WorldWideScience

Sample records for hanford site fy

  1. Soil Water Balance and Recharge Monitoring at the Hanford SiteFY 2010 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, Michael J.; Saunders, Danielle L.; Herrington, Ricky S.; Felmy, Diana

    2010-10-27

    This report summarizes the recharge data collected in FY 2010 at five locations on the Hanford Site in southeastern Washington State. Average monthly precipitation and temperature conditions in FY 2010 were near normal and did not present an opportunity for increased recharge. The recharge monitoring data confirmed those conditions, showing normal behavior in water content, matric head, and recharge rates. Also provided in this report is a strategy for recharge estimation for the next 5 years.

  2. Strategy for Meeting the Secretary of Energy and Hanford Site FY 2001 Pollution Prevention Goals

    International Nuclear Information System (INIS)

    CLARK, D.E.

    2000-01-01

    The purpose of this strategy is to identify the Fiscal Year (FY) 2001 Hanford Site waste reduction, sanitary recycling and affirmative procurement goals and identify the action required to ensure that the Secretary of Energy's FY 2005 pollution prevention and the FY 2001 Hanford Site goals are met. The strategy and plan to ensure that the Secretary of Energy's routine waste reduction, recycling, cleanup/stabilization waste and affirmative procurement goals are met consists of four phases. The first phase is to ensure that the infrastructure is in place to support planning and organization. This phase involves ensuring that roles and responsibilities are identified; requirement documents are current; goals and successes are communicated; and accurate and current waste information is available. Roles and responsibilities are identified and the RL requirement documents (i.e., the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan and Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation) will specify the Secretary of Energy's goals. Goals will be communicated formally and informally via the Hanford Reach, training sessions, meetings and correspondence. Sharing of pollution prevention successes and goal progress are encouraged at the Pollution Prevention/Waste Minimization (PZ/WMin) quarterly meetings. Existing site waste generation databases will be utilized to provide current waste generation data. The second phase of the strategy and plan is to establish and allocate goals by prime contractor (i.e. Fluor Hanford, Inc. (FH), Pacific Northwest National Laboratory (PNNL), Bechtel Hanford Inc. (BHI), and CH2MHill Hanford Group (CHG)). This requires determining current status toward meeting the Secretary of Energy's goals; establishing the Hanford Site FY goals, and allocating waste reduction goals by prime contractor. The third phase of the strategy and plan is goal implementation. This

  3. Summary of the Hanford Site decontamination, decommissioning, and cleanup, FY 1974--FY 1990

    International Nuclear Information System (INIS)

    Wahlen, R.K.

    1991-08-01

    At the end of World War II, the demand for more production along with process and military surveillance changes at the Hanford Site caused a continuing cycle of building and obsolescence. This trend continued until 1964, when the cutback in plutonium production began. The cutback caused the shutdown of excess production facilities. The last of eight reactors was shut down in 1971. Since that time, N Reactor has been the only production reactor that has operated. In addition, changes in the method of separating plutonium caused a number of excess facilities in the 200 Areas. Before 1973, no structured program existed for the disposal of unusable facilities or for general cleanup. Following a plant-wide safety and housekeeping inspection in 1973, a program was developed for the disposal of all surplus facilities. Since the start of FY 1974, a total of 46 radioactively contaminated sites have been demolished and disposed of. In addition, 28 buildings have been decontaminated for in situ disposal or for reuse, 21 contaminated sites have been stabilized, 131 clean structures have been removed, and 93 clean sites have received special remedial action to eliminate potential safety and/or environmental hazards. This report summarizes these activities. 3 refs, 1 fig., 18 tabs

  4. Hanford Site Environment Safety and Health (ES and H) FY 1999 and FY 2000 Execution Commitment Summary

    Energy Technology Data Exchange (ETDEWEB)

    REEP, I.E.

    1999-12-01

    All sites in the U.S. Department of Energy (DOE) Complex prepare this report annually for the DOE Office of Environment, Safety and Health (EH). The purpose of this report is to provide a summary of the previous and current year's Environment, Safety and Health (ES&H) execution commitments and the S&H resources that support these activities. The fiscal year (FY) 1999 and 2000 information (Sieracki 1999) and data contained in the ''Hanford Site Environment, Safety and Health Fiscal Year 2001 Budget-Risk Management Summary'' (RL 1999) were the basis for preparing this report. Fiscal year 2000 finding of Office of Environmental Management (EM) and Office of Nuclear Energy, Science and Technology (NE) activities is based on the President's budget of $1,065.1 million and $28.0 million, plus $2.7 million carryover finding, respectively, as of October 31, 1999. Any funding changes as a result of the Congressional appropriation process will be reflected in the Fiscal Year 2002 ES&H Budget-Risk Management Summary to be issued in May 2000. This report provides the end-of-year status of FY 1999 ES&H execution commitments, including actual S&H expenditures, and describes planned FY 2000 ES&H execution commitments and the S&H resources needed to support those activities. This requirement is included in the ES&H ''Guidance for FY200l Budget Formulations and Execution'' (DOE 1999).

  5. Annual Status Report (FY2013 Composite Analysis of Low Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2014-03-25

    In accordance with U.S. Department of Energy (DOE) requirements in DOE O 435.1, 3 Chg. 11, and as implemented by DOE/RL-2000-29, Rev. 22, the DOE Richland Operations 4 Office (DOE-RL) has prepared this annual summary of the Hanford Site Composite Analysis 5 for fiscal year (FY) 2013.

  6. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system, FY 1993 status report

    International Nuclear Information System (INIS)

    Thorne, P.D.; Chamness, M.A.; Spane, F.A. Jr.; Vermeul, V.R.; Webber, W.D.

    1993-12-01

    The ground water underlying parts of the Hanford Site (Figure 1.1) contains radioactive and chemical contaminants at concentrations exceeding regulatory standards (Dresel et al. 1993). The Hanford Site Ground-Water Surveillance Project, operated by Pacific Northwest Laboratory (PNL), is responsible for monitoring the movement of these contaminants to ensure that public health and the environment are protected. To support the monitoring effort, a sitewide three-dimensional ground-water flow model is being developed. This report provides an update on the status of the conceptual model that will form the basis for constructing a numerical three-dimensional flow model for, the site. Thorne and Chamness (1992) provide additional information on the initial development of the three-dimensional conceptual model

  7. Soil Water Balance and Recharge Monitoring at the Hanford Site - FY09 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Saunders, Danielle L.; Strickland, Christopher E.; Waichler, Scott R.; Clayton, Ray E.

    2009-09-28

    Recharge provides the primary driving force for transporting contaminants from the vadose zone to underlying aquifer systems. Quantification of recharge rates is important for assessing contaminant transport and fate and for evaluating remediation alternatives. This report describes the status of soil water balance and recharge monitoring performed by Pacific Northwest National Laboratory at the Hanford Site for Fiscal Year 2009. Previously reported data for Fiscal Years 2004 - 2008 are updated with data collected in Fiscal Year 2009 and summarized.

  8. Annual Status Report (FY2009) Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2010-02-10

    In accordance with the U.S. Department of Energy (DOE) requirements in DOE O 435.1, Radioactive Waste Management, and implemented by DOE/RL-2000-29, Maintenance Plan for the Composite Analysis of the Hanford Site, Southeast Washington, the DOE Richland Operations Office has prepared this annual status report for fiscal year (FY) 2009 of PNNL-11800, Composite Analysis for the Low-Level Waste Disposal in the 200-Area Plateau of the Hanford Site, hereafter referred to as the Composite Analysis.

  9. Annual Status Report (FY2010) Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2011-01-11

    In accordance with the U.S. Department of Energy (DOE) requirements in DOE O 435.1 Chg 1, Radioactive Waste Management, and implemented by DOE/RL-2000-29, Maintenance Plan for the Composite Analysis of the Hanford Site, Southeast Washington, the DOE Richland Operations Office (DOE-RL), also known as RL, has prepared this annual status report for fiscal year (FY) 2010 of PNNL-11800, Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site, hereafter referred to as the Composite Analysis.

  10. Test plan for sonic drilling at the Hanford Site in FY 1993

    International Nuclear Information System (INIS)

    McLellan, G.W.

    1993-01-01

    This test plan describes the field demonstration of the sonic drilling system being conducted as a coordinated effort between the VOC-Arid ID (Integrated Demonstration) and the 200 West Area Carbon Tetrachloride ERA (Expedited Response Action) programs at Hanford. The purpose of this test is to evaluate the Water Development Corporation's drilling system, modify components as necessary and determine compatible drilling applications for the sonic drilling method for use at facilities in the DOE complex. The sonic demonstration is being conducted as the first field test under the Cooperative Research and Development Agreement (CRADA) which involves the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The sonic drilling system will be used to drill a 45 degree vadose zone well, two vertical wells at the VOC-Arid ID site, and several test holes at the Drilling Technology Test Site north of the 200 Area fire station. Testing at other locations will depend on the performance of the drilling method. Performance of this technology will be compared to the baseline drilling method (cable-tool)

  11. The Hanford Site focus, 1994

    International Nuclear Information System (INIS)

    Peterson, J.M.

    1994-03-01

    This report describes what the Hanford Site will look like in the next two years. We offer thumbnail sketches of Hanford Site programs and the needs we are meeting through our efforts. We describe our goals, some recent accomplishments, the work we will do in fiscal year (FY) 1994, the major activities the FY 1995 budget request covers, and the economic picture in the next few years. The Hanford Site budget shows the type of work being planned. US Department of Energy (DOE) sites like the Hanford Site use documents called Activity Data Sheets to meet this need. These are building blocks that are included in the budget. Each Activity Data Sheet is a concise (usually 4 or 5 pages) summary of a piece of work funded by the DOE's Environmental Restoration and Waste Management budget. Each sheet describes a waste management or environmental restoration need over a 5-year period; related regulatory requirements and agreements; and the cost, milestones, and steps proposed to meet the need. The Hanford Site is complex and has a huge budget, and its Activity Data Sheets run to literally thousands of pages. This report summarizes the Activity Data Sheets in a less detailed and much more reader-friendly fashion

  12. Results of Tritium Tracking and Groundwater Monitoring at the Hanford Site 200 Area State-Approved Land Disposal Site-FY 1999

    International Nuclear Information System (INIS)

    Barnett, D.B.

    1999-01-01

    The Hanford Site 200 Area Effluent Treatment Facility (ETF) processes contaminated liquids derived from Hanford Site facilities. The clean water generated by these processes is occasionally enriched in tritium and is discharged to the 200 Area State Approved Land Disposal Site (SALDS). Groundwater monitoring for tritium and other constituents is required by the state-issued permit at 21 wells surrounding the facility. During FY 1999, average tritium activities in most wells declined from average activities in 1998. The exception was deep well 69948-77C, where tritium results were at an all-time high (77,000 pCi/L) as a result of the delayed penetration of effluent deeper into the aquifer. Of the 12 constituents with permit enforcement limits, which are monitored in SALDS proximal wells, all were within limits during FY 1999. Water level measurements in nearby wells indicate that a small hydraulic mound exists around the SALDS facility as a result of discharges. This feature is directing groundwater flow radially outward a short distance before the regional northeasterly flow predominates. Evaluation of this condition indicates that the network is currently adequate for tracking potential effects of the SALDS on the groundwater. Recommendations include the discontinuation of ammonia, benzene, tetrahydrofuran, and acetone from the regular groundwater constituent list; designating background well 299-W8-1 as a tritium-tracking well only, and the use of quadruplicate averages of field pH, instead of a single laboratory measurement, as a permit compliance parameter

  13. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1993-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides an existing and future land use plan for the Hanford Site. The HSDP is updated annually in accordance with DOE Order 4320.1B, Site Development Planning, to reflect the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  14. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  15. AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY2007

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2007-07-10

    The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation and closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address

  16. AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY 2007

    International Nuclear Information System (INIS)

    MANN, F.M.

    2007-01-01

    The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation and closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address residual wastes that will

  17. Hanford Site Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  18. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J.; Yancey, E.F.

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs

  19. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1992-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides a land use plan for the Hanford Site and presents a picture of what is currently known and anticipated in accordance with DOE Order 4320.1B. Site Development Planning. The HSDP wig be updated annually as future decisions further shape the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  20. HANFORD SITE RIVER CORRIDOR CLEANUP

    International Nuclear Information System (INIS)

    BAZZELL, K.D.

    2006-01-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km 2 Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal

  1. Hanford Site Infrastructure Plan

    International Nuclear Information System (INIS)

    1990-01-01

    The Hanford Site Infrastructure Plan (HIP) has been prepared as an overview of the facilities, utilities, systems, and services that support all activities on the Hanford Site. Its purpose is three-fold: to examine in detail the existing condition of the Hanford Site's aging utility systems, transportation systems, Site services and general-purpose facilities; to evaluate the ability of these systems to meet present and forecasted Site missions; to identify maintenance and upgrade projects necessary to ensure continued safe and cost-effective support to Hanford Site programs well into the twenty-first century. The HIP is intended to be a dynamic document that will be updated accordingly as Site activities, conditions, and requirements change. 35 figs., 25 tabs

  2. Hanford site environment

    International Nuclear Information System (INIS)

    Isaacson, R.E.

    1976-01-01

    A synopsis is given of the detailed characterization of the existing environment at Hanford. The following aspects are covered: demography, land use, meteorology, geology, hydrology, and seismology. It is concluded that Hanford is one of the most extensively characterized nuclear sites

  3. Annual Status Report (FY 2017): Composite Analysis for Low Level Waste Disposal in the Central Plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M. C.; Nichols, W. E.; Lehman, L. L.

    2018-04-05

    In accordance with U.S. Department of Energy (DOE) requirements in DOE M 435.1 Chg. 1, and as implemented by DOE/RL-2009-29, the DOE Richland Operations Office has prepared this annual summary of the Hanford Site Composite Analysis for fiscal year 2017.

  4. Annual Status Report (FY2015) Composite Analysis for Low Level Waste Disposal in the Central Plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2016-03-24

    In accordance with U.S. Department of Energy (DOE) requirements in DOE O 435.1, and as implemented by DOE/RL-2000-29, the DOE Richland Operations Office has prepared this annual summary of the Hanford Site Composite Analysis for fiscal year 2015.

  5. Annual Status Report (FY2104) Composite Analysis of Low Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2015-03-24

    In accordance with U.S. Department of Energy requirements in DOE O 435.1 and as implemented by DOE/RL-2009-29, the DOE Richland Operations Office has prepared this annul summary of the Hanford Site Composite Analysis for fiscal year 2014.

  6. Annual Status Report (FY2016) Composite Analysis for Low Level Waste Disposal in the Central Plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M. C. [INTERA, Inc., Austin, TX (United States); Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2017-03-14

    In accordance with U.S. Department of Energy (DOE) requirements in DOE O 435.1 and as implemented by DOE/RL-2009-29, the DOE Richland Operations Office has prepared this annual summary of the Hanford Site Composite Analysis for fiscal year 2016.

  7. HANFORD SITE SUSTAINABILITY PROGRAM RICHLAND WASHINGTON - 12464

    Energy Technology Data Exchange (ETDEWEB)

    FRITZ LL

    2012-01-12

    In support of implementation of Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance, the Hanford Site Sustainability Plan was developed to implement strategies and activities required to achieve the prescribed goals in the EO as well as demonstrate measurable progress in environmental stewardship at the Hanford Site. The Hanford Site Sustainability Program was developed to demonstrate progress towards sustainability goals as defined and established in Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance; EO 13423, Strengthening Federal Environmental, Energy and Transportation Management, and several applicable Energy Acts. Multiple initiatives were undertaken in Fiscal Year (FY) 2011 to implement the Program and poise the Hanford Site as a leader in environmental stewardship. In order to implement the Hanford Site Sustainability Program, a Sustainability Plan was developed in conjunction with prime contractors, two U.S. Department of Energy (DOE) Offices, and key stakeholders to serve as the framework for measuring progress towards sustainability goals. Based on the review of these metrics and future plans, several activities were initiated to proactively improve performance or provide alternatives for future consideration contingent on available funding. A review of the key metric associated with energy consumption for the Hanford Site in FY 2010 and 2011 indicated an increase over the target reduction of 3 percent annually from a baseline established in FY 2003 as illustrated in Figure 1. This slight increase was attributed primarily from the increased energy demand from the cleanup projects funded by the American Recovery and Reinvestment Act (ARRA) in FY 2010 and 2011. Although it is forecasted that the energy demand will decrease commensurate with the completion of ARRA projects, several major initiatives were launched to improve energy efficiency.

  8. FY 1992 revised task plans for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1992-04-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The primary objectives of work to be performed in FY 1992 is to determine the appropriate scope (space, time, and radionuclides, pathways and individuals/population groups) and accuracy (level of uncertainty in dose estimates) for the project. Another objective is to use a refined computer model to estimate Native American tribal doses and individual doses for the Hanford Thyroid Disease Study (HTDS). Project scope and accuracy requirements defined in FY 1992 can translated into model and data requirements that must be satisfied during FY 1993

  9. Long-Term Climate Change Assessment Task for the Hanford Site Permanent Isolation Barrier Development Program: Status through FY 1992

    International Nuclear Information System (INIS)

    Petersen, K.L.; Chatters, J.C.

    1993-07-01

    The Hanford Site Permanent Isolation Barrier Development Program (Barrier Development Program) was organized (Adams and Wing 1986) to develop the technology needed to provide an in-place disposal capability for the US Department of Energy at the Hanford Site in southeastern Washington. The goals of the Barrier Development Program are to provide defensible evidence that final barrier design(s) will adequately control water infiltration, plant and animal intrusion, and wind and water erosion for a minimum of 1,000 years; to isolate wastes from the accessible environment; and to use markers to warn inadvertent human intruders. Evidence for barrier performance will be obtained by conducting laboratory experiments, field tests, computer modeling, and other studies that establish confidence in the barrier's ability to meet its 1,000-year design life. The performance and stability of natural barrier analogs that have existed for several millennia and the reconstruction of climate changes during the past 10,000 to 125,000 years also will provide insight into bounding conditions of possible future changes and increase confidence in the barriers design. In the following discussion the term open-quotes long-termclose quotes references periods of time up to 1000's of years, distinguishing it from open-quotes short-termclose quotes weather patterns covering a decade or less. Specific activities focus on planning and conducting a series of studies and tests required to confirm key aspects of the barrier design. The effort is a collaborative one between scientists and engineers from Westinghouse Hanford Company (Westinghouse Hanford) and Pacific Northwest Laboratory (PNL) to design barriers to limit movement of radionuclides and other contaminants to the accessible environment for at least 1,000 years. These activities have been divided into 14 groups of tasks that aid in the complete development of protective barrier and warning marker system

  10. Long-Term Climate Change Assessment Task for the Hanford Site Permanent Isolation Barrier Development Program: Status through FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, K.L. [Westinghouse Hanford Co., Richland, WA (US); Chatters, J.C. [Pacific Northwest Lab., Richland, WA (US)

    1993-07-01

    The Hanford Site Permanent Isolation Barrier Development Program (Barrier Development Program) was organized (Adams and Wing 1986) to develop the technology needed to provide an in-place disposal capability for the US Department of Energy at the Hanford Site in southeastern Washington. The goals of the Barrier Development Program are to provide defensible evidence that final barrier design(s) will adequately control water infiltration, plant and animal intrusion, and wind and water erosion for a minimum of 1,000 years; to isolate wastes from the accessible environment; and to use markers to warn inadvertent human intruders. Evidence for barrier performance will be obtained by conducting laboratory experiments, field tests, computer modeling, and other studies that establish confidence in the barrier`s ability to meet its 1,000-year design life. The performance and stability of natural barrier analogs that have existed for several millennia and the reconstruction of climate changes during the past 10,000 to 125,000 years also will provide insight into bounding conditions of possible future changes and increase confidence in the barriers design. In the following discussion the term {open_quotes}long-term{close_quotes} references periods of time up to 1000`s of years, distinguishing it from {open_quotes}short-term{close_quotes} weather patterns covering a decade or less. Specific activities focus on planning and conducting a series of studies and tests required to confirm key aspects of the barrier design. The effort is a collaborative one between scientists and engineers from Westinghouse Hanford Company (Westinghouse Hanford) and Pacific Northwest Laboratory (PNL) to design barriers to limit movement of radionuclides and other contaminants to the accessible environment for at least 1,000 years. These activities have been divided into 14 groups of tasks that aid in the complete development of protective barrier and warning marker system.

  11. Hanford personnel dosimeter supporting studies FY-1981

    International Nuclear Information System (INIS)

    1982-08-01

    This report examined specific functional components of the routine external personnel dosimeter program at Hanford. Components studied included: dosimeter readout; dosimeter calibration; dosimeter field response; dose calibration algorithm; dosimeter design; and TLD chip acceptance procedures. Additional information is also presented regarding the dosimeter response to light- and medium-filtered x-rays, high energy photons and neutrons. This study was conducted to clarify certain data obtained during the FY-1980 studies

  12. Westinghouse Hanford Company FY 1995 Materials Management Plan (MMP)

    International Nuclear Information System (INIS)

    Higginson, M.C.

    1994-10-01

    The safe and sound operation of facilities and storage of nuclear material are top priorities within Hanford's environmental management, site restoration mission. The projected materials estimates, based on the Materials Management Plan (MMP) assumptions outlined below, were prepared for Department of Energy (DOE) use in long-range planning. The Hanford MMP covers the period FY 1995 through FY 2005, as directed by DOE. All DOE Richland Operations (RL) Office facilities are essentially funded by the Office of Transition and Facilities Management, Environmental Restoration and Waste Management (EM). These facilities include PUREX, the UO 3 plant, N-Reactor, T-Plant, K-Basins, FFTF, PFP and the 300 Area Fuel Fabrication facilities. Currently DP provides partial funding for the latter two facilities. Beginning in FY 1996 (in accordance with DOE-HQ MMP assumptions), EM will fund expenses related to the storage, monitoring, and safeguarding of all Special Nuclear Material (SNM) in the PFP. Ownership and costs related to movement and/or stabilization of that material will belong to EM programs (excluding NE material). It is also assumed that IAEA will take over inventory validation and surveillance of EM owned SNM at this time (FY 1996)

  13. Hanford analytical sample projections FY 1998 - FY 2002

    International Nuclear Information System (INIS)

    Joyce, S.M.

    1997-01-01

    Sample projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Sample projections are categorized by radiation level, protocol, sample matrix and Program. Analyses requirements are also presented

  14. FY2000 Hanford Technology Deployment Accomplishments Fact Sheets

    International Nuclear Information System (INIS)

    WIBLE, R.A.

    2001-01-01

    Cleaning up the Hanford Site is one of the top priorities for the U. S. Department of Energy. The department is continually looking for ways to expedite cleanup and reduce costs. During Fiscal Year (FY) 2000. Hanford Site staff deployed 24 new technologies, which produced an estimated lifecycle cost savings of 479 million dollars. This is a clear indicator of the impacts new technology has had and will have on the cleanup efforts. The Hanford Site cleanup is focused on the following: Restoring the Columbia River Corridor; Building and operating the tank waste treatment complex to complete the cleanup of highly radioactive tank waste at Hanford; and Transitioning the Central Plateau. Applying innovative science and technology from national laboratories, universities, and private industry is critical to our complex cleanup mission. The 24 new technologies deployed in FY 2000 are significantly higher than our goal of 14 technological deployments. Eleven of these technologies supported restoring the Columbia River Corridor, and seven were involved with the remediation of radioactive tank waste. These deployments produced valuable information to determine the effectiveness of the new technologies in the field and the efficiencies gained over existing cleanup methods. In several cases, the technology deployed presented a solution to a problem where a clear path of remediation had not yet been determined. New and innovative technologies will play a significant role in the cleanup of the Hanford Site and enable remediation to be done more efficiently. Technology is being developed at a staggering pace. This requires excellent communication throughout the scientific and industry arenas. To effect this communication, we have implemented a technology needs process in conjunction with the multi-year work planning process. Through the combination of these two processes, technology developments and deployments address the near-term technology needs and enable us to plan for the

  15. Hanford analytical sample projections FY 1996 - FY 2001. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, S.M.

    1997-07-02

    This document summarizes the biannual Hanford sample projections for fiscal year 1997-2001. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Wastes Remediation Systems, Solid Wastes, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition to this revision, details on Laboratory scale technology (development), Sample management, and Data management activities were requested. This information will be used by the Hanford Analytical Services program and the Sample Management Working Group to assure that laboratories and resources are available and effectively utilized to meet these documented needs.

  16. Hanford analytical sample projections FY 1998 - FY 2002

    International Nuclear Information System (INIS)

    Joyce, S.M.

    1998-01-01

    Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management, and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs

  17. Hanford analytical sample projections FY 1998--FY 2002

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, S.M.

    1998-02-12

    Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management, and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs.

  18. Hanford Site Groundwater Monitoring for Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2007-03-01

    This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

  19. Hanford, diversification, and the Tri-Cities Economy FY 1998

    International Nuclear Information System (INIS)

    SCOTT, M.J.

    1999-01-01

    The missions of the U.S. Department of Energy's Richland Operations Office (DOE/RL) are to safely manage the Hanford Site, to manage and clean up its legacy wastes, and to develop and deploy new science and technology in the environmental and energy fields. Collectively, DOE/RL and its contractors are the most important single entity in the Tri-Cities local economy (Pasco, Kennewick, and Richland, Washington, and the surrounding area). Although the relevant economic region affected by DOE/RL and its contractors actually embraces a geographic area reaching from Yakima in the west to Walla Walla in the east and from Moses Lake in the north to Pendleton, Oregon, in the south, over 90% of economic impacts likely occur in Benton and Franklin Counties. These two counties are defined as the ''local'' Tri-Cities economy for purposes of this study (see Figure 1). In the federal fiscal year (IV) 1998 (October 1, 1997 through September 30, 1998), the total impact of DOEs local $1.6 billion budget was felt through payrolls of $519 million and local purchases of goods and services of $246 million. The total local spending of $765 million was down slightly from the FY 1997 total of $774 million. Taking into account the slightly greater multiplier effects of this spending due to changes in its mix, the DOE/RL budget sustained an estimated 36% of all local employment (31,200 out of 86,000 jobs) and up to 64% of local wage income ($1.55 billion out of $2.40 billion). This was up slightly from the year before (29,500 jobs, $1.49 billion income). DOE budget increases in FY 1999 are expected to result in a net increase of about 200 local DOE contractor jobs over the September 30, 1998 level, or about equal to the FY 1998 average. In addition, economic diversification more than offset the impact of the local DOE losses in FY 1998 and, together with an initial economic boost from privatization of Hanford's tank waste cleanup, is expected to play a significant expansive role in FY 1999

  20. Introduction to the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal.

  1. Introduction to the Hanford Site

    International Nuclear Information System (INIS)

    Cushing, C.E.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal

  2. Hanford Site Environmental Report 1999

    International Nuclear Information System (INIS)

    Poston, TM; Hanf, RW; Dirkes, RL

    2000-01-01

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality

  3. Hanford Site 1998 Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    RL Dirkes; RW Hanf; TM Poston

    1999-09-21

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

  4. Hanford Site Environmental Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    TM Poston; RW Hanf; RL Dirkes

    2000-09-28

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.

  5. Hanford Site Environmental Report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K. [eds.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.

  6. Hanford Site Environmental Report 1993

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references

  7. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  8. Annual Status Report (FY2008) Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [Hanford Site (HNF), Richland, WA (United States)

    2009-12-18

    In accordance with the U.S. Department of Energy (DOE) requirements in DOE 0 435.1, Radioactive to be considered or purposes of Waste Management, and implemented by DOE/RL-2000-292, Maintenance Plan for the Composite Analysis of the Hanford Site, Southeast Washington, the DOE Richland Operations Office has prepared this annual report for fiscal year 2008 of PNNL-1 1800, Composite Analysis for the Low-Level Waste Disposal in the 200-Area Plateau of the Hanford Site, hereafter referred to as the Composite Analysis. The main emphasis of DOE/RL-2000-29 Is to identify additional data and information to enhance the Composite Analysis and the subsequent PNNL- 11800 Addendum, Addendum to Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site, hereafter referred to as the Addendum, and to address secondary issues identified during the review of the Composite Analysis.

  9. FY 2001 Hanford Waste Management Strategic Plan

    International Nuclear Information System (INIS)

    COLLINS, M.S.

    2001-01-01

    We are pleased to present the 2001 Hanford Waste Management Program Strategic Plan. This plan supports the newly developed U. S. Department of Energy Site outcomes strategy. The 2001 Plan reflects current and projected needs for Waste Management Program services in support of Hanford Site cleanup, and updates the objectives and actions using new waste stream oriented logic for the strategic goals: (1) waste treatment/processing, storage, and disposal; (2) interfaces; and (3) program excellence. Overall direction for the Program is provided by the Waste Management Division, Office of the Assistant Manager for Environmental Restoration and Waste Management, U. S. Department of Energy, Richland Operations Office. Fluor Hanford, Inc. is the operating contractor for the program. This Plan documents proactive strategies for planning and budgeting, with a major focus on helping meet regulatory commitments in a timely and efficient manner and concurrently assisting us in completing programs cheaper, better and quicker. Newly developed waste stream oriented logic was incorporated to clarify Site outcomes. External drivers, technology inputs, treatment/processing, storage and disposal strategies, and stream specific strategies are included for the six major waste types addressed in this Plan (low-level waste, mixed low-level waste, contact-handled transuranic waste, remote-handled transuranic waste, liquid waste, and cesium/strontium capsules). The key elements of the strategy are identification and quantification of the needs for waste management services, assessment of capabilities, and development of cost-effective actions to meet the needs and to continuously improve performance. Accomplishment of specific actions as set forth in the Plan depends on continued availability of the required resources and funding. The primary objectives of Plan are: (1) enhance the Waste Management Program to improve flexibility, become more holistic especially by implementing new

  10. Hanford Site sustainable development initiatives

    International Nuclear Information System (INIS)

    Sullivan, C.T.

    1994-05-01

    Since the days of the Manhattan Project of World War II, the economic well being of the Tri-Cities (Pasco, Kennewick, and Richland) of Washington State has been tied to the US Department of Energy missions at the nearby Hanford Site. As missions at the Site changed, so did the economic vitality of the region. The Hanford Site is now poised to complete its final mission, that of environmental restoration. When restoration is completed, the Site may be closed and the effect on the local economy will be devastating if action is not taken now. To that end, economic diversification and transition are being planned. To facilitate the process, the Hanford Site will become a sustainable development demonstration project

  11. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model

  12. Women and the Hanford Site

    Science.gov (United States)

    Gerber, Michele

    2014-03-01

    When we study the technical and scientific history of the Manhattan Project, women's history is sometimes left out. At Hanford, a Site whose past is rich with hard science and heavy construction, it is doubly easy to leave out women's history. After all, at the World War II Hanford Engineer Works - the earliest name for the Hanford Site - only nine percent of the employees were women. None of them were involved in construction, and only one woman was actually involved in the physics and operations of a major facility - Dr. Leona Woods Marshall. She was a physicist present at the startup of B-Reactor, the world's first full-scale nuclear reactor - now a National Historic Landmark. Because her presence was so unique, a special bathroom had to be built for her in B-Reactor. At World War II Hanford, only two women were listed among the nearly 200 members of the top supervisory staff of the prime contractor, and only one regularly attended the staff meetings of the Site commander, Colonel Franklin Matthias. Overall, women comprised less than one percent of the managerial and supervisory staff of the Hanford Engineer Works, most of them were in nursing or on the Recreation Office staff. Almost all of the professional women at Hanford were nurses, and most of the other women of the Hanford Engineer Works were secretaries, clerks, food-service workers, laboratory technicians, messengers, barracks workers, and other support service employees. The one World War II recruiting film made to attract women workers to the Site, that has survived in Site archives, is entitled ``A Day in the Life of a Typical Hanford Girl.'' These historical facts are not mentioned to criticize the past - for it is never wise to apply the standards of one era to another. The Hanford Engineer Works was a 1940s organization, and it functioned by the standards of the 1940s. Just as we cannot criticize the use of asbestos in constructing Hanford (although we may wish they hadn't used so much of it), we

  13. Hanford Site environmental management specification

    International Nuclear Information System (INIS)

    Grygiel, M.L.

    1998-01-01

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL's application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  14. Hanford Site environmental management specification

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.

    1998-06-10

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

  15. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP

  16. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  17. Hanford Site peak gust wind speeds

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1998-01-01

    Peak gust wind data collected at the Hanford Site since 1945 are analyzed to estimate maximum wind speeds for use in structural design. The results are compared with design wind speeds proposed for the Hanford Site. These comparisons indicate that design wind speeds contained in a January 1998 advisory changing DOE-STD-1020-94 are excessive for the Hanford Site and that the design wind speeds in effect prior to the changes are still appropriate for the Hanford Site

  18. FY 1993 task plans for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1991-10-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to individuals and populations. The primary objective of work to be performed in FY 1993 is to complete the source term estimates and dose estimates for key radionuclides for the air and river pathways. At the end of FY 1993, the capability will be in place to estimate doses for individuals in the extended (32-county) study area, 1944--1991. Native American research will continue to provide input for tribal dose estimates. In FY 1993, the Technical Steering Panel (TSP) will decide whether demographic and river pathways data collection should be extended beyond FY 1993 levels. The FY 1993 work scopes and milestones in this document are based on the work plan discussed at the TSP Budget/Fiscal Subcommittee meeting on August 19--20, 1991. Table 1 shows the FY 1993 milestones; Table 2 shows estimated costs. The subsequent work scope descriptions are based on the milestones. This document and the FY 1992 task plans will form the basis for a contract with Battelle and the Centers for Disease Control (CDC). The 2-year dose reconstruction contract is expected to begin in February 1992. This contract will replace the current arrangement, whereby the US Department of Energy directly funds the Pacific Northwest Laboratory to conduct dose reconstruction work. In late FY 1992, the FY 1993 task plans will be more fully developed with detailed technical approaches, data quality objectives, and budgeted labor hours. The task plans will be updated again in July 1993 to reflect any scope, milestone, or cost changes directed during the year by the TSP. 2 tabs

  19. Hanford protoype surface barrier status report: FY 1994

    International Nuclear Information System (INIS)

    Gee, G.W.; Freeman, H.D.; Walters, W.H. Jr.; Ligotke, M.W.; Campbell, M.D.; Ward, A.L.; Link, S.O.; Smith, S.K.; Gilmore, B.G.; Romine, R.A.

    1994-12-01

    A full-scale prototype surface barrier has been constructed at the 200 BP-1 Operable Unit in the 200 East Area of the Hanford Site. The prototype barrier has been built to evaluate design, construction, and performance features of a surface barrier that may be used for in-place disposal of wastes at the Hanford Site. The design basis and construction of the prototype have been documented. A testing and monitoring plan has been published outlining specific tests planned for the prototype. The current report describes initial testing activities conducted in FY 1994 and outlines activities for testing and monitoring at the prototype barrier in the future. Asphalt permeability was tested during construction of the prototype in April and May 1994. Cores taken from the asphalt concrete layer were tested in the laboratory and found to have hydraulic conductivities below 1E-09 cm/s. Field measurements of hydraulic conductivity taken on the asphalt concrete using a specially-designed falling head permeameter were more than ten times higher than those from core tests. The higher values are attributed to transient flow through the permeameter seal. In spite of this difficulty, the more rapid field measurements (1-day tests in the field compared to 3 months in the laboratory) gave values as low as IE-09 cm/s and averaged about IE-08 cm/s. Samples of fluid-applied asphalt material, used as a sealant on the asphalt concrete layer, were. tested in the laboratory and found to have hydraulic conductivities below IE-10 cm/s. Measurements of hydraulic conductivity taken on an adjacent asphalt test pad using a sealed double-ring infiltrometer (SDRI) were initiated in September 1994 and are expected to be completed in November 1994. Construction of the prototype surface barrier was completed in August 1994

  20. Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan

    International Nuclear Information System (INIS)

    1993-12-01

    This document is the FY 1993 report on Hanford Site-specific science and technology (S ampersand T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford's highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S ampersand T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ''problem owners'' (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S ampersand T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders

  1. Hanford annual second quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-06-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (ENN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the second quarter of FY98 for stations in the HSN was 99.92%. The operational rate for the second quarter of FY98 for stations of the EWRN was 99.46%. For the second quarter of FY98, the acquisition computer triggered 159 times. Of these triggers 14 were local earthquakes: 7 (50%) in the Columbia River Basalt Group, 3 (21%) in the pre-basalt sediments, and 4 (29%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant seismic event for the second quarter was on March 23, 1998 when a 1.9 Mc occurred near Eltopia, WA and was felt by local residents. Although this was a small event, it was felt at the surface and is an indication of the potential impact on Hanford of seismic events that are common to the Site.

  2. Hanford Site surface environmental surveillance

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1998-01-01

    Environmental surveillance of the Hanford Site and the surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to US Department of Energy (DOE) environmental protection policies, support DOE environmental management decisions, and provide information to the public. The Surface Environmental Surveillance Project (SESP) is a multimedia environmental monitoring program conducted to measure the concentrations of radionuclides and chemical contaminants in the environment and assess the integrated effects of these contaminants on the environment and the public. The monitoring program includes sampling air, surface water, sediments, soil, natural vegetation, agricultural products, fish, and wildlife. Functional elements inherent in the operation of the SESP include project management, quality assurance/control, training, records management, environmental sampling network design and implementation, sample collection, sample analysis, data management, data review and evaluation, exposure assessment, and reporting. The SESP focuses on those contaminant/media combinations calculated to have the highest potential for contributing to off-site exposure. Results of the SESP indicate that contaminant concentrations in the Hanford environs are very low, generally below environmental standards, at or below analytical detection levels, and indicative of environmental levels. However, areas of elevated contaminant concentrations have been identified at Hanford. The extent of these areas is generally limited to past operating areas and waste disposal sites

  3. Three-dimensional analysis of future groundwater flow conditions and contaminant plume transport in the Hanford Site unconfined aquifer system: FY 1996 and 1997 status report

    Energy Technology Data Exchange (ETDEWEB)

    Cole, C.R.; Wurstner, S.K.; Williams, M.D.; Thorne, P.D.; Bergeron, M.P.

    1997-12-01

    A three-dimensional numerical model of groundwater flow and transport, based on the Coupled Fluid Energy, and Solute Transport (CFEST) code, was developed for the Hanford Site to support the Hanford Groundwater Project (HGWP), managed by Pacific Northwest National Laboratory. The model was developed to increase the understanding and better forecast the migration of several contaminant plumes being monitored by the HGWP, and to support the Hanford Site Composite Analysis for low-level waste disposal in the 200-Area Plateau. Recent modeling efforts have focused on continued refinement of an initial version of the three-dimensional model developed in 1995 and its application to simulate future transport of selected contaminant plumes in the aquifer system. This version of the model was updated using a more current version of the CFEST code called CFEST96. Prior to conducting simulations of contaminant transport with the three-dimensional model, a previous steady-state, two-dimensional model of the unconfined aquifer system was recalibrated to 1979 water-table conditions with a statistical inverse method implemented in the CFEST-INV computer code. The results of the recalibration were used to refine the three-dimensional conceptual model and to calibrate it with a conceptualization that preserves the two-dimensional hydraulic properties and knowledge of the aquifer`s three-dimensional properties for the same 1979 water-table conditions. The transient behavior of the three-dimensional flow model was also calibrated by adjusting model storage properties (specific yield) until transient water-table predictions approximated observed water-table elevations between 1979 and 1996.

  4. Three-dimensional analysis of future groundwater flow conditions and contaminant plume transport in the Hanford Site unconfined aquifer system: FY 1996 and 1997 status report

    International Nuclear Information System (INIS)

    Cole, C.R.; Wurstner, S.K.; Williams, M.D.; Thorne, P.D.; Bergeron, M.P.

    1997-12-01

    A three-dimensional numerical model of groundwater flow and transport, based on the Coupled Fluid Energy, and Solute Transport (CFEST) code, was developed for the Hanford Site to support the Hanford Groundwater Project (HGWP), managed by Pacific Northwest National Laboratory. The model was developed to increase the understanding and better forecast the migration of several contaminant plumes being monitored by the HGWP, and to support the Hanford Site Composite Analysis for low-level waste disposal in the 200-Area Plateau. Recent modeling efforts have focused on continued refinement of an initial version of the three-dimensional model developed in 1995 and its application to simulate future transport of selected contaminant plumes in the aquifer system. This version of the model was updated using a more current version of the CFEST code called CFEST96. Prior to conducting simulations of contaminant transport with the three-dimensional model, a previous steady-state, two-dimensional model of the unconfined aquifer system was recalibrated to 1979 water-table conditions with a statistical inverse method implemented in the CFEST-INV computer code. The results of the recalibration were used to refine the three-dimensional conceptual model and to calibrate it with a conceptualization that preserves the two-dimensional hydraulic properties and knowledge of the aquifer's three-dimensional properties for the same 1979 water-table conditions. The transient behavior of the three-dimensional flow model was also calibrated by adjusting model storage properties (specific yield) until transient water-table predictions approximated observed water-table elevations between 1979 and 1996

  5. Hanford Site technical baseline database. Revision 1

    International Nuclear Information System (INIS)

    Porter, P.E.

    1995-01-01

    This report lists the Hanford specific files (Table 1) that make up the Hanford Site Technical Baseline Database. Table 2 includes the delta files that delineate the differences between this revision and revision 0 of the Hanford Site Technical Baseline Database. This information is being managed and maintained on the Hanford RDD-100 System, which uses the capabilities of RDD-100, a systems engineering software system of Ascent Logic Corporation (ALC). This revision of the Hanford Site Technical Baseline Database uses RDD-100 version 3.0.2.2 (see Table 3). Directories reflect those controlled by the Hanford RDD-100 System Administrator. Table 4 provides information regarding the platform. A cassette tape containing the Hanford Site Technical Baseline Database is available

  6. Hanford Diversification and the Tri-Cities Economy FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    SCOTT, M.J.

    2000-06-05

    The missions of the U.S. Department of Energy's Richland Operations Office (DOE/RL) are to safely manage the Hanford Site, to manage and clean up its legacy wastes, and to develop and deploy new science and technology in the environmental and energy fields. Collectively, DOE/RL and its contractors are the most important single entity in the Tri-Cities local economy (Pasco, Kennewick, and Richland, Washington, and the surrounding area). Although the relevant economic region affected by DOE/RL and its contractors actually embraces a geographic area reaching from Yakima in the west to Walla Walla in the east and from Moses Lake in the north to Pendleton, Oregon, in the south, over 90% of economic impacts likely occur in Benton and Franklin Counties. These two counties are defined as the ''local'' Tri-Cities economy for purposes of this study. In the federal fiscal year (FY) 1999 (October 1, 1998 through September 30, 1999), the total impact of DOE'S local $1.59 billion budget was felt through payrolls of $542 million and local purchases of goods and services of $226 million. The total local spending of $768 million was up slightly from the FY 1998 total of $765 million. Taking into account the multiplier effects of this spending, the DOE/RL budget sustained an estimated 32% of all local employment (28,250 out of 88,100 jobs) and about 35% of local earned income (almost $1.08 billion out of $3.08 billion). The decrease in these percentages from last year's report reflects an update of the model's economic structure based on the 1997 economic census year, a correction of a programming error in the model found during the update, and a broader definition of earnings that includes proprietor income, not just wages (see the Appendix for revisions to the previous forecasts). DOE budget increases in FY 2000 are expected to result in no change to the number of local DOE contractor jobs and about a $29 million increase in direct local

  7. Hanford Diversification and the Tri-Cities Economy FY 1999

    International Nuclear Information System (INIS)

    SCOTT, M.J.

    2000-01-01

    The missions of the U.S. Department of Energy's Richland Operations Office (DOE/RL) are to safely manage the Hanford Site, to manage and clean up its legacy wastes, and to develop and deploy new science and technology in the environmental and energy fields. Collectively, DOE/RL and its contractors are the most important single entity in the Tri-Cities local economy (Pasco, Kennewick, and Richland, Washington, and the surrounding area). Although the relevant economic region affected by DOE/RL and its contractors actually embraces a geographic area reaching from Yakima in the west to Walla Walla in the east and from Moses Lake in the north to Pendleton, Oregon, in the south, over 90% of economic impacts likely occur in Benton and Franklin Counties. These two counties are defined as the ''local'' Tri-Cities economy for purposes of this study. In the federal fiscal year (FY) 1999 (October 1, 1998 through September 30, 1999), the total impact of DOE'S local $1.59 billion budget was felt through payrolls of $542 million and local purchases of goods and services of $226 million. The total local spending of $768 million was up slightly from the FY 1998 total of $765 million. Taking into account the multiplier effects of this spending, the DOE/RL budget sustained an estimated 32% of all local employment (28,250 out of 88,100 jobs) and about 35% of local earned income (almost $1.08 billion out of $3.08 billion). The decrease in these percentages from last year's report reflects an update of the model's economic structure based on the 1997 economic census year, a correction of a programming error in the model found during the update, and a broader definition of earnings that includes proprietor income, not just wages (see the Appendix for revisions to the previous forecasts). DOE budget increases in FY 2000 are expected to result in no change to the number of local DOE contractor jobs and about a $29 million increase in direct local spending

  8. Field trip guide to the Hanford Site

    International Nuclear Information System (INIS)

    Reidel, S.P.; Lindsey, K.A.; Fecht, K.R.

    1992-11-01

    This report is designed to provide a guide to the key geologic and hydrologic features of the US Department of Energy's Hanford Site located in south-central Washington. The guide is divided into two parts. The first part is a general introduction to the geology of the Hanford Site and its relation to the regional framework of south-central Washington. The second part is a road log that provides directions to important geologic features on the Hanford Site and descriptions of the locality. The exposures described were chosen for their accessibility and importance to the geologic history of the Hanford Site and to understanding the geohydrology of the Site

  9. Hanford protective barriers program: Status of asphalt barrier studies - FY 1989

    International Nuclear Information System (INIS)

    Freeman, H.D.; Gee, G.W.

    1989-11-01

    The Hanford Protective Barrier Program is evaluating alternate barriers to provide a means of meeting stringent water infiltration requirements. One type of alternate barrier being considered is an asphalt-based layer, 1.3 to 15 cm thick. Evaluations of these barriers were initiated in FY 1988, and, based on laboratory studies, two asphalt formulations were selected for further testing in small-tube lysimeters: a hot rubberized asphalt and an admixture of cationic asphalt emulsion and concrete sand containing 24 wt% residual asphalt. Eight lysimeters containing asphalt seals were installed as part of the Small Tube Lysimeter Test Facility on the Hanford Site. Two control lysimeters containing Hanford sand with a surface gravel treatment were also installed for comparison. 5 refs., 13 figs., 1 tab

  10. History of Hanford Site Defense Production (Brief)

    International Nuclear Information System (INIS)

    GERBER, M.S.

    2001-01-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  11. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  12. Hanford Site Solid Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    1993-01-01

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  13. Hanford annual first quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-02-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY98 for stations in the HSN was 98.5%. The operational rate for the first quarter of FY98 for stations of the EWRN was 99.1%. For the first quarter of FY98, the acquisition computer triggered 184 times. Of these triggers 23 were local earthquakes: 7 in the Columbia River Basalt Group, and 16 in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant earthquakes in this quarter were a series of six events which occurred in the Cold Creek depression (approximately 4 km SW of the 200 West Area), between November 6 and November 11, 1997. All events were deep (> 15 km) and were located in the crystalline basement. The first event was the largest, having a magnitude of 3.49 M{sub c}. Two events on November 9, 1997 had magnitudes of 2.81 and 2.95 M{sub c}, respectively. The other events had magnitudes between 0.7 and 1.2 M{sub c}.

  14. Historical genesis of Hanford Site wastes

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1991-01-01

    This paper acquaints the audience with historical waste practices and policies as they changed over the years at the Hanford Site, and with the generation of the major waste streams of concern in Hanford Site clean-up today. The paper also describes the founding and basic operating history of the Hanford Site, including World War 11 construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), and some past suggestions and efforts to chemically treat, open-quotes fractionate,close quotes and/or immobilize Hanford's wastes. Recent events, including the designation of the Hanford Site as the open-quotes flagshipclose quotes of Department of Energy (DOE) waste remediation efforts and the signing of the landmark Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), have generated new interest in Hanford's history. Clean-up milestones dictated in this agreement demand information about how, when, in what quantities and mixtures, and under what conditions, Hanford Site wastes were generated and released. This paper presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  15. Fiscal year 1991 report on archaeological surveys of the 100 Areas, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Chatters, J.C.; Gard, H.A.; Minthorn, P.E.

    1992-09-01

    In compliance with Section 106 of the National Historic Preservation Act (NHPA), and at the request of Westinghouse Hanford Company, the Hanford Cultured Resources Laboratory (HCRL) conducted an archaeological survey during FY 1991 of the 100-Area reactor compounds on the US Department of Energy's Hanford Site. This survey was conducted as part of a comprehensive resources review of 100-Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization activities. The work included a lite and records review and pedestrian survey of the project area following procedures set forth in the Hanford Cultural Resources Management Plan

  16. Fiscal year 1991 report on archaeological surveys of the 100 Areas, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Gard, H.A.; Minthorn, P.E.

    1992-09-01

    In compliance with Section 106 of the National Historic Preservation Act (NHPA), and at the request of Westinghouse Hanford Company, the Hanford Cultured Resources Laboratory (HCRL) conducted an archaeological survey during FY 1991 of the 100-Area reactor compounds on the US Department of Energy`s Hanford Site. This survey was conducted as part of a comprehensive resources review of 100-Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization activities. The work included a lite and records review and pedestrian survey of the project area following procedures set forth in the Hanford Cultural Resources Management Plan.

  17. Fiscal year 1991 report on archaeological surveys of the 100 Areas, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Gard, H.A.; Minthorn, P.E.

    1992-09-01

    In compliance with Section 106 of the National Historic Preservation Act (NHPA), and at the request of Westinghouse Hanford Company, the Hanford Cultured Resources Laboratory (HCRL) conducted an archaeological survey during FY 1991 of the 100-Area reactor compounds on the US Department of Energy's Hanford Site. This survey was conducted as part of a comprehensive resources review of 100-Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization activities. The work included a lite and records review and pedestrian survey of the project area following procedures set forth in the Hanford Cultural Resources Management Plan.

  18. Hanford Site baseline risk assessment methodology

    International Nuclear Information System (INIS)

    1993-03-01

    This methodology has been developed to prepare human health and environmental evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act remedial investigations (RIs) and the Resource Conservation and Recovery Act facility investigations (FIs) performed at the Hanford Site pursuant to the Hanford Federal Facility Agreement and Consent Order referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies Site-specific risk assessment considerations and integrates them with approaches for evaluating human and environmental risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site

  19. Hanford Site Risk Assessment Methodology. Revision 3

    International Nuclear Information System (INIS)

    1995-05-01

    This methodology has been developed to prepare human health and ecological evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigations (RI) and the Resource conservation and Recovery Act of 1976 (RCRA) facility investigations (FI) performed at the Hanford Site pursuant to the hanford Federal Facility Agreement and Consent Order (Ecology et al. 1994), referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies site-specific risk assessment considerations and integrates them with approaches for evaluating human and ecological risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site

  20. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn, SP Reidel, AC Rohay

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi~orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of zin earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.

  1. Hanford prototype-barrier status report: FY 1995

    International Nuclear Information System (INIS)

    Gee, G.W.; Ward, A.L.; Gilmore, B.G.; Ligotke, M.W.; Link, S.O.

    1995-11-01

    Surface barriers (or covers) have been proposed for use at the Hanford Site as a means to isolate certain waste sites that, for reasons of cost or worker safety or both, may not be exhumed. Surface barriers are intende to isolated the wastes from the accessible environment and to provide long-term protection to future populations that might use the Hanford Site. Currently, no ''proven'' long-term barrier system is available. For this reason, the Hanford Site Permanent Isolation Surface-Barrier Development Program (BDP) was organized to develop the technology needed to provide long-term surface barrier capability for the Hanford Site for the US Department of Energy (DOE). Designs have been proposed to meet the most stringent needs for long-term waste disposal. The objective of the current barrier design is to use natural materials to develop a protective barrier system that isolates wastes for at least 1000 years by limiting water, plant, animal, and human intrusion; and minimizing erosion. The design criteria for water drainage has been set at 0.5 mm/yr. While other design criteria are more qualitative, it is clear that waste isolation for an extended time is the prime objective of the design. Constructibility and performance. are issues that can be tested and dealt with by evaluating prototype designs prior to extensive construction and deployment of covers for waste sites at Hanford

  2. Hanford Site groundwater monitoring for fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  3. Hanford Site groundwater monitoring for fiscal year 1996

    International Nuclear Information System (INIS)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V.

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems

  4. Vascular Plants of the Hanford Site

    International Nuclear Information System (INIS)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-01-01

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Brigham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations

  5. Hanford Patrol Academy demolition sites closure plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

  6. Hanford Site Environmental Management Specification

    International Nuclear Information System (INIS)

    DAILY, J.L.

    2001-01-01

    The US Department of Energy, Richland Operations Office (RL) has established a document hierarchy as part of its integrated management system. The Strategic Plan defines the vision, values, missions, strategic goals, high-level outcomes, and the basic strategies in achieving those outcomes. As shown in Figure 1-1, the Site Specification derives requirements from the Strategic Plan and documents the top-level mission technical requirements for the work involved in the RL Hanford Site cleanup and infrastructure activities under the responsibility of the U.S. Department of Energy, Office of Environmental Management (EM). It also provides the basis for all contract technical requirements. Since this is limited to the EM work, neither the Fast Flux Test Facility (FFTF) nor the Pacific Northwest National Laboratory (PNNL) non-EM science activities are included. Figure 1-1 also shows the relationship between this Site Specification and the other Site management and planning documents. Similarly, the documents, orders, and laws referenced in this document represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  7. Geographic and Operational Site Parameters List (GOSPL) for Hanford Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V.; Nichols, William E.; Kincaid, Charles T.

    2006-06-01

    This data package was originally prepared to support a 2004 composite analysis (CA) of low-level waste disposal at the Hanford Site. The Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site (Kincaid et. al. 2004) identified the requirements for that analysis and served as the basis for initial preparation of this data package. Completion of the 2004 CA was later deferred, with the 2004 Annual Status Report for the Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site (DOE 2005) indicating that a comprehensive update to the CA was in preparation and would be submitted in 2006. However, the U.S. Department of Energy (DOE) has recently decided to further defer the CA update and will use the cumulative assessment currently under preparation for the environmental impact statement (EIS) being prepared for tank closure and other site decisions as the updated CA. Submittal of the draft EIS is currently planned for FY 2008. This data package describes the facility-specific parameters (e.g. location, operational dates, etc.) used to numerically simulate contaminant flow and transport in large-scale Hanford assessments. Kincaid et al. (2004) indicated that the System Assessment Capability (SAC) (Kincaid et al. 2000; Bryce et al. 2002; Eslinger 2002a, 2002b) would be used to analyze over a thousand different waste sites. A master spreadsheet termed the Geographic and Operational Site Parameters List (GOSPL) was assembled to facilitate the generation of keyword input files containing general information on each waste site/facility, its operational/disposal history, and its environmental settings (past, current, and future). This report briefly describes each of the key data fields, including the source(s) of data, and provides the resulting inputs to be used for large-scale Hanford assessments.

  8. Solid secondary waste testing for maintenance of the Hanford Integrated Disposal Facility Performance Assessment - FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Ralph L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, Kenneth L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-01

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being constructed to treat 56 million gallons of radioactive waste currently stored in underground tanks at the Hanford site. Operation of the WTP will generate several solid secondary waste (SSW) streams including used process equipment, contaminated tools and instruments, decontamination wastes, high-efficiency particulate air filters (HEPA), carbon adsorption beds, silver mordenite iodine sorbent beds, and spent ion exchange resins (IXr) all of which are to be disposed in the Integrated Disposal Facility (IDF). An applied research and development program was developed using a phased approach to incrementally develop the information necessary to support the IDF PA with each phase of the testing building on results from the previous set of tests and considering new information from the IDF PA calculations. This report contains the results from the exploratory phase, Phase 1 and preliminary results from Phase 2. Phase 3 is expected to begin in the fourth quarter of FY17.

  9. Hanford Site Waste management units report

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes the operable units in several areas of the Hanford Site Waste Facility. Each operable unit has several waste units (crib, ditch, pond, etc.). The operable units are summarized by describing each was unit. Some of the descriptions are unit name, unit type, waste category start data, site description, etc. The descriptions will vary for each waste unit in each operable unit and area of the Hanford Site

  10. Sustainable NREL - Site Sustainability Plan FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-01-01

    NREL's Site Sustainability Plan FY 2015 reports on sustainability plans for the lab for the year 2015 based on Executive Order Goals and provides the status on planned actions cited in the FY 2014 report.

  11. General Counsel`s office FY 1995 site support program plan WBS 6.10.5

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, S.R.

    1994-09-01

    The General Counsel`s office provides legal counsel to all levels of WHC management; administers the intellectual property program; coordinates all WHC investigative activity and supports WHC activities to ensure compliance with all applicable federal, state, and local laws, DOE directives, contractual provisions, and other requirements. In so doing, the Office of General Counsel supports the Hanford site mission of transforming the Hanford site into an environmentally attractive and economically sustainable community. This document briefs the FY95 site support plan.

  12. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  13. Hanford Site Permanent Isolation Surface Barrier Development Program: Fiscal year 1992 and 1993 highlights

    International Nuclear Information System (INIS)

    Cadwell, L.L.; Link, S.O.; Gee, G.W.

    1993-09-01

    The Hanford Site Permanent Isolation Surface Barrier Development Program was jointly developed by the Pacific Northwest Laboratory and Westinghouse Hanford Company to design and test an earthen cover system that can be used to inhibit water infiltration; plant, animal, and human intrusion; and wind and water erosion. Kaiser Engineers Hanford Company provided engineering design support for the program. Work on barrier design has been under way at Hanford for nearly 10 years. The comprehensive development of a long-term barrier, formerly the Hanford Site Protective Barrier Development Program, was initiated in FY 1986, and a general field-tested design is expected to be completed by FY 1998. Highlights of efforts in FY 1992 and FY 1993 included the resumption of field testing, the completion of the prototype barrier design, and the convening of an external peer review panel, which met twice with the barrier development team. The review panel provided helpful guidance on current and future barrier development activities, while commending the program for its significant technical contributions to innovative barrier technology development

  14. The Hanford Site: An anthology of early histories

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1993-10-01

    This report discusses the following topics: Memories of War: Pearl Harbor and the Genesis of the Hanford Site; safety has always been promoted at the Hanford Site; women have an important place in Hanford Site history; the boom and bust cycle: A 50-year historical overview of the economic impacts of Hanford Site Operations on the Tri-Cities, Washington; Hanford's early reactors were crucial to the sites's history; T-Plant made chemical engineering history; the UO 3 plant has a long history of service. PUREX Plant: the Hanford Site's Historic Workhorse. PUREX Plant Waste Management was a complex challenge; and early Hanford Site codes and jargon

  15. Hanford Site Environmental Safety and Health Fiscal Year 2001 Budget-Risk management summary

    Energy Technology Data Exchange (ETDEWEB)

    REEP, I.E.

    1999-05-12

    The Hanford Site Environment, Safety and Health (ES&H) Budget-Risk Management Summary report is prepared to support the annual request to sites in the U.S. Department of Energy (DOE) Complex by DOE, Headquarters. The request requires sites to provide supplementary crosscutting information related to ES&H activities and the ES&H resources that support these activities. The report includes the following: (1) A summary status of fiscal year (FY) 1999 ES&H performance and ES&H execution commitments; (2)Status and plans of Hanford Site Office of Environmental Management (EM) cleanup activities; (3) Safety and health (S&H) risk management issues and compliance vulnerabilities of FY 2001 Target Case and Below Target Case funding of EM cleanup activities; (4) S&H resource planning and crosscutting information for FY 1999 to 2001; and (5) Description of indirect-funded S&H activities.

  16. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  17. History of Hanford Site Defense Production (Brief)

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M S

    2001-02-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history.

  18. Fiscal year 1992 report on archaeological surveys of the 100 Areas, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M.K.

    1993-09-01

    During FY 1992, the Hanford Cultural Resources Laboratory (HCRL) conducted a field survey of the 100-HR-3 Operable Unit (600 Area) and tested three sites near the 100 Area reactor compounds on the US Department of Energy`s Hanford Site at the request of Westinghouse Hanford Company. These efforts were conducted in compliance with Section 106 of the National Historic Preservation Act (NHPA) and are part of a cultural resources review of 100 Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization studies.The results of the FY 1992 survey and test excavation efforts are discussed in this report. 518 ha in the 100-HR-3 Operable Unit and conducted test excavations at three prehistoric sites near the 100-F and 100-K reactors to determine their eligibility for listing on the National Register of Historic Places.

  19. Hanford analytical sample projections FY 1995--FY 2000. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, F.M.

    1994-12-02

    Sample projections have been categorized into 7 major areas: Environmental Restoration, Tank Waste Remediation, Solid Waste, Liquid Effluents, Site Monitoring, Industrial Hygiene, and General Process Support Programs. The estimates are through the Fiscal Year 2000 and are categorized by radiation level. The yearly sample projection for each program will be categorized as follows: Category 1: Non-Radioactive; Category 2: <1 mR/hr {beta}/{gamma}; <10 nCi/g {alpha}; Category 3: 1 mR/hr {beta}/{gamma} to <10 mR/hr {beta}/{gamma}; and <10 nCi/g {alpha}; Category 4: <10 mR/hr {beta}/{gamma}; and <200 nCi/g {alpha}; Category 5: 10 mR/hr {beta}/{gamma} to <100 mR/hr {beta}/{gamma}; and <200 nCi/g {alpha}; Category 6: >100 mR/hr {beta}/{gamma}; and Category 7: >200 nCi/g {alpha}.

  20. Natural phenomena analyses, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1989-01-01

    Probabilistic seismic hazard studies completed for the Washington Public Power Supply System's Nuclear Plant 2 and for the US Department of Energy's N Reactor sites, both on the Hanford Site, suggested that the Lawrence Livermore National Laboratory seismic exposure estimates were lower than appropriate, especially for sites near potential seismic sources. A probabilistic seismic hazard assessment was completed for those areas that contain process and/or waste management facilities. the lower bound magnitude of 5.0 is used in the hazard analysis and the characteristics of small-magnitude earthquakes relatively common to the Hanford Site are addressed. The recommended ground motion for high-hazard facilities is somewhat higher than the Lawrence Livermore National Laboratory model and the ground motion from small-magnitude earthquakes is addressed separately from the moderate- to large-magnitude earthquake ground motion. The severe wind and tornado hazards determined for the Hanford Siste are in agreement with work completed independently using 43 years of site data. The low-probability, high-hazard, design-basis flood at the Hanford Site is dominated by dam failure on the Columbia River. Further evaluation of the mechanisms and probabilities of such flooding is in progress. The Hanford Site is downwind from several active Cascade volcanoes. Geologic and historical data are used to estimate the ashfall hazard

  1. Executive summary, Hanford Site Pollution Prevention Plan

    International Nuclear Information System (INIS)

    1992-08-01

    A pollution prevention plan is an organized, comprehensive, and continual effort to systematically reduce waste generation. The Hanford Site Pollution Prevention Plan is designed to eliminate or minimize pollutant releases to all environmental media from all aspects of Site operations. These efforts offer increased protection of public health and the environment. This plan reflects the goals and policies for pollution prevention at the Hanford Site and represents an ongoing effort to make pollution prevention part of the Site operating philosophy. The plan encompasses hazardous waste only and excludes radioactive waste and radioactive mixed waste

  2. FY 1991 Task plans for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    1991-04-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The objectives of work in Fiscal Year (FY) 1991 are to analyze data and models used in Phase 1 and restructure the models to increase accuracy and reduce uncertainty in dose estimation capability. Databases will be expanded and efforts will begin to determine the appropriate scope (space, time, radionuclides, pathways and individuals/population groups) and accuracy (level of uncertainty in dose estimates) for the project. Project scope and accuracy requirements, once defined, can be translated into additional model and data requirements later in the project. Task plans for FY 1991 have been prepared based on activities approved by the Technical Steering Panel (TSP) in October 1990 and mid-year revisions discussed at the TSP planning/budget workshop in February 1991. The activities can be divided into two broad categories: (1) model and data development and evaluation, (2) project, technical and communication support. 3 figs., 1 tab

  3. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  4. Hanford quarterly seismic report - 97C seismicity on and near the Hanford Site, Pasco Basin, Washington. Quarterly report, April 1, 1997--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1997-08-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 100% and for stations of the EWRN was 99.99%. For fiscal year (FY) 1997 third quarter (97C), the acquisition computer triggered 183. Of these triggers twenty one were local earthquakes: sixteen in the Columbus River Basalt Group, one in the pre-basalt sediments, and four in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  5. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997 - March 31, 1997

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report

  6. Hanford site operator changes management

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is a brief discussion of management changes at the Westinghouse Hanford Corporation. A. LeMar Trego has relieved Thomas Anderson as president of WHC. This was in response to recent shortcomings in Westinghouse's management of the environmental restoration and their failure to receive a $10M performance bonus

  7. Hanford site transuranic waste sampling plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed

  8. Hanford Site Performance Report - March 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U.S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  9. Hanford Site Performance Report - May 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U. S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  10. Hanford Site Performance Report - April 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U.S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  11. Integrated Task Plans for the Hanford Environmental Dose Reconstruction Project, FY 1992 through May 1994

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1992-09-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The primary objective of work to be performed through May 1994 is to (1) determine the project's appropriate scope (space, time, radionuclides, pathways and individuals/population groups), (2) determine the project's appropriate level of accuracy (level of uncertainty in dose estimates) for the project, (3) complete model and data development, and (4) estimate doses for the Hanford Thyroid Disease Study (HTDS), representative individuals, and special populations as described herein. The plan for FY 1992 through May 1994 has been prepared based on activities and budgets approved by the Technical Steering Panel (TSP) at its meetings on August 19--20, 1991, and April 23--25, 1992. The activities can be divided into four broad categories: (1) model and data evaluation activities, (2)additional dose estimates, (3) model and data development activities, and (4)technical and communication support

  12. FY 1991 project plan for the Hanford Environmental Dose Reconstruction Project, Phase 2

    International Nuclear Information System (INIS)

    1991-02-01

    Phase 1 of the Hanford Environmental Dose Reconstruction Project was designed to develop and demonstrate a method for estimating radiation doses people may have received from Hanford Site operations since 1944. The method researchers developed relied on a variety of measured and reconstructed data as input to a modular computer model that generates dose estimates and their uncertainties. As part of Phase 1, researchers used the reconstructed data and computer model to calculate preliminary dose estimates for populations in a limited geographical area and time period. Phase 2, now under way, is designed to evaluate the Phase 1 data and model and improve them to calculate more accurate and precise dose estimates. Phase 2 will also be used to obtain preliminary estimates of two categories of doses: for Native American tribes and for individuals included in the pilot phase of the Hanford Thyroid Disease Study (HTDS). TSP Directive 90-1 required HEDR staff to develop Phase 2 task plans for TSP approval. Draft task plans for Phase 2 were submitted to the TSP at the October 11--12, 1990 public meeting, and, after discussions of each activity and associated budget needs, the TSP directed HEDR staff to proceed with a slate of specific project activities for FY 1991 of Phase 2. This project plan contains detailed information about those activities. Phase 2 is expected to last 15--18 months. In mid-FY 1991, project activities and budget will be reevaluated to determine whether technical needs or priorities have changed. Separate from, but related to, this project plan, will be an integrated plan for the remainder of the project. HEDR staff will work with the TSP to map out a strategy that clearly describes ''end products'' for the project and the work necessary to complete them. This level of planning will provide a framework within which project decisions in Phases 2, 3, and 4 can be made

  13. Vitrification technology for Hanford Site tank waste

    International Nuclear Information System (INIS)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy's (DOE) Hanford Site has an inventory of 217,000 m 3 of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing

  14. Westinghouse Hanford Company FY 1996 Materials Management Plan (MMP)

    International Nuclear Information System (INIS)

    Higginson, M.C.

    1995-12-01

    The safe and sound operation of facilities and the storage of nuclear material are top priorities within Hanford's environmental management, site restoration mission. The assumptions, plans and Special Nuclear Material (SNM) inventory summaries contained in this document were prepared for Department of Energy (DOE) use for interim and long- range planning. In accordance with Richland DOE field office (DOE-RL) direction, year-end inventory values were not projected over an 11 year period, as historically done in previous MMP documents. This decision was made since significant SNM movements to or from Hanford are not projected in the foreseeable future. Instead, the inventory summaries within this document reflect an ''as of date'' of June 30, 1995

  15. Vascular Plants of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-09-28

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Bringham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations on the biological environment, including impacts to rare habitats and to species listed as endangered or\\ threatened. This document includes a listing of plants currently listed as endangered, threatened, or otherwise of concern to the Washington Natural Heritage Program or the U.S. Fish and Wildlife Service, as well as those that are currently listed as noxious weeds by the State of Washington. Also provided is an overview of how plants on the Hanford Site can be used by people. This information may be useful in developing risk assessment models, and as supporting information for clean-up level and remediation decisions.

  16. The Hanford Site: An anthology of early histories

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1993-10-01

    This report discusses the following topics: Memories of War: Pearl Harbor and the Genesis of the Hanford Site; safety has always been promoted at the Hanford Site; women have an important place in Hanford Site history; the boom and bust cycle: A 50-year historical overview of the economic impacts of Hanford Site Operations on the Tri-Cities, Washington; Hanford`s early reactors were crucial to the sites`s history; T-Plant made chemical engineering history; the UO{sub 3} plant has a long history of service. PUREX Plant: the Hanford Site`s Historic Workhorse. PUREX Plant Waste Management was a complex challenge; and early Hanford Site codes and jargon.

  17. Hanford Site performance report - December 1998

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U. S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology support to the Environmental Management (EM) mission. This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. Currently, the report focuses on the EM mission, and will be expanded in the future to include non-EM activities. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a tabular performance profile with associated analyses, Critical Issues, Key Integration Activities, a look at Significant Trends, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators. The Site Summary is a compilation of performance data from all of the Mission Areas and the Projects that comprise these Mission Areas; the information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or the Site Summary sections. At the end of this report, a glossary of terms is provided

  18. Hanford performance evaluation program for Hanford site analytical services

    International Nuclear Information System (INIS)

    Markel, L.P.

    1995-09-01

    The U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance, and Title 10 of the Code of Federal Regulations, Part 830.120, Quality Assurance Requirements, states that it is the responsibility of DOE contractors to ensure that ''quality is achieved and maintained by those who have been assigned the responsibility for performing the work.'' Hanford Analytical Services Quality Assurance Plan (HASQAP) is designed to meet the needs of the Richland Operations Office (RL) for maintaining a consistent level of quality for the analytical chemistry services provided by contractor and commmercial analytical laboratory operations. Therefore, services supporting Hanford environmental monitoring, environmental restoration, and waste management analytical services shall meet appropriate quality standards. This performance evaluation program will monitor the quality standards of all analytical laboratories supporting the Hanforad Site including on-site and off-site laboratories. The monitoring and evaluation of laboratory performance can be completed by the use of several tools. This program will discuss the tools that will be utilized for laboratory performance evaluations. Revision 0 will primarily focus on presently available programs using readily available performance evaluation materials provided by DOE, EPA or commercial sources. Discussion of project specific PE materials and evaluations will be described in section 9.0 and Appendix A

  19. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of the 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  20. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  1. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  2. Summary report of Hanford Site well remediation and decommissioning activities for fiscal year 1994

    International Nuclear Information System (INIS)

    Reynolds, K.D.

    1994-01-01

    Remediation and decommissioning of Hanford Site wells has become an integral part of Hanford Site Environmental Restoration (ER) and Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring programs. A well remediation and decommissioning program was funded and implemented in fiscal year (FY) 1993 under the RCRA and Operational Monitoring (ROM) Program. Funding for this work increased in FY 1994. In FY 1994 well decommissioning activities conducted for the ROM program were centered around the 200 West Area; activities for the ER program were centered in the Fitzner/Eberhart Arid Land Ecology (ALE) (Reserve) unit and the Wahluke Slope (North Slope) area. A total of 116 wells and test borings were decommissioned between the two programs during FY 1994. Additionally, five wells were identified as in need of remediation and were successfully brought into compliance with regulatory requirements. As Hanford Site restoration and remediation efforts increase in scope, the well decommissioning program will remain dynamic. The program will aggressively seek to fulfill the needs of the various environmental cleanup and groundwater/vadose monitoring programs. Wells that do not meet regulatory requirements for preservation will continually be identified and remediated or decommissioned accordingly

  3. Tank Waste Transport Stability: Summaries of Hanford Slurry and Salt-Solution Studies in FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Welch, T.D.

    2002-07-08

    This report is a collection of summary articles on FY 2000 studies of slurry transport and salt-well pumping related to Hanford tank waste transfers. These studies are concerned with the stability (steady, uninterrupted flow) of tank waste transfers, a subset of the Department of Energy (DOE) Tanks Focus Area Tank (TFA) Waste Chemistry effort. This work is a collaborative effort of AEA Technology plc, the Diagnostic Instrumentation and Analysis Laboratory at Mississippi State University (DIAL-MSU), the Hemispheric Center for Environmental Technology at Florida International University (HCET-FIU), Numatec Hanford Corporation (NHC), and the Oak Ridge National Laboratory (ORNL). The purpose of this report is to provide, in a single document, an overview of these studies to help the reader identify contacts and resources for obtaining more detailed information and to help promote useful interchanges between researchers and users. Despite over 50 years of experience in transporting radioactive tank wastes to and from equipment and tanks at the Department of Energy's Hanford, Savannah River, and Oak Ridge sites, waste slurry transfer pipelines and process piping become plugged on occasion. At Hanford, several tank farm pipelines are no longer in service because of plugs. At Savannah River, solid deposits in the outlet line of the 2H evaporator have resulted in an unplanned extended downtime. Although waste transfer criteria and guidelines intended to prevent pipeline plugging are in place, they are not always adequate. To avoid pipeline plugging in the future, other factors that are not currently embodied in the transfer criteria may need to be considered. The work summarized here is being conducted to develop a better understanding of the chemical and waste flow dynamics during waste transfer. The goal is to eliminate pipeline plugs by improving analysis and engineering tools in the field that incorporate this understanding.

  4. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    International Nuclear Information System (INIS)

    Bergman, T.B.

    2011-01-01

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the ∼200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the

  5. FY 1992 task plans for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    1991-10-01

    Phase 1 of the HEDR Project was designed to develop and demonstrate a method for estimating radiation doses people may have received from Hanford Site operations since 1944. The method researchers developed relied on a variety of measured and reconstructed data as input to a modular computer model that generates dose estimates and their uncertainties. As part of Phase 1, researchers used the reconstructed data and computer model to calculate preliminary dose estimates for populations from limited radionuclides, in a limited geographical area and time period. Phase 1 ended in FY 1990. In February 1991, the TSP decided to shift the project planning approach away from phases--which were centered around completion of major portions of technical activities--to individual fiscal years (FYs), which span October of one year through September of the next. Therefore, activities that were previously designated to occur in phases are now designated in an integrated schedule to occur in one or more of the next fiscal years into FY 1995. Task plans are updated every 6 months. In FY 1992, scientists will continue to improve Phase 1 data and models to calculate more accurate and precise dose estimates. The plan for FY 1992 has been prepared based on activities and budgets approved by the Technical Steering Panel (TSP) at its meeting on August 19--20, 1991. The activities can be divided into four categories: (1) model and data evaluation activities, (2) additional dose estimates, (3) model and data development activities, and (4) technical and communication support. 3 figs., 2 tabs

  6. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  7. Hanford Site radioactive hazardous materials packaging directory

    International Nuclear Information System (INIS)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations ampersand Development (PO ampersand D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage

  8. Hanford Site radioactive hazardous materials packaging directory

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  9. Hanford prototype-barrier status report FY 1996

    International Nuclear Information System (INIS)

    Gee, G.W.; Ward, A.L.; Gilmore, B.G.; Link, S.O.; Dennis, G.W.; O'Neil, T.K.

    1996-11-01

    A prototype surface barrier is being evaluated as part of a treatability study at the 200-BP-1 Operable Unit in the 200 East Area of the Hanford Site. Tests include the application of irrigation water to the northern half of the barrier and subsequent measurement of water balance, wind and water erosion, subsidence, plant establishment,a nd plant and animal intrusion. The tests are designed to evaluate both irrigated and nonirrigated sideslope and vegetated surfaces over a period of 3 years. This report documents findings from the second year of testing

  10. Hanford prototype-barrier status report FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gee, G.W.; Ward, A.L.; Gilmore, B.G.; Link, S.O.; Dennis, G.W.; O`Neil, T.K.

    1996-11-01

    A prototype surface barrier is being evaluated as part of a treatability study at the 200-BP-1 Operable Unit in the 200 East Area of the Hanford Site. Tests include the application of irrigation water to the northern half of the barrier and subsequent measurement of water balance, wind and water erosion, subsidence, plant establishment,a nd plant and animal intrusion. The tests are designed to evaluate both irrigated and nonirrigated sideslope and vegetated surfaces over a period of 3 years. This report documents findings from the second year of testing.

  11. Annual Hanford Site Environmental Permitting Status Report

    International Nuclear Information System (INIS)

    HOMAN, N.A.

    2000-01-01

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. This status report also addresses Permit Condition I.E.22, as interpreted in Section 12.1.25 of the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Rev. 4), that states this report will be prepared annually and a copy of this report will be placed in the Facility Operating Record, General Information file by October 1 of each year

  12. Site Maintenance Plan: Part 2, Site Maintenance Action Plan for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, E.L.

    1994-06-01

    This Fiscal Year (FY) 1994 Site Maintenance Action Plan (SMAP) is Part II of the Site Maintenance Plan, and has been written by Westinghouse Hanford Company (WHC) to outline the requirements stated in DOE Order 4330.4B, Maintenance Management Program, Chapter 1, Paragraph 3.3.1. The SMAP provides an annual status of maintenance initiatives completed and planned, a summary of performance indicators, a summary of maintenance backlog, a listing of real property and capital equipment maintenance cost estimates that were used to create the FY 1996 infrastructure and maintenance budget input, and a listing of proposed line item and general plant projects. Additionally, assumptions for various Site programs are listed to bring the Site Maintenance Plan into focus with overall Site activities. The primary mission at Hanford is to clean up the Site. In this cleanup process WHC will provide scientific and technological expertise to meet global needs, and partnership with stakeholders in the region to develop regional economic diversification. Other missions at the Hanford Site include energy research and development, and waste management and disposal activities. Their primary mission has a 30-year projected life span and will direct the shutting down and cleanup of defense production facilities and the Fast Flux Test Facility. This long-term mission requires continuous maintenance and in many instances, replacement of existing basic infrastructure, support facilities, and utilities. Without adequate maintenance and capital funding these infrastructure, support facilities, and utilities will continue to deteriorate causing an increase in backlogged work.

  13. Site Maintenance Plan: Part 2, Site Maintenance Action Plan for FY 1994

    International Nuclear Information System (INIS)

    Fisk, E.L.

    1994-06-01

    This Fiscal Year (FY) 1994 Site Maintenance Action Plan (SMAP) is Part II of the Site Maintenance Plan, and has been written by Westinghouse Hanford Company (WHC) to outline the requirements stated in DOE Order 4330.4B, Maintenance Management Program, Chapter 1, Paragraph 3.3.1. The SMAP provides an annual status of maintenance initiatives completed and planned, a summary of performance indicators, a summary of maintenance backlog, a listing of real property and capital equipment maintenance cost estimates that were used to create the FY 1996 infrastructure and maintenance budget input, and a listing of proposed line item and general plant projects. Additionally, assumptions for various Site programs are listed to bring the Site Maintenance Plan into focus with overall Site activities. The primary mission at Hanford is to clean up the Site. In this cleanup process WHC will provide scientific and technological expertise to meet global needs, and partnership with stakeholders in the region to develop regional economic diversification. Other missions at the Hanford Site include energy research and development, and waste management and disposal activities. Their primary mission has a 30-year projected life span and will direct the shutting down and cleanup of defense production facilities and the Fast Flux Test Facility. This long-term mission requires continuous maintenance and in many instances, replacement of existing basic infrastructure, support facilities, and utilities. Without adequate maintenance and capital funding these infrastructure, support facilities, and utilities will continue to deteriorate causing an increase in backlogged work

  14. Strategic plan for Hanford site information management

    International Nuclear Information System (INIS)

    1994-09-01

    The Hanford Site missions are to clean up the Site, to provide scientific knowledge and technology to meet global needs, and to partner in the economic diversification of the region. To achieve these long-term missions and increase confidence in the quality of the Site's decision making process, a dramatically different information management culture is required, consistent with US Department of Energy (DOE) mandates on increased safety, productivity, and openness at its sites. This plan presents a vision and six strategies that will move the Site toward an information management culture that will support the Site missions and address the mandates of DOE

  15. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structure, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and addition additional information. 6 refs

  16. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and adding additional information. 6 refs

  17. Hanford Site Long-term Surface Barrier Development Program: Fiscal year 1994 highlights

    International Nuclear Information System (INIS)

    Petersen, K.L.; Link, S.O.; Gee, G.W.

    1995-08-01

    The Hanford Site Surface Barrier Development Program was organized in 1985 to test the effectiveness of various barrier designs in minimizing the effects of water infiltration; plant, animal and human intrusion; and wind and water erosion on buried wastes, plus preventing or minimizing the emanation of noxious gases. A team of scientists from the Pacific Northwest Laboratory (PNL) and engineers from Westinghouse Hanford Company (WHC) direct the barrier development effort. ICF Kaiser Hanford Company, in conjunction with WHC and PNL, developed design drawings and construction specifications for a 5-acre prototype barrier. The highlight of efforts in FY 1994 was the construction of the prototype barrier. The prototype barrier was constructed on the Hanford Site at the 200 BP-1 Operable Unit of the 200 East Area. Construction was completed in August 1994 and monitoring instruments are being installed so experiments on the prototype barrier can begin in FY 1995. The purpose of the prototype barrier is to provide insights and experience with issues regarding barrier design, construction, and performance that have not been possible with individual tests and experiments conducted to date. Additional knowledge and experience was gained in FY 1994 on erosion control, physical stability, water infiltration control, model testing, Resource Conservation and Recovery Act (RCRA) comparisons, biointrusion control, long-term performance, and technology transfer

  18. Fire protection program fiscal year 1995 site support program plan, Hanford Fire Department

    International Nuclear Information System (INIS)

    Good, D.E.

    1994-09-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report describes the specific responsibilities and programs that the HFD must support and the estimated cost of this support for FY1995

  19. Software configuration management plan for the Hanford site technical database

    International Nuclear Information System (INIS)

    GRAVES, N.J.

    1999-01-01

    The Hanford Site Technical Database (HSTD) is used as the repository/source for the technical requirements baseline and programmatic data input via the Hanford Site and major Hanford Project Systems Engineering (SE) activities. The Hanford Site SE effort has created an integrated technical baseline for the Hanford Site that supports SE processes at the Site and project levels which is captured in the HSTD. The HSTD has been implemented in Ascent Logic Corporation (ALC) Commercial Off-The-Shelf (COTS) package referred to as the Requirements Driven Design (RDD) software. This Software Configuration Management Plan (SCMP) provides a process and means to control and manage software upgrades to the HSTD system

  20. Groundwater remediation at the Hanford site

    International Nuclear Information System (INIS)

    Fries, W.

    1993-01-01

    Ion exchange resin and adsorption technology has been used successfully to treat diversified types of toxic waste water for many years. Even though the Hanford Site presents many unique problems, the author believes these technologies can remediate the groundwater at this site. However, treatment of the sludge in tanks generally is beyond the pale of these technologies except for the possibility of experimental studies being performed at the University of Idaho (Troescher)

  1. Criticality codes migration to workstations at the Hanford site

    International Nuclear Information System (INIS)

    Miller, E.M.

    1993-01-01

    Westinghouse Hanford Company, Hanford Site Operations contractor, Richland, Washington, currently runs criticality codes on the Cray X-MP EA/232 computer but has recommended that US Department of Energy DOE-Richland replace the Cray with more economical workstations

  2. Hanford Permanent Isolation Barrier Program: Asphalt technology data and status report - FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Romine, R.A.; Zacher, A.H.

    1994-09-01

    The asphalt layer within the Hanford Permanent Isolation Barrier (HPIB) is an important component of the overall design. This layer provides a RCRA equivalent backup to the overlying earthen layers in the unlikely event that these layers are not able to reduce the infiltration rate to less than 0.05 cm/yr. There is only limited amount of information on using asphalt for a moisture infiltration barrier over the long times required by the HPIB. Therefore, a number of activities are under way, as part of the Barrier Development Program, to obtain data on the performance of asphalt as a moisture barrier in a buried environment over a 1000-year period. These activities include (1) determining RCRA equivalency, (2) measurement of physical properties, (3) measurement of aging characteristics, and (4) relationship to ancient asphalt analogs. During FY 1994 progress was made on all of these activities. Studies were conducted both in the laboratory and on the prototype barrier constructed over the 216-B-57 crib in the 200 East Area on the Hanford Site. This report presents results obtained from the asphalt technology tasks during FY 1994. Also included are updates to planned activities for asphalt analogs and monitoring the asphalt test pad near the prototype barrier. Measurements of hydraulic conductivity on the HMAC portion of the prototype barrier show that the asphalt layers easily meet the RCRA standard of 1 {times} 10{sup -7} cm/s. In-place measurements using a new field falling head technique show an average of 3.66 {times} 10{sup -8} cm/s, while cores taken from the north end of the prototype and measured in a laboratory setup averaged 1.29 {times} 10{sup -9} cm/s. Measurements made on the fluid applied asphalt membrane (polymer-modified asphalt) show an extremely low permeability of less than 1 {times} 10{sup -11} cm/s.

  3. Hanford Permanent Isolation Barrier Program: Asphalt technology data and status report - FY 1994

    International Nuclear Information System (INIS)

    Freeman, H.D.; Romine, R.A.; Zacher, A.H.

    1994-09-01

    The asphalt layer within the Hanford Permanent Isolation Barrier (HPIB) is an important component of the overall design. This layer provides a RCRA equivalent backup to the overlying earthen layers in the unlikely event that these layers are not able to reduce the infiltration rate to less than 0.05 cm/yr. There is only limited amount of information on using asphalt for a moisture infiltration barrier over the long times required by the HPIB. Therefore, a number of activities are under way, as part of the Barrier Development Program, to obtain data on the performance of asphalt as a moisture barrier in a buried environment over a 1000-year period. These activities include (1) determining RCRA equivalency, (2) measurement of physical properties, (3) measurement of aging characteristics, and (4) relationship to ancient asphalt analogs. During FY 1994 progress was made on all of these activities. Studies were conducted both in the laboratory and on the prototype barrier constructed over the 216-B-57 crib in the 200 East Area on the Hanford Site. This report presents results obtained from the asphalt technology tasks during FY 1994. Also included are updates to planned activities for asphalt analogs and monitoring the asphalt test pad near the prototype barrier. Measurements of hydraulic conductivity on the HMAC portion of the prototype barrier show that the asphalt layers easily meet the RCRA standard of 1 x 10 -7 cm/s. In-place measurements using a new field falling head technique show an average of 3.66 x 10 -8 cm/s, while cores taken from the north end of the prototype and measured in a laboratory setup averaged 1.29 x 10 -9 cm/s. Measurements made on the fluid applied asphalt membrane (polymer-modified asphalt) show an extremely low permeability of less than 1 x 10 -11 cm/s

  4. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  5. Environmental Solutions, A Summary of Contributions for FY04: PNNL Contributions to Fluor Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, Linda L.

    2005-03-08

    Pacific Northwest National Laboratory managed a variety of technical and scientific efforts to support Fluor Hanford's work in cleaning up the Hanford Site. Work done for other Hanford contractors, the Waste Treatment Plant, and directly for the U.S. Department of Energy is summarized in the other booklets in this series.

  6. Hanford Site Raptor Nest Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John J. [Mission Support Alliance (MSA), Richland, WA (United States); Lindsey, Cole T. [Mission Support Alliance (MSA), Richland, WA (United States); Wilde, Justin W. [Mission Support Alliance (MSA), Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA. The Hanford Site supports a large and diverse community of raptorial birds (Fitzner et al. 1981), with 26 species of raptors observed on the Hanford Site.

  7. Hanford Site Composite Analysis Technical Approach Description: Hanford Site Disposition Baseline.

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, M. A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Dockter, R. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2017-10-02

    The permeability of ground surfaces within the U.S. Department of Energy’s (DOE) Hanford Site strongly influences boundary conditions when simulating the movement of groundwater using the Subsurface Transport Over Multiple Phases model. To conduct site-wide modeling of cumulative impacts to groundwater from past, current, and future waste management activities, a site-wide assessment of the permeability of surface conditions is needed. The surface condition of the vast majority of the Hanford Site has been and continues to be native soils vegetated with dryland grasses and shrubs.

  8. Software recycling at the Hanford Site

    International Nuclear Information System (INIS)

    HINKELMAN, K.C.

    1999-01-01

    The Hanford Site was the first Department of Energy (DOE) complex to recycle excess software rather than dispose of it in the landfill. This plan, which took over a year to complete, was reviewed for potential legal conflicts, which could arise from recycling rather than disposal of software. It was determined that recycling was an approved method of destruction and therefore did not conflict with any of the licensing agreements that Hanford had with the software manufacturers. The Hanford Recycling Program Coordinator combined efforts with Pacific Northwest National Laboratory (PNNL) to recycle all Hanford software through a single contract, which went out for bid in January 1995. It was awarded to GreenDisk, Inc. located in Woodinville Washington and implemented in March 1995. The contract was later re-bid and awarded to EcoDisWGreenDisk in December 1998. The new contract included materials such as; software manuals, diskettes, tyvek wrapping, cardboard and paperboard packaging, compact disks (CDs), videotapes, reel-to-reel tapes, magnetic tapes, audio tapes, and many other types of media

  9. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  10. NHC's contribution to cleanup of the Hanford Site

    International Nuclear Information System (INIS)

    Chauve, H.D.

    1998-01-01

    The one billion dollars per year Project Hanford Management Contract (PHMC), managed by Fluor Daniel Hanford, calls for cleanup of the Hanford Site for the Department of Energy. Project Hanford comprises four major subprojects, each managed by a different major contractor. Numatec Hanford Corporation (NHC) is a fifth major subcontractor which provides energy and technology to each of the Hanford projects. NHC draws on the experience and capabilities of its parent companies, COGEMA and SGN, and relies on local support from its sister Company in Richland, COGEMA Engineering Corporation, to bring the best commercial practices and new technology to the Project

  11. Hanford Site Waste Storage Tank Information Notebook

    International Nuclear Information System (INIS)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*

  12. Hanford Site annual waste reduction report

    International Nuclear Information System (INIS)

    Nichols, D.H.

    1992-03-01

    The US Department of Energy (DOE), Richland Field Office (RL) has developed and implemented a Hanford Site Waste Minimization and Pollution Prevention Awareness Plan that provides overall guidance and direction on waste minimization and pollution prevention awareness to the four contractors who manage and operate the Hanford Site for the RL. Waste reduction at the RL will be accomplished by following a hierarchy of environmental protection practices. First, waste generation will be eliminated or minimized through source reduction. Second, potential waste materials that cannot be eliminated or minimized will be recycled (i.e., used, reused, or reclaimed). Third, all waste that is nevertheless generated will be treated to reduce volume, toxicity, or mobility before storage or disposal. The scope of this waste reduction program will include nonhazardous, hazardous, radioactive mixed, and radioactive wastes

  13. Hanford Site Protective Barrier Development Program: Fiscal year 1990 highlights

    International Nuclear Information System (INIS)

    Cadwell, L.L.

    1991-09-01

    The Hanford Site Protective Barrier Development Program was jointly developed by Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHC) to design and test an earthen cover system(s) that can be used to inhibit water infiltration; plant, animal, and human intrusion; and wind and water erosion. The joint PNL/WHC program was initiated in FY 1986. To date, research findings support the initial concepts of barrier designs for the Hanford Site. A fine-soil surface is planned to partition surface water into runoff and temporary storage. Transpiration by vegetation that grows in the fine-soil layer will return stored water to the atmosphere as will surface evaporation. A capillary break created by the interface of the fine-soil layer and coarser textured materials below will further limit the downward migration of surface water, making it available over a longer period of time for cycling to the atmosphere. Should water pass the interface, it will drain laterally through a coarse textured sand/gravel layer. Tested barrier designs appear to work adequately to prevent drainage under current and postulated wetter-climate (added precipitation) conditions. Wind and water erosion tasks are developing data to predict the extent of erosion on barrier surfaces. Data collected during the last year confirm the effectiveness of small burrowing animals in removing surface water. Water infiltrating through burrows of larger mammals was subsequently lost by natural processes. Natural analog and climate change studies are under way to provide credibility for modeling the performance of barrier designs over a long period of time and under shifts in climate. 10 refs., 30 figs

  14. Hanford Site Protective Barrier Development Program: Fiscal year 1990 highlights

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, L.L. (ed.)

    1991-09-01

    The Hanford Site Protective Barrier Development Program was jointly developed by Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHC) to design and test an earthen cover system(s) that can be used to inhibit water infiltration; plant, animal, and human intrusion; and wind and water erosion. The joint PNL/WHC program was initiated in FY 1986. To date, research findings support the initial concepts of barrier designs for the Hanford Site. A fine-soil surface is planned to partition surface water into runoff and temporary storage. Transpiration by vegetation that grows in the fine-soil layer will return stored water to the atmosphere as will surface evaporation. A capillary break created by the interface of the fine-soil layer and coarser textured materials below will further limit the downward migration of surface water, making it available over a longer period of time for cycling to the atmosphere. Should water pass the interface, it will drain laterally through a coarse textured sand/gravel layer. Tested barrier designs appear to work adequately to prevent drainage under current and postulated wetter-climate (added precipitation) conditions. Wind and water erosion tasks are developing data to predict the extent of erosion on barrier surfaces. Data collected during the last year confirm the effectiveness of small burrowing animals in removing surface water. Water infiltrating through burrows of larger mammals was subsequently lost by natural processes. Natural analog and climate change studies are under way to provide credibility for modeling the performance of barrier designs over a long period of time and under shifts in climate. 10 refs., 30 figs.

  15. Hanford Site air operating permit application

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  16. Hanford Site air operating permit application

    International Nuclear Information System (INIS)

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ''regulated'' pollutants. Regulated pollutants include ''criteria'' pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ''Hazardous'' Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995

  17. Hanford prototype-barrier status report: FY 1997

    International Nuclear Information System (INIS)

    Ward, A.L.; Gee, G.W.; Link, S.O.

    1997-12-01

    An above-grade surface barrier consisting of a vegetated soil-cover, surrounded by gravel and rock side slopes, is being tested for the US Department of Energy (DOE). It is part of a treatability study at the 200-BP-1 Operable Unit in the 200 East Area of the Hanford Site, near Richland, Washington. The surface barrier, constructed in 1994, covers 2.5 ha (6.9 acre) of land surface and is situated over an inactive liquid-waste disposal crib. A set of under drains, built into the barrier using curbed asphalt, allows precise measurement of drainage from the soil cover and the side slopes. The treatability test includes measurements of water balance, wind and water erosion, subsidence, plant growth, and plant and animal intrusion. The test compares the performance of the barrier under ambient and simulated climate change (elevated precipitation) conditions. This report documents findings from the third year of testing

  18. Annual Hanford Site environmental permitting status report

    International Nuclear Information System (INIS)

    Sonnichsen, J.C.

    1998-01-01

    The information contained and/or referenced in this Annual Hanford Site Environmental Permitting Status Report (Status Report) addresses the State Environmental Policy Act (SEPA) of 1971 and Condition II.W. of the Resource Conservation and Recovery Act (RCRA) of 1976 Permit, Dangerous Waste Portion (DW Portion). Condition II.W. of the RCRA Permit specifies the Permittees are responsible for all other applicable federal, state, and local permits for the development and operation of the Hanford Facility. Condition II.W. of the RCRA Permit specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of permit condition, 'best efforts' means submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies. This Status Report includes information on all existing and anticipated environmental permitting. Environmental permitting required by RCRA, the Hazardous and Solid Waste Amendments (HSWA) of 1984, and non-RCRA permitting (solid waste handling, Clean Air Act Amendments of 1990, Clean Water Act Amendments of 1987, Washington State waste discharge, and onsite sewage system) is addressed. Information on RCRA and non-RCRA is current as of July 31, 1998. For the purposes of RCRA and the State of Washington Hazardous Waste Management Act of 1976 [as administered through the Dangerous Waste Regulations, Washington Active Code (WAC) 173-303], the Hanford Facility is considered a single facility. As such, the Hanford Facility has been issued one US Environmental Protection Agency (EPA)/State Identification Number (WA7890008967). This EPA/State identification number encompasses over 60 treatment, storage, and/or disposal (TSD) units. The Washington State Department of Ecology (Ecology) has been delegated authority by the EPA to administer the RCRA, including mixed waste authority. The RCRA permitting approach for

  19. Hanford Site radioactive mixed waste thermal treatment initiative

    International Nuclear Information System (INIS)

    Place, B.G.; Riddelle, J.G.

    1993-03-01

    This paper is a progress report of current Westinghouse Hanford Company engineering activities related to the implementation of a program for the thermal treatment of the Hanford Site radioactive mixed waste. Topics discussed include a site-specific engineering study, the review of private sector capability in thermal treatment, and thermal treatment of some of the Hanford Site radioactive mixed waste at other US Department of Energy sites

  20. Annual Hanford Site Environmental Permitting status report

    International Nuclear Information System (INIS)

    SONNICHSEN, J.C.

    1999-01-01

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. Condition II.W further specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of this Permit Condition, ''best efforts'' mean submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies

  1. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  2. Recharge at the Hanford Site: Status report

    International Nuclear Information System (INIS)

    Gee, G.W.

    1987-11-01

    A variety of field programs designed to evaluate recharge and other water balance components including precipitation, infiltration, evaporation, and water storage changes, have been carried out at the Hanford Site since 1970. Data from these programs have indicated that a wide range of recharge rates can occur depending upon specific site conditions. Present evidence suggests that minimum recharge occurs where soils are fine-textured and surfaces are vegetated with deep-rooted plants. Maximum recharge occurs where coarse soils or gravels exist at the surface and soils are kept bare. Recharge can occur in areas where shallow-rooted plants dominate the surface, particularly where soils are coarse-textured. Recharge estimates have been made for the site using simulation models. A US Geological Survey model that attempts to account for climate variability, soil storage parameters, and plant factors has calculated recharge values ranging from near zero to an average of about 1 cm/yr for the Hanford Site. UNSAT-H, a deterministic model developed for the site, appears to be the best code available for estimating recharge on a site-specific basis. Appendix I contains precipitation data from January 1979 to June 1987. 42 refs., 11 figs., 11 tabs

  3. Accelerating cleanup. Paths to closure Hanford Site

    International Nuclear Information System (INIS)

    Edwards, C.

    1998-01-01

    This document was previously referred to as the Draft 2006 Plan. As part of the DOE's national strategy, the Richland Operations Office's Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established

  4. Hanford tank initiative test facility site selection study

    International Nuclear Information System (INIS)

    Staehr, T.W.

    1997-01-01

    The Hanford Tanks Initiative (HTI) project is developing equipment for the removal of hard heel waste from the Hanford Site underground single-shell waste storage tanks. The HTI equipment will initially be installed in the 241-C-106 tank where its operation will be demonstrated. This study evaluates existing Hanford Site facilities and other sites for functional testing of the HTI equipment before it is installed into the 241-C-106 tank

  5. Hanford Site Environmental Report for Calendar Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

    2003-09-01

    This report is prepared annually to satisfy the requirements of DOE Orders. The report provides an overview of activities at the Hanford Site during 2002 and demonstrates the site's compliance with applicable federal, state, and local environmental laws, regulations, executive orders, and DOE policies; and to summarize environmental data that characterize Hanford Site environmental management performance. The purpose of the report is to provide useful summary information to members of the public, public officials, regulators, Hanford contractors, and elected representatives.

  6. Hanford site transuranic waste certification plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP)

  7. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  8. Hanford Site Waste Managements Units reports

    International Nuclear Information System (INIS)

    1992-01-01

    The Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC 1984). This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in this report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. The information in this report is extracted from the Waste Information Data System (WIDS). The WIDS provides additional information concerning the waste management units contained in this report and is maintained current with changes to these units. This report is updated annually if determined necessary per the Hanford Federal Facility Agreement and Consent Order Order (commonly referred to as the Tri-Party Agreement, Ecology et al. 1990). This report identifies 1,414 waste management units. Of these, 1,015 units are identified as solid waste management units (SWMU), and 342 are RCRA treatment, storage, and disposal units. The remaining 399 are comprised mainly of one-time spills to the environment, sanitary waste disposal facilities (i.e., septic tanks), and surplus facilities awaiting decontamination and decommissioning

  9. Mixed waste management at the Hanford Site

    International Nuclear Information System (INIS)

    Roberts, R.J.; Jasen, W.G.

    1991-01-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, special projects have been initiated for the management of RMW. This paper addresses the management of solid RMW. The management of bulk liquid RMW will not be described. 7 refs., 4 figs

  10. Hanford radiochemical site decommissioning demonstration program

    International Nuclear Information System (INIS)

    Nelson, D.C.

    1971-01-01

    A program is proposed for the innovation, development, and demonstration of technologies necessary to decommission the Hanford radiochemical plant area to the extent that the sites can have unrestricted public access. The five tasks selected for development and demonstration of restoration techniques were restoration of a burial ground, decommissioning of a separations plant, restoration of a separations plant waste interim storage tank farm, restoration of a liquid disposal area, and disposal of large contaminated equipment. Process development requirements are tabulated and discussed. A proposed schedule and estimated costs are given

  11. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28

    This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and

  12. Hanford Site Environmental Report for calendar year 1992

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E.

    1993-06-01

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality

  13. Hanford Site Environmental Report for calendar year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E. [eds.

    1993-06-01

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality.

  14. Management of Hanford Site non-defense production reactor spent nuclear fuel, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1997-03-01

    The US Department of Energy (DOE) needs to provide radiologically, and industrially safe and cost-effective management of the non-defense production reactor spent nuclear fuel (SNF) at the Hanford Site. The proposed action would place the Hanford Site's non-defense production reactor SNF in a radiologically- and industrially-safe, and passive storage condition pending final disposition. The proposed action would also reduce operational costs associated with storage of the non-defense production reactor SNF through consolidation of the SNF and through use of passive rather than active storage systems. Environmental, safety and health vulnerabilities associated with existing non-defense production reactor SNF storage facilities have been identified. DOE has determined that additional activities are required to consolidate non-defense production reactor SNF management activities at the Hanford Site, including cost-effective and safe interim storage, prior to final disposition, to enable deactivation of facilities where the SNF is now stored. Cost-effectiveness would be realized: through reduced operational costs associated with passive rather than active storage systems; removal of SNF from areas undergoing deactivation as part of the Hanford Site remediation effort; and eliminating the need to duplicate future transloading facilities at the 200 and 400 Areas. Radiologically- and industrially-safe storage would be enhanced through: (1) removal from aging facilities requiring substantial upgrades to continue safe storage; (2) utilization of passive rather than active storage systems for SNF; and (3) removal of SNF from some storage containers which have a limited remaining design life. No substantial increase in Hanford Site environmental impacts would be expected from the proposed action. Environmental impacts from postulated accident scenarios also were evaluated, and indicated that the risks associated with the proposed action would be small

  15. Removing Phosphate from Hanford High-Phosphate Tank Wastes: FY 2010 Results

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Braley, Jenifer C.; Edwards, Matthew K.; Qafoku, Odeta; Felmy, Andrew R.; Carter, Jennifer C.; MacFarlan, Paul J.

    2010-09-22

    The U.S. Department of Energy (DOE) is responsible for environmental remediation at the Hanford Site in Washington State, a former nuclear weapons production site. Retrieving, processing, immobilizing, and disposing of the 2.2 × 105 m3 of radioactive wastes stored in the Hanford underground storage tanks dominates the overall environmental remediation effort at Hanford. The cornerstone of the tank waste remediation effort is the Hanford Tank Waste Treatment and Immobilization Plant (WTP). As currently designed, the capability of the WTP to treat and immobilize the Hanford tank wastes in the expected lifetime of the plant is questionable. For this reason, DOE has been pursuing supplemental treatment options for selected wastes. If implemented, these supplemental treatments will route certain waste components to processing and disposition pathways outside of WTP and thus will accelerate the overall Hanford tank waste remediation mission.

  16. Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

    2001-11-09

    Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

  17. Hanford Site groundwater monitoring for Fiscal Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E. [eds.] [and others

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium`s ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level.

  18. Hanford Site groundwater monitoring for Fiscal Year 1997

    International Nuclear Information System (INIS)

    Hartman, M.J.; Dresel, P.E.

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium's ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level

  19. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part

  20. Hanford Patrol Academy Demolition Sites Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    From 1975 to 1991 the Hanford Patrol Academy Demolition Sites (HPADS) were used for demolition events. These demolition events were a form of thermal treatment for spent or abandoned chemical waste. Because the HPADS will no longer be used for this thermal activity, the sites will be closed. Closure will be conducted pursuant to the requirements of the Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and 40 CFR 270.1. Closure also will satisfy closure requirements of WAC 173-303-680 and for the thermal treatment closure requirements of 40 CFR 265.381. This closure plan presents a description of the HPADS, the history of the waste treated, and the approach that will be followed to close the HPADS. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. Only dangerous constituents derived from HPADS operations will be addressed in this closure plan in accordance with WAC 173-303-610(2)(b)(i). The HPADS are actually two distinct soil closure areas within the Hanford Patrol Academy training area

  1. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  2. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 10

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Fosmire, C.J.; Fowler, R.A.

    1998-09-01

    This document describes the US Department of Energy's (DOE) Hanford Site environment and is numbered to correspond to the chapters where such information is presented in Hanford Site NEPA related documents. The document is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents that are being prepared by contractors. The two chapters in this document (Chapters 4 and 6) are numbered this way to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes the Hanford Site environment, and includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site

  3. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 10

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A. [ed.; Fosmire, C.J.; Fowler, R.A. [and others

    1998-09-01

    This document describes the US Department of Energy`s (DOE) Hanford Site environment and is numbered to correspond to the chapters where such information is presented in Hanford Site NEPA related documents. The document is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents that are being prepared by contractors. The two chapters in this document (Chapters 4 and 6) are numbered this way to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes the Hanford Site environment, and includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site.

  4. Historical research in the Hanford site waste cleanup

    International Nuclear Information System (INIS)

    Gerber, Michele S.

    1992-01-01

    This paper will acquaint the audience with role of historical research in the Hanford Site waste cleanup - the largest waste cleanup endeavor ever undertaken in human history. There were no comparable predecessors to this massive waste remediation effort, but the Hanford historical record can provide a partial road map and guide. It can be, and is, a useful tool in meeting the goal of a successful, cost-effective, safe and technologically exemplary waste cleanup. The Hanford historical record is rich and complex. Yet, it poses difficult challenges, in that no central and complete repository or data base exists, records contain obscure code words and code numbers, and the measurement systems and terminology used in the records change many times over the years. Still, these records are useful to the current waste cleanup in technical ways, and in ways that extend beyond a strictly scientific aspect. Study and presentations of Hanford Site history contribute to the huge educational and outreach tasks of helping the Site's work force deal with 'culture change' and become motivated for the cleanup work that is ahead, and of helping the public and the regulators to place the events at Hanford in the context of WWII and the Cold War. This paper traces historical waste practices and policies as they changed over the years at the Hanford Site, and acquaints the audience with the generation of the major waste streams of concern in Hanford Site cleanup today. It presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Examples of the strengths and limitations of the

  5. Hanford Site environmental surveillance data report for calendar year 1995

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1996-07-01

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River Water and Sediment. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1995 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1995 by PNNL's Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface, river monitoring data, and chemical air data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data

  6. Hanford Site Environmental Surveillance Data Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2009-08-11

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2008" (PNNL-18427), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  7. Hanford Site Environmental Surveillance Data Report for Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2008-10-13

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2007" (PNNL-17603), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  8. Hanford Site baseline risk assessment methodology. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This methodology has been developed to prepare human health and environmental evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act remedial investigations (RIs) and the Resource Conservation and Recovery Act facility investigations (FIs) performed at the Hanford Site pursuant to the Hanford Federal Facility Agreement and Consent Order referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies Site-specific risk assessment considerations and integrates them with approaches for evaluating human and environmental risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site.

  9. Hanford Site waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    Place, B.G.

    1998-01-01

    This plan, which is required by US Department of Energy (DOE) Order 5400. 1, provides waste minimization and pollution prevention guidance for all Hanford Site contractors. The plan is primary in a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, Prime contractor implementation plans, and the Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation (DOE-RL, 1997a) describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994). Items discussed include the pollution prevention policy and regulatory background, organizational structure, the major objectives and goals of Hanford Site's pollution prevention program, and an itemized description of the Hanford Site pollution prevention program. The document also includes US Department of Energy, Richland Operations Office's (RL's) statement of policy on pollution prevention as well as a listing of regulatory drivers that require a pollution prevention program

  10. Remedial Investigation of Hanford Site Releases to the Columbia River

    International Nuclear Information System (INIS)

    Lerch, J.A.

    2009-01-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts of Hanford Site hazardous substance releases to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The impacts are now being assessed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 via a remedial investigation. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River has been developed and issued to initiate the remedial investigation. The work plan establishes a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities began in October 2008 and are anticipated to continue into Fall 2009 over a 120 mile stretch of the Columbia River. Information gained from performing this remedial investigation will ultimately be used to help make final regulatory decisions for cleaning up Hanford Site contamination that exists in and along the Columbia River. (authors)

  11. Hanford Site Environmental Surveillance Master Sampling Schedule

    International Nuclear Information System (INIS)

    Bisping, L.E.

    2000-01-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5400.1, General Environmental Protection Program: and DOE Order 5400.5, Radiation Protection of the Public and the Environment. The sampling design is described in the Operations Office, Environmental Monitoring Plan, United States Department of Energy, Richland DOE/RL-91-50, Rev.2, U.S. Department of Energy, Richland, Washington. This document contains the CY 2000 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes sampling locations, sample types, and analyses to be performed. In some cases, samples are scheduled on a rotating basis and may not be collected in 2000 in which case the anticipated year for collection is provided. In addition, a map showing approximate sampling locations is included for each media scheduled for collection

  12. Hanford site environmental surveillance master sampling schedule

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1998-01-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5400.1 open-quotes General Environmental Protection Program,close quotes and DOE Order 5400.5, open-quotes Radiation Protection of the Public and the Environment.close quotes The sampling methods are described in the Environmental Monitoring Plan, United States Department of Energy, Richland Operations Office, DOE/RL91-50, Rev. 2, U.S. Department of Energy, Richland, Washington. This document contains the 1998 schedules for routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section of this document describes the planned sampling schedule for a specific media (air, surface water, biota, soil and vegetation, sediment, and external radiation). Each section includes the sample location, sample type, and analyses to be performed on the sample. In some cases, samples are scheduled on a rotating basis and may not be planned for 1998 in which case the anticipated year for collection is provided. In addition, a map is included for each media showing sample locations

  13. Hanford Site Environmental Surveillance Master Sampling Schedule

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1999-01-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5400.1, ''General Environmental protection Program,'' and DOE Order 5400.5, ''Radiation Protection of the Public and the Environment.'' The sampling methods are described in the Environmental Monitoring Plan, United States Department of Energy, Richland Operations Office, DOE/RL-91-50, Rev.2, U.S. Department of Energy, Richland, Washington. This document contains the CY1999 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes the sampling location, sample type, and analyses to be performed on the sample. In some cases, samples are scheduled on a rotating basis and may not be collected in 1999 in which case the anticipated year for collection is provided. In addition, a map is included for each media showing approximate sampling locations

  14. Environmental assessment overview, Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization. 3 figs

  15. Surface barrier research at the Hanford Site

    International Nuclear Information System (INIS)

    Gee, G.W.; Ward, A.L.; Fayer, M.J.

    1997-01-01

    At the DOE Hanford Site, a field-scale prototype surface barrier was constructed in 1994 over an existing waste site as a part of a CERCLA treatability test. The above-grade barrier consists of a fine-soil layer overlying coarse layers of sands, gravels, basalt rock (riprap), and a low permeability asphalt layer. Two sideslope configurations, clean-fill gravel on a 10:1 slope and basalt riprap on a 2:1 slope, were built and are being tested. Design considerations included: constructability; drainage and water balance monitoring, wind and water erosion control and monitoring; surface revegetation and biotic intrusion; subsidence and sideslope stability, and durability of the asphalt layer. The barrier is currently in the final year of a three-year test designed to answer specific questions related to stability and long-term performance. One half of the barrier is irrigated such that the total water applied, including precipitation, is 480 mm/yr (three times the long-term annual average). Each year for the past two years, an extreme precipitation event (71 mm in 8 hr) representing a 1,000-yr return storm was applied in late March, when soil water storage was at a maximum. While the protective sideslopes have drained significant amounts of water, the soil cover (2-m of silt-loam soil overlying coarse sand and rock) has never drained. During the past year there was no measurable surface runoff or wind erosion. This is attributed to extensive revegetation of the surface. In addition, the barrier elevation has shown a small increase of 2 to 3 cm that is attributed to a combination of root proliferation and freeze/thaw activity. Testing will continue through September 1997. Performance data from the prototype barrier will be used by DOE in site-closure decisions at Hanford

  16. Hanford Site Anuran Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, Justin W. [Mission Support Alliance LLC, Richland, WA (United States); Johnson, Scott J. [Mission Support Alliance LLC, Richland, WA (United States); Lindsey, Cole T. [Mission Support Alliance LLC, Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  17. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Ellefson, M.D.

    1998-01-01

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities

  18. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part.Volume two contains Sections 4.0 through 6.0 and the following appendices: Appendix A -- acronyms and definition of terms; Appendix B -- unplanned releases that are not considered to be units; and Appendix C -- operable unit maps

  19. Hanford Site Environmental Report for Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2011-07-12

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2011 information is included where appropriate.

  20. Hanford Site pollution prevention progress report 1999

    International Nuclear Information System (INIS)

    BETSCH, M.D.

    1999-01-01

    The Richland Operations Office (RL) and Office of River Protection (ORP) are pleased to issue the attached Pollution Prevention Progress Report. We have just met the most aggressive waste reduction and A recycling goals to date and are publishing this report to recognize A the site's progress, and to ensure it will sustain success beyond 1 Fiscal Year 2000. This report was designed to inform the been made by RL and ORP in Waste Minimization (WMin) and Pollution Prevention (P2). RL, ORP and their contractors are committed to protecting the environment, and we reiterate pollution prevention should continue to be at the forefront of the environmental cleanup and research efforts. As you read the attached report, we believe you will see a clear demonstration of RL and ORP's outstanding performance as it has been responsible and accountable to the nation, its employees, and the community in which we live and work. commitment that all employees have for environmental stewardship. The report provides useful information about the U.S. Department of Energy's (DOE'S) environmental policy and programs, and contains countless examples of waste minimization projects. This year was the first year our site received the White House Closing the Circle in the category of Affirmative Procurement. This Award recognizes our site for designing a comprehensive strategy for achieving 100 percent purchases of the U.S.Environmenta1 Protection Agency designated recycled items. DOE-Headquarters also acknowledged the site in 1999 for its public outreach efforts in communicating pollution prevention to Hanford Site employees and the community. Our site is truly a recognized leader in outreach as it has kept this title for two consecutive years. In previous years, we received the White House Closing the Circle Honorable Mention in Affirmative Procurement and several other National DOE Awards. Through partnership with the local community and stakeholders, the site and its contractors have a clear

  1. Hanford Site pollution prevention progress report; FINAL

    International Nuclear Information System (INIS)

    BETSCH, M.D.

    1999-01-01

    The Richland Operations Office (RL) and Office of River Protection (ORP) are pleased to issue the attached Pollution Prevention Progress Report. We have just met the most aggressive waste reduction and A recycling goals to date and are publishing this report to recognize A the site's progress, and to ensure it will sustain success beyond 1 Fiscal Year 2000. This report was designed to inform the been made by RL and ORP in Waste Minimization (WMin) and Pollution Prevention (P2). RL, ORP and their contractors are committed to protecting the environment, and we reiterate pollution prevention should continue to be at the forefront of the environmental cleanup and research efforts. As you read the attached report, we believe you will see a clear demonstration of RL and ORP's outstanding performance as it has been responsible and accountable to the nation, its employees, and the community in which we live and work. commitment that all employees have for environmental stewardship. The report provides useful information about the U.S. Department of Energy's (DOE'S) environmental policy and programs, and contains countless examples of waste minimization projects. This year was the first year our site received the White House Closing the Circle in the category of Affirmative Procurement. This Award recognizes our site for designing a comprehensive strategy for achieving 100 percent purchases of the U.S.Environmenta1 Protection Agency designated recycled items. DOE-Headquarters also acknowledged the site in 1999 for its public outreach efforts in communicating pollution prevention to Hanford Site employees and the community. Our site is truly a recognized leader in outreach as it has kept this title for two consecutive years. In previous years, we received the White House Closing the Circle Honorable Mention in Affirmative Procurement and several other National DOE Awards. Through partnership with the local community and stakeholders, the site and its contractors have a clear

  2. Hanford Site environmental report for calendar year 1990

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Hefty, M.G.; Lundgren, R.E.

    1991-01-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its new mission; summarize the status in 1990 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality

  3. Hanford Site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Hefty, M.G.; Lundgren, R.E. (eds.)

    1991-12-20

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its new mission; summarize the status in 1990 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality.

  4. Hanford Site Environmental Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2009-09-15

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2009 information is included where appropriate.

  5. Hanford Site Environmental Report for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2010-09-01

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2010 information is included where appropriate.

  6. Hanford Site Environmental Report for Calendar Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

    2005-09-29

    This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2003; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.

  7. Hanford Site Environmental Report for Calendar Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

    2006-09-28

    This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2005; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.

  8. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  9. Hanford Site National Environmental Policy Act (NEPA) Characterization. Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  10. Hanford Site National Environmental Policy Act (NEPA) Characterization

    International Nuclear Information System (INIS)

    Cushing, C.E.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided

  11. Plutonium and Americium Geochemistry at Hanford: A Site Wide Review

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Felmy, Andrew R.

    2012-08-23

    This report was produced to provide a systematic review of the state-of-knowledge of plutonium and americium geochemistry at the Hanford Site. The report integrates existing knowledge of the subsurface migration behavior of plutonium and americium at the Hanford Site with available information in the scientific literature regarding the geochemistry of plutonium and americium in systems that are environmentally relevant to the Hanford Site. As a part of the report, key research needs are identified and prioritized, with the ultimate goal of developing a science-based capability to quantitatively assess risk at sites contaminated with plutonium and americium at the Hanford Site and the impact of remediation technologies and closure strategies.

  12. A peer review of the Hanford Site Permanent Isolation Surface Barrier Development Program

    International Nuclear Information System (INIS)

    Wing, N.R.

    1992-09-01

    A panel of technical experts was organized to peer review the Hanford Site Permanent Isolation Surface Barrier Development Program (BDP) and to provide a specific review of a preconceptual prototype barrier design initiated during fiscal year (FY) 1990. The technical peer review of the BDP and the prototype is being conducted in three phases, two of which have been completed. This document presents the peer review panel's findings on the first two phases of the peer review process. Biointrusion and water intrusion control are discussed, along with design life, vegetation, and climate impact

  13. Hanford Site guide for preparing and maintaining generator group pollution prevention program documentation

    International Nuclear Information System (INIS)

    Place, B.G.

    1998-01-01

    This document provides guidance to generator groups for preparing and maintaining documentation of Pollution Prevention Waste Minimization (P2/WMin) Program activities. The guidance is one of a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan (DOE-RL, 1998a) and Prime contractor implementation plans describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994). Documentation guidance for the following five P2/WMin elements are discussed: Fiscal Year (FY) Goals; Budget and Staffing; Waste Minimization (WMin) Assessments (WMAs); Quarterly Pollution Prevention (P2) Reporting WMin Certification

  14. Hanford Site Guide for Preparing and Maintaining Fenerator Group Pollution Prevention Program Documentation

    International Nuclear Information System (INIS)

    PLACE, B.G.

    1999-01-01

    This document provides guidance to generator groups for preparing and maintaining documentation of Pollution Prevention/Waste Minimization (P2/WMin) Program activities. The guidance is one of a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan (DOE-RL, 1998a) and Prime Contractor implementation plans describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and (300501) (RCRA and EPA, 1994). Documentation guidance for the following five P2/WMin elements are discussed: Fiscal Year (FY) Goals; Budget and Staffing; Waste Minimization (WMinn ) Assessments (WMAs); Pollution Prevention (P2) Reporting; WMin Certification

  15. Hanford site ER and WM needs

    International Nuclear Information System (INIS)

    Hunter, J.R.

    1993-01-01

    This paper provides an overview of the environmental restoration and waste management needs of the Hanford site. Since 1944, waste has been put into cribs, tanks, or various kinds of burial grounds. The waste volume produced per ton of processed material has dramatically decreased over this time period, but the amount of waste is still very large. Initially high-level processing wastes were stored in 149 single-shell tanks (SSTs), with a single carbon steel shell, backed by concrete. By the late 1950's some of these tanks were leaking, and the supernate was removed from the tanks, leaving salt cake material. Double shell tanks, holding roughly 1 million gallons each, have replaced the single shell tanks (28 in total). Cribs were used early, as the soil column was found to be perfect for retaining certain radionuclides. Solid wastes include retrievably stored transuranic wastes, and wastes generated since 1970. Wastes and fuel assemblies from EBR-2 and FFTF are included. Some TRU wastes were packaged in 55 gal drums, and dumped. A number of sites and reactors are being decontaminated, including canyon type facilities, processing facilities, the B Plant, the REDOX, D Plant, C Plant, and PUREX Plant, not all of which were even flushed before being shut down

  16. Characterization of the Hanford Site and environs

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1991-03-01

    The US Department of Energy (DOE) proposes to site, construct, and operate a new production reactor (NPR) intended to produce materials for the US nuclear weapons program. The DOE has determined that this proposed action constitutes an action that may significantly affect the quality of the human environment; therefore, the DOE is preparing an environmental impact statement (EIS) to assess the potential impacts of the proposed action and reasonable alternatives on the human and natural environment. The NPR-EIS is being prepared in accordance with Section 102(2)(C) of the National Environmental Policy Act of 1969 (NEPA), as implemented in regulations (40 CFR 1500--1508) promulgated by the Council on Environmental Quality (CEQ). Information on the potentially affected environment at the Hanford Site and its environs was provided to ANL by PNL in various submissions during CY-1989, and some of that information was consolidated into this report, which is considered to be supporting documentation for the NPR-EIS. 93 refs., 35 figs., 46 tabs.

  17. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 6

    International Nuclear Information System (INIS)

    Cushing, C.E.; Baker, D.A.; Chamness, M.A.

    1994-08-01

    This sixth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors; Chapter 5.0 has been significantly updated from the fifth revision. It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions; The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be utilized directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts

  18. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 7

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.; Baker, D.A.; Chamness, M.A. [and others

    1995-09-01

    This seventh revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology, hydrology, environmental monitoring, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors. Chapter 5.0 was not updated from the sixth revision (1994). It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE Orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  19. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.; Baker, D.A.; Chamness, M.A. [and others

    1994-08-01

    This sixth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors; Chapter 5.0 has been significantly updated from the fifth revision. It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions; The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be utilized directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  20. Hanford Site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E. (eds.)

    1992-06-01

    This report of the Hanford Reservation is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its mission; summarize the status in 1991 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality.

  1. Hanford Site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W. [eds.] [Pacific Northwest National Lab., Richland, WA (United States)

    1996-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. It also highlights environmental programs and efforts. It is written to meet reporting requirements and guidelines of DOE and to meet the needs of the public. Individual sections are designed to describe the Hanford Site and its mission, summarize the status in 1995 of compliance, describe the environmental programs, discuss estimated radionuclide exposure to the public from 1995 Hanford activities, present information on effluent monitoring and environmental surveillance (including ground- water protection and monitoring), and discuss activities to ensure quality.

  2. Hanford Site environmental report for calendar year 1995

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.

    1996-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. It also highlights environmental programs and efforts. It is written to meet reporting requirements and guidelines of DOE and to meet the needs of the public. Individual sections are designed to describe the Hanford Site and its mission, summarize the status in 1995 of compliance, describe the environmental programs, discuss estimated radionuclide exposure to the public from 1995 Hanford activities, present information on effluent monitoring and environmental surveillance (including ground- water protection and monitoring), and discuss activities to ensure quality

  3. Hanford Site environmental report for calendar year 1991

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E.

    1992-06-01

    This report of the Hanford Reservation is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its mission; summarize the status in 1991 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality

  4. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 9

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Bjornstad, B.N.; Fosmire, C.J.

    1997-08-01

    This ninth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4.0 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. Not all of the sections have been updated for this revision. The following lists the updated sections: climate and meteorology; ecology (threatened and endangered species section only); culture, archaeological, and historical resources; socioeconomics; all of Chapter 6

  5. Hanford Site Climatological Data Summary 1999 with Historical Data

    International Nuclear Information System (INIS)

    Hoitink, Dana J; Burk, Kenneth W; Ramsdell, Jim V

    2000-01-01

    This document presents the climatological data measured at the Hanford Site for calendar year 1999. The information contained includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation and other meteorological parameters

  6. Hanford Site Climatological Summary 2004 with Historical Data

    International Nuclear Information System (INIS)

    Hoitink, Dana J.; Ramsdell, James V.; Burk, Kenneth W.; Shaw, William J.

    2005-01-01

    This document presents the climatological data measured on the DOE Hanford Site for calendar year 2004. This report contains updated historical information for temperature, precipitation, wind, and normal and extreme values of temperature, and precipitation

  7. Hanford Site existing irradiated fuel storage facilities description

    Energy Technology Data Exchange (ETDEWEB)

    Willis, W.L.

    1995-01-11

    This document describes facilities at the Hanford Site which are currently storing spent nuclear fuels. The descriptions provide a basis for the no-action alternatives of ongoing and planned National Environmental Protection Act reviews.

  8. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 9

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A. [ed.; Bjornstad, B.N.; Fosmire, C.J. [and others

    1997-08-01

    This ninth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4.0 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. Not all of the sections have been updated for this revision. The following lists the updated sections: climate and meteorology; ecology (threatened and endangered species section only); culture, archaeological, and historical resources; socioeconomics; all of Chapter 6.

  9. Hanford Site Environmental Report for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

    2001-09-25

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts.

  10. Hanford Site Environmental Report for Calendar Year 1998

    International Nuclear Information System (INIS)

    Dirkes, Roger L.; Hanf, Robert W.; Poston, Ted M.

    1999-01-01

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; (6) discuss the activities to ensure quality. More detailed information can be found in the body of the report, the cited references, and the appendixes.

  11. Hanford Site Groundwater Monitoring for Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2005-03-01

    This document presents the results of groundwater and vadose zone monitoring for fiscal year 2004 (October 2003 through September 2004)on the U.S. Department of Energy's Hanford Site in southeast Washington State.

  12. Hanford Site Environmental Report for Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

    2000-09-28

    The Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts.

  13. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 8

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Bjornstad, B.N.; Fosmire, C.J.; Fowler, R.A.

    1996-08-01

    This eighth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, historical, archaeological and cultural resources, socioeconomics, and noise. Chapter 6 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. The following sections were updated in this revision: climate and meteorology; ecology (threatened and endangered species section only); historical; archaeological and cultural resources; and all of chapter 6. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the hanford Site and its past activities by which to evaluate projected activities and their impacts

  14. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 8

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A. [ed.; Bjornstad, B.N.; Fosmire, C.J.; Fowler, R.A. [and others

    1996-08-01

    This eighth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, historical, archaeological and cultural resources, socioeconomics, and noise. Chapter 6 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. The following sections were updated in this revision: climate and meteorology; ecology (threatened and endangered species section only); historical; archaeological and cultural resources; and all of chapter 6. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the hanford Site and its past activities by which to evaluate projected activities and their impacts.

  15. Hanford Site Groundwater Monitoring for Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J. [and others

    1999-03-24

    This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous

  16. Hanford Site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W. [eds.

    1995-06-01

    This Hanford Site Environmental Report is prepared annually pursuant to DOE Order 5400.1 to summarize environmental data that characterize Hanford Site environmental management performance and demonstrate compliance status. The report also highlights significant environmental programs and efforts. More detailed environmental compliance, monitoring, surveillance, and study reports may be of value; therefore, to the extent practical, these additional reports have been referenced in the text. Individual papers have been indexed separately for the database.

  17. Hanford Site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.

    1995-06-01

    This Hanford Site Environmental Report is prepared annually pursuant to DOE Order 5400.1 to summarize environmental data that characterize Hanford Site environmental management performance and demonstrate compliance status. The report also highlights significant environmental programs and efforts. More detailed environmental compliance, monitoring, surveillance, and study reports may be of value; therefore, to the extent practical, these additional reports have been referenced in the text. Individual papers have been indexed separately for the database

  18. Washing and caustic leaching of Hanford tank sludge: Results of FY 1997 studies

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Burgeson, I.E.; Wagner, M.J.; Liu, J.; Chen, Y.L.

    1997-08-01

    The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The tank wastes will be partitioned into high-level and low-level fractions. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of immobilized high-level waste (IHLW). Caustic leaching (sometimes referred to as enhanced sludge washing or ESW) represents the baseline method for pretreating Hanford tank sludges. Caustic leaching is expected to remove a large fraction of the Al, which is present in large quantities in Hanford tank sludges. A significant portion of the P is also expected to be removed from the sludge by metathesis of water-insoluble metal phosphates to insoluble hydroxides and soluble Na 3 PO 4 . Similar metathesis reactions can occur for insoluble sulfate salts, allowing the removal of sulfate from the HLW stream. This report describes the sludge washing and caustic leaching tests performed at the Pacific Northwest National Laboratory in FY 1996. The sludges used in this study were taken from Hanford tanks AN-104, BY-108, S-101, and S-111

  19. Hanford Site grundwater protection management program

    International Nuclear Information System (INIS)

    1989-10-01

    Groundwater protection has emerged over the past few years as a national priority that has been promulgated in a variety of environmental regulations at both the state and federal level. In order to effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy (DOE) requires all DOE facilities to prepare separate groundwater protection program descriptions and plans (groundwater activities were formerly included as a subpart of environmental protection programs). This document is for the Hanford Site located in the state of Washington. The DOE Order specifies that the groundwater protection management program cover the following general topical areas: (1) documentation of the groundwater regime, (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. 14 refs., 19 figs., 2 tabs

  20. Hanford Site baseline risk assessment methodology

    International Nuclear Information System (INIS)

    1992-03-01

    This report describes risk assessment methodology associated with the remedial action programs at the Hanford Reservation. Topics addressed include human health evaluation, pollutant and radionuclide transport through the environment, and environmental transport pathways

  1. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Antonio, Ernest J.; Eschbach, Tara O.; Fowler, Richard A.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast, Ellen L.; Rohay, Alan C.; Thorne, Paul D.

    2001-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  2. Hanford Site National Environmental Policy Act (NEPA) Characterization Report

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2004-09-22

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the sixteenth revision of the original document published in 1988 and is (until replaced by the seventeenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety and health, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  3. Hanford Site National Environmental Policy Act (NEPA) Characterization, Revision 15

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Burk, Kenneth W.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Scott, Michael J.; Thorne, Paul D.; Woody, Dave M.

    2003-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  4. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Duncan, Joanne P.; Eschbach, Tara O.; Fowler, Richard A.; Fritz, Brad G.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2002-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  5. Hanford Site Wide Transportation Safety Document [SEC 1 Thru 3

    Energy Technology Data Exchange (ETDEWEB)

    MCCALL, D L

    2002-06-01

    This safety evaluation report (SER) documents the basis for the US Department of Energy (DOE), Richland Operations Office (RL) to approve the Hanford Sitewide Transportation Safety Document (TSD) for onsite Transportation and Packaging (T&P) at Hanford. Hanford contractors, on behalf of DOE-RL, prepared and submitted the Hanford Sitewide Transportation Safety Document, DOE/RL-2001-0036, Revision 0, (DOE/RL 2001), dated October 4, 2001, which is referred to throughout this report as the TSD. In the context of the TSD, Hanford onsite shipments are the activities of moving hazardous materials, substances, and wastes between DOE facilities and over roadways where public access is controlled or restricted and includes intra-area and inter-area movements. The TSD sets forth requirements and standards for onsite shipment of radioactive and hazardous materials and wastes within the confines of the Hanford Site on roadways where public access is restricted by signs, barricades, fences, or other means including road closures and moving convoys controlled by Hanford Site security forces.

  6. DynCorp Tricities Services, Inc. Hanford fire department FY 1998 annual work plan

    International Nuclear Information System (INIS)

    Good, D.E.

    1997-01-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the U.S. Department of Energy operated Hanford site. This includes response to surrounding fire departments/districts under mutual aid and state mobilization agreements and fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site through Requests for Service from DOE-RL. This fire department also provides site fire marshal overview authority, fire system testing and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This plan provides a program overview, program baselines, and schedule baseline

  7. Hanford Site Emergency Alerting System siren testing report

    International Nuclear Information System (INIS)

    Weidner, L.B.

    1997-01-01

    The purpose of the test was to determine the effective coverage of the proposed upgrades to the existing Hanford Site Emergency Alerting System (HSEAS). The upgrades are to enhance the existing HSEAS along the Columbia River from the Vernita Bridge to the White Bluffs Boat Launch as well as install a new alerting system in the 400 Area on the Hanford Site. Five siren sites along the Columbia River and two sites in the 400 Area were tested to determine the site locations that will provide the desired coverage

  8. Site locality identification study: Hanford Site. Volume II. Data cataloging

    International Nuclear Information System (INIS)

    1980-07-01

    Data compilation and cataloging for the candidate site locality identification study were conducted in order to provide a retrievable data cataloging system for the present siting study and future site evaluation and licensng processes. This task occurred concurrently with and also independently of other tasks of the candidate site locality identification study. Work in this task provided the data utilized primarily in the development and application of screening and ranking processes to identify candidate site localities on the Hanford Site. The overall approach included two steps: (1) data acquisition and screening; and (2) data compilation and cataloging. Data acquisition and screening formed the basis for preliminary review of data sources with respect to their probable utilization in the candidate site locality identification study and review with respect to the level of completeness and detail of the data. The important working assumption was that the data to be used in the study be based on existing and available published and unpublished literature. The data compilation and cataloging provided the basic product of the Task; a retrievable data cataloging system in the form of an annotated reference list and key word index and an index of compiled data. The annotated reference list and key word index are cross referenced and can be used to trace and retrieve the data sources utilized in the candidate site locality identification study

  9. Environmental Survey preliminary report, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Hanford Site, conducted August 18 through September 5, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Hanford Site. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Hanford Site, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the Hanford Site. The Interim Report will reflect the final determinations of the Hanford Site Survey. 44 refs., 88 figs., 74 tabs.

  10. Environmental Survey preliminary report, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1987-08-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Hanford Site, conducted August 18 through September 5, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Hanford Site. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Hanford Site, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the Hanford Site. The Interim Report will reflect the final determinations of the Hanford Site Survey. 44 refs., 88 figs., 74 tabs

  11. Final Hanford Comprehensive Land-Use Plan Environmental Impact Statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-10-01

    This Final ''Hanford Comprehensive Land-Use Plan Environmental Impact Statement'' (HCP EIS) is being used by the Department of Energy (DOE) and its nine cooperating and consulting agencies to develop a comprehensive land-use plan (CLUP) for the Hanford Site. The DOE will use the Final HCP EIS as a basis for a Record of Decision (ROD) on a CLUP for the Hanford Site. While development of the CLUP will be complete with release of the HCP EIS ROD, full implementation of the CLUP is expected to take at least 50 years. Implementation of the CLUP would begin a more detailed planning process for land-use and facility-use decisions at the Hanford Site. The DOE would use the CLUP to screen proposals. Eventually, management of Hanford Site areas would move toward the CLUP land-use goals. This CLUP process could take more than 50 years to fully achieve the land-use goals.

  12. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  13. QUEST Hanford Site Computer Users - What do they do?

    Energy Technology Data Exchange (ETDEWEB)

    WITHERSPOON, T.T.

    2000-03-02

    The Fluor Hanford Chief Information Office requested that a computer-user survey be conducted to determine the user's dependence on the computer and its importance to their ability to accomplish their work. Daily use trends and future needs of Hanford Site personal computer (PC) users was also to be defined. A primary objective was to use the data to determine how budgets should be focused toward providing those services that are truly needed by the users.

  14. Integrated environmental monitoring program at the Hanford Site

    International Nuclear Information System (INIS)

    Jaquish, R.E.

    1990-08-01

    The US Department of Energy's Hanford Site, north of Richland, Washington, has a mission of defense production, waste management, environmental restoration, advanced reactor design, and research development. Environmental programs at Hanford are conducted by Pacific Northwest Laboratory (PNL) and the Westinghouse Hanford Company (WHC). The WHC environmental programs include the compliance and surveillance activities associated with site operations and waste management. The PNL environmental programs address the site-wide and the of-site areas. They include the environmental surveillance and the associated support activities, such as dose calculations, and also the monitoring of environmental conditions to comply with federal and state environmental regulations on wildlife and cultural resources. These are called ''independent environmental programs'' in that they are conducted completely separate from site operations. The Environmental Surveillance and Oversight Program consists of the following projects: surface environmental surveillance; ground-water surveillance; wildlife resources monitoring; cultural resources; dose overview; radiation standards and calibrations; meteorological and climatological services; emergency preparedness

  15. Status of birds at the Hanford Site in southeastern Washington

    International Nuclear Information System (INIS)

    Landeen, D.S.; Johnson, A.R.; Mitchell, R.M.

    1992-06-01

    The US Department of Energy has entered into agreements with the Washington State Department of Ecology, the US Environmental Protection Agency, and Hanford Site contractors to focus work activities on cleanup and stabilization of radioactive and hazardous waste sites located at the Hanford Site in southeastern Washington. Ecological characterization is an essential part of the remediation process, and the identification of biotic components such as bird species that could be impacted by cleanup activities is an important part of the initial environmental characterizations. Site characterization work has resulted in this list of 238 birds that have been observed at the Hanford Site. This list is presented with a status rating for abundance and seasonal occurrence

  16. Environmental assessment: Reference repository location, Hanford site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization.

  17. Environmental assessment: Reference repository location, Hanford site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites available for characterization.

  18. Environmental assessment: Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization

  19. Environmental assessment: Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites available for characterization

  20. Hydrothermal processing of Hanford tank waste. Organic destruction technology development task annual report -- FY 1993

    International Nuclear Information System (INIS)

    Orth, R.J.; Schmidt, A.J.; Zacher, A.H.

    1993-09-01

    Low-temperature hydrothermal processing (HTP) is a thermal-chemical autogenous processing method that can be used to destroy organics and ferrocyanide in Hanford tank waste at temperatures from 250 C to 400 C. With HTP, organics react with oxidants, such as nitrite and nitrate, already present in the waste. Ferrocyanides and free cyanide will hydrolyze at similar temperatures and may also react with nitrates or other oxidants in the waste. No air or oxygen or additional chemicals need to be added to the autogenous HTP system. However, enhanced kinetics may be realized by air addition, and, if desired, chemical reductants can be added to the system to facilitate complete nitrate/nitrate destruction. Tank waste can be processed in a plug-flow, tubular reactor, or a continuous-stirred tank reactor system designed to accommodate the temperature, pressure, gas generation, and heat release associated with decomposition of the reactive species. The work described in this annual report was conducted in FY 1993 for the Organic Destruction Technology Development Task of Hanford's Tank Waste Remediation System (TWRS). This task is part of an overall program to develop organic destruction technologies originally funded by TWRS to meet tank safety and waste form disposal criteria and condition the feed for further pretreatment. During FY 1993 the project completed seven experimental test plans, a 30-hr pilot-scale continuous run, over 200 hr of continuous bench-scale HTP testing, and 20 batch HTP tests; two contracts were established with commercial vendors, and a commercial laboratory reactor was procured and installed in a glovebox for HTP testing with actual Hanford tank waste

  1. A Short History of Waste Management at the Hanford Site

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2010-01-01

    The world's first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford's last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford's only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book 'Hanford: A Conversation about Nuclear Waste and Cleanup.'

  2. Designation of facility usage categories for Hanford Site facilities

    International Nuclear Information System (INIS)

    Wodrich, D.; Ellingson, D.; Scott, M.; Schade, A.

    1991-01-01

    This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy orders and guidance. In particular, the Hanford Site approach to designating a suitable facility open-quotes Usage Category,close quotes is presented. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on the consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components

  3. Hanford Site environmental surveillance data report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, L.E.

    1996-07-01

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River Water and Sediment. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1995 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1995 by PNNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface, river monitoring data, and chemical air data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data.

  4. Hanford Site waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    1994-05-01

    The Hanford Site WMin/P2 program is an organized, comprehensive, and continual effort to systematically reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary wastes; conserve resources; and prevent or minimize pollutant releases to all environmental media from all Site activities. The Hanford Site WMin/P2 program plan reflects national and DOE waste minimization and pollution prevention goals and policies, and represents an ongoing effort to make WMin/P2 part of the Site operating philosophy. In accordance with these policies, a hierarchical approach to environmental management has been adopted and is applied to all types of polluting and waste generating activities. Pollution prevention and waste minimization through source reduction are first priority in the Hanford WMin/P2 program, followed by environmentally safe recycling. Treatment to reduce the quantity, toxicity, and/or mobility will be considered only when prevention or recycling are not possible or practical. Environmentally safe disposal is the last option

  5. Hanford Site Environmental Report for Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2008-06-05

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights signifi cant environmental and public protection programs and efforts. Some historical and early 2008 information is included where appropriate.

  6. UPDATE HANFORD SITE D and D PROGRAMS ACCELERATE EXPAND

    International Nuclear Information System (INIS)

    GERBER, M.S.

    2004-01-01

    A large, new decontamination and decommissioning organization targeted toward rapid, focused work on aging and highly contaminated structures was formed at the DOE's Hanford Site in southeast Washington state in autumn 2003. Managed by prime contractor Fluor Hanford, the new organization has made significant progress during its first six months. Under the direction of Mike Lackey, who recently joined Fluor from the Portland General Electric Trojan Plant, the Fluor Hanford DandD organization is tackling the Plutonium Finishing Plant (PFP) complex and the Fast Flux Test Facility (FFTF), and is nearly finished demolishing the 233-S Plutonium Concentration Facility. In addition, the DandD organization is progressing through the development and public comment phases of its required environmental permitting, planning work and procurement services to DandD three other Hanford facilities: 224-T and 224-B Plutonium Concentration Facilities, and the U Plant radiochemical processing facility. It is also planning and beginning to DandD the spent fuel handling areas of the Site's 100-K Reactor Area. The 586-square mile Hanford Site, the oldest plutonium production center in the world, served as the ''workhorse'' of the American nuclear defense arsenal from 1944 through 1989. Hanford produced the special nuclear material for the plutonium cores of the Trinity (test) and Nagasaki explosions, and then went on to produce more than half of the weapons plutonium ever manufactured by the United States, and about one-fourth of that manufactured worldwide. As a result, Hanford, the top-secret ''Paul Bunyan'' in the desert, is one of the most contaminated areas in the world. Its cleanup agreement with state and federal regulators, known as the ''Tri-Party Agreement,'' celebrates its 15th anniversary this spring, at a time when operations dealing with unstable plutonium leftovers, corroded spent fuel, and liquids wastes in single-shelled tanks conclude. As these crucial jobs are coming to

  7. Wildlife studies on the Hanford site: 1994 Highlights report

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, L.L. [ed.

    1995-04-01

    The purposes of the project are to monitor and report trends in wildlife populations; conduct surveys to identify, record, and map populations of threatened, endangered, and sensitive plant and animal species; and cooperate with Washington State and federal and private agencies to help ensure the protection afforded by law to native species and their habitats. Census data and results of surveys and special study topics are shared freely among cooperating agencies. Special studies are also conducted as needed to provide additional information that may be required to assess, protect, or manage wildlife resources at Hanford. This report describes highlights of wildlife studies on the Site in 1994. Redd counts of fall chinook salmon in the Hanford Reach suggest that harvest restrictions directed at protecting Snake River salmon may have helped Columbia River stocks as well. The 1994 count (5619) was nearly double that of 1993 and about 63% of the 1989 high of approximately 9000. A habitat map showing major vegetation and land use cover types for the Hanford Site was completed in 1993. During 1994, stochastic simulation was used to estimate shrub characteristics (height, density, and canopy cover) across the previously mapped Hanford landscape. The information provided will be available for use in determining habitat quality for sensitive wildlife species. Mapping Site locations of plant species of concern continued during 1994. Additional sensitive plant species data from surveys conducted by TNC were archived. The 10 nesting pairs of ferruginous hawks that used the Hanford Site in 1993 represented approximately 25% of the Washington State population.

  8. Wildlife studies on the Hanford site: 1994 Highlights report

    International Nuclear Information System (INIS)

    Cadwell, L.L.

    1995-04-01

    The purposes of the project are to monitor and report trends in wildlife populations; conduct surveys to identify, record, and map populations of threatened, endangered, and sensitive plant and animal species; and cooperate with Washington State and federal and private agencies to help ensure the protection afforded by law to native species and their habitats. Census data and results of surveys and special study topics are shared freely among cooperating agencies. Special studies are also conducted as needed to provide additional information that may be required to assess, protect, or manage wildlife resources at Hanford. This report describes highlights of wildlife studies on the Site in 1994. Redd counts of fall chinook salmon in the Hanford Reach suggest that harvest restrictions directed at protecting Snake River salmon may have helped Columbia River stocks as well. The 1994 count (5619) was nearly double that of 1993 and about 63% of the 1989 high of approximately 9000. A habitat map showing major vegetation and land use cover types for the Hanford Site was completed in 1993. During 1994, stochastic simulation was used to estimate shrub characteristics (height, density, and canopy cover) across the previously mapped Hanford landscape. The information provided will be available for use in determining habitat quality for sensitive wildlife species. Mapping Site locations of plant species of concern continued during 1994. Additional sensitive plant species data from surveys conducted by TNC were archived. The 10 nesting pairs of ferruginous hawks that used the Hanford Site in 1993 represented approximately 25% of the Washington State population

  9. Pre-1970 transuranic solid waste at the Hanford Site

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1995-01-01

    The document is based on a search of pre-1970 Hanford Solid Waste Records. The available data indicates seven out of thirty-one solid waste burial sites used for pre-1970 waste appear to be Transuranic (TRU). A burial site defined to be TRU contains >100 nCi/gm Transuranic nuclides

  10. Hanford Site background: Part 1, Soil background for nonradioactive analytes

    International Nuclear Information System (INIS)

    1993-04-01

    Volume two contains the following appendices: Description of soil sampling sites; sampling narrative; raw data soil background; background data analysis; sitewide background soil sampling plan; and use of soil background data for the detection of contamination at waste management unit on the Hanford Site

  11. Hanford Site environmental report for calendar year 1989

    International Nuclear Information System (INIS)

    Jaquish, R.E.; Bryce, R.W.

    1990-05-01

    This report is a summary of the environmental status of the Hanford Site in 1989. It includes descriptions of the Site and its mission, the status of compliance with environmental regulations, planning and activities to accomplish compliance, environmental protection and restoration activities, and environmental monitoring. 97 refs., 67 figs., 14 tabs

  12. Hanford Site environmental report for calendar year 1989

    Energy Technology Data Exchange (ETDEWEB)

    Jaquish, R.E.; Bryce, R.W. (eds.)

    1990-05-01

    This report is a summary of the environmental status of the Hanford Site in 1989. It includes descriptions of the Site and its mission, the status of compliance with environmental regulations, planning and activities to accomplish compliance, environmental protection and restoration activities, and environmental monitoring. 97 refs., 67 figs., 14 tabs.

  13. Hanford Site performance summary: EM funded programs

    International Nuclear Information System (INIS)

    Edwards, C.

    1995-09-01

    Hanford performance at fiscal year end reflects a three percent unfavorable schedule variance ($46.3 million*) which was an improvement over August 1995 ($46.3 million for September versus $65.9 million for August) and is below established reporting thresholds (greater than 3 percent). The majority of the behind schedule condition (53 percent) is attributed to EM-40 (Office of Environmental Restoration [ER]) and is a result of late receipt of funds, procurement delays, and US Army Corps of Engineers (USACE) work planned but not accomplished. Other primary contributors to the behind schedule condition are associated with tank farm upgrades, high-level waste disposal and work for others (support to the US Department of Energy-Headquarters [DOE-HQ]). The remaining behind schedule condition is distributed throughout the remaining Hanford programs and do not share common causes. A breakdown of individuals listed on page 8

  14. Protective barrier systems for final disposal of Hanford Waste Sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Hartley, J.N.

    1986-01-01

    A protecting barrier system is being developed for potential application in the final disposal of defense wastes at the Hanford Site. The functional requirements for the protective barrier are control of water infiltration, wind erosion, and plant and animal intrusion into the waste zone. The barrier must also be able to function without maintenance for the required time period (up to 10,000 yr). This paper summarizes the progress made and future plans in this effort to design and test protective barriers at the Hanford Site

  15. Laboratory information management system at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, W.; Barth, D.; Ibsen, T.; Newman, B.

    1994-03-01

    In January of 1994 an important new technology was brought on line to help in the monumental waste management and environmental restoration work at the Hanford Site. Cleanup at the Hanford Site depends on analytical chemistry information to identify contaminates, design and monitor cleanup processes, assure worker safety, evaluate progress, and prove completion. The new technology, a laboratory information management system (LIMS) called ``LABCORE,`` provides the latest systems to organize and communicate the analytical tasks: track work and samples; collect and process data, prepare reports, and store data in readily accessible electronic form.

  16. Hanford Site Guidelines for Preparation and Presentation of Geologic Information

    Energy Technology Data Exchange (ETDEWEB)

    Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

    2010-04-30

    A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

  17. A dynamic simulation of the Hanford site grout facility

    International Nuclear Information System (INIS)

    Zimmerman, B.D.; Klimper, S.C.; Williamson, G.F.

    1992-01-01

    Computer-based dynamic simulation can be a powerful, low-cost tool for investigating questions concerning timing, throughput capability, and ability of engineering facilities and systems to meet established milestones. The simulation project described herein was undertaken to develop a dynamic simulation model of the Hanford site grout facility and its associated systems at the US Department of Energy's (DOE's) Hanford site in Washington State. The model allows assessment of the effects of engineering design and operation trade-offs and of variable programmatic constraints, such as regulatory review, on the ability of the grout system to meet milestones established by DOE for low-level waste disposal

  18. Sorption of trace cesium on 21 Hanford Site sediment types

    International Nuclear Information System (INIS)

    Routson, R.C.; Barney, G.S.; Smith, R.M.; Delegard, C.A.

    1980-03-01

    Sorption of trace cesium (Cs) was measured on 21 Hanford Site sediment types. A Box-Behnken statistical design was used to develop empirical-statistical equations predicting 137 Cs sorption as a function of the equilibrium concentrations of macroions Na + , K + , and Ca +2 in solution over the concentration ranges of 3.0 to 0.001M, 0.2 to 0.002M, and 0.2 to 0.002M, respectively. These equations are required to estimate trace Cs transport from Hanford ground disposal sites. Average Cs sorption equations for the 21 sediments will be presented and discussed

  19. Laboratory information management system at the Hanford Site

    International Nuclear Information System (INIS)

    Leggett, W.; Barth, D.; Ibsen, T.; Newman, B.

    1994-03-01

    In January of 1994 an important new technology was brought on line to help in the monumental waste management and environmental restoration work at the Hanford Site. Cleanup at the Hanford Site depends on analytical chemistry information to identify contaminates, design and monitor cleanup processes, assure worker safety, evaluate progress, and prove completion. The new technology, a laboratory information management system (LIMS) called ''LABCORE,'' provides the latest systems to organize and communicate the analytical tasks: track work and samples; collect and process data, prepare reports, and store data in readily accessible electronic form

  20. Ozone destruction of Hanford Site tank waste organics

    International Nuclear Information System (INIS)

    Colby, S.A.

    1993-04-01

    Ozone processing is one of several technologies being developed to meet the intent of the Secretary of the US Department of Energy, Decision on the Programmatic Approach and Near-Term Actions for Management and Disposal of Hanford Tank Waste Decision Statement, dated December 20, 1991, which emphasizes the need to resolve tank safety issues by destroying or modifying the constituents (e.g., organics) that cause safety concerns. As a result, the major tank treatment objectives on the Hanford Site are to resolve the tank safety issues regarding organic compounds (and accompanying flammable gas generation), which all potentially can react to evolve heat and gases. This report contains scoping test results of an alkaline ozone oxidation process to destroy organic compounds found in the Hanford Site's radioactive waste storage tanks

  1. Wildlife studies on the Hanford Site: 1993 Highlights report

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, L.L. [ed.

    1994-04-01

    The Pacific Northwest Laboratory (PNL) Wildlife Resources Monitoring Project was initiated by DOE to track the status of wildlife populations to determine whether Hanford operations affected them. The project continues to conduct a census of wildlife populations that are highly visible, economically or aesthetically important, and rare or otherwise considered sensitive. Examples of long-term data collected and maintained through the Wildlife Resources Monitoring Project include annual goose nesting surveys conducted on islands in the Hanford Reach, wintering bald eagle surveys, and fall Chinook salmon redd (nest) surveys. The report highlights activities related to salmon and mollusks on the Hanford Reach of the Columbia River; describes efforts to map vegetation on the Site and efforts to survey species of concern; provides descriptions of shrub-steppe bird surveys, including bald eagles, Canada geese, and hawks; outlines efforts to monitor mule deer and elk populations on the Site; and describes development of a biological database management system.

  2. Summary of the Hanford Site Environmental Report for Calendar Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, Robert W.; Morasch, Launa F.; Poston, Ted M.; Dirkes, Roger L.

    2006-09-28

    This small booklet provides highlights of the environmental monitoring at the Hanford Site during 2005. It is a summary of the information contained in the larger report: Hanford Site Environmental Monitoring for Calendar Year 2005.

  3. Air pollution prevention at the Hanford Site: Status and recommendations

    International Nuclear Information System (INIS)

    Engel, J.A.

    1995-08-01

    With the introduction of the Clean Air Act Amendments of 1990 and other air and pollution prevention regulations, there has been increased focus on both pollution prevention and air emissions at US DOE sites. The Pollution Prevention (P2) Group of WHC reviewed the status of air pollution prevention with the goal of making recommendations on how to address air emissions at Hanford through pollution prevention. Using the air emissions inventory from Hanford's Title V permit, the P2 Group was able to identify major and significant air sources. By reviewing the literature and benchmarking two other DOE Sites, two major activities were recommended to reduce air pollution and reduce costs at the Hanford Site. First, a pollution prevention opportunity assessment (P2OA) should be conducted on the significant painting sources in the Maintenance group and credit should be taken for reducing the burning of tumbleweeds, another significant source of air pollution. Since they are significant sources, reducing these emissions will reduce air emission fees, as well as have the potential to reduce material and labor costs, and increase worker safety. Second, a P2OA should be conducted on alternatives to the three coal-fired powerhouses (steam plants) on-site, including a significant costs analysis of alternatives. This analysis could be of significant value to other DOE sites. Overall, these two activities would reduce pollution, ease regulatory requirements and fees, save money, and help Hanford take a leadership role in air pollution prevention

  4. Hanford Site National Evnironmental Policy Act (NEPA) characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1991-12-01

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  5. Hanford Site National Evnironmental Policy Act (NEPA) characterization. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.

    1991-12-01

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  6. Environment, Safety and Health Progress Assessment of the Hanford Site

    International Nuclear Information System (INIS)

    1992-05-01

    This report documents the result of the US Department of Energy (DOE) Environment, Safety and Health (ES ampersand H) Progress Assessment of the Hanford Site, in Richland, Washington. The assessment, which was conducted from May 11 through May 22, 1992, included a selective-review of the ES ampersand H management systems and programs of the responsible DOE Headquarters Program Offices the DOE Richland Field Office, and the site contractors. The ES ampersand H Progress Assessments are part of the Secretary of Energy's continuing effort to institutionalize line management accountability and the self-assessment process throughout DOE and its contractor organizations. The purpose of the Hanford Site ES ampersand H Progress Assessment is to provide the Secretary with an independent assessment of the adequacy and effectiveness of the DOE and contractor management structures, resources, and systems to address ES ampersand H problems and requirements. They are not intended to be comprehensive compliance assessments of ES ampersand H activities. The point of reference for assessing programs at the Hanford Site was, for the most part, the Tiger Team Assessment of the Hanford Site, which was conducted from May 21 through July 18, 1990. A summary of issues and progress in the areas of environment, safety and health, and management is included

  7. Accelerated clean-up at the Hanford Site

    International Nuclear Information System (INIS)

    Frain, J.M.; Johnson, W.L.

    1994-01-01

    The Hanford Site began operations in 1943 as one of the sites for plutonium production associated with the Manhattan Project. It has been used, in part, for nuclear reactor operation, reprocessing of spent fuel, and management of radioactive waste. The Hanford Site covers approximately 1,434 km 2 (560 mi 2 2) in southeastern Washington State. The subject of this paper, the 618-9 Burial Ground, is located on the Hanford Site approximately 1.6 km (1 mi) west of the Columbia River, and a few miles north of Richland, Washington. Throughout Hanford Site history, prior to legislation regarding disposal of chemical waste products, some chemical waste byproducts were disposed ,ia burial in trenches. One such trench was the 618-9 Burial Ground. This burial ground was suspected to contain approximately 19,000 L (5,000 gal) of uranium-contaminated organic solvent, disposed in standard 55-gal (208-L) metal drums. The waste was produced from research and development activities related to fuel reprocessing

  8. Summary Analysis: Hanford Site Composite Analysis Update

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Lehman, L. L. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2017-06-05

    The Hanford Site’s currently maintained Composite Analysis, originally completed in 1998, requires an update. A previous update effort was undertaken by the U.S. Department of Energy (DOE) in 2001-2005, but was ended before completion to allow the Tank Closure & Waste Management Environmental Impact Statement (TC&WM EIS) (DOE/EIS-0391) to be prepared without potential for conflicting sitewide models. This EIS was issued in 2012, and the deferral was ended with guidance in memorandum “Modeling to Support Regulatory Decision Making at Hanford” (Williams, 2012) provided with the aim of ensuring subsequent modeling is consistent with the EIS.

  9. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, A.C.; Fosmire, C.J.; Neitzel, D.A.; Hoitink, D.J.; Harvey, D.W.; Antonio, E.J.; Wright, M.K.; Thorne, P.D.; Hendrickson, P.L.; Fowler, R.A.; Goodwin, S.M.; Poston, T.M.

    1999-09-28

    This document describes the US Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents being prepared by DOE contractors. No conclusions or recommendations are provided. This year's report is the eleventh revision of the original document published in 1988 and is (until replaced by the 12th revision) the only version that is relevant for use in the preparation of Hanford NEPA; SEPA and CERCLA documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomic; occupational safety, and noise. Sources for extensive tabular data related to these topics are provided in the chapter. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, of the 100,200,300, and other Areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) is essentially a definitive NEPA Chapter 6.0, which describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. People preparing environmental assessments and EISs should also be cognizant of the document entitled ''Recommendations for the Preparation of Environmental Assessments and Environmental Impact

  10. Hanford site implementation plan for buried, transuranic-contaminated waste

    International Nuclear Information System (INIS)

    1987-05-01

    The GAO review of DOE's Defense Waste Management Plan (DWMP) identified deficiencies and provided recommendations. This report responds to the GAO recommendations with regard to the Hanford Site. Since the issuance of the DWMP, an extensive planning base has been developed for all high-level and transuranic waste at the Hanford Site. Thirty-three buried sites have been identified as possibly containing waste that can be classified as transuranic waste. Inventory reports and process flowsheets were used to provide an estimate of the radionuclide and hazardous chemical content of these sites and approximately 370 additional sites that can be classified as low-level waste. A program undertaken to characterize select sites suspected of having TRU waste to refine the inventory estimates. Further development and evaluation are ongoing to determine the appropriate remedial actions, with the objectives of balancing long-term risks with costs and complying with regulations. 18 refs., 7 figs., 6 tabs

  11. Hanford Site National Environmental Policy Act (NEPA) characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1988-09-01

    This document describes the Hanford Site environment (Chapter 4) and contains data in Chapter 5 and 6 which will guide users in the preparation of National Environmental Policy Act (NEPA)-related documents. Many NEPA compliance documents have been prepared and are being prepared by site contractors for the US Department of Energy, and examination of these documents reveals inconsistencies in the amount of detail presented and the method of presentation. Thus, it seemed necessary to prepare a consistent description of the Hanford environment to be used in preparing Chapter 4 of environmental impact statements and other site-related NEPA documentation. The material in Chapter 5 is a guide to the models used, including critical assumptions incorporated in these models, in previous Hanford NEPA documents. The users will have to select those models appropriate for the proposed action. Chapter 6 is essentially a definitive NEPA Chapter 6, which describes the applicable laws, regulations, and DOE and state orders. In this document, a complete description of the environment is presented in Chapter 4 without excessive tabular data. For these data, sources are provided. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information where it is available on the 100, 200, 300, and other Areas. This division will allow a person requiring information to go immediately to those sections of particular interest. However, site-specific information on each of these separate areas is not always complete or available. In this case, the general Hanford Site description should be used. 131 refs., 19 figs., 32 tabs.

  12. Long-Term Stewardship At DOE's Hanford Site - 12575

    International Nuclear Information System (INIS)

    Moren, R.J.; Grindstaff, K.D.

    2012-01-01

    The U.S. Department of Energy's (DOE) Hanford Site is located in southeast Washington and consists of 1,518 square kilometers (586 square miles) of land. Established in 1943 as part of the Manhattan Project, Hanford workers produced plutonium for our nation's nuclear defense program until the mid 1980's. Since then, the site has been in cleanup mode that is being accomplished in phases. As we achieve remedial objectives and complete active cleanup, DOE will manage Hanford land under the Long-Term Stewardship (LTS) Program until completion of cleanup and the site becomes ready for transfer to the post cleanup landlord - currently planned for DOE's Office of Legacy Management (LM). We define Hanford's LTS Program in the ''Hanford Long-Term Stewardship Program Plan,'' (DOE/RL-201 0-35)(1), which describes the scope including the relationship between the cleanup projects and the LTS Program. DOE designed the LTS Program to manage and provide surveillance and maintenance (S and M) of institutional controls and associated monitoring of closed waste sites to ensure the protection of human health and the environment. DOE's Richland Operations Office (DOE-RL) and Hanford cleanup and operations contractors collaboratively developed this program over several years. The program's scope also includes 15 key activities that are identified in the DOE Program Plan (DOE/RL-2010-35). The LTS Program will transition 14 land segments through 2016. The combined land mass is approximately 570 square kilometers (220 square miles), with over 1,300 active and inactive waste sites and 3,363 wells. Land segments vary from buffer zone property with no known contamination to cocooned reactor buildings, demolished support facilities, and remediated cribs and trenches. DOE-RL will transition land management responsibilities from cleanup contractors to the Mission Support Contract (MSC), who will then administer the LTS Program for DOE-RL. This process requires an environment of cooperation

  13. 75 FR 6018 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-02-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford (known locally as the Hanford Advisory... and site management in the areas of environmental restoration, waste management, and related...

  14. Summary of the Hanford Site Environmental Report for Calendar Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, Robert W.; Morasch, Launa F.; Poston, Ted M.; Dirkes, Roger L.

    2005-09-26

    This booklet summarizes the information contained in ''Hanford Site Environmental Report for Calendar Year 2004.'' The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of the activities at DOE's Hanford Site.

  15. Designation of facility usage categories for Hanford Site facilities

    International Nuclear Information System (INIS)

    Woodrich, D.D.; Ellingson, D.R.; Scott, M.A.; Schade, A.R.

    1991-10-01

    This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy Orders and guidance. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on teh consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components. 4 refs., 9 figs., 1 tab

  16. Strategic plan for Hanford Site Environmental Restoration Information Management

    International Nuclear Information System (INIS)

    Cowley, P.J.; Beck, J.E.; Gephart, R.E.

    1994-06-01

    This strategic plan addresses information management for the Environmental Restoration (ER) Program at the Hanford Site. This Program leads the cleanup of the Hanford Site's soil, groundwater, buried waste, and the decontamination and decommissioning of facilities. The vision that drives this strategic plan is to ensure that quality information is available to the people who need it, when they need it, at a convenient location, in a usable form, and at an acceptable cost. Although investments are being made in managing the vast amounts of information, which include data, records and documents associated with the Hanford Site's production history and new cleanup mission, it is widely recognized that efforts to date have not accomplished the vision. Effective information management involves more than the compilation of massive amounts of electronic and non-electronic information. It also involves integrating information management into business processes that support user's needs and decisionmaking. Only then can information management complement and enable environmental restoration priorities and practices, help identify environmental restoration requirements, and enable communication within the Environmental Restoration Program and between the Program and its stakeholders. Successfully accomplishing the Hanford Site mission requires an integrated approach to information management that crosses organizational boundaries, streamlines existing systems, and builds new systems that support the needs of the future. This plan outlines that approach

  17. Conceptual design analyses for Hanford Site deployable remote spectroscopy systems

    International Nuclear Information System (INIS)

    Philipp, B.L.; Reich, F.R.

    1994-09-01

    This document identifies potential remote, NIR spectroscopic waste surface moisture monitoring system design alternatives to be operated inside one of the Hanford Site, high level, nuclear waste storage tanks. Potential tank waste moisture data impacts from the remote NIR signal transfer through high humidity vapor space is evaluated

  18. Hanford Site Groundwater Monitoring for Fiscal Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2003-02-28

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

  19. Hanford Site background: Evaluation of existing soil radionuclide data

    International Nuclear Information System (INIS)

    1995-07-01

    This report is an evaluation of the existing data on radiological background for soils in the vicinity of the Hanford Site. The primary purpose of this report is to assess the adequacy of the existing data to serve as a radiological background baseline for use in environmental restoration and remediation activities at the Hanford Site. The soil background data compiled and evaluated in this report were collected by the Pacific Northwest Laboratory (PNL) and Washington State Department of Health (DOH) radiation surveillance programs in southeastern Washington. These two programs provide the largest well-documented, quantitative data sets available to evaluate background conditions at the Hanford Site. The data quality objectives (DQOs) considered in this evaluation include the amount of data, number of sampling localities, spatial coverage, number and types of radionuclides reported, frequency of reporting, documentation and traceability of sampling and laboratory methods used, and comparability between sets of data. Although other data on soil radionuclide abundances around the Hanford Site exist, they are generally limited in scope and lack the DQOs necessary for consideration with the PNL and DOH data sets. Collectively, these two sources provide data on the activities of 25 radionuclides and four other parameters (gross alpha, gross beta, total uranium, and total thorium). These measurements were made on samples from the upper 2.5 cm of soil at over 70 localities within the region

  20. Simulation of the cleanup of the Hanford Site

    International Nuclear Information System (INIS)

    Ludowise, J.D.; Allen, G.K.

    1992-12-01

    The Hanford Site is a 1,450-km 2 (560-mi 2 ) tract of semiarid land in southeastern Washington State. Nuclear materials for the nation's defense programs were manufactured at the Hanford Site for more than 40 years. The waste generated by these activities has been treated, stored, or disposed of in a variety of ways. The Hanford Site strategic analysis provides a general comparison analysis tool to guide selection and future modification of the integrated Site cleanup plan. A key element of the Hanford strategic analysis is a material flow model that tracks 80 individual feed elements containing 60 componentsof interest through 50 functional processing blocks in 12 different configurations. The material flow model was developed for parametric analyses using separation factors and parameters specific to individual feeds. The model was constructed so that the effects of individual feed streams can be traced through a flowsheet, and the performance parameters of each functional block can be varied independently. The material flow model has five major elements: input database, process flow diagrams, sequential modular process simulation, output database, and output summing program

  1. Radionuclide air emissions report for the Hanford Site

    International Nuclear Information System (INIS)

    Rokkan, D.J.; Diediker, L.P.; Manley, C.L.

    1992-06-01

    This report documents the radionuclide air emissions from the Hanford Site in 1991 and the resulting effective dose equivalent to any member of the public. The report is submitted in compliance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, ''National Emissions Standards for Hazardous Air Pollutants.''

  2. Hanford site post-NPH building inspection plan

    International Nuclear Information System (INIS)

    Wagenblast, G.R. Westinghouse Hanford

    1996-01-01

    This plan establishes consistent post-NPH building inspection procedures and defines a procedure for prioritization of buildings for inspection to ensure the safety of facilities prior to reentry. Qualification of systems for restart of operation is not included. This plan takes advantage, where possible, of existing national procedures for post-NPH inspection of buildings, of existing structural design and evaluation documentation of Hanford facilities, and current and proposed seismic instrumentation located throughout the Hanford site. A list of buildings, prioritized according to current building safety function and building vulnerability (without regard for or information about a damaging natural forces event) is provided

  3. Residual herbicide study on selected Hanford Site roadsides

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.L.; Kemp, C.J.; Sackschewsky, M.R.

    1993-08-01

    Westinghouse Hanford Company routinely treats roadsides with herbicides to control undesirable plant growth. An experiment was conducted to test perennial grass germination in soils adjacent to roadways of the Hanford Site. The primary variable was the distance from the roadside. A simple germination test was executed in a controlled-environment chamber to determine the residual effects of these applications. As expected, the greatest herbicide activity was found directly adjacent to the roadway, approximately 0 to 20 ft (0 to 6.3 m) from the roadway.

  4. Hanford/Tomsk reciprocal site visit: Plutonium agreement compliance talks

    International Nuclear Information System (INIS)

    Libby, R.A.; Sorenson, R.; Six, D.; Schiegel, S.C.

    1994-11-01

    The objective of the visit to Hanford Site was to: demonstrate equipment, technology, and methods for calculating Pu production, measuring integrated reactor power, and storing and safeguarding PuO 2 ; demonstrate the shutdown of Hanford production reactors; and foster openness and transparency of Hanford operations. The first day's visit was an introduction to Hanford and a review of the history of the reactors. The second day consisted of discussions on the production reactors, reprocessing operations, and PuO 2 storage. The group divided on the third day to tour facilities. Group A toured the N reactor, K-West reactor, K-West Basins, B reactor, and participated in a demonstration and discussion of reactor modeling computer codes. Group B toured the Hanford Pu Storage Facility, 200-East Area, N-cell (oxide loadout station), the Automated Storage Facility, and the Nondestructive Assay Measurement System. Group discussions were held during the last day of the visit, which included scheduling of a US visit to Russia

  5. History of the Hanford Site: 1943-1990

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Harvey

    2000-09-01

    This booklet was developed to highlight the national and international historical events that occurred in association with the development of the Hanford Site. The purpose of the booklet is to increase the awareness Hanford Site employees have of the historical significance of the Site's contributions and missions during the Manhattan Project (1943-1946) and Cold War era (1946-1990). By increasing knowledge and understanding of the Site's unique heritage, it is hoped this publication will help generate an appreciation of the Site's historic buildings and structures, and, thus, instill a sense of ''ownership'' in these buildings. One cannot appreciate the historic significance of a place or building without first knowing its story.

  6. Pollution prevention opportunity assessments. Guidance for the Hanford Site

    International Nuclear Information System (INIS)

    Engel, J.A.

    1994-10-01

    The purpose of this document is to provide help to you, Hanford waste generators, in finding ways to reduce waste through Pollution Prevention (P2) and Pollution Prevention Opportunity Assessments (P2OAs). It is based on guidance from other sites, and serves to compliment the Hanford-specific training on P2OAs offered by the Pollution Prevention group at Westinghouse Hanford Company (WHC). The chapters of this document include help on how to choose major waste generating activities, how to conduct a P2OA, how to get results, and how to show progress. There is also a chapter on special situations and problems your facility may encounter. This first chapter tells you why you should consider conducting P2OAs and why they may be required

  7. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  8. Hanford Site Environmental Surveillance Data Report for Calendar Year 2002

    International Nuclear Information System (INIS)

    Bisping, Lynn E.

    2003-01-01

    This data report contains the actual raw data used in the annual Hanford Site environmental report (PNNL--14295). In addition to providing raw data collected during routine sampling in 2002, this report also includes data from special sampling studies performed by PNNL during 2002. Environmental surveillance at the Hanford Site, located in southeastern Washington State, is conducted by Pacific Northwest National Laboratory (PNNL), which is operated by Battelle for the U.S. Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River water and sediment. For more information regarding the 2002 sampling schedule for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project, refer to L. E. Bisping, Environmental Surveillance Master Sampling Schedule (PNNL--13418, Pacific Northwest National Laboratory, Richland, Washington). PNNL publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 2002 describes the site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. Sections of the annual environmental report include tables and summaries of offsite and onsite environmental surveillance data collected by PNNL during 2002. This data report contains the actual raw data used to create those tables and summaries. In addition to providing raw data collected during routine sampling efforts in 2002, this data report also includes data from special sampling studies performed by PNNL during 2002

  9. Hanford Site physical separations CERCLA treatability test plan

    International Nuclear Information System (INIS)

    1992-03-01

    This test plan describes specifications, responsibilities, and general procedures to be followed to conduct a physical separations soil treatability test in the North Process Pond of the 300-FF-1 Operable Unit at the Hanford Site, Washington. The objective of this test is to evaluate the use of physical separation systems as a means of concentrating chemical and radioactive contaminants into fine soil fractions and thereby minimizing waste volumes. If successful the technology could be applied to clean up millions of cubic meters of contaminated soils in waste sites at Hanford and other sites. It is not the intent of this test to remove contaminated materials from the fine soils. Physical separation is a simple and comparatively low cost technology to potentially achieve a significant reduction in the volume of contaminated soils. Organic contaminants are expected to be insignificant for the 300-FF-I Operable Unit test, and further removal of metals and radioactive contaminants from the fine fraction of soils will require secondary treatment such as chemical extraction, electromagnetic separation, or other technologies. Additional investigations/testing are recommended to assess the economic and technical feasibility of applying secondary treatment technologies, but are not within the scope of this test. This plan provides guidance and specifications for the treatability test to be conducted as a service contract. More detailed instructions and procedures will be provided as part of the vendors (sellers) proposal. The procedures will be approved by Westinghouse Hanford Company (Westinghouse Hanford) and finalized by the seller prior to initiating the test

  10. PROTECTING GROUNDWATER & THE COLUMBIA RIVER AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M.S.

    2006-06-29

    Along the remote shores of the Columbia River in southeast Washington state, a race is on. Fluor Hanford, a prime cleanup contractor to the U.S. Department of Energy (DOE) at the Hanford Site, is managing a massive, multi-faceted project to remove contaminants from the groundwater before they can reach the Columbia. Despite the daunting nature and size of the problem--about 80 square miles of aquifer under the site contains long-lived radionuclides and hazardous chemicals--significant progress is being made. Many groups are watching, speaking out, and helping. A large. passionate, diverse, and geographically dispersed community is united in its desire to protect the Columbia River--the eighth largest in the world--and have a voice in Hanford's future. Fluor Hanford and the DOE, along with the US. Environmental Protection Agency (EPA) and the Washington Department of Ecology (Ecology) interact with all the stakeholders to make the best decisions. Together, they have made some remarkable strides in the battle against groundwater contamination under the site.

  11. Twenty-Five Year Site Plan FY2013 - FY2037

    Energy Technology Data Exchange (ETDEWEB)

    Jones, William H. [Los Alamos National Laboratory

    2012-07-12

    Los Alamos National Laboratory (the Laboratory) is the nation's premier national security science laboratory. Its mission is to develop and apply science and technology to ensure the safety, security, and reliability of the United States (U.S.) nuclear stockpile; reduce the threat of weapons of mass destruction, proliferation, and terrorism; and solve national problems in defense, energy, and the environment. The fiscal year (FY) 2013-2037 Twenty-Five Year Site Plan (TYSP) is a vital component for planning to meet the National Nuclear Security Administration (NNSA) commitment to ensure the U.S. has a safe, secure, and reliable nuclear deterrent. The Laboratory also uses the TYSP as an integrated planning tool to guide development of an efficient and responsive infrastructure that effectively supports the Laboratory's missions and workforce. Emphasizing the Laboratory's core capabilities, this TYSP reflects the Laboratory's role as a prominent contributor to NNSA missions through its programs and campaigns. The Laboratory is aligned with Nuclear Security Enterprise (NSE) modernization activities outlined in the NNSA Strategic Plan (May 2011) which include: (1) ensuring laboratory plutonium space effectively supports pit manufacturing and enterprise-wide special nuclear materials consolidation; (2) constructing the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRR-NF); (3) establishing shared user facilities to more cost effectively manage high-value, experimental, computational and production capabilities; and (4) modernizing enduring facilities while reducing the excess facility footprint. Th is TYSP is viewed by the Laboratory as a vital planning tool to develop an effi cient and responsive infrastructure. Long range facility and infrastructure development planning are critical to assure sustainment and modernization. Out-year re-investment is essential for sustaining existing facilities, and will be re-evaluated on an annual

  12. GPR Imaging of Clastic Dikes at the Hanford Site, Hanford, Washington

    International Nuclear Information System (INIS)

    Clement, William P.; Murray, Christopher J.

    2007-01-01

    We use ground penetrating radar (GPR) data to help determine the spatial distribution and the subsurface geometry of clastic injection dikes at the Hanford site. This information will help to improve the understanding of the hydrological role of these ubiquitous clastic dikes at the Hanford Site. We collected 100 MHz ground penetrating radar (GPR) 3D surface reflection data at two sites, the S-16 Pond and the Army Loop Road sites, and 2D reflection data along a 6.9 km linear transect near the Army Loop Road site. The dikes are distinguished in the GPR data by a strongly attenuated zone, disruptions in the continuity of reflections, and diffractions where reflections are disrupted. In general, the data quality is better at the Army Loop Road and Traverse sites than at the S-16 Pond site, probably due to the presence of cobbles at the S-16 Pond site. A high-moisture, fine-grained unit probably causes the strong reflections at the Army Loop Road site and the Traverse survey site. The signal penetration varies between 5 to 12 m below the land surface

  13. Hanford Site Composite Analysis Technical Approach Description: Radionuclide Inventory and Waste Site Selection Process.

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Will E.; Mehta, Sunil

    2017-09-13

    The updated Hanford Site Composite Analysis will provide an all-pathways dose projection to a hypothetical future member of the public from all planned low-level radioactive waste disposal facilities and potential contributions from all other projected end-state sources of radioactive material left at Hanford following site closure. Its primary purpose is to support the decision-making process of the U.S. Department of Energy (DOE) under DOE O 435.1-1, Radioactive Waste Management (DOE, 2001), related to managing low-level waste disposal facilities at the Hanford Site.

  14. Hanford fire department FY 1999 annual work plan WBS 6.5.7

    International Nuclear Information System (INIS)

    GOOD, D.E.

    1999-01-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing a full range of services at the lowest possible cost to customers. These services include fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, the general public, or interest of the U. S. Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under mutual aid and state mobilization agreements and fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site through Requests for Service from DOE-RL. The fire department also provides site fire marshal overview authority, fire system testing and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education

  15. Hanford fire department FY 99 annual work plan WBS 6.5.7

    Energy Technology Data Exchange (ETDEWEB)

    GOOD, D.E.

    1999-02-24

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing a full range of services at the lowest possible cost to customers. These services include fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, the general public, or interest of the U. S. Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under mutual aid and state mobilization agreements and fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site through Requests for Service from DOE-RL. The fire department also provides site fire marshal overview authority, fire system testing and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education.

  16. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  17. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

  18. List of currently classified documents relative to Hanford Production Facilities Operations originated on the Hanford Site between 1961 and 1972

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The United States Department of Energy (DOE) has declared that all Hanford plutonium production- and operations-related information generated between 1944 and 1972 is declassified. Any documents found and deemed useful for meeting Hanford Environmental Dose Reconstruction (HEDR) objectives may be declassified with or without deletions in accordance with DOE guidance by Authorized Derivative Declassifiers. The September 1992, letter report, Declassifications Requested by the Technical Steering Panel of Hanford Documents Produced 1944--1960, (PNWD-2024 HEDR UC-707), provides an important milestone toward achieving a complete listing of documents that may be useful to the HEDR Project. The attached listing of approximately 7,000 currently classified Hanford-originated documents relative to Hanford Production Facilities Operations between 1961 and 1972 fulfills TSP Directive 89-3. This list does not include such titles as the Irradiation Processing Department, Chemical Processing Department, and Hanford Laboratory Operations monthly reports generated after 1960 which have been previously declassified with minor deletions and made publicly available. Also Kaiser Engineers Hanford (KEH) Document Control determined that no KEH documents generated between January 1, 1961 and December 31, 1972 are currently classified. Titles which address work for others have not been included because Hanford Site contractors currently having custodial responsibility for these documents do not have the authority to determine whether other than their own staff have on file an appropriate need-to-know. Furthermore, these documents do not normally contain information relative to Hanford Site operations.

  19. Summary of the Hanford Site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, R.W.; O`Connor, G.P.; Dirkes, R.L. [eds.] [comps.

    1997-08-01

    This report summarizes the 420-page Hanford Site Environmental Report for Calendar Year 1996. The Hanford Site environmental report is prepared annually to summarize environmental data and information, describe environmental management performance, demonstrate the status of compliance with environmental regulations, and highlight major environmental programs and efforts. The summary is designed to briefly: describe the Hanford Site and its mission; summarize the status in 1996 of compliance with environmental regulations; describe environmental programs at the Hanford Site; discuss estimated radionuclide exposure to the public from 1996 Hanford Site activities; present information on effluent monitoring and environmental surveillance, including groundwater protection and monitoring; and discuss activities to ensure quality.

  20. Summary of the Hanford Site environmental report for calendar year 1996

    International Nuclear Information System (INIS)

    Hanf, R.W.; O'Connor, G.P.; Dirkes, R.L.

    1997-08-01

    This report summarizes the 420-page Hanford Site Environmental Report for Calendar Year 1996. The Hanford Site environmental report is prepared annually to summarize environmental data and information, describe environmental management performance, demonstrate the status of compliance with environmental regulations, and highlight major environmental programs and efforts. The summary is designed to briefly: describe the Hanford Site and its mission; summarize the status in 1996 of compliance with environmental regulations; describe environmental programs at the Hanford Site; discuss estimated radionuclide exposure to the public from 1996 Hanford Site activities; present information on effluent monitoring and environmental surveillance, including groundwater protection and monitoring; and discuss activities to ensure quality

  1. Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Documentation

    International Nuclear Information System (INIS)

    PLACE, B.G.

    2000-01-01

    This document provides guidance to generator groups for preparing and maintaining documentation of Pollution Prevention/Waste Minimization (P2/WMin) Program activities. The guidance is one of a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan (DOE-RL, 2000) and Prime Contractor implementation plans describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994) and Department of Energy Acquisition Regulations (DEAR) (48 CFR 970.5204-2 and 48 CFR 970.5204-78). Documentation guidance for the following five P2/WMin elements is discussed: Fiscal Year (FY) Goals; Budget and Staffing; Pollution Prevention (P2) Reporting; WMin Certification; and Waste Minimization (WMin) Assessments (WMAs)

  2. Assessment of mixed hazardous and radioactive waste sites at Hanford

    International Nuclear Information System (INIS)

    McLaughlin, T.J.; Cramer, K.H.; Lamar, D.A.; Sherwood, D.R.; Stenner, R.D.; Schulze, W.B.

    1987-10-01

    The US Department of Energy and Pacific Northwest Laboratory recently completed a preliminary assessment of 685 inactive hazardous waste sites located on the Hanford Site. The preliminary assessment involved collecting historical data and individual site information, conducting site inspections, and establishing an environmental impact priority, using the Hazard Ranking System, for each of these 685 sites. This preliminary assessment was the first step in the remediation process required by the Comprehensive Environmental Response, Compensation and Liability Act. This paper presents the results of that preliminary assessment. 10 refs., 4 figs., 1 tab

  3. Site-specific calibration of the Hanford personnel neutron dosimeter

    International Nuclear Information System (INIS)

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.; Rathbone, B.A.

    1994-10-01

    A new personnel dosimetry system, employing a standard Hanford thermoluminescent dosimeter (TLD) and a combination dosimeter with both CR-39 nuclear track and TLD-albedo elements, is being implemented at Hanford. Measurements were made in workplace environments in order to verify the accuracy of the system and establish site-specific factors to account for the differences in dosimeter response between the workplace and calibration laboratory. Neutron measurements were performed using sources at Hanford's Plutonium Finishing Plant under high-scatter conditions to calibrate the new neutron dosimeter design to site-specific neutron spectra. The dosimeter was also calibrated using bare and moderated 252 Cf sources under low-scatter conditions available in the Hanford Calibration Laboratory. Dose equivalent rates in the workplace were calculated from spectrometer measurements using tissue equivalent proportional counter (TEPC) and multisphere spectrometers. The accuracy of the spectrometers was verified by measurements on neutron sources with calibrations directly traceable to the National Institute of Standards and Technology (NIST)

  4. Natural phenomena hazards, Hanford Site, south central Washington

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1996-01-01

    This document presents the natural phenomena hazard (NPH) loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, at the Hanford Site in south-central Washington State. The purpose of this document is twofold: (1) summarize the NPH that are important to the design and evaluation of structures, systems, and components at the Hanford Site; (2) develop the appropriate natural phenomena loads for use in the implementation of DOE Order 5480.28. The supporting standards, DOE-STD-1020-94, Natural Phenomena Hazards Design and Evaluation Criteria for Department of Energy Facilities (DOE 1994a); DOE-STD-1022-94, Natural Phenomena Hazards Site Characteristics Criteria (DOE 1994b); and DOE-STD-1023-95, Natural Phenomena Hazards Assessment Criteria (DOE 1995) are the basis for developing the NPH loads

  5. Collaboration in long-term stewardship at DOE Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Moren, R. J.; Zeisloft, J. H.; Feist, E. T.; Brown, D.; Grindstaff, K. D.

    2013-01-10

    The U.S. Department of Energy's (DOE) Hanford Site comprises approximately 1,517 km{sup 2} (586 mi{sup 2}) of land in southeastern Washington. The site was established in 1943 as part of the Manhattan Project to produce plutonium for the nation's nuclear weapons program. As the Cold War era came to an end, the mission of the site transitioned from weapons production to environmental cleanup. As the River Corridor area of the site cleanup is completed, the mission for that portion of the site will transition from active cleanup to continued protection of environment through the Long-Term Stewardship (LTS) Program. The key to successful transition from cleanup to LTS is the unique collaboration among three (3) different DOE Programs and three (3) different prime contractors with each contractor having different contracts. The LTS Program at the site is a successful model of collaboration resulting in efficient resolution of issues and accelerated progress that supports DOE's Richland Office 2015 Vision for the Hanford Site. The 2015 Vision for the Hanford Site involves shrinking the active cleanup footprint of the surface area of the site to approximately 20 mi{sup 2} on the Central Plateau. Hanford's LTS Program is defined in DOE's planning document, Hanford Long-Term Stewardship Program Plan, DOE/RL-2010-35 Rev 1. The Plan defines the relationship and respective responsibilities between the federal cleanup projects and the LTS Program along with their respective contractors. The LTS Program involves these different parties (cleanup program and contractors) who must work together to achieve the objective for transition of land parcels. Through the collaborative efforts with the prime contractors on site over the past two years, 253.8 km{sup 2} (98 mi{sup 2}) of property has been successfully transitioned from the cleanup program to the LTS Program upon completion of active surface cleanup. Upcoming efforts in the near term will include transitioning another large

  6. RADIONUCLIDE AIR EMISSIONS REPORT FOR THE HANFORD SITE CY2003

    International Nuclear Information System (INIS)

    ROKKAN, D.J.

    2004-01-01

    This report documents radionuclide air emissions from the US Department of Energy (DOE) Hanford Site in 2003 and the resulting effective dose equivalent (EDE) to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants, Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities''; Washington Administrative Code (WAC) Chapter 246-247, ''Radiation Protection-Air Emissions''; 10 CFR 830.120, Quality Assurance; DOE Order 414.1B, Quality Assurance; NQA-1, Quality Assurance Requirements for Nuclear Facility Application; EPA QA/R-2, EPA Requirements for Quality Management Plans; and EPA QA/R-5, Requirements for Quality Assurance Project Plans. The federal regulations in Subpart H of 40 CFR 61 require the measurement and reporting of radionuclides emitted from DOE facilities and the resulting public dose from those emissions. A standard of 10 mrem/yr EDE is not to be exceeded. The EDE to the MEI due to routine and nonroutine emissions in 2003 from Hanford Site point sources was 0.022 mrem (0.00022 mSv), or 0.22 percent of the federal standard. The portions of the Hanford Site MEI dose attributable to individual point sources as listed in Section 2.0 are appropriate for use in demonstrating the compliance of abated stack emissions with applicable terms of the Hanford Site Air Operating Permit and of Notices of Construction. The state has adopted the 40 CFR 61 standard of 10 mrem/yr EDE into their regulations, yet further requires that the EDE to the MEI be calculated not only from point source emissions but also from diffuse and fugitive sources of emissions. WAC 246-247 also requires the reporting of radionuclide emissions from all Hanford Site sources during routine as well as nonroutine operations. The EDE from

  7. Challenges for Deep Vadose Zone Remediation at the Hanford Site

    International Nuclear Information System (INIS)

    Morse, John G.; Charboneau, Briant L.; Lober, Robert W.; Triplett, Mark B.

    2008-01-01

    The 'deep vadose zone' is defined as the region below the practical depth of surface remedy influence (e.g., excavation or barrier). At the Hanford Site, this region of the Central Plateau poses unique challenges for characterization and remediation. The contaminants in this region also pose a potentially significant continuing or future threat to groundwater. Currently, deep vadose zone characterization efforts and remedy selection are spread over multiple waste site Operable Units and tank farm Waste Management Areas. A particular challenge for this effort is the situation in which past leaks from single-shell tanks have become commingled with discharges from nearby liquid disposal sites. The Hanford Site is working with all affected parties, including the Washington State Department of Ecology, the Environmental Protection Agency, DOE-RL, DOE-ORP, and multiple contractor organizations to develop a unified approach to conducting work and reaching remediation decisions. This effort addresses the complex and challenging technical and regulatory issues within this environment. A true inter-Agency effort is evaluating the best strategy or combination of strategies for focusing technical investigations, including treatability studies, and for attaining remedy decisions on the Hanford Site

  8. Statistical application of groundwater monitoring data at the Hanford Site

    International Nuclear Information System (INIS)

    Chou, C.J.; Johnson, V.G.; Hodges, F.N.

    1993-09-01

    Effective use of groundwater monitoring data requires both statistical and geohydrologic interpretations. At the Hanford Site in south-central Washington state such interpretations are used for (1) detection monitoring, assessment monitoring, and/or corrective action at Resource Conservation and Recovery Act sites; (2) compliance testing for operational groundwater surveillance; (3) impact assessments at active liquid-waste disposal sites; and (4) cleanup decisions at Comprehensive Environmental Response Compensation and Liability Act sites. Statistical tests such as the Kolmogorov-Smirnov two-sample test are used to test the hypothesis that chemical concentrations from spatially distinct subsets or populations are identical within the uppermost unconfined aquifer. Experience at the Hanford Site in applying groundwater background data indicates that background must be considered as a statistical distribution of concentrations, rather than a single value or threshold. The use of a single numerical value as a background-based standard ignores important information and may result in excessive or unnecessary remediation. Appropriate statistical evaluation techniques include Wilcoxon rank sum test, Quantile test, ''hot spot'' comparisons, and Kolmogorov-Smirnov types of tests. Application of such tests is illustrated with several case studies derived from Hanford groundwater monitoring programs. To avoid possible misuse of such data, an understanding of the limitations is needed. In addition to statistical test procedures, geochemical, and hydrologic considerations are integral parts of the decision process. For this purpose a phased approach is recommended that proceeds from simple to the more complex, and from an overview to detailed analysis

  9. Hanford Site ground-water monitoring for 1995

    International Nuclear Information System (INIS)

    Dresel, P.E.; Rieger, J.T.; Webber, W.D.; Thorne, P.D.; Gillespie, B.M.; Luttrell, S.P.; Wurstner, S.K.; Liikala, T.L.

    1996-08-01

    This report presents the results of the Groundwater Surveillance Project monitoring for calendar year 1995 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that impacted groundwater quality on the site. Monitoring of water levels and groundwater chemistry is performed to track the extent of contamination, to note trends in contaminant concentrations,a nd to identify emerging groundwater quality problems. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of onsite groundwater quality. A three- dimensional, numerical, groundwater model is being developed to improve predictions of contaminant transport. The existing two- dimensional model was applied to predict contaminant flow paths and the impact of changes on site conditions. These activities were supported by limited hydrogeologic characterization. Water level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Radiological monitoring results indicated that many radioactive contaminants were above US Environmental Protection Agency or State of Washington drinking water standards at the Hanford Site. Nitrate, fluoride, chromium, cyanide, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichloroethylene were present in groundwater samples at levels above their US EPA or State of Washington maximum contaminant levels

  10. Pit Viper strikes at the Hanford site. Pit maintenance using robotics at the Hanford Tank Farms

    International Nuclear Information System (INIS)

    Roeder-Smith, Lynne

    2002-01-01

    The Pit Viper--a remote operations waste retrieval system--was developed to replace manual operations in the valve pits of waste storage tanks at the Hanford Site. The system consists of a typical industrial backhoe fitted with a robotic manipulator arm and is operated remotely from a control trailer located outside of the tank farm. Cameras mounted to the arm and within the containment tent allow the operator to view the entire pit area and operate the system using a joystick. The arm's gripper can grasp a variety of tools that allow personnel to perform cleaning, debris removal, and concrete repair tasks--a more efficient and less dose-intensive process than the previous 'long-pole' method. The project team overcame a variety of obstacles during development and testing of the Pit Viper system, and deployment occurred in Hanford Tank C-104 in December 2001

  11. Progress on Footprint Reduction at the Hanford Site - 12406

    Energy Technology Data Exchange (ETDEWEB)

    McKenney, Dale E. [CH2M HILL, Plateau Remediation Company, Richland, Washington 99352 (United States); Seeley, Paul [Cenibark International, Inc., Richland, Washington 99352 (United States); Farabee, Al [U.S. Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

    2012-07-01

    The Department of Energy (DOE) Office of Environmental Management (EM) continues to reduce the footprint of legacy sites throughout the EM complex. Footprint reduction is being accomplished by focusing cleanup activities on decontamination and demolition of excess contaminated facilities, soil and groundwater remediation, and solid waste disposition. All of these initiatives are being accomplished with established technologies in proven regulatory frameworks. Ultimately, completion of these environmental cleanup activities will reduce the monitoring and maintenance costs associated with managing large federal facilities, allowing EM to place more focus on other high priority cleanup efforts and facilitate a successful transition to land-term stewardship of these sites. Through the American Recovery and Reinvestment Act (ARRA) investment, the Department's cleanup footprint has been reduced by 45 percent to date, from 2411 km{sup 2} (931 mi{sup 2}) to 1336 km{sup 2} (516 mi{sup 2}s). With this significant progress on footprint reduction, the Department is on track towards their goal to reduce its overall footprint by approximately 90 percent by 2015. In addition, some areas cleaned up may become available for alternate uses (i.e. recreation, conservation, preservation, industrialization or development). Much of the work to reduce the complex's footprint occurred at the Savannah River Site in South Carolina and the Hanford Site in Washington, but cleanup continues across the complex. Footprint reduction is progressing well at the Hanford Site, supported predominantly through ARRA investment. To date, 994 km{sup 2} (384 mi{sup 2}) (65%) of footprint reduction have been achieved at Hanford, with a goal to achieve a 90% reduction by Fiscal Year 2015. The DOE EM and DOE Richland Operations Office, continue to make great progress to reduce the legacy footprint of the Hanford Site. Footprint reduction is being accomplished by focusing cleanup activities on

  12. Development and maintenance of the Hanford Site Radiological Control Manual

    International Nuclear Information System (INIS)

    Munson, L.H.; Selby, J.M.; Vargo, G.J.; Clark, D.L.

    1993-04-01

    In June 1992 the US Department of Energy (DOE) issued DOE N5480.6, Radiological Control, which set forth DOE's Radiological Control Program and established the framework for its implementation at sites nationwide. Accompanying the Order was the DOE Radiological Control Manual (DOE RCM), which provided the detailed requirements for the program. The Order also mandated Field Office issuance of site-specific radiological control manuals by December 1, 1992. This paper presents the approach taken to develop, review, approve, implement, and subsequently maintain the site-specific manual for the DOE Richland Field Office (RL) at Hanford Site

  13. Strontium-90 at the Hanford Site and its ecological implications

    International Nuclear Information System (INIS)

    RE Peterson; TM Poston

    2000-01-01

    Strontium-90, a radioactive contaminant from historical operations at the U.S. Department of Energy (DOE) Hanford Site, enters the Columbia River at several locations associated with former plutonium production reactors at the Site. Strontium-90 is of concern to humans and the environment because of its moderately long half-life (29.1 years), its potential for concentrating in bone tissue, and its relatively high energy of beta decay. Although strontium-90 in the environment is not a new issue for the Hanford Site, recent studies of near-river vegetation along the shoreline near the 100 Areas raised public concern about the possibility of strontium-90-contaminated groundwater reaching the riverbed and fall chinook salmon redds. To address these concerns, DOE asked Pacific Northwest National Laboratory (PNNL) to prepare this report on strontium-90, its distribution in groundwater, how and where it enters the river, and its potential ecological impacts, particularly with respect to fall chinook salmon. The purpose of the report is to characterize groundwater contaminants in the near-shore environment and to assess the potential for ecological impact using salmon embryos, one of the most sensitive ecological indicators for aquatic organisms. Section 2.0 of the report provides background information on strontium-90 at the Hanford Site related to historical operations. Public access to information on strontium-90 also is described. Section 3.0 focuses on key issues associated with strontium-90 contamination in groundwater that discharges in the Hanford Reach. The occurrence and distribution of fall chinook salmon redds in the Hanford Reach and characteristics of salmon spawning are described in Section 4.0. Section 5.0 describes the regulatory standards and criteria used to set action levels for strontium-90. Recommendations for initiating additional monitoring and remedial action associated with strontium-90 contamination at the Hanford Site are presented in Section 6

  14. Strontium-90 at the Hanford Site and its ecological implications

    Energy Technology Data Exchange (ETDEWEB)

    RE Peterson; TM Poston

    2000-05-22

    Strontium-90, a radioactive contaminant from historical operations at the U.S. Department of Energy (DOE) Hanford Site, enters the Columbia River at several locations associated with former plutonium production reactors at the Site. Strontium-90 is of concern to humans and the environment because of its moderately long half-life (29.1 years), its potential for concentrating in bone tissue, and its relatively high energy of beta decay. Although strontium-90 in the environment is not a new issue for the Hanford Site, recent studies of near-river vegetation along the shoreline near the 100 Areas raised public concern about the possibility of strontium-90-contaminated groundwater reaching the riverbed and fall chinook salmon redds. To address these concerns, DOE asked Pacific Northwest National Laboratory (PNNL) to prepare this report on strontium-90, its distribution in groundwater, how and where it enters the river, and its potential ecological impacts, particularly with respect to fall chinook salmon. The purpose of the report is to characterize groundwater contaminants in the near-shore environment and to assess the potential for ecological impact using salmon embryos, one of the most sensitive ecological indicators for aquatic organisms. Section 2.0 of the report provides background information on strontium-90 at the Hanford Site related to historical operations. Public access to information on strontium-90 also is described. Section 3.0 focuses on key issues associated with strontium-90 contamination in groundwater that discharges in the Hanford Reach. The occurrence and distribution of fall chinook salmon redds in the Hanford Reach and characteristics of salmon spawning are described in Section 4.0. Section 5.0 describes the regulatory standards and criteria used to set action levels for strontium-90. Recommendations for initiating additional monitoring and remedial action associated with strontium-90 contamination at the Hanford Site are presented in Section 6

  15. HANFORD SCIENCE & TECHNOLOGY NEEDS STATEMENTS 2002

    Energy Technology Data Exchange (ETDEWEB)

    WIBLE, R.A.

    2002-04-01

    This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2002; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract, the Environmental Restoration Contract and the River Protection Project) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL and DOE-ORP Management, site stakeholders, state and federal regulators, and Tribal Nations. These needs are reviewed and updated on an annual basis and given a broad distribution.

  16. FY 1997 Hanford telecommunication and informations system user profile, milestone IRM-097-003

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, T.T.

    1997-09-22

    This document reports survey data collected from the U.S. Department of Energy, Richland Operations Office (DOE-RL), Project Hanford Management Contract (PHMC) companies, and the PHMC enterprise companies for purposes of characterizing the Hanford Local Area Network (HLAN) user profile. Telephone, radio, and pager data are also provided. The data reveal that job tasks of the 8,500 Hanford Site workers who use the HLAN are highly, if not completely, computer dependent. Employees use their computers as their pens and paper, calculators, drafting tables and communication devices. Fifty eight percent of the survey respondents predict 90 to 100% loss in productivity if they had no access to a computer. Additionally, 30% of the users felt they would have a 50 to 80% loss in productivity without computers; and more than 68 % use their computers between 4 and 8 hours per day. The profile also shows th at the software packages used most heavily are cc:Mail` the Windows version, Hanford Information, WordPerfece, Site Forms and Look-up. Use of Windows-based products is very high. Regarding the productivity tools that are seldom used, 49 % of the respondents say they ``never use`` the Hanford Help and Hints (HUH). The use of the external intemet by Hanford has shown a large increase. The survey indicates that users rate the intranet and the ability to access other sources of information as the fourth most important computer application. The Microsoft System Management Server (SMS 4) data show that more than 60% of the computers on the HLAN need replacement or upgrades to run the Windows 95 Operating System, which has been selected as the PHMC standard. Although data also show that 77% of the PHMC machines are running the current standard Windows for Workgroup version 3. 1 1, they do not have the memory and/or the hard disk space to upgrade to Windows 95. The survey results indicate that telephone system use is also high and regarded as a useful tool. Pager use is very high and

  17. Summary of 1990 eolian characterization studies, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Gaylord, D.R.; Stetler, L.D.; Smith, G.D. [Washington State Univ., Pullman, WA (United States); Mars, R.W. [Wyoming Univ., Laramie, WY (United States)

    1993-12-01

    A study of eolian activity was initiated to improve understanding of past climate change and the likely effect of wind on engineered protective barriers at the Hanford Site. Eolian features from a Holocene sand dune field located in the southeastern portion of the Hanford Site were investigated using a variety of field and laboratory techniques including stratigraphic examinations of hand-dug pits, textural and compositional analyses of dune sand and potential source detritus, and air photo interpretations. These investigations were undertaken to evaluate the provenance and eolian dynamics of the sand dunes. Interpretations of sand dune migration using archival air photo stereopairs document a 20% reduction in the volume of active sand dunes (measured from an approximate 15-km{sup 2} test area) between 1948 and 1987. Changes in annual precipitation appear to have influenced active dune migration strongly.

  18. Electrical resistivity tomography at the DOE Hanford site

    International Nuclear Information System (INIS)

    Narbutovskih, S.M.; Halter, T.D.; Sweeney, M.D.; Daily, W.; Ramirez, A.L.

    1996-01-01

    Recent work at the DOE Hanford site has established the potential of applying Electrical Resistivity Tomography (ERT) for early leak detection under hazardous waste storage facilities. Several studies have been concluded to test the capabilities and limitations of ERT for two different applications. First, field experiments have been conducted to determine the utility of ERT to detect and map leaks from underground storage tanks during waste removal processes. Second, the use of ERT for long term vadose zone monitoring has been tested under different field conditions of depth, installation design, acquisition mode/equipment and infiltration chemistry. This work involves transferring the technology from Lawrence Livermore National Laboratory (LLNL) to the Resource Conservation and Recovery Act (RCRA) program at the DOE Hanford Site. This paper covers field training studies relevant to the second application for long term vadose zone monitoring

  19. Risk evaluation of remedial alternatives for the Hanford Site

    International Nuclear Information System (INIS)

    1994-09-01

    This document provides guidance on the process of risk evaluation of remedial alternatives (RERA) at the Hanford Site. Remediation activities at the Hanford Site are being conducted pursuant to the Comprehensive Environmental Restoration, Compensation, and Liability Act and the Resource Conservation and Recovery Act. This document identifies points in the remedial alternative selection process where risk assessment input is either required or desirable. For each of these points of application, the document identifies issues to consider and address, and suggests possible approaches, techniques, and appropriate levels of detail. The level of detail of a RERA is driven by the need to use risk as a criterion for selecting a remedial alternative. Such a document is needed to ensure that RERA is conducted in a consistent manner, and to prevent restating or creating guidance within each RERA

  20. Deploying in situ bioremediation at the Hanford Site

    International Nuclear Information System (INIS)

    Truex, M.J.; Johnson, C.D.; Newcomer, D.R.; Doremus, L.A.; Hooker, B.S.; Peyton, B.M.; Skeen, R.S.; Chilakapati, A.

    1994-11-01

    An innovative in-situ bioremediation technology was developed by Pacific Northwest Laboratory (PNL) to destroy nitrate and carbon tetrachloride (CC1 4 ) in the Hanford ground water. The goal of this in-situ treatment process is to stimulate native microorganisms to degrade nitrate and CCl 4 . Nutrient solutions are distributed in the contaminated aquifer to create a biological treatment zone. This technology is being demonstrated at the US Department of Energy's Hanford Site to provide the design, operating, and cost information needed to assess its effectiveness in contaminated ground water. The process design and field operations for demonstration of this technology are influenced by the physical, chemical, and microbiological properties observed at the site. A description of the technology is presented including the well network design, nutrient injection equipment, and means for controlling the hydraulics and microbial reactions of the treatment process

  1. Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.

    2009-08-20

    A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55 Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where

  2. Site Support Program Plan for ICF Kaiser Hanford Company

    International Nuclear Information System (INIS)

    Benedetti, R.L.

    1994-10-01

    This document describes the Hanford Reservation site support program plan for each support division, in terms of safety, environmental concerns, costs, and reliability. Support services include the following: Piped Utilities; Electrical utilities; transportation; Energy management; General Administration Support Buildings; electrical safety upgrades. Contained in this Volume II is information covering the following: Operations and maintenance Utilities; Piped Utilities; Water systems Administration and Sampling; electrical utilities

  3. Hanford Site environmental report for calendar year 1996

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.

    1997-08-01

    The Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology

  4. Configuration management program plan for Hanford site systems engineering

    International Nuclear Information System (INIS)

    Hoffman, A.G.

    1994-01-01

    This plan establishes the integrated configuration management program for the evolving technical baseline developed through the systems engineering process. This configuration management program aligns with the criteria identified in the DOE Standard, DOE-STD-1073-93. Included are specific requirements for control of the systems engineering RDD-100 database, and electronic data incorporated in the database that establishes the Hanford site technical baseline

  5. Hanford Site Groundwater Protection Management Program: Revision 1

    International Nuclear Information System (INIS)

    1993-11-01

    Groundwater protection is a national priority that is promulgated in a variety of environmental regulations at local, state, and federal levels. To effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy has issued DOE Order 5400.1 (now under revision) that requires all US Department of Energy facilities to prepare separate groundwater protection program descriptions and plans. This document describes the Groundwater Protection Management Program for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the Groundwater Protection Management Program cover the following general topical areas: (1) documentation of the groundwater regime, (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. Many of the above elements are covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing groundwater protection activities. Additionally, it describes how information needs are identified and can be incorporated into existing or proposed new programs. The Groundwater Protection Management Program provides the general scope, philosophy, and strategies for groundwater protection/management at the Hanford Site. Subtier documents provide the detailed plans for implementing groundwater-related activities and programs. Related schedule and budget information are provided in the 5-year plan for environmental restoration and waste management at the Hanford Site

  6. TANK WASTE RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    International Nuclear Information System (INIS)

    DODD, R.A.

    2006-01-01

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the US Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60% of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring the waste to the DST system since 1997 as part of the interim stabilization program. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. This paper presents lessons learned from retrieval of tank waste at the Hanford Site and discusses how this information is used to optimize retrieval system efficiency, improve overall cost effectiveness of retrieval operations, and ensure that HFFACO requirements are met

  7. Site Support Program Plan for ICF Kaiser Hanford Company

    International Nuclear Information System (INIS)

    Benedetti, R.L.

    1994-10-01

    This document describes the Hanford Reservation site support program plan for each support division, in terms of safety, environmental concerns, costs, and reliability. Support services include the following: Piped Utilities; Electrical utilities; transportation; Energy management; General Administration Support Buildings; electrical safety upgrades. This Volume III discusses Operations and Maintenance Transportation and the Transportation Department including fleet maintenance, railroad operations and track maintenance, bus operations, solid waste disposal, special delivery services, and road maintenance

  8. Hanford Site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W. [eds.

    1997-08-01

    The Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology.

  9. Environmental status of the Hanford Site for CY-1976

    International Nuclear Information System (INIS)

    Fix, J.J.; Blumer, P.J.; Bramson, P.E.

    1977-05-01

    Environmental data were collected on the Hanford Site during 1976 for several environmental media including air, Columbia River water, wildlife, ambient radiation levels, soil and vegetation, as well as ditches, ponds and trenches near operating facilities. In addition, all roadways, railways, and active, as well as retired burial grounds were surveyed on a varying frequency to detect any abnormal levels of radioactivity. Highlights of the monitoring data collected are included

  10. Hanford Site Pollution Prevention Plan progress report, 1994. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    This report tracks progress made during 1994 against the goals stated in DOE/RL-92-62, Executive Summary, Hanford Site Pollution Prevention Plan. The Executive Summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, Executive Summary, and the progress reports are elements of a pollution prevention planning program that is required by WAC 173-307, ''Plans,'' for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement RCW 70.95C, ''Waste Reduction,'' an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the in-process reuse or reclamation of valuable spent material. The Hanford Site is voluntarily complying with this state regulatory-mandated program. All treatment, storage, or disposal (TSD) facilities are exempt from participating; the Hanford Site is classified as a TSD

  11. Managing Hanford Site solid waste through strict acceptance criteria

    International Nuclear Information System (INIS)

    Jasen, W.G.; Pierce, R.D.; Willis, N.P.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA) and the Resource Conservation and Recovery Act of 1976 (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, strict management programs have been implemented for the management of these wastes. Solid waste management is accomplished through a systems performance approach to waste management that used best-demonstrated available technology (BDAT) and best management practices. The solid waste program at the Hanford Site strives to integrate all aspects of management relative to the treatment, storage and disposal (TSD) of solid waste. Often there are many competing and important needs. It is a difficult task to balance these needs in a manner that is both equitable and productive. Management science is used to help the process of making decisions. Tools used to support the decision making process include five-year planning, cost estimating, resource allocation, performance assessment, waste volume forecasts, input/output models, and waste acceptance criteria. The purpose of this document is to describe how one of these tools, waste acceptance criteria, has helped the Hanford Site manage solid wastes

  12. Registration for the Hanford Site: Sources of radioactive emissions

    International Nuclear Information System (INIS)

    Silvia, M.J.

    1993-04-01

    This Registration Application serves to renew the registration for all Hanford Site sources of radioactive air emissions routinely reported to the State of Washington Department of Health (DOH). The current registration expires on August 15, 1993. The Application is submitted pursuant to the Washington Administrative Code (WAC) Chapter 246--247, and is consistent with guidance provided by DOH for renewal. The Application subdivides the Hanford Site into six major production, processing or research areas. Those six areas are in the 100 Area, 200 East Area, 200 West Area, 300 Area, 400 Area, and 600 Area. Each major group of point sources within the six areas listed above is represented by a Source Registration for Radioactive Air Emissions form. Annual emissions. for the sources are listed in the ''Radionuclide Air Emissions Report for the Hanford Site,'' published annually. It is a requirement that the following Statement of Compliance be provided: ''The radioactive air emissions from the above sources do meet the emissions standards contained in Chapter 173-480-040 WAC, Ambient Air Quality Standards and Emissions Limits for Radionuclides. As the Statement of Compliance pertains to this submittal, the phrase ''above sources'' is to be understood as meaning the combined air emissions from all sources registered by this submittal

  13. Hanford Site Pollution Prevention Plan progress report, 1994. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This report tracks progress made during 1994 against the goals stated in DOE/RL-92-62, Executive Summary, Hanford Site Pollution Prevention Plan. The Executive Summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, Executive Summary, and the progress reports are elements of a pollution prevention planning program that is required by WAC 173-307, ``Plans,`` for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement RCW 70.95C, ``Waste Reduction,`` an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the in-process reuse or reclamation of valuable spent material. The Hanford Site is voluntarily complying with this state regulatory-mandated program. All treatment, storage, or disposal (TSD) facilities are exempt from participating; the Hanford Site is classified as a TSD.

  14. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  15. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  16. The Evolution of LTS at DOE's Hanford Site

    International Nuclear Information System (INIS)

    Moren, Richard J.; Grindstaff, Keith D.

    2013-01-01

    Hanford's Long-Term Stewardship (LTS) Program has evolved from a small, informal process, with minimal support, to a robust program that provides comprehensive transitions from cleanup contractors to long-term stewardship for post-cleanup requirements specified in the associated cleanup decision documents. The LTS Program has the responsibility for almost 100,000 acres of land, along with over 200 waste sites and will soon have six cocooned reactors. Close to 2,600 documents have been identified and tagged for storage in the LTS document library. The program has successfully completed six consecutive transitions over the last two years in support of the U.S. DOE Richland Operations Office's (DOE-RL) near-term cleanup objectives of significantly reducing the footprint of active cleanup operations for the River Corridor. The program has evolved from one that was initially responsible for defining and measuring Institutional Controls for the Hanford Site, to a comprehensive, post remediation surveillance and maintenance program that begins early in the transition process. In 2013, the first reactor area -- the cocooned 105-F Reactor and its surrounding 1,100 acres, called the F Area was transitioned. In another first, the program is expected to transition the five remaining cocooned reactors into the program through using a Transition and Turnover Package (TTP). As Hanford's LTS Program moves into the next few years, it will continue to build on a collaborative approach. The program has built strong relationships between contractors, regulators, tribes and stakeholders and with the U.S. Department of Energy's Office of Legacy Management (LM). The LTS Program has been working with LM since its inception. The transition process utilized LM's Site Transition Framework as one of the initial requirement documents and the Hanford Program continues to collaborate with LM today. One example of this collaboration is the development of the LTS Program's records management

  17. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  18. 1997 evaluation of tritium removal and mitigation technologies for Hanford Site wastewaters

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Biyani, R.K.; Duncan, J.B.; Flyckt, D.L.; Mohondro, P.C.; Sinton, G.L.

    1997-01-01

    This report contains results of a biennial assessment of tritium separation technology and tritium nitration techniques for control of tritium bearing wastewaters at the Hanford Site. Tritium in wastewaters at Hanford have resulted from plutonium production, fuel reprocessing, and waste handling operations since 1944. this assessment was conducted in response to the Hanford Federal Facility Agreement and Consent Order

  19. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  20. Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hulstrom, L.

    2011-02-07

    This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

  1. Environmental Restoration Program quality system requirements for the Hanford Site

    International Nuclear Information System (INIS)

    Cote, R.F.

    1993-11-01

    This document defines the quality system requirements for the US Department of Energy, Richland Operations Office, Environmental Restoration Program at the Hanford Site. The Quality System Requirements (OSR) for the Hanford Site integrates quality assurance requirements from the US Department of Energy Orders, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), and applicable industry standards into a single source document for the development of quality systems applicable to the Environmental Restoration Program activities. This document, based on fifteen criteria and divided intro three parts, provides user organizations with the flexibility to incorporate only those criteria and parts applicable to their specific scopes of work. The requirements of this document shall be applied to activities that affect quality based on a graded approach that takes into consideration the risk inherent in, as well as the importance of, specific items, services, and activities in terms of meeting ER Program objectives and customer expectations. The individual quality systems developed in accordance with this document are intended to provide an integrated management control system that assures the conduct of ER Program activities in a manner that protects human health and the environment

  2. Environmental status of the Hanford Site for CY-1981

    International Nuclear Information System (INIS)

    Sula, M.J.; Blumer, P.J.; Dirkes, R.L.

    1982-08-01

    Samples of air, surface water, soil, vegetation, and wildlife were collected and external penetrating radiation dose measurements were made in the vicinity of the major operating areas on the Hanford Site. The samples were analyzed for radioactive constituents including tritium, strontium-90, plutonium, and gamma-emitting radionuclides. In addition, site roads, railroad tracks, and burial grounds were surveyed periodically to detect any abnormal levels of radioactivity. Radioactive and nonradioactive waste discharges and environmentally related unusual occurrences reported for the major operating areas were reviewed and summarized. Results indicate that general levels of airborne particulate radioactivity in the Hanford environs were greater in 1981 than in recent years as a result of fallout from a foreign atmospheric nuclear test conducted in late 1980. Levels of radioactivity in airborne particulates began decreasing during the summer and by the end of the year had returned to levels observed prior to the test. Airborne strontium-90, plutonium, and tritium concentrations at the onsite sampling stations were not significantly different from background measurements. Radioiodine was not identified in any air sample during 1981. Strontium-90 and cesium-137 concentrations in B-Pond water were lower compared to levels observed during 1980. Analyses of tissue samples from several types of wildlife collected onsite continue to indicate that Hanford-produced radionuclides in some areas are accessible to wildlife. Several onsite soil and vegetation samples contained radionuclide concentrations above background levels. However, observed levels were similar to those reported in recent years

  3. Savannah River Site Bagless Transfer Technology Applied at Hanford

    International Nuclear Information System (INIS)

    Wong, J.W.

    2001-01-01

    A ''bagless transfer'' process was developed at the Savannah River Site (SRS) to remove radioactive materials from glovebox enclosures for long-term storage in conformance with DOE Standard 3013. This process, unlike the more conventional ''bag-out'' process, produces an all-metal, helium-filled, welded storage container that does not contain materials subject to radiolytic decomposition. A Bagless Transfer System (BTS), utilizing this bagless transfer process, has been in service at SRS since August 1997. It is a semi-automated system that has proven to be very reliable during its three years of operation.The Plutonium Finishing Plant (PFP) at Hanford has a similar need for long-term storage of radioactive materials. The successful operation of the Savannah River Site BTS led to the selection of the same technology to fulfill the packaging need at Hanford. However, there are a number of differences between the existing SRS BTS and the system currently in operation at Hanford. These differences will be discussed in this paper. Additionally, a system is necessary to produce another all-metal, welded container into which the container produced by the BTS can be placed. This container must be in conformance with the criteria specified in DOE-STD-3013 for an outer container. SRS Engineers are developing a system (outer container welder), based on the tungsten inert gas (TIG) welding equipment used in the BTS, to produce this outer container

  4. Routine environmental audit of the Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report documents the results of the routine environmental audit of the Hanford Site (Hanford), Richland, Washington. During this audit, the activities conducted by the audit team included reviews of internal documents an reports from previous audits and assessments; interviews with US Department of Energy (DOE), State of Washington regulatory, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted May 2--13, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). The audit evaluated the status of programs to ensure compliance with Federal, State, and local environmental laws and regulations; compliance with DOE orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements.

  5. Routine environmental audit of the Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-05-01

    This report documents the results of the routine environmental audit of the Hanford Site (Hanford), Richland, Washington. During this audit, the activities conducted by the audit team included reviews of internal documents an reports from previous audits and assessments; interviews with US Department of Energy (DOE), State of Washington regulatory, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted May 2--13, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). The audit evaluated the status of programs to ensure compliance with Federal, State, and local environmental laws and regulations; compliance with DOE orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements

  6. Risk-based prioritization at Hanford Nuclear Site

    International Nuclear Information System (INIS)

    Hesser, W.A.; Mosely, M.T.

    1995-11-01

    This paper describes the method used to incorporate risk-based decision making into the Hanford resource allocation process. This method, the Revised Priority Planning Grid, is used as a tool to calculate benefits and benefit-to-cost ratios for comparison of environmental cleanup activities. The tool is based on Hanford Site objectives. Benefits are determined by estimating the impact on those objectives resulting from funding specific environmental management activities. Impacts are also a function of the weights associated with the objectives. These weights in the Revised Priority Planning Grid reflect US Development of Energy management values, which were obtained through a formal value-elicitation process. With modification to the objectives and weights, the Revised Priority Planning Grid could be used in different situations. By factoring in environmental, safety, and health risk and assigning higher scores to those activities that provide the most benefit, the Revised Priority Planning Grid is a reproducible, scientific way of scoring competing activities or interests

  7. Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities

    International Nuclear Information System (INIS)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-09-01

    This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km 2 (570-mi 2 ) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation

  8. Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-09-01

    This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km{sup 2} (570-mi{sup 2}) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation.

  9. Hanford Site Welding Program Successfully Providing A Single Site Function For Use By Multiple Contractors

    International Nuclear Information System (INIS)

    Cannell, G.R.

    2009-01-01

    The Department of Energy, Richland Operations (DOE-RL) recently restructured its Hanford work scope, awarding two new contracts over the past several months for a total of three contracts to manage the sites cleanup efforts. DOE-RL met with key contractor personnel prior to and during contract transition to ensure site welding activities had appropriate oversight and maintained code compliance. The transition also provided an opportunity to establish a single site-wide function that would provide welding and materials engineering services to the Hanford site contractors: CH2M HILL Plateau Remediation Company (CHPRC); Mission Support Alliance (MSA); Washington River Protection Solutions (WRPS); and Washington Closure Hanford (WCH). Over the years, multiple and separate welding programs (amongst the several contractors) existed at the Hanford site leading to inefficiencies resulting from duplication of administrative efforts, maintenance of welding procedures, welder performance certifications, etc. The new, single program eliminates these inefficiencies. The new program, co-managed by two of the sites' new contractors, the CHPRC ('owner' of the program and responsible for construction welding services) and the MSA (provides maintenance welding services), provides more than just the traditional construction and maintenance welding services. Also provided, are welding engineering, specialty welding development/qualification for the closure of radioactive materials containers and materials evaluation/failure analysis. The following describes the new Hanford site welding program.

  10. Technical and Economic Assessment of Solar Photovoltaic for Groundwater Extraction on the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Mackley, Rob D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomle, Jonathan N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The overall goal of environmental remediation is to protect human health and the environment. Implementing renewable energy sources such as solar photovoltaic (PV) in groundwater extraction and pump-and-treat (P&T) systems may help minimize the environmental footprint of remediation efforts. The first step in considering solar PV for powering Hanford groundwater extraction is assessing the technical and economic feasibility and identifying potential target locations where implementation would be most successful. Accordingly, a techno-economic assessment of solar PV for Hanford groundwater extraction was completed in FY15. Multiple solar PV alternatives ranging in size from 1.2 to 22.4 kWp DC were evaluated and compared against traditional grid-powered systems. Results indicate that the degree to which solar PV alternatives are feasible is primarily a function of the distance of avoided power cable costs and the inclusion of an energy storage component. Standalone solar PV systems provide an energy source at the well and avoid the costs and logistics associated with running long lengths of expensive power cable to the well-head. When solar PV systems include a battery storage component, groundwater can be pumped continuously day and night in a year-round schedule. However, due to the high cost premium of the energy storage component, a fully solar-powered solution could not provide an economic direct replacement for line-powered pumping systems. As a result, the most ideal target locations for successful implementation of solar PV on the Hanford Site are remote or distant extraction wells where the primary remedial objective is contaminant mass removal (as opposed to hydraulic containment) and three-season (March through October) intermittent pumping is acceptable (e.g. remediation of hexavalent chromium in 200-UP-1).

  11. TANK FARM RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    International Nuclear Information System (INIS)

    DODD RA

    2008-01-01

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the TriParty Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U. S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 fe in 530,000 gallon or larger tanks; 30 fe in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an

  12. Environmental status of the Hanford Site for CY 1983

    International Nuclear Information System (INIS)

    Price, K.R.; Blumer, P.J.; Carlile, J.M.V.; Dirkes, R.L.; Trevathan, M.S.

    1984-08-01

    Samples of air, surface water, soil, vegetation, and wildlife were collected and external penetrating radiation dose measurements were made in the vicinity of the major operating areas on the Hanford Site. Most samples were analyzed for radioactive constituents including 3 H, 14 C, 85 Kr, 90 Sr, 241 Am, plutonium isotopes, natural uranium, and gamma-emitting radionuclides. In addition, site roads, railroad tracks, and burial ground were surveyed periodically to detect any abnormal conditions or unusual levels of radioactivity. Radioactive and nonradioactive waste discharges and environmentally-related unusual occurrences reported for the major operating areas were reviewed and summarized. 14 references, 10 figures, 22 tables

  13. Environmental status of the Hanford Site for CY-1980

    International Nuclear Information System (INIS)

    Sula, M.J.; Blumer, P.J.; Dirkes, R.L.

    1981-08-01

    Samples of air, surface water, soil, vegetation, and wildlife were collected and external penetrating radiation dose measurements were made in the vicinity of the major operating areas on the Hanford Site. The samples were analyzed for radioactive constituents including tritium, strontium-90, plutonium, and gamma-emitting radionuclides. In addition, site roads, railroad tracks, and burial grounds were surveyed periodically to detect any abnormal levels of radioactivity. Radioactive and nonradioactive waste discharges and environmentally related unusual occurrences reported for the major operating areas were summarized

  14. Environmental status of the Hanford Site for CY 1982

    International Nuclear Information System (INIS)

    Sula, M.J.; Blumer, P.J.; Dirkes, R.L.; Carlile, J.M.V.

    1983-08-01

    Samples of air, surface water, soil, vegetation, and wildlife were collected and external penetrating radiation dose measurements were made in the vicinity of the major operating areas on the Hanford Site. The samples were analyzed for radioactive constituents including tritium, strontium-90, plutonium, and gamma-emitting radionuclides. In addition, site roads, railroad tracks, and burial grounds were surveyed periodically to detect any abnormal levels of radioactivity. Radioactive and nonradioactive waste discharges and environmental related unusual occurrences reported for the major operating areas were reviewed and summarized

  15. A Site Wide Perspective on Uranium Geochemistry at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Brown, Christopher F.; Christensen, J. N.; Davis, Jim A.; Dresel, P. Evan; Liu, Chongxuan; Kelly, S. D.; McKinley, James P.; Serne, R. Jeffrey; Um, Wooyong

    2007-10-26

    Uranium (U) is an important risk-driving contaminant at the Hanford Site. Over 200,000 kg have been released to the vadose zone over the course of site operations, and a number of vadose zone and groundwater plumes containing the uranyl cation [UO22+, U(VI)] have been identified. U is recognized to be of moderate-to-high mobility, conditions dependent. The site is currently making decisions on several of these plumes with long-lasting implications, and others are soon to come. Uranium is one of nature’s most intriguing and chemically complex elements. The fate and transport of U(VI) has been studied over the long lifetime of the Hanford Site by various contractors, along with the Pacific Northwest National Laboratory (PNNL) and its collaborators. Significant research has more recently been contributed by the national scientific community with support from the U.S. Department of Energy’s (DOE) Office of Science through its Environmental Remediation Sciences Division (ERSD). This report represents a first attempt to integrate these findings into a cohesive view of the subsurface geochemistry of U at the Hanford Site. The objective is to inform all interested Hanford parties about the in-ground inventory of U and its geochemical behavior. This report also comments on the prospects for the development of a robust generic model to more accurately forecast future U(VI) migration at different Hanford waste sites, along with further research necessary to reach this goal.

  16. Site locality identification study: Hanford Site. Volume I. Methodology, guidelines, and screening

    International Nuclear Information System (INIS)

    1980-07-01

    Presented in this report are the results of the site locality identification study for the Hanford Site using a screening process. To enable evaluation of the entire Hanford Site, the screening process was applied to a somewhat larger area; i.e., the Pasco Basin. The study consisted of a series of screening steps that progressively focused on smaller areas which are within the Hanford Site and which had a higher potential for containing suitable repository sites for nuclear waste than the areas not included for further study. Five site localities, designated H-1, H-2, H-3, H-4, H-5 (Figure A), varying in size from approximately 10 to 50 square miles, were identified on the Hanford Site. It is anticipated that each site locality may contain one or more candidate sites suitable for a nuclear waste repository. The site locality identification study began with definition of objectives and the development of guidelines for screening. Three objectives were defined: (1) maximize public health and safety; (2) minimize adverse environmental and socioeconomic impacts; and (3) minimize system costs. The screening guidelines have numerical values that provided the basis for the successive reduction of the area under study and to focus on smaller areas that had a higher likelihood of containing suitable sites

  17. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  18. Status of outdoor radioactive contamination at the Hanford Site

    International Nuclear Information System (INIS)

    McKinney, S.M.; Markes, B.M.

    1994-12-01

    This document summarizes the status of outdoor radioactive contamination near Hanford Site facilities and disposal sites. It defines the nature and areal extend of the radioactively contaminated areas and describes the historical, ongoing, and planned radiological monitoring and control activities. Radioactive waste has been disposed of to the soil column since shortly after the reactors and production facilities began operating. Radioactive liquid wastes were placed directly into the ground via liquid discharges to cribs, ponds, ditches, and reverse wells. Solid wastes were placed in trenches, burial vaults, and caissons. Although the Hanford Site covers 1,450 km 2 , the radioactively contaminated area is only about 36 km 2 or 2.5% of the original site. Over time, contamination has migrated from some of the waste management sites through various vectors (e.g., burrowing animals, deep-rooted vegetation, erosion, containment system failure) or has been deposited to the surface soil via spills and unplanned releases (e.g., line leaks/breaks, tank leaks, and stack discharges) and created areas of outdoor radioactivity both on and below the surface. Currently 26 km 2 are posted as surface contamination and 10 km 2 are posted as underground contamination

  19. Hanford Site waste treatment/storage/disposal integration

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    1999-01-01

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps

  20. Hydrogeologic Model for the Gable Gap Area, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, Bruce N.; Thorne, Paul D.; Williams, Bruce A.; Last, George V.; Thomas, Gregory S.; Thompson, Michael D.; Ludwig, Jami L.; Lanigan, David C.

    2010-09-30

    Gable Gap is a structural and topographic depression between Gable Mountain and Gable Butte within the central Hanford Site. It has a long and complex geologic history, which includes tectonic uplift synchronous with erosional downcutting associated with the ancestral Columbia River during both Ringold and Cold Creek periods, and by the later Ice Age (mostly glacial Lake Missoula) floods. The gap was subsequently buried and partially backfilled by mostly coarse-grained, Ice Age flood deposits (Hanford formation). Erosional remnants of both the Ringold Formation and Cold Creek unit locally underlie the high-energy flood deposits. A large window exists in the gap where confined basalt aquifers are in contact with the unconfined suprabasalt aquifer. Several paleochannels, of both Hanford and Ringold Formation age, were eroded into the basalt bedrock across Gable Gap. Groundwater from the Central Plateau presently moves through Gable Gap via one or more of these shallow paleochannels. As groundwater levels continue to decline in the region, groundwater flow may eventually be cut off through Gable Gap.

  1. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  2. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  3. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  4. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  5. Hanford Site National Environmental Policy Act (NEPA) characterization

    International Nuclear Information System (INIS)

    Cushing, C.E.

    1987-12-01

    In this document, a complete description of the environment is presented in Section 4 without extensive tabular data. For these data, sources are provided. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information where it is available on the 100, 200, and 300 Areas. This division will allow a person requiring information to go immediately to those sections of particular interest. However, site-specific information on each of these separate areas is not always complete or available. In this case, the general Hanford Site description should be used. Certain subjects covered (e.g., threatened and endangered species, Tri-Cities populations) will be updated periodically and changes published annually. The updating also applies to the basic data when new information becomes available. To this end, Section 4 of this document is being made available in loose-leaf text and on an IBM-PC diskette in WordPerfect 4.2. 130 refs., 14 figs., 30 tabs

  6. Investigation of anatomical anomalies in Hanford Site mule deer

    Energy Technology Data Exchange (ETDEWEB)

    Tiller, B.L.; Cadwell, L.L.; Poston, T.M. [and others

    1997-03-01

    Rocky Mountain mule deer (Odocoileus hemionus hemionus), common residents of the Hanford Site, are an important part of the shrub-steppe ecosystem as well as being valued for aesthetics and hunting. Because mule deer have been protected from hunting on the Site for 50 years, the herd has developed unique population characteristics, including a large number of old animals and males with either large or atypically developed antlers, in contrast to other herds in the semi-arid regions of the Northwest. Hanford Site mule deer have been studied since 1991 because of the herd`s unique nature and high degree of public interest. A special study of the mule deer herd was initiated in 1993 after observations were made of a relatively large number of male deer with atypical, velvet-covered antlers. This report specifically describes our analyses of adult male deer found on the Site with atypical antlers. The report includes estimates of population densities and composition; home ranges, habitat uses, and dietary habits; natural and human-induced causes of mortality; and the herd`s overall health and reproductive status.

  7. Investigation of anatomical anomalies in Hanford Site mule deer

    International Nuclear Information System (INIS)

    Tiller, B.L.; Cadwell, L.L.; Poston, T.M.

    1997-03-01

    Rocky Mountain mule deer (Odocoileus hemionus hemionus), common residents of the Hanford Site, are an important part of the shrub-steppe ecosystem as well as being valued for aesthetics and hunting. Because mule deer have been protected from hunting on the Site for 50 years, the herd has developed unique population characteristics, including a large number of old animals and males with either large or atypically developed antlers, in contrast to other herds in the semi-arid regions of the Northwest. Hanford Site mule deer have been studied since 1991 because of the herd's unique nature and high degree of public interest. A special study of the mule deer herd was initiated in 1993 after observations were made of a relatively large number of male deer with atypical, velvet-covered antlers. This report specifically describes our analyses of adult male deer found on the Site with atypical antlers. The report includes estimates of population densities and composition; home ranges, habitat uses, and dietary habits; natural and human-induced causes of mortality; and the herd's overall health and reproductive status

  8. Assessment of candidate sites for disposal of treated effluents at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Davis, J.D.

    1992-01-01

    A rigidly defined evaluation process was used to recommend a preferred location to dispose of treated effluents from facilities in the 200 Areas of the US Department of Energy's Hanford Site in Washington State. First, siting constraints were defined based on functional design considerations and siting guidelines. Then, criteria for selecting a preferred site from among several candidates were identified and their relative importance defined. Finally, the weighted criteria were applied and a site was selected for detailed characterization by subsurface investigations

  9. Hanford environmental management program multi-year work plan FY1998

    International Nuclear Information System (INIS)

    Giese, K.A.

    1997-01-01

    The Environmental Support FY 1998 Multi-Year Work Plan (MYWP), consisting of the Hanford Environmental Management Program (HEMP) and the Effluent and Environmental Monitoring (EEM) Program MYWP is prepared to specifically establish the execution year's work scope, budget targets, and schedule baselines. The work plan contains the work breakdown structure (WBS) and the WBS dictionary, milestone listings and milestone description sheets, and cost targets that the program manager will use to manage program work for the fiscal year. Where activities required to maintain or attain compliance with environmental requirements and agreements are impacted as a result of a reduction of the authorized funds, the ''Work Authorization'' identifies the impacted scope and requires the Contracting Officer's or Assistant Manager-Contracting Officer's Representative signature. Change requests will be submitted to RL by the contractor for approval, further documenting the impacts of any environmental and agreement noncompliances as a result of funding limitations. This is the first year that the MYWPs are submitted under the new Project Hanford Management Contractor (PHMC). The MYWPs are structured differently than in prior years. The MYWP is divided into two main sections. Section One is titled the ''Project Summary Section'' and Section Two is titled the ''Additional Sections at the Project Baseline Summaries Level''. Section One is where the major project summary-level information is provided. Section Two is designed to detail the information for each Project Baseline Summary (PBS) that falls under the purview of the major project listed in Section One. Considering all of the PHMC MYWPs, the HEMP and EEM programs are the one exception to the above description. HEMP and EEM are two of five separate programs that are organized under one common PBS that is titled Mission Support (PBS number-sign RL-OT01). RL has given guidance that HEMP and EEM will be submitted as one common MYWP

  10. Hanford Site Pollution Prevention Plan Progress report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This report tracks progress against the goals stated in the Hanford Site 5-year Pollution Prevention Plan. The executive summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, executive summary, and the progress reports are elements of a pollution prevention planning program that is required by Washington Administrative Code (WAC) 173-307 for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement Chapter 70.95C, Revised Code of Washington, an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the inprocess reuse or reclamation of valuable spent material. Although the Hanford Site is exempt, it is voluntarily complying with this state regulatory-mandated program. This is the first year the Hanford Site is submitting a progress report. It covers calendar year 1993 plus the last quarter of 1992. What is reported, in accordance with WAC 173-307, are reductions in hazardous substance use and hazardous waste generated. A system of Process Waste Assessments (PWA) was chosen to meet the requirements of the program. The PWAs were organized by a physical facility or company organization. Each waste-generating facility/organization performed PWAs to identify, screen, and analyze their own reduction options. Each completed PWA identified any number of reduction opportunities, that are listed individually in the plan and summarized by category in the executive summary. These opportunities were to be implemented or evaluated further over the duration of the 5-year plan. The basis of this progress report is to track action taken on these PWA reduction opportunities in relationship to achieving the goals stated in the Pollution Prevention Plan.

  11. Hanford Site background: Part 1, Soil background for nonradioactive analytes

    International Nuclear Information System (INIS)

    1993-04-01

    The determination of soil background is one of the most important activities supporting environmental restoration and waste management on the Hanford Site. Background compositions serve as the basis for identifying soil contamination, and also as a baseline in risk assessment processes used to determine soil cleanup and treatment levels. These uses of soil background require an understanding of the extent to which analytes of concern occur naturally in the soils. This report documents the results of sampling and analysis activities designed to characterize the composition of soil background at the Hanford Site, and to evaluate the feasibility for use as Sitewide background. The compositions of naturally occurring soils in the vadose Zone have been-determined for-nonradioactive inorganic and organic analytes and related physical properties. These results confirm that a Sitewide approach to the characterization of soil background is technically sound and is a viable alternative to the determination and use of numerous local or area backgrounds that yield inconsistent definitions of contamination. Sitewide soil background consists of several types of data and is appropriate for use in identifying contamination in all soils in the vadose zone on the Hanford Site. The natural concentrations of nearly every inorganic analyte extend to levels that exceed calculated health-based cleanup limits. The levels of most inorganic analytes, however, are well below these health-based limits. The highest measured background concentrations occur in three volumetrically minor soil types, the most important of which are topsoils adjacent to the Columbia River that are rich in organic carbon. No organic analyte levels above detection were found in any of the soil samples

  12. Hanford Site Pollution Prevention Plan Progress report, 1993

    International Nuclear Information System (INIS)

    1994-08-01

    This report tracks progress against the goals stated in the Hanford Site 5-year Pollution Prevention Plan. The executive summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, executive summary, and the progress reports are elements of a pollution prevention planning program that is required by Washington Administrative Code (WAC) 173-307 for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement Chapter 70.95C, Revised Code of Washington, an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the inprocess reuse or reclamation of valuable spent material. Although the Hanford Site is exempt, it is voluntarily complying with this state regulatory-mandated program. This is the first year the Hanford Site is submitting a progress report. It covers calendar year 1993 plus the last quarter of 1992. What is reported, in accordance with WAC 173-307, are reductions in hazardous substance use and hazardous waste generated. A system of Process Waste Assessments (PWA) was chosen to meet the requirements of the program. The PWAs were organized by a physical facility or company organization. Each waste-generating facility/organization performed PWAs to identify, screen, and analyze their own reduction options. Each completed PWA identified any number of reduction opportunities, that are listed individually in the plan and summarized by category in the executive summary. These opportunities were to be implemented or evaluated further over the duration of the 5-year plan. The basis of this progress report is to track action taken on these PWA reduction opportunities in relationship to achieving the goals stated in the Pollution Prevention Plan

  13. 75 FR 13269 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act... is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  14. 75 FR 8050 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-02-23

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act... is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  15. 76 FR 4645 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2011-01-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  16. Flood risk analysis of Cold Creek near the Hanford Site

    International Nuclear Information System (INIS)

    Skaggs, R.L.; Walters, W.H.

    1981-01-01

    The Pacific Northwest Laboratory has analyzed the flood potential at the reference repository location located on the Hanford Site near Richland, Washington. It is emphasized that this work is not intended as a basis for engineering design, but rather as an initial, regional appraisal of whether detailed engineering design analysis will be required. In order to achieve the detail required for engineering design specifications, the study results should be refined using more detailed channel geometry data, and the topography of the western portion of the reference repository location should be mapped using a contour interval of not less than 2 ft. 19 refs., 15 figs., 5 tabs

  17. Summary of tank waste physical properties at the Hanford Site

    International Nuclear Information System (INIS)

    Nguyen, Q.H.

    1994-04-01

    This report summarizes the physical parameters measured from Hanford Site tank wastes. Physical parameters were measured to determine the physical nature of the tank wastes to develop simulants and design in-tank equipment. The physical parameters were measured mostly from core samples obtained directly below tank risers. Tank waste physical parameters were collected through a database search, interviewing and selecting references from documents. This report shows the data measured from tank waste but does not describe how the analyses wee done. This report will be updated as additional data are measured or more documents are reviewed

  18. Hanford Site Environmental Surveillance Data Report for Calendar Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2006-09-28

    This data report contains the actual raw data used to create the tables and summaries in the Hanford Site Environmental Report for Calendar Year 2005. In addition to providing raw data collected during routine sampling efforts in 2005, this data report also includes Columbia River shoreline spring data collected by the PNNL Groundwater Performance Assessment Project, and data from collaborative studies performed by the PNNL during 2005 under partial support by the SESP. Some analytical results were not received in time to include in this report or changes may have occurred to the data following publication.

  19. A history of solid waste packaging at the Hanford Site

    International Nuclear Information System (INIS)

    Duncan, D.R.; Weyns-Rollosson, D.I.; Pottmeyer, J.A.; Stratton, T.J.

    1995-02-01

    Since the initiation of the defense materials product mission, a total of more than 600,000 m 3 of radioactive solid waste has been stored or disposed at the US Department of Energy's (DOE) Hanford Site, located in southeastern Washington State. As the DOE complex prepares for its increasing role in environmental restoration and waste remediation, the characterization of buried and retrievably stored waste will become increasingly important. Key to this characterization is an understanding of the standards and specifications to which waste was packaged; the regulations that mandated these standards and specifications; the practices used for handling and packaging different waste types; and the changes in these practices with time

  20. Environmental status of the Hanford site for CY 1978

    International Nuclear Information System (INIS)

    Houston, J.R.; Blumer, P.J.

    1979-08-01

    Continued compliance of Hanford operations with all applicable state and federal environmental regulations, with the exception of suspended particulates from several steam power plants, was demonstrated by the environmental and effluent data collected during 1978. Included in the environmental data collected were measurements of external radiation, and radionuclide analyses of air samples, Columbia River water, other surface waters, wildlife, soil, and vegetation. Periodically all roadways, railways, and active as well as retired waste disposal sites were surveyed to detect any abnormal levels of radioactivity

  1. Integrating Risk Analyses and Tools at the DOE Hanford Site

    International Nuclear Information System (INIS)

    LOBER, R.W.

    2002-01-01

    Risk assessment and environmental impact analysis at the U.S. Department of Energy (DOE) Hanford Site in Washington State has made significant progress in refining the strategy for using risk analysis to support closing of several hundred waste sites plus 149 single-shell tanks at the Hanford Site. A Single-Shell Tank System Closure Work Plan outlines the current basis for closing the single-shell tank systems. An analogous site approach has been developed to address closure of aggregated groups of similar waste sites. Because of the complexity, decision time frames, proximity of non-tank farm waste sites to tank farms, scale, and regulatory considerations, various projects are providing integrated assessments to support risk analyses and decision-making. Projects and the tools that are being developed and applied at Hanford to support retrieval and cleanup decisions include: (1) Life Cycle Model (LCM) and Risk Receptor Model (RRM)--A site-level set of tools to support strategic analyses through scoping level risk management to assess different alternatives and options for tank closure. (2) Systems Assessment Capability for Integrated Groundwater Nadose Zone (SAC) and the Site-Wide Groundwater Model (SWGM)--A site-wide groundwater modeling system coupled with a risk-based uncertainty analysis of inventory, vadose zone, groundwater, and river interactions for evaluating cumulative impacts from individual and aggregate waste sites. (3) Retrieval Performance Evaluation (RPE)--A site-specific, risk-based methodology developed to evaluate performance of waste retrieval, leak detection and closure on a tank-specific basis as a function of past tank Leaks, potential leakage during retrieval operations, and remaining residual waste inventories following completion of retrieval operations. (4) Field Investigation Report (FIR)--A corrective action program to investigate the nature and extent of past tank leaks through characterization activities and assess future impacts to

  2. Hanford Site emergency response needs, Volumes 1 and 2

    International Nuclear Information System (INIS)

    Good, D.E.

    1996-01-01

    This report presents the results of a comprehensive third party needs assessment of the Hanford Fire Department (HFD), conducted by Hughes Associates Inc. The assessment was commissioned with the intent of obtaining an unbiased report which could be used as a basis for identifying needed changes/modifications to the fire department and its services. This report serves several functions: (1) it documents current and future site operations and associated hazards and risks identified as a result of document review, site and facility surveys, and interviews with knowledgeable personnel; (2) describes the HFD in terms of organization, existing resources and response capabilities; (3) identifies regulatory and other requirements that are applicable to the HFD and includes a discussion of associated legal liabilities; and (4) provides recommendations based on applicable requirements and existing conditions. Each recommendation is followed by a supporting statement to clarify the intent or justification of the recommendation. This report will be followed by a Master Plan document which will present an implementation method for the recommendations (with associated costs) considered to be essential to maintaining adequate, cost effective emergency services at the Hanford site in the next five to seven years

  3. Hanford Site emergency response needs, Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Good, D.E.

    1996-04-16

    This report presents the results of a comprehensive third party needs assessment of the Hanford Fire Department (HFD), conducted by Hughes Associates Inc. The assessment was commissioned with the intent of obtaining an unbiased report which could be used as a basis for identifying needed changes/modifications to the fire department and its services. This report serves several functions: (1) it documents current and future site operations and associated hazards and risks identified as a result of document review, site and facility surveys, and interviews with knowledgeable personnel; (2) describes the HFD in terms of organization, existing resources and response capabilities; (3) identifies regulatory and other requirements that are applicable to the HFD and includes a discussion of associated legal liabilities; and (4) provides recommendations based on applicable requirements and existing conditions. Each recommendation is followed by a supporting statement to clarify the intent or justification of the recommendation. This report will be followed by a Master Plan document which will present an implementation method for the recommendations (with associated costs) considered to be essential to maintaining adequate, cost effective emergency services at the Hanford site in the next five to seven years.

  4. 1995 annual epidemiologic surveillance report for Hanford Site

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. A number of DOE sites participate in the Epidemiologic Surveillance Program. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, disabilities and deaths among current workers. This report provides a summary of epidemiologic surveillance data collected from the Hanford Site from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at Hanford and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out. The information in the main body of the report provides a descriptive analysis of the data collected from the site, and the appendices provides additional detail. The report also contains an expanded Glossary and an Explanation of Diagnostic Categories which gives examples of health conditions in each of the diagnostic categories

  5. 1995 annual epidemiologic surveillance report for Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The US Department of Energy`s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. A number of DOE sites participate in the Epidemiologic Surveillance Program. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, disabilities and deaths among current workers. This report provides a summary of epidemiologic surveillance data collected from the Hanford Site from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at Hanford and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out. The information in the main body of the report provides a descriptive analysis of the data collected from the site, and the appendices provides additional detail. The report also contains an expanded Glossary and an Explanation of Diagnostic Categories which gives examples of health conditions in each of the diagnostic categories.

  6. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility

  7. Hanford Site Environmental Restoration Program 1994 fiscal year work plan

    International Nuclear Information System (INIS)

    1993-01-01

    Site Management System (SMS) guidance requires a Fiscal Year Work Plan (FYWP) to be prepared for the Environmental Restoration (ER) Mission Area and all related programs. This revision is a complete update to cover the FY 1994 time period. This document describes the overall ER Missions Area and provides FYWP appendices for each of the following five program areas: Remedial Action (RA); Decontamination and Decommissioning (D ampersand D); Project Management and Support (PM ampersand S); Surveillance and Maintenance (S ampersand M); and Disposal Facilities (DF)

  8. Feasibility study for the processing of Hanford Site cesium and strontium isotopic sources in the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Watrous, R.A.; Nelson, J.L.; Perez, J.M.; Peters, R.D.; Peterson, M.E.

    1991-09-01

    The final environmental impact statement for the disposal of defense-related wastes at the Hanford Site (Final Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes [HDW-EIS] [DOE 1987]) states that the preferred alternative for disposal of cesium and strontium wastes at the Hanford Site will be to package and ship these wastes to the commercial high-level waste repository. The Record of Decision for this EIS states that before shipment to a geologic repository, these wastes will be packaged in accordance with repository waste acceptance criteria. However, the high cost per canister for repository disposal and uncertainty about the acceptability of overpacked capsules by the repository suggest that additional alternative means of disposal be considered. Vitrification of the cesium and strontium salts in the Hanford Waste Vitrification Plant (HWVP) has been identified as a possible alternative to overpacking. Subsequently, Westinghouse Hanford Company's (Westinghouse Hanford) Projects Technical Support Office undertook a feasibility study to determine if any significant technical issues preclude the vitrification of the cesium and strontium salts. Based on the information presented in this report, it is considered technically feasible to blend the cesium chloride and strontium fluoride salts with neutralized current acid waste (NCAW) and/or complexant concentrate (CC) waste feedstreams, or to blend the salts with fresh frit and process the waste through the HWVP

  9. Pinellas Plant FY1990 site specific implementation plan

    International Nuclear Information System (INIS)

    Klein, R.D.

    1990-02-01

    This Site Specific Implementation Plan describes the Corrective Action, Environmental Restoration, and Waste Management activities to be performed at the Pinellas Plant in FY1990 (October 1, 1989 to September 30, 1989). These FY1990 activities are described in the Pinellas Plant FY1991--95 Five-Year Plan. The information used to prepare this plan reflects the best estimate of the project scope, schedules, regulatory, and funding requirements at the time of plan preparation. The Environmental Restoration/Waste Management Five-Year Plan is a dynamic document and will be modified each year; the Site Specific Implementation Plan will, in turn, be modified each year to reflect new findings, information, and knowledge of the various projects. 4 figs., 11 tabs

  10. Catalog of borehole lithologic logs from the 600 Area, Hanford Site

    International Nuclear Information System (INIS)

    Fecht, K.R.; Lillie, J.T.

    1982-03-01

    Rockwell Hanford Operations (Rockwell) geoscientists are studying the Hanford Site subsurface environment to assure safe management operations, disposal, and storage of radioactive waste. As part of this effort, geoscientists have collected geotechnical data from about 3000 boreholes drilled on the Hanford Site since the early 1900s. These boreholes have been used for subsurface geologic, hydrologic, and engineering investigation, water supply, ground-water monitoring, and natural gas production. This report is a catalog of all obtainable (about 800) lithologic logs from boreholes in a portion of the Hanford Site known as the 600 Area

  11. Summary of the Hanford Site Environmental Report for Calendar Year 2008

    International Nuclear Information System (INIS)

    Duncan, Joanne P.; Poston, Ted M.; Dirkes, Roger L.

    2009-01-01

    This summary booklet summarizes the 'Hanford Site Environmental Report for Calendar Year 2008'. The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of activities at the U.S. Department of Energy's (DOE) Hanford Site. The Hanford Site environmental report provides an overview of activities at the site; demonstrates the status of the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2009 information is included where appropriate.

  12. Hanford Site groundwater monitoring: Setting, sources and methods

    International Nuclear Information System (INIS)

    Hartman, M.J.

    2000-01-01

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports

  13. Hanford Site groundwater monitoring: Setting, sources and methods

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Hartman

    2000-04-11

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  14. Hanford Site Solid Waste Landfill permit application. Revision 1

    International Nuclear Information System (INIS)

    1993-01-01

    Both nonhazardous and nonradioactive sanitary solid waste are generated at the Hanford Site. This permit application describes the manner in which the Solid Waste Landfill will be operated. A description is provided of the landfill, including applicable locational, general facility, and landfilling standards. The characteristics and quantity of the waste disposed of are discussed. The regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill are reviewed. A plan is included of operation, closure, and postclosure. This report addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill is discussed

  15. Bald eagle site management plan for the Hanford Site, south-central Washington

    International Nuclear Information System (INIS)

    Fitzner, R.F.; Weiss, S.G.

    1994-12-01

    The CERCLA remedial investigations of waste sites on the Hanford Site will involve lands containing or adjacent to a bald eagle nest, winter concentration areas, or communal night roost. Because these CERCLA investigations may affect bald eagles, the DOE has prepared this Bald Eagle Site Management Plan (BESMP). However, it is intended that this BESMP be used or updated so as to be also applicable to future activities that affect bald eagles on the Hanford Site. Bald eagles regularly use the US Department of Energy's (DOE) Hanford Site in south-central Washington State during winter months for roosting, perching, and foraging. Each of these activities requires buffer zones to protect eagles from human disturbances. Buffer zones developed in this plan follow recommended guidelines and are intended to be used in planning. If Hanford Site activities in the vicinity of identified bald eagle use areas are carried out in accordance with this plan, such actions are not likely to adversely affect the eagles or their habitat. Activities that may be exceptions will involve informal or formal (whichever is appropriate) consultation with the US Fish and Wildlife Service as required by the Endangered Species Act

  16. Hanford Site Beryllium Program: Past, Present, and Future - 12428

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Mark [CH2M Hill Plateau Remediation Company, Richland, Washington 99354 (United States); Garcia, Pete [U.S. Department of Energy - Richland Office, Richland, Washington 99352 (United States); Goeckner, Julie [U.S. Department of Energy - HQ, EMCBC, Cincinnati, Ohio 45202 (United States); Millikin, Emily [Washington Closure Hanford, Richland, Washington 99354 (United States); Stoner, Mike [Mission Support Alliance, Richland, Washington 99354 (United States)

    2012-07-01

    The U.S. Department of Energy (DOE) has a long history of beryllium use because of the element's broad application to many nuclear operations and processes. At the Hanford Site beryllium alloy was used to fabricate parts for reactors, including fuel rods for the N-Reactor during plutonium production. Because of continued confirmed cases of chronic beryllium disease (CBD), and data suggesting CBD occurs at exposures to low-level concentrations, the DOE decided to issue a rule to further protect federal and contractor workers from hazards associated with exposure to beryllium. When the beryllium rule was issued in 1999, each of the Hanford Site contractors developed a Chronic Beryllium Disease Prevention Program (CBDPP) and initial site wide beryllium inventories. A new site-wide CBDPP, applicable to all Hanford contractors, was issued in May, 2009. In the spring of 2010 the DOE Headquarters Office of Health, Safety, and Security (HSS) conducted an independent inspection to evaluate the status of implementation of the Hanford Site Chronic Beryllium Disease Prevention Program (CBDPP). The report identified four Findings and 12 cross-cutting Opportunities for Improvement (OFIs). A corrective action plan (CAP) was developed to address the Findings and crosscutting OFIs. The DOE directed affected site contractors to identify dedicated resources to participate in development of the CAP, along with involving stakeholders. The CAP included general and contractor-specific recommendations. Following initiation of actions to implement the approved CAP, it became apparent that additional definition of product deliverables was necessary to assure that expectations were adequately addressed and CAP actions could be closed. Consequently, a supplement to the original CAP was prepared and transmitted to DOE-HQ for approval. Development of the supplemental CAP was an eight month effort. From the onset a core group of CAP development members were identified to develop a mechanism

  17. Diffuse and fugitive emission dose assessment on the Hanford Site

    International Nuclear Information System (INIS)

    Davis, W.E.; Schmidt, J.W.; Gleckler, B.P.; Rhoads, K.

    1995-01-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office (RL), received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency (EPA), Region 10. The Compliance Order requires RL to (1) evaluate all radionuclide emission points at the Hanford Site to determine which are subject to continuous emission measurement requirements in 40 Code of Federal Regulations (CFR) 61, Subpart H, and (2) continuously measure radionuclide emissions in accordance with 40 CFR 61.93. The Information Request requires RL to provide a written Compliance Plan to meet the requirements of the Compliance Order. The RL Compliance Plan included as one of its milestones the requirement to develop a Federal Facility Compliance Agreement (FFCA). An FFCA was negotiated between RL and the EPA, Region 10, and was entered into on February 7, 1994. One of the milestones was to provide EPA, Region 10, with a copy of the Federal Clean Air Act Title V operating air permit application and Air Emission Inventory (AEI) concurrent with its submission to the Washington State Department of Ecology. The AEI will include an assessment of the diffuse and fugitive emissions from the Hanford Site. This assessment does not identify any diffuse or fugitive emission source that would cause an effective dose equivalent greater than 0.1 mrem/yr

  18. Calcination/dissolution testing for Hanford Site tank wastes

    International Nuclear Information System (INIS)

    Colby, S.A.; Delegard, C.H.; McLaughlin, D.F.; Danielson, M.J.

    1994-07-01

    Thermal treatment by calcination offers several benefits for the treatment of Hanford Site tank wastes, including the destruction of organics and ferrocyanides and an hydroxide fusion that permits the bulk of the mostly soluble nonradioactive constituents to be easily separated from the insoluble transuranic residue. Critical design parameters were tested, including: (1) calciner equipment design, (2) hydroxide fusion chemistry, and (3) equipment corrosion. A 2 gal/minute pilot plant processed a simulated Tank 101-SY waste and produced a free flowing 700 C molten calcine with an average calciner retention time of 20 minutes and >95% organic, nitrate, and nitrite destruction. Laboratory experiments using actual radioactive tank waste and the simulated waste pilot experiments indicate that 98 wt% of the calcine produced is soluble in water, leaving an insoluble transuranic fraction. All of the Hanford Site tank wastes can benefit from calcination/dissolution processing, contingent upon blending various tank waste types to ensure a target of 70 wt% sodium hydroxide/nitrate/nitrite fluxing agent. Finally, corrosion testing indicates that a jacketed nickel liner cooled to below 400 C would corrode <2 mil/year (0.05 mm/year) from molten calcine attack

  19. Laboratory testing of ozone oxidation of Hanford site waste

    International Nuclear Information System (INIS)

    Delegard, C.H.; Stubbs, A.M.; Bolling, S.D.; Colby, S.A.

    1994-01-01

    Organic constituents in radioactive waste stored in underground tanks at the U.S. Department of Energy's Hanford Site provoke safety concerns arising from their low-temperature reactions with nitrate and nitrite oxidants. Destruction of the organics would eliminate both safety problems. Oxone oxidation was investigated to destroy organic species present in simulated and genuine waste from Hanford Site Tank 241-SY-101. Bench-scale tests showed high-shear mixing apparatus achieved efficient gas-to-solution mass transfer and utilization of the ozone reagent. Oxidations of nitrite (to form nitrate) and organic species were observed. The organics formed carbonate and oxalate as well as nitrate and nitrogen gas from organic nitrogen. Formate, acetate and oxalate were present both in source waste and as reaction intermediates. Metal species oxidations also were observed directly or inferred by solubilities. Chemical precipitations of metal ions such as strontium and americium occurred as the organic species were destroyed by ozone. Reaction stoichiometries were consistent with the reduction of one oxygen atom per ozone molecule

  20. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumed to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely

  1. A guide for preparing Hanford Site facility effluent monitoring plans

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1992-06-01

    This document provides guidance on the format and content of effluent monitoring plans for facilities at the Hanford Site. The guidance provided in this document is designed to ensure compliance with US Department of Energy (DOE) Orders 5400.1 (DOE 1988a), 5400.3 (DOE 1989a), 5400.4 (DOE 1989b), 5400.5 (DOE 1990a), 5480.1 (DOE 1982), 5480.11 (DOE 1988b), and 5484.1 (DOE 1981). These require environmental monitoring plans for each site, facility, or process that uses, generates, releases, or manages significant pollutants of radioactive or hazardous materials. In support of DOE Orders 5400.5 (Radiation Protection of the Public and the Environment) and 5400.1 (General Environmental Protection Program), the DOE Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE 1991) should be used to establish elements of a radiological effluent monitoring program in the Facility Effluent Monitoring Plan. Evaluation of facilities for compliance with the US Environmental Protection Agency Clean Air Act of 1977 requirements also is included in the airborne emissions section of the Facility Effluent Monitoring Plans. Sampling Analysis Plans for Liquid Effluents, as required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), also are included in the Facility Effluent Monitoring Plans. The Facility Effluent Monitoring Plans shall include complete documentation of gaseous and liquid effluent sampling and monitoring systems

  2. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs

  3. Resolving the Ferrocyanide Safety Issue at the Hanford Site

    International Nuclear Information System (INIS)

    Meacham, J.E.; Cash, R.J.; Babad, H.

    1994-02-01

    Considerable data have been obtained on the chemical and physical properties of ferrocyanide waste stored in Hanford Site single-shell tanks (SSTs). Theoretical analyses and ferrocyanide waste simulant studies have led to the development of fuel, moisture, and temperature criteria that define continued safe storage. Developing the criteria provides the technical basis for closing the Ferrocyanide Unreviewed Safety Question (USQ). Using the safety criteria, the ferrocyanide tanks have been ranked into one of three safety categories: Safe, Conditionally Safe, and Unsafe. All the ferrocyanide tanks are currently ranked in either the Safe or Conditionally Safe categories. Analyses of core samples taken from three ferrocyanide tanks have shown cyanide concentrations about a factor of ten lower than predicted by the original flowsheets. Hydrolytic and radiolytic destruction (aging) of the ferrocyanide matrix has occurred during the 35 plus years the waste has been stored at the Hanford Site. Because of waste aging, it is possible that all of the ferrocyanide tanks may now contain less than the 8 wt % sodium nickel ferrocyanide specified in the fuel criterion for the Safe category. Ferrocyanide tanks that remain in the Conditionally Safe category may require monitoring and surveillance to verify that the waste remains in an unreactive state. Further characterization of the tanks by core sampling and analyses should lead to resolution of the Ferrocyanide Safety Issue by September 1997

  4. National Environmental Policy Act source guide for the Hanford Site

    International Nuclear Information System (INIS)

    Jansky, M.T.

    1998-01-01

    This Source Guide will assist those working with the National Environmental Policy Act (NEPA) of 1969 to become more familiar with the environmental assessments (EA) and environmental impact statements (EIS) that apply to specific activities and facilities on the Hanford Site. This document should help answer questions concerning NEPA coverage, history, processes, and the status of many of the buildings and units on and related to the Hanford Site. This document summarizes relevant EAs and EISs by briefly outlining the proposed action of each document and the decision made by the US Department of Energy (DOE) or its predecessor agencies, the US Atomic Energy Commission (AEC) and the US Energy Research and Development Administration (ERDA). The summary includes the proposed action alternatives and current status of the proposed action. If a decision officially was stated by the DOE, as in a finding of no significant impact (FONSI) or a record of decision (ROD), and the decision was located, a summary is provided. Not all federal decisions, such as FONSIs and RODS, can be found in the Federal Register (FR). For example, although significant large-action FONSIs can be found in the FR, some low-interest FONSIs might have been published elsewhere (i.e., local newspapers)

  5. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs.

  6. Resolution of the Hanford site ferrocyanide safety issue

    International Nuclear Information System (INIS)

    Cash, R.J.; Lilga, M.A.; Babad, H.

    1997-01-01

    The Ferrocyanide Safety Issue at the Hanford Site was officially resolved in December 1996. This paper summarizes the key activities that led to final resolution of this safety hazard, a process that began in 1990 after it and other safety concerns were identified for the underground high-level waste storage tanks at the Hanford Site. At the time little was known about ferrocyanide-nitrate/nitrite reactions and their potential to cause offsite releases of radioactivity. The ferrocyanide hazard was a perceived problem, but it took six years of intense studies and analyses of tank samples to prove that the problem no longer exists. The issue revolved around the fact that ferrocyanide and nitrate mixtures can be made to explode violently if concentrated, dry, and heated to temperatures of at least 250 degrees C. The studies conducted over the last six years have shown that the combined effects of temperature, radiation, and pH during 40 or more years of storage have destroyed almost all of the ferrocyanide originally added to tanks. This was shown in laboratory experiments using simulant wastes and confirmed by actual samples taken from the ferrocyanide tanks. The tank waste sludges are now too dilute to support a sustained exothermic reaction, even if dried out and heated to high temperatures. 2 tabs., 18 refs

  7. Hanford and Savannah River Site Programmatic and Technical Integration

    International Nuclear Information System (INIS)

    Ramsey, William Gene

    2013-01-01

    Abstract only. The Hanford Site and the Savannah River Site (SRS) were the primary plutonium production facilities within the U.S. nuclear weapons complex. Radioactive wastes were generated as part of these missions and are stored in similar fashion. The majority of radioactivity maintained by the two sites is located in underground carbon steel tanks in the physical form of supernatant, saltcake, or sludge. Disposition of SRS tank waste is ongoing by converting it into glass (pathway for sludge and radionuclides separated from supernatant or dissolved saltcake) or cement (pathway for the decontaminated supernatant and dissolved saltcake). Tank closure activity has also begun at SRS and will continue for the duration of mission. The Hanford tank waste inventory is roughly 2/3rds larger than SRS's by volume- but nominally half the radioactivity. The baseline disposition path includes high-level and low-activity waste vitrification with separate disposition of contact-handled transuranic tank waste. Retrieval of tank waste from aging single shell tanks (SSTs) into double-shell tanks (DSTs) is currently ongoing. As vitrification commences later this decade, Hanford will be in a similar operations mode as SRS. Site integration is increasing as the missions align. The ongoing integration is centered on key issues that impact both sites- regardless of mission timeframe. Three recent workshop exchanges have been held to improve communication with the primary intent of improving operations and technical work organization. The topics of these workshops are as follows: DST space utilization, optimization, and closure; Waste Feed Qualification; and, Cementitious Waste Forms. Key goals for these and future exchanges include aligning research and technology, preparing for joint initiatives (to maximize budgetary value for the customer), and reviewing lessons learned. Each site has played a leading role in the development of technology and operational practices that can be used

  8. Human resources FY 1995 Site Program Plan WBS 6.10.2

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document contains information concerning human resources management at the Hanford Reservation. Information discusses the following topics: Cost estimates, closure and placement of labor resources, and management of human resources throughout the Hanford Site.

  9. Engineering, Analysis and Technology FY 1995 Site Support Program Plan

    International Nuclear Information System (INIS)

    Suyama, R.M.

    1994-09-01

    The vision of the Engineering, Analysis and Technology organization is to be recognized as the cost-effective supplier of specialized, integrated, multi-disciplined engineering teams to support Hanford missions. The mission of the Engineering, Analysis and Technology organization is to provide centralized engineering services. These services are focused on supplying technical design, analytical engineering and related support services that support Hanford's environmental restoration mission. These services include engineering analysis, design and development of systems and engineered equipment, supplying multi-disciplined engineering teams to all Hanford programs and project organizations, engineering document release, and site-wide leadership in the development and implementation of engineering standards, engineering practices, and configuration management processes

  10. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers

  11. Summary of the Hanford Site Environmental Report for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Joanne P.; Poston, Ted M.; Dirkes, Roger L.

    2010-09-30

    This summary booklet summarizes the "Hanford Site Environmental Report for Calendar Year 2009." The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of activities at the U.S. Department of Energy's (DOE) Hanford Site. The Hanford Site environmental report provides an overview of activities at the site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2010 information is included where appropriate.

  12. Tanks Focus Area Site Needs Assessment - FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Robert W.; Josephson, Gary B.; Westsik, Joseph H.; Nickola, Cheryl L.

    2001-04-30

    The TFA uses a systematic process for developing its annual program that draws from the tanks science and technology development needs expressed by the five DOE tank waste sites. TFA's annual program development process is iterative and involves the following steps: Collection of site needs; Needs analysis; Development of technical responses and initial prioritization; Refinement of the program for the next fiscal year; Formulation of the Corporate Review Budget (CRB); Preparation of Program Execution Guidance (PEG) for the next FY Revision of the Multiyear Program Plan (MYPP). This document describes the outcomes of the first phase of this process, from collection of site needs to the initial prioritization of technical activities. The TFA received site needs in October - December 2000. A total of 170 site needs were received, an increase of 30 over the previous year. The needs were analyzed and integrated, where appropriate. Sixty-six distinct technical responses were drafted and prioritized. In addition, seven strategic tasks were approved to compete for available funding in FY 2002 and FY 2003. Draft technical responses were prepared and provided to the TFA Site Representatives and the TFA User Steering Group (USG) for their review and comment. These responses were discussed at a March 15, 2001, meeting where the TFA Management Team established the priority listing in preparation for input to the DOE Office of Science and Technology (OST) budget process. At the time of publication of this document, the TFA continues to finalize technical responses as directed by the TFA Management Team and clarify the intended work scopes for FY 2002 and FY 2003.

  13. Measurement Of Compressional-Wave Seismic Velocities In 29 Wells At The Hanford Site

    International Nuclear Information System (INIS)

    Peterson, S.W.

    2010-01-01

    Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1

  14. Interim remedial measures proposed plan for the 200-ZP-1 Operable Unit, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Parker, D.L.

    1993-12-01

    The purpose of this interim remedial measures (IRM) proposed plan is to present and solicit public comments on the IRM planned for the 200-ZP-1 Operable Unit at the Hanford Site in Washington state. The 200-ZP-1 is one of two operable units that envelop the groundwater beneath the 200 West Area of the Hanford Site

  15. Hanford Site Groundwater Monitoring for Fiscal Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2004-04-12

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon

  16. Annual report for Hanford Site: Epidemiologic surveillance - 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Epidemiologic surveillance at U.S. Department of Energy (DOE) facilities consists of regular and systematic collection, analysis, and interpretation of data on absences due to illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. Data are collected by coordinators at each site and submitted to the Epidemiologic Surveillance Data Center, located at the Oak Ridge Institute for Science and Education, where quality control procedures and analyses are carried out. Rates of absences and rates of diagnoses associated with absences are analyzed by occupational and other relevant variables. They may be compared with the disease experience of different groups within the DOE work force and with populations that do not work for DOE to identify disease patterns or clusters that may be associated with work activities.This report provides the final summary for the Hanford Reservation.

  17. Hanford Site waste management and environmental restoration integration plan

    International Nuclear Information System (INIS)

    Merrick, D.L.

    1990-01-01

    The ''Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs

  18. Hanford Site Climatological Data Summary 2001 with Historical Data

    International Nuclear Information System (INIS)

    Hoitink, Dana J.; Ramsdell, James V.; Shaw, Wendy J.

    2001-01-01

    This document presents the climatological data measured at the U. S. Department of Energy's Hanford Site for calendar year 2001. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. This report contains updated historical information for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink (and others) (1999, 2000, 2001) and Hoitink and Burk (1994, 1995, 1996, 1997, 1998); however, data from Appendix B--Wind Climatology (Hoitink (and others) 1994) are excluded. Calendar year 2001 was slightly warmer than normal at the Hanford Meteorology Station with an average temperature of 54.3 F, 0.7 F above normal (53.6 F). The hottest temperature was 106 F on July 4, while the coldest was 16 F on December 25. For the 12-month period, 8 months were warmer than normal, and 4 months were cooler than normal. Precipitation for 2001 totaled 6.66 inches, 95% of normal (6.98 inches); calendar year snowfall totaled 15.1 inches (compared to the normal of 15.4 inches). Calendar year 2001 had an average wind speed of 7.6 mph, which was normal (7.6 mph). There were 31 days with peak gusts (ge)40 mph, compared to a yearly average of 27 days. The peak gust during the year was 69 mph on December 16. November 2001 established new records for both days and hours with dense fog (visibility (le)1/4 mile). There were 14 days and 99.4 hours of dense fog reported, compared to an average of 5.5 days with 22.0 hours. The previous record was 13 days in 1965 and 71.4 hours in 1952. The heating-degree days for 2000-2001 were 5,516 (7% above the 5,160 normal). Cooling-degree days for 2001 were 1,092 (8% above the 1,014 normal)

  19. DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR THE SAVANNAH RIVER SITE'S DEFENSE WASTE PROCESSING FACILITY

    International Nuclear Information System (INIS)

    Krementz, D

    2007-01-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) requested development of tooling for remote replacement of gaskets in mechanical Hanford connectors. The facility has compressed air supply, two master-slave manipulators (MSM's) and a lightweight robotic arm for operation of the remote tools. The Savannah River National Laboratory (SRNL) developed and tested multiple tools to perform the gasket replacement tasks. Separate pneumatic snap-ring removal tools that use the connector skirt as a reaction surface were developed for removal of the snap ring and spent gasket on both vertical and horizontal Hanford connectors. A pneumatic tool that clamps and centers on the jumper pipe ID was developed to simultaneously install the new gasket and snap ring. A pneumatic snap-ring-loading tool was developed that compresses the snap ring and places it in a groove in the installation tool. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and vents the tools as needed. The entire system has been successfully tested using MSM's to manipulate the various tools. Deployment of the entire system is expected during FY08. The Hanford connector gasket replacement tooling has been successfully tested using MSM's to manipulate the various tools. Nitric acid is used in many of the decontamination processes performed in the REDC, where the tooling will be deployed. Although most of the tool components were fabricated/purchased with nitric acid and radioactive service in mind, some of the prototype parts must be replaced with parts that are more compatible with nitric acid/radioactive service. Several modifications to the various tools are needed to facilitate maintenance and replacement of failed components. Development of installation tools for replacement of 1-inch, 2-inch and multi-hole gaskets is being considered. Deployment of the existing system in the DWPF REDC is expected during FY

  20. Legend and legacy: Fifty years of defense production at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1992-09-01

    Today, the Hanford Site is engaged in the largest waste cleanup effort ever undertaken in human history. That in itself makes the endeavor historic and unique. The Hanford Site has been designated the ``flagship`` of Department of Energy (DOE) waste remediation endeavors. And, just as the wartime Hanford Project remains unmatched in history, no counterpart exists for the current waste cleanup enterprise. This report provides a summary of the extensive historical record, however, which does give a partial road map. The science of environmental monitoring pioneered at the Hanford Site, and records of this type are the most complete of any in the world, from private companies or public agencies, for the early years of Site operations. The Hanford Site was unique for establishing a detailed, scientific, and multi-faceted environmental monitoring program.

  1. Legend and legacy: Fifty years of defense production at the Hanford Site

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1992-09-01

    Today, the Hanford Site is engaged in the largest waste cleanup effort ever undertaken in human history. That in itself makes the endeavor historic and unique. The Hanford Site has been designated the ''flagship'' of Department of Energy (DOE) waste remediation endeavors. And, just as the wartime Hanford Project remains unmatched in history, no counterpart exists for the current waste cleanup enterprise. This report provides a summary of the extensive historical record, however, which does give a partial road map. The science of environmental monitoring pioneered at the Hanford Site, and records of this type are the most complete of any in the world, from private companies or public agencies, for the early years of Site operations. The Hanford Site was unique for establishing a detailed, scientific, and multi-faceted environmental monitoring program

  2. Risk evaluation of remedial alternatives for the Hanford Site

    International Nuclear Information System (INIS)

    Clark, S.W.; Lane, N.K.; Swenson, L.

    1994-01-01

    Risk assessment is one of the many tools used to evaluate and select remedial alternatives and evaluate the risk associated with selected remedial alternatives during and after implementation. The risk evaluation of remedial alternatives (RERA) is performed to ensure selected alternatives are protective of human health and the environment. Final remedy selection is promulgated in a record of decision (ROD) and risks of the selected alternatives are documented. Included in the ROD documentation are the risk-related analyses for long-term effectiveness, short-term effectiveness, and overall protection of human health and the environment including how a remedy will eliminate, reduce or control risks and whether exposure will be reduced to acceptable levels. A major goal of RERA in the process leading to a ROD is to provide decision-makers with specific risk information that may be needed to choose among alternatives. For the Hanford Site, there are many considerations that must be addressed from a risk perspective. These include the large size of the Hanford Site, the presence of both chemical and radionuclide contamination, one likelihood of many analogues sites, public and worker health and safety, and stakeholder concern with ecological impacts from site contamination and remedial actions. A RERA methodology has been promulgated to (1) identify the points in the process leading to a ROD where risk assessment input is either required or desirable and (2) provide guidance on how to evaluate risks associated with remedial alternatives under consideration. The methodology and evaluations parallel EPA guidance requiring consideration of short-term impacts and the overall protectiveness of remedial actions for evaluating potential human health and ecological risks during selection of remedial alternatives, implementation of remedial measures, and following completion of remedial action

  3. Risk management study for the Hanford Site facilities: Risk reduction cost comparison for the retired Hanford Site facilities

    International Nuclear Information System (INIS)

    Coles, G.A.; Egge, R.G.; Senger, E.; Shultz, M.W.; Taylor, W.E.

    1994-02-01

    This document provides a cost-comparison evaluation for implementing certain risk-reduction measures and their effect on the overall risk of the 100 and 200 Area retired, surplus facilities. The evaluation is based on conditions that existed at the time the risk evaluation team performed facility investigations, and does not acknowledge risk-reduction measures that occurred soon after risk identification. This evaluation is one part of an overall risk management study for these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1450-km 2 Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30 km southeast of the 200 Area. This cost-comparison evaluation (1) determines relative costs for reducing risk to acceptable levels; (2) compares the cost of reducing risk using different risk-reduction options; and (3) compares the cost of reducing risks at different facilities. The result is an identification of the cost effective risk-reduction measures. Supporting information required to develop costs of the various risk-reduction options also is included

  4. Risk management study for the Hanford Site facilities: Risk reduction cost comparison for the retired Hanford Site facilities. Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Coles, G.A.; Egge, R.G.; Senger, E.; Shultz, M.W.; Taylor, W.E.

    1994-02-01

    This document provides a cost-comparison evaluation for implementing certain risk-reduction measures and their effect on the overall risk of the 100 and 200 Area retired, surplus facilities. The evaluation is based on conditions that existed at the time the risk evaluation team performed facility investigations, and does not acknowledge risk-reduction measures that occurred soon after risk identification. This evaluation is one part of an overall risk management study for these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1450-km{sup 2} Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30 km southeast of the 200 Area. This cost-comparison evaluation (1) determines relative costs for reducing risk to acceptable levels; (2) compares the cost of reducing risk using different risk-reduction options; and (3) compares the cost of reducing risks at different facilities. The result is an identification of the cost effective risk-reduction measures. Supporting information required to develop costs of the various risk-reduction options also is included.

  5. Risk management study for the retired Hanford Site facilities

    International Nuclear Information System (INIS)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-04-01

    Risk from retired surplus facilities has always been assumed to be low at the Hanford Site as the facilities are inactive and have few potentials for causing an offsite hazardous material release. However,the fatal accident that occurred in the spring of 1992 in which an employee fell through a deteriorated roof at the 105-F Reactor Building has raised the possibility that retired facilities represent a greater risk than was originally assumed. Therefore, Westinghouse Hanford Company and the US Department of Energy management have determined that facility risk management strategies and programmatic plans should be reevaluated to assure risks are identified and appropriate corrective action plans are developed. To evaluate risk management strategies, accurate risk information about the current and projected condition of the facilities must be developed. This work procedure has been created to address the development of accurate and timely risk information. By using the evaluation results in this procedure, it will be possible to create a prioritized baseline for managing facility risk until all retired surplus facilities are demolished

  6. Projecting future solid waste management requirements on the Hanford Site

    International Nuclear Information System (INIS)

    Shaver, S.R.; Stiles, D.L.; Holter, G.M.; Anderson, B.C.

    1990-09-01

    The problem of treating and disposing of hazardous transuranic (TRU), low-level radioactive, and mixed waste has become a major concern of the public and the government. At the US Department of Energy's Hanford Site in Washington state, the problem is compounded by the need to characterize, retrieve, and treat the solid waste that was generated and stored for retrieval during the past 20 years. This paper discusses the development and application of a Solid Waste Projection Model that uses forecast volumes and characteristics of existing and future solid waste to address the treatment, storage, and disposal requirements at Hanford. The model uses a data-driven, object-oriented approach to assess the storage and treatment throughout requirements for each operation for each of the distinct waste classes and the accompanying cost of the storage and treatment operations. By defining the elements of each alternative for the total waste management system, the same database can be used for numerous analyses performed at different levels of detail. This approach also helps a variety of users with widely varying information requirements to use the model and helps achieve the high degree of flexibility needed to cope with changing regulations and evolving treatment and disposal technologies. 2 figs

  7. Mass spectrometry analysis of tank wastes at the Hanford Site

    International Nuclear Information System (INIS)

    Campbell, J.A.; Mong, G.M.; Clauss, S.A.

    1995-01-01

    Twenty-five of the 177 high-level waste storage tanks at the Hanford Site in southeastern Washington are being watched closely because of the possibility that flammable gas mixtures may be produced from the mixed wastes contained in the storage tanks. One tank in particular, Tank 241-SY-101 (Tank 101-SY), has exhibited episodic releases of flammable gas mixtures since its final filling in the early 1980s. It has been postulated that the organic compounds present in the waste may be precursors to the production of hydrogen. Mass spectrometry has proven to be an invaluable tool for the identification of organic components in wastes from Tank 101-SY and C-103. A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unresolved Safety Question concerning the potential for a floating organic layer in Hanford Waste Tank 241-C-103 to sustain a pool fire. The aqueous layer underlying the floating organic material was also analyzed for organic components

  8. Environmental Assessment: Relocation and storage of TRIGA reg-sign reactor fuel, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-08-01

    In order to allow the shutdown of the Hanford 308 Building in the 300 Area, it is proposed to relocate fuel assemblies (101 irradiated, three unirradiated) from the Mark I TRIGA Reactor storage pool. The irradiated fuel assemblies would be stored in casks in the Interim Storage Area in the Hanford 400 Area; the three unirradiated ones would be transferred to another TRIGA reactor. The relocation is not expected to change the offsite exposure from all Hanford Site 300 and 400 Area operations

  9. Tanks Focus Area (TFA) site needs assessment FY 2000

    International Nuclear Information System (INIS)

    RW Allen

    2000-01-01

    This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by five major U.S. Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), Savannah River Site (SRS), and West Valley Demonstration Project (WVDP). During the past year, the TFA established a link with DOE's Fernald site to exchange, on a continuing basis, mutually beneficial technical information and assistance

  10. Hanford Site Black-Tailed Jackrabbit Monitoring Report for Fiscal Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Cole T. [Mission Support Alliance (MSA), Richland, WA (United States); Nugent, John J. [Mission Support Alliance (MSA), Richland, WA (United States); Wilde, Justin W. [Mission Support Alliance (MSA), Richland, WA (United States); Johnson, Scott J. [Mission Support Alliance (MSA), Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  11. Electrical resistivity tomography at the DOE Hanford site

    International Nuclear Information System (INIS)

    Narbutovskih, S.M.

    1996-01-01

    Recent work at the DOE Hanford site has established the potential of applying Electrical Resistivity Tomography (ERT) for early leak detection under hazardous waste storage facilities. Several studies have been concluded to test the capabilities and limitations of ERT for two different applications. First, field experiments have been conducted to determine the utility of ERT to detect and map leaks from underground storage tanks during waste removal processes. Second, the use of ERT for long term vadose zone monitoring has been tested under different field conditions of depth, installation design, acquisition mode/equipment and infiltration chemistry. This work involves transferring the technology from Lawrence Livermore National Laboratory (LLNL) to the Resource Conservation and Recovery Act (RCRA) program at the DOE Hanford Site. This paper covers field training studies relevant to the second application for long term vadose monitoring. Electrical resistivity tomography is a cross-borehole, imaging technique for mapping subsurface resistivity variations. Electrodes are placed at predetermined depths in an array of boreholes. Electrical current is introduced into one electrode pair located in one borehole while the resulting voltage change is detected between electrode pairs in other boreholes similar to a surface dipole-dipole array. These data are topographically inverted to image temporal resistivity contrasts associated with an infiltration event. Thus a dynamic plume is spatially mapped as a function of time. As a long-term vadose zone monitoring method, different field conditions and performance requirements exist than those for short term tank leak detection. To test ERT under these conditions, two vertical electrode arrays were constructed to a depth of 160 feet with a linear surface array between boreholes. The fielding was used to facilitate the technology transfer from LLNL to the Hanford RCRA program. Installation methods, commercial equipment and

  12. Identification of potential transuranic waste tanks at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Colburn, R.P.

    1995-05-05

    The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document.

  13. Hanford site pollution prevention plan progress report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kirkendall, J.R.

    1996-08-26

    This report tracks progress made during 1995 against the goals stated in DOE/RL-92-62, Executive Summary, Hanford Site Pollution Prevention Plan. The Executive Summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, Executive Summary, and the progress reports are elements of a pollution prevention planning program that is required by WAC 173-307,`Plans,` for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement RCW 70.95C, `Waste Reduction,` an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the in- process reuse or reclamation of valuable spent material.

  14. Environmental assessment, K Pool fish rearing, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1996-12-01

    The US Department of Energy (DOE) has a need to respond to a request to lease facilities at the Hanford Site 100-KE and 100-KW filter plant pools (K Pools) for fish rearing activities. These fish rearing activities would be: (1) business ventures with public and private funds and (2) long-term enhancement and supplementation programs for game fish populations in the Columbia River Basin. The proposed action is to enter into a use permit or lease agreement with the YIN or other parties who would rear fish in the 100-K Area Pools. The proposed action would include necessary piping, pump, and electrical upgrades of the facility; cleaning and preparation of the pools; water withdrawal from the Columbia River, and any necessary water or wastewater treatment; and introduction, rearing and release of fish. Future commercial operations may be included

  15. Hanford Site Tank 241-SY-101, damaged equipment removal

    International Nuclear Information System (INIS)

    Titzler, P.A.; Legare, D.E.; Barrus, H.G.

    1993-11-01

    Hanford Site Tank 241-SY-101 has a history of generating hydrogen-nitrous oxide gases. The gases are generated and trapped in the non-convective waste layer near the bottom of the 23-m- (75-ft-) diameter underground tank. Approximately every three months the pressure in the tank is relieved as the trapped gases are released through or around the surface crust into the tank dome. This process moves large amounts of liquid waste and crust material around in the tank. The moving waste displaced air lances and thermocouple assemblies (2-in. schedule-40 pipe) installed in four tank risers and permanently bent them to a maximum angle of 40 degrees. The bends were so severe that assemblies could not be removed from the tank using the originally designed hardware. Just after the tank releases the trapped gas, a 20-to-30-day work ''window'' opens

  16. Identification of potential transuranic waste tanks at the Hanford Site

    International Nuclear Information System (INIS)

    Colburn, R.P.

    1995-01-01

    The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document

  17. Mitigation of the most hazardous tank at the Hanford Site

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1994-09-01

    Various tanks at the Hanford Site have been declared to be unresolved safety problems. This means that the tank has the potential to be beyond the limits covered by the current safety documentation. Tank 241-SY-101 poses the greatest hazard. The waste stored in this tank has periodically released hydrogen gas which exceeds the lower flammable limits. A mixer pump was installed in this tank to stir the waste. Stirring the waste would allow the hydrogen to be released slowly in a controlled manner and mitigate the hazard associated with this tank. The testing of this mixer pump is reported in this document. The mixer pump has been successful in controlling the hydrogen concentration in the tank dome to below the flammable limit which has mitigated the hazardous gas releases

  18. Overview of the Hanford Site Performance Assurance Program

    International Nuclear Information System (INIS)

    Duncan, M.R.; Billings, M.P.; Delvin, W.L.; Scott, D.D.; Weatherby, J.W.

    1991-01-01

    This paper reports on a safeguards and security performance assurance program which encompasses the routine and special activities carried out to assure that safeguards and security subsystems and components are operating in a effective and reliable manner. At the Hanford Site, performance assurance involves widely varied activities, e.g., force-on-force exercises, functional testing of security components, and limited scope performance testing of material control and accountability subsystems. These activities belong to one of four categories: performance testing, functional testing, inspection, and preventive maintenance. Using categories has aided in identifying and assessing the relevant contribution each activity makes to the performance assurance program. Efforts have progressed toward incorporating performance assurance activities into the assessment of protection effectiveness required for Master Safeguards and Security Agreement development and its associated verification and validation process

  19. Environmental assessment, K Pool fish rearing, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The US Department of Energy (DOE) has a need to respond to a request to lease facilities at the Hanford Site 100-KE and 100-KW filter plant pools (K Pools) for fish rearing activities. These fish rearing activities would be: (1) business ventures with public and private funds and (2) long-term enhancement and supplementation programs for game fish populations in the Columbia River Basin. The proposed action is to enter into a use permit or lease agreement with the YIN or other parties who would rear fish in the 100-K Area Pools. The proposed action would include necessary piping, pump, and electrical upgrades of the facility; cleaning and preparation of the pools; water withdrawal from the Columbia River, and any necessary water or wastewater treatment; and introduction, rearing and release of fish. Future commercial operations may be included.

  20. Active sites environmental monitoring program FY 1997 annual report

    International Nuclear Information System (INIS)

    Morrissey, C.M.; Marshall, D.S.; Cunningham, G.R.

    1998-03-01

    This report summarizes the activities conducted by the Active Sites Environmental Monitoring Program (ASEMP) from October 1996 through September 1997. The purpose of the program is to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North. This report continues a series of annual and semiannual reports that present the results of ASEMP monitoring activities. This report details monitoring results for fiscal year (FY) 1997 from SWSA 6, including the Interim Waste Management Facility (IWMF) and the Hillcut Disposal Test Facility (HDTF), and (2) TRU-waste storage areas in SWSA 5 N. This report presents a summary of the methodology used to gather data for each major area along with the FY 1997 results. Figures referenced in the text are found in Appendix A and data tables are presented in Appendix B

  1. Canada Geese at the Hanford Site - Trends in Reproductive Success, Migration Patterns, and Contaminant Concentrations

    International Nuclear Information System (INIS)

    Simmons, Mary Ann; Poston, Ted M.; Tiller, Brett L.; Stegen, Amanda; Hand, Kristine D.; Brandenberger, Jill M.

    2010-01-01

    Pacific Northwest National Laboratory (PNNL) has conducted several studies for the U.S. Department of Energy (DOE) to evaluate the status and condition of Canada geese on the Hanford Reach of the Columbia River. This report summarizes results of studies of Canada geese (Branta canadensis moffitti) at the Hanford Site dating back to the 1950s. Results include information on the nesting (reproductive) success of Canada geese using the Hanford Reach, review of the local and regional migration of this species using data from bird banding studies, and summary data describing monitoring and investigations of the accumulation of Hanford-derived and environmental contaminants by resident goose populations.

  2. Canada Geese at the Hanford Site – Trends in Reproductive Success, Migration Patterns, and Contaminant Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Mary Ann; Poston, Ted M.; Tiller, Brett L.; Stegen, Amanda; Hand, Kristine D.; Brandenberger, Jill M.

    2010-05-25

    Pacific Northwest National Laboratory (PNNL) has conducted several studies for the U.S. Department of Energy (DOE) to evaluate the status and condition of Canada geese on the Hanford Reach of the Columbia River. This report summarizes results of studies of Canada geese (Branta canadensis moffitti) at the Hanford Site dating back to the 1950s. Results include information on the nesting (reproductive) success of Canada geese using the Hanford Reach, review of the local and regional migration of this species using data from bird banding studies, and summary data describing monitoring and investigations of the accumulation of Hanford-derived and environmental contaminants by resident goose populations.

  3. Electrical resistivity tomography at the DOE Hanford site

    International Nuclear Information System (INIS)

    Narbutovskih, S.M.; Halter, T.D.; Sweeney, M.D.; Daily, W.; Ramirez, A.L.

    1996-01-01

    Recent work at the DOE Hanford site has established the potential of applying Electrical Resistivity Tomography (ERT) for early leak detection under hazardous waste storage facilities. Several studies have been concluded to test the capabilities and limitations of ERT for two different applications. First, field experiments have been conducted to determine the utility of ERT to detect and map leaks from underground storage tanks during waste removal processes. Second, the use of ERT for long term vadose zone monitoring has been tested under different field conditions of depth, installation design, acquisition mode/equipment and infiltration chemistry. This work involves transferring the technology from Lawrence Livermore National Laboratory (LLNL) to the Resource Conservation and Recovery Act (RCRA) program at the DOE Hanford Site. This paper covers field training studies relevant to the second application for long term vadose zone monitoring. Electrical resistivity tomography is a cross-borehole, imaging technique for mapping subsurface resistivity variations. Electrodes are placed at predetermined depths in an array of boreholes. Electrical current is introduced into one electrode pair located in one borehole while the resulting voltage change is detected between electrode pairs in other boreholes similar to a surface dipole-dipole array. These data are tomographically inverted to image temporal resistivity contrasts associated with an infiltration event. Thus a dynamic plume is spatially mapped as a function of time. As a long-term vadose zone monitoring method, different field conditions and performance requirements exist than those for short term tank leak detection. To test ERT under these conditions, two vertical electrode arrays were constructed to a depth of 160 feet with a linear surface array between boreholes

  4. NEPA source guide for the Hanford Site. Revision 2

    International Nuclear Information System (INIS)

    Tifft, S.R.

    1995-01-01

    This Source Guide will assist those working with the National Environmental Policy Act of 1969 (NEPA) to become more familiar with the Environmental Assessments (EA) and Environmental Impact Statements (EIS) that apply to specific activities and facilities at the Hanford Site. This document should help answer questions concerning NEPA coverage, history, processes, and the status of many of the buildings and units on and related to the Hanford Site. This document summarizes relevant EAs and EISs by briefly outlining the proposed action of each and the decision made by the US Department of Energy (DOE) or its predecessor agencies, the US Atomic Energy Commission (AEC), and the US Energy Research and Development Administration (ERDA), concerning the proposed action and current status of the buildings and units discussed in the proposed action. If a decision was officially stated by the DOE, as in a Finding Of No Significant Impact (FONSI) or a Record of Decision (ROD), and was located, a summary is provided in the text. Not all federal decisions, such as FONSIs and RODS, can be found in the Federal Register (FR). For example, although significant large-action FONSIs can be found in the FR, some low-interest FONSIs may have been published elsewhere (i.e., local newspapers). The EA and EIS summaries are arranged in numerical order. To assist in locating a particular EA or EIS, the upper right comer of each page lists the number of the summary or summaries discussed on that page. Any draft EA or EIS is followed by a ''D.'' The EAs with nonstandard numbering schemes are located in Chapter 3

  5. Summary of the Hanford Site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    Hanf, R.W.; Schrempf, R.E.; Dirkes, R.L.

    1996-01-01

    This report summarizes the 390-page Hanford Site Environmental Report for Calendar Year 1994. The Hanford Site Environmental Report is prepared annually to review and document environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts and is written to meet both the reporting requirements and guidelines of the US Department of energy (DOE) and the needs of the public. This report includes information on important Hanford Site compliance issues, environmental monitoring programs and results, and general information on the Site and the surrounding area

  6. Hanford Site cleanup and transition: Risk data needs for decision making (Hanford risk data gap analysis decision guide)

    International Nuclear Information System (INIS)

    Gajewski, S.; Glantz, C.; Harper, B.; Bilyard, G.; Miller, P.

    1995-10-01

    Given the broad array of environmental problems, technical alternatives, and outcomes desired by different stakeholders at Hanford, DOE will have to make difficult resource allocations over the next few decades. Although some of these allocations will be driven purely by legal requirements, almost all of the major objectives of the cleanup and economic transition missions involve choices among alternative pathways. This study examined the following questions: what risk information is needed to make good decisions at Hanford; how do those data needs compare to the set(s) of risk data that will be generated by regulatory compliance activities and various non-compliance studies that are also concerned with risk? This analysis examined the Hanford Site missions, the Hanford Strategic Plan, known stakeholder values, and the most important decisions that have to be made at Hanford to determine a minimum domain of risk information required to make good decisions that will withstand legal, political, and technical scrutiny. The primary risk categories include (1) public health, (2) occupational health and safety, (3) ecological integrity, (4) cultural-religious welfare, and (5) socio-economic welfare

  7. Site support program plan for ICF Kaiser Hanford Company, Revision 1

    International Nuclear Information System (INIS)

    1995-10-01

    This document is the general administrative plan implemented by the Hanford Site contractor, ICF Kaiser Hanford Company. It describes the mission, administrative structure, projected staffing, to be provided by the contractor. The report breaks out the work responsibilities within the different units of the company, a baseline schedule for the different groups, and a cost summary for the different operating units

  8. 1996 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

  9. Site support program plan for ICF Kaiser Hanford Company, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This document is the general administrative plan implemented by the Hanford Site contractor, ICF Kaiser Hanford Company. It describes the mission, administrative structure, projected staffing, to be provided by the contractor. The report breaks out the work responsibilities within the different units of the company, a baseline schedule for the different groups, and a cost summary for the different operating units.

  10. 1996 Hanford site report on land disposal restrictions for mixed waste

    International Nuclear Information System (INIS)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site

  11. Hanford Site River Protection Project (RPP) High-Level Waste Storage

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.

    2000-01-01

    The CH2M HILL Hanford Group (CHG) conducts business to achieve the goals of the U.S. Department of Energy's (DOE) Office of River Protection at the Hanford Site. The CHG is organized to manage and perform work to safely store, retrieve, etc

  12. Flammable gas project expert elicitation results for Hanford Site double-shell tanks

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1998-01-01

    This report documents the results of the second phase of parameter quantification by the flammable gas expert panel. This second phase is focused on the analysis of flammable gas accidents in the Hanford Site double-shell tanks. The first phase of parameter quantification, performed in 1997 was focused on the analysis of Hanford single-shell tanks

  13. Raptors of the Hanford Site and nearby areas of southcentral Washington

    International Nuclear Information System (INIS)

    Fitzner, R.E.; Rickard, W.H.; Cadwell, L.L.; Rogers, L.E.

    1981-05-01

    This report is concerned with the birds of prey which use the Hanford Site not only during the nesting season but throughout the year. An ecological treatment of five nesting owls (great horned, long-eared, short-eared, barn and burrowing) and five nesting hawks (marsh hawk, red-tailed hawk, Swainson's hawk, prairie falcon and American kestrel) is provided and supportive information on non-nesting species is presented. Factors which control raptor densities and population dynamics throughout all seasons of the year are discussed. Information is also provided for raptors from other areas of southcentral Washington in order to yield a comprehensive picture of how the Hanford Site fits in with regional bird of prey populations. The following were the objectives of this study: (1) to determine the numbers of birds of prey nesting on the Hanford Site, (2) to document the reproductive chronology of each nesting raptor species, (3) to provide analyses of food habits of birds of prey on the Hanford Site coupled with prey abundance data, (4) to determine the productivity of the dominant large birds of prey on the Hanford Site, (5) to determine the distribution and land use patterns of all raptors on the Hanford Site, (6) to determine the kinds and relative abundance of non-nesting raptors on the Hanford Site and adjacent areas of southcentral Washington (7) to document present land use practices on the Hanford Site and their effects on raptors, (8) to document radionuclide levels in birds of prey on the Hanford Site, and (9) to determine the role of birds of prey in radioecological monitoring

  14. Raptors of the Hanford Site and nearby areas of southcentral Washington

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E.; Rickard, W.H.; Cadwell, L.L.; Rogers, L.E.

    1981-05-01

    This report is concerned with the birds of prey which use the Hanford Site not only during the nesting season but throughout the year. An ecological treatment of five nesting owls (great horned, long-eared, short-eared, barn and burrowing) and five nesting hawks (marsh hawk, red-tailed hawk, Swainson's hawk, prairie falcon and American kestrel) is provided and supportive information on non-nesting species is presented. Factors which control raptor densities and population dynamics throughout all seasons of the year are discussed. Information is also provided for raptors from other areas of southcentral Washington in order to yield a comprehensive picture of how the Hanford Site fits in with regional bird of prey populations. The following were the objectives of this study: (1) to determine the numbers of birds of prey nesting on the Hanford Site, (2) to document the reproductive chronology of each nesting raptor species, (3) to provide analyses of food habits of birds of prey on the Hanford Site coupled with prey abundance data, (4) to determine the productivity of the dominant large birds of prey on the Hanford Site, (5) to determine the distribution and land use patterns of all raptors on the Hanford Site, (6) to determine the kinds and relative abundance of non-nesting raptors on the Hanford Site and adjacent areas of southcentral Washington (7) to document present land use practices on the Hanford Site and their effects on raptors, (8) to document radionuclide levels in birds of prey on the Hanford Site, and (9) to determine the role of birds of prey in radioecological monitoring.

  15. Hanford site as it relates to an alternative site for the Waste Isolation Pilot Plant: an environmental description

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, K.R. (ed.)

    1978-12-01

    The use of basalt at Hanford as an alternative for the Waste Isolation Pilot Plant (WIPP) would require that the present Basalt Waste Isolation Program (BWIP) at Hanford be expanded to incorporate the planned WIPP functions, namely the permanent storage of transuranic (TRU) wastes. This report discusses: program costs, demography, ecology, climatology, physiography, hydrology, geology, seismology, and historical and archeological sites. (DLC)

  16. Hanford site as it relates to an alternative site for the Waste Isolation Pilot Plant: an environmental description

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-12-01

    The use of basalt at Hanford as an alternative for the Waste Isolation Pilot Plant (WIPP) would require that the present Basalt Waste Isolation Program (BWIP) at Hanford be expanded to incorporate the planned WIPP functions, namely the permanent storage of transuranic (TRU) wastes. This report discusses: program costs, demography, ecology, climatology, physiography, hydrology, geology, seismology, and historical and archeological sites

  17. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    International Nuclear Information System (INIS)

    Dean, L.N.

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D ampersand D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project

  18. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    Energy Technology Data Exchange (ETDEWEB)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  19. Active Sites Environmental Monitoring Program. FY 1993: Annual report

    International Nuclear Information System (INIS)

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.; Marsh, J.D.

    1994-08-01

    This report continues a series of annual and semiannual reports that present the results of the Active Sites Environmental Monitoring Program (ASEMP) monitoring activities. The report details monitoring data for fiscal year (FY) 1993 and is divided into three major areas: SWSA 6 [including tumulus pads, Interim Waste Management Facility (IWMF), and other sites], the low-level Liquid-Waste Solidification Project (LWSP), and TRU-waste storage facilities in SWSA 5 N. The detailed monitoring methodology is described in the second revision of the ASEMP program plan. This report also presents a summary of the methodology used to gather data for each major area along with the results obtained during FY 1993

  20. Retrospective assessment of personnel neutron dosimetry for workers at the Hanford Site

    International Nuclear Information System (INIS)

    Fix, J.J.; Wilson, R.H.; Baumgartner, W.B.

    1996-09-01

    This report was prepared to examine the specific issue of the potential for unrecorded neutron dose for Hanford workers, particularly in comparison with the recorded whole body (neutron plus photon) dose. During the past several years, historical personnel dosimetry practices at Hanford have been documented in several technical reports. This documentation provides a detailed history of the technology, radiation fields, and administrative practices used to measure and record dose for Hanford workers. Importantly, documentation has been prepared by personnel whose collective experience spans nearly the entire history of Hanford operations beginning in the mid-1940s. Evaluations of selected Hanford radiation dose records have been conducted along with statistical profiles of the recorded dose data. The history of Hanford personnel dosimetry is complex, spanning substantial evolution in radiation protection technology, concepts, and standards. Epidemiologic assessments of Hanford worker mortality and radiation dose data were initiated in the early 1960s. In recent years, Hanford data have been included in combined analyses of worker cohorts from several Department of Energy (DOE) sites and from several countries through the International Agency for Research on Cancer (IARC). Hanford data have also been included in the DOE Comprehensive Epidemiologic Data Resource (CEDR). In the analysis of Hanford, and other site data, the question of comparability of recorded dose through time and across the respective sites has arisen. DOE formed a dosimetry working group composed of dosimetrists and epidemiologists to evaluate data and documentation requirements of CEDR. This working group included in its recommendations the high priority for documentation of site-specific radiation dosimetry practices used to measure and record worker dose by the respective DOE sites

  1. DNFSB Recommendation 94-1 Hanford site integrated stabilization management plan, volumes 1 and 2

    International Nuclear Information System (INIS)

    Gerber, E.W.

    1996-01-01

    This document comprises the Hanford Site Integrated Stabilization Management Plan (SISMP). This document describes the DOE's plans at the Hanford Site to address concerns identified in Defense Nuclear Facilites Safety Board (DNFSB) Recommendation 94-1. This document also identifies plans for other spent nuclear fuel (SNF) inventories at the Hanford Site which are not within the scope of DNFSB Recommendation 94-1 for reference purposes because of their interrelationship with plans for SNF within the scope of DNFSB Recommendation 94-1. The SISMP was also developed to assist DOE in initial formulation of the Research and Development Plan and the Integrated Facilities Plan

  2. Quality assurance in Hanford site defense waste operations

    International Nuclear Information System (INIS)

    Wojtasek, R.D.

    1989-01-01

    This paper discusses quality assurance as an integral part of conducting waste management operations. The storage, treatment, and disposal of radioactive and non- radioactive hazardous wastes at Hanford are described. The author reports that quality assurance programs provide confidence that storage, treatment, and disposal facilities and systems perform as intended. Examples of how quality assurance is applied to Hanford defense waste operations are presented

  3. Unit environmental transport assessment of contaminants from Hanford's past-practice waste sites. Hanford Remedial Action Environmental Impact Statement

    International Nuclear Information System (INIS)

    Whelan, G.; Buck, J.W.; Castleton, K.J.

    1995-06-01

    The US Department of Energy, Richland Operations Office (DOE-RL) contracted Pacific Northwest Laboratory (PNL) to provide support to Advanced Sciences, Incorporated (ASI) in implementing tile regional no-action risk assessment in the Hanford Remedial Action Environmental Impact Statement. Researchers at PNL were charged with developing unit concentrations for soil, groundwater, surface water, and air at multiple locations within an 80-km radius from the center of tile Hanford installation. Using the Multimedia Environmental Pollutant Assessment System (MEPAS), PNL simulated (1) a unit release of one ci for each radionuclide and one kg for each chemical from contaminated soils and ponded sites, (2) transport of the contaminants in and through various environmental media and (3) exposure/risk of four exposure scenarios, outlined by the Hanford Site Baseline Remedial Action Methodology. These four scenarios include residential, recreational, industrial, and agricultural exposures. Spacially and temporally distributed environmental concentrations based on unit releases of radionuclides and chemicals were supported to ASI in support of the HRA-EIS. Risk for the four exposure scenarios, based on unit environment concentrations in air, water, and soil. were also supplied to ASI. This report outlines the procedure that was used to implement the unit transport portion of the HRA-EIS baseline risk assessment. Deliverables include unit groundwater, surface water, air, and soil concentrations at multiple locations within an 80-km radius from the center of the Hanford installation

  4. Annual Status Report (Fiscal Year 2012) Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-12-27

    In accordance with U.S. Department of Energy (DOE) requirements in DOE O 435.1, Chg. 1,1 and as implemented by DOE/RL-2000-29, Rev. 2,2 the DOE Richland Operations Office (DOE-RL) has prepared this annual summary of the Hanford Site Composite Analysis for fiscal year (FY) 2012, as originally reported in PNNL-118003 and PNNL-11800, Addendum 14 (hereafter these reports are referred to collectively as the Composite Analysis), and to address secondary issues identified during the review of the Composite Analysis.

  5. Foaming in Hanford River Protection Project Waste Treatment Plant LAW Evaporation Processes - FY01 Summary Report

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2002-01-01

    The LAW evaporation processes currently being designed for the Hanford River Protection Project Waste Treatment Plant are subject to foaming. Experimental simulant studies have been conducted in an effort to achieve an effective antifoam agent suitable to mitigate such foaming

  6. The development of surface barriers at the Hanford Site

    International Nuclear Information System (INIS)

    Wing, N.R.; Gee, G.W.

    1994-03-01

    Engineered barriers are being developed to isolate wastes disposed of near the earth's surface at the US Department of Energy's (DOE) Hanford Site near Richland, Washington. Much of the waste that would be disposed of by in-place stabilization currently is located in relatively shallow subsurface structures such as solid waste burial grounds, tanks, vaults, and cribs. Unless protected in some way, the wastes could be transported to the accessible environment via the following pathways: plant, animal, and human intrusion; water infiltration; erosion; and the exhalation of noxious gases. Permanent isolation surface barriers have been proposed to protect wastes disposed of ''in place'' from the transport pathways identified previously (Figure 1). The protective barrier consists of a variety of different materials (e.g., fine soil, sand, gravel, riprap, asphalt, etc.) placed in layers to form an above-grade mound directly over the waste zone. Surface markers are being considered for placement around the periphery of the waste sites to inform future generations of the nature and hazards of the buried wastes. In addition, throughout the protective barrier, subsurface markers could be placed to warn any inadvertent human intruders of the dangers of the buried wastes (Figure 2)

  7. RCRA groundwater data analysis protocol for the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Chou, C.J.; Jackson, R.L.

    1992-04-01

    The Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring program currently involves site-specific monitoring of 20 facilities on the Hanford Site in southeastern Washington. The RCRA groundwater monitoring program has collected abundant data on groundwater quality. These data are used to assess the impact of a facility on groundwater quality or whether remediation efforts under RCRA corrective action programs are effective. Both evaluations rely on statistical analysis of groundwater monitoring data. The need for information on groundwater quality by regulators and environmental managers makes statistical analysis of monitoring data an important part of RCRA groundwater monitoring programs. The complexity of groundwater monitoring programs and variabilities (spatial, temporal, and analytical) exhibited in groundwater quality variables indicate the need for a data analysis protocol to guide statistical analysis. A data analysis protocol was developed from the perspective of addressing regulatory requirements, data quality, and management information needs. This data analysis protocol contains four elements: data handling methods; graphical evaluation techniques; statistical tests for trend, central tendency, and excursion analysis; and reporting procedures for presenting results to users

  8. Cost benefit of caustic recycle for tank waste remediation at the Hanford and Savannah River Sites

    International Nuclear Information System (INIS)

    DeMuth, S.

    1998-01-01

    The potential cost savings due to the use of caustic recycle used in conjunction with remediation of radioactive underground storage tank waste, is shown in a figure for the Hanford and Savannah River sites. Two cost savings estimates for each case have been made for Hanford, and one cost savings estimate for each case have been made for Hanford, and one cost savings estimate for each case has been made for the Savannah River site. This is due to the Hanford site remediation effort being less mature than that of Savannah River; and consequently, a range of cost savings being more appropriate for Hanford. This range of cost savings (rather than a ingle value) for each case at Hanford is due to cost uncertainties related to the LAW immobilization operation. Caustic recycle Case-1 has been defined as the sodium required to meet al identified caustic needs for the entire Site. Case-2 has been defined as the maximum sodium which can be separated from the low activity waste without precipitation of Al(OH) 3 . It has been determined that the potential cost savings at Hanford ranges from $194 M to $215 M for Case-1, and $293 M to $324 M for Case-2. The potential cost savings at Savannah River are $186 M for Case-1 and $281 M for Case-2. A discussion of the uncertainty associated with these cost savings estimates can be found in the Discussion and Conclusions section

  9. Hanford Site Cleanup Challenges and Opportunities for Science and Technology--A Strategic Assessment

    International Nuclear Information System (INIS)

    Wood, Thomas W.; Johnson, Wayne L.; Kreid, Dennis K.; Walton, Terry L.

    2001-01-01

    The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make Hanford perhaps the world's largest and most complex environmental cleanup project. It is not possible to address the more complex elements of this enormous challenge in a cost-effective manner without strategic investments in science and technology. Success requires vigorous and sustained efforts to enhance the science and technology basis, develop and deploy innovative solutions, and provide firm scientific bases to support site cleanup and closure decisions at Hanford

  10. Web-based Tool Identifies and Quantifies Potential Cost Savings Measures at the Hanford Site

    International Nuclear Information System (INIS)

    Renevitz, Marisa J.; Peschong, Jon C.; Charboneau, Briant L.; Simpson, Brett C.

    2014-01-01

    The Technical Improvement system is an approachable web-based tool that is available to Hanford DOE staff, site contractors, and general support service contractors as part of the baseline optimization effort underway at the Hanford Site. Finding and implementing technical improvements are a large part of DOE's cost savings efforts. The Technical Improvement dashboard is a key tool for brainstorming and monitoring the progress of submitted baseline optimization and potential cost/schedule efficiencies. The dashboard is accessible to users over the Hanford Local Area Network (HLAN) and provides a highly visual and straightforward status to management on the ideas provided, alleviating the need for resource intensive weekly and monthly reviews

  11. Determination of total cyanide in Hanford Site high-level wastes

    International Nuclear Information System (INIS)

    Winters, W.I.; Pool, K.H.

    1994-05-01

    Nickel ferrocyanide compounds (Na 2-x Cs x NiFe (CN) 6 ) were produced in a scavenging process to remove 137 Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described

  12. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  13. Determination of total cyanide in Hanford Site high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Winters, W.I. [Westinghouse Hanford Co., Richland, WA (United States); Pool, K.H. [Pacific Northwest Lab., Richland, WA (United States)

    1994-05-01

    Nickel ferrocyanide compounds (Na{sub 2-x}Cs{sub x}NiFe (CN){sub 6}) were produced in a scavenging process to remove {sup 137}Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described.

  14. Hanford Site near-facility environmental monitoring data report for calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    DIEDIKER, L.P.

    1999-07-29

    This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  15. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste

  16. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation

  17. Evaluation of the Potential for Agricultural Development at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Robert G.; Hattendorf, Mary J.; Kincaid, Charles T.

    2000-02-25

    By 2050, when cleanup of the Hanford Site is expected to be completed, large worldwide demands to increase the global production of animal and fish protein, food, and fiber are anticipated, despite advancements in crop breeding, genetic engineering, and other technologies. The most likely large areas for expanded irrigation in the Pacific Northwest are the undeveloped East High areas of the Columbia Basin Project and non-restricted areas within the Hanford Site in south-central Washington State. The area known as the Hanford Site has all the components that favor successful irrigated farming. Constraints to agricultural development of the Hanford Site are political and social, not economic or technical. Obtaining adequate water rights for any irrigated development will be a major issue. Numerous anticipated future advances in irrigation and resource conservation techniques such as precision agriculture techniques, improved irrigation systems, and irrigation system controls will greatly minimize the negative environmental impacts of agricultural activities.

  18. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste

  19. Hanford Site annual dangerous waste report: Volume 3, Part 2, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1944-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling and containment vessel, waste number, waste designation and amount of waste.

  20. Hanford Site near-facility environmental monitoring data report for calendar year 1998

    International Nuclear Information System (INIS)

    DIEDIKER, L.P.

    1999-01-01

    This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years