-valent iron injection and evaluation of improved above ground treatment technologies. An overview of the technologies and results to date are presented.

  15. Mitigation of Selected Hanford Site Manhattan Project and Cold War Era Artifacts

    International Nuclear Information System (INIS)

    Prendergast-Kennedy, Ellen L.; Harvey, David W.

    2006-01-01

    This document is the first time that Manhattan Project and Cold War era artifacts from the Hanford Site have been assembled within a publication. The publication presents photographic and written documentation of a number of Manhattan Project and Cold War era artifacts that were identified and tagged during assessment walk throughs of historic buildings on the Hanford Site but which could not be curated within the Hanford collection because they were too large for long-term storage and/or exhibit purposes or were radiologically contaminated. The significance of the artifacts in this publication and a proposed future appendix is based not on the individual significance of any single artifact but on their collective contribution to the science and engineering of creating plutonium and advancing nuclear technology in nuclear fuel and power.

  16. Mitigation of Selected Hanford Site Manhattan Project and Cold War Era Artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Ellen P.; Harvey, David W.

    2006-09-08

    This document is the first time that Manhattan Project and Cold War era artifacts from the Hanford Site have been assembled within a publication. The publication presents photographic and written documentation of a number of Manhattan Project and Cold War era artifacts that were identified and tagged during assessment walk throughs of historic buildings on the Hanford Site but which could not be curated within the Hanford collection because they were too large for long-term storage and/or exhibit purposes or were radiologically contaminated. The significance of the artifacts in this publication and a proposed future appendix is based not on the individual significance of any single artifact but on their collective contribution to the science and engineering of creating plutonium and advancing nuclear technology in nuclear fuel and power.

  17. Role of Competitive Cation Exchange on Chromatographic Displacement of Cesium in the Vadose Zone beneath the Hanford S/SX Tank Farm

    International Nuclear Information System (INIS)

    Lichtner, Peter C.; Yabusaki, Steven B.; Pruess, Karsten; Steefel, Carl

    2004-01-01

    Migration of radionuclides under the SX-tank farm at the Hanford nuclear waste complex involves interaction of variably water saturated sediments with concentrated NaOH-NaNO 3 -NaNO 2 solutions that have leaked from the tanks. Constant K d models for describing radionuclide retardation are not valid under these conditions because of strong competition for sorption sites by abundant Na + ions, and because of dramatically changing solution compositions with time as the highly concentrated tank fluid becomes diluted as it mixes with infiltrating rainwater. A mechanistic multicomponent sorption model is required that can account for effects of competition and spatially and temporally variable solution compositions. To investigate the influence of the high ionic strength tank fluids on Cs + migration, numerical calculations are performed using the multiphase-multicomponent reactive transport code FLOTRAN. The computer model describes reactive transport in nonisothermal, variably saturated porous media including both liquid and gas phases. Pitzer activity coefficient corrections are used to describe the high ionic strength solutions. The calculations take into account multicomponent cation exchange based on measured selectivity coefficients specific to the Hanford sediments. Solution composition data obtained from Well 299-W23-19, documenting a moderately concentrated leak from the SX-115 tank, are used to calibrate the model. In addition to exchange of cations Na + , K + , Ca 2+ , and Cs + , aqueous complexing and a kinetic description of precipitation and dissolution of calcite are also included in the calculations. The fitted infiltration rate of 0.08 m yr -1 , and fitted cation exchange capacity of 0.05 mol kg -1 are consistent with measured values for the Hanford sediments. A sensitivity analysis is performed for Na + concentrations ranging from 5 to 20 m to investigate the mobility of Cs + interacting with a highly concentrated background electrolyte solution

  18. Fire protection program fiscal year 1995 site support program plan, Hanford Fire Department

    International Nuclear Information System (INIS)

    Good, D.E.

    1994-09-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report describes the specific responsibilities and programs that the HFD must support and the estimated cost of this support for FY1995

  19. Defining the framework for environmentally compliant cleanup: The Hanford site tri-party agreement

    International Nuclear Information System (INIS)

    Austin, B.A.; Wisness, S.H.

    1994-01-01

    The Hanford Federal Facility Agreement and Consent Order, commonly called the Tri-Party Agreement, was signed by the U.S. Environmental Protection Agency (EPA), the State of Washington Department of Ecology (Ecology), and the U.S. Department of Energy (DOE) in May of 1989. It was the first three-party agreement of its magnitude in the country and was touted as a landmark agreement. It was one of the most significant actions that has been taken to define the framework for environmentally compliant cleanup actions at the Hanford Site. Accomplishments thus far represent a lot of planning, permitting, and development activities either required by regulation or necessary to ensure an adequate infrastructure to support cleanup activities. Actual cleanup work and construction of new facilities are beginning to accelerate as the Hanford Site moves out of study and development phases into actual cleanup activities. Significant changes to the Hanford Tri-Party Agreement were negotiated between May 1993 and January 1994. These negotiations were precipitated by the completion of a 15-month rebaselining study of the Hanford Site's Tank Waste Remediation System. The revised agreement is based on comments and values the three agencies heard from people of the region during the negotiation process. The recent renegotiation reflected an ability of the agencies and the agreement to change commensurate with technical, economic, and political realities of today. Hanford has moved into a new era of public participation which will continue to watch and guide cleanup efforts in manners satisfactory to regional concerns and values

  20. Hanford Site Cleanup Challenges and Opportunities for Science and Technology--A Strategic Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas W.; Johnson, Wayne L.; Kreid, Dennis K.; Walton, Terry L.

    2001-02-01

    The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make Hanford perhaps the world's largest and most complex environmental cleanup project. It is not possible to address the more complex elements of this enormous challenge in a cost-effective manner without strategic investments in science and technology. Success requires vigorous and sustained efforts to enhance the science and technology basis, develop and deploy innovative solutions, and provide firm scientific bases to support site cleanup and closure decisions at Hanford.

  1. Hanford Site Cleanup Challenges and Opportunities for Science and Technology--A Strategic Assessment

    International Nuclear Information System (INIS)

    Wood, Thomas W.; Johnson, Wayne L.; Kreid, Dennis K.; Walton, Terry L.

    2001-01-01

    The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make Hanford perhaps the world's largest and most complex environmental cleanup project. It is not possible to address the more complex elements of this enormous challenge in a cost-effective manner without strategic investments in science and technology. Success requires vigorous and sustained efforts to enhance the science and technology basis, develop and deploy innovative solutions, and provide firm scientific bases to support site cleanup and closure decisions at Hanford

  2. Summary of 1990 eolian characterization studies, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Gaylord, D.R.; Stetler, L.D.; Smith, G.D. [Washington State Univ., Pullman, WA (United States); Mars, R.W. [Wyoming Univ., Laramie, WY (United States)

    1993-12-01

    A study of eolian activity was initiated to improve understanding of past climate change and the likely effect of wind on engineered protective barriers at the Hanford Site. Eolian features from a Holocene sand dune field located in the southeastern portion of the Hanford Site were investigated using a variety of field and laboratory techniques including stratigraphic examinations of hand-dug pits, textural and compositional analyses of dune sand and potential source detritus, and air photo interpretations. These investigations were undertaken to evaluate the provenance and eolian dynamics of the sand dunes. Interpretations of sand dune migration using archival air photo stereopairs document a 20% reduction in the volume of active sand dunes (measured from an approximate 15-km{sup 2} test area) between 1948 and 1987. Changes in annual precipitation appear to have influenced active dune migration strongly.

  3. Risk evaluation of remedial alternatives for the Hanford Site

    International Nuclear Information System (INIS)

    1994-09-01

    This document provides guidance on the process of risk evaluation of remedial alternatives (RERA) at the Hanford Site. Remediation activities at the Hanford Site are being conducted pursuant to the Comprehensive Environmental Restoration, Compensation, and Liability Act and the Resource Conservation and Recovery Act. This document identifies points in the remedial alternative selection process where risk assessment input is either required or desirable. For each of these points of application, the document identifies issues to consider and address, and suggests possible approaches, techniques, and appropriate levels of detail. The level of detail of a RERA is driven by the need to use risk as a criterion for selecting a remedial alternative. Such a document is needed to ensure that RERA is conducted in a consistent manner, and to prevent restating or creating guidance within each RERA

  4. Annual Hanford Site Environmental Permitting status report

    International Nuclear Information System (INIS)

    SONNICHSEN, J.C.

    1999-01-01

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. Condition II.W further specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of this Permit Condition, ''best efforts'' mean submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies

  5. Hanford Site Environmental Management Specification

    International Nuclear Information System (INIS)

    DAILY, J.L.

    2001-01-01

    The US Department of Energy, Richland Operations Office (RL) has established a document hierarchy as part of its integrated management system. The Strategic Plan defines the vision, values, missions, strategic goals, high-level outcomes, and the basic strategies in achieving those outcomes. As shown in Figure 1-1, the Site Specification derives requirements from the Strategic Plan and documents the top-level mission technical requirements for the work involved in the RL Hanford Site cleanup and infrastructure activities under the responsibility of the U.S. Department of Energy, Office of Environmental Management (EM). It also provides the basis for all contract technical requirements. Since this is limited to the EM work, neither the Fast Flux Test Facility (FFTF) nor the Pacific Northwest National Laboratory (PNNL) non-EM science activities are included. Figure 1-1 also shows the relationship between this Site Specification and the other Site management and planning documents. Similarly, the documents, orders, and laws referenced in this document represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  6. Hanford Tank Farms Vadose Zone, Addendum to the T Tank Farm Report

    Energy Technology Data Exchange (ETDEWEB)

    Spatz, Robert

    2000-07-01

    This addendum to the T Tank Farm Report (GJO-99-101-TARA, GJO-HAN-27) published in September 1999 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the T Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the T Tank Farm at the DOE Hanford Site in the state of Washington.

  7. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part

  8. Unit environmental transport assessment of contaminants from Hanford's past-practice waste sites. Hanford Remedial Action Environmental Impact Statement

    International Nuclear Information System (INIS)

    Whelan, G.; Buck, J.W.; Castleton, K.J.

    1995-06-01

    The US Department of Energy, Richland Operations Office (DOE-RL) contracted Pacific Northwest Laboratory (PNL) to provide support to Advanced Sciences, Incorporated (ASI) in implementing tile regional no-action risk assessment in the Hanford Remedial Action Environmental Impact Statement. Researchers at PNL were charged with developing unit concentrations for soil, groundwater, surface water, and air at multiple locations within an 80-km radius from the center of tile Hanford installation. Using the Multimedia Environmental Pollutant Assessment System (MEPAS), PNL simulated (1) a unit release of one ci for each radionuclide and one kg for each chemical from contaminated soils and ponded sites, (2) transport of the contaminants in and through various environmental media and (3) exposure/risk of four exposure scenarios, outlined by the Hanford Site Baseline Remedial Action Methodology. These four scenarios include residential, recreational, industrial, and agricultural exposures. Spacially and temporally distributed environmental concentrations based on unit releases of radionuclides and chemicals were supported to ASI in support of the HRA-EIS. Risk for the four exposure scenarios, based on unit environment concentrations in air, water, and soil. were also supplied to ASI. This report outlines the procedure that was used to implement the unit transport portion of the HRA-EIS baseline risk assessment. Deliverables include unit groundwater, surface water, air, and soil concentrations at multiple locations within an 80-km radius from the center of the Hanford installation

  9. Hanford Site Environmental Surveillance Master Sampling Schedule for Calendar Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2005-01-19

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs. This document contains the calendar year 2005 schedules for the routine and non-routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project.

  10. Hanford Site Environmental Surveillance Master Sampling Schedule for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2008-01-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by Pacific Northwest National Laboratory for the U.S. Department of Energy. Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 450.1, "Environmental Protection Program," and DOE Order 5400.5, "Radiation Protection of the Public and the Environment." The environmental surveillance sampling design is described in the "Hanford Site Environmental Monitoring Plan, United States Department of Energy, Richland Operations Office." This document contains the calendar year 2008 schedule for the routine collection of samples for the Surface Environmental Surveillance Project and Drinking Water Monitoring Project. Each section includes sampling locations, sampling frequencies, sample types, and analyses to be performed. In some cases, samples are scheduled on a rotating basis. If a sample will not be collected in 2008, the anticipated year for collection is provided. Maps showing approximate sampling locations are included for media scheduled for collection in 2008.

  11. Flammable gas project expert elicitation results for Hanford Site double-shell tanks

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1998-01-01

    This report documents the results of the second phase of parameter quantification by the flammable gas expert panel. This second phase is focused on the analysis of flammable gas accidents in the Hanford Site double-shell tanks. The first phase of parameter quantification, performed in 1997 was focused on the analysis of Hanford single-shell tanks

  12. Development and implementation of an analytical quality assurance plan at the Hanford site

    International Nuclear Information System (INIS)

    Kuhl-Klinger, K.J.; Taylor, C.D.; Kawabata, K.K.

    1995-08-01

    The Hanford Analytical Services Quality Assurance Plan (HASQAP) provides a uniform standard for onsite and offsite laboratories performing analytical work in support of Hanford Site environmental cleanup initiatives. The Hanford Site is a nuclear site that originated during World War 11 and has a legacy of environmental clean up issues. In early 1993, the need for and feasibility of developing a quality assurance plan to direct all analytical activities performed to support environmental cleanup initiatives set forth in the Hanford Federal Facility Agreement and Consent Order were discussed. Several group discussions were held and from them came the HASQAP. This document will become the quality assurance guidance document in a Federal Facility Agreement and Consent Order. This paper presents the mechanics involved in developing a quality assurance plan for this scope of activity, including the approach taken to resolve the variability of quality control requirements driven by numerous regulations. It further describes the consensus building process and how the goal of uniting onsite and offsite laboratories as well as inorganic, organic, and radioanalytic disciplines under a common understanding of basic quality control concepts was achieved

  13. The use of total quality management and commitment at the Hanford Site

    International Nuclear Information System (INIS)

    Hamric, J.P.; Talbot, M.L.

    1992-01-01

    The U.S. Department of Energy Field Office, Richland (RL) recently has begun restructuring its management system to serve new customers and regulators in the joint effort of completing the new mission of the Hanford Site: environmental restoration and remediation. To do this, the RL reviewed its previous approaches, examined its new goals, and hired consultants to help design and implement a new management approach. The result is a plan to use the Total Quality Management approach, which encourages teamwork and supports the values and requirements of the Hanford Site. (author)

  14. Cost benefit of caustic recycle for tank waste remediation at the Hanford and Savannah River Sites

    International Nuclear Information System (INIS)

    DeMuth, S.

    1998-01-01

    The potential cost savings due to the use of caustic recycle used in conjunction with remediation of radioactive underground storage tank waste, is shown in a figure for the Hanford and Savannah River sites. Two cost savings estimates for each case have been made for Hanford, and one cost savings estimate for each case have been made for Hanford, and one cost savings estimate for each case has been made for the Savannah River site. This is due to the Hanford site remediation effort being less mature than that of Savannah River; and consequently, a range of cost savings being more appropriate for Hanford. This range of cost savings (rather than a ingle value) for each case at Hanford is due to cost uncertainties related to the LAW immobilization operation. Caustic recycle Case-1 has been defined as the sodium required to meet al identified caustic needs for the entire Site. Case-2 has been defined as the maximum sodium which can be separated from the low activity waste without precipitation of Al(OH) 3 . It has been determined that the potential cost savings at Hanford ranges from $194 M to $215 M for Case-1, and $293 M to $324 M for Case-2. The potential cost savings at Savannah River are $186 M for Case-1 and $281 M for Case-2. A discussion of the uncertainty associated with these cost savings estimates can be found in the Discussion and Conclusions section

  15. Final report of fugitive and diffuse emissions evaluations at the Hanford Site, CY 1994

    International Nuclear Information System (INIS)

    Gleckler, B.P.; Schmidt, J.W.

    1995-01-01

    The objective of this study was to evaluate several of Hanford's major diffuse emission sources and evaluate the effectiveness of monitoring these sources individually versus collectively. The results from this evaluation may also be utilized to demonstrate Westinghouse's compliance status with the applicable air emissions regulations and determine if additional studies and/or evaluations are necessary. Air sampling results from four waste handling and storage facilities were collected for a one week period and analyzed. The following is a list of the selected sampling sites: Plutonium Finishing Plant; 241-BY Tank Farm; 1301-N Trench; 300 Area Trenches and North Ponds. These sites were chosen as being representative of most of the Hanford waste sites, which are known to be diffuse emission sites. The sites were evaluated on the following criteria: physical size, surface contamination levels, geology, vegetation density, surface cover, potential for occupational exposure, and potential for public exposure. The selected sites vary greatly with the selection criteria parameters, and as a result should provide representative data for most of Hanford's waste sites

  16. Standarized input for Hanford environmental impact statements. Part II: site description

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, J.D.

    1982-07-01

    Information is presented under the following section headings: summary description; location and physiography; geology; seismology; hydrology; meteorology; ecology; demography and land use; and radiological condition. Five appendixes are included on the 100N, 200 east, 200 west, 300, and 400 areas. This report is intended to provide a description of the Hanford Site against which the environmental impacts of new projects at Hanford can be assessed. It is expected that the summary description amplified with material from the appropriate appendix, will serve as the basic site description section of environmental impact statements prepared to address the requirements of the National Environmental Policy Act (NEPA).

  17. TANK FARM RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    International Nuclear Information System (INIS)

    DODD RA

    2008-01-01

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the TriParty Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U. S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 fe in 530,000 gallon or larger tanks; 30 fe in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an

  18. Description of work vadose drilling at the 1301-N and 1325-N facilities, 100-NR-1 operable unit

    International Nuclear Information System (INIS)

    1994-08-01

    This description of work (DOW) details the field activities associated with the sampling of the vadose zone soils beneath the 1301-N and 1325-N cribs and trenches and will serve as a field guide for those performing the work. These activities are undertaken pursuant to the Hanford Federal Facility Agreement and Consent Order (Ecology et al., 1994a) Milestone M-16-94-01H-Tl and the June 30, 1994 Milestone Change Request M-16-94-02 (Ecology et al., 1994b). Three vadose zone borings, 1301-N-1, 1301-N-2, and 1325-N-1, will be constructed to investigate the vertical and horizontal distribution of radionuclide contamination in sediments beneath the cribs and trenches. The boreholes are also intended to intersect subsurface areas that may have been contaminated by dangerous wastes, i.e., metals, in effluent disposed during past operation of the facilities. This limited field investigation will provide data for the evaluation of remedial alternatives. Data from the investigation are expected to confirm that the cribs and trenches are high priority sites in the 100-NR-1 operable unit. Data, from the investigation will be used to evaluate alternatives for closure of the 1301-N and 1325-N sites. The contaminants of potential concern (COPCs) for the 1301-N/1325-N limited field investigation are presented in Table 1

  19. Alternatives to land disposal of solid radioactive mixed wastes on the Hanford Site

    International Nuclear Information System (INIS)

    Jacobsen, P.H.

    1992-03-01

    This report is a detailed description of the generation and management of land disposal restricted mixed waste generated, treated, and stored at the Hanford Site. This report discusses the land disposal restricted waste (mixed waste) managed at the Hanford Site by point of generation and current storage locations. The waste is separated into groups on the future treatment of the waste before disposal. This grouping resulted in the definition of 16 groups or streams of land disposal restricted waste

  20. Assessment of candidate sites for disposal of treated effluents at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Davis, J.D.

    1992-01-01

    A rigidly defined evaluation process was used to recommend a preferred location to dispose of treated effluents from facilities in the 200 Areas of the US Department of Energy's Hanford Site in Washington State. First, siting constraints were defined based on functional design considerations and siting guidelines. Then, criteria for selecting a preferred site from among several candidates were identified and their relative importance defined. Finally, the weighted criteria were applied and a site was selected for detailed characterization by subsurface investigations