WorldWideScience

Sample records for hanford meteorological station

  1. The data collection component of the Hanford Meteorology Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C.S.; Islam, M.M.

    1988-09-01

    An intensive program of meteorological monitoring is in place at the US Department of Energy's Hanford Site. The Hanford Meteorology Monitoring Program involves the measurement, observation, and storage of various meteorological data; continuous monitoring of regional weather conditions by a staff of professional meteorologists; and around-the-clock forecasting of weather conditions for the Hanford Site. The objective of this report is to document the data collection component of the program. In this report, each meteorological monitoring site is discussed in detail. Each site's location and instrumentation are described and photographs are presented. The methods for processing and communicating data to the Hanford Meteorology Station are also discussed. Finally, the procedures followed to maintain and calibrate these instruments are presented. 2 refs., 83 figs., 15 tabs.

  2. Temporal variations in atmospheric dispersion at Hanford

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Burk, K.W.

    1990-01-01

    Climatological data are frequently used to estimate atmospheric dispersion factors for historical periods and for future releases for which adequate meteorological data are unavailable. This practice routinely leads to questions concerning the representativeness of data used. The work described here was performed to provide a basis for answering these questions at the U.S. Department of Energy's Hanford Site in eastern Washington. Atmospheric transport and diffusion near Hanford have been examined using a Lagrangian puff dispersion model and hourly meteorological data from the Hanford Meteorological Station and a network of 24 surface wind stations for a 5-yr period. Average normalized monthly concentrations were computed at 2.5-km intervals on a 31 by 31 grid from January 1983 through 1987, assuming an elevated release in the 200-East Area. Monthly average concentrations were used to determine 5-yr mean pattern and monthly mean patterns and the interannual variability about each pattern. Intra-annual and diurnal variations in dispersion factors are examined for six locations near Hanford

  3. Hanford Area 2000 Population

    International Nuclear Information System (INIS)

    Elliott, Douglas B.; Scott, Michael J.; Antonio, Ernest J.; Rhoads, Kathleen

    2004-01-01

    This report was prepared for the U.S. Department of Energy (DOE) Richland Operations Office, Surface Environmental Surveillance Project, to provide demographic data required for ongoing environmental assessments and safety analyses at the DOE Hanford Site near Richland, Washington. This document includes 2000 Census estimates for the resident population within an 80-kilometer (50-mile) radius of the Hanford Site. Population distributions are reported relative to five reference points centered on meteorological stations within major operating areas of the Hanford Site - the 100 F, 100 K, 200, 300, and 400 Areas. These data are presented in both graphical and tabular format, and are provided for total populations residing within 80 km (50 mi) of the reference points, as well as for Native American, Hispanic and Latino, total minority, and low-income populations

  4. Differential turbidity measurements at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Bates, J.A.; Kleckner, E.W.; Michalsky, J.J.; Schrotke, P.M.; Thorp, J.M.

    1978-01-01

    An experiment to exmine differential turbidity effects on measured insolation between the Rattlesnake Observatory and the Hanford Meteorological Station was conducted during summer 1977. Several types of solar radiation instruments were used, including pyranometers, multiwavelength sunphotometers, and an active cavity radiometer. Preliminary results show dramatic temporal variability of aerosol loading at HMS and significant insolation and turbidity differences between the Observatory and HMS

  5. Climate and meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Hoitink, D.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the significant activities conducted in 1994 to monitor the meteorology and climatology of the site. Meteorological measurements are taken to support Hanford Site emergency preparedness and response, Hanford Site operations, and atmospheric dispersion calculations. Climatological data are collected to help plan weather-dependent activities and are used as a resource to assess the environmental effects of Hanford Site operations.

  6. Climate and meteorology

    International Nuclear Information System (INIS)

    Hoitink, D.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the significant activities conducted in 1994 to monitor the meteorology and climatology of the site. Meteorological measurements are taken to support Hanford Site emergency preparedness and response, Hanford Site operations, and atmospheric dispersion calculations. Climatological data are collected to help plan weather-dependent activities and are used as a resource to assess the environmental effects of Hanford Site operations

  7. Stratigraphic Profiles for Selected Hanford Site Seismometer Stations and Other Locations

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-02-01

    Stratigraphic profiles were constructed for eight selected Hanford Site seismometer stations, five Hanford Site facility reference locations, and seven regional three-component broadband seismometer stations. These profiles provide interpretations of the subsurface layers to support estimation of ground motions from past earthquakes, and the prediction of ground motions from future earthquakes. In most cases these profiles terminated at the top of the Wanapum Basalt, but at selected sites profiles were extended down to the top of the crystalline basement. The composite one-dimensional stratigraphic profiles were based primarily on previous interpretations from nearby boreholes, and in many cases the nearest deep borehole is located kilometers away.

  8. Hanford Site Climatological Data Summary 2001 with Historical Data

    International Nuclear Information System (INIS)

    Hoitink, Dana J.; Ramsdell, James V.; Shaw, Wendy J.

    2001-01-01

    This document presents the climatological data measured at the U. S. Department of Energy's Hanford Site for calendar year 2001. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. This report contains updated historical information for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink (and others) (1999, 2000, 2001) and Hoitink and Burk (1994, 1995, 1996, 1997, 1998); however, data from Appendix B--Wind Climatology (Hoitink (and others) 1994) are excluded. Calendar year 2001 was slightly warmer than normal at the Hanford Meteorology Station with an average temperature of 54.3 F, 0.7 F above normal (53.6 F). The hottest temperature was 106 F on July 4, while the coldest was 16 F on December 25. For the 12-month period, 8 months were warmer than normal, and 4 months were cooler than normal. Precipitation for 2001 totaled 6.66 inches, 95% of normal (6.98 inches); calendar year snowfall totaled 15.1 inches (compared to the normal of 15.4 inches). Calendar year 2001 had an average wind speed of 7.6 mph, which was normal (7.6 mph). There were 31 days with peak gusts (ge)40 mph, compared to a yearly average of 27 days. The peak gust during the year was 69 mph on December 16. November 2001 established new records for both days and hours with dense fog (visibility (le)1/4 mile). There were 14 days and 99.4 hours of dense fog reported, compared to an average of 5.5 days with 22.0 hours. The previous record was 13 days in 1965 and 71.4 hours in 1952. The heating-degree days for 2000-2001 were 5,516 (7% above the 5,160 normal). Cooling-degree days for 2001 were 1,092 (8% above the 1,014 normal)

  9. Meteorological Automatic Weather Station (MAWS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Kyrouac, Jenni A [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    The Meteorological Automatic Weather Station (MAWS) is a surface meteorological station, manufactured by Vaisala, Inc., dedicated to the balloon-borne sounding system (BBSS), providing surface measurements of the thermodynamic state of the atmosphere and the wind speed and direction for each radiosonde profile. These data are automatically provided to the BBSS during the launch procedure and included in the radiosonde profile as the surface measurements of record for the sounding. The MAWS core set of measurements is: Barometric Pressure (hPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variables are mounted at the standard heights defined for each variable.

  10. Airborne plutonium-239 and americium-241 concentrations measured from the 125-meter Hanford Meteorological Tower

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1978-01-01

    Airborne plutonium-239 and americium-241 concentrations and fluxes were measured at six heights from 1.9 to 122 m on the Hanford meteorological tower. The data show that plutonium-239 was transported on nonrespirable and small particles at all heights. Airborne americium-241 concentrations on small particles were maximum at the 91 m height

  11. Insolation and turbidity measurements at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Kleckner, E.W.; Michalsky, J.J.; Thorp, J.M.

    1979-01-01

    From observations obtained at the Rattlesnake Observatory and the Hanford Meteorological Station, the redistribution of solar radiation as a result of aerosols in the lowest 1 km of the earth's atmosphere has been examined using several types of solar radiation measuring instruments. Large turbidity excursions are observed with high values associated with stagnant air masses and low values associated with frontal passage. Turbidities show variations in color dependence that arise because of changes in particle size distribution

  12. Hanford site environment

    International Nuclear Information System (INIS)

    Isaacson, R.E.

    1976-01-01

    A synopsis is given of the detailed characterization of the existing environment at Hanford. The following aspects are covered: demography, land use, meteorology, geology, hydrology, and seismology. It is concluded that Hanford is one of the most extensively characterized nuclear sites

  13. Temperature Discontinuity Caused by Relocation of Meteorological Stations in Taiwan

    Directory of Open Access Journals (Sweden)

    Chih-wen Hung

    2009-01-01

    Full Text Available With global warming upon us, it has be come increasingly important to identify the extent of this warming trend and in doing so be able to rank mean temperature changes in particular seasons and years. This requires a need for homogeneous climate data, which do not reflect individual anomalies in instruments, station locations or local environments (urbanization. Ac curate homogeneous long-term meteorological data helps show how temperature variations have truly occurred in the climate. Many possible factors contribute to artificial abrupt changes or sharp discontinuities in long time series data, such as the impact of station relocation, changes in observational schedules and instrumentation. Homogeneity adjustments of in situ climate data are very important processes for preparing observational data to be used in further analysis and research. Users require a well-documented history of stations to make appropriate homogeneity adjustments because precise historical back ground records of stations can provide researchers with knowledge of when artificial discontinuity has occurred and its causes. With out such de tailed historical data for each meteorological station, abrupt changes are difficult to interpret. Unfortunately, no homogeneity adjustments for temperature records have been con ducted previously in Tai wan, and present available sources of the history of Taiwan's meteorological stations exhibit in consistencies. In this study, information pertaining to station history, especially relocation records, is pro vided. This information is essential for anal y sis of continuous time series data for temperature and climate warming studies. Temperature data from several stations is given in this study to show how artificial discontinuity occurs due to station relocation. Al though there is no homogeneous adjusted climate data provided in this preliminary work, the summarizing of information regarding station relocations should be of assistance

  14. Environmental characterization of two potential locations at Hanford for a new production reactor

    Energy Technology Data Exchange (ETDEWEB)

    Watson, E.C.; Becker, C.D.; Fitzner, R.E.; Gano, K.A.; Imhoff, K.L.; McCallum, R.F.; Myers, D.A.; Page, T.L.; Price, K.R.; Ramsdell, J.V.; Rice D.G.; Schreiber D.L.; Skumatz L.A.; Sommer D.J.; Tawil J.J.; Wallace R.W.; Watson D.G.

    1984-09-01

    This report describes various environmental aspects of two areas on the Hanford Site that are potential locations for a New Production Reactor (NPR). The area known as the Skagit Hanford Site is considered the primary or reference site. The second area, termed the Firehouse Site, is considered the alternate site. The report encompasses an environmental characterization of these two potential NPR locations. Eight subject areas are covered: geography and demography; ecology; meteorology; hydrology; geology; cultural resources assessment; economic and social effects of station construction and operation; and environmental monitoring. 80 refs., 68 figs., 109 tabs.

  15. Six- and three-hourly meteorological observations from 223 USSR stations

    Energy Technology Data Exchange (ETDEWEB)

    Razuvaev, V.N.; Apasova, E.B.; Martuganov, R.A. [All-Russian Research Inst. of Hydrometeorologicl Information, Obninsk (Russia). World Data Centre; Kaiser, D.P. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    This document describes a database containing 6- and 3-hourly meteorological observations from a 223-station network of the former Soviet Union. These data have been made available through cooperation between the two principal climate data centers of the United States and Russia: the National Climatic Data Center (NCDC), in Asheville, North Carolina, and the All-Russian Research Institute of Hydrometeorological Information -- World Data Centre (RIHMI-WDC) in Obninsk. Station records consist of 6- and 3-hourly observations of some 24 meteorological variables including temperature, weather type, precipitation amount, cloud amount and type, sea level pressure, relative humidity, and wind direction and speed. The 6-hourly observations extend from 1936 to 1965; the 3-hourly observations extend from 1966 through the mid-1980s (1983, 1984, 1985, or 1986; depending on the station). These data have undergone extensive quality assurance checks by RIHMI-WDC, NCDC, and the Carbon Dioxide Information Analysis Center (CDIAC). The database represents a wealth of meteorological information for a large and climatologically important portion of the earth`s land area, and should prove extremely useful for a wide variety of regional climate change studies. These data are available free of charge as a numeric data package (NDP) from CDIAC. The NDP consists of this document and 40 data files that are available via the Internet or on 8mm tape. The total size of the database is {approximately}2.6 gigabytes.

  16. Interim report on the meteorological database

    International Nuclear Information System (INIS)

    Stage, S.A.; Ramsdell, J.V.; Simonen, C.A.; Burk, K.W.

    1993-01-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is estimating radiation doses that individuals may have received from operations at Hanford from 1944 to the present. An independent Technical Steering Panel (TSP) directs the project, which is being conducted by the Battelle, Pacific Northwest Laboratories in Richland, Washington. The goals of HEDR, as approved by the TSP, include dose estimates and determination of confidence ranges for these estimates. This letter report describes the current status of the meteorological database. The report defines the meteorological data available for use in climate model calculations, describes the data collection procedures and the preparation and control of the meteorological database. This report also provides an initial assessment of the data quality. The available meteorological data are adequate for atmospheric calculations. Initial checks of the data indicate the data entry accuracy meets the data quality objectives

  17. Kaiseraugst nuclear power station: meteorological effects of the cooling towers

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Considerations of water conservation persuaded the German Government in 1971 not to allow the use of the Aar and Rhine for direct cooling of nuclear power stations. The criticism is often made that the Kaiseraugst cooling towers were built without full consideration of the resulting meteorological effects. The criticism is considered unjustified because the Federal Cooling Tower Commission considered all the relevant aspects before making its recommendations in 1972. Test results and other considerations show that the effect of the kaiseraugst cooling towers on meteorological and climatic conditions is indeed minimal and details are given. (P.G.R.)

  18. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 9

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A. [ed.; Bjornstad, B.N.; Fosmire, C.J. [and others

    1997-08-01

    This ninth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4.0 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. Not all of the sections have been updated for this revision. The following lists the updated sections: climate and meteorology; ecology (threatened and endangered species section only); culture, archaeological, and historical resources; socioeconomics; all of Chapter 6.

  19. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 9

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Bjornstad, B.N.; Fosmire, C.J.

    1997-08-01

    This ninth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4.0 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. Not all of the sections have been updated for this revision. The following lists the updated sections: climate and meteorology; ecology (threatened and endangered species section only); culture, archaeological, and historical resources; socioeconomics; all of Chapter 6

  20. Public involvement in environmental surveillance at Hanford

    International Nuclear Information System (INIS)

    Hanf, R.W. Jr.; Patton, G.W.; Woodruff, R.K.; Poston, T.M.

    1994-08-01

    Environmental surveillance at the Hanford Site began during the mid-1940s following the construction and start-up of the nation's first plutonium production reactor. Over the past approximately 45 years, surveillance operations on and off the Site have continued, with virtually all sampling being conducted by Hanford Site workers. Recently, the US Department of Energy Richland Operations Office directed that public involvement in Hanford environmental surveillance operations be initiated. Accordingly, three special radiological air monitoring stations were constructed offsite, near hanford's perimeter. Each station is managed and operated by two local school teaches. These three stations are the beginning of a community-operated environmental surveillance program that will ultimately involve the public in most surveillance operations around the Site. The program was designed to stimulate interest in Hanford environmental surveillance operations, and to help the public better understand surveillance results. The program has also been used to enhance educational opportunities at local schools

  1. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 8

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A. [ed.; Bjornstad, B.N.; Fosmire, C.J.; Fowler, R.A. [and others

    1996-08-01

    This eighth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, historical, archaeological and cultural resources, socioeconomics, and noise. Chapter 6 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. The following sections were updated in this revision: climate and meteorology; ecology (threatened and endangered species section only); historical; archaeological and cultural resources; and all of chapter 6. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the hanford Site and its past activities by which to evaluate projected activities and their impacts.

  2. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 8

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Bjornstad, B.N.; Fosmire, C.J.; Fowler, R.A.

    1996-08-01

    This eighth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, historical, archaeological and cultural resources, socioeconomics, and noise. Chapter 6 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. The following sections were updated in this revision: climate and meteorology; ecology (threatened and endangered species section only); historical; archaeological and cultural resources; and all of chapter 6. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the hanford Site and its past activities by which to evaluate projected activities and their impacts

  3. A microcontroller-based data-acquisition system for meteorological station monitoring

    International Nuclear Information System (INIS)

    Rosiek, S.; Batlles, F.J.

    2008-01-01

    This paper presents a study of feasibility of different existing methodologies linked to field's data acquisition from remote meteorological stations. The data transmission serves to collect field's meteorological information, such as temperature, humidity and radiation. In our study the experimental data is registered in a weather station located about 100 km from University of Almeria. Various existing techniques are studied, especially Radio, GSM (global system of mobile communication) and GPRS (general packet radio service). In the result of these studies has been designed a system of field's data acquisition (herein referred as Meteologger) which we are going to present in this paper. The system is based on an ATmega 16 microcontroller, which scans 8 sensors together at any programmable intervals. This paper presents the study of the mentioned project, application and some main characteristics of the prototype system and its program. We attempt to implement the system, and subsequently present the performance of tests regarding the mentioned system. To verify its functioning some comparison of this measurement system with two others commercial data-acquisition system (Campbell and Hobo H8) has been carried out

  4. A microcontroller-based data-acquisition system for meteorological station monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Rosiek, S.; Batlles, F.J. [Dpto. Fisica Aplicada, Universidad de Almeria, 04120 Almeria (Spain)

    2008-12-15

    This paper presents a study of feasibility of different existing methodologies linked to field's data acquisition from remote meteorological stations. The data transmission serves to collect field's meteorological information, such as temperature, humidity and radiation. In our study the experimental data is registered in a weather station located about 100 km from the University of Almeria. Various existing techniques are studied, especially Radio, GSM (global system of mobile communication) and GPRS (general packet radio service). In the result of these studies has been designed a system of field's data acquisition (herein referred as Meteologger) which we are going to present in this paper. The system is based on an ATmega 16 microcontroller, which scans 8 sensors together at any programmable intervals. This paper presents the study of the mentioned project, application and some main characteristics of the prototype system and its program. We attempt to implement the system, and subsequently present the performance of tests regarding the mentioned system. To verify its functioning some comparison of this measurement system with two others commercial data-acquisition system (Campbell and Hobo H8) has been carried out. (author)

  5. Meteorological observations from Dauphin Island Sea Lab Weather Station 1974-1997 (NCEI Accession 0156662)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The DISL Weather Station collected twice daily meteorological observations at the east end of Dauphin Island, Alabama (30 degrees 14' 57" N, 88 degrees 04' 38" W)...

  6. Classifying urban meteorological stations sites by 'local climate zones': Preliminary results for the city of Novi Sad (Serbia

    Directory of Open Access Journals (Sweden)

    Savić Stevan

    2013-01-01

    Full Text Available Conventional approach in the investigation of urban climate of Novi Sad has been done through simple urban-rural air temperature differences. These inter-urban air temperature differences showed how much is city warmer than its surroundings, so-called urban heat island (UHI effect. Temperature differences exist inside the city as well. To get to know the intensity of these intra-urban temperature differences, installation of meteorological stations in different parts of the city or mobile measurements are needed. In 2012 started IPA HUSRB project made by Department of Climatology and Landscape Ecology (University of Szeged and Faculty of Sciences (University of Novi Sad. The main goal of this project is the development and installation of wireless urban meteorological network (temperature and relative humidity sensors in Szeged and Novi Sad. Before the deployment of sensors, necessary metadata about each potential urban meteorological station site needs to be collected. Field work, collected metadata and Stewart and Oke climate-based classification system from 2012 were used for defining the potential urban meteorological stations sites on the territory of the city of Novi Sad (Serbia and its surroundings.

  7. Supplemental report on population estimates for Hanford high-level defense waste draft programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Yandon, K.E.; Landstrom, D.K.

    1980-06-01

    Current and revised population projections based on those previously published in the document Population Distribution in 90-mile Radius of Hanford Meteorological Station and Projections to Year 2300 by Compass Sector and 10 Mile Radii are presented. In addition, there was a need to extend the population estimates out to 1000 and 10,000 years into the future to permit estimation of population radiation doses from accidents affecting the Hanford Facilities directly related to the defense high-level waste disposal alternatives. The methodology used in making the estimates is presented along with the detailed population matrix data required for performing the dose calculations. Although the near-term overall population projections are probably reasonably correct, no claim is made for the accuracy of the detailed data within each individual sector. Long-term estimates are made using reasonable assumptions about the growth potential and possibilities in the Hanford area. No claim of accuracy of these figures is made since they are so highly dependent on actions and conditions that are not predictable. For example, if a major climate change were to occur, the entire Hanford area might be uninhabited at 10,000 years in the future. To provide conservative dose estimates, it was assumed that the Hanford population will experience reasonable and continuous growth throughout the 10,000 year period

  8. Meteorological observations at Syowa Station, Antarctica, 2008 by the 49th Japanese Antarctic Research Expedition

    Directory of Open Access Journals (Sweden)

    Hideshi Yoshimi

    2013-07-01

    Full Text Available This report describes the result of meteorological observations at Syowa Station by the Meteorological Observation Team of the 49th Japanese Antarctic Research Expedition (JARE-49 during the period 1 February 2008 to 27 January 2009. The observation methods, instruments, and statistical methods used by the JARE-49 team are nearly the same as those used by the JARE-48 observation team. Remarkable weather phenomena observed during the period of JARE-49 are as follows. 1 On 1 September 2008, the record minimum temperature for September was observed in the upper atmosphere (pressure greater than 175 hPa. 2 The monthly mean temperature at Syowa Station during October 2008 was -17.5°C; this is the lowest monthly mean October temperature recorded at Syowa Station. 3 The total ozone over Syowa Station was less than or equal to 220 m atm-cm during the period from late August to late November, and was close to minimum levels during the period from mid-September to mid-October. The lowest total ozone in 2008, recorded on 16 October 2008, was 140 m atm-cm.

  9. Documentation of meteorological data from the coniferous forest biome primary station in Oregon.

    Science.gov (United States)

    R.H. Waring; H.R. Holbo; R.P. Bueb; R.L. Fredriksen

    1978-01-01

    As part of the International Biological Program, a primary meteorological station was installed in the west-central Cascade Range of Oregon. Short-wave solar radiation, air temperature, dewpoint temperature, windspeed, and precipitation are recorded continuously. Climatic data are summarized in a daily record available from May 11, 1972, to date. This report details...

  10. Differential turbidity at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Kleckner, E.W.; Michalsky, J.J.; Stokes, G.M.

    1980-01-01

    Experiments continued in FY 1979 to examine differential turbidity effects on insolation as measured at the earth's surface. These experiments are primarily intended to provide means for interpreting insolation-data assessment studies. These data are also valuable for inferring aerosol radiative or optical effects, which is an important consideration in evaluating inadvertent climate modification and visibility degradation as a result of aerosols. The experiments are characterized by frequent, nearly simultaneous observations at the Rattlesnake Mountain Observatory (RMO) and the Hanford Meteorological Station (HMS) and take advantage of the nearly 1-km altitude difference between these two observing sites. This study indicated that nearly simultaneous measurements of the direct solar beam from stationary sites that are separated in altitude can be used to monitor the incremental optical depth arising from aerosols in the intervening layer. Once appropriate calbiration procedures have been established for the MASP unit, the direct solar data can be used to document on a routine basis aerosol variations in the first kilometer between HMS and RMO

  11. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  12. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997 - March 31, 1997

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report

  13. Meteorological observations at Syowa Station, Antarctica, 2009 by the 50th Japanese Antarctic Research Expedition

    Directory of Open Access Journals (Sweden)

    Juhei Sugaya

    2014-07-01

    Full Text Available This report describes the results of meteorological observations carried out by the Meteorological Observation Team of the 50th Japanese Antarctic Research Expedition (JARE-50 at Syowa Station from February 2009 to January 2010. The observation methods, instruments, and statistical methods used by JARE-50 were similar to those used by JARE-49.  The most notable results are as follows.  1 Class-A blizzards, the heaviest storm class, were recorded 13 times. This frequency is the same as in 1978, which was the highest on record. A total of 29 blizzards (of various classes occurred in 2009, which is close to normal.  2 The maximum sustained wind speed of 47.4 m/s was recorded on 21 February 2009.  3 Tropospheric temperatures for May-July over Syowa Station were higher than normal, but temperatures in the lower stratosphere for August-October were lower than normal.  4 Total ozone over Syowa Station was less than 220 m atm-cm between the middle of August and the end of October. The minimum value in 2009 was 135 m atm-cm. Total ozone increased rapidly in November 2009 when the ozone-hole area decreased around Syowa Station.

  14. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  15. Hanford Site National Environmental Policy Act (NEPA) Characterization

    International Nuclear Information System (INIS)

    Cushing, C.E.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided

  16. Hanford quarterly seismic report - 97C seismicity on and near the Hanford Site, Pasco Basin, Washington. Quarterly report, April 1, 1997--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1997-08-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 100% and for stations of the EWRN was 99.99%. For fiscal year (FY) 1997 third quarter (97C), the acquisition computer triggered 183. Of these triggers twenty one were local earthquakes: sixteen in the Columbus River Basalt Group, one in the pre-basalt sediments, and four in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  17. Hanford annual second quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-06-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (ENN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the second quarter of FY98 for stations in the HSN was 99.92%. The operational rate for the second quarter of FY98 for stations of the EWRN was 99.46%. For the second quarter of FY98, the acquisition computer triggered 159 times. Of these triggers 14 were local earthquakes: 7 (50%) in the Columbia River Basalt Group, 3 (21%) in the pre-basalt sediments, and 4 (29%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant seismic event for the second quarter was on March 23, 1998 when a 1.9 Mc occurred near Eltopia, WA and was felt by local residents. Although this was a small event, it was felt at the surface and is an indication of the potential impact on Hanford of seismic events that are common to the Site.

  18. Hanford Site Climatological Data Summary 1999 with Historical Data

    International Nuclear Information System (INIS)

    Hoitink, Dana J; Burk, Kenneth W; Ramsdell, Jim V

    2000-01-01

    This document presents the climatological data measured at the Hanford Site for calendar year 1999. The information contained includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation and other meteorological parameters

  19. Potential Analysis of Thunderstorm Occurrence Using SWEAT Method at Meteorology Station Sultan Iskandar Muda

    Directory of Open Access Journals (Sweden)

    Ulfah Kurnia

    2018-01-01

    radiosonde data has been done on two monsoon, they are summer and winter to forecast potential occurrence of thunderstorm since period April-December 2016 and January-March 2017. The radiosonde data was got from Meteorological Station of Sultan Iskandar Muda that had been measured every two times a day. The measuring time is 00Z and 12Z. Radiosonde data is processed by Software Rawinsonde Observation (RAOB versi 5.7 until get information about the atmosphere parameters such as temperature, dew point, and wind speed. The atmosphere parameters can be used to forecast the potential occurrence of thunderstorm for the next twelve hours, using SWEAT (Severe Weather Threat method until get SWEAT Index for every radiosonde measurement. Based on the research that has been done, the range of SWEAT Index for Meteorological Station of Sultan Iskandar Muda area is about 39,8 - 355,4. The result of analysis SWEAT method verified with the actual data (synop data that is observed at Meteorological Station of Sultan Iskandar Muda and get the suitability of persentase between forecast data with actual condition is 58,62% - 66, 67%. Keyword: Thunderstorm, SWEAT Method, SWEAT Index, Synop Data, Meteorological REFERENCE Budiarti, M., Muslim, M., dan Ilhamsyah, Y. 2012. Studi Indeks Stabilitas Udara Terhadap Prediksi Kejadian Badai Guntur (Thunderstorm di Wilayah Stasiun Meteorologi Cengkareng Banten. Jurnal Meteorologi dan Geofisika Vol. 13 No. 2 tahun 2012 : 111-117. Duhah, S., Andrius, dan Tauladani, R. 2010. Penggunaan Metode SWEAT Untuk Perkiraan Kejadian Badai Guntur di Atas Kota Pekanbaru Pada Bulan Oktober Hingga November 2009. Jurnal Photon Vol. 1 No. 1. Fadholi, A. 2012. Analisa Kondisi Atmosfer pada Kejadian Cuaca Ekstrem Hujan Es (Hail. Jurnal Ilmu Fisika Indonesia Volume 1 Nomor 2 (D. Fitrianti, N., Fauziyah, A. R., dan Fadila, R. 2015. Analisa Pola Hidup dan Spasial Awan Cumulonimbus Menggunakan Citra Radar (Studi Kasus Wilayah Bima Bulan Januari 2015. Jurnal Meteorologi Klimatologi

  20. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed

  1. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn, SP Reidel, AC Rohay

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi~orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of zin earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.

  2. Hanford Site National Environmental Policy Act (NEPA) Characterization. Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  3. Radioactive contamination in the environs of the Hanford Works for the period April - May - June, 1948

    Energy Technology Data Exchange (ETDEWEB)

    Singlevich, W.

    1948-10-15

    This report summarizes the radioactive contamination measured at the Hanford Works and immediate plant areas for the quarter April, May, and June, 1948. Topics discussed are: Meteorology; airborne contamination; contamination in the Columbia and Yakima Rivers; and contamination in rain, drinking water, vegetation, and in Hanford Wastes.

  4. Hanford Site National Evnironmental Policy Act (NEPA) characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1991-12-01

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  5. Meteorological and hydrographic data collected from Cedar Point Station near Dauphin Island, Alabama from 2015-01-01 to 2015-12-31 (NCEI Accession 0159581)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains meteorological and hydrographic data from Ceder Point station. Meteorological data was collected every minute and hydrographic data was...

  6. Meteorological and hydrographic data collected from Bon Secour station in Mobile Bay, Alabama from 2015-01-01 to 2015-12-31 (NCEI Accession 0159584)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains meteorological and hydrographic data from Bon Secour station. Meteorological data was collected every minute and hydrographic data was...

  7. Meteorological and hydrographic data collected from Perdido Pass station near Gulf Shores, Alabama from 2015-01-01 to 2015-12-31 (NCEI Accession 0159579)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains meteorological and hydrographic data from Perdido Pass station. Meteorological data was collected every minute and hydrographic data was...

  8. Meteorological and hydrographic data collected from Katrina Cut Station near Dauphin Island, Alabama,from 2015-01-01 to 2015-12-31 (NCEI Accession 0159583)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains meteorological and hydrographic data from Katrina Cut station. Meteorological data was collected every minute and hydrographic data was...

  9. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 10

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A. [ed.; Fosmire, C.J.; Fowler, R.A. [and others

    1998-09-01

    This document describes the US Department of Energy`s (DOE) Hanford Site environment and is numbered to correspond to the chapters where such information is presented in Hanford Site NEPA related documents. The document is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents that are being prepared by contractors. The two chapters in this document (Chapters 4 and 6) are numbered this way to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes the Hanford Site environment, and includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site.

  10. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 10

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Fosmire, C.J.; Fowler, R.A.

    1998-09-01

    This document describes the US Department of Energy's (DOE) Hanford Site environment and is numbered to correspond to the chapters where such information is presented in Hanford Site NEPA related documents. The document is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents that are being prepared by contractors. The two chapters in this document (Chapters 4 and 6) are numbered this way to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes the Hanford Site environment, and includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site

  11. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Antonio, Ernest J.; Eschbach, Tara O.; Fowler, Richard A.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast, Ellen L.; Rohay, Alan C.; Thorne, Paul D.

    2001-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  12. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Duncan, Joanne P.; Eschbach, Tara O.; Fowler, Richard A.; Fritz, Brad G.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2002-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  13. Meteorological evaluation of multiple reactor contamination probabilities for a Hanford Nuclear Energy Center

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Diebel, D.I.

    1978-03-01

    The conceptual Hanford energy center is composed of nuclear power plants, hence the name Hanford Nuclear Energy Center (HNEC). Previous topical reports have covered a variety of subjects related to the HNEC including: electric power transmission, fuel cycle, and heat disposal. This report discusses the probability that a radiation release from a single reactor in the HNEC would contaminate other facilities in the center. The risks, in terms of reliability of generation, of this potential contamination are examined by Clark and Dowis

  14. Meteorological and hydrographic data collected from Middle Bay Light Station near Dauphin Island, Alabama, from 2015-01-01 to 2015-12-31 (NCEI Accession 0159585)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains meteorological and hydrographic data from Middle Bay Light station. Meteorological data was collected every minute and hydrographic data was...

  15. Extreme temperature indices analyses: A case study of five meteorological stations in Peninsular Malaysia

    Science.gov (United States)

    Hasan, Husna; Salleh, Nur Hanim Mohd

    2015-10-01

    Extreme temperature events affect many human and natural systems. Changes in extreme temperature events can be detected and monitored by developing the indices based on the extreme temperature data. As an effort to provide the understanding of these changes to the public, a study of extreme temperature indices is conducted at five meteorological stations in Peninsular Malaysia. In this study, changes in the means and extreme events of temperature are assessed and compared using the daily maximum and minimum temperature data for the period of 2004 to 2013. The absolute extreme temperature indices; TXx, TXn, TXn and TNn provided by Expert Team on Climate Change Detection and Indices (ETCCDI) are utilized and linear trends of each index are extracted using least square likelihood method. The results indicate that there exist significant decreasing trend in the TXx index for Kota Bharu station and increasing trend in TNn index for Chuping and Kota Kinabalu stations. The comparison between the trend in mean and extreme temperatures show the same significant tendency for Kota Bharu and Kuala Terengganu stations.

  16. Hanford Site National Environmental Policy Act (NEPA) Characterization Report

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2004-09-22

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the sixteenth revision of the original document published in 1988 and is (until replaced by the seventeenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety and health, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  17. Annual Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-12-29

    119 degrees and 120 degrees west longitude). The event was not reported as being felt on the Hanford Site or causing any damage and was communicated to the Pacific Northwest National Laboratory Operations Center per HSAP communi¬cations procedures. The event is not considered to be significant with regard to site safety and not unprecedented given the site’s seismic history. The Hanford strong motion accelerometer (SMA) stations at the 200 East Area, 300 Area, and 400 Area were triggered by the May 18 event. The maximum acceleration recorded at the SMA stations (0.17% at the 300 Area) was 12 times smaller than the reportable action level (2% g) for Hanford Site facilities.

  18. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, A.C.; Fosmire, C.J.; Neitzel, D.A.; Hoitink, D.J.; Harvey, D.W.; Antonio, E.J.; Wright, M.K.; Thorne, P.D.; Hendrickson, P.L.; Fowler, R.A.; Goodwin, S.M.; Poston, T.M.

    1999-09-28

    This document describes the US Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents being prepared by DOE contractors. No conclusions or recommendations are provided. This year's report is the eleventh revision of the original document published in 1988 and is (until replaced by the 12th revision) the only version that is relevant for use in the preparation of Hanford NEPA; SEPA and CERCLA documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomic; occupational safety, and noise. Sources for extensive tabular data related to these topics are provided in the chapter. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, of the 100,200,300, and other Areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) is essentially a definitive NEPA Chapter 6.0, which describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. People preparing environmental assessments and EISs should also be cognizant of the document entitled ''Recommendations for the Preparation of Environmental Assessments and Environmental Impact

  19. The Field Lysimeter Test Facility (FLTF) at the Hanford Site: Installation and initial tests

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.; Downs, J.L.; Campbell, M.D.

    1989-02-01

    The objectives of this program are to test barrier design concepts and to demonstrate a barrier design that meets established performance criteria for use in isolating wastes disposed of near-surface at the Hanford Site. Specifically, the program is designed to assess how well the barriers perform in controlling biointrusion, water infiltration, and erosion, as well as evaluating interactions between environmental variables and design factors of the barriers. To assess barrier performance and design with respect to infiltration control, field lysimeters and small- and large-scale field plots are planned to test the performance of specific barrier designs under actual and modified (enhanced precipitation) climatic conditions. The Field Lysimeter Test Facility (FLTF) is located in the 600 Area of the Hanford Site just east of the 200 West Area and adjacent to the Hanford Meteorological Station. The FLTF data will be used to assess the effectiveness of selected protective barrier configurations in controlling water infiltration. The facility consists of 14 drainage lysimeters (2 m dia x 3 m deep) and four precision weighing lysimeters (1.5 m x 1.5 m x 1.7 m deep). The lysimeters are buried at grade and aligned in a parallel configuration, with nine lysimeters on each side of an underground instrument chamber. The lysimeters were filled with materials to simulate a multilayer protective barrier system. Data gathered from the FLTF will be used to compare key barrier components and to calibrate and test models for predicting long-term barrier performance

  20. Design of a redundant meteorological station for a BWR reactor

    International Nuclear Information System (INIS)

    Ramirez S, R.; Celis del Angel, L.; Bucio, F.; Rivero, T.; Palacios, J.

    2008-01-01

    In this work the design of a meteorological station for a reactor type BWR is proposed. Two independent channels of data acquisition that allow him to have a bigger readiness is exposed. It is incorporate sensors without mobile parts to measure speed, wind direction and pluvial precipitation. It also counts, with sensors of global solar radiation, net radiation, barometric pressure, relative humidity and ambient temperature; with them they are possible to be calculated, moreover, other variables as temperature differential, dew point and atmospheric stability. The sensors are placed on a tower to different heights and send their information (each second) to a local registration system, the one which in turn, it remits the data to the monitoring office so that a computer is linked with the system, display and management the information in real time and automatic way. The redundant structure allows that in the event of maintenance the data acquisition is not interrupted, even if the information is transferred to another place. In all the station sections it is used protocols of standard communication to allow that a great quantity of devices can be connected without major problem. The above-mentioned would allow to the operators in the control room to have reliable information during the whole time of the reactor operation. (Author)

  1. Hanford Site National Evnironmental Policy Act (NEPA) characterization. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.

    1991-12-01

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  2. Hanford annual first quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-02-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY98 for stations in the HSN was 98.5%. The operational rate for the first quarter of FY98 for stations of the EWRN was 99.1%. For the first quarter of FY98, the acquisition computer triggered 184 times. Of these triggers 23 were local earthquakes: 7 in the Columbia River Basalt Group, and 16 in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant earthquakes in this quarter were a series of six events which occurred in the Cold Creek depression (approximately 4 km SW of the 200 West Area), between November 6 and November 11, 1997. All events were deep (> 15 km) and were located in the crystalline basement. The first event was the largest, having a magnitude of 3.49 M{sub c}. Two events on November 9, 1997 had magnitudes of 2.81 and 2.95 M{sub c}, respectively. The other events had magnitudes between 0.7 and 1.2 M{sub c}.

  3. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates

  4. Meteorological and hydrographic data collected from Dauphin Island Station near Dauphin Island, Alabama, Gulf of Mexico from 2015-01-01 to 2015-12-31 (NCEI Accession 0159582)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains meteorological and hydrographic data from Dauphin Island station. Meteorological data was collected every minute and hydrographic data was...

  5. Hanford Site National Environmental Policy Act (NEPA) Characterization, Revision 15

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Burk, Kenneth W.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Scott, Michael J.; Thorne, Paul D.; Woody, Dave M.

    2003-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  6. Meteorological instrumentation for nuclear facilities

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. An analysis of the problems associated with grounding of a typical meteorological station is presented. (Author) [pt

  7. Integrated environmental monitoring program at the Hanford Site

    International Nuclear Information System (INIS)

    Jaquish, R.E.

    1990-08-01

    The US Department of Energy's Hanford Site, north of Richland, Washington, has a mission of defense production, waste management, environmental restoration, advanced reactor design, and research development. Environmental programs at Hanford are conducted by Pacific Northwest Laboratory (PNL) and the Westinghouse Hanford Company (WHC). The WHC environmental programs include the compliance and surveillance activities associated with site operations and waste management. The PNL environmental programs address the site-wide and the of-site areas. They include the environmental surveillance and the associated support activities, such as dose calculations, and also the monitoring of environmental conditions to comply with federal and state environmental regulations on wildlife and cultural resources. These are called ''independent environmental programs'' in that they are conducted completely separate from site operations. The Environmental Surveillance and Oversight Program consists of the following projects: surface environmental surveillance; ground-water surveillance; wildlife resources monitoring; cultural resources; dose overview; radiation standards and calibrations; meteorological and climatological services; emergency preparedness

  8. Meteorological instrumentation for nuclear installations

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. Finally, it is presented an analysis of the problems associated with grounding of a typical meteorological station. (Author) [pt

  9. Third Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-09-01

    . The May 18 event, not reported as being felt on the Hanford site or causing any damage, was communicated to the PNNL Operations Center per HSAP communications procedures. The event is not considered to be significant with regard to site safety and not unprecedented given the site’s seismic history. The Hanford strong motion accelerometer (SMA) stations at the 200 East Area, 300 Area, and the 400 Area were triggered by the May 18 event. The reportable action level of 2% g for Hanford facilities is approximately 12 times larger than the peak acceleration (0.17%) observed at the 300 Area SMA station and no action was required.

  10. Final technical report: Atmospheric emission analysis for the Hanford Waste Vitrification plant

    International Nuclear Information System (INIS)

    Andrews, G.L.; Rhoads, K.C.

    1996-03-01

    This report is an assessment of chemical and radiological effluents that are expected to be released to the atmosphere from the Hanford Waste Vitrification Plant (HWVP). The report is divided into two sections. In the first section, the impacts of carbon monoxide (CO) and nitrogen oxides as NO 2 have been estimated for areas within the Hanford Site boundary. A description of the dispersion model used to-estimate CO and NO 2 average concentrations and Hanford Site meteorological data has been included in this section. In the second section, calculations were performed to estimate the potential radiation doses to a maximally exposed off-site individual. The model used to estimate the horizontal and vertical dispersion of radionuclides is also discussed

  11. The use of meteorological station in Science Park during May floods

    Science.gov (United States)

    Marković-Topalović, Tatjana; Božić, Mirjana; Stojićević, Goran

    2015-04-01

    A lot of educators and education process researchers have noticed and pointed out the need of broader learning space than a mere classroom, in learning physics and natural sciences. Many cognitive installations and didactic patterns for an extended school space have been proposed and implemented in schools [1, 2] and outdoor science parks [3]. From their side, school designers have argued that the learning environments can be more educationally and optimally useful if the architecture of the built, natural and cultural environment would be used as a teaching tool [4]. Through the merge of these two tendencies the concept of a school as a three-dimensional textbook was created [2]. The growing team of educators and researchers in Serbia [2] has been promoting this idea among students, teachers, and cultural and educational authorities, ranging from individual schools and municipality to state level, with emphasis on the school buildings investors and public. The net of schools and educational institutions has been implementing this concept [5]. Their activities have attracted the attention of newspapers and e-media [5]. The Science Park in Šabac, developed in the town in the vicinity of Belgrade, was completed in 2010. The Science Park is a part of the Center for professional advancement of educators (CSU) [6] that is surrounded by the eight-year Primary school, kindergarten, water tower and the church. Twenty-six interactive installations are connected to teaching units from all science subjects. For example: The periodic system of elements was placed on the building facade, the structure of graphene, sodium-chloride crystal structure, planetary model of atom (Chemistry) Pythagorean theorem, pyramid related to Tales doubt, golden ratio (Mathematics); model of DNA (Biology); globe-DING, educative fountain, brachistochrone, Newton's pendulum (Physics), the Greenwich meridian replica, sundial and meteorological station (Earth's science). During May 2014, when big

  12. Virtual Meteorological Center

    Directory of Open Access Journals (Sweden)

    Marius Brinzila

    2007-10-01

    Full Text Available A virtual meteorological center, computer based with Internet possibility transmission of the information is presented. Circumstance data is collected with logging field meteorological station. The station collects and automatically save data about the temperature in the air, relative humidity, pressure, wind speed and wind direction, rain gauge, solar radiation and air quality. Also can perform sensors test, analyze historical data and evaluate statistical information. The novelty of the system is that it can publish data over the Internet using LabVIEW Web Server capabilities and deliver a video signal to the School TV network. Also the system performs redundant measurement of temperature and humidity and was improved using new sensors and an original signal conditioning module.

  13. Meteorological Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multi-year summaries of one or more meteorological elements at a station or in a state. Primarily includes Form 1078, a United States Weather Bureau form designed...

  14. Standarized input for Hanford environmental impact statements. Part II: site description

    International Nuclear Information System (INIS)

    Jamison, J.D.

    1982-07-01

    Information is presented under the following section headings: summary description; location and physiography; geology; seismology; hydrology; meteorology; ecology; demography and land use; and radiological condition. Five appendixes are included on the 100N, 200 east, 200 west, 300, and 400 areas. This report is intended to provide a description of the Hanford Site against which the environmental impacts of new projects at Hanford can be assessed. It is expected that the summary description amplified with material from the appropriate appendix, will serve as the basic site description section of environmental impact statements prepared to address the requirements of the National Environmental Policy Act

  15. Hanford/Tomsk reciprocal site visit: Plutonium agreement compliance talks

    International Nuclear Information System (INIS)

    Libby, R.A.; Sorenson, R.; Six, D.; Schiegel, S.C.

    1994-11-01

    The objective of the visit to Hanford Site was to: demonstrate equipment, technology, and methods for calculating Pu production, measuring integrated reactor power, and storing and safeguarding PuO 2 ; demonstrate the shutdown of Hanford production reactors; and foster openness and transparency of Hanford operations. The first day's visit was an introduction to Hanford and a review of the history of the reactors. The second day consisted of discussions on the production reactors, reprocessing operations, and PuO 2 storage. The group divided on the third day to tour facilities. Group A toured the N reactor, K-West reactor, K-West Basins, B reactor, and participated in a demonstration and discussion of reactor modeling computer codes. Group B toured the Hanford Pu Storage Facility, 200-East Area, N-cell (oxide loadout station), the Automated Storage Facility, and the Nondestructive Assay Measurement System. Group discussions were held during the last day of the visit, which included scheduling of a US visit to Russia

  16. Meteorological Observations Available for the State of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-12

    The National Weather Service’s Meteorological Assimilation Data Ingest System (MADIS) contains a large number of station networks of surface and upper air meteorological observations for the state of Utah. In addition to MADIS, observations from individual station networks may also be available. It has been confirmed that LLNL has access to the data sources listed below.

  17. Comparison of methods for generating typical meteorological year using meteorological data from a tropical environment

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Deeyai, P. [Laboratory of Tropical Atmospheric Physics, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2009-04-15

    This paper presents the comparison of methods for generating typical meteorological year (TMY) data set using a 10-year period of meteorological data from four stations in a tropical environment of Thailand. These methods are the Sadia National Laboratory method, the Danish method and the Festa and Ratto method. In investigating their performance, these methods were employed to generate TMYs for each station. For all parameters of the TMYs and the stations, statistical test indicates that there is no significant difference between the 10-year average values of these parameters and the corresponding average values from TMY generated from each method. The TMY obtained from each method was also used as input data to simulate two solar water heating systems and two photovoltaic systems with different sizes at the four stations by using the TRNSYS simulation program. Solar fractions and electrical output calculated using TMYs are in good agreement with those computed employing the 10-year period hourly meteorological data. It is concluded that the performance of the three methods has no significant difference for all stations under this investigation. Due to its simplicity, the method of Sandia National Laboratories is recommended for the generation of TMY for this tropical environment. The TMYs developed in this work can be used for solar energy and energy conservation applications at the four locations in Thailand. (author)

  18. Standarized input for Hanford environmental impact statements. Part II: site description

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, J.D.

    1982-07-01

    Information is presented under the following section headings: summary description; location and physiography; geology; seismology; hydrology; meteorology; ecology; demography and land use; and radiological condition. Five appendixes are included on the 100N, 200 east, 200 west, 300, and 400 areas. This report is intended to provide a description of the Hanford Site against which the environmental impacts of new projects at Hanford can be assessed. It is expected that the summary description amplified with material from the appropriate appendix, will serve as the basic site description section of environmental impact statements prepared to address the requirements of the National Environmental Policy Act (NEPA).

  19. Environmental monitoring at Hanford for 1987

    International Nuclear Information System (INIS)

    Jacquish, R.E.; Mitchell, P.J.

    1988-05-01

    Envoronmental monitoring activities performed on the Hanford Site for 1987 are discussed in this report. Samples of environmental media were collected to determine radionuclide and chemical concentrations at locations in the geographical area. Results are discussed in detail in subsequent sections of this report. Surveillance of radioactivity in the Hanford vicinity during 1987 indicated concentrations well below applicable DOE and US Environmental Protection Agency (EPA) standards. Radioactive materials released from Hanford operations were generally indistinguishable above background in the offsite environment. Continued influence from the 1986 reactor accident at the Chernobyl Nuclear Power Station in the USSR was not apparent this year. Chemical concentrations in air were below applicable standards established by the EPA and the State of Washington. Chemicals detected in the ground water beneath the Site can be attributed to both Site operations and natural background levels. Several chemicals regulated by the EPA and the State of Washington exceeded EPA drinking water standards (DWS). 106 refs., 71 figs., 110 tabs

  20. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 7

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.; Baker, D.A.; Chamness, M.A. [and others

    1995-09-01

    This seventh revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology, hydrology, environmental monitoring, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors. Chapter 5.0 was not updated from the sixth revision (1994). It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE Orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  1. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.; Baker, D.A.; Chamness, M.A. [and others

    1994-08-01

    This sixth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors; Chapter 5.0 has been significantly updated from the fifth revision. It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions; The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be utilized directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  2. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 6

    International Nuclear Information System (INIS)

    Cushing, C.E.; Baker, D.A.; Chamness, M.A.

    1994-08-01

    This sixth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors; Chapter 5.0 has been significantly updated from the fifth revision. It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions; The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be utilized directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts

  3. Trends of ozone and Ox in Switzerland from 1992 to 2007: observations at selected stations of the NABEL, OASI (Ticino) and ANU (Graubuenden) networks corrected for meteorological variability. Final Report

    International Nuclear Information System (INIS)

    Keller, J.; Prevot, A.; Beguin, A.F.; Jutzi, V.; Ordonez, C.

    2008-11-01

    Long-term changes of ozone concentrations are influenced by a variety of quantities, in particular meteorological variables and emissions. In order to evaluate the contributions of regional emissions and of the background concentration to changes in observed ozone levels, the variability due to meteorology has to be removed. Ordonez et al. (2005) investigated the temporal evolution of tropospheric ozone over the Swiss Plateau using meteorological and air quality measurements taken at stations of the Swiss air quality networks NABEL and OSTLUFT. Time period was 1992 to 2002 including a discussion of the heat wave in summer 2003. The air quality measurements were corrected for meteorological influences on the basis of a multi-linear model approach. Despite the emission abatement measures of the last decades no significant decrease in ozone levels was observed. Air quality stations south of the Alps, which often act as a barrier for air mass exchange between south and north, were not included in the investigation. This study (a) includes all NABEL stations, (b) considers also southern air quality stations of the cantons Ticino (OASI) and Graubuenden (ANU), and (c) extends the time frame until 2007. The methodology of correcting ozone and O x = O 3 + NO 2 for meteorological variability is based on the ANalysis of COVAriance (ANCOVA). This approach assumes that the mixing ratios of O 3 and O x are multi-linear functions of selected meteorological quantities. The analysis is performed using the statistics package R, which supports the dependence on continuous variables (e.g. air temperature) as well as on discrete quantities (e.g. wind direction expressed in terms of discrete wind direction sectors). The following daily values of each station are considered in the analysis (examples): (i) Meteorological variables (averages): afternoon temperature, morning global irradiance, afternoon wind speed, etc. If no co-located meteorological data are available, data of the closest

  4. Meteorological and hydrographic monitoring data collected at Dauphin Island Station in Alabama from 1999-11-06 to 2001-03-01 (NODC Accession 0122658)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Meteorological and hydrographic data were collected from a monitoring station on Dauphin Island from Nov 1999 to Feb 2001. Variables measured include air...

  5. First Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-03-15

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. This includes three recently acquired Transportable Array stations located at Cold Creek, Didier Farms, and Phinney Hill. For the Hanford Seismic Network, ten local earthquakes were recorded during the first quarter of fiscal year 2009. All earthquakes were considered as “minor” with magnitudes (Mc) less than 1.0. Two earthquakes were located at shallow depths (less than 4 km), most likely in the Columbia River basalts; five earthquakes at intermediate depths (between 4 and 9 km), most likely in the sub-basalt sediments); and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, four earthquakes occurred in known swarm areas and six earthquakes were classified as random events.

  6. First Quarter Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-05-26

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. They also locate and identify sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consists of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY99 for stations in the HSN was 99.8%. There were 121 triggers during the first quarter of fiscal year 1999. Fourteen triggers were local earthquakes; seven (50%) were in the Columbia River Basalt Group, no earthquakes occurred in the pre-basalt sediments, and seven (50%) were in the crystalline basement. One earthquake (7%) occurred near or along the Horn Rapids anticline, seven earthquakes (50%) occurred in a known swarm area, and six earthquakes (43%) were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometer during the first quarter of FY99.

  7. Hanford Site National Environmental Policy Act (NEPA) Characterization Report, Revision 17

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Rohay, Alan C.; Sackschewsky, Michael R.; Scott, Michael J.; Thorne, Paul D.

    2005-09-30

    This document describes the U.S. Department of Energy’s (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many environmental documents being prepared by DOE contractors concerning the National Environmental Policy Act (NEPA). No statements about significance or environmental consequences are provided. This year’s report is the seventeenth revision of the original document published in 1988 and is (until replaced by the eighteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (EISs) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology; air quality; geology; hydrology; ecology; cultural, archaeological, and historical resources; socioeconomics; noise; and occupational health and safety. Sources for extensive tabular data related to these topics are provided in the chapter. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, of the 100, 200, 300, and other areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities

  8. Meteorological Data from the Russian Arctic, 1961-2000

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains monthly means of meteorological observation data from Russian stations from 1961-2000 (for most stations). The Russian station observations...

  9. A portable meteorological station plus nuclear radiation monitoring system using a basic-8052 micro-controller

    International Nuclear Information System (INIS)

    Al-Mohamad, A.; Aghabi, S.; Weiss, C.

    2002-01-01

    a portable meteorology station capable of measuring various atmospheric parameters (mainly ambient temperature, relative humidity, atmospheric pressure, wind speed and direction) was designed and built. The physical quantities were converted to electrical signals using suitable sensors. These signals were then processed and transferred to digital values to be stored in suitable memories. A nuclear radiation alarm system was also built, on the main board, to monitor the nuclear radiation releases levels. The system consists of three main parts: control board, data acquisition board and signals conditioning board. the overall system is controlled by a BASIC-8052 micro-controller. (authors)

  10. Trends of ozone and O{sub x} in Switzerland from 1992 to 2007: observations at selected stations of the NABEL, OASI (Ticino) and ANU (Graubuenden) networks corrected for meteorological variability. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Prevot, A. [Paul Scherrer Institut (PSI), Laboratory of Atmospheric Chemistry (LAC), Villigen (Switzerland); Beguin, A.F. [Swiss Federal Institute of Technology, Institute for Atmospheric and Climate Science (IAC), Zuerich (Switzerland); Jutzi, V. [Vincent Jutzi, Lausanne (Switzerland); Ordonez, C. [Met Office, Exeter EX1 3PB (United Kingdom)

    2008-11-15

    Long-term changes of ozone concentrations are influenced by a variety of quantities, in particular meteorological variables and emissions. In order to evaluate the contributions of regional emissions and of the background concentration to changes in observed ozone levels, the variability due to meteorology has to be removed. Ordonez et al. (2005) investigated the temporal evolution of tropospheric ozone over the Swiss Plateau using meteorological and air quality measurements taken at stations of the Swiss air quality networks NABEL and OSTLUFT. Time period was 1992 to 2002 including a discussion of the heat wave in summer 2003. The air quality measurements were corrected for meteorological influences on the basis of a multi-linear model approach. Despite the emission abatement measures of the last decades no significant decrease in ozone levels was observed. Air quality stations south of the Alps, which often act as a barrier for air mass exchange between south and north, were not included in the investigation. This study (a) includes all NABEL stations, (b) considers also southern air quality stations of the cantons Ticino (OASI) and Graubuenden (ANU), and (c) extends the time frame until 2007. The methodology of correcting ozone and O{sub x} = O{sub 3} + NO{sub 2} for meteorological variability is based on the ANalysis of COVAriance (ANCOVA). This approach assumes that the mixing ratios of O{sub 3} and O{sub x} are multi-linear functions of selected meteorological quantities. The analysis is performed using the statistics package R, which supports the dependence on continuous variables (e.g. air temperature) as well as on discrete quantities (e.g. wind direction expressed in terms of discrete wind direction sectors). The following daily values of each station are considered in the analysis (examples): (i) Meteorological variables (averages): afternoon temperature, morning global irradiance, afternoon wind speed, etc. If no co-located meteorological data are

  11. Radiation protection at the RA Reactor in 1998, Part -2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1998-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. Since April 15 1997 meteorology measurements, data acquisition and processing are done by automated meteorology station. The meteorology bulletin for the Vinca Institute is completed every day by computer codes developed by the meteorology staff in the Institute. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute [sr

  12. Radiation protection at the RA Reactor in 1999, Part -2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1999-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. Since April 15 1997 meteorology measurements, data acquisition and processing are done by automated meteorology station. The meteorology bulletin for the Vinca Institute is completed every day by computer codes developed by the meteorology staff in the Institute. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute [sr

  13. Radiation protection at the RA Reactor in 2000, Part 2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    2000-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. Since April 15, 1997 meteorology measurements, data acquisition and processing are done by automated meteorology station. The meteorology bulletin for the Vinca Institute is completed every day by computer codes developed by the meteorology staff in the Institute. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute [sr

  14. Hanford atmospheric dispersion data: 1960 through June 1967

    Energy Technology Data Exchange (ETDEWEB)

    Nickola, P.W.; Ramsdell, J.V.; Glantz, C.S.; Kerns, R.E.

    1983-11-01

    This volume presents dispersion and supporting meteorological data from experiments conducted over relatively flat terrain at Hanford, Washington from January 1960 through June 1967. The nature of the experiments, the sampling grids, and the tracer techniques used are described in the narrative portion of the document. Appendices contain the time-integrated concentrations for samplers within the plumes, summaries of the concentration distributions across the plumes, and wind and temperature profile data for each release period. 18 references, 7 figures, 3 tables.

  15. XOQDOQ: computer program for the meteorological evaluation of routine effluent releases at nuclear power stations. Final report

    International Nuclear Information System (INIS)

    Sagendorf, J.F.; Goll, J.T.; Sandusky, W.F.

    1982-09-01

    Provided is a user's guide for the US Nuclear Regulatory Commission's (NRC) computer program X0QDOQ which implements Regulatory Guide 1.111. This NUREG supercedes NUREG-0324 which was published as a draft in September 1977. This program is used by the NRC meteorology staff in their independent meteorological evaluation of routine or anticipated intermittent releases at nuclear power stations. It operates in a batch input mode and has various options a user may select. Relative atmospheric dispersion and deposition factors are computed for 22 specific distances out to 50 miles from the site for each directional sector. From these results, values for 10 distance segments are computed. The user may also select other locations for which atmospheric dispersion deposition factors are computed. Program features, including required input data and output results, are described. A program listing and test case data input and resulting output are provided

  16. Wavelet based correlation coefficient of time series of Saudi Meteorological Data

    International Nuclear Information System (INIS)

    Rehman, S.; Siddiqi, A.H.

    2009-01-01

    In this paper, wavelet concepts are used to study a correlation between pairs of time series of meteorological parameters such as pressure, temperature, rainfall, relative humidity and wind speed. The study utilized the daily average values of meteorological parameters of nine meteorological stations of Saudi Arabia located at different strategic locations. The data used in this study cover a period of 16 years between 1990 and 2005. Besides obtaining wavelet spectra, we also computed the wavelet correlation coefficients between two same parameters from two different locations and show that strong correlation or strong anti-correlation depends on scale. The cross-correlation coefficients of meteorological parameters between two stations were also calculated using statistical function. For coastal to costal pair of stations, pressure time series was found to be strongly correlated. In general, the temperature data were found to be strongly correlated for all pairs of stations and the rainfall data the least.

  17. Frequency modulator. Transmission of meteorological signals in LVC

    International Nuclear Information System (INIS)

    Rivero G, P.T.; Ramirez S, R.; Gonzalez M, J.L.; Rojas N, P.; Celis del Angel, L.

    2007-01-01

    The development of the frequency modulator and demodulator circuit for transmission of meteorological signals by means of fiber optics of the meteorology station to the nuclear reactor unit 1 in the Laguna Verde Central in Veracruz is described. (Author)

  18. Conceptual study

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H.

    1978-09-01

    This appendix is a compendium of topical reports prepared for the Hanford Nuclear Energy Center: Status Report: Conceptual Fuel Cycle Studies for the Hanford Nuclear Energy Center; Selection of Heat Disposal Methods for a Hanford Nuclear Energy Center; Station Service Power Supply for a Hanford Nuclear Energy Center (HNEC); Impact of a Hanford Nuclear Energy Center on Ground Level Fog and Humidity; A Review of Potential Technology for the Seismic Characterization of Nuclear Energy Centers; Reliability of Generation at a Hanford Nuclear Energy Center (HNEC); Meteorological Evaluation of Multiple Reactor Contamination Probabilities for a Hanford Nuclear Energy Center; Electric Power Transmission for a Hanford Nuclear Energy Center (HNEC); The Impact of a Hanford Nuclear Energy Center on Cloudiness and Insolation; and A Licensing Review for an HNEC.

  19. Conceptual study

    International Nuclear Information System (INIS)

    Harty, H.

    1978-09-01

    This appendix is a compendium of topical reports prepared for the Hanford Nuclear Energy Center: Status Report: Conceptual Fuel Cycle Studies for the Hanford Nuclear Energy Center; Selection of Heat Disposal Methods for a Hanford Nuclear Energy Center; Station Service Power Supply for a Hanford Nuclear Energy Center (HNEC); Impact of a Hanford Nuclear Energy Center on Ground Level Fog and Humidity; A Review of Potential Technology for the Seismic Characterization of Nuclear Energy Centers; Reliability of Generation at a Hanford Nuclear Energy Center (HNEC); Meteorological Evaluation of Multiple Reactor Contamination Probabilities for a Hanford Nuclear Energy Center; Electric Power Transmission for a Hanford Nuclear Energy Center (HNEC); The Impact of a Hanford Nuclear Energy Center on Cloudiness and Insolation; and A Licensing Review for an HNEC

  20. Meteorology in site operations

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    During the site selection and design phases of a plant, meteorological assistance must be based on past records, usually accumulated at stations not actually on the site. These preliminary atadvices will be averages and extremes that might be expected. After a location has been chosen and work has begun, current and forecast weather conditions become of immediate concern. On-site meteorological observations and forecasts have many applications to the operating program of an atomic energy site. Requirements may range from observations of the daily minimum temperatures to forecasts of radiation dosages from airborne clouds

  1. Temporal variations of reference evapotranspiration and its sensitivity to meteorological factors in Heihe River Basin, China

    OpenAIRE

    Zhao, Jie; Xu, Zong-xue; Zuo, De-peng; Wang, Xu-ming

    2015-01-01

    On the basis of daily meteorological data from 15 meteorological stations in the Heihe River Basin (HRB) during the period from 1959 to 2012, long-term trends of reference evapotranspiration (ET0) and key meteorological factors that affect ET0 were analyzed using the Mann-Kendall test. The evaporation paradox was also investigated at 15 meteorological stations. In order to explore the contribution of key meteorological factors to the temporal variation of ET0, a sensitivity coefficient method...

  2. Oceanographic station and other data from meteorological sensors, CTD, and bottle casts from numerous platforms and processed by NODC to the NODC standard Station Data II (SD2) Output Format from 1955-05-04 to 1986-09-24

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station and other data from meteorological sensors, CTD, and bottle casts from numerous platforms from 1955-05-04 to 1986-09-24. Data were processed by...

  3. Hanford Area 1990 population and 50-year projections

    International Nuclear Information System (INIS)

    Beck, D.M.; Scott, M.J.; Shindle, S.F.; Napier, B.A.; Thurman, A.G.; Batishko, N.C.; Davis, M.D.; Pittenger, D.B.

    1991-10-01

    The complex and comprehensive safety analysis activities carried out at Hanford for nonreactor nuclear facilities require data from a number of scientific and engineering disciplines. The types of data that are required include data pertaining to current population and population projections. The types of data found in this document include 1990 census totals for residential population within a 50-mile radius of the 100-N, 200, 300, and 400 Area meteorological towers. This document also contains 50-year projections for residential populations within a 50-mile radius of these four meteorological towers. The analysis of population projections indicates that residential population within a 50-mile radius of the four meteorological towers in question will continue to grow through 2040, although at a slower rate each decade. In all cases, the highest growth is projected for the decade ending in the year 2000. The annual growth rate for this period is projected to be 0.646, 0.633, 0.543, and 0.570 in the 100-N, 200, 300, and 400 Areas, respectively. By 2040, these growth rates are projected to drop to 0.082, 0.068, 0.078, 0.078, respectively. 4 refs., 1 figs., 4 tabs

  4. Radioactive contamination in the environs of the Hanford Works for the period October, November, December 1949

    Energy Technology Data Exchange (ETDEWEB)

    Paas, H.J.; Singlevich, W.

    1950-03-02

    This report summarizes the measurements made for radioactive contamination in the environs of the Hanford Works. The principal sources of the radioactivity originating as a result of operations at Hanford which affect the environment in this area are the two waste stacks in the separations area and the cooling water from the four pile areas. Measurements are also made on samples taken from the Hanford waste systems which are primarily confined within the project proper. Although monthly summaries of these data are reported in Health Instrument Divisions Environs reports, a somewhat more detailed discussion of these data is covered in the quarterly report. In this manner, a better evaluation of possible trends can be detected as a result of the increased number of measurements made available by combining the data for a three month period. The following areas are discussed: meteorology, radioactive contamination of vegetation, airborne contamination and air radiation levels, radioactive contamination in Hanford wastes, radioactive contamination in the Columbia and Yakima rivers; beta activity in rain and snow, and radioactive contamination in drinking water and test wells.

  5. Methods of Data Collection, Sample Processing, and Data Analysis for Edge-of-Field, Streamgaging, Subsurface-Tile, and Meteorological Stations at Discovery Farms and Pioneer Farm in Wisconsin, 2001-7

    Science.gov (United States)

    Stuntebeck, Todd D.; Komiskey, Matthew J.; Owens, David W.; Hall, David W.

    2008-01-01

    The University of Wisconsin (UW)-Madison Discovery Farms (Discovery Farms) and UW-Platteville Pioneer Farm (Pioneer Farm) programs were created in 2000 to help Wisconsin farmers meet environmental and economic challenges. As a partner with each program, and in cooperation with the Wisconsin Department of Natural Resources and the Sand County Foundation, the U.S. Geological Survey (USGS) Wisconsin Water Science Center (WWSC) installed, maintained, and operated equipment to collect water-quantity and water-quality data from 25 edge-offield, 6 streamgaging, and 5 subsurface-tile stations at 7 Discovery Farms and Pioneer Farm. The farms are located in the southern half of Wisconsin and represent a variety of landscape settings and crop- and animal-production enterprises common to Wisconsin agriculture. Meteorological stations were established at most farms to measure precipitation, wind speed and direction, air and soil temperature (in profile), relative humidity, solar radiation, and soil moisture (in profile). Data collection began in September 2001 and is continuing through the present (2008). This report describes methods used by USGS WWSC personnel to collect, process, and analyze water-quantity, water-quality, and meteorological data for edge-of-field, streamgaging, subsurface-tile, and meteorological stations at Discovery Farms and Pioneer Farm from September 2001 through October 2007. Information presented includes equipment used; event-monitoring and samplecollection procedures; station maintenance; sample handling and processing procedures; water-quantity, waterquality, and precipitation data analyses; and procedures for determining estimated constituent concentrations for unsampled runoff events.

  6. Jesuits' Contribution to Meteorology.

    Science.gov (United States)

    Udías, Agustín

    1996-10-01

    Starting in the middle of the nineteenth century, as part of their scientific tradition, Jesuits founded a considerable number of meteorological observatories throughout the world. In many countries, Jesuits established and maintained the first meteorological stations during the period from 1860 to 1950. The Jesuits' most important contribution to atmospheric science was their pioneer work related to the study and forecast of tropical hurricanes. That research was carried out at observatories of Belén (Cuba), Manila (Philippines), and Zikawei (China). B. Viñes, M. Decheyrens, J. Aigué, and C.E. Deppermann stood out in this movement.

  7. Fluor Hanford Project Focused Progress at Hanford

    International Nuclear Information System (INIS)

    HANSON, R.D.

    2000-01-01

    Fluor Hanford is making significant progress in accelerating cleanup at the Hanford site. This progress consistently aligns with a new strategic vision established by the U.S. Department of Energy's Richland Operations Office (RL)

  8. Meteorological data summaries for the TFTR from March 1984 to February 1985

    International Nuclear Information System (INIS)

    Kolibal, J.; Ku, L.P.; Liew, S.L.; Pierce, C.

    1985-06-01

    This report reviews the first year of meteorological data gathered for the Tokamak Fusion Test Reactor (TFTR) at Princeton Plasma Physics Laboratory (PPPL) from March 1, 1984 to February 28, 1985. The meteorological station at TFTR is located at D-Site, to the east of the motor generator building as shown in Fig. 1. The station consists of a 60 m tower which is instrumented at 10, 30, and 60 m along with the associated equipment for data acquisition and logging. Instrumentation for the tower consists of measuring the temperature, wind speed, wind direction, dew point, and the standard deviation of the horizontal wind direction. The purpose of the station is to gather site specific meteorological data to assess atmospheric transport and dispersion for TFTR

  9. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Directory of Open Access Journals (Sweden)

    Kazancı Selma Zengin

    2017-12-01

    Full Text Available In recent years, Global Navigation Satellite Systems (GNSS have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC in order to troposphere monitoring. The project titled “Using Regional GNSS Networks to Strengthen Severe Weather Prediction” was accepted to the scientifi c and technological research council of Turkey (TUBITAK. With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  10. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Science.gov (United States)

    Kazancı, Selma Zengin; Kayıkçı, Emine Tanır

    2017-12-01

    In recent years, Global Navigation Satellite Systems (GNSS) have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN) stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC) KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC) in order to troposphere monitoring. The project titled "Using Regional GNSS Networks to Strengthen Severe Weather Prediction" was accepted to the scientifi c and technological research council of Turkey (TUBITAK). With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  11. Waste management (Truck and rail shipments to Hanford)

    International Nuclear Information System (INIS)

    O'Donnell, J.P.; Culbertson, R.C.

    1988-01-01

    As part of the physical decommissioning of the Shippingport Atomic Power Station, Shippingport, PA, a large volume of Low Specific Activity (LSA) radioactive waste was accumulated. The waste, which consisted primarily of radioactive reactor plant components, piping, contaminated asbestos, tanks, building rubble, sludge and ion exchange resins was packaged and prepared for shipment. The waste was transported by truck and rail from Shippingport, PA, to the Department of Energy burial ground at Hanford, Washington, a journey of 2,329 miles. This presentation will discuss the successful management of over 2,600 packages weighing in excess of 3,600 tons of radioactive waste from the cradle-to-the-grave, that is from the time it was generated during the decommissioning process until its final burial at the Hanford, Washington burial site. 1 tab

  12. Meteorological circumstances during the 'Chernobyl-period'

    International Nuclear Information System (INIS)

    Ivens, R.; Lablans, W.N.; Wessels, H.R.A.

    1987-01-01

    The progress of the meteorological circumstances and air flows in Europe from 26th April up to 8th May 1986, which caused the spread of contaminated air originating from Chernobyl is outlined and mapped out. Furthermore a global survey is presented of the precipitation in the Netherlands during the period 2nd May to 10th May based on observations of various observation stations of the Royal Dutch Meteorologic Institute (KNMI). 11 figs.; 1 table (H.W.)

  13. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    International Nuclear Information System (INIS)

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization

  14. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  15. Diurnal and seasonal variations in surface methane at a tropical coastal station: Role of mesoscale meteorology.

    Science.gov (United States)

    Kavitha, M; Nair, Prabha R; Girach, I A; Aneesh, S; Sijikumar, S; Renju, R

    2018-08-01

    In view of the large uncertainties in the methane (CH 4 ) emission estimates and the large spatial gaps in its measurements, studies on near-surface CH 4 on regional basis become highly relevant. This paper presents the first time observational results of a study on the impacts of mesoscale meteorology on the temporal variations of near-surface CH 4 at a tropical coastal station, in India. It is based on the in-situ measurements conducted during January 2014 to August 2016, using an on-line CH 4 analyzer working on the principle of gas chromatography. The diurnal variation shows a daytime low (1898-1925ppbv) and nighttime high (1936-2022ppbv) extending till early morning hours. These changes are closely associated with the mesoscale circulations, namely Sea Breeze (SB) and Land Breeze (LB), as obtained through the meteorological observations, WRF simulations of the circulations and the diurnal variation of boundary layer height as observed by the Microwave Radiometer Profiler. The diurnal enhancement always coincides with the onset of LB. Several cases of different onset timings of LB were examined and results presented. The CH 4 mixing ratio also exhibits significant seasonal patterns being maximum in winter and minimum in pre-monsoon/monsoon with significant inter-annual variations, which is also reflected in diurnal patterns, and are associated with changing synoptic meteorology. This paper also presents an analysis of in-situ measured near-surface CH 4 , column averaged and upper tropospheric CH 4 retrieved by Atmospheric Infrared Sounder (AIRS) onboard Earth Observing System (EOS)/Aqua which gives insight into the vertical distribution of the CH 4 over the location. An attempt is also made to estimate the instantaneous radiative forcing for the measured CH 4 mixing ratio. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Index of Meteorological Observations Publication (Before 1890)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Index of meteorological observations in the United States made prior to January 1, 1890, organized by state. Includes station name, coordinates, elevation, period of...

  17. Nganyi Community Resource Centre: Community radio station ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-05-04

    May 4, 2016 ... To mark World Meteorological Day on March 23, 2015, the Kenya Meteorological Services (KMS) launched a resource centre and radio station in western Kenya to disseminate weather and climate information.

  18. Monitoring Forsmark. Meteorological monitoring at Forsmark, January-December 2010

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Cari; Jones, Joergen (Swedish Meteorological and Hydrological Institute (SMHI), Norrkoeping (Sweden))

    2011-01-15

    In the Forsmark area, SKB's meteorological monitoring started in 2003 at the sites Storskaeret and Hoegmasten. However, since July 1, 2007 measurements are only performed at Hoegmasten. Measured and calculated parameters at Hoegmasten are precipitation and corrected precipitation, air temperature, barometric pressure, wind speed and direction, air humidity, global radiation and potential evapotranspiration. The Swedish Meteorological and Hydrological Institute, SMHI, has been responsible for planning and design, as well as for the operation of the stations used for meteorological monitoring. In general, the quality of the meteorological measurements during the period concerned, starting January 1, 2010, and ending December 31, 2010, has shown to be good

  19. Hanford External Dosimetry Program

    International Nuclear Information System (INIS)

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs

  20. Hanford Site environmental setting data developed for the unit risk factor methodology in support of the Programmatic Environmental Impact Statement (PEIS)

    International Nuclear Information System (INIS)

    Schramke, J.A.; Glantz, C.S.; Holdren, G.R.

    1994-05-01

    This report describes the environmental settings identified for the Hanford Site in support of the US Department of Energy's (DOE's) Programmatic Environmental Impact Study (PEIS). The objective of the PEIS is to provide the public with information about the types of waste and contamination problems associated with major DOE facilities across the country and to assess the relative risks that these wastes pose to the public, onsite workers, and the environment. The environmental setting information consists of the site-specific data required to model (using the Multimedia Environmental Pollutant Assessment System) the atmospheric, groundwater, and surface-water transport of contaminants within the boundaries of the Hanford Site. The environmental setting data describes the climate, atmospheric dispersion, hydrogeology, and surface-water characteristics of the Site. The number of environmental settings developed for the Hanford Site was the fewest that could provide accurate results when used in the risk assessment modeling. Environmental settings for Hanford were developed in conjunction with local experts in the fields of meteorology, geology, hydrology, and geochemistry. Site experts participated in the initial development, fine-tuning, and final review of Hanford's PEIS environmental settings

  1. Temporal variations of reference evapotranspiration and its sensitivity to meteorological factors in Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2015-01-01

    Full Text Available On the basis of daily meteorological data from 15 meteorological stations in the Heihe River Basin (HRB during the period from 1959 to 2012, long-term trends of reference evapotranspiration (ET0 and key meteorological factors that affect ET0 were analyzed using the Mann-Kendall test. The evaporation paradox was also investigated at 15 meteorological stations. In order to explore the contribution of key meteorological factors to the temporal variation of ET0, a sensitivity coefficient method was employed in this study. The results show that: (1 mean annual air temperature significantly increased at all 15 meteorological stations, while the mean annual ET0 decreased at most of sites; (2 the evaporation paradox did exist in the HRB, while the evaporation paradox was not continuous in space and time; and (3 relative humidity was the most sensitive meteorological factor with regard to the temporal variation of ET0 in the HRB, followed by wind speed, air temperature, and solar radiation. Air temperature and solar radiation contributed most to the temporal variation of ET0 in the upper reaches; solar radiation and wind speed were the determining factors for the temporal variation of ET0 in the middle-lower reaches.

  2. Hanford wells

    International Nuclear Information System (INIS)

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details

  3. Hanford Nuclear Energy Center study

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H.

    1976-03-16

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants.

  4. Hanford Nuclear Energy Center study

    International Nuclear Information System (INIS)

    Harty, H.

    1976-01-01

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants

  5. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1993-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides an existing and future land use plan for the Hanford Site. The HSDP is updated annually in accordance with DOE Order 4320.1B, Site Development Planning, to reflect the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  6. Estimating water equivalent snow depth from related meteorological variables

    International Nuclear Information System (INIS)

    Steyaert, L.T.; LeDuc, S.K.; Strommen, N.D.; Nicodemus, M.L.; Guttman, N.B.

    1980-05-01

    Engineering design must take into consideration natural loads and stresses caused by meteorological elements, such as, wind, snow, precipitation and temperature. The purpose of this study was to determine a relationship of water equivalent snow depth measurements to meteorological variables. Several predictor models were evaluated for use in estimating water equivalent values. These models include linear regression, principal component regression, and non-linear regression models. Linear, non-linear and Scandanavian models are used to generate annual water equivalent estimates for approximately 1100 cooperative data stations where predictor variables are available, but which have no water equivalent measurements. These estimates are used to develop probability estimates of snow load for each station. Map analyses for 3 probability levels are presented

  7. Assessing measurement uncertainty in meteorology in urban environments

    International Nuclear Information System (INIS)

    Curci, S; Lavecchia, C; Frustaci, G; Pilati, S; Paganelli, C; Paolini, R

    2017-01-01

    Measurement uncertainty in meteorology has been addressed in a number of recent projects. In urban environments, uncertainty is also affected by local effects which are more difficult to deal with than for synoptic stations. In Italy, beginning in 2010, an urban meteorological network (Climate Network ® ) was designed, set up and managed at national level according to high metrological standards and homogeneity criteria to support energy applications. The availability of such a high-quality operative automatic weather station network represents an opportunity to investigate the effects of station siting and sensor exposure and to estimate the related measurement uncertainty. An extended metadata set was established for the stations in Milan, including siting and exposure details. Statistical analysis on an almost 3-year-long operational period assessed network homogeneity, quality and reliability. Deviations from reference mean values were then evaluated in selected low-gradient local weather situations in order to investigate siting and exposure effects. In this paper the methodology is depicted and preliminary results of its application to air temperature discussed; this allowed the setting of an upper limit of 1 °C for the added measurement uncertainty at the top of the urban canopy layer. (paper)

  8. Assessing measurement uncertainty in meteorology in urban environments

    Science.gov (United States)

    Curci, S.; Lavecchia, C.; Frustaci, G.; Paolini, R.; Pilati, S.; Paganelli, C.

    2017-10-01

    Measurement uncertainty in meteorology has been addressed in a number of recent projects. In urban environments, uncertainty is also affected by local effects which are more difficult to deal with than for synoptic stations. In Italy, beginning in 2010, an urban meteorological network (Climate Network®) was designed, set up and managed at national level according to high metrological standards and homogeneity criteria to support energy applications. The availability of such a high-quality operative automatic weather station network represents an opportunity to investigate the effects of station siting and sensor exposure and to estimate the related measurement uncertainty. An extended metadata set was established for the stations in Milan, including siting and exposure details. Statistical analysis on an almost 3-year-long operational period assessed network homogeneity, quality and reliability. Deviations from reference mean values were then evaluated in selected low-gradient local weather situations in order to investigate siting and exposure effects. In this paper the methodology is depicted and preliminary results of its application to air temperature discussed; this allowed the setting of an upper limit of 1 °C for the added measurement uncertainty at the top of the urban canopy layer.

  9. Relationship of infant and fetal mortality to operations at the Hanford Nuclear Reservation, Washington State, 1946-1982

    International Nuclear Information System (INIS)

    Cate, S.; Hansom, J.

    1986-01-01

    The relationship of infant and fetal mortality to numbers of nuclear reactors at the Hanford Nuclear Reservation was investigated. Mortality rates were obtained using 36 years of United States vital statistics data. Three different exposure groups were selected based on meteorologic studies of the Hanford area: group 1, counties downwind of Hanford all year; group 2, counties seasonally downwind; and group 3, counties not downwind. Washington state was used as an additional comparison group. Four periods of operation based on fluctuations in numbers of reactors were characterized. Log-linear analysis revealed that the three groups and Washington state had similar trends in infant mortality rates over the four time periods. On the other hand, the trend in fetal mortality rates for group 1 did differ significantly from trends for the two other groups and Washington state. The trends of fetal mortality rates for group 2, group 3, and Washington state were not statistically different. Fetal mortality rates in group 1, however, failed to decline from period 1 (1946-1954) to period 2 (1955-1964) as expected by the trends for the two groups and Washington state. During period 2, the greatest number of reactors were operating. County-specific analysis showed that, of the counties in group 1, the trend in fetal mortality for Benton County, where Hanford is located, was significantly different from that for Washington state. A possible link between Hanford and an excess in fetal deaths is suggested by the deviation in trend of group 1, which appears localized to Benton County and the period of peak activity at Hanford

  10. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and

  11. Reengineering Hanford

    International Nuclear Information System (INIS)

    Badalamente, R.V.; Carson, M.L.; Rhoads, R.E.

    1995-03-01

    The Department of Energy Richland Operations Office is in the process of reengineering its Hanford Site operations. There is a need to fundamentally rethink and redesign environmental restoration and waste management processes to achieve dramatic improvements in the quality, cost-effectiveness, and timeliness of the environmental services and products that make cleanup possible. Hanford is facing the challenge of reengineering in a complex environment in which major processes cuts across multiple government and contractor organizations and a variety of stakeholders and regulators have a great influence on cleanup activities. By doing the upfront work necessary to allow effective reengineering, Hanford is increasing the probability of its success

  12. Reengineering Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Badalamente, R.V.; Carson, M.L.; Rhoads, R.E.

    1995-03-01

    The Department of Energy Richland Operations Office is in the process of reengineering its Hanford Site operations. There is a need to fundamentally rethink and redesign environmental restoration and waste management processes to achieve dramatic improvements in the quality, cost-effectiveness, and timeliness of the environmental services and products that make cleanup possible. Hanford is facing the challenge of reengineering in a complex environment in which major processes cuts across multiple government and contractor organizations and a variety of stakeholders and regulators have a great influence on cleanup activities. By doing the upfront work necessary to allow effective reengineering, Hanford is increasing the probability of its success.

  13. Meteorological influences on coastal new particle formation

    NARCIS (Netherlands)

    Leeuw, G. de; Kunz, G.J.; Buzorius, G.; O`Dowd, C.D.

    2002-01-01

    The meteorological situation at the midlatitude coastal station of Mace Head, Ireland, is described based on observations during the New Particle Formation and Fate in the Coastal Environment (PARFORCE) experiments in September 1998 and June 1999. Micrometeorological sensors were mounted near the

  14. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1992-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides a land use plan for the Hanford Site and presents a picture of what is currently known and anticipated in accordance with DOE Order 4320.1B. Site Development Planning. The HSDP wig be updated annually as future decisions further shape the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  15. Development of regional meteorological and atmospheric diffusion simulation system

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Iwashige, Kengo; Kasano, Toshio

    2002-01-01

    Regional atmospheric diffusion online network (RADON) with atmospheric diffusion analysis code (ADAC) : a simulation program of diffusion of radioactive materials, volcanic ash, pollen, NOx and SOx was developed. This system can be executed in personal computer (PC) and note PC on Windows. Emission data consists of online, offline and default data. It uses the meteorology data sources such as meteorological forecasting mesh data, automated meteorological data acquisition system (AMeDAS) data, meteorological observation data in site and municipality observation data. The meteorological forecasting mesh data shows forecasting value of temperature, wind speed, wind direction and humidity in about two days. The nuclear environmental monitoring center retains the online data (meteorological data, emission source data, monitoring station data) in its PC server and can run forecasting or repeating calculation using these data and store and print out the calculation results. About 30 emission materials can be calculated simultaneously. This system can simulate a series of weather from the past and real time to the future. (S.Y.)

  16. Research on Application of Automatic Weather Station Based on Internet of Things

    Science.gov (United States)

    Jianyun, Chen; Yunfan, Sun; Chunyan, Lin

    2017-12-01

    In this paper, the Internet of Things is briefly introduced, and then its application in the weather station is studied. A method of data acquisition and transmission based on NB-iot communication mode is proposed, Introduction of Internet of things technology, Sensor digital and independent power supply as the technical basis, In the construction of Automatic To realize the intelligent interconnection of the automatic weather station, and then to form an automatic weather station based on the Internet of things. A network structure of automatic weather station based on Internet of things technology is constructed to realize the independent operation of intelligent sensors and wireless data transmission. Research on networking data collection and dissemination of meteorological data, through the data platform for data analysis, the preliminary work of meteorological information publishing standards, networking of meteorological information receiving terminal provides the data interface, to the wisdom of the city, the wisdom of the purpose of the meteorological service.

  17. Hanford wells

    International Nuclear Information System (INIS)

    McGhan, V.L.; Myers, D.A.; Damschen, D.W.

    1976-03-01

    The Hanford Reservation contains about 2100 wells constructed from pre-Hanford Works to the present. As of Jan. 1976, about 1800 wells still exist, 850 of which were drilled to the groundwater table; 700 still contain water. This report provides the most complete documentation of these wells and supersedes all previous compilations, including BNWL-1739

  18. Atmospheric transport and dispersion modeling for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1991-07-01

    Radiation doses that may have resulted from operations at the Hanford Site are being estimated in the Hanford Environmental Dose Reconstruction (HEDR) Project. One of the project subtasks, atmospheric transport, is responsible for estimating the transport, diffusion and deposition of radionuclides released to the atmosphere. This report discusses modeling transport and diffusion in the atmospheric pathway. It is divided into three major sections. The first section of the report presents the atmospheric modeling approach selected following discussion with the Technical Steering Panel that directs the HEDR Project. In addition, the section discusses the selection of the MESOI/MESORAD suite of atmospheric dispersion models that form the basis for initial calculations and future model development. The second section of the report describes alternative modeling approaches that were considered. Emphasis is placed on the family of plume and puff models that are based on Gaussian solution to the diffusion equations. The final portion of the section describes the performance of various models. The third section of the report discusses factors that bear on the selection of an atmospheric transport modeling approach for HEDR. These factors, which include the physical setting of the Hanford Site and the available meteorological data, serve as constraints on model selection. Five appendices are included in the report. 39 refs., 4 figs., 2 tabs

  19. Meteorology during the DOMINO campaign and its connection with trace gases and aerols

    NARCIS (Netherlands)

    Adame, J.A.; Martinez, M.; Sorribas, M.; Hidalgo, P.J.; Vilà-Guerau de Arellano, J.

    2014-01-01

    The DOMINO (Diel Oxidant Mechanisms in relation to Nitrogen Oxides) campaign was carried out from 21 November to 8 December 2008 at the El Arenosillo station (SW of Spain) in a coastal-rural environment. The main weather conditions are analysed using local meteorological variables, meteorological

  20. Radiation protection at the RA Reactor in 1993, Part 4: meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1993-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. It is foreseen that these measurements should be automated, but up to this moment daily meteorology reports are completed by a computer but the data collection and input are still done manually. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute. Computer codes for these data processing were developed by the meteorology staff in the Institute. Data are collected 24 times per day [sr

  1. Meteorological measurements performed at the Saclay Centre of Nuclear Studies, and used equipment

    International Nuclear Information System (INIS)

    Levrard, A.

    1960-01-01

    This note first recalls the objective of meteorological measurements performed at the CENS station atmospheric radioactivity control station. It briefly recalls some definitions and notions in meteorology: atmosphere vertical structure, atmospheric humidity, atmospheric pressure, weather fronts and passage of disturbances, cloud systems. It indicates measurements performed on a daily basis (temperature in the shelter, minimum and maximum temperature, relative humidity, dew point temperature, atmospheric pressure, soil condition, present weather, visibility, past weather, cloudiness, precipitations, miscellaneous phenomena), recorded measurements (wind strength and direction, atmospheric pressure, relative humidity, temperature, pluviometry), while indicating and presenting corresponding measurement devices

  2. Meteorological safeguarding of nuclear power plant operation in Czechoslovakia

    International Nuclear Information System (INIS)

    Rak, J.; Skulec, S.

    1976-01-01

    A meteorological tower 200 m high has to be built for meteorological control of the operation of the A-1 nuclear power plant at Jaslovske Bohunice. This meteorological station will measure the physical properties of the lower layers of the atmosphere, carry out experimental verifications of the models of air pollution, investigate the effects of waste heat and waste water from the nuclear power plant on the microclimate, provide the theoretical processing of measured data with the aim of selecting the most favourable model for conditions prevailing in the Czechoslovak Socialist Republic, perform basic research of the physical properties of the ground and boundary layers of the atmosphere and the coordination of state-wide plans in the field of securing the operation of nuclear power plants with regard to meteorology. (Z.M.)

  3. Historical genesis of Hanford Site wastes

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1991-01-01

    This paper acquaints the audience with historical waste practices and policies as they changed over the years at the Hanford Site, and with the generation of the major waste streams of concern in Hanford Site clean-up today. The paper also describes the founding and basic operating history of the Hanford Site, including World War 11 construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), and some past suggestions and efforts to chemically treat, open-quotes fractionate,close quotes and/or immobilize Hanford's wastes. Recent events, including the designation of the Hanford Site as the open-quotes flagshipclose quotes of Department of Energy (DOE) waste remediation efforts and the signing of the landmark Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), have generated new interest in Hanford's history. Clean-up milestones dictated in this agreement demand information about how, when, in what quantities and mixtures, and under what conditions, Hanford Site wastes were generated and released. This paper presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  4. Managing risk at Hanford

    International Nuclear Information System (INIS)

    Hesser, W.A.; Stillwell, W.G.; Rutherford, W.A.

    1994-01-01

    Clearly, there is sufficient motivation from Washington for the Hanford community to pay particular attention to the risks associated with the substantial volumes of radiological, hazardous, and mixed waste at Hanford. But there is also another reason for emphasizing risk: Hanford leaders have come to realize that their decisions must consider risk and risk reduction if those decisions are to be technically sound, financially affordable, and publicly acceptable. The 560-square miles of desert land is worth only a few thousand dollars an acre (if that) -- hardly enough to justify the almost two billion dollars that will be spent at Hanford this year. The benefit of cleaning up the Hanford Site is not the land but the reduction of potential risk to the public and the environment for future generations. If risk reduction is our ultimate goal, decisions about priority of effort and resource allocation must consider those risks, now and in the future. The purpose of this paper is to describe how Hanford is addressing the issues of risk assessment, risk management, and risk-based decision making and to share some of our experiences in these areas

  5. Quasi-periodic oscillations of aerosol backscatter profiles and surface meteorological parameters during winter nights over a tropical station

    Directory of Open Access Journals (Sweden)

    M. G. Manoj

    2011-03-01

    Full Text Available Atmospheric gravity waves, which are a manifestation of the fluctuations in buoyancy of the air parcels, are well known for their direct influence on concentration of atmospheric trace gases and aerosols, and also on oscillations of meteorological variables such as temperature, wind speed, visibility and so on. The present paper reports quasi-periodic oscillations in the lidar backscatter signal strength due to aerosol fluctuations in the nocturnal boundary layer, studied with a high space-time resolution polarimetric micro pulse lidar and concurrent meteorological parameters over a tropical station in India. The results of the spectral analysis of the data, archived on some typical clear-sky conditions during winter months of 2008 and 2009, exhibit a prominent periodicity of 20–40 min in lidar-observed aerosol variability and show close association with those observed in the near-surface temperature and wind at 5% statistical significance. Moreover, the lidar aerosol backscatter signal strength variations at different altitudes, which have been generated from the height-time series of the one-minute interval profiles at 2.4 m vertical resolution, indicate vertical propagation of these waves, exchanging energy between lower and higher height levels. Such oscillations are favoured by the stable atmospheric background condition and peculiar topography of the experimental site. Accurate representation of these buoyancy waves is essential in predicting the sporadic fluctuations of weather in the tropics.

  6. FLUOR HANFORD (FH) MAKES CLEANUP A REALITY IN NEARLY 11 YEARS AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M.S.

    2007-05-24

    For nearly 11 years, Fluor Hanford has been busy cleaning up the legacy of nuclear weapons production at one of the Department of Energy's (DOE'S) major sites in the United States. As prime nuclear waste cleanup contractor at the vast Hanford Site in southeastern Washington state, Fluor Hanford has changed the face of cleanup. Fluor beginning on October 1, 1996, Hanford Site cleanup was primarily a ''paper exercise.'' The Tri-Party Agreement, officially called the Hanford Federal Facility Agreement and Consent Order - the edict governing cleanup among the DOE, U.S. Environmental Protection Agency (EPA) and Washington state - was just seven years old. Milestones mandated in the agreement up until then had required mainly waste characterization, reporting, and planning, with actual waste remediation activities off in the future. Real work, accessing waste ''in the field'' - or more literally in huge underground tanks, decaying spent fuel POO{approx}{approx}S, groundwater, hundreds of contaminated facilities, solid waste burial grounds, and liquid waste disposal sites -began in earnest under Fluor Hanford. The fruits of labors initiated, completed and/or underway by Fluor Hanford can today be seen across the site. Spent nuclear fuel is buttoned up in secure, dry containers stored away from regional water resources, reactive plutonium scraps are packaged in approved containers, transuranic (TRU) solid waste is being retrieved from burial trenches and shipped offsite for permanent disposal, contaminated facilities are being demolished, contaminated groundwater is being pumped out of aquifers at record rates, and many other inventive solutions are being applied to Hanford's most intransigent nuclear wastes. (TRU) waste contains more than 100 nanocuries per gram, and contains isotopes higher than uranium on the Periodic Table of the Elements. (A nanocurie is one-billionth of a curie.) At the same time, Fluor Hanford

  7. Assembling Typical Meteorological Year Data Sets for Building Energy Performance Using Reanalysis and Satellite-Based Data

    Directory of Open Access Journals (Sweden)

    Thomas Huld

    2018-02-01

    Full Text Available We present a method to generate Typical Meteorological Year (TMY data sets for use in calculations of the energy performance of buildings, based on satellite derived solar radiation data and other meteorological parameters obtained from reanalysis products. The great advantage of this method is the availability of data over large geographical regions, giving global coverage for the reanalysis and continental-scale coverage for the solar radiation data, making it possible to generate TMY data for nearly any location, independent of the availability of meteorological measurement stations in the area. The TMY data generated with this method have been validated against 487 meteorological stations in Europe, by calculating heating and cooling degree days, and by running building energy performance simulations using EnergyPlus. Results show that the generated data sets using a long time series perform better than the TMY data generated from station measurements for building heating calculations and nearly as well for cooling calculations, with relative standard deviations remaining below 6% for heating calculations. TMY data constructed using the proposed method yield somewhat larger deviations compared to TMY data constructed from station data. We outline a number of possibilities for further improvement using data sets that will become available in the near future.

  8. Hanford Site Infrastructure Plan

    International Nuclear Information System (INIS)

    1990-01-01

    The Hanford Site Infrastructure Plan (HIP) has been prepared as an overview of the facilities, utilities, systems, and services that support all activities on the Hanford Site. Its purpose is three-fold: to examine in detail the existing condition of the Hanford Site's aging utility systems, transportation systems, Site services and general-purpose facilities; to evaluate the ability of these systems to meet present and forecasted Site missions; to identify maintenance and upgrade projects necessary to ensure continued safe and cost-effective support to Hanford Site programs well into the twenty-first century. The HIP is intended to be a dynamic document that will be updated accordingly as Site activities, conditions, and requirements change. 35 figs., 25 tabs

  9. Determination of User Distribution Image Size and Position of Each Observation Area of Meteorological Imager in COMS

    Directory of Open Access Journals (Sweden)

    Jeong-Soo Seo

    2006-12-01

    Full Text Available In this paper, requirements of Meteorological Administration about Meteorological Imager (MI of Communications, Ocean and Meteorological Satellite (COMS is analyzed for the design of COMS ground station and according to the analysis results, the distribution image size of each observation area suitable for satellite Field Of View (FOV stated at the requirements of meteorological administration is determined and the precise satellite FOV and the size of distribution image is calculated on the basis of the image size of the determined observation area. The results in this paper were applied to the detailed design for COMS ground station and also are expected to be used for the future observation scheduling and the scheduling of distribution of user data.

  10. Extreme value analysis of meteorological parameters observed during the period 1994-2001 at Kakrapar Atomic Power Station

    International Nuclear Information System (INIS)

    Ramkumar, S.; Dole, M.L.; Nankar, D.P.; Rajan, M.P.; Gurg, R.P.

    2003-01-01

    In the design of engineering structures, an understanding of extreme weather conditions that may occur at the site of interest is very essential, so that the structures can be designed to withstand such situations. In this report an analysis of extreme values of meteorological parameters observed at Kakrapar Atomic Power Station site for the period 1994 -2001 is described. The parameters considered are maximum and minimum air temperature, maximum wind speed and gust, and maximum rainfall in a month, in a day, in an hour and annual rainfall. The extreme value analysis reveals that annual rainfall, maximum monthly rainfall, minimum air temperature and maximum wind speed at 10 m obey Fisher-Tippet Type -1 distribution whereas maximum daily rainfall, maximum hourly rainfall, maxinlum air temperature and maximum wind speed at 30 m obey Fisher-Tippet Type -2 distribution function. There is no difference in correlation coefficients and fit both extreme value distribution function. Co-efficients of the distribution functions for each variable are established. Extreme values of parameters corresponding to return periods of 50 and 100 years are derived. These derived extreme values are particularly useful for arriving at suitable design basis values to ensure the safety of any civil structure in and around Kakrapar Atomic Power Station site with respect to stresses due to weather conditions. (author)

  11. Review of Hanford international activities

    International Nuclear Information System (INIS)

    Panther, D.G.

    1993-01-01

    Hanford initiated a review of international activities to collect, review, and summarize information on international environmental restoration and waste management initiatives considered for use at Hanford. This effort focused on Hanford activities and accomplishments, especially international technical exchanges and/or the implementation of foreign-developed technologies

  12. Final Hanford Comprehensive Land-Use Plan Environmental Impact Statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-10-01

    This Final ''Hanford Comprehensive Land-Use Plan Environmental Impact Statement'' (HCP EIS) is being used by the Department of Energy (DOE) and its nine cooperating and consulting agencies to develop a comprehensive land-use plan (CLUP) for the Hanford Site. The DOE will use the Final HCP EIS as a basis for a Record of Decision (ROD) on a CLUP for the Hanford Site. While development of the CLUP will be complete with release of the HCP EIS ROD, full implementation of the CLUP is expected to take at least 50 years. Implementation of the CLUP would begin a more detailed planning process for land-use and facility-use decisions at the Hanford Site. The DOE would use the CLUP to screen proposals. Eventually, management of Hanford Site areas would move toward the CLUP land-use goals. This CLUP process could take more than 50 years to fully achieve the land-use goals.

  13. GPS IPW as a Meteorological Parameter and Climate Global Change Indicator

    Science.gov (United States)

    Kruczyk, M.; Liwosz, T.

    2011-12-01

    Paper focuses on comprehensive investigation of the GPS derived IPW (Integrated Precipitable Water, also IWV) as a geophysical tool. GPS meteorology is now widely acknowledged indirect method of atmosphere sensing. First we demonstrate GPS IPW quality. Most thorough inter-technique comparisons of directly measured IPW are attainable only for some observatories (note modest percentage of GPS stations equipped with meteorological devices). Nonetheless we have managed to compare IPW series derived from GPS tropospheric solutions (ZTD mostly from IGS and EPN solutions) and some independent techniques. IPW values from meteorological sources we used are: radiosoundings, sun photometer and input fields of numerical weather prediction model. We can treat operational NWP models as meteorological database within which we can calculate IWV for all GPS stations independently from network of direct measurements (COSMO-LM model maintained by Polish Institute of Meteorology and Water Management was tried). Sunphotometer (CIMEL-318, Central Geophysical Observatory IGF PAS, Belsk, Poland) data seems the most genuine source - so we decided for direct collocation of GPS measurements and sunphotometer placing permanent GPS receiver on the roof of Belsk Observatory. Next we analyse IPW as geophysical parameter: IPW demonstrates some physical effects evoked by station location (height and series correlation coefficient as a function of distance) and weather patterns like dominant wind directions (in case of neighbouring stations). Deficiency of surface humidity data to model IPW is presented for different climates. This inadequacy and poor humidity data representation in NWP model extremely encourages investigating information exchange potential between Numerical Model and GPS network. The second and most important aspect of this study concerns long series of IPW (daily averaged) which can serve as climatological information indicator (water vapour role in climate system is hard to

  14. Meteorology observations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    Meteorological data was collected in the Athabasca oil sands area of Alberta in support of Syncrude' application for approval to develop and operate the Aurora Mine. Meteorology controls the transport and dispersion of gaseous and particulate emissions which are vented into the atmosphere. Several meteorological monitoring stations have been set up in the Fort McMurray and Fort McKay area. The study was part of Suncor's commitment to Alberta Environmental Protection to substantially reduce SO 2 emissions by July 1996. Also, as a condition of approval of the proposed Aurora Mine, the company was required to develop additional ambient air quality, sulphur deposition and biomonitoring programs. Background reports were prepared for: (1) source characterization, (2) ambient air quality observations, (3) meteorology observations, and (4) air quality monitoring. The following factors were incorporated into dispersion modelling: terrain, wind, turbulence, temperature, net radiation and mixing height, relative humidity and precipitation. 15 refs., 9 tabs., 40 figs

  15. Hanford Emergency Response Plan

    International Nuclear Information System (INIS)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures

  16. Hanford Emergency Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures.

  17. Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan

    International Nuclear Information System (INIS)

    1993-12-01

    This document is the FY 1993 report on Hanford Site-specific science and technology (S ampersand T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford's highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S ampersand T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ''problem owners'' (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S ampersand T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders

  18. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    2000-10-01

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  19. Radiation protection at the RA Reactor in 1992, Part -2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1992-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. It is foreseen that these measurements should be automated, but up to this moment daily meteorology reports are completed by a computer but the data collection and input are still done manually. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute. Computer codes for these data processing were developed by the meteorology staff in the Institute. Data are collected 24 times per day [sr

  20. Radiation protection at the RA Reactor in 1991, Part -2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1995-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. It is foreseen that these measurements should be automated, but up to this moment daily meteorology reports are completed by a computer but the data collection and input are still done manually. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute. Computer codes for these data processing were developed by the meteorology staff in the Institute. Data are collected 24 times per day [sr

  1. Radiation protection at the RA Reactor in 1991, Part 2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1992-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. It is foreseen that these measurements should be automated, but up to this moment daily meteorology reports are completed by a computer but the data collection and input are still done manually. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute. Computer codes for these data processing were developed by the meteorology staff in the Institute. Data are collected 24 times per day [sr

  2. Radiation protection at the RA Reactor in 1994. Part 2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1994-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. It is foreseen that these measurements should be automated, but up to this moment daily meteorology reports are completed by a computer but the data collection and input are still done manually. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute. Computer codes for these data processing were developed by the meteorology staff in the Institute. Data are collected 24 times per day [sr

  3. Hanford Site technical baseline database. Revision 1

    International Nuclear Information System (INIS)

    Porter, P.E.

    1995-01-01

    This report lists the Hanford specific files (Table 1) that make up the Hanford Site Technical Baseline Database. Table 2 includes the delta files that delineate the differences between this revision and revision 0 of the Hanford Site Technical Baseline Database. This information is being managed and maintained on the Hanford RDD-100 System, which uses the capabilities of RDD-100, a systems engineering software system of Ascent Logic Corporation (ALC). This revision of the Hanford Site Technical Baseline Database uses RDD-100 version 3.0.2.2 (see Table 3). Directories reflect those controlled by the Hanford RDD-100 System Administrator. Table 4 provides information regarding the platform. A cassette tape containing the Hanford Site Technical Baseline Database is available

  4. Dynamics of meteorological and hydrological droughts in the Neman river basin

    International Nuclear Information System (INIS)

    Rimkus, Egidijus; Stonevičius, Edvinas; Kažys, Justas; Valiuškevičius, Gintaras; Korneev, Vladimir; Pakhomau, Aliaksandr

    2013-01-01

    The analysis of drought dynamics in the Neman river basin allows an assessment of extreme regional climate changes. Meteorological and hydrological warm period droughts were analyzed in this study. Meteorological droughts were identified using the standardized precipitation index, and hydrological droughts using the streamflow drought index. The whole river basin was analyzed over the period from 1961 to 2010. Precipitation data from Vilnius meteorological station (from 1887) and discharge data from Smalininkai (Neman) hydrological station (from 1811) were used for an evaluation of meteorological and hydrological drought recurrence over a long-term period. It was found that the total area dryness has decreased over the last 50 years. A statistically significant increase in standardized precipitation index values was observed in some river sub-basins. An analysis of drought recurrence dynamics showed that there was no indication that the number of dangerous drought was increased. It was determined that the standardized precipitation index cannot successfully identify the hydrological summer droughts in an area where the spring snowmelt forms a large part of the annual flow. In particular, the weak relationship between the indices was recorded in the first half of the summer, when a large part of the river runoff depends on accumulated water during the spring thaw. (letter)

  5. The Hanford Site: An anthology of early histories

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1993-10-01

    This report discusses the following topics: Memories of War: Pearl Harbor and the Genesis of the Hanford Site; safety has always been promoted at the Hanford Site; women have an important place in Hanford Site history; the boom and bust cycle: A 50-year historical overview of the economic impacts of Hanford Site Operations on the Tri-Cities, Washington; Hanford`s early reactors were crucial to the sites`s history; T-Plant made chemical engineering history; the UO{sub 3} plant has a long history of service. PUREX Plant: the Hanford Site`s Historic Workhorse. PUREX Plant Waste Management was a complex challenge; and early Hanford Site codes and jargon.

  6. Simulating air temperature in an urban street canyon in all weather conditions using measured data at a reference meteorological station

    Science.gov (United States)

    Erell, E.; Williamson, T.

    2006-10-01

    A model is proposed that adapts data from a standard meteorological station to provide realistic site-specific air temperature in a city street exposed to the same meso-scale environment. In addition to a rudimentary description of the two sites, the canyon air temperature (CAT) model requires only inputs measured at standard weather stations; yet it is capable of accurately predicting the evolution of air temperature in all weather conditions for extended periods. It simulates the effect of urban geometry on radiant exchange; the effect of moisture availability on latent heat flux; energy stored in the ground and in building surfaces; air flow in the street based on wind above roof height; and the sensible heat flux from individual surfaces and from the street canyon as a whole. The CAT model has been tested on field data measured in a monitoring program carried out in Adelaide, Australia, in 2000-2001. After calibrating the model, predicted air temperature correlated well with measured data in all weather conditions over extended periods. The experimental validation provides additional evidence in support of a number of parameterisation schemes incorporated in the model to account for sensible heat and storage flux.

  7. Environmental status of the Hanford Site for CY-1981

    International Nuclear Information System (INIS)

    Sula, M.J.; Blumer, P.J.; Dirkes, R.L.

    1982-08-01

    Samples of air, surface water, soil, vegetation, and wildlife were collected and external penetrating radiation dose measurements were made in the vicinity of the major operating areas on the Hanford Site. The samples were analyzed for radioactive constituents including tritium, strontium-90, plutonium, and gamma-emitting radionuclides. In addition, site roads, railroad tracks, and burial grounds were surveyed periodically to detect any abnormal levels of radioactivity. Radioactive and nonradioactive waste discharges and environmentally related unusual occurrences reported for the major operating areas were reviewed and summarized. Results indicate that general levels of airborne particulate radioactivity in the Hanford environs were greater in 1981 than in recent years as a result of fallout from a foreign atmospheric nuclear test conducted in late 1980. Levels of radioactivity in airborne particulates began decreasing during the summer and by the end of the year had returned to levels observed prior to the test. Airborne strontium-90, plutonium, and tritium concentrations at the onsite sampling stations were not significantly different from background measurements. Radioiodine was not identified in any air sample during 1981. Strontium-90 and cesium-137 concentrations in B-Pond water were lower compared to levels observed during 1980. Analyses of tissue samples from several types of wildlife collected onsite continue to indicate that Hanford-produced radionuclides in some areas are accessible to wildlife. Several onsite soil and vegetation samples contained radionuclide concentrations above background levels. However, observed levels were similar to those reported in recent years

  8. Hanford well custodians. Revision 1

    International Nuclear Information System (INIS)

    Schatz, A.L.; Underwood, D.J.

    1995-01-01

    The Hanford Site Groundwater Protection Management Program recognized the need to integrate monitoring well activities in a centralized manner. A key factor to Hanford Site well integration was the need to clearly identify a responsible party for each of the wells. WHC was asked to identify all wells on site, the program(s) using each well, and the program ultimately responsible for the well. This report lists the custodian and user(s) for each Hanford well and supplies a comprehensive list of all decommissioned and orphaned wells on the Hanford Site. This is the first update to the original report released in December 1993

  9. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.

    Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  10. Hanford Site peak gust wind speeds

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1998-01-01

    Peak gust wind data collected at the Hanford Site since 1945 are analyzed to estimate maximum wind speeds for use in structural design. The results are compared with design wind speeds proposed for the Hanford Site. These comparisons indicate that design wind speeds contained in a January 1998 advisory changing DOE-STD-1020-94 are excessive for the Hanford Site and that the design wind speeds in effect prior to the changes are still appropriate for the Hanford Site

  11. Meso- and Micro-scale Modelling in China: Wind atlas analysis for 12 meteorological stations in NE China (Dongbei)

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Yang, Z.; Hansen, Jens Carsten

    As part of the “Meso-Scale and Micro-Scale Modelling in China” project, also known as the CMA component of the Sino-Danish Wind Energy Development Programme (WED), microscale modelling and analyses have been carried out for 12 meteorological stations in NE China. Wind speed and direction data from...... the twelve 70-m masts have been analysed using the Wind Atlas Analysis and Application Program (WAsP 10). The wind-climatological inputs are the observed wind climates derived from the WAsP Climate Analyst. Topographical inputs are elevation maps constructed from SRTM 3 data and roughness length maps...... constructed from Google Earth satellite imagery. The maps have been compared to Chinese topographical maps and adjusted accordingly. Summaries are given of the data measured at the 12 masts for the reference period 2009. The main result of the microscale modelling is an observational wind atlas for NE China...

  12. The enerMENA meteorological network - Solar radiation measurements in the MENA region

    Science.gov (United States)

    Schüler, D.; Wilbert, S.; Geuder, N.; Affolter, R.; Wolfertstetter, F.; Prahl, C.; Röger, M.; Schroedter-Homscheidt, M.; Abdellatif, G.; Guizani, A. Allah; Balghouthi, M.; Khalil, A.; Mezrhab, A.; Al-Salaymeh, A.; Yassaa, N.; Chellali, F.; Draou, D.; Blanc, P.; Dubranna, J.; Sabry, O. M. K.

    2016-05-01

    For solar resource assessment of solar power plants and adjustment of satellite data, high accuracy measurement data of irradiance and ancillary meteorological data is needed. For the MENA region (Middle East and Northern Africa), which is of high importance for concentrating solar power applications, so far merely 2 publicly available ground measurement stations existed (BSRN network). This gap has been filled by ten stations in Morocco, Algeria, Tunisia, Egypt and Jordan. In this publication the data quality is analyzed by evaluating data completeness and the cleanliness of irradiance sensors in comparison for all of the stations. The pyrheliometers have an average cleanliness of 99.2 % for week-daily cleaning. This is a 5 times higher effort than for Rotating Shadowband Irradiometer (RSI) stations which even have a slightly higher average cleanliness of 99.3 % for weekly cleaning. Furthermore, RSI stations show a data completeness of 99.4 % compared to 93.6 % at the stations equipped with thermal sensors. The results of this analysis are used to derive conclusions concerning instrument choice and are hence also applicable to other solar radiation measurements outside the enerMENA network. It turns out that RSIs are the more reliable and robust choice in cases of high soiling, rare station visits for cleaning and maintenance, as usual in desert sites. Furthermore, annual direct normal and global horizontal irradiation as well as average meteorological parameters are calculated for all of the stations.

  13. Frequency modulator. Transmission of meteorological signals in LVC; Modulador de frecuencia. Transmision de senales meteorologicas en CLV

    Energy Technology Data Exchange (ETDEWEB)

    Rivero G, P.T.; Ramirez S, R.; Gonzalez M, J.L.; Rojas N, P.; Celis del Angel, L. [ININ, 52750 La marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The development of the frequency modulator and demodulator circuit for transmission of meteorological signals by means of fiber optics of the meteorology station to the nuclear reactor unit 1 in the Laguna Verde Central in Veracruz is described. (Author)

  14. Numerical simulation of a meteorological regime of Pontic region

    Science.gov (United States)

    Toropov, P.; Silvestrova, K.

    2012-04-01

    The Black Sea Coast of Caucasus is one of priority in sense of meteorological researches. It is caused both strategic and economic importance of coast, and current development of an infrastructure for the winter Olympic Games «Sochi-2014». During the winter period at the Black Sea Coast of Caucasus often there are the synoptic conditions leading to occurrence of the dangerous phenomena of weather: «northeast», ice-storms, strong rains, etc. The Department of Meteorology (Moscow State University) throughout 8 years spends regular measurements on the basis of Southern Department of Institute of Oenology of the Russian Academy of Sciences in July and February. They include automatically measurements with the time resolution of 5 minutes in three points characterizing landscape or region (coast, steppe plain, top of the Markothsky ridge), measurements of flux of solar radiation, measurements an atmospheric precipitation in 8 points, which remoteness from each other - 2-3 km. The saved up material has allowed to reveal some features of a meteorological mode of coast. But an overall objective of measurements - an estimation of quality of the numerical forecast by means of «meso scale» models (for example - model WRF). The first of numerical experiments by WRF model were leaded in 2007 year and were devoted reproduction of a meteorological mode of the Black Sea coast. The second phase of experiments has been directed on reproduction the storm phenomena (Novorossiysk nord-ost). For estimation of the modeling data was choused area witch limited by coordinates 44,1 - 44,75 (latitude) and 37,6 - 39 (longitude). Estimations are spent for the basic meteorological parameters - for pressure, temperature, speed of a wind. As earlier it was marked, 8 meteorological stations are located in this territory. Their values are accepted for the standard. Errors are calculated for February 2005, 2006, 2008, 2011 years, because in these periods was marked a strong winds. As the

  15. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  16. Study variation of PM-10 air pollution at Lang Meteorological Station, Hanoi Coded: CS/02/04-06

    International Nuclear Information System (INIS)

    Vuong Thu Bac; Dinh Thien Lam; Ngyen Thi Hong Thinh; Dang Duc Nhan; Nguyen Hao Quang; Pham Duy Hien

    2003-01-01

    577 air dust samples have been collected with two kinds of air samplers (2-SFU, 1-ASP) on every Wednesday and Sunday for 24 hours at both of monitoring stations (Lang - Hanoi and Lucnam - Bacgiang). PM(2.5), PM(2.5-10), PM(10) and BC concentrations in 452 air dust samples have been determined. 9032 data have been analyzed with many of different multi-elements analytical techniques (IC: 264 samples x 9 ions, PIXE: 388 samples x 15 elements, XRF: 48 samples x 8 elements, LR: 452 samples x 1 element). Over 6000 of meteorological parameters (T, Rain, WS, WD, RH...) have been collected and processed.Variations and levels of air dust concentrations and BC in Hanoi from 1998 to 2002 have been studied. PM(2.5), PM(2.5-10), PM(10) and BC concentrations and BC obviously periodically vary. They reach maximum in the winter season, especially in December and January, sometimes they reached 300-400 μg.m -3 , They reach minimum in the summer season, sometimes they went down 10 μg.m -3 on rainy days. These variations were affected by meteorological parameters. PM(2.5), PM(10) daily average concentrations in Hanoi are greater than the American air standards (PM(2.5): 65 μg.m -3 , PM(10): 150 μg.m -3 ) in many days and their yearly average concentrations are also far exceeded. Air dust pollution levels in Hanoi are higher than in developed countries and even countries in the region. BC (5.9 μg.m -3 ) concentration and Pb (0.11 μg.m -3 ) are also higher than in many countries. (VTB)

  17. Women and the Hanford Site

    Science.gov (United States)

    Gerber, Michele

    2014-03-01

    When we study the technical and scientific history of the Manhattan Project, women's history is sometimes left out. At Hanford, a Site whose past is rich with hard science and heavy construction, it is doubly easy to leave out women's history. After all, at the World War II Hanford Engineer Works - the earliest name for the Hanford Site - only nine percent of the employees were women. None of them were involved in construction, and only one woman was actually involved in the physics and operations of a major facility - Dr. Leona Woods Marshall. She was a physicist present at the startup of B-Reactor, the world's first full-scale nuclear reactor - now a National Historic Landmark. Because her presence was so unique, a special bathroom had to be built for her in B-Reactor. At World War II Hanford, only two women were listed among the nearly 200 members of the top supervisory staff of the prime contractor, and only one regularly attended the staff meetings of the Site commander, Colonel Franklin Matthias. Overall, women comprised less than one percent of the managerial and supervisory staff of the Hanford Engineer Works, most of them were in nursing or on the Recreation Office staff. Almost all of the professional women at Hanford were nurses, and most of the other women of the Hanford Engineer Works were secretaries, clerks, food-service workers, laboratory technicians, messengers, barracks workers, and other support service employees. The one World War II recruiting film made to attract women workers to the Site, that has survived in Site archives, is entitled ``A Day in the Life of a Typical Hanford Girl.'' These historical facts are not mentioned to criticize the past - for it is never wise to apply the standards of one era to another. The Hanford Engineer Works was a 1940s organization, and it functioned by the standards of the 1940s. Just as we cannot criticize the use of asbestos in constructing Hanford (although we may wish they hadn't used so much of it), we

  18. Introduction to the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal.

  19. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  20. Hanford Surplus Facilities Program plan

    International Nuclear Information System (INIS)

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1989-09-01

    The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy-Richland Operations Office, Defense Facilities Decommissioning Program Office, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition

  1. Introduction to the Hanford Site

    International Nuclear Information System (INIS)

    Cushing, C.E.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal

  2. The Hanford Site: An anthology of early histories

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1993-10-01

    This report discusses the following topics: Memories of War: Pearl Harbor and the Genesis of the Hanford Site; safety has always been promoted at the Hanford Site; women have an important place in Hanford Site history; the boom and bust cycle: A 50-year historical overview of the economic impacts of Hanford Site Operations on the Tri-Cities, Washington; Hanford's early reactors were crucial to the sites's history; T-Plant made chemical engineering history; the UO 3 plant has a long history of service. PUREX Plant: the Hanford Site's Historic Workhorse. PUREX Plant Waste Management was a complex challenge; and early Hanford Site codes and jargon

  3. Meteorological observatory for Antarctic data collection

    International Nuclear Information System (INIS)

    Grigioni, P.; De Silvestri, L.

    1996-01-01

    In the last years, a great number of automatic weather stations was installed in Antarctica, with the aim to examine closely the weather and climate of this region and to improve the coverage of measuring points on the Antarctic surface. In 1987 the Italian Antarctic Project started to set up a meteorological network, in an area not completely covered by other countries. Some of the activities performed by the meteorological observatory, concerning technical functions such as maintenance of the AWS's and the execution of radio soundings, or relating to scientific purposes such as validation and elaboration of collected data, are exposed. Finally, some climatological considerations on the thermal behaviour of the Antarctic troposphere such as 'coreless winter', and on the wind field, including katabatic flows in North Victoria Land are described

  4. Hanford Environmental Management Program implementation plan

    International Nuclear Information System (INIS)

    1988-08-01

    The Hanford Environmental Management Program (HEMP) was established to facilitate compliance with the applicable environmental statues, regulations, and standards on the Hanford Site. The HEMP provides a structured approach to achieve environmental management objectives. The Hanford Environmental Management Program Plan (HEMP Plan) was prepared as a strategic level planning document to describe the program management, technical implementation, verification, and communications activities that guide the HEMP. Four basic program objectives are identified in the HEMP Plan as follows: establish ongoing monitoring to ensure that Hanford Site operations comply with environmental requirements; attain regulatory compliance through the modification of activities; mitigate any environmental consequences; and minimize the environmental impacts of future operations at the Hanford Site. 2 refs., 24 figs., 27 tabs

  5. Hanford spent fuel inventory baseline

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1994-01-01

    This document compiles technical data on irradiated fuel stored at the Hanford Site in support of the Hanford SNF Management Environmental Impact Statement. Fuel included is from the Defense Production Reactors (N Reactor and the single-pass reactors; B, C, D, DR, F, H, KE and KW), the Hanford Fast Flux Test Facility Reactor, the Shipping port Pressurized Water Reactor, and small amounts of miscellaneous fuel from several commercial, research, and experimental reactors

  6. Changes in meteorological parameters in Nigeria by different ...

    African Journals Online (AJOL)

    The annual mean solar indices of MgII core to core wing ratio, solar flux 10.7 cm and sunspot number over an eleven (11) year period, 2000 – 2010, were correlated with the annual mean rainfall, maximum temperature, relati-ve humidity, cloud cover and wind speed of 8 meteorological stations in Nigeria. Correlation ...

  7. Oceanographic station, temperature profiles, meteorological, and other data from bottle and XBT from the DOLPHIN as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1974-01-09 to 1974-01-12 (NODC Accession 7400287)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profiles, meteorological, and other data were collected from bottle and XBT casts from the DOLPHIN from 09 January 1974 to 12...

  8. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  9. Wind characteristics on the Yucatan Peninsula based on short term data from meteorological stations

    International Nuclear Information System (INIS)

    Soler-Bientz, Rolando; Watson, Simon; Infield, David

    2010-01-01

    Due to the availability of sparsely populated and flat open terrain, the Yucatan Peninsula located in eastern Mexico is a promising region from the perspective of wind energy development. Study of the diurnal and seasonal wind resource is an important stage in the move towards commercial exploitation of wind power in this Latin American region. An analysis of the characteristics of the wind resource of the Yucatan Peninsula is presented in this paper, based on 10 min averaged wind speed data from nine meteorological stations, between 2000 and 2007. Hourly and monthly patterns of the main environmental parameters have been examined. Highly directional behaviour was identified that reflects the influence of winds coming from the Caribbean Sea and the Gulf of Mexico. The characteristics of the wind speed variation observed at the studied sites reflected their proximity to the coast and whether they were influenced by wind coming predominantly from over the land or predominantly from over the sea. The atmospheric stability over the eastern seas of the Yucatan Peninsula was also analysed to assess thermal effects for different wind directions. The findings were consistent with the variation in average wind speeds observed at the coastal sites where winds came predominantly from over the sea. The research presented here is to be used as a basis for a wind atlas for the Yucatan Peninsula.

  10. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  11. Hanford Waste Vitrification Plant capacity increase options

    International Nuclear Information System (INIS)

    Larson, D.E.

    1996-04-01

    Studies are being conducted by the Hanford Waste Vitrification Plant (HWVP) Project on ways to increase the waste processing capacity within the current Vitrification Building structural design. The Phase 1 study on remote systems concepts identification and extent of capacity increase was completed. The study concluded that the HWVP capacity could be increased to four times the current capacity with minor design adjustments to the fixed facility design, and the required design changes would not impact the current footprint of the vitrification building. A further increase in production capacity may be achievable but would require some technology development, verification testing, and a more systematic and extensive engineering evaluation. The primary changes included a single advance melter with a higher capacity, new evaporative feed tank, offgas quench collection tank, ejector venturi scrubbers, and additional inner canister closure station,a smear test station, a new close- coupled analytical facility, waste hold capacity of 400,000 gallon, the ability to concentrate out-of-plant HWVP feed to 90 g/L waste oxide concentration, and limited changes to the current base slab construction package

  12. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J.; Yancey, E.F.

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs

  13. Hanford Site Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  14. Hanford defense waste studies

    International Nuclear Information System (INIS)

    Napier, B.A.; Zimmerman, M.G.; Soldat, J.K.

    1981-01-01

    PNL is assisting Rockwell Hanford Operations to prepare a programmatic environmental impact statement for the management of Hanford defense nuclear waste. The Ecological Sciences Department is leading the task of calculation of public radiation doses from a large matrix of potential routine and accidental releases of radionuclides to the environment

  15. NHC's contribution to cleanup of the Hanford Site

    International Nuclear Information System (INIS)

    Chauve, H.D.

    1998-01-01

    The one billion dollars per year Project Hanford Management Contract (PHMC), managed by Fluor Daniel Hanford, calls for cleanup of the Hanford Site for the Department of Energy. Project Hanford comprises four major subprojects, each managed by a different major contractor. Numatec Hanford Corporation (NHC) is a fifth major subcontractor which provides energy and technology to each of the Hanford projects. NHC draws on the experience and capabilities of its parent companies, COGEMA and SGN, and relies on local support from its sister Company in Richland, COGEMA Engineering Corporation, to bring the best commercial practices and new technology to the Project

  16. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  17. Hanford Site Solid Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    1993-01-01

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  18. Field pilot testing for chemical oxidation at the former Nitchequon meteorological station : decontamination project in isolated areas

    Energy Technology Data Exchange (ETDEWEB)

    Peisajovich, A. [Transport Canada, Montreal, PQ (Canada); Bergeron, E. [Golder Associates Ltd., Montreal, PQ (Canada); Barbeau, M. [Golder Associates Innovative Applications, Montreal, PQ (Canada); Lajoie, G. [Cree Regional Authority, Montreal, PQ (Canada)

    2006-07-01

    Field pilot testing for chemical oxidation at the former Nitchequon meteorological station was discussed. This presentation described the site location and provided an aerial view and cross section of the site. The historical background and condition of the site were then identified. Photographs and illustrations of the site and the source of the problem were provided. Photographs were also provided of the logistics, temporary camp, dismantling of tanks, equipment, pipeline dismantling, residues, methodology as well as a graphical representation of how to solve the problem. Other topics included technologies tested on site, full-scale remediation plans, remediation goals, step by step process, and costs distribution. Among the steps discussed was: vegetation removal; excavation of the first two feet of soil; transfer of contaminated soil on high-density polyethylene (HDPE) lining prior to treatment; cell construction; cell lining insulation; transfer of treated soil from the mixers to the curing cells; installation of HDPE top cover lining over the treated soil; and the addition of 12 inches of clean soil over the top cover lining. tabs., figs.

  19. Hanford Site baseline risk assessment methodology

    International Nuclear Information System (INIS)

    1993-03-01

    This methodology has been developed to prepare human health and environmental evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act remedial investigations (RIs) and the Resource Conservation and Recovery Act facility investigations (FIs) performed at the Hanford Site pursuant to the Hanford Federal Facility Agreement and Consent Order referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies Site-specific risk assessment considerations and integrates them with approaches for evaluating human and environmental risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site

  20. Hanford Site 1998 Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    RL Dirkes; RW Hanf; TM Poston

    1999-09-21

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

  1. Grout for closure of the demonstration vault at the US DOE Hanford Facility. Final report

    International Nuclear Information System (INIS)

    Wakeley, L.D.; Ernzen, J.J.

    1992-08-01

    The Waterways Experiment Station (WES) developed a grout to be used as a cold- (nonradioactive) cap or void-fill grout between the solidified low-level waste and the cover blocks of a demonstration vault for disposal of phosphate-sulfate waste (PSW) at the US Department of Energy (DOE) Hanford Facility. The project consisted of formulation and evaluation of candidate grouts and selection of the best candidate grout, followed by a physical scale-model test to verify grout performance under project-specific conditions. Further, the project provided data to verify numerical models (accomplished elsewhere) of stresses and isotherms inside the Hanford demonstration vault. Evaluation of unhardened grout included obtaining data on segregation, bleeding, flow, and working time. For hardened grout, strength, volume stability, temperature rise, and chemical compatibility with surrogate wasteform grout were examined. The grout was formulated to accommodate unique environmental boundary conditions (vault temperature = 45 C) and exacting regulatory requirements (mandating less than 0.1% shrinkage with no expansion and no bleeding); and to remain pumpable for a minimum of 2 hr. A grout consisting of API Class H oil-well cement, an ASTM C 618 Class F fly ash, sodium bentonite clay, and a natural sand from the Hanford area met performance requirements in laboratory studies. It is recommended for use in the DOE Hanford demonstration PSW vault

  2. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  3. Oceanographic station, temperature profiles, meteorological, and other data from bottle and XBT from the DOLPHIN and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1973-10-23 to 1973-11-16 (NODC Accession 7400207)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profiles, meteorological, and other data were collected from bottle and XBT casts from the DOLPHIN and other platforms from 23...

  4. HANFORD SCIENCE & TECHNOLOGY NEEDS STATEMENTS 2002

    Energy Technology Data Exchange (ETDEWEB)

    WIBLE, R.A.

    2002-04-01

    This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2002; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract, the Environmental Restoration Contract and the River Protection Project) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL and DOE-ORP Management, site stakeholders, state and federal regulators, and Tribal Nations. These needs are reviewed and updated on an annual basis and given a broad distribution.

  5. Pollution prevention opportunity assessments at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Betsch, M.D., Westinghouse Hanford

    1996-06-26

    The Pollution Prevention Opportunity Assessment (PPOA) is a pro- active way to look at a waste generating activity and identify opportunities to minimize wastes through a cost benefit analysis. Hanford`s PPOA process is based upon the graded approach developed by the Kansas City Plant. Hanford further streamlined the process while building in more flexibility for the individual users. One of the most challenging aspects for implementing the PPOA process at Hanford is one overall mission which is environmental restoration, Now that the facilities are no longer in production, each has a different non- routine activity making it difficult to quantify the inputs and outputs of the activity under consideration.

  6. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    Knepp, A.J.; Isaacs, J.D.

    1997-09-01

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  7. Exploring the Utility of Model-based Meteorology Data for Heat-Related Health Research and Surveillance

    Science.gov (United States)

    Vaidyanathan, A.; Yip, F.

    2017-12-01

    Context: Studies that have explored the impacts of environmental exposure on human health have mostly relied on data from weather stations, which can be limited in geographic scope. For this assessment, we: (1) evaluated the performance of the meteorological data from the North American Land Data Assimilation System Phase 2 (NLDAS) model with measurements from weather stations for public health and specifically for CDC's Environmental Public Health Tracking Program, and (2) conducted a health assessment to explore the relationship between heat exposure and mortality, and examined region-specific differences in heat-mortality (H-M) relationships when using model-based estimates in place of measurements from weather stations.Methods: Meteorological data from the NLDAS Phase 2 model was evaluated against measurements from weather stations. A time-series analysis was conducted, using both station- and model-based data, to generate H-M relationships for counties in the U.S. The county-specific risk information was pooled to characterize regional relationships for both station- and model-based data, which were then compared to identify degrees of overlap and discrepancies between results generated using the two data sources. Results: NLDAS-based heat metrics were in agreement with those generated using weather station data. In general, the H-M relationship tended to be non-linear and varied by region, particularly the heat index value at which the health risks become positively significant. However, there was a high degree of overlap between region-specific H-M relationships generated from weather stations and the NLDAS model.Interpretation: Heat metrics from NLDAS model are available for all counties in the coterminous U.S. from 1979-2015. These data can facilitate health research and surveillance activities exploring health impacts associated with long-term heat exposures at finer geographic scales.Conclusion: High spatiotemporal coverage of environmental health data

  8. An Integrated Biological Control System At Hanford

    International Nuclear Information System (INIS)

    Johnson, A.R.; Caudill, J.G.; Giddings, R.F.; Rodriguez, J.M.; Roos, R.C.; Wilde, J.W.

    2010-01-01

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimate spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  9. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  10. Oceanographic station, temperature profile, meteorological, and other data from bottle and XBT casts from the DOLPHIN as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1973-05-15 to 1973-05-27 (NODC Accession 7400065)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profile, meteorological, and other data were collected from bottle and XBT casts from the DOLPHIN from 15 May 1973 to 27 May 1973....

  11. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  12. Hanford Site Environmental Report 1999

    International Nuclear Information System (INIS)

    Poston, TM; Hanf, RW; Dirkes, RL

    2000-01-01

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality

  13. Hanford Site Environmental Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    TM Poston; RW Hanf; RL Dirkes

    2000-09-28

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.

  14. History of Hanford Site Defense Production (Brief)

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M S

    2001-02-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history.

  15. History of Hanford Site Defense Production (Brief)

    International Nuclear Information System (INIS)

    GERBER, M.S.

    2001-01-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  16. Vascular Plants of the Hanford Site

    International Nuclear Information System (INIS)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-01-01

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Brigham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations

  17. Hanford Patrol Academy demolition sites closure plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

  18. List of currently classified documents relative to Hanford Production Facilities Operations originated on the Hanford Site between 1961 and 1972

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The United States Department of Energy (DOE) has declared that all Hanford plutonium production- and operations-related information generated between 1944 and 1972 is declassified. Any documents found and deemed useful for meeting Hanford Environmental Dose Reconstruction (HEDR) objectives may be declassified with or without deletions in accordance with DOE guidance by Authorized Derivative Declassifiers. The September 1992, letter report, Declassifications Requested by the Technical Steering Panel of Hanford Documents Produced 1944--1960, (PNWD-2024 HEDR UC-707), provides an important milestone toward achieving a complete listing of documents that may be useful to the HEDR Project. The attached listing of approximately 7,000 currently classified Hanford-originated documents relative to Hanford Production Facilities Operations between 1961 and 1972 fulfills TSP Directive 89-3. This list does not include such titles as the Irradiation Processing Department, Chemical Processing Department, and Hanford Laboratory Operations monthly reports generated after 1960 which have been previously declassified with minor deletions and made publicly available. Also Kaiser Engineers Hanford (KEH) Document Control determined that no KEH documents generated between January 1, 1961 and December 31, 1972 are currently classified. Titles which address work for others have not been included because Hanford Site contractors currently having custodial responsibility for these documents do not have the authority to determine whether other than their own staff have on file an appropriate need-to-know. Furthermore, these documents do not normally contain information relative to Hanford Site operations.

  19. HANFORD SITE RIVER CORRIDOR CLEANUP

    International Nuclear Information System (INIS)

    BAZZELL, K.D.

    2006-01-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km 2 Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal

  20. Air pollution meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Shirvaikar, V V; Daoo, V J [Environmental Assessment Div., Bhabha Atomic Research Centre, Mumbai (India)

    2002-06-01

    This report is intended as a training cum reference document for scientists posted at the Environmental Laboratories at the Nuclear Power Station Sites and other sites of the Department of Atomic Energy with installations emitting air pollutants, radioactive or otherwise. Since a manual already exists for the computation of doses from radioactive air pollutants, a general approach is take here i.e. air pollutants in general are considered. The first chapter presents a brief introduction to the need and scope of air pollution dispersion modelling. The second chapter is a very important chapter discussing the aspects of meteorology relevant to air pollution and dispersion modelling. This chapter is important because without this information one really does not understand the phenomena affecting dispersion, the scope and applicability of various models or their limitations under various weather and site conditions. The third chapter discusses the air pollution models in detail. These models are applicable to distances of a few tens of kilometres. The fourth chapter discusses the various aspects of meteorological measurements relevant to air pollution. The chapters are followed by two appendices. Apendix A discusses the reliability of air pollution estimates. Apendix B gives some practical examples relevant to general air pollution. It is hoped that the document will prove very useful to the users. (author)

  1. Oceanographic station, temperature profiles, meteorological, and other data from XBT and bottle casts from NOAA Ship OREGON II as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1972-07-13 to 1972-08-08 (NODC Accession 7300271)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profiles, meteorological, and other data were collected from bottle and XBT casts from NOAA Ship OREGON II from 13 July 1972 to 08...

  2. The Hanford Site focus, 1994

    International Nuclear Information System (INIS)

    Peterson, J.M.

    1994-03-01

    This report describes what the Hanford Site will look like in the next two years. We offer thumbnail sketches of Hanford Site programs and the needs we are meeting through our efforts. We describe our goals, some recent accomplishments, the work we will do in fiscal year (FY) 1994, the major activities the FY 1995 budget request covers, and the economic picture in the next few years. The Hanford Site budget shows the type of work being planned. US Department of Energy (DOE) sites like the Hanford Site use documents called Activity Data Sheets to meet this need. These are building blocks that are included in the budget. Each Activity Data Sheet is a concise (usually 4 or 5 pages) summary of a piece of work funded by the DOE's Environmental Restoration and Waste Management budget. Each sheet describes a waste management or environmental restoration need over a 5-year period; related regulatory requirements and agreements; and the cost, milestones, and steps proposed to meet the need. The Hanford Site is complex and has a huge budget, and its Activity Data Sheets run to literally thousands of pages. This report summarizes the Activity Data Sheets in a less detailed and much more reader-friendly fashion

  3. Interim Hanford Waste Management Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The September 1985 Interim Hanford Waste Management Plan (HWMP) is the third revision of this document. In the future, the HWMP will be updated on an annual basis or as major changes in disposal planning at Hanford Site require. The most significant changes in the program since the last release of this document in December 1984 include: (1) Based on studies done in support of the Hanford Defense Waste Environmental Impact Statement (HDW-EIS), the size of the protective barriers covering contaminated soil sites, solid waste burial sites, and single-shell tanks has been increased to provide a barrier that extends 30 m beyond the waste zone. (2) As a result of extensive laboratory development and plant testing, removal of transuranic (TRU) elements from PUREX cladding removal waste (CRW) has been initiated in PUREX. (3) The level of capital support in years beyond those for which specific budget projections have been prepared (i.e., fiscal year 1992 and later) has been increased to maintain Hanford Site capability to support potential future missions, such as the extension of N Reactor/PUREX operations. The costs for disposal of Hanford Site defense wastes are identified in four major areas in the HWMP: waste storage and surveillance, technology development, disposal operations, and capital expenditures

  4. Third Quarter Hanford Seismic Report for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.; Rohay, Alan C.; Hartshorn, Donald C.; Clayton, Ray E.; Sweeney, Mark D.

    2005-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the Hanford Seismic Network, there were 337 triggers during the third quarter of fiscal year 2005. Of these triggers, 20 were earthquakes within the Hanford Seismic Network. The largest earthquake within the Hanford Seismic Network was a magnitude 1.3 event May 25 near Vantage, Washington. During the third quarter, stratigraphically 17 (85%) events occurred in the Columbia River basalt (approximately 0-5 km), no events in the pre-basalt sediments (approximately 5-10 km), and three (15%) in the crystalline basement (approximately 10-25 km). During the first quarter, geographically five (20%) earthquakes occurred in swarm areas, 10 (50%) earthquakes were associated with a major geologic structure, and 5 (25%) were classified as random events.

  5. Hanford Site Environmental Report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K. [eds.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.

  6. Hanford Site Environmental Report 1993

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references

  7. Hanford site transuranic waste sampling plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed

  8. Oceanographic station, temperature profile, meteorological, and other data from bottle and XBT casts from the ARGUS and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1977-10-18 to 1978-09-19 (NODC Accession 8500103)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profile, meteorological, and other data were collected from bottle and XBT casts from the ARGUS and other platforms from 18...

  9. Meteorological radar services: a brief discussion and a solution in practice

    Science.gov (United States)

    Nicolaides, K. A.

    2014-08-01

    The Department of Meteorology is the organization designated by the Civil Aviation Department and by the National Supervisory Authority of the Republic of Cyprus, as an air navigation service provider, based on the regulations of the Single European Sky. Department of Meteorology holds and maintains also an ISO: 9001/2008, Quality System, for the provision of meteorological and climatological services to aeronautic and maritime community, but also to the general public. In order to fulfill its obligations the Department of Meteorology customs the rather dense meteorological stations network, with long historical data series, installed and maintained by the Department, in parallel with modelling and Numerical Weather Prediction (NWP), along with training and gaining of expertise. Among the available instruments in the community of meteorologists is the meteorological radar, a basic tool for the needs of very short/short range forecasting (nowcasting). The Department of Meteorology installed in the mid 90's a C-band radar over «Throni» location and expanded its horizons in nowcasting, aviation safety and warnings issuance. The radar has undergone several upgrades but today technology has over passed its rather old technology. At the present the Department of Meteorology is in the process of buying Meteorological Radar Services as a result of a public procurement procedure. Two networked X-band meteorological radar will be installed (the project now is in the phase of infrastructure establishment while the hardware is in the process of assemble), and maintained from Space Hellas (the contractor) for a 13 years' time period. The present article must be faced as a review article of the efforts of the Department of Meteorology to support its weather forecasters with data from meteorological radar.

  10. Hanford inventory program user's manual

    International Nuclear Information System (INIS)

    Hinkelman, K.C.

    1994-01-01

    Provides users with instructions and information about accessing and operating the Hanford Inventory Program (HIP) system. The Hanford Inventory Program is an integrated control system that provides a single source for the management and control of equipment, parts, and material warehoused by Westinghouse Hanford Company in various site-wide locations. The inventory is comprised of spare parts and equipment, shop stock, special tools, essential materials, and convenience storage items. The HIP replaced the following systems; ACA, ASP, PICS, FSP, WSR, STP, and RBO. In addition, HIP manages the catalog maintenance function for the General Supplies inventory stocked in the 1164 building and managed by WIMS

  11. Hanford Site Composite Analysis Technical Approach Description: Hanford Site Disposition Baseline.

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, M. A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Dockter, R. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2017-10-02

    The permeability of ground surfaces within the U.S. Department of Energy’s (DOE) Hanford Site strongly influences boundary conditions when simulating the movement of groundwater using the Subsurface Transport Over Multiple Phases model. To conduct site-wide modeling of cumulative impacts to groundwater from past, current, and future waste management activities, a site-wide assessment of the permeability of surface conditions is needed. The surface condition of the vast majority of the Hanford Site has been and continues to be native soils vegetated with dryland grasses and shrubs.

  12. Atmospheric dispersion and deposition of 131I released from the Hanford Site

    International Nuclear Information System (INIS)

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.; Stage, S.A.

    1996-01-01

    Approximately 2.6 x 10 4 TBq (700,000 Ci) of 131 I were released to the air from reactor fuel processing plants on the Hanford Site in southcentral Washington State from December 1944 through December 1949. The Hanford Environmental Dose Reconstruction Project developed a suite of codes to estimate the doses that might have resulted from these releases. The Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET) computer code is part of this suite. The RATCHET code implements a Lagrangian-trajectory, Gaussian-puff dispersion model that uses hourly meterological and release rate data to estimate daily time-integrated air concentrations and surface contamination for use, in dose estimates. In this model, iodine is treated as a mixture of three species (inorganic gases, organic gases, and particles). Model deposition parameters are functions of the mixture and meterological conditions. A resistance model is used to calculate dry deposition velocities. Equilibrium between concentrations in the precipitation and the air near the ground is assumed in calculating wet deposition of gases, and irreversible washout of the particles is assumed. RATCHET explicitly treats the uncertainties in model parameters and meteorological conditions. Uncertainties in 131 I release rates and partitioning among the nominal species are treated by varying model input. The results of 100 model runs for December 1944 through December 1949 indicate that monthly average air concentrations and deposition have uncertainties ranging from a factor of two near the center of the time-integrated plume to more than an order of magnitude near the edge. These results indicate that ∼10% of the 131 I released to the atmosphere decayed during transit in the study area, ∼56% was deposited within the study area, and the remaining 34% was transported out of the study area while still in the air

  13. Historical research in the Hanford site waste cleanup

    International Nuclear Information System (INIS)

    Gerber, Michele S.

    1992-01-01

    This paper will acquaint the audience with role of historical research in the Hanford Site waste cleanup - the largest waste cleanup endeavor ever undertaken in human history. There were no comparable predecessors to this massive waste remediation effort, but the Hanford historical record can provide a partial road map and guide. It can be, and is, a useful tool in meeting the goal of a successful, cost-effective, safe and technologically exemplary waste cleanup. The Hanford historical record is rich and complex. Yet, it poses difficult challenges, in that no central and complete repository or data base exists, records contain obscure code words and code numbers, and the measurement systems and terminology used in the records change many times over the years. Still, these records are useful to the current waste cleanup in technical ways, and in ways that extend beyond a strictly scientific aspect. Study and presentations of Hanford Site history contribute to the huge educational and outreach tasks of helping the Site's work force deal with 'culture change' and become motivated for the cleanup work that is ahead, and of helping the public and the regulators to place the events at Hanford in the context of WWII and the Cold War. This paper traces historical waste practices and policies as they changed over the years at the Hanford Site, and acquaints the audience with the generation of the major waste streams of concern in Hanford Site cleanup today. It presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Examples of the strengths and limitations of the

  14. Mortality studies of Hanford workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1986-04-01

    Radiation exposures at Hanford have been deliberately limited as a protection to the worker. This means that if current estimates of radiation risks, which have been determined by national and international groups, are correct, it's highly unlikely that noticeable radiation-induced health effects will be identified among Hanford workers. 1 fig., 4 tabs

  15. Hanford's Radioactive Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    McKenney, D.E.

    1995-01-01

    The Radioactive Mixed Waste Disposal Facility, is located in the Hanford Site Low-Level Burial Grounds and is designated as Trench 31 in the 218-W-5 Burial Ground. Trench 31 is a Resource Conservation and Recovery Act compliant landfill and will receive wastes generated from both remediation and waste management activities. On December 30, 1994, Westinghouse Hanford Company declared readiness to operate Trench 31, which is the Hanford Site's (and the Department of Energy complex's) first facility for disposal of low-level radioactive mixed wastes

  16. Hanford cultural resources laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M.K.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act.

  17. Hanford cultural resources laboratory

    International Nuclear Information System (INIS)

    Wright, M.K.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act

  18. Hanford work faces change

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article is a discussion of DOE efforts in the awarding of a large engineering-construction contract at the Hanford Reservation. Though the announced winner was a group lead by J. A. Jones Construction/Duke Engineering Services, the incumbent (ICF-Kaiser Engineers) protested the announced award. The protest was dismissed by the GAO, but DOE officials still reopened the bidding. There was also a short note regarding the award of the ERMC at Hanford

  19. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  20. Field trip guide to the Hanford Site

    International Nuclear Information System (INIS)

    Reidel, S.P.; Lindsey, K.A.; Fecht, K.R.

    1992-11-01

    This report is designed to provide a guide to the key geologic and hydrologic features of the US Department of Energy's Hanford Site located in south-central Washington. The guide is divided into two parts. The first part is a general introduction to the geology of the Hanford Site and its relation to the regional framework of south-central Washington. The second part is a road log that provides directions to important geologic features on the Hanford Site and descriptions of the locality. The exposures described were chosen for their accessibility and importance to the geologic history of the Hanford Site and to understanding the geohydrology of the Site

  1. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    International Nuclear Information System (INIS)

    Rathbone, Bruce A.

    2006-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL's Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL's Electronic Records & Information Capture Architecture (ERICA) database

  2. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  3. Test plan for sonic drilling at the Hanford Site in FY 1993

    International Nuclear Information System (INIS)

    McLellan, G.W.

    1993-01-01

    This test plan describes the field demonstration of the sonic drilling system being conducted as a coordinated effort between the VOC-Arid ID (Integrated Demonstration) and the 200 West Area Carbon Tetrachloride ERA (Expedited Response Action) programs at Hanford. The purpose of this test is to evaluate the Water Development Corporation's drilling system, modify components as necessary and determine compatible drilling applications for the sonic drilling method for use at facilities in the DOE complex. The sonic demonstration is being conducted as the first field test under the Cooperative Research and Development Agreement (CRADA) which involves the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The sonic drilling system will be used to drill a 45 degree vadose zone well, two vertical wells at the VOC-Arid ID site, and several test holes at the Drilling Technology Test Site north of the 200 Area fire station. Testing at other locations will depend on the performance of the drilling method. Performance of this technology will be compared to the baseline drilling method (cable-tool)

  4. Hanford Site Performance Report - March 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U.S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  5. Hanford Site Performance Report - May 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U. S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  6. Hanford Site Performance Report - April 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U.S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  7. Environmental monitoring at Hanford for 1984

    International Nuclear Information System (INIS)

    Price, K.R.; Carlile, J.M.V.; Dirkes, R.L.; Jaquish, R.E.; Trevathan, M.S.; Woodruff, R.K.

    1985-05-01

    Environmental surveillance activities performed by the Pacific Northwest Laboratory for the Department of Energy's Hanford Site for 1984 are discussed in this report. Samples of environmental media were collected in support of the Hanford Environmental Monitoring Program to determine radionuclide concentrations in the Hanford environs. Radiological impacts in terms of radiation dose equivalents as a result of Hanford operations are also discussed. Gross beta radioactivity concentrations in airborne particulates at all sampling locations were lower in 1984 than during 1983 as a result of declining levels of worldwide fallout. Slightly higher levels of 85 Kr and 129 I were noted at several onsite and offsite locations. The sampling location in close proximity to the PUREX plant also detected increased 3 H. Very low levels of radionuclides were detected in samples of Columbia River water during 1984. An extensive groundwater monitoring program was performed for the Hanford Site during 1984. The 3 H and nitrate plumes continued to move slowly toward the Columbia River. All 3 H results were within applicable concentration guides. Samples of deer, rabbits, game birds, waterfowl and fish were collected onsite or in the Columbia River at locations where the potential for radionuclide uptake was most likely, or at the nearest locations where wildlife samples were available. Radioisotope levels were measured. Dose rates from external penetrating radiation measured in the vicinity of residential areas were similar to those observed in the previous years, and no contribution from Hanford activities could be identified. An assessment of the 1984 potential radiological impacts attributable to the Hanford operations indicated that measured and calculated radiation doses to the public continued to be low, and well below applicable regulatory limits. 21 refs., 48 figs., 83 tabs

  8. Independent technical review of the Hanford Tank Farm Operations

    International Nuclear Information System (INIS)

    1992-07-01

    The Independent Technical Assessment of the Hanford Tank Farm Operations was commissioned by the Assistant Secretary for Environmental Restoration and Waste Management on November 1, 1991. The Independent Technical Assessment team conducted on-site interviews and inspections during the following periods: November 18 to 22,1991; April 13 to 17; and April 27 to May 1, 1992. Westinghouse Hanford Company is the management and operating contractor for the Department of Energy at the Hanford site. The Hanford Tank Farm Operations consists of 177 underground storage tanks containing 61 million gallons of high-level radioactive mixed wastes from the chemical reprocessing of nuclear fuel. The Tank Farm Operations also includes associated transfer lines, ancillary equipment, and instrumentation. The Independent Technical Assessment of the Hanford Tank Farm Operations builds upon the prior assessments of the Hanford Waste Vitrification System and the Hanford Site Tank Waste Disposal Strategy.The objective of this technical assessment was to determine whether an integrated and sound program exists to manage the tank-waste storage and tankfarm operations consistent with the Assistant Secretary for Environmental Restoration and Waste Management's guidance of overall risk minimization. The scope of this review includes the organization, management, operation, planning, facilities, and mitigation of the safety-concerns of the Hanford Tank Waste Remediation System. The assessments presented in the body of this report are based on the detailed observations discussed in the appendices. When the assessments use the term ''Hanford'' as an organizational body it means DOE-RL and Westinghouse Hanford Company as a minimum, and in many instances all of the stake holders for the Hanford site

  9. Hanford Site sustainable development initiatives

    International Nuclear Information System (INIS)

    Sullivan, C.T.

    1994-05-01

    Since the days of the Manhattan Project of World War II, the economic well being of the Tri-Cities (Pasco, Kennewick, and Richland) of Washington State has been tied to the US Department of Energy missions at the nearby Hanford Site. As missions at the Site changed, so did the economic vitality of the region. The Hanford Site is now poised to complete its final mission, that of environmental restoration. When restoration is completed, the Site may be closed and the effect on the local economy will be devastating if action is not taken now. To that end, economic diversification and transition are being planned. To facilitate the process, the Hanford Site will become a sustainable development demonstration project

  10. Autonomous Operation of Mars Meteorological Network

    Science.gov (United States)

    Schmidt, W.; Harri, A.-M.; Vázquez, L.; Linkin, V.; Alexashkin, S.

    2012-09-01

    In the next years a series of small landing vehicles concentrating on Martian meteorology should be deployed to the surface of Mars. As commanding from Earth will not be possible most of the time, the station software has to be capable of adapting to any foreseeable conditions and optimize the science return as much as feasible. In this paper we outline the constraints and strategies implemented into the control system of the MetNet Landers. For details to the mission and its instruments see the mission home page [1].

  11. Hanford Site Environmental Report for calendar year 1992

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E.

    1993-06-01

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality

  12. Hanford Site Environmental Report for calendar year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E. [eds.

    1993-06-01

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality.

  13. Hanford Facility contingency plan

    International Nuclear Information System (INIS)

    Sutton, L.N.; Miskho, A.G.; Brunke, R.C.

    1993-10-01

    The Hanford Facility Contingency Plan, together with each TSD unit-specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. This plan includes descriptions of responses to a nonradiological hazardous materials spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. This plan includes descriptions of responses for spills or releases as a result of transportation activities, movement of materials, packaging, and storage of hazardous materials

  14. Hanford Mission Plan risk-based prioritization methodologies

    International Nuclear Information System (INIS)

    Hesser, W.A.; Madden, M.S.; Pyron, N.M.; Butcher, J.L.

    1994-08-01

    Sites across the US Department (DOE) complex recognize the critical need for a systematic method for prioritizing among their work scope activities. Here at the Hanford Site, Pacific Northwest Laboratory and Westinghouse Hanford Company (WHC) conducted preliminary research into techniques to meet this need and assist managers in making financial resource allocation decisions. This research is a subtask of the risk management task of the Hanford Mission Plan as described in the WHC Integrated Planning Work Breakdown Structure 1.8.2 Fiscal Year 1994 Work Plan. The research team investigated prioritization techniques used at other DOE sites and compared them with the Priority Planning Grid (PPG), a tool used at Hanford. The authors concluded that the PPG could be used for prioritization of resource allocation, but it needed to be revised to better reflect the Site's priorities and objectives. The revised PPG was tested with three Hanford programs, the PPG was modified, and updated procedures were prepared

  15. Hanford Site Risk Assessment Methodology. Revision 3

    International Nuclear Information System (INIS)

    1995-05-01

    This methodology has been developed to prepare human health and ecological evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigations (RI) and the Resource conservation and Recovery Act of 1976 (RCRA) facility investigations (FI) performed at the Hanford Site pursuant to the hanford Federal Facility Agreement and Consent Order (Ecology et al. 1994), referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies site-specific risk assessment considerations and integrates them with approaches for evaluating human and ecological risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site

  16. Spatiotemporal analysis of hydro-meteorological drought in the Johor River Basin, Malaysia

    Science.gov (United States)

    Tan, Mou Leong; Chua, Vivien P.; Li, Cheng; Brindha, K.

    2018-02-01

    Assessment of historical hydro-meteorological drought is important to develop a robust drought monitoring and prediction system. This study aims to assess the historical hydro-meteorological drought of the Johor River Basin (JRB) from 1975 to 2010, an important basin for the population of southern Peninsular Malaysia and Singapore. The Standardized Precipitation Index (SPI) and Standardized Streamflow Index (SSI) were selected to represent the meteorological and hydrological droughts, respectively. Four absolute homogeneity tests were used to assess the rainfall data from 20 stations, and two stations were flagged by these tests. Results indicate the SPI duration to be comparatively low (3 months), and drier conditions occur over the upper JRB. The annual SSI had a strong decreasing trend at 95% significance level, showing that human activities such as reservoir construction and agriculture (oil palm) have a major influence on streamflow in the middle and lower basin. In addition, moderate response rate of SSI to SPI was found, indicating that hydrological drought could also have occurred in normal climate condition. Generally, the El Niño-Southern Oscillation and Madden Julian Oscillation have greater impacts on drought events in the basin. Findings of this study could be beneficial for future drought projection and water resources management.

  17. Hanford Site cleanup and transition: Risk data needs for decision making (Hanford risk data gap analysis decision guide)

    International Nuclear Information System (INIS)

    Gajewski, S.; Glantz, C.; Harper, B.; Bilyard, G.; Miller, P.

    1995-10-01

    Given the broad array of environmental problems, technical alternatives, and outcomes desired by different stakeholders at Hanford, DOE will have to make difficult resource allocations over the next few decades. Although some of these allocations will be driven purely by legal requirements, almost all of the major objectives of the cleanup and economic transition missions involve choices among alternative pathways. This study examined the following questions: what risk information is needed to make good decisions at Hanford; how do those data needs compare to the set(s) of risk data that will be generated by regulatory compliance activities and various non-compliance studies that are also concerned with risk? This analysis examined the Hanford Site missions, the Hanford Strategic Plan, known stakeholder values, and the most important decisions that have to be made at Hanford to determine a minimum domain of risk information required to make good decisions that will withstand legal, political, and technical scrutiny. The primary risk categories include (1) public health, (2) occupational health and safety, (3) ecological integrity, (4) cultural-religious welfare, and (5) socio-economic welfare

  18. Second Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-06-26

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, seven local earthquakes were recorded during the second quarter of fiscal year 2008. The largest event recorded by the network during the second quarter (February 3, 2008 - magnitude 2.3 Mc) was located northeast of Richland in Franklin County at a depth of 22.5 km. With regard to the depth distribution, two earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), three earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and two earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, five earthquakes occurred in swarm areas and two earthquakes were classified as random events.

  19. A METEOROLOGICAL RISK ASSESSMENT METHOD FOR POWER LINES BASED ON GIS AND MULTI-SENSOR INTEGRATION

    Directory of Open Access Journals (Sweden)

    Z. Lin

    2016-06-01

    Full Text Available Power lines, exposed in the natural environment, are vulnerable to various kinds of meteorological factors. Traditional research mainly deals with the influence of a single meteorological condition on the power line, which lacks of comprehensive effects evaluation and analysis of the multiple meteorological factors. In this paper, we use multiple meteorological monitoring data obtained by multi-sensors to implement the meteorological risk assessment and early warning of power lines. Firstly, we generate meteorological raster map from discrete meteorological monitoring data using spatial interpolation. Secondly, the expert scoring based analytic hierarchy process is used to compute the power line risk index of all kinds of meteorological conditions and establish the mathematical model of meteorological risk. By adopting this model in raster calculator of ArcGIS, we will have a raster map showing overall meteorological risks for power line. Finally, by overlaying the power line buffer layer to that raster map, we will get to know the exact risk index around a certain part of power line, which will provide significant guidance for power line risk management. In the experiment, based on five kinds of observation data gathered from meteorological stations in Guizhou Province of China, including wind, lightning, rain, ice, temperature, we carry on the meteorological risk analysis for the real power lines, and experimental results have proved the feasibility and validity of our proposed method.

  20. Radionuclide releases to the atmosphere from Hanford Operations, 1944--1972. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Heeb, C.M.

    1994-05-01

    The purpose of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. The first step in determining dose is to estimate the amount and timing of radionuclide releases to air and water. This report provides the air release information.

  1. Researchers take up environmental challenge at Hanford

    International Nuclear Information System (INIS)

    Illman, D.L.

    1993-01-01

    The Hanford nuclear site, built to produce plutonium for the nation's first atomic weapons, occupies 560 square miles of desert in southeastern Washington State. Only 29 months after ground was broken at the site in March 1943, the Hanford project delivered the plutonium used in the bomb that was dropped on Nagasaki, Japan, at the end of World War II. Secrecy surrounding the nuclear weapons program continued through the Cold War years, concealing the fact that for decades, hazardous and radioactive wastes were discharged to the ground, water, and air at Hanford. Only in 1986 were documents finally declassified--tens of thousands of them--describing the construction, operation, and maintenance of the Hanford facilities, allowing a picture to be pieced together of the environmental cost there of the nuclear weapons buildup. That cost may never be completely tallied. But Westinghouse Hanford, Co., the principal operations contractor on the site, and Pacific Northwest Laboratories (PNL), operated by Battelle Memorial Institute for the Department of Energy (DOE), have now begun working together to develop new technologies that are needed to address the short-term and long-term challenges of environmental restoration at Hanford. The paper discusses the problems and possible solutions that are being investigated

  2. Listed waste history at Hanford facility TSD units

    International Nuclear Information System (INIS)

    Miskho, A.G.

    1996-01-01

    This document was prepared to close out an occurrence report that Westinghouse Hanford Company issued on December 29, 1994. Occurrence Report RL-WHC-GENERAL-1994-0020 was issued because knowledge became available that could have impacted start up of a Hanford Site facility. The knowledge pertained to how certain wastes on the Hanford Site were treated, stored, or disposed of. This document consolidates the research performed by Westinghouse Hanford Company regarding listed waste management at onsite laboratories that transfer waste to the Double-Shell Tank System. Liquid and solid (non-liquid) dangerous wastes and mixed wastes at the Hanford Site are generated from various Site operations. These wastes may be sampled and characterized at onsite laboratories to meet waste management requirements. In some cases, the wastes that are generated in the field or in the laboratory from the analysis of samples require further management on the Hanford Site and are aggregated together in centralized tank storage facilities. The process knowledge presented herein documents the basis for designation and management of 242-A Evaporator Process Condensate, a waste stream derived from the treatment of the centralized tank storage facility waste (the Double-Shell Tank System). This document will not be updated as clean up of the Hanford Site progresses

  3. TRACKING CLEAN UP AT HANFORD

    International Nuclear Information System (INIS)

    CONNELL, C.W.

    2005-01-01

    The Hanford Federal Facility Agreement and Consent Order, known as the ''Tri-Party Agreement'' (TPA), is a legally binding agreement among the US Department of Energy (DOE), The Washington State Department of Ecology, and the US Environmental Protection Agency (EPA) for cleaning up the Hanford Site. Established in the 1940s to produce material for nuclear weapons as part of the Manhattan Project, Hanford is often referred to as the world's large environmental cleanup project. The Site covers more than 580 square miles in a relatively remote region of southeastern Washington state in the US. The production of nuclear materials at Hanford has left a legacy of tremendous proportions in terms of hazardous and radioactive waste. From a waste-management point of view, the task is enormous: 1700 waste sites; 450 billion gallons of liquid waste; 70 billion gallons of contaminated groundwater; 53 million gallons of tank waste; 9 reactors; 5 million cubic yards of contaminated soil; 22 thousand drums of mixed waste; 2.3 tons of spent nuclear fuel; and 17.8 metric tons of plutonium-bearing material and this is just a partial listing. The agreement requires that DOE provide the results of analytical laboratory and non-laboratory tests/readings to the lead regulatory agency to help guide then in making decisions. The agreement also calls for each signatory to preserve--for at least ten years after the Agreement has ended--all of the records in it, or its contractors, possession related to sampling, analysis, investigations, and monitoring conducted. The Action Plan that supports the TPA requires that Ecology and EPA have access to all data that is relevant to work performed, or to be performed, under the Agreement. Further, the Action Plan specifies two additional requirements: (1) that EPA, Ecology and their respective contractor staffs have access to all the information electronically, and (2) that the databases are accessible to, and used by, all personnel doing TPA

  4. Potential radiation doses from 1994 Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  5. Potential radiation doses from 1994 Hanford Operations

    International Nuclear Information System (INIS)

    Soldat, J.K.; Antonio, E.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site

  6. Vascular Plants of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-09-28

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Bringham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations on the biological environment, including impacts to rare habitats and to species listed as endangered or\\ threatened. This document includes a listing of plants currently listed as endangered, threatened, or otherwise of concern to the Washington Natural Heritage Program or the U.S. Fish and Wildlife Service, as well as those that are currently listed as noxious weeds by the State of Washington. Also provided is an overview of how plants on the Hanford Site can be used by people. This information may be useful in developing risk assessment models, and as supporting information for clean-up level and remediation decisions.

  7. Hydrogeologic model for the old Hanford townsite

    International Nuclear Information System (INIS)

    MacDonald, Q.; Csun, C.

    1994-01-01

    The Hanford Site in southeastern Washington state produced the country's first plutonium during WW II, and production continued through the end of the cold war. This plutonium production generated significant volumes of chemical and radioactive wastes, some of which were discharged directly to the local sediments as wastewater. Artifical recharge is still the dominating influence on the uppermost and unconfined aquifer over much of the Hanford site. Groundwater from a portion of this aquifer, which is in excess of drinking water standards for tritium, discharges to the Columbia River in the vicinity of the old Hanford townsite. The Hanford site lies within the Pasco basin, which is a structural basin in the Columbia Plateau. Columbia River basalt is overlain by the fluvial and lacustrian Ringold formation. The Ringold is unconformably overlain by the informal Hanford formation. Relatively impermeable basalt outcrops and subcrops along a northwest-southeast-trending anticline across the study area. Hanford sediments include both fluvial and glacial flood deposits lying on an irregular surface of basalt and sedimentary rocks. The coarser flood deposits have very high hydraulic conductivity and probably are the most important conduit for contaminant transport within the aquifer. A finite element model (CFEST-SC) is being used to study the effect of changing river stage on baseflow to the Columbia River near the old Hanford townsite. A steady-state version of the model produces calculated head within 1 m of observed values. Transient flow and solute transport results are expected to help further define the relationship between the contaminated aquifer and the Columbia River

  8. Hanford science and technology needs statements document

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.L.

    1997-12-31

    This document is a compilation of the Hanford science and technology needs statements for FY 1998. The needs were developed by the Hanford Site Technology Coordination Group (STCG) with full participation and endorsement of site user organizations, stakeholders, and regulators. The purpose of this document is to: (a) provide a comprehensive listing of Hanford science and technology needs, and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community. The Hanford STCG reviews and updates the needs annually. Once completed, the needs are communicated to DOE for use in the development and prioritization of their science and technology programs, including the Focus Areas, Cross-Cutting Programs, and the Environmental Management Science Program. The needs are also transmitted to DOE through the Accelerating Cleanup: 2006 Plan. The public may access the need statements on the Internet on: the Hanford Home Page (www.hanford.gov), the Pacific Rim Enterprise Center`s web site (www2.pacific-rim.org/pacific rim), or the STCG web site at DOE headquarters (em-52.em.doegov/ifd/stcg/stcg.htm). This page includes links to science and technology needs for many DOE sites. Private industry is encouraged to review the need statements and contact the Hanford STCG if they can provide technologies that meet these needs. On-site points of contact are included at the ends of each need statement. The Pacific Rim Enterprise Center (206-224-9934) can also provide assistance to businesses interested in marketing technologies to the DOE.

  9. Oceanographic station, temperature profile, meteorological, and other data from CTD and XBT casts from NOAA Ship DELAWARE II and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1980-06-25 to 1983-08-04 (NODC Accession 8300119)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profile, meteorological, and other data were collected from CTD and XBT casts from NOAA Ship DELAWARE II and other platforms from...

  10. A Meteorological Distribution System for High Resolution Terrestrial Modeling (MicroMet)

    Science.gov (United States)

    Liston, G. E.; Elder, K.

    2004-12-01

    Spatially distributed terrestrial models generally require atmospheric forcing data on horizontal grids that are of higher resolution than available meteorological data. Furthermore, the meteorological data collected may not necessarily represent the area of interest's meteorological variability. To address these deficiencies, computationally efficient and physically realistic methods must be developed to take available meteorological data sets (e.g., meteorological tower observations) and generate high-resolution atmospheric-forcing distributions. This poster describes MicroMet, a quasi-physically-based, but simple meteorological distribution model designed to produce high-resolution (e.g., 5-m to 1-km horizontal grid increments) meteorological data distributions required to run spatially distributed terrestrial models over a wide variety of landscapes. The model produces distributions of the seven fundamental atmospheric forcing variables required to run most terrestrial models: air temperature, relative humidity, wind speed, wind direction, incoming solar radiation, incoming longwave radiation, and precipitation. MicroMet includes a preprocessor that analyzes meteorological station data and identifies and repairs potential data deficiencies. The model uses known relationships between meteorological variables and the surrounding area (primarily topography) to distribute those variables over any given landscape. MicroMet performs two kinds of adjustments to available meteorological data: 1) when there are data at more than one location, at a given time, the data are spatially interpolated over the domain using a Barnes objective analysis scheme, and 2) physical sub-models are applied to each MicroMet variable to improve its realism at a given point in space and time with respect to the terrain. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) will be used as example Micro

  11. Use of data assimilation procedures in the meteorological pre-processors of decision support systems to improve the meteorological input of atmospheric dispersion models

    International Nuclear Information System (INIS)

    Kovalets, I.; Andronopoulos, S.; Bartzis, J.G.

    2003-01-01

    Full text: The Atmospheric Dispersion Models (ADMs) play a key role in decision support systems for nuclear emergency management, as they are used to determine the current, and predict the future spatial distribution of radionuclides after an accidental release of radioactivity to the atmosphere. Meteorological pre-processors (MPPs), usually act as interface between the ADMs and the incoming meteorological data. Therefore the quality of the results of the ADMs crucially depends on the input that they receive from the MPPs. The meteorological data are measurements from one or more stations in the vicinity of the nuclear power plant and/or prognostic data from Numerical Weather Prediction (NWP) models of National Weather Services. The measurements are representative of the past and current local conditions, while the NWP data cover a wider range in space and future time, where no measurements exist. In this respect, the simultaneous use of both by an MPP immediately poses the questions of consistency and of the appropriate methodology for reconciliation of the two kinds of meteorological data. The main objective of the work presented in this paper is the introduction of data assimilation (DA) techniques in the MPP of the RODOS (Real-time On-line Decision Support) system for nuclear emergency management in Europe, developed under the European Project 'RODOS-Migration', to reconcile the NWP data with the local observations coming from the meteorological stations. More specifically, in this paper: the methodological approach for simultaneous use of both meteorological measurements and NWP data in the MPP is presented; the method is validated by comparing results of calculations with experimental data; future ways of improvement of the meteorological input for the calculations of the atmospheric dispersion in the RODOS system are discussed. The methodological approach for solving the DA problem developed in this work is based on the method of optimal interpolation (OI

  12. Natural phenomena analyses, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1989-01-01

    Probabilistic seismic hazard studies completed for the Washington Public Power Supply System's Nuclear Plant 2 and for the US Department of Energy's N Reactor sites, both on the Hanford Site, suggested that the Lawrence Livermore National Laboratory seismic exposure estimates were lower than appropriate, especially for sites near potential seismic sources. A probabilistic seismic hazard assessment was completed for those areas that contain process and/or waste management facilities. the lower bound magnitude of 5.0 is used in the hazard analysis and the characteristics of small-magnitude earthquakes relatively common to the Hanford Site are addressed. The recommended ground motion for high-hazard facilities is somewhat higher than the Lawrence Livermore National Laboratory model and the ground motion from small-magnitude earthquakes is addressed separately from the moderate- to large-magnitude earthquake ground motion. The severe wind and tornado hazards determined for the Hanford Siste are in agreement with work completed independently using 43 years of site data. The low-probability, high-hazard, design-basis flood at the Hanford Site is dominated by dam failure on the Columbia River. Further evaluation of the mechanisms and probabilities of such flooding is in progress. The Hanford Site is downwind from several active Cascade volcanoes. Geologic and historical data are used to estimate the ashfall hazard

  13. Hanford Waste Vitrification Plant Technology Plan

    International Nuclear Information System (INIS)

    Sexton, R.A.

    1988-06-01

    The reference Hanford plan for disposal of defense high-level waste is based on waste immobilization in glass by the vitrification process and temporary vitrified waste storage at the Hanford Site until final disposal in a geologic repository. A companion document to the Hanford Waste Management Plan (HWMP) is the Draft, Interim Hanford Waste Management Technology Plan (HWMTP), which provides a description of the technology that must be developed to meet the reference waste management plan. One of the issues in the HWMTP is DST-6, Immobilization (Glass). The HWMTP includes all expense funding needed to complete the Hanford Waste Vitrification Plant (HWVP) project. A preliminary HWVP Technology Plan was prepared in 1985 as a supporting document to the HWMTP to provide a more detailed description of the technology needed to construct and operate a vitrification facility. The plan was updated and issued in 1986, and revised in 1987. This document is an annual update of the plan. The HWVP Technology Plan is limited in scope to technology that requires development or confirmation testing. Other expense-funded activities are not included. The relationship between the HWVP Technology Plan and other waste management issues addressed in the HWMTP is described in section 1.6 of this plan. 6 refs., 4 figs., 34 tabs

  14. Hanford groundwater scenario studies

    International Nuclear Information System (INIS)

    Arnett, R.C.; Gephart, R.E.; Deju, R.A.; Cole, C.R.; Ahlstrom, S.W.

    1977-05-01

    This report documents the results of two Hanford groundwater scenario studies. The first study examines the hydrologic impact of increased groundwater recharge resulting from agricultural development in the Cold Creek Valley located west of the Hanford Reservation. The second study involves recovering liquid radioactive waste which has leaked into the groundwater flow system from a hypothetical buried tank containing high-level radioactive waste. The predictive and control capacity of the onsite Hanford modeling technology is used to evaluate both scenarios. The results of the first study indicate that Cold Creek Valley irrigationis unlikely to cause significant changes in the water table underlying the high-level waste areas or in the movement of radionuclides already in the groundwater. The hypothetical tank leak study showed that an active response (in this case waste recovery) can be modeled and is a possible alternative to passive monitoring of radionuclide movement in the unlikely event that high-level waste is introduced into the groundwater

  15. Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Larson, D.E.; Allen, C.R.; Kruger, O.L.; Weber, E.T.

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to immobilize pretreated Hanford high-level waste and transuranic waste in borosilicate glass contained in stainless steel canisters. Testing is being conducted in the HWVP Technology Development Project to ensure that adapted technologies are applicable to the candidate Hanford wastes and to generate information for waste form qualification. Empirical modeling is being conducted to define a glass composition range consistent with process and waste form qualification requirements. Laboratory studies are conducted to determine process stream properties, characterize the redox chemistry of the melter feed as a basis for controlling melt foaming and evaluate zeolite sorption materials for process waste treatment. Pilot-scale tests have been performed with simulated melter feed to access filtration for solids removal from process wastes, evaluate vitrification process performance and assess offgas equipment performance. Process equipment construction materials are being selected based on literature review, corrosion testing, and performance in pilot-scale testing. 3 figs., 6 tabs

  16. Monitoring of nuclear power stations

    International Nuclear Information System (INIS)

    Ull, E.; Labudda, H.J.

    1987-01-01

    The purpose of the invention is to create a process for undelayed automated detection and monitoring of accidents in the operation of nuclear power stations. According to the invention, this problem is solved by the relevant local measurements, such as radiation dose, components and type of radiation and additional relevant meteorological parameters being collected by means of wellknown data collection platforms, these being transmitted via transmission channels by means of satellites to suitable worldwide situated receiving stations on the ground, being processed there and being evaluated to recognise accidents. The local data collection platforms are used in the immediate vicinity of the nuclear power station. The use of aircraft, ships and balloons as data collection systems is also intended. (HWJ)

  17. First Quarter Hanford Seismic Report for Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

    2011-03-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

  18. The Science Behind Moravian Meteorological Observations for Late-18th Century Labrador

    Science.gov (United States)

    Newell, Dianne; Lüdecke, Cornelia; Matiu, Michael; Menzel, Annette

    2017-04-01

    From the time they established their first shelter among the Inuit population of the northern coast of Labrador in 1771, the brethren of the Moravian Church began producing series of daily instrumental and qualitative meteorological observations of significance to science networks of the day (Macpherson, 1987, Demarée & Ogilvie, 2008). Contrary to what is understood, missionaries did not make these observations for their own purposes. Rather, they responded to requests from scientists who commissioned the data. Scientists also equipped these undertakings. The enlightened observers provided handwritten copies that were publicized in England and continental Europe by individuals and their philosophical and scientific institutions. This pattern of producing reliable records specifically for scientists was true for the 15-year span of Moravian meteorological observations for all 3 Labrador stations in the late 18th century; the 40-year span of records for 10 Moravian stations in Labrador and Greenland in the mid-19th century; and the observations from 5 Labrador stations commissioned for the 1st international Polar Year, 1882, and continuing for several decades afterward, and longer in the case of Nain. When Nain data is combined with that from the Canadian meteorological service, we have a relatively straight run from 1882 to 2015. In this paper, we examine the late-18th century Moravian meteorological observations for qualitative information of interest to modern scientific research. The daily entries comprise not only measurements of temperature and air pressure, but also other weather observations, such as wind direction, estimated wind speed, cloudiness, information which has already allowed us to begin tracking polar lows travelling from Labrador to Greenland across the Labrador Sea. The annual missionary reports of Moravians provide critical supplementary data identifying recurring local phenological events in nature, which offer an integrated signal of weather

  19. Grout to meet physical and chemical requirements for closure at Hanford grout vaults. Final report

    International Nuclear Information System (INIS)

    1994-01-01

    The US Army Engineer Waterways Experiment Station (WES) developed a grout based on portland cement, Class F fly ash, and bentonite clay, for the Hanford Grout Vault Program. The purpose of this grout was to fill the void between a wasteform containing 106-AN waste and the vault cover blocks. Following a successful grout development program, heat output, volume change, and compressive strength were monitored with time in simulated repository conditions and in full-depth physical models. This research indicated that the cold-cap grout could achieve and maintain adequate volume stability and other required physical properties in the internal environment of a sealed vault. To determine if contact with 106-AN liquid waste would cause chemical deterioration of the cold-cap grout, cured specimens were immersed in simulated waste. Over a period of 21 days at 150 F, specimens increased in mass without significant changes in volume. X-ray diffraction of reacted specimens revealed crystallization of sodium aluminum silicate hydrate. Scanning electron microscopy used with X-ray fluorescence showed that clusters if this phase had formed in grout pores, increasing grout density and decreasing its effective porosity. Physical and chemical tests collectively indicate a sealing component. However, the Hanford Grout Vault Program was cancelled before completion of this research. This report summarizes close-out Waterways Experiment Station when the Program was cancelled

  20. Hanford internal dosimetry program manual

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs

  1. Hanford Site baseline risk assessment methodology. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This methodology has been developed to prepare human health and environmental evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act remedial investigations (RIs) and the Resource Conservation and Recovery Act facility investigations (FIs) performed at the Hanford Site pursuant to the Hanford Federal Facility Agreement and Consent Order referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies Site-specific risk assessment considerations and integrates them with approaches for evaluating human and environmental risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site.

  2. Meteorological and hydrographic data collected from Meaher Park in Mobile Bay, Alabama, Gulf of Mexico from 2015-01-01 to 2015-12-31 (NCEI Accession 0159586)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains meteorological and hydrographic data from Meaher Park station. Meteorological data was collected every minute and hydrographic data was...

  3. Resource book: Decommissioning of contaminated facilities at Hanford

    International Nuclear Information System (INIS)

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 68 refs., 54 figs., 18 tabs

  4. Resource book: Decommissioning of contaminated facilities at Hanford

    International Nuclear Information System (INIS)

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 49 refs., 44 figs., 14 tabs

  5. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 2, Users' manual: Hanford Environmental Dosimetry Upgrade Project

    International Nuclear Information System (INIS)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-11-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. This second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The first volume describes the theoretical considerations of the system. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 27 refs., 17 figs., 23 tabs

  6. Third Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its con-tractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (E WRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 818 triggers on two parallel detection and recording systems during the third quarter of fiscal year (FY) 2000. Thirteen seismic events were located by the Hanford Seismic Network within the reporting region of 46-47{degree} N latitude and 119-120{degree} W longitude; 7 were earthquakes in the Columbia River Basalt Group, 1 was an earthquake in the pre-basalt sediments, and 5 were earthquakes in the crystalline basement. Three earthquakes occurred in known swarm areas, and 10 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the third quarter of FY 2000.

  7. First Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-03-21

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, forty-four local earthquakes were recorded during the first quarter of fiscal year 2008. A total of thirty-one micro earthquakes were recorded within the Rattlesnake Mountain swarm area at depths in the 5-8 km range, most likely within the pre-basalt sediments. The largest event recorded by the network during the first quarter (November 25, 2007 - magnitude 1.5 Mc) was located within this swarm area at a depth of 4.3 km. With regard to the depth distribution, three earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), thirty-six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and five earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, thirty-eight earthquakes occurred in swarm areas and six earth¬quakes were classified as random events.

  8. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  9. DOE Order 5480.28 Hanford facilities database

    Energy Technology Data Exchange (ETDEWEB)

    Hayenga, J.L., Westinghouse Hanford

    1996-09-01

    This document describes the development of a database of DOE and/or leased Hanford Site Facilities. The completed database will consist of structure/facility parameters essential to the prioritization of these structures for natural phenomena hazard vulnerability in compliance with DOE Order 5480.28, `Natural Phenomena Hazards Mitigation`. The prioritization process will be based upon the structure/facility vulnerability to natural phenomena hazards. The ACCESS based database, `Hanford Facilities Site Database`, is generated from current Hanford Site information and databases.

  10. Waste minimization -- Hanford`s strategy for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Merry, D.S.

    1998-01-30

    The Hanford Site cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single-shell storage tanks, treating waste stored in 28 double-shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored onsite, removing thousands of structures, and dealing with significant solid waste, groundwater, and land restoration issues. The Pollution Prevention/Waste Minimization (P2/WMin) Program supports the Hanford Site mission to safely clean up and manage legacy waste and to develop and deploy science and technology in many ways. Once such way is through implementing and documenting over 231 waste reduction projects during the past five years, resulting in over $93 million in cost savings/avoidances. These savings/avoidances allowed other high priority cleanup work to be performed. Another way is by exceeding the Secretary of Energy`s waste reduction goals over two years ahead of schedule, thus reducing the amount of waste to be stored, treated and disposed. Six key elements are the foundation for these sustained P2/WMin results.

  11. Hanford Dose Overview Program. Comparison of AIRDOS-EPA and Hanford site dose codes

    International Nuclear Information System (INIS)

    Aaberg, R.L.; Napier, B.A.

    1985-11-01

    Radiation dose commitments for persons in the Hanford environs calculated using AIRDOS-EPA were compared with those calculated using a suite of Hanford codes: FOOD, PABLM, DACRIN, and KRONIC. Dose commitments to the population and to the maximally exposed individual (MI) based on annual releases of eight radionuclides from the N-Reactor, were calculated by these codes. Dose commitments from each pathway to the total body, lung, thyroid, and lower large intestine (LLI) are given for the population and MI, respectively. 11 refs., 25 tabs

  12. Hanford Site Raptor Nest Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John J. [Mission Support Alliance (MSA), Richland, WA (United States); Lindsey, Cole T. [Mission Support Alliance (MSA), Richland, WA (United States); Wilde, Justin W. [Mission Support Alliance (MSA), Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA. The Hanford Site supports a large and diverse community of raptorial birds (Fitzner et al. 1981), with 26 species of raptors observed on the Hanford Site.

  13. Feasibility study for the processing of Hanford Site cesium and strontium isotopic sources in the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Watrous, R.A.; Nelson, J.L.; Perez, J.M.; Peters, R.D.; Peterson, M.E.

    1991-09-01

    The final environmental impact statement for the disposal of defense-related wastes at the Hanford Site (Final Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes [HDW-EIS] [DOE 1987]) states that the preferred alternative for disposal of cesium and strontium wastes at the Hanford Site will be to package and ship these wastes to the commercial high-level waste repository. The Record of Decision for this EIS states that before shipment to a geologic repository, these wastes will be packaged in accordance with repository waste acceptance criteria. However, the high cost per canister for repository disposal and uncertainty about the acceptability of overpacked capsules by the repository suggest that additional alternative means of disposal be considered. Vitrification of the cesium and strontium salts in the Hanford Waste Vitrification Plant (HWVP) has been identified as a possible alternative to overpacking. Subsequently, Westinghouse Hanford Company's (Westinghouse Hanford) Projects Technical Support Office undertook a feasibility study to determine if any significant technical issues preclude the vitrification of the cesium and strontium salts. Based on the information presented in this report, it is considered technically feasible to blend the cesium chloride and strontium fluoride salts with neutralized current acid waste (NCAW) and/or complexant concentrate (CC) waste feedstreams, or to blend the salts with fresh frit and process the waste through the HWVP

  14. Hanford Facility Annual Dangerous Waste Report Calendar Year 2002

    International Nuclear Information System (INIS)

    FR-EEMAN, D.A.

    2003-01-01

    Hanford CY 2002 dangerous waste generation and management forms. The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Information and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, electronic copies of the report are also transmitted to the regulatory agency

  15. Oceanographic and surface meteorological data collected from station Schodack Island hydro/weather by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2008-04-25 to 2017-05-31 (NCEI Accession 0163416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163416 contains oceanographic and surface meteorological data collected at Schodack Island hydro/weather, a fixed station in the Hudson River. These...

  16. Overview of the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Shipler, D.B.; Napier, B.A.; Ikenberry, T.A.

    1992-04-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that specific and representative individuals and populations may have received as a result of releases of radioactive materials from historical operations at the Hanford Site. These dose estimates would account for the uncertainties of information regarding facilities operations, environmental monitoring, demography, food consumption and lifestyles, and the variability of natural phenomena. Other objectives of the HEDR Project include: supporting the Hanford Thyroid Disease Study (HTDS), declassifying Hanford-generated information and making it available to the public, performing high-quality, credible science, and conducting the project in an open, public forum. The project is briefly described

  17. Application of a mesoscale forecasting model (NMM) coupled to the CALMET to develop forecast meteorology to use with the CALPUFF air dispersion model

    International Nuclear Information System (INIS)

    Radonjic, Z.; Telenta, B.; Kirklady, J.; Chambers, D.; Kleb, H.

    2006-01-01

    An air quality assessment was undertaken as part of the Environmental Assessment for the Port Hope Area Initiative. The assessment predicted potential effects associated with the remediation efforts for historic low-level radioactive wastes and construction of Long-Term Waste Management Facilities (LTWMFs) for both the Port Hope and Port Granby Projects. A necessary element of air dispersion modelling is the development of suitable meteorological data. For the Port Hope and Port Granby Projects, a meteorological station was installed in close proximity to the location of the recommended LTWMF in Port Hope. The recommended location for the Port Granby LTWMF is approximately 10 km west of the Port Hope LTWMF. Concerns were raised regarding the applicability of data collected for the Port Hope meteorological station to the Port Granby Site. To address this concern, a new method for processing meteorological data, which coupled mesoscale meteorological forecasting data the U.S. EPA CALMET meteorological data processor, was applied. This methodology is possible because a new and advanced mesoscale forecasting modelling system enables extensive numerical calculations on personal computers. As a result of this advancement, mesoscale forecasting systems can now be coupled with the CALMET meteorological data processor and the CALPUFF air dispersion modelling system to facilitate wind field estimations and air dispersion analysis. (author)

  18. Hanford Site radioactive mixed waste thermal treatment initiative

    International Nuclear Information System (INIS)

    Place, B.G.; Riddelle, J.G.

    1993-03-01

    This paper is a progress report of current Westinghouse Hanford Company engineering activities related to the implementation of a program for the thermal treatment of the Hanford Site radioactive mixed waste. Topics discussed include a site-specific engineering study, the review of private sector capability in thermal treatment, and thermal treatment of some of the Hanford Site radioactive mixed waste at other US Department of Energy sites

  19. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  20. Hanford general employee training - A million dollar cost beneficial program

    International Nuclear Information System (INIS)

    Gardner, P.R.

    1991-02-01

    In January 1990, Westinghouse Hanford Company implemented an interactive videodisc training program entitled Hanford General Employee Training. Covering all Institute of Nuclear Power Operations general employee training objectives, training mandated by US Department of Energy orders, and training prescribed by internal Westinghouse Hanford Company policies, Hanford General Employee Training presents and manages engaging training programs individually tailored to each of the 9,000 employees. Development costs for a sophisticated program such as Hanford General Employee Training were high compared to similar costs for developing ''equivalent'' traditional training. Hardware ($500,000) and labor costs ($400,000) totaled $900,000. Annual maintenance costs, equipment plus labor, are totalling about $200,000. On the benefit side, by consolidating some 17 previous Westinghouse Hanford Company courses and more effectively managing the instructional process, Hanford General Employee Training reduced the average student training time from over 11 hours to just under 4 hours. For 9,000 employees, the computed net annual savings exceeds $1.3 million. 2 refs

  1. Hanford Site Wide Transportation Safety Document [SEC 1 Thru 3

    Energy Technology Data Exchange (ETDEWEB)

    MCCALL, D L

    2002-06-01

    This safety evaluation report (SER) documents the basis for the US Department of Energy (DOE), Richland Operations Office (RL) to approve the Hanford Sitewide Transportation Safety Document (TSD) for onsite Transportation and Packaging (T&P) at Hanford. Hanford contractors, on behalf of DOE-RL, prepared and submitted the Hanford Sitewide Transportation Safety Document, DOE/RL-2001-0036, Revision 0, (DOE/RL 2001), dated October 4, 2001, which is referred to throughout this report as the TSD. In the context of the TSD, Hanford onsite shipments are the activities of moving hazardous materials, substances, and wastes between DOE facilities and over roadways where public access is controlled or restricted and includes intra-area and inter-area movements. The TSD sets forth requirements and standards for onsite shipment of radioactive and hazardous materials and wastes within the confines of the Hanford Site on roadways where public access is restricted by signs, barricades, fences, or other means including road closures and moving convoys controlled by Hanford Site security forces.

  2. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  3. Saltwell Leak Detector Station Programmable Logic Controller (PLC) Software Configuration Management Plan (SCMP)

    International Nuclear Information System (INIS)

    WHITE, K.A.

    2000-01-01

    This document provides the procedures and guidelines necessary for computer software configuration management activities during the operation and maintenance phases of the Saltwell Leak Detector Stations as required by HNF-PRO-309/Rev.1, Computer Software Quality Assurance, Section 2.4, Software Configuration Management. The software configuration management plan (SCMP) integrates technical and administrative controls to establish and maintain technical consistency among requirements, physical configuration, and documentation for the Saltwell Leak Detector Station Programmable Logic Controller (PLC) software during the Hanford application, operations and maintenance. This SCMP establishes the Saltwell Leak Detector Station PLC Software Baseline, status changes to that baseline, and ensures that software meets design and operational requirements and is tested in accordance with their design basis

  4. Hanford Site Anuran Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, Justin W. [Mission Support Alliance LLC, Richland, WA (United States); Johnson, Scott J. [Mission Support Alliance LLC, Richland, WA (United States); Lindsey, Cole T. [Mission Support Alliance LLC, Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  5. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP

  6. First Quarter Hanford Seismic Report for Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.; Valenta, Michelle M.

    2001-02-27

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 477 triggers during the first quarter of fiscal year (FY) 2001 on the data acquisition system. Of these triggers, 176 were earthquakes. Forty-five earthquakes were located in the HSN area; 1 earthquake occurred in the Columbia River Basalt Group, 43 were earthquakes in the pre-basalt sediments, and 1 was earthquakes in the crystalline basement. Geographically, 44 earthquakes occurred in swarm areas, 1 earthquake was on a major structure, and no earthquakes were classified as random occurrences. The Horse Heaven Hills earthquake swarm area recorded all but one event during the first quarter of FY 2001. The peak of the activity occurred over December 12th, 13th, and 14th when 35 events occurred. No earthquakes triggered the Hanford Strong Motion Accelerometers during the first quarter of FY 2001.

  7. Hanford Site performance report - December 1998

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U. S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology support to the Environmental Management (EM) mission. This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. Currently, the report focuses on the EM mission, and will be expanded in the future to include non-EM activities. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a tabular performance profile with associated analyses, Critical Issues, Key Integration Activities, a look at Significant Trends, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators. The Site Summary is a compilation of performance data from all of the Mission Areas and the Projects that comprise these Mission Areas; the information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or the Site Summary sections. At the end of this report, a glossary of terms is provided

  8. Axial Dispersion during Hanford Saltcake Washing

    International Nuclear Information System (INIS)

    Josephson, Gary B.; Geeting, John GH; Lessor, Delbert L.; Barton, William B.

    2006-01-01

    Clean up of Hanford salt cake wastes begins with dissolution retrieval of the sodium rich salts that make up the dominant majority of mass in the tanks. Water moving through the porous salt cake dissolves the soluble components and also displaces the soluble radionuclides (e.g. 137Cs and 99TcO4- ). The separation that occurs from this displacement, known as Selective dissolution, is an important component in Hanford?s pretreatment of low activity wastes for subsequent Supplemental treatment. This paper describes lab scale testing conducted to evaluate Selective dissolution of cesium from non-radioactive Hanford tank 241-S-112 salt cake simulant containing the primary chemicals found the actual tank. An modified axial dispersion model with increasing axial dispersion was developed to predict cesium removal. The model recognizes that water dissolves the salt cake during washing, which causes an increase in the axial dispersion during the wash. This model was subsequently compared with on-line cesium measurements from the retrieval of tank 241-S-112. The model had remarkably good agreement with both the lab scale and full scale data

  9. Software recycling at the Hanford Site

    International Nuclear Information System (INIS)

    HINKELMAN, K.C.

    1999-01-01

    The Hanford Site was the first Department of Energy (DOE) complex to recycle excess software rather than dispose of it in the landfill. This plan, which took over a year to complete, was reviewed for potential legal conflicts, which could arise from recycling rather than disposal of software. It was determined that recycling was an approved method of destruction and therefore did not conflict with any of the licensing agreements that Hanford had with the software manufacturers. The Hanford Recycling Program Coordinator combined efforts with Pacific Northwest National Laboratory (PNNL) to recycle all Hanford software through a single contract, which went out for bid in January 1995. It was awarded to GreenDisk, Inc. located in Woodinville Washington and implemented in March 1995. The contract was later re-bid and awarded to EcoDisWGreenDisk in December 1998. The new contract included materials such as; software manuals, diskettes, tyvek wrapping, cardboard and paperboard packaging, compact disks (CDs), videotapes, reel-to-reel tapes, magnetic tapes, audio tapes, and many other types of media

  10. Meteorological observations in support of a hill cap cloud experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Morten

    1998-06-01

    Humid air flows form a hill cap cloud over the Agana mountain ridge in the north-east of Tenerife. The HILLCLOUD project utilised this cloud formation to investigate the chemical and physical properties of cloud aerosols by land based observations. The project was part of the second Aerosol characterisation Experiment (ACE-2) of the International Global Atmospheric chemistry project (IGAC). The present report describes meteorological observations in support of the hill cap cloud experiment. Time-series of wind speed, wind direction, temperature and humidity were collected at ground-based meteorological stations during a period starting one year in advance of the main campaign. A series of radiosonde detecting the upstream stability and wind profile were launched during the main campaign. (au) 5 tabs., 32 ills., 6 refs.

  11. Hanford: A Conversation About Nuclear Waste and Cleanup

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2003-01-01

    The author takes us on a journey through a world of facts, values, conflicts, and choices facing the most complex environmental cleanup project in the United States, the U.S. Department of Energy's Hanford Site. Starting with the top-secret Manhattan Project, Hanford was used to create tons of plutonium for nuclear weapons. Hundreds of tons of waste remain. In an easy-to-read, illustrated text, Gephart crafts the story of Hanford becoming the world's first nuclear weapons site to release large amounts of contaminants into the environment. This was at a time when radiation biology was in its infancy, industry practiced unbridled waste dumping, and the public trusted what it was told. The plutonium market stalled with the end of the Cold War. Public accountability and environmental compliance ushered in a new cleanup mission. Today, Hanford is driven by remediation choices whose outcomes remain uncertain. It's a story whose epilogue will be written by future generations. This book is an information resource, written for the general reader as well as the technically trained person wanting an overview of Hanford and cleanup issues facing the nuclear weapons complex. Each chapter is a topical mini-series. It's an idea guide that encourages readers to be informed consumers of Hanford news, to recognize that knowledge, high ethical standards, and social values are at the heart of coping with Hanford's past and charting its future. Hanford history is a window into many environmental conflicts facing our nation; it's about building upon success and learning from failure. And therein lies a key lesson, when powerful interests are involved, no generation is above pretense. Roy E. Gephart is a geohydrologist and senior program manager at the Pacific Northwest National Laboratory, Richland, Washington. He has 30 years experience in environmental studies and the nuclear waste industry

  12. An evaluation of meteorologic data differences between the Pantex Plant and Amarillo, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S.F.

    1993-06-01

    Meteorologic data from the Pantex Plant and from the nearby National Weather Service (NWS) station at the Amarillo, Texas, International Airport were evaluated to determine if the NWS data adequately represented meteorologic conditions at the Pantex Plant. Annual site environmental dose calculations for the Pantex Plant have previously used the NWS data; information from this data comparison helped determine if future environmental dose calculations should use site-specific Pantex meteorologic data. The meteorologic data evaluated were wind speed, wind direction, and atmospheric stability class. Atmospheric stability class data were compared for years 1990 and 1991 and found to be very similar. Stability class designations were identical and one class different in 63% and 30%, respectively, of the paired hourly data. An unexpected finding was the preponderance of Class D stability, which occurred approximately 62% of the time in both data sets. The overall effect of meteorological differences between the two locations was evaluated by performing environmental dose assessments using the GENII dose assessment computer code. Acute and chronic releases of {sup 3}H and {sup 239}Pu were evaluated. Results using the NWS Amarillo meteorologic data were approximately one-half of those generated using Pantex meteorologic data. The two-fold difference in dose results is within the uncertainty expected from current dose assessment codes; therefore, the two meteorologic databases can be used interchangeably and prior dose calculation results using the NWS Amarillo data are acceptable.

  13. FINAL FRONTIER AT HANFORD TACKLING THE CENTRAL PLATEAU

    International Nuclear Information System (INIS)

    GERBER MS

    2008-01-01

    The large land area in the center of the vast Department of Energy (DOE) Hanford Site in southeast Washington State is known as 'the plateau'--aptly named because its surface elevations are 250-300 feet above the groundwater table. By contrast, areas on the 585-square mile Site that border the Columbia River sit just 30-80 feet above the water table. The Central Plateau, which covers an ellipse of approximately 70 square miles, contains Hanford's radiochemical reprocessing areas--the 200 East and 200 West Areas--and includes the most highly radioactive waste and contaminated facilities on the Site. Five 'canyons' where chemical processes were used to separate out plutonium (Pu), 884 identified soil waste sites (including approximately 50 miles of solid waste burial trenches), more than 900 structures, and all of Hanford's liquid waste storage tanks reside in the Central Plateau. (Notes: Canyons is a nickname given by Hanford workers to the chemical reprocessing facilities. The 177, underground waste tanks at Hanford comprise a separate work scope and are not under Fluor's management). Fluor Hanford, a DOE prime cleanup contractor at the Site for the past 12 years, has moved aggressively to investigate Central Plateau waste sites in the last few years, digging more than 500 boreholes, test pits, direct soil 'pushes' or drive points; logging geophysical data sets; and performing electrical-resistivity scans (a non-intrusive technique that maps patterns of sub-surface soil conductivity). The goal is to identify areas of contamination areas in soil and solid waste sites, so that cost-effective and appropriate decisions on remediation can be made. In 2007, Fluor developed a new work plan for DOE that added 238 soil waste-site characterization activities in the Central Plateau during fiscal years (FYs) 2007-2010. This number represents a 50 percent increase over similar work previously done in central Hanford. Work Plans are among the required steps in the Comprehensive

  14. Selection of some meteorological fluctuations to create forecasting models of NO2 in Jinamar (Gran Canarias)

    International Nuclear Information System (INIS)

    Vera Castellano, A.; Lopez Cancio, J.; Corujo Jimenez, J.

    1997-01-01

    The study of meteorological fluctuations that have been reported in urban and semi urban zones has reached in the last years an increasing importance to environmental pollution researches because its knowledge permits the elaboration of empirical models able to predict periods of potential pollution in these zones. In this work, it has been made use of the data on concentrations of NO 2 supplied by an chemiluminescent analyser and the meteorological data provided by a meteorological station located in the surroundings of the analyser, in order to determine the variables that have taken part in the elaboration of a forecasting model of this pollutant in Jinamar Valley. (Author) 15 refs

  15. Using routine meteorological data to derive sky conditions

    Directory of Open Access Journals (Sweden)

    D. Pagès

    2003-03-01

    Full Text Available Sky condition is a matter of interest for public and weather predictors as part of weather analyses. In this study, we apply a method that uses total solar radiation and other meteorological data recorded by an automatic station for deriving an estimation of the sky condition. The impetus of this work is the intention of the Catalan Meteorological Service (SMC to provide the public with real-time information about the sky condition. The methodology for deriving sky conditions from meteorological records is based on a supervised classification technique called maximum likelihood method. In this technique we first need to define features which are derived from measured variables. Second, we must decide which sky conditions are intended to be distinguished. Some analyses have led us to use four sky conditions: (a cloudless or almost cloudless sky, (b scattered clouds, (c mostly cloudy – high clouds, (d overcast – low clouds. An additional case, which may be treated separately, corresponds to precipitation (rain or snow. The main features for estimating sky conditions are, as expected, solar radiation and its temporal variability. The accuracy of this method of guessing sky conditions compared with human observations is around 70% when applied to four sites in Catalonia (NE Iberian Peninsula. The agreement increases if we take into account the uncertainty both in the automatic classifier and in visual observations.Key words. Meteorological and atmospheric dynamics (instruments and techniques; radiative processes – Atmospheric composition and structure (cloud physics and chemistry

  16. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    2000-01-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47degree N latitude and 119--120degree W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  17. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-07-17

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree} N latitude and 119--120{degree} W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  18. First quarter Hanford seismic report for fiscal year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-02-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EW uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 311 triggers on two parallel detection and recording systems during the first quarter of fiscal year (FY) 2000. Twelve seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree}N latitude and 119--120{degree}W longitude; 2 were earthquakes in the Columbia River Basalt Group, 3 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 1 was a quarry blast. Two earthquakes appear to be related to a major geologic structure, no earthquakes occurred in known swarm areas, and 9 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers

  19. Radiation protection at the RA Reactor in 1989, Part 2 , Environmental radioactivity control - Meteorology measurements, Annex 2b

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.; Zaric, M.

    1989-01-01

    Already poor state of the equipment and insufficient staff of the meteorology service in the Institute was not improved during the past year, on the contrary. In addition to the fact that the series of meteorology sensors available in the Institute are not appropriate for special measurements which are obligatory for nuclear facilities, it is clear that the methods of data acquisition and processing applied during the past year were such as emergency methods applied worldwide in case when automated measurements are not functioning. It is underlined that meteorology data acquisition and data processing are not in accordance with the legal regulations, which demand each nuclear facility owner to have an automated meteorology station [sr

  20. Hanford process review

    International Nuclear Information System (INIS)

    1991-12-01

    This report is a summary of past incidents at the US Department of Energy's (DOE) Hanford Site. The purpose of the report is to provide the major, significant, nuclear-safety-related incidents which incurred at the Hanford Site in a single document for ease of historical research. It should be noted that the last major accident occurred in 1980. This document is a summary of reports released and available to the public in the DOE Headquarters and Richland public reading rooms. This document provides no new information that has not previously been reported. This report is not intended to cover all instances of radioactivity release or contamination, which are already the subject of other major reviews, several of which are referenced in Section 1.3

  1. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station

  2. Hanford tank initiative test facility site selection study

    International Nuclear Information System (INIS)

    Staehr, T.W.

    1997-01-01

    The Hanford Tanks Initiative (HTI) project is developing equipment for the removal of hard heel waste from the Hanford Site underground single-shell waste storage tanks. The HTI equipment will initially be installed in the 241-C-106 tank where its operation will be demonstrated. This study evaluates existing Hanford Site facilities and other sites for functional testing of the HTI equipment before it is installed into the 241-C-106 tank

  3. Master schedule for CY-1979 Hanford environmental surveillance routine program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Houston, J.R.; Eddy, P.A.

    1978-12-01

    The current schedule of data collection for the routine environmental surveillance program at the Hanford Site, as conducted by the Environmental Evaluation Section of Battelle, Pacific Northwest Laboratory for the Department of Energy (DOE), is given. Modifications to the schedule are made during the year and special areas of study, usually of short duration, are not scheduled. The environmental surveillance program objectives are to evaluate the levels of radioactive and nonradioactive pollutants in the Hanford environs, and to monitor Hanford operations for compliance with applicable environmental criteria and Washington State Water Quality Standards. Air quality data are obtained in a separate program administered by the Hanford Environmental Health Foundation. The collection schedule for potable water is shown but it is not part of the routine environmental surveillance program. Water quality data for Hanford Site potable water systems are published each year by the Hanford Environmental Health Foundation. The data collected are available in routine reports issued by the Environmental Evaluations staff. Groundwater data and evaluation are reported in the series, ''Radiological Status of the Groundwater Beneath the Hanford Project for...,'' the latest issue being PNL-2624 for CY-1977. Data from locations within the plant boundaries are presented in the annual ''Environmental Status of the Hanford Site for...'' report series, the most recent report being PNL-2677 for 1977. Data from offsite locations are presented in the annual ''Environmental Surveillance at Hanford for...'' series of reports, the latest being PNL-2614 for 1977

  4. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2010-01-01

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  5. Hanford Waste Mineralogy Reference Report

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2010-01-01

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  6. HANFORD WASTE MINERALOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  7. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  8. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    Energy Technology Data Exchange (ETDEWEB)

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  9. Software configuration management plan for the Hanford site technical database

    International Nuclear Information System (INIS)

    GRAVES, N.J.

    1999-01-01

    The Hanford Site Technical Database (HSTD) is used as the repository/source for the technical requirements baseline and programmatic data input via the Hanford Site and major Hanford Project Systems Engineering (SE) activities. The Hanford Site SE effort has created an integrated technical baseline for the Hanford Site that supports SE processes at the Site and project levels which is captured in the HSTD. The HSTD has been implemented in Ascent Logic Corporation (ALC) Commercial Off-The-Shelf (COTS) package referred to as the Requirements Driven Design (RDD) software. This Software Configuration Management Plan (SCMP) provides a process and means to control and manage software upgrades to the HSTD system

  10. 75 FR 6018 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-02-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford (known locally as the Hanford Advisory... and site management in the areas of environmental restoration, waste management, and related...

  11. Environmental radiation monitoring system in nuclear power station

    International Nuclear Information System (INIS)

    Matsuoka, Sadazumi; Tadachi, Katsuo; Endo, Mamoru; Yuya, Hiroshi

    1983-01-01

    At the time of the construction of nuclear power stations, prior to their start of operation, the state of environmental radiation must be grasped. After the start of the power stations, based on those data, the system of environmental radiation monitoring is established. Along with the construction of Kashiwazaki-Kariwa Nuclear Power Station, The Tokyo Electric Power Co., Inc. jointly with Fujitsu Ltd. has developed a high-reliability, environmental radiation monitoring system, and adopted ''optical data highways'' using optical fiber cables for communication. It consists of a central monitoring station and 11 telemeter observation points, for collecting both radiation and meteorological data. The data sent to the central station through the highways are then outputted on a monitoring panel. They are analyzed with a central processor, and the results are printed out. (Mori, K.)

  12. Environmental surveillance at Hanford for CY-1974

    International Nuclear Information System (INIS)

    Fix, J.J.

    1975-04-01

    During 1974, the work at Hanford included N Reactor operation, nuclear fuel fabrication, liquid waste solidification, continued construction of the Fast Flux Test Facility, continued construction of Washington Public Power Supply System (WPPSS) No. 2 power reactor, Arid Lands Ecology studies, as well as continued use of a variety of research and laboratory facilities. Environmental data collected during 1974 showed continued compliance of Hanford operations with all applicable state and federal regulations. Levels of radioactivity in the atmosphere from Hanford operations at all offsite sampling locations were indistinguishable from levels due to natural causes and fallout from nuclear detonations in the atmosphere. Air quality measurements of NO 2 in the Hanford environs recorded a maximum yearly average concentration of 0.006 ppM or 12 percent of the ambient air standard. There was no indication that Hanford operations contributed significantly to these levels. All SO 2 results were less than the detection limit of 0.005 ppM or 25 percent of the ambient air quality standard. Routine radiological, chemical, biological, and physical analyses of Columbia River water upstream and downstream of the Hanford Reservation operations with the possible exception of water temperature. Levels of radioactivity were similar at both locations and were due to natural and fallout radioactivity. Estimates are included of the radiation dose to the human population within an 80-kilometer (50-mile) radius of the site during 1974. Methods used in calculations of the annual dose and 50-year dose commitment from radioactive effluents are discussed. (U.S.)

  13. Wind power variations under humid and arid meteorological conditions

    International Nuclear Information System (INIS)

    Şen, Zekâi

    2013-01-01

    Highlights: • It indicates the role of weather parameters’ roles in the wind energy calculation. • Meteorological variables are more significant in arid regions for wind power. • It provides opportunity to take into consideration air density variability. • Wind power is presented in terms of the wind speed, temperature and pressure. - Abstract: The classical wind power per rotor area per time is given as the half product of the air density by third power of the wind velocity. This approach adopts the standard air density as constant (1.23 g/cm 3 ), which ignores the density dependence on air temperature and pressure. Weather conditions are not taken into consideration except the variations in wind velocity. In general, increase in pressure and decrease in temperature cause increase in the wind power generation. The rate of increase in the pressure has less effect on the wind power as compared with the temperature rate. This paper provides the wind power formulation based on three meteorological variables as the wind velocity, air temperature and air pressure. Furthermore, from the meteorology point of view any change in the wind power is expressed as a function of partial changes in these meteorological variables. Additionally, weather conditions in humid and arid regions differ from each other, and it is interesting to see possible differences between the two regions. The application of the methodology is presented for two meteorology stations in Istanbul, Turkey, as representative of the humid regions and Al-Madinah Al-Monawwarah, Kingdom of Saudi Arabia, for arid region, both on daily record bases for 2010. It is found that consideration of air temperature and pressure in the average wind power calculation gives about 1.3% decrease in Istanbul, whereas it is about 13.7% in Al-Madinah Al-Monawwarah. Hence, consideration of meteorological variables in wind power calculations becomes more significant in arid regions

  14. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST and 200 WEST TANK FARMS FROM CY1995 TO CY2004

    International Nuclear Information System (INIS)

    HOCKING, M.J.

    2005-01-01

    Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log

  15. Hanford: The evolution of a dinosaur

    International Nuclear Information System (INIS)

    Fulton, J.

    1995-01-01

    This article describes how the Westinghouse Hanford Company is reinventing the US DOE's Hanford Site, turning a 1940s-era dinosaur into a 1990s-style business. The major topics covered include the following: breaking the logjam by ending the inefficient cost-plus days; Concentrating resources on resolving urgent safety issues; contract reform with more incentive, greater risk; finally reengineering: the next step

  16. Hanford Waste Vitrification Plant applied technology plan

    International Nuclear Information System (INIS)

    Kruger, O.L.

    1990-09-01

    This Applied Technology Plan describes the process development, verification testing, equipment adaptation, and waste form qualification technical issues and plans for resolution to support the design, permitting, and operation of the Hanford Waste Vitrification Plant. The scope of this Plan includes work to be performed by the research and development contractor, Pacific Northwest Laboratory, other organizations within Westinghouse Hanford Company, universities and companies with glass technology expertise, and other US Department of Energy sites. All work described in this Plan is funded by the Hanford Waste Vitrification Plant Project and the relationship of this Plan to other waste management documents and issues is provided for background information. Work to performed under this Plan is divided into major areas that establish a reference process, develop an acceptable glass composition envelope, and demonstrate feed processing and glass production for the range of Hanford Waste Vitrification Plant feeds. Included in this work is the evaluation and verification testing of equipment and technology obtained from the Defense Waste Processing Facility, the West Valley Demonstration Project, foreign countries, and the Hanford Site. Development and verification of product and process models and other data needed for waste form qualification documentation are also included in this Plan. 21 refs., 4 figs., 33 tabs

  17. Hanford facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-01-01

    This document, Set 2, the Hanford Facility Dangerous Waste Part B Permit Application, consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 CFR 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of WAC 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. This permit application contains ''umbrella- type'' documentation with overall application to the Hanford Facility. This documentation is broad in nature and applies to all TSD units that have final status under the Hanford Facility Permit

  18. The Hanford summit and sustainable development

    International Nuclear Information System (INIS)

    Sullivan, C.T.

    1994-05-01

    Since the days of the Manhattan Project of World War II, the economic well being of the Tri-Cities (Pasco, Kennewick, and Richland) of Washington State has been tied to the US Department of Energy missions at the nearby Hanford Site. As missions at the Site changed, so did the well being of the region. The Hanford Site is now poised to complete its final mission, that of environmental restoration. When restoration is compiled, the Site may be closed and the effect on the local economy will be devastating if action is not taken now. To that end, economic diversification and transition are being planned. To facilitate the process, the Hanford Site will become a sustainable development demonstration project -- a project with regional, national, and international application

  19. A Study Plan for Determining Recharge Rates at the Hanford Site Using Environmental Tracers

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E. M.; Szecsody, J. E.; Phillips, S. J.

    1991-02-01

    . Seven study sites on the Hanford Site have been selected, in two primary soil types that are believed to represent the extremes in recharge, the Quincy sand and the Warden silt loam. An additional background study site upwind of the Hanford facilities has been chosen at the Yakima Firing Center. Study sites at Hanford were chosen close to micrometeorology stations on downwind transects from the operational facilities. Initial testing will be done on sites that lack perennial vegetation. Six tracer techniques (total chlortde, {sup 36}Cl, {sup 3}H, nitrate, {sup 129}I, and {sup 99}Tc) will be tested on at least one site in the Quincy sand, one site in the Warden si~ loam, and the background site, to determine which combination of tracers wortks best for a given soil type. In subsequent years, additional sites will be investigated to determine the effect of vegetation on recharge estimates and on the performance of individual tracers. The use of environmental tracers is perhaps the only cost-effective method for estimating the spatial vartability of recharge at a site as large as Hanford. The tracer techniques used at Hanford have wide applicability at other and sites operated by the U.S. Department of Energy as well as at low-level radioactive waste disposal sites.

  20. Management of Hanford Site non-defense production reactor spent nuclear fuel, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1997-03-01

    The US Department of Energy (DOE) needs to provide radiologically, and industrially safe and cost-effective management of the non-defense production reactor spent nuclear fuel (SNF) at the Hanford Site. The proposed action would place the Hanford Site's non-defense production reactor SNF in a radiologically- and industrially-safe, and passive storage condition pending final disposition. The proposed action would also reduce operational costs associated with storage of the non-defense production reactor SNF through consolidation of the SNF and through use of passive rather than active storage systems. Environmental, safety and health vulnerabilities associated with existing non-defense production reactor SNF storage facilities have been identified. DOE has determined that additional activities are required to consolidate non-defense production reactor SNF management activities at the Hanford Site, including cost-effective and safe interim storage, prior to final disposition, to enable deactivation of facilities where the SNF is now stored. Cost-effectiveness would be realized: through reduced operational costs associated with passive rather than active storage systems; removal of SNF from areas undergoing deactivation as part of the Hanford Site remediation effort; and eliminating the need to duplicate future transloading facilities at the 200 and 400 Areas. Radiologically- and industrially-safe storage would be enhanced through: (1) removal from aging facilities requiring substantial upgrades to continue safe storage; (2) utilization of passive rather than active storage systems for SNF; and (3) removal of SNF from some storage containers which have a limited remaining design life. No substantial increase in Hanford Site environmental impacts would be expected from the proposed action. Environmental impacts from postulated accident scenarios also were evaluated, and indicated that the risks associated with the proposed action would be small

  1. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.

    1999-10-08

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site.

  2. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates

  3. Oceanographic and surface meteorological data collected from station Port of Albany weather/hydro by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2011-01-04 to 2017-07-31 (NCEI Accession 0163364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163364 contains oceanographic and surface meteorological data collected at Port of Albany weather/hydro, a fixed station in the Hudson River. These...

  4. Effects of Meteorological Data Quality on Snowpack Modeling

    Science.gov (United States)

    Havens, S.; Marks, D. G.; Robertson, M.; Hedrick, A. R.; Johnson, M.

    2017-12-01

    Detailed quality control of meteorological inputs is the most time-intensive component of running the distributed, physically-based iSnobal snow model, and the effect of data quality of the inputs on the model is unknown. The iSnobal model has been run operationally since WY2013, and is currently run in several basins in Idaho and California. The largest amount of user input during modeling is for the quality control of precipitation, temperature, relative humidity, solar radiation, wind speed and wind direction inputs. Precipitation inputs require detailed user input and are crucial to correctly model the snowpack mass. This research applies a range of quality control methods to meteorological input, from raw input with minimal cleaning, to complete user-applied quality control. The meteorological input cleaning generally falls into two categories. The first is global minimum/maximum and missing value correction that could be corrected and/or interpolated with automated processing. The second category is quality control for inputs that are not globally erroneous, yet are still unreasonable and generally indicate malfunctioning measurement equipment, such as temperature or relative humidity that remains constant, or does not correlate with daily trends observed at nearby stations. This research will determine how sensitive model outputs are to different levels of quality control and guide future operational applications.

  5. Accelerated clean-up at the Hanford Site

    International Nuclear Information System (INIS)

    Frain, J.M.; Johnson, W.L.

    1994-01-01

    The Hanford Site began operations in 1943 as one of the sites for plutonium production associated with the Manhattan Project. It has been used, in part, for nuclear reactor operation, reprocessing of spent fuel, and management of radioactive waste. The Hanford Site covers approximately 1,434 km 2 (560 mi 2 2) in southeastern Washington State. The subject of this paper, the 618-9 Burial Ground, is located on the Hanford Site approximately 1.6 km (1 mi) west of the Columbia River, and a few miles north of Richland, Washington. Throughout Hanford Site history, prior to legislation regarding disposal of chemical waste products, some chemical waste byproducts were disposed ,ia burial in trenches. One such trench was the 618-9 Burial Ground. This burial ground was suspected to contain approximately 19,000 L (5,000 gal) of uranium-contaminated organic solvent, disposed in standard 55-gal (208-L) metal drums. The waste was produced from research and development activities related to fuel reprocessing

  6. Hanford spent nuclear fuel project update

    Energy Technology Data Exchange (ETDEWEB)

    Williams, N.H.

    1997-08-19

    Twenty one hundred metric tons of spent nuclear fuel (SNF) are currently stored in the Hanford Site K Basins near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported to the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building.

  7. Hanford Site Environmental Report for Calendar Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

    2003-09-01

    This report is prepared annually to satisfy the requirements of DOE Orders. The report provides an overview of activities at the Hanford Site during 2002 and demonstrates the site's compliance with applicable federal, state, and local environmental laws, regulations, executive orders, and DOE policies; and to summarize environmental data that characterize Hanford Site environmental management performance. The purpose of the report is to provide useful summary information to members of the public, public officials, regulators, Hanford contractors, and elected representatives.

  8. An Open-source Meteorological Operational System and its Installation in Portuguese- speaking Countries

    Science.gov (United States)

    Almeida, W. G.; Ferreira, A. L.; Mendes, M. V.; Ribeiro, A.; Yoksas, T.

    2007-05-01

    CPTEC, a division of Brazil’s INPE, has been using several open-source software packages for a variety of tasks in its Data Division. Among these tools are ones traditionally used in research and educational communities such as GrADs (Grid Analysis and Display System from the Center for Ocean-Land-Atmosphere Studies (COLA)), the Local Data Manager (LDM) and GEMPAK (from Unidata), andl operational tools such the Automatic File Distributor (AFD) that are popular among National Meteorological Services. In addition, some tools developed locally at CPTEC are also being made available as open-source packages. One package is being used to manage the data from Automatic Weather Stations that INPE operates. This system uses only open- source tools such as MySQL database, PERL scripts and Java programs for web access, and Unidata’s Internet Data Distribution (IDD) system and AFD for data delivery. All of these packages are get bundled into a low-cost and easy to install and package called the Meteorological Data Operational System. Recently, in a cooperation with the SICLIMAD project, this system has been modified for use by Portuguese- speaking countries in Africa to manage data from many Automatic Weather Stations that are being installed in these countries under SICLIMAD sponsorship. In this presentation we describe the tools included-in and and architecture-of the Meteorological Data Operational System.

  9. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    International Nuclear Information System (INIS)

    Rathbone, Bruce A.

    2007-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL's Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL's Electronic Records and Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  10. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2007-03-12

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  11. Ground-water contribution to dose from past Hanford Operations

    International Nuclear Information System (INIS)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ''ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated

  12. Radioactive waste management at the Hanford Reservation

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    During some 30 years of plutonium production, the Hanford Reservation has accumulated large quantities of low- and high-level radioactive wastes. The high-level wastes have been stored in underground tanks, and the low-level wastes have been percolated into the soil. In recent years some programs for solidification and separation of the high-level wastes have been initiated. The Hanford waste-management system was studied by a panel of the Committee on Radioactive Waste Management of the National Academy of Sciences. The panel concluded that Hanford waste-management practices were adequate at present and for the immediate future but recommended increased research and development programs related to long-term isolation of the wastes. The panel also considered some alternatives for on-site disposal of the wastes. The Hanford Reservation was originally established for the production of plutonium for military purposes. During more than 30 years of operation, large volumes of high- and low-level radioactive wastes have been accumulated and contained at the site. The Management of these wastes has been the subject of controversy and criticism. To obtain a true technical evaluation of the Hanford waste situation, the Energy Research and Development Administration (now part of the Department of Energy) issued a contract to the National Academy of Sciences and the National Research Councilto conduct an independent review and evaluation of the Hanford waste-management practices and plans. A panel of the Committee on Radioactive Waste Management (CRWM) of the National Academy of Sciences conducted this study between the summer of 1976 and the summer of 1977. This article is a summary of the final report of that panel

  13. Third Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-09-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 771 local earthquakes during the third quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter is a continuation of the swarm events observed during the January – March 2009 time period and reported in the previous quarterly report (Rohay et al, 2009). The frequency of Wooded Island events has subsided with 16 events recorded during June 2009. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 25 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.2 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. However, some Hanford employees working within a few miles of the area of highest activity

  14. Annual Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-12-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2009, the Hanford Seismic Network recorded nearly 3000 triggers on the seismometer system, which included over 1700 seismic events in the southeast Washington area and an additional 370 regional and teleseismic events. There were 1648 events determined to be local earthquakes relevant to the Hanford Site. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Recording of the Wooded Island events began in January with over 250 events per month through June 2009. The frequency of events decreased starting in July 2009 to approximately 10-15 events per month through September 2009. Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with 47 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.3 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The highest-magnitude event (3.0Mc

  15. Westinghouse Hanford Company package testing capabilities

    International Nuclear Information System (INIS)

    Hummer, J.H.; Mercado, M.S.

    1993-07-01

    The Department of Energy's Hanford Site is a 1,450-km 2 (560-mi 2 ) installation located in southeastern Washington State. Established in 1943 as a plutonium production facility, Hanford's role has evolved into one of environmental restoration and remediation. Many of these environmental restoration and remediation activities involve transportation of radioactive/hazardous materials. Packagings used for the transportation of radioactive/hazardous materials must be capable of meeting certain normal transport and hypothetical accident performance criteria. Evaluations of performance to these criteria typically involve a combination of analysis and testing. Required tests may include the free drop, puncture, penetration, compression, thermal, heat, cold, vibration, water spray, water immersion, reduced pressure, and increased pressure tests. The purpose of this paper is to outline the Hanford capabilities for performing each of these tests

  16. Overview of the Hanford risk management plan

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1998-01-01

    The Project Hanford Management Contract called for the enhancement of site-wide decision processes, and development of a Hanford Risk Management Plan to adopt or develop a risk management system for the Hanford Site. This Plan provides a consistent foundation for Site issues and addresses site-wide management of risks of all types. It supports the Department of Energy planning and sitewide decision making policy. Added to this requirement is a risk performance report to characterize the risk management accomplishments. This paper presents the development of risk management within the context of work planning and performance. Also discussed are four risk elements which add value to the context

  17. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  18. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  19. Using routine meteorological data to derive sky conditions

    Directory of Open Access Journals (Sweden)

    D. Pagès

    Full Text Available Sky condition is a matter of interest for public and weather predictors as part of weather analyses. In this study, we apply a method that uses total solar radiation and other meteorological data recorded by an automatic station for deriving an estimation of the sky condition. The impetus of this work is the intention of the Catalan Meteorological Service (SMC to provide the public with real-time information about the sky condition. The methodology for deriving sky conditions from meteorological records is based on a supervised classification technique called maximum likelihood method. In this technique we first need to define features which are derived from measured variables. Second, we must decide which sky conditions are intended to be distinguished. Some analyses have led us to use four sky conditions: (a cloudless or almost cloudless sky, (b scattered clouds, (c mostly cloudy – high clouds, (d overcast – low clouds. An additional case, which may be treated separately, corresponds to precipitation (rain or snow. The main features for estimating sky conditions are, as expected, solar radiation and its temporal variability. The accuracy of this method of guessing sky conditions compared with human observations is around 70% when applied to four sites in Catalonia (NE Iberian Peninsula. The agreement increases if we take into account the uncertainty both in the automatic classifier and in visual observations.

    Key words. Meteorological and atmospheric dynamics (instruments and techniques; radiative processes – Atmospheric composition and structure (cloud physics and chemistry

  20. Hanford Site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E. (eds.)

    1992-06-01

    This report of the Hanford Reservation is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its mission; summarize the status in 1991 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality.

  1. Hanford Site environmental report for calendar year 1990

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Hefty, M.G.; Lundgren, R.E.

    1991-01-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its new mission; summarize the status in 1990 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality

  2. Hanford Site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Hefty, M.G.; Lundgren, R.E. (eds.)

    1991-12-20

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its new mission; summarize the status in 1990 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality.

  3. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-24

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP), which is operated by the Pacific Northwest National Laboratory.( ) for the U.S. Department of Energy Richland Operations Office, Office of River Protection and their Hanford Site contractors. The manual describes the roles of and relationships between the IDP and the radiation protection programs of the Hanford Site contractors. Recommendations and guidance are also provided for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs.

  4. Hanford Site environmental report for calendar year 1991

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E.

    1992-06-01

    This report of the Hanford Reservation is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its mission; summarize the status in 1991 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality

  5. Hanford prototype-barrier status report: FY 1995

    International Nuclear Information System (INIS)

    Gee, G.W.; Ward, A.L.; Gilmore, B.G.; Ligotke, M.W.; Link, S.O.

    1995-11-01

    Surface barriers (or covers) have been proposed for use at the Hanford Site as a means to isolate certain waste sites that, for reasons of cost or worker safety or both, may not be exhumed. Surface barriers are intende to isolated the wastes from the accessible environment and to provide long-term protection to future populations that might use the Hanford Site. Currently, no ''proven'' long-term barrier system is available. For this reason, the Hanford Site Permanent Isolation Surface-Barrier Development Program (BDP) was organized to develop the technology needed to provide long-term surface barrier capability for the Hanford Site for the US Department of Energy (DOE). Designs have been proposed to meet the most stringent needs for long-term waste disposal. The objective of the current barrier design is to use natural materials to develop a protective barrier system that isolates wastes for at least 1000 years by limiting water, plant, animal, and human intrusion; and minimizing erosion. The design criteria for water drainage has been set at 0.5 mm/yr. While other design criteria are more qualitative, it is clear that waste isolation for an extended time is the prime objective of the design. Constructibility and performance. are issues that can be tested and dealt with by evaluating prototype designs prior to extensive construction and deployment of covers for waste sites at Hanford

  6. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY1995 TO CY2004

    Energy Technology Data Exchange (ETDEWEB)

    HOCKING, M.J.

    2005-01-31

    Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log.

  7. Hanford Site environmental management specification

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.

    1998-06-10

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

  8. Hanford Site environmental management specification

    International Nuclear Information System (INIS)

    Grygiel, M.L.

    1998-01-01

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL's application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  9. Remedial Investigation of Hanford Site Releases to the Columbia River

    International Nuclear Information System (INIS)

    Lerch, J.A.

    2009-01-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts of Hanford Site hazardous substance releases to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The impacts are now being assessed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 via a remedial investigation. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River has been developed and issued to initiate the remedial investigation. The work plan establishes a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities began in October 2008 and are anticipated to continue into Fall 2009 over a 120 mile stretch of the Columbia River. Information gained from performing this remedial investigation will ultimately be used to help make final regulatory decisions for cleaning up Hanford Site contamination that exists in and along the Columbia River. (authors)

  10. Integrated system of visualization of the meteorological information for the weather forecast - SIPROT

    International Nuclear Information System (INIS)

    Leon Aristizabal, Gloria Esperanza

    2006-01-01

    The SIPROT is an operating system in real time for the handling of weather data through of a tool; it gathers together GIS and geodatabases. The SIPROT has the capacity to receive, to analyze and to exhibit weather charts of many national and international weather data in alphanumeric and binary formats from meteorological stations and satellites, as well as the results of the simulations of global and regional meteorological and wave models. The SIPROT was developed by the IDEAM to facilitate the handling of million weather dataset that take place daily and are required like elements of judgment for the inherent workings to the analyses and weather forecast

  11. Hanford Site Waste management units report

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes the operable units in several areas of the Hanford Site Waste Facility. Each operable unit has several waste units (crib, ditch, pond, etc.). The operable units are summarized by describing each was unit. Some of the descriptions are unit name, unit type, waste category start data, site description, etc. The descriptions will vary for each waste unit in each operable unit and area of the Hanford Site

  12. Airline meteorological requirements

    Science.gov (United States)

    Chandler, C. L.; Pappas, J.

    1985-01-01

    A brief review of airline meteorological/flight planning is presented. The effects of variations in meteorological parameters upon flight and operational costs are reviewed. Flight path planning through the use of meteorological information is briefly discussed.

  13. Three-dimensional gravity investigation of the Hanford reservation

    International Nuclear Information System (INIS)

    Richard, B.H.; Deju, R.A.

    1977-07-01

    Models of the basalt surface buried under the Hanford reservation are constructed from gravity data. The method uses a modified third order polynomial surface to remove the regional effects and a gravity-geologic method to remove the water table effects. When these influences are subtracted from previous data, the anomaly remaining directly reflects the irregularity of the underlying basalt surface. The Umtanum Anticline and the Cold Creek Syncline are delineated beneath the overlying surficial deposits. Along the crest of the Umtanum Anticline, a number of gravity lows are evident. These may identify locations of breaching by an ancestral river. In addition, the data are examined to determine optimum gravity data spacing for modeling. Optimum results were obtained using a station separation of one per four square miles. Less will delineate only the major underlying structures. It is also very important to have all data points distributed in a regularly spaced grid

  14. Hanford analytical sample projections FY 1998 - FY 2002

    International Nuclear Information System (INIS)

    Joyce, S.M.

    1998-01-01

    Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management, and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs

  15. Hanford analytical sample projections FY 1998--FY 2002

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, S.M.

    1998-02-12

    Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management, and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs.

  16. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1991-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from released to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and, environmental pathways and dose estimates

  17. Disposal of Hanford defense waste

    International Nuclear Information System (INIS)

    Holten, R.A.; Burnham, J.B.; Nelson, I.C.

    1986-01-01

    An Environmental Impact Statement (EIS) on the disposal of Hanford Defense Waste is scheduled to be released near the end of March, 1986. This EIS will evaluate the impacts of alternatives for disposal of high-level, tank, and transuranic wastes which are now stored at the Department of Energy's Hanford Site or will be produced there in the future. In addition to releasing the EIS, the Department of Energy is conducting an extensive public participation process aimed at providing information to the public and receiving comments on the EIS

  18. Remote Sensing of Urban Land Cover/Land Use Change, Surface Thermal Responses, and Potential Meteorological and Climate Change Impacts

    Science.gov (United States)

    Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul

    2011-01-01

    City growth influences the development of the urban heat island (UHI), but the effect that local meteorology has on the UHI is less well known. This paper presents some preliminary findings from a study that uses multitemporal Landsat TM and ASTER data to evaluate land cover/land use change (LULCC) over the NASA Marshall Space Flight Center (MFSC) and its Huntsville, AL metropolitan area. Landsat NLCD data for 1992 and 2001 have been used to evaluate LULCC for MSFC and the surrounding urban area. Land surface temperature (LST) and emissivity derived from NLCD data have also been analyzed to assess changes in these parameters in relation to LULCC. Additionally, LULCC, LST, and emissivity have been identified from ASTER data from 2001 and 2011 to provide a comparison with the 2001 NLCD and as a measure of current conditions within the study area. As anticipated, the multi-temporal NLCD and ASTER data show that significant changes have occurred in land covers, LST, and emissivity within and around MSFC. The patterns and arrangement of these changes, however, is significant because the juxtaposition of urban land covers within and outside of MSFC provides insight on what impacts at a local to regional scale, the inter-linkage of these changes potentially have on meteorology. To further analyze these interactions between LULCC, LST, and emissivity with the lower atmosphere, a network of eleven weather stations has been established across the MSFC property. These weather stations provide data at a 10 minute interval, and these data are uplinked for use by MSFC facilities operations and the National Weather Service. The weather data are also integrated within a larger network of meteorological stations across north Alabama. Given that the MSFC weather stations will operate for an extended period of time, they can be used to evaluate how the building of new structures, and changes in roadways, and green spaces as identified in the MSFC master plan for the future, will

  19. Use of decision analysis techniques to determine Hanford cleanup priorities

    International Nuclear Information System (INIS)

    Fassbender, L.; Gregory, R.; Winterfeldt, D. von; John, R.

    1992-01-01

    In January 1991, the U.S. Department of Energy (DOE) Richland Field Office, Westinghouse Hanford Company, and the Pacific Northwest Laboratory initiated the Hanford Integrated Planning Process (HIPP) to ensure that technically sound and publicly acceptable decisions are made that support the environmental cleanup mission at Hanford. One of the HIPP's key roles is to develop an understanding of the science and technology (S and T) requirements to support the cleanup mission. This includes conducting an annual systematic assessment of the S and T needs at Hanford to support a comprehensive technology development program and a complementary scientific research program. Basic to success is a planning and assessment methodology that is defensible from a technical perspective and acceptable to the various Hanford stakeholders. Decision analysis techniques were used to help identify and prioritize problems and S and T needs at Hanford. The approach used structured elicitations to bring many Hanford stakeholders into the process. Decision analysis, which is based on the axioms and methods of utility and probability theory, is especially useful in problems characterized by uncertainties and multiple objectives. Decision analysis addresses uncertainties by laying out a logical sequence of decisions, events, and consequences and by quantifying event and consequence probabilities on the basis of expert judgments

  20. Hanford low-level tank waste interim performance assessment

    International Nuclear Information System (INIS)

    Mann, F.M.

    1997-01-01

    The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and performance early in the disposal system project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives

  1. Hydrologic management at the Hanford nuclear waste facility

    International Nuclear Information System (INIS)

    Deju, R.A.; Gephart, R.E.

    1975-05-01

    Since 1944 the Hanford Reservation, located in south-central Washington, has been a site for radioactive waste storage and disposal. Many Hanford research programs are directed toward minimizing and managing the release of radionuclides into the environment. Hydrologic management of the Hanford facility involves such activities as regional and local geohydrologic characterization studies, environmental monitoring, groundwater management, and specific hydrologic research programs. This paper briefly examines each of these activities and reviews the progress to date in understanding the hydrologic flow regime existing beneath the Reservation. (U.S.)

  2. Hanford Site Environmental Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2009-09-15

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2009 information is included where appropriate.

  3. Hanford Site Environmental Report for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2010-09-01

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2010 information is included where appropriate.

  4. Hanford Site Environmental Report for Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2011-07-12

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2011 information is included where appropriate.

  5. HANFORD SITE SUSTAINABILITY PROGRAM RICHLAND WASHINGTON - 12464

    Energy Technology Data Exchange (ETDEWEB)

    FRITZ LL

    2012-01-12

    In support of implementation of Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance, the Hanford Site Sustainability Plan was developed to implement strategies and activities required to achieve the prescribed goals in the EO as well as demonstrate measurable progress in environmental stewardship at the Hanford Site. The Hanford Site Sustainability Program was developed to demonstrate progress towards sustainability goals as defined and established in Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance; EO 13423, Strengthening Federal Environmental, Energy and Transportation Management, and several applicable Energy Acts. Multiple initiatives were undertaken in Fiscal Year (FY) 2011 to implement the Program and poise the Hanford Site as a leader in environmental stewardship. In order to implement the Hanford Site Sustainability Program, a Sustainability Plan was developed in conjunction with prime contractors, two U.S. Department of Energy (DOE) Offices, and key stakeholders to serve as the framework for measuring progress towards sustainability goals. Based on the review of these metrics and future plans, several activities were initiated to proactively improve performance or provide alternatives for future consideration contingent on available funding. A review of the key metric associated with energy consumption for the Hanford Site in FY 2010 and 2011 indicated an increase over the target reduction of 3 percent annually from a baseline established in FY 2003 as illustrated in Figure 1. This slight increase was attributed primarily from the increased energy demand from the cleanup projects funded by the American Recovery and Reinvestment Act (ARRA) in FY 2010 and 2011. Although it is forecasted that the energy demand will decrease commensurate with the completion of ARRA projects, several major initiatives were launched to improve energy efficiency.

  6. Removing Phosphate from Hanford High-Phosphate Tank Wastes: FY 2010 Results

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Braley, Jenifer C.; Edwards, Matthew K.; Qafoku, Odeta; Felmy, Andrew R.; Carter, Jennifer C.; MacFarlan, Paul J.

    2010-09-22

    The U.S. Department of Energy (DOE) is responsible for environmental remediation at the Hanford Site in Washington State, a former nuclear weapons production site. Retrieving, processing, immobilizing, and disposing of the 2.2 × 105 m3 of radioactive wastes stored in the Hanford underground storage tanks dominates the overall environmental remediation effort at Hanford. The cornerstone of the tank waste remediation effort is the Hanford Tank Waste Treatment and Immobilization Plant (WTP). As currently designed, the capability of the WTP to treat and immobilize the Hanford tank wastes in the expected lifetime of the plant is questionable. For this reason, DOE has been pursuing supplemental treatment options for selected wastes. If implemented, these supplemental treatments will route certain waste components to processing and disposition pathways outside of WTP and thus will accelerate the overall Hanford tank waste remediation mission.

  7. Annual Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Clayton, Ray E.; Sweeney, Mark D.; Devary, Joseph L.; Hartshorn, Donald C.

    2010-12-27

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2010, the Hanford Seismic Network recorded 873 triggers on the seismometer system, which included 259 seismic events in the southeast Washington area and an additional 324 regional and teleseismic events. There were 210 events determined to be local earthquakes relevant to the Hanford Site. One hundred and fifty-five earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this fiscal year were a continuation of the swarm events observed during fiscal year 2009 and reported in previous quarterly and annual reports (Rohay et al. 2009a, 2009b, 2009c, 2010a, 2010b, and 2010c). Most events were considered minor (coda-length magnitude [Mc] less than 1.0) with the largest event recorded on February 4, 2010 (3.0Mc). The estimated depths of the Wooded Island events are shallow (averaging approximately 1.5 km deep) placing the swarm within the Columbia River Basalt Group. Based upon the last two quarters (Q3 and Q4) data, activity at the Wooded Island

  8. Physical Properties of Hanford Transuranic Waste Sludge

    International Nuclear Information System (INIS)

    Poloski, A. P.

    2004-01-01

    This project has two primary objectives. The first is to understand the physical properties and behavior of the Hanford transuranic (TRU) tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at WIPP. The second primary objective is to develop a fundamental understanding of these sludge suspensions by correlating the macroscopic properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of this research effort will enhance the existing understanding of agglomeration phenomena and the properties of complex colloidal suspensions. In addition, the knowledge gained and capabilities developed during this effort will aid in the development and optimization of techniques to process the wastes at various DOE sites. These objectives will be accomplished by: (1) characterizing the TRU sludges contained in the Hanford tanks that are intended for shipment to WIPP; (2) determining the physical behavior of the Hanford TRU tank sludges under conditions that might exist during treatment and packaging; (3) and modeling the retrieval, treatment, and packaging operations that will be performed at Hanford to dispose of TRU tank sludges

  9. Prioritization of environmental cleanup problems at Hanford

    International Nuclear Information System (INIS)

    Fassbender, L.L.

    1994-01-01

    New technologies and scientific research are needed to clean up the Hanford Site. However, there is insufficient funding to develop every technology that is identified or to undertake every scientific research project that is proposed. Thus, the Department of Energy (DOE) must focus its resources on science and technology (S ampersand T) that will have the most significant impacts on the overall cleanup effort. Hanford has recognized the importance of identifying and prioritizing its most critical problems and the most promising solutions to them. Hanford cleanup will require numerous decisions about technology development and implementation, which will be complicated because there are substantial uncertainties about the risks and the costs of new technologies. Further, the choice of a specific technology for a specific application must be evaluated with respect to multiple (and often conflicting) objectives (e.g., risk reduction, increasing effectiveness, cost reduction, increasing public acceptability, regulatory compliance). This paper provides an overview of the decision analysis methodology that was used to prioritize S ampersand T needs for Hanford cleanup

  10. In situ bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Skeen, R.S.; Roberson, K.R.; Workman, D.J.; Petersen, J.N.; Shouche, M.

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl 4 ), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl 4 , nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations

  11. Second Quarter Hanford Seismic Report for Fiscal Year 2009

    International Nuclear Information System (INIS)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-01-01

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded over 800 local earthquakes during the second quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 19 events in the 2.0-2.9 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 1.9 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude and the shallowness of the Wooded Island events have made them undetectable to most area residents. However, some Hanford employees working within a few miles of the area of highest activity, and individuals living in homes directly across the Columbia River from the swarm center, have reported feeling some movement. The Hanford SMA network was triggered numerous times by the Wooded Island swarm events. The maximum acceleration values recorded by the SMA network were

  12. Second Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-07-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded over 800 local earthquakes during the second quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 19 events in the 2.0-2.9 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 1.9 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude and the shallowness of the Wooded Island events have made them undetectable to most area residents. However, some Hanford employees working within a few miles of the area of highest activity, and individuals living in homes directly across the Columbia River from the swarm center, have reported feeling some movement. The Hanford SMA network was triggered numerous times by the Wooded Island swarm events. The maximum acceleration values recorded by the SMA network were

  13. Summary of the Hanford Site environmental report for calendar year 1996

    International Nuclear Information System (INIS)

    Hanf, R.W.; O'Connor, G.P.; Dirkes, R.L.

    1997-08-01

    This report summarizes the 420-page Hanford Site Environmental Report for Calendar Year 1996. The Hanford Site environmental report is prepared annually to summarize environmental data and information, describe environmental management performance, demonstrate the status of compliance with environmental regulations, and highlight major environmental programs and efforts. The summary is designed to briefly: describe the Hanford Site and its mission; summarize the status in 1996 of compliance with environmental regulations; describe environmental programs at the Hanford Site; discuss estimated radionuclide exposure to the public from 1996 Hanford Site activities; present information on effluent monitoring and environmental surveillance, including groundwater protection and monitoring; and discuss activities to ensure quality

  14. Summary of the Hanford Site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, R.W.; O`Connor, G.P.; Dirkes, R.L. [eds.] [comps.

    1997-08-01

    This report summarizes the 420-page Hanford Site Environmental Report for Calendar Year 1996. The Hanford Site environmental report is prepared annually to summarize environmental data and information, describe environmental management performance, demonstrate the status of compliance with environmental regulations, and highlight major environmental programs and efforts. The summary is designed to briefly: describe the Hanford Site and its mission; summarize the status in 1996 of compliance with environmental regulations; describe environmental programs at the Hanford Site; discuss estimated radionuclide exposure to the public from 1996 Hanford Site activities; present information on effluent monitoring and environmental surveillance, including groundwater protection and monitoring; and discuss activities to ensure quality.

  15. Vibration monitoring of large vertical pumps via a remote satellite station

    International Nuclear Information System (INIS)

    Cook, S.A.; Crowe, R.D.; Roblyer, S.P.; Toffer, H.

    1985-01-01

    The Hanford N Reactor is operated by UNC Nuclear Industries for the Department of Energy for the production of special isotopes and electric energy. The reactor has a unique design in which the equipment such as pumps, turbines, generators and diesel engines are located in separate buildings. This equipment arrangement has led to the conclusion that the most cost-effective implementation of a dedicated vibration monitoring system would be to install a computerized network system in lieu of a single analyzing station. In this approach, semi-autonomous micro processor based data collection stations referred to as satellite stations are located near each concentration of machinery to be monitored. The satellite stations provide near continuous monitoring of the machinery. They are linked to a minicomputer using voice grade telephone circuits and hardware and software specifically designed for network communications. The communications link between the satellite stations and the minicomputer permits data and programs to be transmitted between the units. This paper will describe the satellite station associated with large vertical pumps vibration monitoring. The reactor has four of these pumps to supply tertiary cooling to reactor systems. 4 figs

  16. Vitrification technology for Hanford Site tank waste

    International Nuclear Information System (INIS)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy's (DOE) Hanford Site has an inventory of 217,000 m 3 of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing

  17. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  18. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    International Nuclear Information System (INIS)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  19. Radioactive contamination of fish, shellfish, and waterfowl exposed to Hanford effluents: Annual summaries, 1945--1972. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, R.W.; Dirkes, R.L.; Duncan, J.P.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction Project (HEDR) is to estimate the potential radiation doses received by people living within the sphere of influence of the Hanford Site. A potential critical pathway for human radiation exposure is through the consumption of waterfowl that frequent onsite waste-water ponds or through eating of fish, shellfish, and waterfowl that reside in/on the Columbia River and its tributaries downstream of the reactors. This document summarizes information on fish, shellfish, and waterfowl radiation contamination for samples collected by Hanford monitoring personnel and offsite agencies for the period 1945 to 1972. Specific information includes the types of organisms sampled, the kinds of tissues and organs analyzed, the sampling locations, and the radionuclides reported. Some tissue concentrations are also included. We anticipate that these yearly summaries will be helpful to individuals and organizations interested in evaluating aquatic pathway information for locations impacted by Hanford operations and will be useful for planning the direction of future HEDR studies.

  20. Overview of the spent nuclear fuel project at Hanford

    International Nuclear Information System (INIS)

    Daily, J.L.

    1995-02-01

    The Spent Nuclear Fuel Project's mission at Hanford is to open-quotes Provide safe, economic and environmentally sound management of Hanford spent nuclear fuel in a manner which stages it to final disposition.close quotes The inventory of spent nuclear fuel (SNF) at the Hanford Site covers a wide variety of fuel types (production reactor to space reactor) in many facilities (reactor fuel basins to hot cells) at locations all over the Site. The 2,129 metric tons of Hanford SNF represents about 80% of the total US Department of Energy (DOE) inventory. About 98.5% of the Hanford SNF is 2,100 metric tons of metallic uranium production reactor fuel currently stored in the 1950s vintage K Basins in the 100 Area. This fuel has been slowly corroding, generating sludge and contaminating the basin water. This condition, coupled with aging facilities with seismic vulnerabilities, has been identified by several groups, including stakeholders, as being one of the most urgent safety and environmental concerns at the Hanford Site. As a direct result of these concerns, the Spent Nuclear Fuel Project was recently formed to address spent fuel issues at Hanford. The Project has developed the K Basins Path Forward to remove fuel from the basins and place it in dry interim storage. Alternatives that addressed the requirements were developed and analyzed. The result is a two-phased approach allowing the early removal of fuel from the K Basins followed by its stabilization and interim storage consistent with the national program

  1. Annual Hanford Site environmental permitting status report

    International Nuclear Information System (INIS)

    Sonnichsen, J.C.

    1998-01-01

    The information contained and/or referenced in this Annual Hanford Site Environmental Permitting Status Report (Status Report) addresses the State Environmental Policy Act (SEPA) of 1971 and Condition II.W. of the Resource Conservation and Recovery Act (RCRA) of 1976 Permit, Dangerous Waste Portion (DW Portion). Condition II.W. of the RCRA Permit specifies the Permittees are responsible for all other applicable federal, state, and local permits for the development and operation of the Hanford Facility. Condition II.W. of the RCRA Permit specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of permit condition, 'best efforts' means submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies. This Status Report includes information on all existing and anticipated environmental permitting. Environmental permitting required by RCRA, the Hazardous and Solid Waste Amendments (HSWA) of 1984, and non-RCRA permitting (solid waste handling, Clean Air Act Amendments of 1990, Clean Water Act Amendments of 1987, Washington State waste discharge, and onsite sewage system) is addressed. Information on RCRA and non-RCRA is current as of July 31, 1998. For the purposes of RCRA and the State of Washington Hazardous Waste Management Act of 1976 [as administered through the Dangerous Waste Regulations, Washington Active Code (WAC) 173-303], the Hanford Facility is considered a single facility. As such, the Hanford Facility has been issued one US Environmental Protection Agency (EPA)/State Identification Number (WA7890008967). This EPA/State identification number encompasses over 60 treatment, storage, and/or disposal (TSD) units. The Washington State Department of Ecology (Ecology) has been delegated authority by the EPA to administer the RCRA, including mixed waste authority. The RCRA permitting approach for

  2. Long-Term Stewardship At DOE's Hanford Site - 12575

    International Nuclear Information System (INIS)

    Moren, R.J.; Grindstaff, K.D.

    2012-01-01

    The U.S. Department of Energy's (DOE) Hanford Site is located in southeast Washington and consists of 1,518 square kilometers (586 square miles) of land. Established in 1943 as part of the Manhattan Project, Hanford workers produced plutonium for our nation's nuclear defense program until the mid 1980's. Since then, the site has been in cleanup mode that is being accomplished in phases. As we achieve remedial objectives and complete active cleanup, DOE will manage Hanford land under the Long-Term Stewardship (LTS) Program until completion of cleanup and the site becomes ready for transfer to the post cleanup landlord - currently planned for DOE's Office of Legacy Management (LM). We define Hanford's LTS Program in the ''Hanford Long-Term Stewardship Program Plan,'' (DOE/RL-201 0-35)(1), which describes the scope including the relationship between the cleanup projects and the LTS Program. DOE designed the LTS Program to manage and provide surveillance and maintenance (S and M) of institutional controls and associated monitoring of closed waste sites to ensure the protection of human health and the environment. DOE's Richland Operations Office (DOE-RL) and Hanford cleanup and operations contractors collaboratively developed this program over several years. The program's scope also includes 15 key activities that are identified in the DOE Program Plan (DOE/RL-2010-35). The LTS Program will transition 14 land segments through 2016. The combined land mass is approximately 570 square kilometers (220 square miles), with over 1,300 active and inactive waste sites and 3,363 wells. Land segments vary from buffer zone property with no known contamination to cocooned reactor buildings, demolished support facilities, and remediated cribs and trenches. DOE-RL will transition land management responsibilities from cleanup contractors to the Mission Support Contract (MSC), who will then administer the LTS Program for DOE-RL. This process requires an environment of cooperation

  3. Meteorological analysis of symptom data for people with seasonal affective disorder.

    Science.gov (United States)

    Sarran, Christophe; Albers, Casper; Sachon, Patrick; Meesters, Ybe

    2017-11-01

    It is thought that variation in natural light levels affect people with Seasonal Affective Disorder (SAD). Several meteorological factors related to luminance can be forecast but little is known about which factors are most indicative of worsening SAD symptoms. The aim of this meteorological analysis is to determine which factors are linked to SAD symptoms. The symptoms of 291 individuals with SAD in and near Groningen have been evaluated over the period 2003-2009. Meteorological factors linked to periods of low natural light (sunshine, global radiation, horizontal visibility, cloud cover and mist) and others (temperature, humidity and pressure) were obtained from weather observation stations. A Bayesian zero adjusted auto-correlated multilevel Poisson model was carried out to assess which variables influence the SAD symptom score BDI-II. The outcome of the study suggests that the variable sunshine duration, for both the current and previous week, and global radiation for the previous week, are significantly linked to SAD symptoms. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs

  5. Meteorological experiments for emergency preparedness. part 1

    International Nuclear Information System (INIS)

    Leao, I.L.B.; Nicolli, D.

    1993-12-01

    Since the preliminary studies for the Angra dos Reis Nuclear Power Plant (NPP) siting, by an American consultant company, it was verified that the micro scale and mesoscale meteorological conditions in the region show a unique complex pattern, so that no similar nuclear installation site could be found for reference. Therefore, it was recommended to install onsite a correspondingly complex meteorological data acquisition system which comprises a 100-meter tower with instruments at three different levels and three 15-meter satellite towers on the hills around. In this report, are described the equipment and instruments sent by the IAEA to CNEN as well as the procedures and particular computer programming developed by the staff. It is also reported on the bureaucratic problems and meager budget allocation for the Project which delayed the installation of the two meteorological stations and hindered the implementation of the Project. The equipment for the atmospheric boundary layer sounding were used for the first time in September 1993, when CNEN provided some resource for the purchase of gas and batteries. The first atmospheric sounding campaign showed the occurrence of strong night winds and intense thermal inversion at the higher level of the boundary layer, until now unknown by the Brazilian meteorologists. By way of this report, the staff of meteorologists tries to show the status of Project BRA/09/031 and the know-how gained with it. (author)

  6. The Dust Storm Index (DSI): A method for monitoring broadscale wind erosion using meteorological records

    Science.gov (United States)

    O'Loingsigh, T.; McTainsh, G. H.; Tews, E. K.; Strong, C. L.; Leys, J. F.; Shinkfield, P.; Tapper, N. J.

    2014-03-01

    Wind erosion of soils is a natural process that has shaped the semi-arid and arid landscapes for millennia. This paper describes the Dust Storm Index (DSI); a methodology for monitoring wind erosion using Australian Bureau of Meteorology (ABM) meteorological observational data since the mid-1960s (long-term), at continental scale. While the 46 year length of the DSI record is its greatest strength from a wind erosion monitoring perspective, there are a number of technical challenges to its use because when the World Meteorological Organisation (WMO) recording protocols were established the use of the data for wind erosion monitoring was never intended. Data recording and storage protocols are examined, including the effects of changes to the definition of how observers should interpret and record dust events. A method is described for selecting the 180 long-term ABM stations used in this study and the limitations of variable observation frequencies between stations are in part resolved. The rationale behind the DSI equation is explained and the examples of temporal and spatial data visualisation products presented include; a long term national wind erosion record (1965-2011), continental DSI maps, and maps of the erosion event types that are factored into the DSI equation. The DSI is tested against dust concentration data and found to provide an accurate representation of wind erosion activity. As the ABM observational records used here were collected according to WMO protocols, the DSI methodology could be used in all countries with WMO-compatible meteorological observation and recording systems.

  7. Hanford waste tank cone penetrometer

    International Nuclear Information System (INIS)

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ''waste'' data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment

  8. Summary of the Hanford Site Environmental Report for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Joanne P.; Poston, Ted M.; Dirkes, Roger L.

    2010-09-30

    This summary booklet summarizes the "Hanford Site Environmental Report for Calendar Year 2009." The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of activities at the U.S. Department of Energy's (DOE) Hanford Site. The Hanford Site environmental report provides an overview of activities at the site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2010 information is included where appropriate.

  9. Summary of the Hanford Site Environmental Report for Calendar Year 2008

    International Nuclear Information System (INIS)

    Duncan, Joanne P.; Poston, Ted M.; Dirkes, Roger L.

    2009-01-01

    This summary booklet summarizes the 'Hanford Site Environmental Report for Calendar Year 2008'. The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of activities at the U.S. Department of Energy's (DOE) Hanford Site. The Hanford Site environmental report provides an overview of activities at the site; demonstrates the status of the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2009 information is included where appropriate.

  10. Recommended environmental dose calculation methods and Hanford-specific parameters

    International Nuclear Information System (INIS)

    Schreckhise, R.G.; Rhoads, K.; Napier, B.A.; Ramsdell, J.V.; Davis, J.S.

    1993-03-01

    This document was developed to support the Hanford Environmental Dose overview Panel (HEDOP). The Panel is responsible for reviewing all assessments of potential doses received by humans and other biota resulting from the actual or possible environmental releases of radioactive and other hazardous materials from facilities and/or operations belonging to the US Department of Energy on the Hanford Site in south-central Washington. This document serves as a guide to be used for developing estimates of potential radiation doses, or other measures of risk or health impacts, to people and other biota in the environs on and around the Hanford Site. It provides information to develop technically sound estimates of exposure (i.e., potential or actual) to humans or other biotic receptors that could result from the environmental transport of potentially harmful materials that have been, or could be, released from Hanford operations or facilities. Parameter values and information that are specific to the Hanford environs as well as other supporting material are included in this document

  11. Designation of facility usage categories for Hanford Site facilities

    International Nuclear Information System (INIS)

    Wodrich, D.; Ellingson, D.; Scott, M.; Schade, A.

    1991-01-01

    This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy orders and guidance. In particular, the Hanford Site approach to designating a suitable facility open-quotes Usage Category,close quotes is presented. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on the consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components

  12. Recommended environmental dose calculation methods and Hanford-specific parameters

    Energy Technology Data Exchange (ETDEWEB)

    Schreckhise, R.G.; Rhoads, K.; Napier, B.A.; Ramsdell, J.V. (Pacific Northwest Lab., Richland, WA (United States)); Davis, J.S. (Westinghouse Hanford Co., Richland, WA (United States))

    1993-03-01

    This document was developed to support the Hanford Environmental Dose overview Panel (HEDOP). The Panel is responsible for reviewing all assessments of potential doses received by humans and other biota resulting from the actual or possible environmental releases of radioactive and other hazardous materials from facilities and/or operations belonging to the US Department of Energy on the Hanford Site in south-central Washington. This document serves as a guide to be used for developing estimates of potential radiation doses, or other measures of risk or health impacts, to people and other biota in the environs on and around the Hanford Site. It provides information to develop technically sound estimates of exposure (i.e., potential or actual) to humans or other biotic receptors that could result from the environmental transport of potentially harmful materials that have been, or could be, released from Hanford operations or facilities. Parameter values and information that are specific to the Hanford environs as well as other supporting material are included in this document.

  13. Assessment of groundwater management at Hanford

    International Nuclear Information System (INIS)

    Deju, R.A.

    1975-01-01

    A comprehensive review of the groundwater management and environmental monitoring programs at the Hanford reservation was initiated in 1973. A large number of recommendations made as a result of this review are summarized. The purpose of the Hanford Hydrology Program is to maintain a groundwater surveillance network to assess contamination of the natural water system. Potential groundwater contamination is primarily a function of waste management decisions. The review revealed that although the hydrology program would greatly benefit from additional improvements, it is adequate to predict levels of contaminants present in the groundwater system. Studies are presently underway to refine advanced mathematical models to use results of the hydrologic investigation in forecasting the response of the system to different long-term management decisions. No information was found which indicates that a hazard through the groundwater pathway presently exists as a result of waste operations at Hanford. (CH)

  14. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates

  15. Air Quality and Meteorological Boundary Conditions during the MCMA-2003 Field Campaign

    Science.gov (United States)

    Sosa, G.; Arriaga, J.; Vega, E.; Magaña, V.; Caetano, E.; de Foy, B.; Molina, L. T.; Molina, M. J.; Ramos, R.; Retama, A.; Zaragoza, J.; Martínez, A. P.; Márquez, C.; Cárdenas, B.; Lamb, B.; Velasco, E.; Allwine, E.; Pressley, S.; Westberg, H.; Reyes, R.

    2004-12-01

    A comprehensive field campaign to characterize photochemical smog in the Mexico City Metropolitan Area (MCMA) was conducted during April 2003. An important number of equipment was deployed all around the urban core and its surroundings to measure gas and particles composition from the various sources and receptor sites. In addition to air quality measurements, meteorology variables were also taken by regular weather meteorological stations, tethered balloons, radiosondes, sodars and lidars. One important issue with regard to the field campaign was the characterization of the boundary conditions in order to feed meteorological and air quality models. Four boundary sites were selected to measure continuously criteria pollutants, VOC and meteorological variables at surface level. Vertical meteorological profiles were measured at three other sites : radiosondes in Tacubaya site were launched every six hours daily; tethered balloons were launched at CENICA and FES-Cuautitlan sites according to the weather conditions, and one sodar was deployed at UNAM site in the south of the city. Additionally to these measurements, two fixed meteorological monitoring networks deployed along the city were available to complement these measurements. In general, we observed that transport of pollutants from the city to the boundary sites changes every day, according to the coupling between synoptic and local winds. This effect were less important at elevated sites such as Cerro de la Catedral and ININ, where synoptic wind were more dominant during the field campaign. Also, local sources nearby boundary sites hide the influence of pollution coming from the city some days, particularly at the La Reforma site.

  16. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  17. Summary of the Hanford Site Environmental Report for Calendar Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, Robert W.; Morasch, Launa F.; Poston, Ted M.; Dirkes, Roger L.

    2005-09-26

    This booklet summarizes the information contained in ''Hanford Site Environmental Report for Calendar Year 2004.'' The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of the activities at DOE's Hanford Site.

  18. Disposal of Radioactive Waste at Hanford Creates Problems

    Science.gov (United States)

    Chemical and Engineering News, 1978

    1978-01-01

    Radioactive storage tanks at the Hanford facility have developed leaks. The situation is presently considered safe, but serious. A report from the National Academy of Science has recommended that the wastes be converted to stable solids and stored at another site on the Hanford Reservation. (Author/MA)

  19. Innovative human health and ecological risk assessment techniques at Hanford

    International Nuclear Information System (INIS)

    Clarke, S.; Jones, K.; Goller, E.

    1993-01-01

    The open-quotes Hanford Site Baseline Risk Assessment Methodologyclose quotes (HSBRAM) was developed to enhance the preparation of risk assessments supporting the Hanford site cleanup mission. This methodology satisfies a Hanford federal facility agreement and consent order (tri-party agreement) milestone and is used to evaluate the risk to human health and the environment under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA). The methodology was prepared by the Hanford Risk Assessment Committee (RAC) consisting of tri-party representatives: the U.S. Department of Energy, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency (EPA), with associated contractors. The risk assessment guidance provided by EPA is sufficiently general to permit tailoring of specific parameters to meet the risk assessment needs of individual sites. The RAC utilized EPA's Risk Assessment Guidance for Superfund, (RAGS) as the cornerstone of the HSBRAM. The RAC added necessary Hanford-specific elements to construct a complete risk assessment guidance for utilization as an independent document. The HSBRAM is a living document because the RAC charter emphasizes the importance of continued methodology reevaluation. The HSBRAM also provides guidelines for the application of EPA's open-quotes Framework for Ecological Risk Assessmentclose quotes to Hanford-specific environmental baseline risk assessments by including endangered and threatened species in addition to sensitive habitats potentially associated with the Hanford site and guidance for selection of ecotoxicological data. Separate negotiations for the selection of risk parameters for each operable unit were avoided by defining parameters in the HSBRAM. There are 78 past-practice operable units at Hanford requiring risk assessments

  20. Reinventing government: Reinventing Hanford

    International Nuclear Information System (INIS)

    Mayeda, J.T.

    1994-05-01

    The Hanford Site was established in 1943 as one of the three original Manhattan Project locations involved in the development of atomic weapons. It continued as a defense production center until 1988, when its mission changed to environmental restoration and remediation. The Hanford Site is changing its business strategy and in doing so, is reinventing government. This new development has been significantly influenced by a number of external sources. These include: the change in mission, reduced security requirements, new found partnerships, fiscal budgets, the Tri-Party agreement and stakeholder involvement. Tight budgets and the high cost of cleanup require that the site develop and implement innovative cost saving approaches to its mission. Costeffective progress is necessary to help assure continued funding by Congress

  1. Hanford Site Environmental Report for Calendar Year 1998

    International Nuclear Information System (INIS)

    Dirkes, Roger L.; Hanf, Robert W.; Poston, Ted M.

    1999-01-01

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; (6) discuss the activities to ensure quality. More detailed information can be found in the body of the report, the cited references, and the appendixes.

  2. Drilling history core hole DC-6 Hanford, Washington

    International Nuclear Information System (INIS)

    1978-06-01

    Core hole DC-6 was completed in May 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scisson, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-6. Core hole DC-6 is located within the boundary of the Hanford Site at the old Hanford town site. The Hanford Site coordinates for DC-6 are North 54,127.17 feet and West 17,721.00 feet. The surface elevation is approximately 402 feet above sea level. The purpose of core hole DC-6 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection and to provide a borehole for hydrologic testing. The total depth of core hole DC-6 was 4336 feet. Core recovery was 98.4% of the total footage cored

  3. Hanford Site Environmental Surveillance Data Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2009-08-11

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2008" (PNNL-18427), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  4. Hanford Site Environmental Surveillance Data Report for Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2008-10-13

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2007" (PNNL-17603), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  5. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structure, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and addition additional information. 6 refs

  6. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and adding additional information. 6 refs

  7. Relationship between particle matter and meteorological data in Canada

    Science.gov (United States)

    Bahrami, Azad; Memarian Fard, Mahsa; Bahrami, Ala

    2017-04-01

    The fine particulate matter (PM2.5) has a strong influence on the hydrological cycle, cloud formation, visibility, global climate, and human health. The meteorological conditions have important effects on PM2.5 mass concentration. Canada's National Air Pollution Surveillance (NAPS) network measures air pollutants at urban, suburban and rural locations in Canada. In this study, the point monthly relationships between meteorological data provided by Environment of Canada and PM2.5 mass concentration from January 1st, 2010 to December 31st, 2015 of fifteen speciation stations in Canada were analyzed. The correlation analysis results between PM2.5 concentrations and precipitation as well as surface pressure demonstrated a negative correlation. It should be noted that the correlation between temperature and special humidity with PM2.5 in cold seasons and warm seasons were negative and positive respectively. Moreover, the weak correlation between wind speed and PM2.5 were obtained.

  8. Motivational Meteorology.

    Science.gov (United States)

    Benjamin, Lee

    1993-01-01

    Describes an introductory meteorology course for nonacademic high school students. The course is made hands-on by the use of an educational software program offered by Accu-Weather. The program contains a meteorology database and instructional modules. (PR)

  9. Daily Precipitation Sums at Coastal and Island Russian Arctic Stations, 1940-1990

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains precipitation data originally recorded in log books at 65 coastal and island meteorological stations, and later digitized at the Arctic and...

  10. Hanford Reach Fall Chinook Redd Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Cole T. [Mission Support Alliance, Richland, WA (United States); Nugent, John J. [Mission Support Alliance, Richland, WA (United States)

    2014-02-10

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  11. Hanford Site Black-Tailed Jackrabbit Monitoring Report for Fiscal Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Cole T. [Mission Support Alliance (MSA), Richland, WA (United States); Nugent, John J. [Mission Support Alliance (MSA), Richland, WA (United States); Wilde, Justin W. [Mission Support Alliance (MSA), Richland, WA (United States); Johnson, Scott J. [Mission Support Alliance (MSA), Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  12. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  13. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1993-01-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities were built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Areas to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemicals as well as radioactive constituents. This paper focuses on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  14. Update on worker mortality data at Hanford

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1979-01-01

    The subject of this paper is a study of the effects on mortality of occupational exposure to ionizing radiation at the Hanford plant. The Hanford plant, which is located in southeastern Washington State, was established in the early forties as an installation for plutonium production. Many workers employed by the various contractors hold jobs involving some exposure to radiation. Yearly records of this exposure, obtained from dosimeter readings, as well as occupational data, are maintained for all employees. Mortality data are obtained by having the Social Security Administration periodically search their records for deaths of persons identified in the personnel rosters of Hanford contractors. Published analyses of worker mortality at Hanford have included workers initially employed before 1965 and mortality up to April 1, 1974. In this paper, the mortality data are updated to include deaths up to May 1, 1977, workers employed 1965 and later, and the most recent exposure data. In addition to updating results of earlier analyses, this paper provides a discussion of the problems involved in analyzing and interpreting occupational exposure and mortality data. For a more detailed discussion of these problems the reader is referred to the papers noted above

  15. Hanford environmental dose reconstruction project - an overview

    International Nuclear Information System (INIS)

    Shipler, D.B.; Napier, B.A.; Farris, W.T.

    1996-01-01

    The Hanford Environmental Dose Reconstruction Project was initiated because of public interest in the historical releases of radioactive materials from the Hanford Site, located in southcentral Washington State. By 1986, over 38,000 pages of environmental monitoring documentation from the early years of Hanford operations had been released. Special committees reviewing the documents recommended initiation of the Hanford Environmental Dose Reconstruction Project, which began in October 1987, and is conducted by Battelle, Pacific Northwest Laboratories. The technical approach taken was to reconstruct releases of radioactive materials based on facility operating information; develop and/or adapt transport, pathway, and dose models and computer codes; reconstruct environmental, meterological, and hydrological monitoring information; reconstruct demographic, agricultural, and lifestyle characteristics; apply statistical methods to all forms of uncertainty in the information, parameters, and models; and perform scientific investigation that were technically defensible. The geographic area for the study includes ∼2 x 10 5 km 2 (75,000 mi 2 ) in eastern Washington, western Idaho, and northeastern Oregon (essentially the Mid-columbia Basin of the Pacific Northwest). Three exposure pathways were considered: the atmosphere, the Columbia River, and ground water

  16. Raptors of the Hanford Site and nearby areas of southcentral Washington

    International Nuclear Information System (INIS)

    Fitzner, R.E.; Rickard, W.H.; Cadwell, L.L.; Rogers, L.E.

    1981-05-01

    This report is concerned with the birds of prey which use the Hanford Site not only during the nesting season but throughout the year. An ecological treatment of five nesting owls (great horned, long-eared, short-eared, barn and burrowing) and five nesting hawks (marsh hawk, red-tailed hawk, Swainson's hawk, prairie falcon and American kestrel) is provided and supportive information on non-nesting species is presented. Factors which control raptor densities and population dynamics throughout all seasons of the year are discussed. Information is also provided for raptors from other areas of southcentral Washington in order to yield a comprehensive picture of how the Hanford Site fits in with regional bird of prey populations. The following were the objectives of this study: (1) to determine the numbers of birds of prey nesting on the Hanford Site, (2) to document the reproductive chronology of each nesting raptor species, (3) to provide analyses of food habits of birds of prey on the Hanford Site coupled with prey abundance data, (4) to determine the productivity of the dominant large birds of prey on the Hanford Site, (5) to determine the distribution and land use patterns of all raptors on the Hanford Site, (6) to determine the kinds and relative abundance of non-nesting raptors on the Hanford Site and adjacent areas of southcentral Washington (7) to document present land use practices on the Hanford Site and their effects on raptors, (8) to document radionuclide levels in birds of prey on the Hanford Site, and (9) to determine the role of birds of prey in radioecological monitoring

  17. Raptors of the Hanford Site and nearby areas of southcentral Washington

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E.; Rickard, W.H.; Cadwell, L.L.; Rogers, L.E.

    1981-05-01

    This report is concerned with the birds of prey which use the Hanford Site not only during the nesting season but throughout the year. An ecological treatment of five nesting owls (great horned, long-eared, short-eared, barn and burrowing) and five nesting hawks (marsh hawk, red-tailed hawk, Swainson's hawk, prairie falcon and American kestrel) is provided and supportive information on non-nesting species is presented. Factors which control raptor densities and population dynamics throughout all seasons of the year are discussed. Information is also provided for raptors from other areas of southcentral Washington in order to yield a comprehensive picture of how the Hanford Site fits in with regional bird of prey populations. The following were the objectives of this study: (1) to determine the numbers of birds of prey nesting on the Hanford Site, (2) to document the reproductive chronology of each nesting raptor species, (3) to provide analyses of food habits of birds of prey on the Hanford Site coupled with prey abundance data, (4) to determine the productivity of the dominant large birds of prey on the Hanford Site, (5) to determine the distribution and land use patterns of all raptors on the Hanford Site, (6) to determine the kinds and relative abundance of non-nesting raptors on the Hanford Site and adjacent areas of southcentral Washington (7) to document present land use practices on the Hanford Site and their effects on raptors, (8) to document radionuclide levels in birds of prey on the Hanford Site, and (9) to determine the role of birds of prey in radioecological monitoring.

  18. Methods and strategy for modeling daily global solar radiation with measured meteorological data - A case study in Nanchang station, China

    International Nuclear Information System (INIS)

    Wu, Guofeng; Liu, Yaolin; Wang, Tiejun

    2007-01-01

    Solar radiation is a primary driver for many physical, chemical and biological processes on the earth's surface, and complete and accurate solar radiation data at a specific region are quite indispensable to the solar energy related researches. This study, with Nanchang station, China, as a case study, aimed to calibrate existing models and develop new models for estimating missing global solar radiation data using commonly measured meteorological data and to propose a strategy for selecting the optimal models under different situations of available meteorological data. Using daily global radiation, sunshine hours, temperature, total precipitation and dew point data covering the years from 1994 to 2005, we calibrated or developed and evaluated seven existing models and two new models. Validation criteria included intercept, slope, coefficient of determination, mean bias error and root mean square error. The best result (R 2 = 0.93) was derived from Chen model 2, which uses sunshine hours and temperature as predictors. The Bahel model, which only uses sunshine hours, was almost as good, explaining 92% of the solar radiation variance. Temperature based models (Bristow and Campbell, Allen, Hargreaves and Chen 1 models) provided less accurate results, of which the best one (R 2 = 0.69) is the Bristow and Campbell model. The temperature based models were improved by adding other variables (daily mean total precipitation and mean dew point). Two such models could explain 77% (Wu model 1) and 80% (Wu model 2) of the solar radiation variance. We, thus, propose a strategy for selecting an optimal method for calculating missing daily values of global solar radiation: (1) when sunshine hour and temperature data are available, use Chen model 2; (2) when only sunshine hour data are available, use Bahel model; (3) when temperature, total precipitation and dew point data are available but not sunshine hours, use Wu model 2; (4) when only temperature and total precipitation are

  19. The design of 1-wire net meteorological observatory for 2.4 m telescope

    Science.gov (United States)

    Zhu, Gao-Feng; Wei, Ka-Ning; Fan, Yu-Feng; Xu, Jun; Qin, Wei

    2005-03-01

    The weather is an important factor to affect astronomical observations. The 2.4 m telescope can not work in Robotic Mode without the weather data input. Therefore it is necessary to build a meteorological observatory near the 2.4 m telescope. In this article, the design of the 1-wire net meteorological observatory, which includes hardware and software systems, is introduced. The hardware system is made up of some kinds of sensors and ADC. A suited power station system is also designed. The software system is based on Windows XP operating system and MySQL data management system, and a prototype system of browse/server model is developed by JAVA and JSP. After being tested, the meteorological observatory can register the immediate data of weather, such as raining, snowing, and wind speed. At last, the data will be stored for feature use. The product and the design can work well for the 2.4 m telescope.

  20. The use of automatic weather stations to measure the soil temperature in the Mordovia State Nature Reserve (Russia) in 2016

    OpenAIRE

    Oleg G. Grishutkin

    2017-01-01

    The article presents the soil temperature data obtained using two automatic weather stations located in the Mordovia State Nature Reserve (Russia). Measurements were carried out at the soil surface and at depths of 20 cm, 40 cm and 60 cm. The meteorological stations are located 15 km apart, in general, in similar landscapes. This caused similar results of meteorological measurements. Differences in the average of the daily temperature at corresponding depths are less than 2°C. The average ann...

  1. Technetium Inventory, Distribution, and Speciation in Hanford Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Rapko, Brian M.

    2014-05-02

    The purpose of this report is three fold: 1) assemble the available information regarding technetium (Tc) inventory, distribution between phases, and speciation in Hanford’s 177 storage tanks into a single, detailed, comprehensive assessment; 2) discuss the fate (distribution/speciation) of Tc once retrieved from the storage tanks and processed into a final waste form; and 3) discuss/document in less detail the available data on the inventory of Tc in other "pools" such as the vadose zone below inactive cribs and trenches, below single-shell tanks (SSTs) that have leaked, and in the groundwater below the Hanford Site. A thorough understanding of the inventory for mobile contaminants is key to any performance or risk assessment for Hanford Site facilities because potential groundwater and river contamination levels are proportional to the amount of contaminants disposed at the Hanford Site. Because the majority of the total 99Tc produced at Hanford (~32,600 Ci) is currently stored in Hanford’s 177 tanks (~26,500 Ci), there is a critical need for knowledge of the fate of this 99Tc as it is removed from the tanks and processed into a final solid waste form. Current flow sheets for the Hanford Waste Treatment and Immobilization Plant process show most of the 99Tc will be immobilized as low-activity waste glass that will remain on the Hanford Site and disposed at the Integrated Disposal Facility (IDF); only a small fraction will be shipped to a geologic repository with the immobilized high-level waste. Past performance assessment studies, which focused on groundwater protection, have shown that 99Tc would be the primary dose contributor to the IDF performance.

  2. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  3. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  4. GENII [Generation II]: The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    International Nuclear Information System (INIS)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs

  5. GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

  6. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    International Nuclear Information System (INIS)

    Bergman, T.B.

    2011-01-01

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the ∼200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the

  7. Hanford Site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W. [eds.] [Pacific Northwest National Lab., Richland, WA (United States)

    1996-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. It also highlights environmental programs and efforts. It is written to meet reporting requirements and guidelines of DOE and to meet the needs of the public. Individual sections are designed to describe the Hanford Site and its mission, summarize the status in 1995 of compliance, describe the environmental programs, discuss estimated radionuclide exposure to the public from 1995 Hanford activities, present information on effluent monitoring and environmental surveillance (including ground- water protection and monitoring), and discuss activities to ensure quality.

  8. Hanford Site environmental report for calendar year 1995

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.

    1996-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. It also highlights environmental programs and efforts. It is written to meet reporting requirements and guidelines of DOE and to meet the needs of the public. Individual sections are designed to describe the Hanford Site and its mission, summarize the status in 1995 of compliance, describe the environmental programs, discuss estimated radionuclide exposure to the public from 1995 Hanford activities, present information on effluent monitoring and environmental surveillance (including ground- water protection and monitoring), and discuss activities to ensure quality

  9. DEEP VADOSE ZONE CONTAMINATION DUE TO RELEASES FROM HANFORD SITE TANKS

    International Nuclear Information System (INIS)

    JARAYSI MN

    2008-01-01

    CH2M HILL Hanford Group, Inc. (the Hanford Tank Farm Operations contractor) and the Department of Energy's Office of River Protection have just completed the first phase of the Hanford Single-Shell Tank RCRA Corrective Action Program. The focus of this first phase was to characterize the nature and extent of past Hanford single-shell tank releases and to characterize the resulting fate and transport of the released contaminants. Most of these plumes are below 20 meters, with some reaching groundwater (at 60 to 120 meters below ground surface [bgs])

  10. Catalog of borehole lithologic logs from the 600 Area, Hanford Site

    International Nuclear Information System (INIS)

    Fecht, K.R.; Lillie, J.T.

    1982-03-01

    Rockwell Hanford Operations (Rockwell) geoscientists are studying the Hanford Site subsurface environment to assure safe management operations, disposal, and storage of radioactive waste. As part of this effort, geoscientists have collected geotechnical data from about 3000 boreholes drilled on the Hanford Site since the early 1900s. These boreholes have been used for subsurface geologic, hydrologic, and engineering investigation, water supply, ground-water monitoring, and natural gas production. This report is a catalog of all obtainable (about 800) lithologic logs from boreholes in a portion of the Hanford Site known as the 600 Area

  11. Hanford Site environmental surveillance data report for calendar year 1995

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1996-07-01

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River Water and Sediment. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1995 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1995 by PNNL's Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface, river monitoring data, and chemical air data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data

  12. Influence of Glass Property Restrictions on Hanford HLW Glass Volume

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2001-01-01

    A systematic evaluation of Hanford High-Level Waste (HLW) loading in alkali-alumino-borosilicate glasses was performed. The waste feed compositions used were obtained from current tank waste composition estimates, Hanford's baseline retrieval sequence, and pretreatment processes. The waste feeds were sorted into groups of like composition by cluster analysis. Glass composition optimization was performed on each cluster to meet property and composition constraints while maximizing waste loading. Glass properties were estimated using property models developed for Hanford HLW glasses. The impacts of many constraints on the volume of HLW glass to be produced at Hanford were evaluated. The liquidus temperature, melting temperature, chromium concentration, formation of multiple phases on cooling, and product consistency test response requirements for the glass were varied one- or many-at-a-time and the resultant glass volume was calculated. This study shows clearly that the allowance of crystalline phases in the glass melter can significantly decrease the volume of HLW glass to be produced at Hanford.

  13. Hanford Site waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    Place, B.G.

    1998-01-01

    This plan, which is required by US Department of Energy (DOE) Order 5400. 1, provides waste minimization and pollution prevention guidance for all Hanford Site contractors. The plan is primary in a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, Prime contractor implementation plans, and the Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation (DOE-RL, 1997a) describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994). Items discussed include the pollution prevention policy and regulatory background, organizational structure, the major objectives and goals of Hanford Site's pollution prevention program, and an itemized description of the Hanford Site pollution prevention program. The document also includes US Department of Energy, Richland Operations Office's (RL's) statement of policy on pollution prevention as well as a listing of regulatory drivers that require a pollution prevention program

  14. Hanford Site environmental surveillance data report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, L.E.

    1996-07-01

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River Water and Sediment. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1995 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1995 by PNNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface, river monitoring data, and chemical air data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data.

  15. Retrospective assessment of personnel neutron dosimetry for workers at the Hanford Site

    International Nuclear Information System (INIS)

    Fix, J.J.; Wilson, R.H.; Baumgartner, W.B.

    1996-09-01

    This report was prepared to examine the specific issue of the potential for unrecorded neutron dose for Hanford workers, particularly in comparison with the recorded whole body (neutron plus photon) dose. During the past several years, historical personnel dosimetry practices at Hanford have been documented in several technical reports. This documentation provides a detailed history of the technology, radiation fields, and administrative practices used to measure and record dose for Hanford workers. Importantly, documentation has been prepared by personnel whose collective experience spans nearly the entire history of Hanford operations beginning in the mid-1940s. Evaluations of selected Hanford radiation dose records have been conducted along with statistical profiles of the recorded dose data. The history of Hanford personnel dosimetry is complex, spanning substantial evolution in radiation protection technology, concepts, and standards. Epidemiologic assessments of Hanford worker mortality and radiation dose data were initiated in the early 1960s. In recent years, Hanford data have been included in combined analyses of worker cohorts from several Department of Energy (DOE) sites and from several countries through the International Agency for Research on Cancer (IARC). Hanford data have also been included in the DOE Comprehensive Epidemiologic Data Resource (CEDR). In the analysis of Hanford, and other site data, the question of comparability of recorded dose through time and across the respective sites has arisen. DOE formed a dosimetry working group composed of dosimetrists and epidemiologists to evaluate data and documentation requirements of CEDR. This working group included in its recommendations the high priority for documentation of site-specific radiation dosimetry practices used to measure and record worker dose by the respective DOE sites

  16. Hanford Tanks Initiative quality assurance implementation plan

    International Nuclear Information System (INIS)

    Huston, J.J.

    1998-01-01

    Hanford Tanks Initiative (HTI) Quality Assurance Implementation Plan for Nuclear Facilities defines the controls for the products and activities developed by HTI. Project Hanford Management Contract (PHMC) Quality Assurance Program Description (QAPD)(HNF-PRO599) is the document that defines the quality requirements for Nuclear Facilities. The QAPD provides direction for compliance to 10 CFR 830.120 Nuclear Safety Management, Quality Assurance Requirements. Hanford Tanks Initiative (HTI) is a five-year activity resulting from the technical and financial partnership of the US Department of Energy's Office of Waste Management (EM-30), and Office of Science and Technology Development (EM-50). HTI will develop and demonstrate technologies and processes for characterization and retrieval of single shell tank waste. Activities and products associated with HTI consist of engineering, construction, procurement, closure, retrieval, characterization, and safety and licensing

  17. Environmental surveillance at Hanford for CY-1979

    International Nuclear Information System (INIS)

    Houston, J.R.; Blumer, P.J.

    1980-04-01

    Environmental data were collected for most environmental media including air, Columbia River water, external radiation, foodstuffs (milk, beef, eggs, poultry, and produce) and wildlife (deer, fish, and game birds), as well as soil and vegetation samples. In general, offsite levels of radionuclides attributable to Hanford operations during 1979 were indistinguishable from background levels. The data are summarized in the following highlights. Air quality measurements of NO 2 in the vicinity of the Hanford Site and releases of SO 2 onsite were well within the applicable federal and state standards. Particulate air concentrations exceed the standards primarily because of agricultural activities in the area. Discharges of waste water from Hanford facilities in the Columbia River under the National Pollution Discharge Elimination System (NPDES) permit were all within the parameter limits on the permit

  18. Environmental Survey preliminary report, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1987-08-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Hanford Site, conducted August 18 through September 5, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Hanford Site. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Hanford Site, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the Hanford Site. The Interim Report will reflect the final determinations of the Hanford Site Survey. 44 refs., 88 figs., 74 tabs

  19. Environmental Survey preliminary report, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Hanford Site, conducted August 18 through September 5, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Hanford Site. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Hanford Site, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the Hanford Site. The Interim Report will reflect the final determinations of the Hanford Site Survey. 44 refs., 88 figs., 74 tabs.

  20. Plans for Managing Hanford Remote Handled Transuranic (TRU) Waste

    International Nuclear Information System (INIS)

    MCKENNEY, D.E.

    2001-01-01

    The current Hanford Site baseline and life-cycle waste forecast predicts that approximately 1,000 cubic meters of remote-handled transuranic (RH-TRU) waste will be generated by waste management and environmental restoration activities at Hanford. These 1,000 cubic meters, comprised of both transuranic and mixed transuranic (TRUM) waste, represent a significant portion of the total estimated inventory of RH-TRU to be disposed of at the Waste Isolation Pilot Plant (WIPP). A systems engineering approach is being followed to develop a disposition plan for each RH-TRU/TRUM waste stream at Hanford. A number of significant decision-making efforts are underway to develop and finalize these disposition plans, including: development and approval of a RH-TRU/TRUM Waste Project Management Plan, revision of the Hanford Waste Management Strategic Plan, the Hanford Site Options Study (''Vision 2012''), the Canyon Disposal Initiative Record-of-Decision, and the Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (SW-EIS). Disposition plans may include variations of several options, including (1) sending most RH-TRU/TRUM wastes to WIPP, (2) deferrals of waste disposal decisions in the interest of both efficiency and integration with other planned decision dates and (3) disposition of some materials in place consistent with Department of Energy Orders and the regulations in the interest of safety, risk minimization, and cost. Although finalization of disposition paths must await completion of the aforementioned decision documents, significant activities in support of RH-TRU/TRUM waste disposition are proceeding, including Hanford participation in development of the RH TRU WIPP waste acceptance criteria, preparation of T Plant for interim storage of spent nuclear fuel sludge, sharing of technology information and development activities in cooperation with the Mixed Waste Focus Area, RH-TRU technology demonstrations and deployments, and

  1. 60 years of UK visibility measurements: impact of meteorology and atmospheric pollutants on visibility

    Science.gov (United States)

    Singh, Ajit; Bloss, William J.; Pope, Francis D.

    2017-02-01

    Reduced visibility is an indicator of poor air quality. Moreover, degradation in visibility can be hazardous to human safety; for example, low visibility can lead to road, rail, sea and air accidents. In this paper, we explore the combined influence of atmospheric aerosol particle and gas characteristics, and meteorology, on long-term visibility. We use visibility data from eight meteorological stations, situated in the UK, which have been running since the 1950s. The site locations include urban, rural and marine environments. Most stations show a long-term trend of increasing visibility, which is indicative of reductions in air pollution, especially in urban areas. Additionally, the visibility at all sites shows a very clear dependence on relative humidity, indicating the importance of aerosol hygroscopicity on the ability of aerosol particles to scatter radiation. The dependence of visibility on other meteorological parameters, such as wind speed and wind direction, is also investigated. Most stations show long-term increases in temperature which can be ascribed to climate change, land-use changes (e.g. urban heat island effects) or a combination of both; the observed effect is greatest in urban areas. The impact of this temperature change upon local relative humidity is discussed. To explain the long-term visibility trends and their dependence on meteorological conditions, the measured data were fitted to a newly developed light-extinction model to generate predictions of historic aerosol and gas scattering and absorbing properties. In general, an excellent fit was achieved between measured and modelled visibility for all eight sites. The model incorporates parameterizations of aerosol hygroscopicity, particle concentration, particle scattering, and particle and gas absorption. This new model should be applicable and is easily transferrable to other data sets worldwide. Hence, historical visibility data can be used to assess trends in aerosol particle

  2. Annual report 2004 of the air-quality and meteorological measurements of the Federal Environment Agency Austria

    International Nuclear Information System (INIS)

    Spangl, W.; Nagl, C.; Leeb, C.

    2005-01-01

    The air quality and meteorological measurements performed in several stations (Enzenkirchen, Illmitz, Pillersdorf, St. Koloman, St. Sigmund, Sonnblick, Stolzalpe, Sulzberg, Vorhegg and Zoebelboden) in Austria during 2004 are given. These activities were performed to fulfill the Emissions Protection law (Immissionsschutzgesetz-Luft) and the Ozone Law (Ozongesetz) as well as to collaborate with the Global Atmosphere Watch-measurement program of the World Meteorological Organization. The following pollutants were measured: ozone, PM10, PM2.5, PM1, carbon dioxide, carbon monoxide, nitrogen oxides, sulfur dioxide, heavy metals (lead, cadmium, arsenic, nickel), VOC (benzene, toluene, xylenes, alkenes, alkanes), atmospheric precipitations (SO 4 2- , NO 3 - -N, NH 4 + -N, Na + , Mg 2+ , Ca 2+ , Cl - , K + ), methane. The meteorological measurements were wind, temperature, global radiations, duration of sun shine, rainfall precipitation. figs. 32, tabs. 45 (nevyjel)

  3. Criticality codes migration to workstations at the Hanford site

    International Nuclear Information System (INIS)

    Miller, E.M.

    1993-01-01

    Westinghouse Hanford Company, Hanford Site Operations contractor, Richland, Washington, currently runs criticality codes on the Cray X-MP EA/232 computer but has recommended that US Department of Energy DOE-Richland replace the Cray with more economical workstations

  4. Conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation, 1945--1947. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Mart, E.I.; Denham, D.H.; Thiede, M.E.

    1993-12-01

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project whose goal is to estimate the radiation dose that individuals could have received from emissions since 1944 at the U.S. Department of Energy`s (DOE) Hanford Site near Richland, Washington. The HEDR Project is conducted by Battelle, Pacific Northwest Laboratories (BNW). One of the radionuclides emitted that would affect the radiation dose was iodine-131. This report describes in detail the reconstructed conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation which was collected from the beginning of October 1945 through the end of December 1947.

  5. Plutonium and Americium Geochemistry at Hanford: A Site Wide Review

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Felmy, Andrew R.

    2012-08-23

    This report was produced to provide a systematic review of the state-of-knowledge of plutonium and americium geochemistry at the Hanford Site. The report integrates existing knowledge of the subsurface migration behavior of plutonium and americium at the Hanford Site with available information in the scientific literature regarding the geochemistry of plutonium and americium in systems that are environmentally relevant to the Hanford Site. As a part of the report, key research needs are identified and prioritized, with the ultimate goal of developing a science-based capability to quantitatively assess risk at sites contaminated with plutonium and americium at the Hanford Site and the impact of remediation technologies and closure strategies.

  6. Environmental assessment overview, Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization. 3 figs

  7. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-11-09

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 270 triggers during the second quarter of fiscal year (FY) 1999 and 229 triggers during the third quarter on the primary recording system. During the second quarter, 22 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 6 were earthquakes in the crystalline basement, and 5 were quarry blasts. Two earthquakes appear to be related to major geologic structures, eight earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. During the third quarter, 23 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 4 were earthquakes in the pre-basalt sediments, 4 were earthquakes in the crystalline basement, and 4 were quarry blasts. Five earthquakes occurred in known swarm areas, six earthquakes formed a new swarm near the Horse Heavens Hills and Presser, Washington, and eight earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the second or third quarters of FY 1999.

  8. Characterization program management plan for Hanford K Basin spent nuclear fuel

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1998-01-01

    The management plan developed to characterize the K Basin Spent Nuclear Fuel was revised to incorporate actions necessary to comply with the Office of Civilian Radioactive Waste Management Quality Assurance Requirements Document 0333P. This plan was originally developed for Westinghouse Hanford Company and Pacific Northwest National Laboratory to work together on a program to provide characterization data to support removal, conditioning, and subsequent dry storage of the spent nuclear fuels stored at the Hanford K Basins. This revision to the Program Management Plan replaces Westinghouse Hanford Company with Duke Engineering and Services Hanford, Inc., updates the various activities where necessary, and expands the Quality Assurance requirements to meet the applicable requirements document. Characterization will continue to utilize the expertise and capabilities of both organizations to support the Spent Nuclear Fuels Project goals and objectives. This Management Plan defines the structure and establishes the roles for the participants providing the framework for Duke Engineering and Services Hanford, Inc. and Pacific Northwest National Laboratory to support the Spent Nuclear Fuels Project at Hanford

  9. Stakeholder involvement in redefining Hanford's Double-Shell Tank Waste Disposal Program

    International Nuclear Information System (INIS)

    Triplett, M.B.; Hunter, V.L.

    1992-01-01

    Hanford's Double-Shell Tank (DST) waste disposal strategy, outlined in the Final Environmental Impact Statement, Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland, Washington calls for using B-Plant to separate the low-level and high-level portions of the DST waste. This separations step would provide feed to the Hanford Waste Vitrification Plant (HWVP), viewed by many as the cornerstone to Site cleanup. The State of Washington strongly opposed using the 47-year old B-Plant because it was not built to comply with current environmental regulations. Because of this and other challenges to Hanford's tank waste disposal strategy, the Department of Energy (DOE) Richland Field Office (RL) initiated efforts to redefine the strategy. To support this effort, Pacific Northwest Laboratory, (PNL) and Westinghouse Hanford Company, (WHC) and sought input from outside stakeholder (stakeholders are those interest groups that are affected by the outcome of the decision and have a strong desire to ensure that their concerns are addressed) groups through a formal stakeholder involvement and multiattribute utility (MAU) analysis process

  10. Quality Assurance Program Plan Waste Management Federal Services of Hanford, Inc

    International Nuclear Information System (INIS)

    VOLKMAN, D.D.

    1999-01-01

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program

  11. Westinghouse Hanford Company waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    Craig, P.A.; Nichols, D.H.; Lindsey, D.W.

    1991-08-01

    The purpose of this plan is to establish the Westinghouse Hanford Company's Waste Minimization Program. The plan specifies activities and methods that will be employed to reduce the quantity and toxicity of waste generated at Westinghouse Hanford Company (Westinghouse Hanford). It is designed to satisfy the US Department of Energy (DOE) and other legal requirements that are discussed in Subsection C of the section. The Pollution Prevention Awareness Program is included with the Waste Minimization Program as permitted by DOE Order 5400.1 (DOE 1988a). This plan is based on the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, which directs DOE Field Office, Richland contractors to develop and maintain a waste minimization program. This waste minimization program is an organized, comprehensive, and continual effort to systematically reduce waste generation. The Westinghouse Hanford Waste Minimization Program is designed to prevent or minimize pollutant releases to all environmental media from all aspects of Westinghouse Hanford operations and offers increased protection of public health and the environment. 14 refs., 2 figs., 1 tab

  12. A Short History of Waste Management at the Hanford Site

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2010-01-01

    The world's first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford's last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford's only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book 'Hanford: A Conversation about Nuclear Waste and Cleanup.'

  13. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    Finch, S.M.

    1991-10-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doeses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates

  14. Overview Of Hanford Single Shell Tank (SST) Structural Integrity - 12123

    International Nuclear Information System (INIS)

    Rast, R.S.; Rinker, M.W.; Washenfelder, D.J.; Johnson, J.B.

    2012-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS(reg s ign) The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  15. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    Energy Technology Data Exchange (ETDEWEB)

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  16. Second Quarter Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2010-06-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 90 local earthquakes during the second quarter of FY 2010. Eighty-one of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter were a continuation of the swarm events observed during the 2009 and 2010 fiscal years and reported in previous quarterly and annual reports (Rohay et al; 2009a, 2009b, 2009c, and 2010). Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with only 1 event in the 2.0-3.0 range; the maximum magnitude event (3.0 Mc) occurred February 4, 2010 at depth 2.4 km. The average depth of the Wooded Island events during the quarter was 1.6 km with a maximum depth estimated at 3.5 km. This placed the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. The Hanford Strong Motion Accelerometer (SMA) network was triggered several times

  17. The role of the Finnish Meteorological Institute

    International Nuclear Information System (INIS)

    Savolainen, A.L.; Valkama, I.

    1993-01-01

    The Finnish Meteorological Institute is responsible for the dispersion forecasts for the radiation control in Finland. In addition to the normal weather forecasts the duty forecaster has the work station based three dimensional trajectory model and the short range dispersion model YDINO at his disposal. For expert use, dispersion and dose model TRADOS is available. The TRADOS, developed by the Finnish Meteorological Institute and by the Technical Research Centre of Finland, includes a meteorological data base that utilizes the numerical forecasts of the High Resolution Limited Area Model (HIRLAM) weather prediction model. The transport is described by three-dimensional air-parcel trajectories. For each time step the integrated air concentrations as well as dry and wet deposition for selected groups of radionuclides are computed. In the operational emergency application only external dose rates are computed. In the statistical version also individual and population dose estimates via several external and internal pathways can be made. The TRADOS is currently run under two separate user interfaces. The trajectory and dispersion model interface includes ready-made lists of the nuclear power plants and other installations. The dose model has a set of release terms for several groups of radionuclides. There is also a graphical module that enables the computed results to be presented in grid or also isolines. A new graphical user interface and presentation lay-outs redesigned as visual and end-user friendly as possible and with the aim of possible and with the aim of possible adoption as a Nordic standard will be installed in the near future. (orig.)

  18. Proceedings of the First Hanford Separation Science Workshop

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The First Hanford Separation Science Workshop, sponsored by PNL had two main objectives: (1) assess the applicability of available separation methods for environmental restoration and for minimization, recovery, and recycle of mixed and radioactive mutes; and (2) identify research needs that must be addressed to create new or improved technologies. The information gathered at this workshop not only applies to Hanford but could be adapted to DOE facilities throughout the nation as well. These proceedings have been divided into three components: Background and Introduction to the Problem gives an overview of the history of the Site and the cleanup mission, including waste management operations, past disposal practices, current operations, and plans for the future. Also included in this section is a discussion of specific problems concerning the chemistry of the Hanford wastes. Separation Methodologies contains the papers given at the workshop by national experts in the field of separation science regarding the state-of-the-art of various methods and their applicability/adaptability to Hanford. Research Needs identifies further research areas developed in working group sessions. Individual papers are indexed separately.

  19. Simulation of the cleanup of the Hanford Site

    International Nuclear Information System (INIS)

    Ludowise, J.D.; Allen, G.K.

    1992-12-01

    The Hanford Site is a 1,450-km 2 (560-mi 2 ) tract of semiarid land in southeastern Washington State. Nuclear materials for the nation's defense programs were manufactured at the Hanford Site for more than 40 years. The waste generated by these activities has been treated, stored, or disposed of in a variety of ways. The Hanford Site strategic analysis provides a general comparison analysis tool to guide selection and future modification of the integrated Site cleanup plan. A key element of the Hanford strategic analysis is a material flow model that tracks 80 individual feed elements containing 60 componentsof interest through 50 functional processing blocks in 12 different configurations. The material flow model was developed for parametric analyses using separation factors and parameters specific to individual feeds. The model was constructed so that the effects of individual feed streams can be traced through a flowsheet, and the performance parameters of each functional block can be varied independently. The material flow model has five major elements: input database, process flow diagrams, sequential modular process simulation, output database, and output summing program

  20. Proceedings of the First Hanford Separation Science Workshop

    International Nuclear Information System (INIS)

    1993-05-01

    The First Hanford Separation Science Workshop, sponsored by PNL had two main objectives: (1) assess the applicability of available separation methods for environmental restoration and for minimization, recovery, and recycle of mixed and radioactive mutes; and (2) identify research needs that must be addressed to create new or improved technologies. The information gathered at this workshop not only applies to Hanford but could be adapted to DOE facilities throughout the nation as well. These proceedings have been divided into three components: Background and Introduction to the Problem gives an overview of the history of the Site and the cleanup mission, including waste management operations, past disposal practices, current operations, and plans for the future. Also included in this section is a discussion of specific problems concerning the chemistry of the Hanford wastes. Separation Methodologies contains the papers given at the workshop by national experts in the field of separation science regarding the state-of-the-art of various methods and their applicability/adaptability to Hanford. Research Needs identifies further research areas developed in working group sessions. Individual papers are indexed separately

  1. Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway

    NARCIS (Netherlands)

    Giesen, R.H.; Andreassen, L.M.; van den Broeke, M.R.; Oerlemans, J.

    2009-01-01

    We compare 5 years of meteorological records from automatic weather stations (AWSs) on Storbreen and Midtdalsbreen, two glaciers in southern Norway, located approximately 120 km apart. The records are obtained from identical AWSs with an altitude difference of 120 m and cover the period September

  2. Hanford sitewide grounwater remediation - supporting technical information

    International Nuclear Information System (INIS)

    Chiaramonte, G.R.

    1996-05-01

    The Hanford Sitewide Groundwater Remediation Strategy was issued in 1995 to establish overall goals for groundwater remediation on the Hanford Site. This strategy is being refined to provide more detailed justification for remediation of specific plumes and to provide a decision process for long-range planning of remediation activities. Supporting this work is a comprehensive modeling study to predict movement of the major site plumes over the next 200 years to help plan the remediation efforts. The information resulting from these studies will be documented in a revision to the Strategy and the Hanford Site Groundwater Protection Management Plan. To support the modeling work and other studies being performed to refine the strategy, this supporting technical information report has been produced to compile all of the relevant technical information collected to date on the Hanford Site groundwater contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, and description of the contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, description of the contaminant plumes, rate of movement based on the conceptual model and monitoring data, risk assessment, treatability study information, and current approach for plume remediation

  3. MODELING OF RELATIONSHIP BETWEEN GROUNDWATER FLOW AND OTHER METEOROLOGICAL VARIABLES USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Şaban YURTÇU

    2006-02-01

    Full Text Available In this study, modeling of the effect of rainfall, flow and evaporation as independent variables on the change of underground water levels as dependent variables were investigated by fuzzy logic (FL. In the study, total 396 values taken from six observation stations belong to Afyon inferior basin in Akarçay from 1977 to 1989 years were used. Using the monthly average values of stations, the change of underground water level was modeled by FL. It is observed that the results obtained from FL and the observations are compatible with each other. This shows FL modeling can be used to estimate groundwater levels from the appropriate meteorological value.

  4. Hanford Cultural Resources Laboratory annual report for fiscal year 1994

    International Nuclear Information System (INIS)

    Nickens, P.R.; Wright, M.K.; Cadoret, N.A.; Dawson, M.V.; Harvey, D.W.; Simpson, E.M.

    1995-09-01

    The Hanford Site occupies 560 sq. miles of land along the Columbia River in SE Washington. The Hanford Reach of the river is one of the most archaeologically rich areas in the western Columbia Plateau. To manage the Hanford Site's archaeological, historical, and cultural resources, the Hanford Cultural Resources Laboratory (HCRL) was established in 1987. HCRL ensures DOE complies with federal statutes, regulations, and guidelines. In FY 1994, HCRL conducted cultural resource reviews, conducted programs to identify and monitor historic and archaeological sites, etc. HCRL staff conducted 511 reviews, 29 of which required archaeological surveys and 10 of which required building documentation. Six prehistoric sites, 23 historic sites, one paleontological site, and two sites with historic and prehistoric components were discovered

  5. Hanford Cultural Resources Laboratory annual report for fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Nickens, P.R.; Wright, M.K.; Cadoret, N.A.; Dawson, M.V.; Harvey, D.W.; Simpson, E.M.

    1995-09-01

    The Hanford Site occupies 560 sq. miles of land along the Columbia River in SE Washington. The Hanford Reach of the river is one of the most archaeologically rich areas in the western Columbia Plateau. To manage the Hanford Site`s archaeological, historical, and cultural resources, the Hanford Cultural Resources Laboratory (HCRL) was established in 1987. HCRL ensures DOE complies with federal statutes, regulations, and guidelines. In FY 1994, HCRL conducted cultural resource reviews, conducted programs to identify and monitor historic and archaeological sites, etc. HCRL staff conducted 511 reviews, 29 of which required archaeological surveys and 10 of which required building documentation. Six prehistoric sites, 23 historic sites, one paleontological site, and two sites with historic and prehistoric components were discovered.

  6. Log Books and the Law of Storms: Maritime Meteorology and the British Admiralty in the Nineteenth Century.

    Science.gov (United States)

    Naylor, Simon

    2015-12-01

    This essay contributes to debates about the relationship between science and the military by examining the British Admiralty's participation in meteorological projects in the first half of the nineteenth century. It focuses on attempts to transform Royal Navy log books into standardized meteorological registers that would be of use to both science and the state. The essay begins with a discussion of Admiralty Hydrographer Francis Beaufort, who promoted the use of standardized systems for the observation of the weather at sea. It then examines the application of ships' logs to the science of storms. The essay focuses on the Army engineer William Reid, who studied hurricanes while stationed in Barbados and Bermuda. Reid was instrumental in persuading the Admiralty to implement a naval meteorological policy, something the Admiralty Hydrographer had struggled to achieve. The essay uses the reception and adoption of work on storms at sea to reflect on the means and ends of maritime meteorology in the mid-nineteenth century.

  7. Environmental surveillance at Hanford for CY 1977

    International Nuclear Information System (INIS)

    Houston, J.R.; Blumer, P.J.

    1978-04-01

    Environmental data collected during 1977 show continued compliance by Hanford with all applicable state and federal regulations. Data were collected for most environmental media including air, Columbia River water, external radiation, foodstuffs (milk, beef, eggs, poultry, and produce) and wildlife (deer, fish, game birds, and oysters from Willapa Bay), as well as soil and vegetation samples. In general, offsite levels of radionuclides attributable to Hanford operations during 1977 were indistinguishable from background levels

  8. Unit environmental transport assessment of contaminants from Hanford's past-practice waste sites. Hanford Remedial Action Environmental Impact Statement

    International Nuclear Information System (INIS)

    Whelan, G.; Buck, J.W.; Castleton, K.J.

    1995-06-01

    The US Department of Energy, Richland Operations Office (DOE-RL) contracted Pacific Northwest Laboratory (PNL) to provide support to Advanced Sciences, Incorporated (ASI) in implementing tile regional no-action risk assessment in the Hanford Remedial Action Environmental Impact Statement. Researchers at PNL were charged with developing unit concentrations for soil, groundwater, surface water, and air at multiple locations within an 80-km radius from the center of tile Hanford installation. Using the Multimedia Environmental Pollutant Assessment System (MEPAS), PNL simulated (1) a unit release of one ci for each radionuclide and one kg for each chemical from contaminated soils and ponded sites, (2) transport of the contaminants in and through various environmental media and (3) exposure/risk of four exposure scenarios, outlined by the Hanford Site Baseline Remedial Action Methodology. These four scenarios include residential, recreational, industrial, and agricultural exposures. Spacially and temporally distributed environmental concentrations based on unit releases of radionuclides and chemicals were supported to ASI in support of the HRA-EIS. Risk for the four exposure scenarios, based on unit environment concentrations in air, water, and soil. were also supplied to ASI. This report outlines the procedure that was used to implement the unit transport portion of the HRA-EIS baseline risk assessment. Deliverables include unit groundwater, surface water, air, and soil concentrations at multiple locations within an 80-km radius from the center of the Hanford installation

  9. Development and testing of a system for meteorological and radiological data centralizing on Magurele zone

    International Nuclear Information System (INIS)

    Ciaus, M.; Niculescu, D.

    1997-01-01

    Within the framework of European collaboration co-ordinated by F.Z. Karlsruhe, the adapting, installing and developing of a decision support system for nuclear emergency management is now in progress in NIPNE. The decision support system RODOS will be available to the Romanian competent authorities - as well as to many western and eastern countries - in case of nuclear accidents. One main task in implementing the decision support system is to provide as input, among others, on-line real-time radiological and meteorological data, measured in national territory. For that purpose the regional and national measuring networks had to be connected to the central RODOS station in NIPNE. As the first step the sources of data existing on the Magurele zone were coupled to the RODOS system. The main sources of data are different meteorological sensors and flowmeters installed at three levels on the meteorological tower and a remote gamma-ray area monitor with several measuring locations in Magurele zone, connected by radio links to the central unit in Nuclear Instruments and Methods Department. For transmission of collected data to the central RODOS station, a local area network was implemented to connect all the computers. The Ethernet - based network uses optical fiber between buildings, coaxial and twisted cable inside buildings and suitable Hewlett-Packard hubs and transceivers. Several communication software packages based on TCP/IP protocols were installed on the computers and tested. The real-time data transfer between collecting computers and the central station will be carried out by automatic triggering of FTP programs at regular time intervals. The local network provides also a link to Internet, so that the indispensable exchange of data with similar RODOS centers in other countries, especially with the coordinating institute in Karlsruhe, as well as with other organizations is ensured. (authors)

  10. Moisture movement in soils on the Hanford Reservation

    International Nuclear Information System (INIS)

    Brownell, L.E.; Isaacson, R.E.; Sloughter, J.P.; Veatch, M.D.

    1971-01-01

    Methods being studied are as follows: the thermodynamic method based on water potential and thermocouple psychrometers; the tracer method using atmospheric tritium; the annual water balance based on the annual heat balance; the field lysimeter using thermocouple psychrometers; the influence of soil breathing as a result of changes in barometric pressure; and the influence of soil stratification. Progress to date has involved the installation of thermocouple psychrometers from the surface to the water table 310 feet below. These instruments are in the process of equilibration. Isothermal methods of analyzing water potential must be extended to include nonisothermal conditions which are dominant at the Hanford Reservation. Tracer techniques using tritium analyses of soil samples have successfully demonstrated that archaic water exists in virgin soil at the Hanford Reservation from a depth of approximately 7 meters to the water table, indicating that percolation has been limited to lesser depths. The annual heat balance indicates that quantities of water many times greater than the annual average precipitation of 16 centimeters can be evaporated from the soils at the Hanford Reservation during a normal summer. This indicates that the critical precipitation (P/sub c/) value may be greater than 30 to 50 centimeters of water. More precise values of the Bowen's ratio for the Hanford Reservation are required to refine this computation. The field lysimeter is perhaps the most direct method of determining the critical precipitation values for the Hanford Reservation but as yet has not been used

  11. Hanford Cultural Resources Laboratory annual report for fiscal year 1989

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Cadoret, N.A.; Minthorn, P.E.

    1990-06-01

    This report summarizes activities of the Hanford Cultural Resources Laboratory (HCRL) during fiscal year 1989. The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site, Washington, in a manner consistent with the National Historic Preservation Act of 1966, the Archaeological Resources Protection Act of 1979, and the American Indian Religious Freedom Act of 1978. A major task in FY 1989 was completion and publication of the Hanford Cultural Resources Management Plan, which prioritizes tasks to be undertaken to bring the US Department of Energy -- Richland Operations into compliance with federal statutes, relations, and guidelines. During FY 1989, six tasks were performed. In order of priority, these were conducting 107 cultural resource reviews, monitoring the condition of 40 known prehistoric archaeological sites, assessing the condition of artifact collections from the Hanford Site, evaluating three sites and nominating two of those to the National Register of Historic Places, developing an education program and presenting 11 lectures to public organizations, and surveying approximately 1 mi{sup 2} of the Hanford Site for cultural resources. 7 refs., 4 figs., 4 tabs.

  12. NASA Prediction of Worldwide Energy Resource High Resolution Meteorology Data For Sustainable Building Design

    Science.gov (United States)

    Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping; Stackhouse, Paul W., Jr.

    2013-01-01

    A primary objective of NASA's Prediction of Worldwide Energy Resource (POWER) project is to adapt and infuse NASA's solar and meteorological data into the energy, agricultural, and architectural industries. Improvements are continuously incorporated when higher resolution and longer-term data inputs become available. Climatological data previously provided via POWER web applications were three-hourly and 1x1 degree latitude/longitude. The NASA Modern Era Retrospective-analysis for Research and Applications (MERRA) data set provides higher resolution data products (hourly and 1/2x1/2 degree) covering the entire globe. Currently POWER solar and meteorological data are available for more than 30 years on hourly (meteorological only), daily, monthly and annual time scales. These data may be useful to several renewable energy sectors: solar and wind power generation, agricultural crop modeling, and sustainable buildings. A recent focus has been working with ASHRAE to assess complementing weather station data with MERRA data. ASHRAE building design parameters being investigated include heating/cooling degree days and climate zones.

  13. Engineering report of plasma vitrification of Hanford tank wastes

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1995-01-01

    This document provides an analysis of vendor-derived testing and technology applicability to full scale glass production from Hanford tank wastes using plasma vitrification. The subject vendor testing and concept was applied in support of the Hanford LLW Vitrification Program, Tank Waste Remediation System

  14. Estimation of solar potential in Turkey by artificial neural networks using meteorological and geographical data

    Energy Technology Data Exchange (ETDEWEB)

    Sozen, Adnan; Ozalp, Mehmet [Gazi Univ., Mechanical Education Dept., Ankara (Turkey); Arcaklioglu, Erol [Krkkale Univ., Mechanical Engineering Dept., Krkkale (Turkey)

    2004-11-01

    Turkey is located at the Mediterranean at 36 deg and 42 deg N latitudes and has a typical Mediterranean climate. The solar energy potential is very high in Turkey. The yearly average solar radiation is 3.6 kW h/m{sup 2} day, and the total yearly radiation period is {approx}2610 h. This study consists of two cases. Firstly, the main focus of this study is to put forward the solar energy potential in Turkey using artificial neural networks (ANNs). Secondly, in this study, the best approach was investigated for each station by using different learning algorithms and a logistic sigmoid transfer function in the neural network with developed software. In order to train the neural network, meteorological data for last three years (2000-2002) from 17 stations (Ankara, Samsun, Edirne, Istanbul-Goztepe, Van, Izmir, Denizli, Sanl urfa, Mersin, Adana, Gaziantep, Ayd n, Bursa, Diyarbak r, Yozgat, Antalya and Mugla) spread over Turkey were used as training (11 stations) and testing (6 stations) data. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration and mean temperature) are used in the input layer of the network. Solar radiation is in the output layer. The maximum mean absolute percentage error was found to be less than 6.735% and R{sup 2} values were found to be about 99.893% for the testing stations. However, these values were found to be 4.398% and 99.965% for the training stations. The trained and tested ANN models show greater accuracy for evaluating the solar resource possibilities in regions where a network of monitoring stations has not been established in Turkey. The predicted solar potential values from the ANN are given in the form of monthly maps. These maps are of prime importance for different working disciplines, like scientists, architects, meteorologists and solar engineers, in Turkey. The predictions from the ANN models could enable scientists to locate and design solar energy systems in Turkey and determine the

  15. Estimation of solar potential in Turkey by artificial neural networks using meteorological and geographical data

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezalp, Mehmet

    2004-01-01

    Turkey is located at the Mediterranean at 36 deg. and 42 deg. N latitudes and has a typical Mediterranean climate. The solar energy potential is very high in Turkey. The yearly average solar radiation is 3.6 kW h/m 2 day, and the total yearly radiation period is ∼2610 h. This study consists of two cases. Firstly, the main focus of this study is to put forward the solar energy potential in Turkey using artificial neural networks (ANNs). Secondly, in this study, the best approach was investigated for each station by using different learning algorithms and a logistic sigmoid transfer function in the neural network with developed software. In order to train the neural network, meteorological data for last three years (2000-2002) from 17 stations (Ankara, Samsun, Edirne, Istanbul-Goeztepe, Van, Izmir, Denizli, Sanliurfa, Mersin, Adana, Gaziantep, Aydin, Bursa, Diyarbakir, Yozgat, Antalya and Mugla) spread over Turkey were used as training (11 stations) and testing (6 stations) data. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration and mean temperature) are used in the input layer of the network. Solar radiation is in the output layer. The maximum mean absolute percentage error was found to be less than 6.735% and R 2 values were found to be about 99.893% for the testing stations. However, these values were found to be 4.398% and 99.965% for the training stations. The trained and tested ANN models show greater accuracy for evaluating the solar resource possibilities in regions where a network of monitoring stations has not been established in Turkey. The predicted solar potential values from the ANN are given in the form of monthly maps. These maps are of prime importance for different working disciplines, like scientists, architects, meteorologists and solar engineers, in Turkey. The predictions from the ANN models could enable scientists to locate and design solar energy systems in Turkey and determine the best solar

  16. Behavior of the equivalent slab thickness over three European stations

    Czech Academy of Sciences Publication Activity Database

    Mosert, M.; Magdaleno, S.; Burešová, Dalia; Altadill, D.; Gende, M.; Gularte, E.; Scida, L.

    2013-01-01

    Roč. 51, č. 4 (2013), s. 677-682 ISSN 0273-1177 Institutional support: RVO:68378289 Keywords : Ionospheric slab thickness * F2-layer peak * TEC * European stations Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.238, year: 2013 http://www.sciencedirect.com/science/article/pii/S0273117712003754

  17. Hanford 1999 Tier 2 Emergency and Hazardous Chemical Inventory Emergency Planning and Community Right-to-Know Act Section 312

    International Nuclear Information System (INIS)

    ZALOUDEK, D.E.

    2000-01-01

    The Hanford Site covers approximately 1,450 square kilometers (560 square miles) of land that is owned by the U.S. Government and managed by the U.S. Department of Energy, Richland Operations Office (DOE-RL). The Hanford Site is located northwest of the city of Richland, Washington. The city of Richland adjoins the southeastern portion of the Hanford Site boundary and is the nearest population center. Activities on the Hanford Site are centralized in numerically designated areas. The 100 Areas, located along the Columbia River, contain deactivated reactors. The processing units are in the 200 Areas, which are on a plateau approximately 11 kilometers (7 miles) from the Columbia River. The 300 Area, located adjacent to and north of Richland, contains research and development laboratories. The 400 Area, 8 kilometers (5 miles) northwest of the 300 Area, contains the Fast Flux Test Facility previously used for testing liquid metal reactor systems. Adjacent to the north of Richland, the 1100 Area contains offices associated with administration, maintenance, transportation, and materials procurement and distribution. The 600 Area covers all locations not specifically given an area designation. This Tier Two Emergency and Hazardous Chemical Inventory report contains information pertaining to hazardous chemicals managed by DOE-RL and its contractors on the Hanford Site. It does not include chemicals maintained in support of activities conducted by others on lands covered by leases, use permits, easements, and other agreements whereby land is used by parties other than DOE-RL. For example, this report does not include chemicals stored on state owned or leased lands (including the burial ground operated by US Ecology, Inc.), lands owned or used by the Bonneville Power Administration (including the Midway Substation and the Ashe Substation), lands used by the National Science Foundation (the Laser Interferometer Gravitational-Wave Observatory), lands leased to the Washington

  18. Third Quarter Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2010-09-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 23 local earthquakes during the third quarter of FY 2010. Sixteen earthquakes were located at shallow depths (less than 4 km), five earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and two earthquakes were located at depths greater than 9 km, within the basement. Geographically, twelve earthquakes were located in known swarm areas, 3 earthquakes occurred near a geologic structure (Saddle Mountain anticline), and eight earthquakes were classified as random events. The highest magnitude event (3.0 Mc) was recorded on May 8, 2010 at depth 3.0 km with epicenter located near the Saddle Mountain anticline. Later in the quarter (May 24 and June 28) two additional earthquakes were also recorded nearly at the same location. These events are not considered unusual in that earthquakes have been previously recorded at this location, for example, in October 2006 (Rohay et al; 2007). Six earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just

  19. Spatio-temporal variance and meteorological drivers of the urban heat island in a European city

    Science.gov (United States)

    Arnds, Daniela; Böhner, Jürgen; Bechtel, Benjamin

    2017-04-01

    Urban areas are especially vulnerable to high temperatures, which will intensify in the future due to climate change. Therefore, both good knowledge about the local urban climate as well as simple and robust methods for its projection are needed. This study has analysed the spatio-temporal variance of the mean nocturnal urban heat island (UHI) of Hamburg, with observations from 40 stations from different suppliers. The UHI showed a radial gradient with about 2 K in the centre mostly corresponding to the urban densities. Temporarily, it has a strong seasonal cycle with the highest values between April and September and an inter-annual variability of approximately 0.5 K. Further, synoptic meteorological drivers of the UHI were analysed, which generally is most pronounced under calm and cloud-free conditions. Considered were meteorological parameters such as relative humidity, wind speed, cloud cover and objective weather types. For the stations with the highest UHI intensities, up to 68.7 % of the variance could be explained by seasonal empirical models and even up to 76.6 % by monthly models.

  20. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Brim, C.P.; Rieksts, G.A.; Rhoads, M.C.

    1987-05-01

    This document, a reprint of the Whole Body Counting Manual, was compiled to train personnel, document operation procedures, and outline quality assurance procedures. The current manual contains information on: the location, availability, and scope of services of Hanford's whole body counting facilities; the administrative aspect of the whole body counting operation; Hanford's whole body counting facilities; the step-by-step procedure involved in the different types of in vivo measurements; the detectors, preamplifiers and amplifiers, and spectroscopy equipment; the quality assurance aspect of equipment calibration and recordkeeping; data processing, record storage, results verification, report preparation, count summaries, and unit cost accounting; and the topics of minimum detectable amount and measurement accuracy and precision. 12 refs., 13 tabs