WorldWideScience

Sample records for hands-on science teaching

  1. Science &Language Teaching in Hands-on Education

    Science.gov (United States)

    Gehlert, Sylvia

    2002-01-01

    As announced in the paper presented in Toulouse, a trinational teacher training program addressing school teachers from France, Germany and Italy on teaching foreign languages together with science and history through Space related projects has been implemented and launched successfully. Supported by the French Ministry of Education (Académie de Nice), the bigovernmental French-German Youth Office (Office franco- allemand pour la Jeunesse) and the European Space Agency the first session was held in Cannes in October 2001 and brought together 36 language, science and history teachers, 12 from each country. Through different workshops, presentations and visits this five-day training encounter initiated the participants with Space activities and exploration as well as offering them back-up information on astronomy. It gave them furthermore the opportunity of improving their linguistic skills and of exchanging their teaching experience. The program was highly welcomed by all the participants who will meet this year in Germany for the second session devoted to establishing together bi- or trinational projects for future class encounters based on the same subjects. My paper will deal with the results of the program which have been beyond expectation and will encourage us to continue this pluridisciplinary approach of language &science teaching and extend it to other language combinations.

  2. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  3. Could hands-on activities and smartphone in science CLIL teaching foster motivation and positive attitudes in students?

    Science.gov (United States)

    Ercolino, Immacolata; Maraffi, Sabina; Sacerdoti, Francesco M.

    2016-04-01

    Motivating students is one of the most challenging things we do as educators. We know that students need to be engaged to fully appreciate and learn what has been taught; the secret consists in nurturing student engagement. One of the newer ways to involve students and foster motivation in their Science learning consists in focusing on their usage and on applying knowledge and skills in their real-life. Students usually are engaged in authentic teaching pathway. Learning focusing on the experience helps teachers to improve classroom management by gathering students around a common organized activity. Hands-on activities support problem-based approaches to learning by focusing on the experience and process of investigating, proposing and creating solutions developing critical thinking skills and enlarge student's scientific glossary. We utilized in our classroom some lab activities that we learned at an ESA/GTTP Teacher training Workshop 2014 program at the Lorentz Center Leiden, Netherlands. "Cooking a comet - Ingredients for life" "Demonstration of the second Kepler's law using marbles" New media equipment, as student's own smartphones, can increase the teaching impact speaking the same language used by the students every day. They can measure magnetic fields, their GPS coordinates (longitude and latitude), and so on. In this way we can measure distances as parallax using mobile devices and simulating distance measurements in the classroom, on the school campus. The smartphone is the device with which the students answer questions, take decisions, and solve quests. Students infact can observe the Universe from their classroom and scientifically they can watch the Sun with "Google sky map" or "Star walk" are excellent tools to learn your way around the night sky .As teachers we used these apps in the classroom when Sun goes through the constellations so our students don't believe in horoscopes. This paper is focused on hands on activities and the effects of the

  4. Hands-on approach to teaching Earth system sciences using a information-computational web-GIS portal "Climate"

    Science.gov (United States)

    Gordova, Yulia; Gorbatenko, Valentina; Martynova, Yulia; Shulgina, Tamara

    2014-05-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education because old-school training programs are not keeping pace with the rapidly changing situation in the professional field of environmental sciences. A joint group of specialists from Tomsk State University and Siberian center for Environmental research and Training/IMCES SB RAS developed several new courses for students of "Climatology" and "Meteorology" specialties, which comprises theoretical knowledge from up-to-date environmental sciences with practical tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational platform "Climate" (http://climate.scert.ru/) using web GIS tools. These trainings contain practical tasks on climate modeling and climate changes assessment and analysis and should be performed using typical tools which are usually used by scientists performing such kind of research. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The hands-on approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. The courses are implemented at Tomsk State University and help forming modern curriculum in Earth system science area. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants numbers 13-05-12034 and 14-05-00502.

  5. 1st Hands-on Science Science Fair

    OpenAIRE

    Costa, Manuel F. M.; Esteves. Z.

    2017-01-01

    In school learning of science through investigative hands-on experiments is in the core of the Hands-on Science Network vision. However informal and non-formal contexts may also provide valuable paths for implementing this strategy aiming a better e!ective science education. In May 2011, a "rst country wide “Hands-on Science’ Science Fair” was organized in Portugal with the participation of 131 students that presented 38 projects in all "elds of Science. In this communication we will pr...

  6. Teaching chemistry and other sciences to blind and low-vision students through hands-on learning experiences in high school science laboratories

    Science.gov (United States)

    Supalo, Cary Alan

    2010-11-01

    Students with blindness and low vision (BLV) have traditionally been underrepresented in the sciences as a result of technological and attitudinal barriers to equal access in science laboratory classrooms. The Independent Laboratory Access for the Blind (ILAB) project developed and evaluated a suite of talking and audible hardware/software tools to empower students with BLV to have multisensory, hands-on laboratory learning experiences. This dissertation focuses on the first year of ILAB tool testing in mainstream science laboratory classrooms, and comprises a detailed multi-case study of four students with BLV who were enrolled in high school science classes during 2007--08 alongside sighted students. Participants attended different schools; curricula included chemistry, AP chemistry, and AP physics. The ILAB tools were designed to provide multisensory means for students with BLV to make observations and collect data during standard laboratory lessons on an equivalent basis with their sighted peers. Various qualitative and quantitative data collection instruments were used to determine whether the hands-on experiences facilitated by the ILAB tools had led to increased involvement in laboratory-goal-directed actions, greater peer acceptance in the students' lab groups, improved attitudes toward science, and increased interest in science. Premier among the ILAB tools was the JAWS/Logger Pro software interface, which made audible all information gathered through standard Vernier laboratory probes and visually displayed through Logger Pro. ILAB tools also included a talking balance, a submersible audible light sensor, a scientific talking stopwatch, and a variety of other high-tech and low-tech devices and techniques. While results were mixed, all four participating BLV students seemed to have experienced at least some benefit, with the effect being stronger for some than for others. Not all of the data collection instruments were found to reveal improvements for all

  7. Teaching radio astrophysics the hand-on way

    Science.gov (United States)

    Joshi, Bhal Chandra

    Astronomy and space sciences have always been instrumental in attracting young students to physical sciences. While the lectures/demonstrations and exhibitions pertaining to space sci-ences capture the imagination of young students, these alone are not sufficient to induce them to join scientific research. In countries like India, where a large number of students take to physical sciences for under-graduate education, complex sociological factors are key issues in translating this large body of students to potential researchers. While lectures and exhibition lead to an increase in scientific awareness for these students, these do not give a feel for scien-tific research and bridge the gap between high school/college science education and high end research. In this context, a hands-on approach to astronomy education, in science research environments or closely connected to scientific institutions, offers a promising alternative. This approach has been used in optical astronomy, where inexpensive small telescopes are available, often coupling a vast network of amateur astronomy clubs to leading astronomy institutes. The non-visual and relatively more technical nature of radio astronomy has limited a similar approach in past for connecting students to space sciences using radio waveband. The tech-nological explosion in communication industry and radio connectivity in the last decade along with an expansion in engineering education makes this possible now using a hands-on approach in teaching radio astrophysics. In this presentation, the sociological factors affecting the student choice are discussed followed by a review of the efforts to bridge the above mentioned gap by various groups in the world in the last decade with a view to enumerate the best practices in a hands-on approach. A program using this approach at National Center for Radio Astrophysics is described, where the students are exposed to simple hands-on radio astronomy experiments such as spectral line

  8. Teaching Hands-On Linux Host Computer Security

    Science.gov (United States)

    Shumba, Rose

    2006-01-01

    In the summer of 2003, a project to augment and improve the teaching of information assurance courses was started at IUP. Thus far, ten hands-on exercises have been developed. The exercises described in this article, and presented in the appendix, are based on actions required to secure a Linux host. Publicly available resources were used to…

  9. Comparing the Pre- and Posttest Scores in Relations to the Emporium and the Hands-on Instructional Approaches of Teaching Science in Prekindergarten

    Science.gov (United States)

    Headen, Patricia Ann

    This quantitative, quasi-experimental research investigated if two instructional approaches, the Emporium Computer-Based (Group 2) versus the hands-on approach (Group 1), resulted any difference in student achievement in science for four-year-old prekindergarten students at a private childcare facility in North Carolina. Three research questions hypothesized these relationships: (a) Group 2 versus Group 1 assessed student achievement as theoretically based on Piaget and Vygotsky's perspectives of child development, (b) the instructional approaches related to gender, and (c) the instructional approaches interrelated to ethnicity. Using a two-factor ANOVA and ANCOVA techniques, involved a convenience sample of 126 four-year-old prekindergarten students of which a convenience sample of 126 participated. The Assessment of Measurements for Pre-K (AMP-K), pretest and posttest scores of each group of 63 students measured student achievement. The t tests determined if a significant difference in student achievement existed (dependent variable) with the Emporium Computer-Based versus hands-on instructional approaches (independent variables). The posttest scores of Group 2 (p = 0.00), indicated a significant difference in student achievement. However, gender and ethnicity variables had no effect on student achievement, male (M = 36.14, SD = 19.61) and female (M = 42.91, SD = 18.99) with (p = 0.49), and ethnicity resulted, F (1,125) = 1.65, (p = 0.20). These results suggested that further research on the Emporium Computer-Based instructional approach could improve students' intellectual abilities through more innovative practices.

  10. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics

    Science.gov (United States)

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.

    2015-01-01

    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  11. PBL, Hands-On/ Digital resources in Geology, (Teaching/ Learning)

    Science.gov (United States)

    Soares, Rosa; Santos, Cátia; Carvalho, Sara

    2015-04-01

    The present study reports the elaboration, application and evaluation of a problem-based learning (PBL) program that aims to evaluate the effectiveness in students learning the Rock Cycle theme. Prior research on both PBL and Rock Cycle was conducted within the context of science education so as to elaborate and construct the intervention program. Findings from these studies indicated both the PBL methodology and Rock Cycle as helpful for teachers and students. PBL methodology has been adopted in this study since it is logically incorporated in a constructivism philosophy application and it was expected that this approach would assist students towards achieving a specific set of competencies. PBL is a student-centered method based on the principle of using problems as the starting point for the acquisition of new knowledge. Problems are based on complex real-world situations. All information needed to solve the problem is initially not given. Students will identify, find, and use appropriate resources to complete the exercise. They work permanently in small groups, developing self-directed activities and increasing participation in discussions. Teacher based guidance allows students to be fully engaged in knowledge building. That way, the learning process is active, integrated, cumulative, and connected. Theme "Rock Cycle" was introduced using a problematic situation, which outlined the geological processes highlighted in "Foz do Douro" the next coastline of the school where the study was developed. The questions proposed by the students were solved, using strategies that involved the use of hands-on activities and virtual labs in Geology. The systematization of the selected theme was performed in a field excursion, implemented according to the organizational model of Nir Orion, to The "Foz do Douro" metamorphic complex. In the evaluation of the learning process, data were obtained on students' development of knowledge and competencies through the application of

  12. A Low-Tech, Hands-On Approach To Teaching Sorting Algorithms to Working Students.

    Science.gov (United States)

    Dios, R.; Geller, J.

    1998-01-01

    Focuses on identifying the educational effects of "activity oriented" instructional techniques. Examines which instructional methods produce enhanced learning and comprehension. Discusses the problem of learning "sorting algorithms," a major topic in every Computer Science curriculum. Presents a low-tech, hands-on teaching method for sorting…

  13. From field schools and the lecture hall to online: Hands-on teaching based on the real science experience worldwide for MOOCs ?

    Science.gov (United States)

    Huettmann, F.

    2015-12-01

    University-teaching is among the most difficult teaching tasks. That's because it involves to present front-line research schemes to students with complex backgrounds as a precious human resource of the future using, latest teaching styles, and many institutional fallacies to handle well. Here I present 15 years of experience from teaching in field schools, in the class room, and with pedagogical methods such as traditional top-down teaching, inquiry-based learning, eLearning, and flipped classrooms. I contrast those with teaching Massive Open Access Online Classes (MOOC) style. Here I review pros and cons of all these teaching methods and provide and outlook taking class evaluations, cost models and satisfaction of students, teachers, the university and the wider good into account.

  14. Hands-on science: science education with and for society

    OpenAIRE

    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.

    2014-01-01

    The decisive importance of Science on the development of modern societies gives Science Education a role of special impact. Society sets the requirements rules and procedures of Education defining what concepts and competencies citizens must learn and how this learning should take place. Educational policies set by governments, elected and or imposed, not always reflects the will and ruling of Society. The School as pivotal element of our modern educational system must look ...

  15. Teaching DNA Fingerprinting using a Hands-on Simulation.

    Science.gov (United States)

    Schug, Thatcher

    1998-01-01

    Presents an inexpensive hands-on lesson in DNA fingerprinting that can be completed in a single class period. Involves students in solving a murder in which a drop of blood is fingerprinted and matched with the blood of the murderer. (DDR)

  16. Hands-on optics: an informal science education initiative

    Science.gov (United States)

    Johnson, Anthony M.; Pompea, Stephen M.; Arthurs, Eugene G.; Walker, Constance E.; Sparks, Robert T.

    2007-09-01

    The project is collaboration between two scientific societies, the Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering and the National Optical Astronomy Observatory (NOAO). The program is designed to bring science education enrichment to thousands of underrepresented middle school students in more than ten states, including female and minority students, who typically have not been the beneficiaries of science and engineering resources and investments. HOO provides each teacher with up to six activity modules, each containing enough materials for up to 30 students to participate in 6-8 hours of hands-on optics-related activities. Sample activities, developed by education specialists at NOAO, include building kaleidoscopes and telescopes, communicating with a beam of light, and a hit-the-target laser beam challenge. Teachers engage in two days of training and, where possible, are partnered with a local optics professional (drawn from the local rosters of SPIE and OSA members) who volunteers to spend time with the teacher and students as they explore the module activities. Through these activities, students gain experience and understanding of optics principles, as well as learning the basics of inquiry, critical thinking, and problem solving skills involving optics, and how optics interfaces with other disciplines. While the modules were designed for use in informal after- school or weekend sessions, the number of venues has expanded to large and small science centers, Boys and Girls Clubs, Girl Scouts, summer camps, family workshops, and use in the classroom.

  17. A Hands-On Approach To Teaching Microcontroller

    Directory of Open Access Journals (Sweden)

    Che Fai Yeong

    2013-02-01

    Full Text Available Practice and application-oriented approach in education is important, and some research on active learning and cooperative problem-solving have shown that a student will learn faster and develop communication skill, leadership and team work through these methods. This paper presents a study of student preference and performance while learning the microcontroller subject with a 2-day curriculum that emphasized on hands-on approach. The curriculum uses the PIC16F877A microcontroller and participants learned to develop basic circuits and several other applications. Programming was completed on the MPLAB platform. Results show that participants had better understanding in this subject after attending the hands-on course.

  18. Show and Sell: Teaching Sales through Hands-On Selling

    Science.gov (United States)

    Rippé, Cindy B.

    2015-01-01

    There is a shortage of qualified salespeople, which creates a challenge for educators to prepare more students for a sales career. One of the most common teaching techniques used in preparing students is role playing, which mirrors real-world selling. However, role plays are not necessarily authentic because the players and conditions are not a…

  19. Hands-On and Kinesthetic Activities for Teaching Phonological Awareness

    Science.gov (United States)

    Rule, Audrey C.; Dockstader, C. Jolene; Stewart, Roger A.

    2006-01-01

    Object box and environmental print card activities and kinesthetic/oral activities used in two before school programs for Title 1 students are presented for teaching phonological awareness concepts to students in primary grades. A small program evaluation study in which the two experimental groups made similar improvements and larger gains than a…

  20. Teaching Computer Security with a Hands-On Component

    OpenAIRE

    Murthy , Narayan

    2011-01-01

    Part 2: WISE 7; International audience; To address national needs for computer security education, many universities have incorporated computer and security courses into their undergraduate and graduate curricula. Our department has introduced computer security courses at both the undergraduate and the graduate level. This paper describes our approach, our experiences, and lessons learned in teaching a Computer Security Overview course.There are two key elements in the course: Studying comput...

  1. A Study on Using Hands-On Science Inquiries to Promote the Geology Learning of Preservice Teachers

    Science.gov (United States)

    Lai, Ching-San

    2015-01-01

    This study aims to investigate the geology learning performance of preservice teachers. A total of 31 sophomores (including 11 preservice teachers) from an educational university in Taiwan participated in this study. The course arrangements include class teaching and hands-on science inquiry activities. The study searches both quantitative and…

  2. Faculty Workshops for Teaching Information Assurance through Hands-On Exercises and Case Studies

    Science.gov (United States)

    Yuan, Xiaohong; Williams, Kenneth; Yu, Huiming; Rorrer, Audrey; Chu, Bei-Tseng; Yang, Li; Winters, Kathy; Kizza, Joseph

    2017-01-01

    Though many Information Assurance (IA) educators agree that hands-on exercises and case studies improve student learning, hands-on exercises and case studies are not widely adopted due to the time needed to develop them and integrate them into curricula. Under the support of the National Science Foundation (NSF) Scholarship for Service program, we…

  3. Students' Hands-on Experimental Work vs Lecture Demonstration in Teaching Elementary School Chemistry.

    Science.gov (United States)

    Logar, Ana; Ferk-Savec, Vesna

    2011-12-01

    Science educators have suggested many benefits that accrue from engaging students in experimental activities, therefore, experimental work has a long and distinctive role in chemistry curriculum since. The presented empirical study focuses on the valuation of effectiveness of different forms of experimental work - students' hands-on experimental work vs teacher's lecture demonstration - from the viewpoint of the quality of content knowledge acquisition and knowledge retention in teaching primary school chemistry. 106 primary school students (age 14-15 years) participated in the study. The data was collected via pre- and post- test protocol and two delayed post tests. Additionally 16 students selected from the sample were interviewed. The results indicate that students' content knowledge gained through teacher's demonstration of experiment is better and better knowledge retention takes place in comparison to students' knowledge gained through students' hands-on experimental work. However, most of the inteviewed students stated that they prefered conducting of experiments by themselves in comparison to observation of teacher's demonstration.

  4. Promoting Female Students' Learning Motivation towards Science by Exercising Hands-On Activities

    Science.gov (United States)

    Wen-jin, Kuo; Chia-ju, Liu; Shi-an, Leou

    2012-01-01

    The purpose of this study is to design different hands-on science activities and investigate which activities could better promote female students' learning motivation towards science. This study conducted three types of science activities which contains nine hands-on activities, an experience scale and a learning motivation scale for data…

  5. Using videos, apps and hands-on experience in undergraduate hydrology teaching

    Science.gov (United States)

    Van Loon, Anne

    2016-04-01

    Hydrological sciences teaching always needs to make a link between the classroom and the outside world. This can be done with fieldwork and excursions, but the increasing availability of open educational resources gives more-and-more other options to make theory more understandable and applicable. In the undergraduate teaching of hydrology at the University of Birmingham we make use of a number of tools to enhance the hydrology 'experience' of students. Firstly, we add hydrological science videos available in the public domain to our explanations of theory. These are both visualisations of concepts and recorded demonstrations in the field or the lab. One example is the concept of catchments and travel times which has been excellently visualised by MetEd. Secondly, we use a number of mobile phone apps, which provide virtual reality information and real-time monitoring information. We use the MySoil App (by Natural Environment Research Council (NERC), British Geological Survey (BGS) and Centre for Ecology & Hydrology (CEH)) and iGeology / iGeology3D (by BGS) to let students explore soil properties and hydrogeology of an area of interest. And we use the River Levels App (by OGL based on Environment Agency real time data) for exploring real time river levels and investigating spatial variability. Finally, we developed small hands-on projects for students to apply the theory outside the classroom. We for instance let them do simple infiltration experiments and ask them to them design a measurement plan. Evaluations have shown that students enjoy these activities and that it helps their learning. In this presentation we hope to share our experience so that the options for using open (educational) resources for hydrology teaching become more used in linking the classroom to the outside world.

  6. The effects of hands-on-science instruction on the science achievement of middle school students

    Science.gov (United States)

    Wiggins, Felita

    Student achievement in the Twenty First Century demands a new rigor in student science knowledge, since advances in science and technology require students to think and act like scientists. As a result, students must acquire proficient levels of knowledge and skills to support a knowledge base that is expanding exponentially with new scientific advances. This study examined the effects of hands-on-science instruction on the science achievement of middle school students. More specifically, this study was concerned with the influence of hands-on science instruction versus traditional science instruction on the science test scores of middle school students. The subjects in this study were one hundred and twenty sixth-grade students in six classes. Instruction involved lecture/discussion and hands-on activities carried out for a three week period. Specifically, the study ascertained the influence of the variables gender, ethnicity, and socioeconomic status on the science test scores of middle school students. Additionally, this study assessed the effect of the variables gender, ethnicity, and socioeconomic status on the attitudes of sixth grade students toward science. The two instruments used to collect data for this study were the Prentice Hall unit ecosystem test and the Scientific Work Experience Programs for Teachers Study (SWEPT) student's attitude survey. Moreover, the data for the study was treated using the One-Way Analysis of Covariance and the One-Way Analysis of Variance. The following findings were made based on the results: (1) A statistically significant difference existed in the science performance of middle school students exposed to hands-on science instruction. These students had significantly higher scores than the science performance of middle school students exposed to traditional instruction. (2) A statistically significant difference did not exist between the science scores of male and female middle school students. (3) A statistically

  7. Back to the future with hands-on science: students' perceptions of learning anatomy and physiology.

    Science.gov (United States)

    Johnston, Amy Nicole Burne; McAllister, Margaret

    2008-09-01

    This article examines student perceptions of learning related to anatomy and physiology in a bachelor of nursing program. One strategy to teach the sciences is simulated learning, a technology that offers exciting potential. Virtual environments for laboratory learning may offer numerous benefits: teachers can convey information to a larger group of students, reducing the need for small laboratory classes; less equipment is required, thus containing ongoing costs; and students can learn in their own time and place. However, simulated learning may also diminish access to the teacher-student relationship and the opportunity for guided practice and guided linking of theory with practice. Without this hands-on experience, there is a risk that students will not engage as effectively, and thus conceptual learning and the development of critical thinking skills are diminished. However, student perceptions of these learning experiences are largely unknown. Thus, this study examined students' perceptions of anatomy and physiology laboratory experiences and the importance they placed on hands-on experience in laboratory settings.

  8. Integrating Hands-On Undergraduate Research in an Applied Spatial Science Senior Level Capstone Course

    Science.gov (United States)

    Kulhavy, David L.; Unger, Daniel R.; Hung, I-Kuai; Douglass, David

    2015-01-01

    A senior within a spatial science Ecological Planning capstone course designed an undergraduate research project to increase his spatial science expertise and to assess the hands-on instruction methodology employed within the Bachelor of Science in Spatial Science program at Stephen F Austin State University. The height of 30 building features…

  9. LIB LAB the Library Laboratory: hands-on multimedia science communication

    Science.gov (United States)

    Fillo, Aaron; Niemeyer, Kyle

    2017-11-01

    Teaching scientific research topics to K-12 audiences in an engaging and meaningful way does not need to be hard; with the right insight and techniques it can be fun to encourage self-guided STEAM (science, technology, engineering, arts, and mathematics) exploration. LIB LAB, short for Library Laboratory, is an educational video series produced by Aaron J. Fillo at Oregon State University in partnership with the Corvallis-Benton County Public Library targeted at K-12 students. Each episode explores a variety of scientific fundamentals with playful experiments and demonstrations. The video lessons are developed using evidence-based practices such as dispelling misconceptions, and language immersion. Each video includes directions for a related experiment that young viewers can conduct at home. In addition, science kits for these at-home experiments are distributed for free to students through the public library network in Benton County, Oregon. This talk will focus on the development of multimedia science education tools and several techniques that scientists can use to engage with a broad audience more effectively. Using examples from the LIB LAB YouTube Channel and collection of hands-on science demonstrations and take-home kits, this talk will present STEAM education in action. Corvallis-Benton County Public Library.

  10. The Citizen Science Program "H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change" teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. This is a continuation of the Program presented last year at the Poster Session.

    Science.gov (United States)

    Weiss, N. K.; Wood, J. H.

    2017-12-01

    TThe Citizen Science Program H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to Ocean Quest where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by Ocean Quest.

  11. A Year of Hands-on Science: Exciting Theme Units with More Than 100 Activities, Projects, and Experiments To Make Science Come Alive.

    Science.gov (United States)

    Kepler, Lynne; Novelli, Joan, Ed.

    This book contains 18 themed teaching units with 2 themes per chapter, organized seasonally around the traditional school year. Each theme includes natural connections and hands-on science activities that correspond to what children are already observing in their world. Each chapter begins with highlights of the month and a reproducible "Science…

  12. Barrier Island Activity to Illustrate Hands-On Science

    Science.gov (United States)

    Griffin, Suzanne H.

    The department of Physics of the University of Glasgow was concerned about losing students after the end of the level 1 Physics course. The current research project started as an attempt to find out the reasons for this, but moved to investigate attitudes towards Physics at several stages during secondary school and attitudes towards science with primary pupils. Analyses of factors, which influence students' intentions towards studying Physics, were performed against the background of the Theory of Planned Behaviour, which interprets people's behaviour by considering three factors: attitude towards behaviour (advantages or disadvantages of being involved in the behaviour, e.g. studying Physics for Honours); subjective norm (approval or disapproval of important people towards engaging in the behaviour, e.g. parents, teacher, general norms of the society); perceived behavioural control (skills, knowledge, cooperation of others, abilities, efforts required to perform the behaviour). Analysis of these factors revealed some reasons for students' withdrawal from Physics after level 1 and pointed to factors which may facilitate students' persistence in the subject. A general analysis of level 1 and level 2 students' attitudes towards different aspects of the university Physics course revealed that the level 1 students' attitudes towards their university course of lectures and course of laboratories tended to be negatively polarised. Recommendations were suggested on the basis of the gathered evidence about how to make students' experience in university Physics more satisfactory for them. The data obtained from the separate analyses of females' and males' attitudes towards university Physics course have showed that attitudes of females and males were similar. The only significant difference between level 1 females and males was found to be the perceived behavioural control factor (students' attitudes towards course difficulty, attitudes towards work load in the course

  13. Teaching genetics using hands-on models, problem solving, and inquiry-based methods

    Science.gov (United States)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  14. TH-E-201-02: Hands-On Physics Teaching of Residents in Diagnostic Radiology

    International Nuclear Information System (INIS)

    Zhang, J.

    2016-01-01

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program. The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant

  15. TH-E-201-02: Hands-On Physics Teaching of Residents in Diagnostic Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [University of Kentucky (United States)

    2016-06-15

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program. The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.

  16. Investigating Omani Science Teachers' Attitudes towards Teaching Science: The Role of Gender and Teaching Experiences

    Science.gov (United States)

    Ambusaidi, Abdullah; Al-Farei, Khalid

    2017-01-01

    A 30-item questionnaire was designed to determine Omani science teachers' attitudes toward teaching science and whether or not these attitudes differ according to gender and teaching experiences of teachers. The questionnaire items were divided into 3 domains: classroom preparation, managing hands-on science, and development appropriateness. The…

  17. Three Simple Hands-On Soil Exercises Extension Professionals Can Incorporate into Natural Sciences Curriculum

    Science.gov (United States)

    Kleinschmidt, Andy

    2011-01-01

    The importance of healthy soil and of conveying the importance of soils starts by conveying a few basic concepts of soil science cannot be overstated. This article provides three hands-on exercises Extension professionals can add to natural resources or Master Gardener education curricula. These natural sciences exercises are easy to prepare for…

  18. Comparison of online, hands-on, and a combined approach for teaching cautery disbudding technique to dairy producers.

    Science.gov (United States)

    Winder, Charlotte B; LeBlanc, Stephen J; Haley, Derek B; Lissemore, Kerry D; Godkin, M Ann; Duffield, Todd F

    2018-01-01

    The use of pain control for disbudding and dehorning is important from both an animal and industry perspective. Best practices include the use of local anesthetic, commonly given as a cornual nerve block (CNB), and a nonsteroidal anti-inflammatory drug. The proportion is decreasing, but many dairy producers do not use local anesthesia, perhaps in part due to lack of knowledge of the CNB technique. Although this skill is typically learned in person from a veterinarian, alternative methods may be useful. The objective of this trial was to determine if there were differences in the efficacy of online training (n = 23), hands-on training (n = 20), and a combined approach (n = 23) for teaching producers to successfully administer a CNB and disbud a calf. The primary outcome was block efficacy, defined as a lack of established pain behaviors during iron application. Secondary outcomes were background knowledge (assessed by a written quiz), CNB and disbudding technique (evaluated by rubric scoring), time taken, and self-confidence before and after evaluation. Associations between training group and outcome were assessed with logistic regression, ordered logistic regression, and Cox-proportional hazard models, with a random effect for workshop. Block efficacy was not different between training groups, with 91% successful in both combined and online groups, and 75% in the hands-on trained group. Online learners had poorer technical scores than hands-on trainees. The combined group was not different from hands-on. Time to block completion tended to be longer for the online group (62 ± 11 s), whereas time to disbudding completion was not different between hands-on (41 ± 5 s) or combined trainees (41 ± 5 s). The combined group had the highest pre-evaluation confidence score, and remained higher after evaluation than online but was not different than hands-on. Although we saw some statistical differences between groups, absolute differences were small and block efficacy was

  19. Hands-on earth science with students at schools for the Deaf

    Science.gov (United States)

    Cooke, M. L.

    2011-12-01

    Earth science teachers at schools for the Deaf face a variety of challenges. This community of students has a wide range of language skills, teaching resources can be limited and often teachers are not trained in geosciences. An NSF CAREER grant provided an opportunity to make a difference to this community and foster earth science learning at 8 schools for the Deaf around the country. We designed hands-on deformational sandboxes for the teachers and provided accompanying curriculum materials. The sandbox is a physical model of crustal deformation that students can manipulate to test hypotheses. The visual nature of the sandbox was well-suited for the spatial grammar of American Sign Language used by these students. Furthermore, language skills were enhanced by scaffolded observation, sketch, annotation, discussion, interpretation assignments. Geoscience training of teachers was strengthened with workshops and three 5-day field trips for teachers and selected students to Utah, western New England and southern California. The field trips provided opportunity for students to work as geoscientists observing, interpreting, discussing and presenting their investigations. Between field trips, we set up videoconferences from the UMass experimental lab with the high school earth science classrooms. These sessions facilitated dialog between students and researchers at UMass. While the project set out to provide geoscience learning opportunities for students at Schools for the Deaf, the long lasting impact was the improved geoscience training of teachers, most of whom had limited post-secondary earth science training. The success of the project also rested on the dedication of the teachers to their students and their willingness to try new approaches and experiences. By tapping into a community of 6 teachers, who already shared curriculum and had fantastic leadership, the project was able to have significant impact and exceed the initial goals. The project has led to a

  20. Hands on Workshop on Teaching Forensic Engineering Teaching Students Critical Thinking by Investigative mindset

    NARCIS (Netherlands)

    Saunders, G.N.; Schuurman, M.J.; Rans, C.D.

    2016-01-01

    When teaching Engineering to students it is important that we not only teach about
    how to engineer new things but also look at the failures and performance problems
    from an engineering point-of-view. The field that studies this part of engineering is
    known as Forensic Engineering. The

  1. Calculator-Controlled Robots: Hands-On Mathematics and Science Discovery

    Science.gov (United States)

    Tuchscherer, Tyson

    2010-01-01

    The Calculator Controlled Robots activities are designed to engage students in hands-on inquiry-based missions. These activities address National science and technology standards, as well as specifically focusing on mathematics content and process standards. There are ten missions and three exploration extensions that provide activities for up to…

  2. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  3. Chemistry Science Investigation: Dognapping Workshop, an Outreach Program Designed to Introduce Students to Science through a Hands-On Mystery

    Science.gov (United States)

    Boyle, Timothy J.; Sears, Jeremiah M.; Hernandez-Sanchez, Bernadette A.; Casillas, Maddison R.; Nguyen, Thao H.

    2017-01-01

    The Chemistry Science Investigation: Dognapping Workshop was designed to (i) target and inspire fourth grade students to view themselves as "Junior Scientists" before their career decisions are solidified; (ii) enable hands-on experience in fundamental scientific concepts; (iii) increase public interaction with science, technology,…

  4. Communicate science: an example of food related hands-on laboratory approach

    Science.gov (United States)

    D'Addezio, Giuliana; Marsili, Antonella; Vallocchia, Massimiliano

    2014-05-01

    The Laboratorio Didattica e Divulgazione Scientifica of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Educational and Outreach Laboratory) organized activity with kids to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. The combination of games and learning in educational activity can be a valuable tool for study of complex phenomena. Hands-on activity may help in engage kids in a learning process through direct participation that significantly improves the learning performance of children. Making learning fun motivate audience to pay attention on and stay focused on the subject. We present the experience of the hand-on laboratory "Laboratorio goloso per bambini curiosi di scienza (a delicious hands-on laboratory for kids curious about science)", performed in Frascati during the 2013 European Researchers' Night, promoted by the European Commission, as part of the program organized by the Laboratorio Didattica e Divulgazione Scientifica in the framework of Associazione Frascati Scienza (http://www.frascatiscienza.it/). The hand-on activity were designed for primary schools to create enjoyable and unusual tools for learning Earth Science. During this activity kids are involved with something related to everyday life, such as food, through manipulation, construction and implementation of simple experiments related to Earth dynamics. Children become familiar with scientific concepts such as composition of the Earth, plates tectonic, earthquakes and seismic waves propagation and experience the effect of earthquakes on buildings, exploring their important implications for seismic hazard. During the activity, composed of several steps, participants were able to learn about Earth inner structure, fragile lithosphere, waves propagations, impact of waves on building ecc.., dealing with eggs, cookies, honey, sugar, polenta, flour, chocolate, candies, liquorice sticks, bread, pudding and sweets. The

  5. HSCI2014: booklet of the 11th International Conference on Hands-on Science

    OpenAIRE

    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.; International Conference on Hands-on Science, 11, Aveiro, 2014

    2014-01-01

    The core topic of the 11th Hands-on Science Conference is "Science Education with and for Society" As we all know it is the Society that sets the requirements rules and procedures of Education. It is Society that defines what citizens must learn in what concern either concepts and or competencies, and how this learning can, must in fact…, take place. Society is the ensemble of all of us citizens and of all the structures tangible and intangible we create and created along the y...

  6. Hands-on science methods class for pre-service elementary teachers

    Energy Technology Data Exchange (ETDEWEB)

    Manner, B.M. [Univ. of Pittsburgh, PA (United States)

    1994-12-31

    If elementary teachers are to be comfortable teaching science, they must have positive pre-service experiences. A science methods class that is activity-based and student-centered, rather than lecture-based and teacher-centered, peaks their interest in science and alleviates their fears. Activities conducted by the students illustrate science concepts or integrate science with children`s literature books such as The Grouchy Ladybug. These activities are conducted by each student with the rest of the class and the professor acting as an elementary class. Each activity is then evaluated as to the science concept, what was done well, and how it could be improved. The students also relate how the activity would be integrated with other subjects such as social studies, art, math, and language arts. Student feedback indicates this method is enjoyable, educational, and valuable in preparing them to teach science. The {open_quotes}oohs{close_quotes} and {open_quotes}I didn`t know that!{close_quotes} during activities are positives, but students have also learned some science, lost most of their science anxiety, and will teach science with the confidence and enthusiasm that was lacking at the beginning of the course.

  7. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    Science.gov (United States)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  8. Hands-on-Science: Using Education Research to Construct Learner-Centered Classes

    Science.gov (United States)

    Ludwig, R. R.; Chimonidou, A.; Kopp, S.

    2014-07-01

    Research into the process of learning, and learning astronomy, can be informative for the development of a course. Students are better able to incorporate and make sense of new ideas when they are aware of their own prior knowledge (Resnick et al. 1989; Confrey 1990), have the opportunity to develop explanations from their own experience in their own words (McDermott 1991; Prather et al. 2004), and benefit from peer instruction (Mazur 1997; Green 2003). Students in astronomy courses often have difficulty understanding many different concepts as a result of difficulties with spatial reasoning and a sense of scale. The Hands-on-Science program at UT Austin incorporates these research-based results into four guided-inquiry, integrated science courses (50 students each). They are aimed at pre-service K-5 teachers but are open to other majors as well. We find that Hands-on-Science students not only attain more favorable changes in attitude towards science, but they also outperform students in traditional lecture courses in content gains. Workshop Outcomes: Participants experienced a research-based, guided-inquiry lesson about the motion of objects in the sky and discussed the research methodology for assessing students in such a course.

  9. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  10. Communicating Climate Science to Kids and Adults Through Citizen Science, Hands-On Demonstrations, and a Personal Approach

    Science.gov (United States)

    Cherry, L.; Braasch, G.

    2008-12-01

    There is a demonstrated need to increase the amount of formal and non-formal science education and to raise the level of climate literacy for children and adults. Scientists and technical leaders are more and more being called on to speak in non-academic settings ranging from grade schools to assemblies and seminars for the general public. This abstract describes some effective ways to teach and talk about climate change science in a way that engenders hope and empowerment while explaining scientific facts and research methods to non-scientists. Citizen participation in Science People's interest and learning increases when offered chances to do what scientists do. Relating science to their daily lives and showing the adventure of science can greatly increase communication. Citizen participation in science works because data collection stimulates experiential and cognitive ways of learning. Learn what programs for citizen science are available in your area. For instance, GLOBE and Budburst tie into the research of Smithsonian scientists who determined that the cherry blossoms and 40 other species of plants were blooming earlier due to climate warming. Hands-on Outdoor Activities Information enters the human brain through many different neural pathways and the more avenues that information comes in on, the more likely people are to retain that knowledge for their lifetimes. For instance, kids knowledge of how ice cores tell us about the earth's ancient history will be reinforced through making ice cores in the classroom. Gary Braasch's photographs from the children's book How We Know What We Know About Our Changing Climate: Scientists and Kids Explore Global Warming and from his adult book Earth Under Fire: How Global Warming is Changing the World will illustrate the presentation. . Making the Message Personal to the Audience. Reaching people through things they care about, their family lives, work or school and telling personal stories helps reach people. The videos

  11. Hands-On Nuclear Physics

    Science.gov (United States)

    Whittaker, Jeff

    2013-01-01

    Nuclear science is an important topic in terms of its application to power generation, medical diagnostics and treatment, and national defense. Unfortunately, the subatomic domain is far removed from daily experience, and few learning aids are available to teachers. What follows describes a low-tech, hands-on method to teach important concepts in…

  12. Hands-On Math and Art Exhibition Promoting Science Attitudes and Educational Plans

    Directory of Open Access Journals (Sweden)

    Helena Thuneberg

    2017-01-01

    Full Text Available The current science, technology, engineering, art, math education (STEAM approach emphasizes integration of abstract science and mathematical ideas for concrete solutions by art. The main aim was to find out how experience of learning mathematics differed between the contexts of school and an informal Math and Art Exhibition. The study participants (N=256 were 12-13 years old from Finland. Several valid questionnaires and tests were applied (e.g., SRQ-A, RAVEN in pre- and postdesign showing a good reliability. The results based on General Linear Modeling and Structural Equation Path Modeling underline the motivational effects. The experience of the effectiveness of hands-on learning at school and at the exhibition was not consistent across the subgroups. The lowest achieving group appreciated the exhibition alternative for math learning compared to learning math at school. The boys considered the exhibition to be more useful than the girls as it fostered their science and technology attitudes. However, for the girls, the attractiveness of the exhibition, the experienced situation motivation, was much more strongly connected to the attitudes on science and technology and the worthiness of mathematics. Interestingly, the pupils experienced that even this short informal learning intervention affected their science and technology attitudes and educational plans.

  13. Teaching Science through Inquiry

    Science.gov (United States)

    Wilcox, Jesse; Kruse, Jerrid W.; Clough, Michael P.

    2015-01-01

    Science education efforts have long emphasized inquiry, and inquiry and scientific practices are prominent in contemporary science education reform documents (NRC 1996; NGSS Lead States 2013). However, inquiry has not become commonplace in science teaching, in part because of misunderstandings regarding what it means and entails (Demir and Abell…

  14. Nuclear science teaching

    International Nuclear Information System (INIS)

    1968-01-01

    A Panel of Experts on Nuclear Science Teaching met in Bangkok from 15 to 23 July 1968 to review the present status of an need for teaching of topics related to nuclear science at the secondary and early university level including teacher training, and to suggest appropriate ways of introducing these topics into the science curricula. This report contains the contributions of the members of the Panel, together with the general conclusions and recommendations for the development of school and early university curricula and training programs, for the improvement of teaching materials and for the safest possible handing of radioactive materials in school and university laboratories. It is hoped that the report will be of use to all nuclear scientists and science educators concerned with modernizing their science courses by introducing suitable topics and experiments in nuclear science

  15. 'Science in action': The politics of hands-on display at the New York Museum of Science and Industry.

    Science.gov (United States)

    Sastre-Juan, Jaume

    2018-06-01

    This article analyzes the changing politics of hands-on display at the New York Museum of Science and Industry by following its urban deambulation within Midtown Manhattan, which went hand in hand with sharp shifts in promoters, narrative, and exhibition techniques. The museum was inaugurated in 1927 as the Museum of the Peaceful Arts on the 7th and 8th floors of the Scientific American Building. It changed its name in 1930 to the New York Museum of Science and Industry while on the 4th floor of the Daily News Building, and it was close to being renamed the Science Center when it finally moved in 1936 to the ground floor of the Rockefeller Center. The analysis of how the political agenda of the different promoters of the New York Museum of Science and Industry was spatially and performatively inscribed in each of its sites suggests that the 1930s boom of visitor-operated exhibits had nothing to do with an Exploratorium-like rhetoric of democratic empowerment. The social paternalistic ideology of the vocational education movement, the ideas on innovation of the early sociology of invention, and the corporate behavioral approach to mass communications are more suitable contexts in which to understand the changing politics of hands-on display in interwar American museums of science and industry.

  16. MO-E-18C-02: Hands-On Monte Carlo Project Assignment as a Method to Teach Radiation Physics

    International Nuclear Information System (INIS)

    Pater, P; Vallieres, M; Seuntjens, J

    2014-01-01

    Purpose: To present a hands-on project on Monte Carlo methods (MC) recently added to the curriculum and to discuss the students' appreciation. Methods: Since 2012, a 1.5 hour lecture dedicated to MC fundamentals follows the detailed presentation of photon and electron interactions. Students also program all sampling steps (interaction length and type, scattering angle, energy deposit) of a MC photon transport code. A handout structured in a step-by-step fashion guides student in conducting consistency checks. For extra points, students can code a fully working MC simulation, that simulates a dose distribution for 50 keV photons. A kerma approximation to dose deposition is assumed. A survey was conducted to which 10 out of the 14 attending students responded. It compared MC knowledge prior to and after the project, questioned the usefulness of radiation physics teaching through MC and surveyed possible project improvements. Results: According to the survey, 76% of students had no or a basic knowledge of MC methods before the class and 65% estimate to have a good to very good understanding of MC methods after attending the class. 80% of students feel that the MC project helped them significantly to understand simulations of dose distributions. On average, students dedicated 12.5 hours to the project and appreciated the balance between hand-holding and questions/implications. Conclusion: A lecture on MC methods with a hands-on MC programming project requiring about 14 hours was added to the graduate study curriculum since 2012. MC methods produce “gold standard” dose distributions and slowly enter routine clinical work and a fundamental understanding of MC methods should be a requirement for future students. Overall, the lecture and project helped students relate crosssections to dose depositions and presented numerical sampling methods behind the simulation of these dose distributions. Research funding from governments of Canada and Quebec. PP acknowledges

  17. MO-E-18C-02: Hands-On Monte Carlo Project Assignment as a Method to Teach Radiation Physics

    Energy Technology Data Exchange (ETDEWEB)

    Pater, P; Vallieres, M; Seuntjens, J [McGill University, Montreal, Quebec (Canada)

    2014-06-15

    Purpose: To present a hands-on project on Monte Carlo methods (MC) recently added to the curriculum and to discuss the students' appreciation. Methods: Since 2012, a 1.5 hour lecture dedicated to MC fundamentals follows the detailed presentation of photon and electron interactions. Students also program all sampling steps (interaction length and type, scattering angle, energy deposit) of a MC photon transport code. A handout structured in a step-by-step fashion guides student in conducting consistency checks. For extra points, students can code a fully working MC simulation, that simulates a dose distribution for 50 keV photons. A kerma approximation to dose deposition is assumed. A survey was conducted to which 10 out of the 14 attending students responded. It compared MC knowledge prior to and after the project, questioned the usefulness of radiation physics teaching through MC and surveyed possible project improvements. Results: According to the survey, 76% of students had no or a basic knowledge of MC methods before the class and 65% estimate to have a good to very good understanding of MC methods after attending the class. 80% of students feel that the MC project helped them significantly to understand simulations of dose distributions. On average, students dedicated 12.5 hours to the project and appreciated the balance between hand-holding and questions/implications. Conclusion: A lecture on MC methods with a hands-on MC programming project requiring about 14 hours was added to the graduate study curriculum since 2012. MC methods produce “gold standard” dose distributions and slowly enter routine clinical work and a fundamental understanding of MC methods should be a requirement for future students. Overall, the lecture and project helped students relate crosssections to dose depositions and presented numerical sampling methods behind the simulation of these dose distributions. Research funding from governments of Canada and Quebec. PP acknowledges

  18. A Hands-On Approach to Teaching Protein Translation & Translocation into the ER

    Science.gov (United States)

    LaBonte, Michelle L.

    2013-01-01

    The process of protein translation and translocation into the endoplasmic reticulum (ER) can often be challenging for introductory college biology students to visualize. To help them understand how proteins become oriented in the ER membrane, I developed a hands-on activity in which students use Play-Doh to simulate the process of protein…

  19. Connecting university science experiences to middle school science teaching

    Science.gov (United States)

    Johnson, Gordon; Laughran, Laura; Tamppari, Ray; Thomas, Perry

    1991-06-01

    Science teachers naturally rely on their university science experiences as a foundation for teaching middle school science. This foundation consists of knowledge far too complex for the middle level students to comprehend. In order for middle school science teachers to utilize their university science training they must search for ways to adapt their college experiences into appropriate middle school learning experience. The criteria set forth above provide broad-based guidelines for translating university science laboratory experiences into middle school activities. These guidelines are used by preservice teachers in our project as they identify, test, and organize a resource file of hands-on inquiry activities for use in their first year classrooms. It is anticipated that this file will provide a basis for future curriculum development as the teacher becomes more comfortable and more experienced in teaching hands-on science. The presentation of these guidelines is not meant to preclude any other criteria or considerations which a teacher or science department deems important. This is merely one example of how teachers may proceed to utilize their advanced science training as a basis for teaching middle school science.

  20. Teaching Science through Story

    Science.gov (United States)

    Horton, Jessica

    2013-01-01

    Children find comfort in stories. They are familiar, accessible and entertaining. By teaching science through narratives, we can provide that same comfort and access to scientific content to children of all ages. In this article, I will discuss how, through the use of narratives in science instruction, we can provide students with a deeper…

  1. Introducing Hands-on, Experiential Learning Experiences in an Urban Environmental Science Program at a Minority Serving Institution

    Science.gov (United States)

    Duzgoren-Aydin, N. S.; Freile, D.

    2013-12-01

    STEM education at New Jersey City University increasingly focuses on experiential, student-centered learning. The Department of Geoscience/Geography plays a significant role in developing and implementing a new Urban Environmental Science Program. The program aims at graduating highly skilled, demographically diverse students (14 % African-American and 18% Hispanic) to be employed in high-growth Earth and Environmental Science career paths, both at a technical (e.g. B.S.) as well as an educational (K-12 grade) (e.g. B.A) level. The core program, including the Earth and Environmental Science curricula is guided by partners (e.g. USDA-NRCS). The program is highly interdisciplinary and 'hands-on', focusing upon the high-tech practical skills and knowledge demanded of science professionals in the 21st century. The focus of the curriculum is on improving environmental quality in northern NJ, centering upon our urban community in Jersey City and Hudson County. Our Department is moving towards a more earth system science approach to learning. Most of our courses (e.g., Earth Surface Processes, Sedimentology/Stratigraphy, Earth Materials, Essential Methods, Historical Geology) have hands-on laboratory and/or field components. Although some of our other courses do not have formal laboratory components, research modules of many such courses (Geochemistry, Urban Environmental Issues and Policy and Environmental Geology) involve strong field or laboratory studies. The department has a wide range of analytical and laboratory capacities including a portable XRF, bench-top XRD and ICP-MS. In spring 2013, Dr. Duzgoren-Aydin was awarded $277K in Higher Education Equipment Leasing Fund monies from the University in order to establish an Environmental Teaching and Research Laboratory. The addition of these funds will make it possible for the department to increase its instrumentation capacity by adding a mercury analyzer, Ion Chromatography and C-N-S analyzer, as well as updating

  2. Design, implementation and evaluation of innovative science teaching strategies for non-formal learning in a natural history museum

    Science.gov (United States)

    Çil, Emine; Maccario, Nihal; Yanmaz, Durmuş

    2016-09-01

    Background: Museums are useful educational resources in science teaching. Teaching strategies which promote hands-on activities, student-centred learning, and rich social interaction must be designed and implemented throughout the museum visit for effective science learning.

  3. Exploring the Effects of Specific, Hands-On Interventions, on Environmental Science Topics in Teacher Education Programs

    Science.gov (United States)

    Bullock, S. M.; Hayhoe, D.

    2012-12-01

    With increased concern over the environment, all Ontario students now study soils, energy conservation, water systems, and climate change & the greenhouse effect in Grades 3, 5, 7, 8 and 10. Unfortunately, many prospective teachers at the elementary and intermediate levels come to teacher education programs with little or no formal science education beyond their own experiences as students in the K-12 system. We devised a series of concept tests (some binary choice, some multiple choice) designed to assess teacher candidates' conceptual understandings of soils, energy, water systems, and climate change and the greenhouse effect - the very content they are expected to teach their future students in the school system. We administered a pre-test to our students at two institutions to establish a baseline of their understanding. Then, we specifically devoted class time to exploring each of these themes in our science curriculum methods courses in order using research-based principles of teaching devoted to promoting conceptual change through the use of hands-on, inquiry approaches in science. After a few months had passed, we again administered the same tests to teacher candidates to measure candidates' conceptual gain. Some teacher candidates also participated in follow-up focus group interviews so that they could have the opportunity to articulate their understandings of concepts in environmental science using their own words. In this poster we will report on data collected for this project over the past two academic years. We have reached two broad conclusions. First, teacher candidates know a considerable amount about the four environmental topics that were selected, despite the fact that most participants in the research did not have post-secondary training in science. For example, participants tended to know that planting different crops on the soil in different years helps to maintain fertile soils and that warmer oceans will cause an increase in the severity of

  4. ADAM, a hands-on patient simulator for teaching principles of drug disposition and compartmental pharmacokinetics.

    Science.gov (United States)

    Zuna, Ines; Holt, Andrew

    2017-11-01

    To design, construct and validate a pharmacokinetics simulator that offers students hands-on opportunities to participate in the design, administration and analysis of oral and intravenous dosing regimens. The Alberta Drug Administration Modeller (ADAM) is a mechanical patient in which peristaltic circulation of water through a network of silicone tubing and glass bottles creates a representation of the outcomes of drug absorption, distribution, metabolism and elimination. Changing peristaltic pump rates and volumes in bottles allows values for pharmacokinetic constants to be varied, thereby simulating differences in drug properties and in patient physiologies and pathologies. Following administration of methylene blue dye by oral or intravenous routes, plasma and/or urine samples are collected and drug concentrations are determined spectrophotometrically. The effectiveness of the simulator in enhancing student competence and confidence was assessed in two undergraduate laboratory classes. The simulator effectively models one- and two-compartment drug behaviour in a mathematically-robust and realistic manner. Data allow calculation of numerous pharmacokinetic constants, by traditional graphing methods or with curve-fitting software. Students' competence in solving pharmacokinetic problems involving calculations and graphing improved significantly, while an increase in confidence and understanding was reported. The ADAM is relatively inexpensive and straightforward to construct, and offers a realistic, hands-on pharmacokinetics learning opportunity for students that effectively complements didactic lectures. © 2017 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  5. The Impact of Hands-On Simulation Laboratories on Teaching of Wireless Communications

    Science.gov (United States)

    Chou, Te-Shun; Vanderbye, Aaron

    2017-01-01

    Aim/Purpose: To prepare students with both theoretical knowledge and practical skills in the field of wireless communications. Background: Teaching wireless communications and networking is not an easy task because it involves broad subjects and abstract content. Methodology: A pedagogical method that combined lectures, labs, assignments, exams,…

  6. The Role of Hands-On Science Labs in Engaging the Next Generation of Space Explorers

    Science.gov (United States)

    Williams, Teresa A. J.

    2002-01-01

    Each country participating on the International Space Station (ISS) recognizes the importance of educating the coming generation about space and its opportunities. In 2001 the St. James School in downtown Houston, Texas was approached with a proposal to renovate an unused classroom and become involved with the "GLOBE" Program and other Internet based international learning resources. This inner-city school willingly agreed to the program based on "hands-on" learning. One month after room conversion and ten computer terminals donated by area businesses connectivity established to the internet the students immediately began using the "Global Learning and Observations to Benefit the Environment (GLOBE)" program and the International Space Station (ISS) Program educational resources. The "GLOBE" program involves numerous scientific and technical agencies studying the Earth, who make it their goal to provide educational resources to an international community of K-12 scientist. This project was conceived as a successor to the "Interactive Elementary Space Museum for the New Millennium" a space museum in a school corridor without the same type of budget. The laboratory is a collaboration, which involved area businesses, volunteers from the NASA/Johnson Space Center ISS Outreach Program, and students. This paper will outline planning and operation of the school science laboratory project from the point of view of the schools interest and involvement and assess its success to date. It will consider the lessons learned by the participating school administrations in the management of the process and discuss some of the issues that can both promote and discourage school participation in such projects.

  7. Teaching Science Fiction by Women.

    Science.gov (United States)

    Donawerth, Jane

    1990-01-01

    Reviews the 200-year-old tradition of women science fiction authors. Discusses the benefits of teaching science fiction written by women. Describes 5 science fiction short stories and 5 science fiction novels suitable for high school students. (RS)

  8. The Healthy Heart Race: A Short-Duration, Hands-on Activity in Cardiovascular Physiology for Museums and Science Festivals

    Science.gov (United States)

    Pressley, Thomas A.; Limson, Melvin; Byse, Miranda; Matyas, Marsha Lakes

    2011-01-01

    The "Healthy Heart Race" activity provides a hands-on demonstration of cardiovascular function suitable for lay audiences. It was field tested during the United States of America Science and Engineering Festival held in Washington, DC, in October 2010. The basic equipment for the activity consisted of lengths of plastic tubing, a hand…

  9. How Science Texts and Hands-on Explorations Facilitate Meaning Making: Learning from Latina/o Third Graders

    Science.gov (United States)

    Varelas, Maria; Pieper, Lynne; Arsenault, Amy; Pappas, Christine C.; Keblawe-Shamah, Neveen

    2014-01-01

    In this study, we examined opportunities for reasoning and meaning making that read-alouds of children's literature science information books and related hands-on explorations offered to young Latina/o students in an urban public school. Using a qualitative, interpretative framework, we analyzed classroom discourse and children's writing…

  10. A hands-on activity for teaching product-process matrix: roadmap and application

    Directory of Open Access Journals (Sweden)

    Luciano Costa Santos

    2014-08-01

    Full Text Available The product-process matrix is a well-known framework proposed by Hayes and Wheelwright (1979 that is commonly used to identify processes types and to analyze the alignment of these processes with the products of a company. For didactic purposes, the matrix helps undergraduates beginners from Production Engineering to understand the logic of production systems, providing knowledge that will be essential for various course subjects. Considering the high level of abstraction of the concepts underlying the product-process matrix, this paper presents a way to facilitate the learning of them through the application of a hands-on activity which relies on the active learning philosophy. The proposed dynamic uses colored plastic sheets and PVC pipes as main materials, differing from the original proposal of Penlesky and Treleven (2005 . In addition to presenting an extremely simple exercise, which encourages its application in the classroom, another contribution of this paper is to define a complete roadmap for conducting the activity. This roadmap describes the assembly of fictitious products in customization and standardization scenarios for the comparison of two processes types of product-process matrix, job shop and assembly line. The activity revealed very successful after its application to two groups of Production Engineering undergraduates, confirmed with positive feedback from the students surveyed.

  11. Teaching science in museums

    Science.gov (United States)

    Tran, Lynn Uyen

    Museums are free-choice, non-threatening, non-evaluative learning and teaching environments. They enable learners to revisit contents, authentic objects, and experiences at their own leisure as they continually build an understanding and appreciation of the concepts. Schools in America have used museums as resources to supplement their curriculum since the 19 th century. Field trip research is predominantly from the teachers' and students' perspectives, and draws attention to the importance for classroom teachers and students to prepare prior to field trips, have tasks, goals, and objectives during their time at the museum, and follow up afterwards. Meanwhile, museum educators' contributions to field trip experiences have been scantily addressed. These educators develop and implement programs intended to help students' explore science concepts and make sense of their experiences, and despite their limited time with students, studies show they can be memorable. First, field trips are a break in the usual routine, and thus have curiosity and attention attracting power. Second, classroom science teaching literature suggests teachers' teaching knowledge and goals can affect their behaviors, and in turn influence student learning. Third, classroom teachers are novices at planning and implementing field trip planners, and museum educators can share this responsibility. But little is reported on how the educators teach, what guides their instruction, how classroom teachers use these lessons, and what is gained from these lessons. This study investigates two of these inquiries. The following research questions guided this investigation. (1) How do educators teaching one-hour, one-time lessons in museums adapt their instruction to the students that they teach? (2) How do time limitations affect instruction? (3) How does perceived variability in entering student knowledge affect instruction? Four educators from two museums took part in this participant observation study to

  12. A Hands-On Approach for Teaching Denial of Service Attacks: A Case Study

    Science.gov (United States)

    Trabelsi, Zouheir; Ibrahim, Walid

    2013-01-01

    Nowadays, many academic institutions are including ethical hacking in their information security and Computer Science programs. Information security students need to experiment common ethical hacking techniques in order to be able to implement the appropriate security solutions. This will allow them to more efficiently protect the confidentiality,…

  13. Choices of Pre-Service Science Teachers Laboratory Environments: Hands-on or Hands-off?

    Science.gov (United States)

    Kapici, Hasan Ozgur; Akcay, Hakan

    2018-01-01

    Learning in laboratories for students is not only crucial for conceptual understanding, but also contributes to gaining scientific reasoning skills. Following fast developments in technology, online laboratory environments have been improved considerably and nowadays form an attractive alternative for hands-on laboratories. The study was done in…

  14. A hands-on approach to teaching environmental awareness and pollutant remediation to undergraduate chemistry students

    Science.gov (United States)

    Salman Ashraf, S.; Rauf, M. A.; Abdullah, Fatema H.

    2012-07-01

    Background : One of the unfortunate side effects of the industrial revolution has been the constant assault of the environment with various forms of pollution. Lately, this issue has taken a more critical dimension as prospects of global climate change and irreversible ecosystem damage are becoming a reality. Purpose : College graduates (especially chemists), should therefore not only be aware of these issues but also be taught how chemistry can help reduce environmental pollution. Furthermore, the role and importance of chemistry in sustainable development and solving environmental problems needs to be highlighted. Programme/intervention description : To this effect, we have designed a simple undergraduate experiment that is based on the green chemistry approach of using photolytic oxidation to degrade a model organic pollutant. This approach used UV light and hydrogen peroxide to produce reactive hydroxyl radicals, which subsequently break down and degrade Acridine Orange (model pollutant). The dye degradation was monitored spectrophotometrically and the apparent rate of decolouration was found to be first order. Possible radical initiated mechanisms that may be involved in this remediation experiment have been used to explain the observed dye decolouration. Sample : To test the usefulness of this newly developed experiment, we incorporated it as a module into a second year 'Professional skills' chemistry course with an enrollment of six female students. Anonymous survey of the students after the completion of the module was very positive and indicated that objectives of the experiment were satisfactorily achieved. Results : We believe this experiment not only raises students' awareness about green chemistry and environmental issues, but also teaches them valuable experimental skills such as experimental design, data manipulation and basic kinetics. Survey of students who were taught this unit in a second year course was very positive and supported the usefulness

  15. THE STERN PROJECT–HANDS ON ROCKETS SCIENCE FOR UNIVERSITY STUDENT

    OpenAIRE

    Schüttauf, Katharina; Stamminger, Andreas; Lappöhn, Karsten

    2017-01-01

    In April 2012, the German Aerospace Center DLR initiated a sponsorship program for university students to develop, build and launch their own rockets over a period of three years. The program designation STERN was abbreviated from the German “STudentische Experimental-RaketeN”, which translates to Student- Experimental-Rockets. The primary goal of the STERN program is to inspire students in the subject of space transportation through hands-on activities within a pro...

  16. Teaching Science with Technology

    Science.gov (United States)

    Gornostaeva, Svetlana

    2015-04-01

    This is a short introduction about me, description of different teaching methods, which is used in my teaching practice of Geography, biology and GIS systems education. The main part is tell about practical lesson with lab Vernier. My name is Svetlana Gornostaeva. I am a geography, biology and GIS systems teacher in Tallinn Mustjõe Gymnasium (www.mjg.ee) and private school Garant (http://www.erakoolgarant.ee/). In my teaching practice I do all to show that science courses are very important, interesting, and do not difficult. I use differentiated instruction methods also consider individual needs. At lessons is used different active teaching methods such as individual work of various levels of difficulty, team works, creative tasks, interactive exercises, excursions, role-playing games, meeting with experts. On my lessons I use visual aids (maps, a collection of rocks and minerals, herbarium, posters, Vernier data logger). My favorite teaching methods are excursions, meeting with experts and practical lesson with lab Vernier. A small part of my job demonstrate my poster. In the next abstract I want to bring a one practical work with Vernier which I do with my students, when we teach a theme "Atmosphere and climate". OUTDOOR LEARNING. SUBJECT "ATMOSPHERE AND CLIMATE". WEATHER OBSERVATIONS WITH VERNIER DATA LOGGER. The aim: students teach to use Vernier data logger and measure climatic parameters such as: temperature, humidity, atmospheric pressure, solar radiation, ultraviolet light radiation, wind speed. In working process pupils also teach work together, observe natural processes, analyze. Children are working by small groups, 4-5 in each group. Every one should personally measure all parameters and put numbers into the table. After it group observe cloudiness, analyze table and give conclusion "Is at this moment dominates cyclone or anticyclone ?". Children really like this kind of job. Vernier data logger it is really fantastic tool. It is mobile lab. This

  17. Teaching earth science

    Science.gov (United States)

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  18. "Who Dunnit?": Learning Chemistry and Critical Thinking through Hands-On Forensic Science.

    Science.gov (United States)

    Demetry, Chrysanthe; Nicoletti, Denise; Mix, Kimberlee; O'Connor, Kerri; Martin, Andrea

    2002-01-01

    Demonstrates how forensic science can be used as a framework for generating student interest and learning in chemistry and promoting critical thinking. The "Who Dunnit?" forensic science workshop was developed by undergraduate students and is one element of a two-week residential summer outreach program that seeks to develop interest in…

  19. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    Abstract. This paper is written with the intention of simulating discussion on teaching materials science and engineering in the universities. The article illustrates the tasks, priorities, goals and means lying ahead in the teaching of materials science and engineering for a sustainable future.

  20. Ground Truth Studies - A hands-on environmental science program for students, grades K-12

    Science.gov (United States)

    Katzenberger, John; Chappell, Charles R.

    1992-01-01

    The paper discusses the background and the objectives of the Ground Truth Studies (GTSs), an activity-based teaching program which integrates local environmental studies with global change topics, utilizing remotely sensed earth imagery. Special attention is given to the five key concepts around which the GTS programs are organized, the pilot program, the initial pilot study evaluation, and the GTS Handbook. The GTS Handbook contains a primer on global change and remote sensing, aerial and satellite images, student activities, glossary, and an appendix of reference material. Also described is a K-12 teacher training model. International participation in the program is to be initiated during the 1992-1993 school year.

  1. Hands on, mobiles on The use of a digital narrative as a scaffolding remedy in a classical science centre

    Directory of Open Access Journals (Sweden)

    Anne Kahr-Højland

    2010-12-01

    Full Text Available This article examines an educational design experiment which aimed to support young people’s involvement and reflection in the exhibition at a Danish science centre. The experiment consisted in the examination of the design and implementation of a mobile phone facilitated narrative, which was planned as a so-called scaffolding remedy in the hands-on based exhibition. The digital narrative, called EGO-TRAP, was developed using Design-Based Research as the overall methodological framework. The study of students’ interactions in the exhibition suggests, among other things, that because of its quality as a digital narrative, EGO-TRAP scaffolds pleasurable engagement and counteracts the tendency of "random button pressing" that often occurs in classical science centre exhibitions. In this connection, the mobile phone plays an essential role due to the fact that it, as the favoured media by the young students, offers an experience which they describe as both personal and flexible.

  2. Hot Topics in Science Teaching

    Science.gov (United States)

    Ediger, Marlow

    2018-01-01

    There are vital topics in science teaching and learning which are mentioned frequently in the literature. Specialists advocate their importance in the curriculum as well as science teachers stress their saliency. Inservice education might well assist new and veteran teachers in knowledge and skills. The very best science lessons and units of…

  3. Teaching children the structure of science

    Science.gov (United States)

    Börner, Katy; Palmer, Fileve; Davis, Julie M.; Hardy, Elisha; Uzzo, Stephen M.; Hook, Bryan J.

    2009-01-01

    Maps of the world are common in classroom settings. They are used to teach the juxtaposition of natural and political functions, mineral resources, political, cultural and geographical boundaries; occurrences of processes such as tectonic drift; spreading of epidemics; and weather forecasts, among others. Recent work in scientometrics aims to create a map of science encompassing our collective scholarly knowledge. Maps of science can be used to see disciplinary boundaries; the origin of ideas, expertise, techniques, or tools; the birth, evolution, merging, splitting, and death of scientific disciplines; the spreading of ideas and technology; emerging research frontiers and bursts of activity; etc. Just like the first maps of our planet, the first maps of science are neither perfect nor correct. Today's science maps are predominantly generated based on English scholarly data: Techniques and procedures to achieve local and global accuracy of these maps are still being refined, and a visual language to communicate something as abstract and complex as science is still being developed. Yet, the maps are successfully used by institutions or individuals who can afford them to guide science policy decision making, economic decision making, or as visual interfaces to digital libraries. This paper presents the process and results of creating hands-on science maps for kids that teaches children ages 4-14 about the structure of scientific disciplines. The maps were tested in both formal and informal science education environments. The results show that children can easily transfer their (world) map and concept map reading skills to utilize maps of science in interesting ways.

  4. Methods and Strategies: Beyond the Textbook--But Not Just "Hands On". Using High-Quality Informational Texts to Meet the "Next Generation Science Standards"

    Science.gov (United States)

    Vick, Matthew

    2016-01-01

    Science teaching continues to move away from teaching science as merely a body of facts and figures to be memorized to a process of exploring and drawing conclusions. The Next Generation Science Standards (NGSS) emphasize eight science and engineering practices that ask students to apply scientific and engineering reasoning and explanation. This…

  5. Innovative Technologies in Science Teaching

    Science.gov (United States)

    Guerra, Cecilia; Pombo, Lucia; Moreira, Antonio

    2011-01-01

    Technology plays a crucial role in pupils' and primary teachers' lives nowadays and its use can facilitate change towards an innovative school environment. The internet, for example, can act as a platform to foster science teaching and offers a variety of opportunities for effective science learning and engaging and motivating children. But…

  6. Teaching Triple Science: GCSE Chemistry

    Science.gov (United States)

    Learning and Skills Network (NJ3), 2007

    2007-01-01

    The Department for Children, Schools and Families (DCSF) has contracted with the Learning and Skills Network to support awareness and take-up of Triple Science GCSEs through the Triple Science Support Programme. This publication provides an introduction to teaching and learning approaches for the extension topics within GCSE Chemistry. It…

  7. Action Research Using Entomological Research to Promote Hands-On Science Inquiry in a High-Poverty, Midwest Urban High School

    Science.gov (United States)

    Stockmann, Dustin

    The purpose of this mixed-methods action research study was to examine to what extent entomological research can promote students' hands-on learning in a high-poverty, urban, secondary setting. In reviewing the literature, the researcher was not able to find a specific study that investigated how entomological research could promote the hands-on learning of students. The researcher did find evidence that research on learning in a secondary setting was important to student growth. It should also be noted that support was established for the implementation of hands-on science inquiry in the classroom setting. The study's purpose was to aid educators in their instruction by combining research-based strategies and hands-on science inquiry. The surveys asked 30 students to rate their understanding of three basic ideas. These core ideas were entomological research, hands-on science inquiry, and urban studies. These core ideas provided the foundation for the study. The questionnaires were based on follow-up ideas from the surveys. Two interview sessions were used to facilitate this one-on-one focus. Because the study included only 30 student participants, its findings may not be totally replicable. Further study investigating the links between entomological research and hands-on science learning in an urban environment is needed.

  8. Emotions in teaching environmental science

    Science.gov (United States)

    Quigley, Cassie

    2016-09-01

    This op-ed article examines the emotional impact of teaching environmental science and considers how certain emotions can broaden viewpoints and other emotions narrow them. Specifically, it investigates how the topic of climate change became an emotional debate in a science classroom because of religious beliefs. Through reflective practice and examination of positionality, the author explored how certain teaching practices of pre-service science teachers created a productive space and other practices closed down the conversations. This article is framed with theories that explore both divergent and shared viewpoints.

  9. Science Engagement Through Hands-On Activities that Promote Scientific Thinking and Generate Excitement and Awareness of NASA Assets, Missions, and Science

    Science.gov (United States)

    Graff, P. V.; Foxworth, S.; Miller, R.; Runco, S.; Luckey, M. K.; Maudlin, E.

    2018-01-01

    The public with hands-on activities that infuse content related to NASA assets, missions, and science and reflect authentic scientific practices promotes understanding and generates excitement about NASA science, research, and exploration. These types of activities expose our next generation of explorers to science they may be inspired to pursue as a future STEM career and expose people of all ages to unique, exciting, and authentic aspects of NASA exploration. The activities discussed here (Blue Marble Matches, Lunar Geologist Practice, Let's Discover New Frontiers, Target Asteroid, and Meteorite Bingo) have been developed by Astromaterials Research and Exploration Science (ARES) Science Engagement Specialists in conjunction with ARES Scientists at the NASA Johnson Space Center. Activities are designed to be usable across a variety of educational environments (formal and informal) and reflect authentic scientific content and practices.

  10. Seafloor Science and Remotely Operated Vehicle (SSROV) Day Camp: A Week-Long, Hands-On STEM Summer Camp

    Science.gov (United States)

    Wheat, C. G.; Fournier, T.; Monahan, K.; Paul, C.

    2015-12-01

    RETINA (Robotic Exploration Technologies IN Astrobiology) has developed a program geared towards stimulating our youth with innovative and relevant hands-on learning modules under a STEM umbrella. Given the breadth of potential science and engineering topics that excite children, the RETINA Program focuses on interactive participation in the design and development of simple robotic and sensor systems, providing a range of challenges to engage students through project-based learning (PBL). Thus, young students experience scientific discovery through the use and understanding of technology. This groundwork serves as the foundation for SSROV Camp, a week-long, summer day camp for 6th-8th grade students. The camp is centered on the sensors and platforms that guide seafloor exploration and discovery and builds upon the notion that transformative discoveries in the deep sea result from either sampling new environments or making new measurements with sensors adapted to this extreme environment. These technical and scientific needs are folded into the curriculum. Each of the first four days of the camp includes four team-based, hands-on technical challenges, communication among peer groups, and competition. The fifth day includes additional activities, culminating in camper-led presentations to describe a planned mission based on a given geologic setting. Presentations include hypotheses, operational requirements and expected data products. SSROV Camp was initiated last summer for three sessions, two in Monterey, CA and one in Oxford, MS. Campers from both regions grasped key elements of the program, based on written responses to questions before and after the camp. On average, 32% of the pre-test questions were answered correctly compared with 80% of the post-test questions. Additional confirmation of gains in campers' knowledge, skills, and critical thinking on environmental issues and engineering problems were apparent during the "jeopardy" competition, nightly homework

  11. Preservice Science Teachers' Science Teaching Orientations and Beliefs about Science

    Science.gov (United States)

    Kind, Vanessa

    2016-01-01

    This paper offers clarification of science teacher orientations as a potential component of pedagogical content knowledge. Science teaching orientations and beliefs about science held by 237 preservice science teachers were gathered via content-specific vignettes and questionnaire, respectively, prior to participation in a UK-based teacher…

  12. Symposium 20 - PABMB: Teaching biochemistry in a connected world: Hands-on inquiry-based biochemistry courses for improving scientific literacy of school teachers and students

    Directory of Open Access Journals (Sweden)

    Andrea T. da Poian

    2015-08-01

    Full Text Available Wednesday – August 26th, 2015 - 3:30 to 5:30 pm – Room: Iguaçu II – 5th floorSymposium 20 - PABMB: Teaching biochemistry in a connected world Chair: Miguel Castanho, Universidade de Lisboa, PortugalAbstract:In the last decades, Brazil has reached a prominent position in the world rank of scientific production. Despite this progress, the establishment of a scientific culture in Brazilian society is still challenging. Our group has been offering hands-on inquiry-based courses to primary and secondary students, which aim to introduce them to the scientific method and improve their interest in science. More recently, we started new initiatives focused on the improvement of the scientific literacy of school science teachers. Here we describe two intensive short-term courses designed in different formats. One consists in a discipline offered to a Master Program to school science teachers, in which the main objective was to work with core disciplinary concepts through an active teachers engagement in “doing science”. The discipline, named “Energy transformation in the living organisms”, intends to deal with the main Biochemistry subjects that take part of the high-school science curriculum, namely, fermentation, photosynthesis and cellular respiration processes. The other initiative was developed in Urucureá, a small community with about 600 residents, located on the banks of the River Arapiuns, in Amazonia region. We trained the local school teachers to act as tutors in the course offered to 40 students of the community, ages 10 to 17. The theme we chose to address was the properties and effects of snakes´ poisons, since poisoning events are a problem with which the local community frequently deal with. Another important point was that we adapted a number of experiments to make them feasible with very limited laboratory resources. Our results show that the activities that we have developed offer real opportunity of scientific training

  13. The Use of Molecular Modeling as "Pseudoexperimental" Data for Teaching VSEPR as a Hands-On General Chemistry Activity

    Science.gov (United States)

    Martin, Christopher B.; Vandehoef, Crissie; Cook, Allison

    2015-01-01

    A hands-on activity appropriate for first-semester general chemistry students is presented that combines traditional VSEPR methods of predicting molecular geometries with introductory use of molecular modeling. Students analyze a series of previously calculated output files consisting of several molecules each in various geometries. Each structure…

  14. Using a Hands-On Hydrogen Peroxide Decomposition Activity to Teach Catalysis Concepts to K-12 Students

    Science.gov (United States)

    Cybulskis, Viktor J.; Ribeiro, Fabio H.; Gounder, Rajamani

    2016-01-01

    A versatile and transportable laboratory apparatus was developed for middle and high school (6th-12th grade) students as part of a hands-on outreach activity to estimate catalytic rates of hydrogen peroxide decomposition from oxygen evolution rates measured by using a volumetric displacement method. The apparatus was constructed with inherent…

  15. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  16. Graphic Communications Teachers' Concerns and Beliefs Regarding Their Online Teaching of Graphic Communications Hands-On Classes

    OpenAIRE

    Carroll, Millicent Hope

    2016-01-01

    Previous literature has exposed the impact of concerns and beliefs on a teacher's decision to adopt online teaching methods, and in particular for Graphic Communications teachers, the extent to which their concerns and beliefs influence whether or not they decide to teach online. The potential problem that may exist is that of Graphic Communications teachers' concerns and beliefs are playing a role in impeding their transitioning to teaching in the online environment. The purpose of this stud...

  17. Incorporating Indonesian Students' "Funds of Knowledge" into Teaching Science to Sustain Their Interest in Science

    Directory of Open Access Journals (Sweden)

    A.N. Md Zain

    2011-12-01

    Full Text Available The purpose of this study was to examine the effect of incorporating students’ funds of knowledge in the teaching of science in sustaining Indonesian students’ interest in science. The researchers employed mixed method approach in this study. This study took place within two suburban secondary schools in Indonesia. Two teachers and a total of 173 students (94 males and 79 females participated in this study. The findings revealed that initially, most students expected that the teaching process would mainly include science experiments or other hands-on activities. Their preferences revealed a critical problem related to science learning: a lack of meaningful science-related activities in the classroom. The findings showed that incorporating students’ funds of knowledge into science learning processes -and thus establishing students’ culture as an important and valued aspect of science learning was effective in not only sustaining but also improving students’ attitudes and increasing their interest in science.

  18. Improving Early Career Science Teachers' Ability to Teach Space Science

    Science.gov (United States)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their

  19. A combined hands-on teaching programme and clinical pathway focused on pleural ultrasound and procedure supervision transforms pleural procedure outcomes.

    Science.gov (United States)

    Edwards, Timothy; Cook, Alistair; Salamonsen, Matthew; Bashirzadeh, Farzad; Fielding, David

    2017-11-01

    Management of pleural effusions is a common diagnostic and management problem. We reviewed the outcomes from pleural procedures after the instigation of pleural effusion management guidelines, focusing on pleural ultrasound and a hands-on teaching programme followed by procedure supervision that enabled many operators to perform such procedures. This is a retrospective analysis of all procedures performed for pleural effusions on medical patients. Outcomes were assessed prior to the instigation of pleural effusion management guidelines (pleural pathway) and hands-on teaching (January 2010 to June 2011) and following these interventions (January 2012 to June 2013). A total of 171 procedures involving 129 patients (pre-pathway group) and 146 procedures involving 115 patients (post-pathway group) was analysed. The rate of complications prior to the pleural pathway was 22.2% (38 of 171 procedures). Following the pathway, the rate of complications declined to 7.5% (11 of 146 procedures, P < 0.003). The use of pleural ultrasound increased dramatically (72.5 vs 90.2%). The number of patients who underwent repeated procedures (defined as ≥3) reduced dramatically (21 vs 7, P < 0.01). This improvement occurred using many supervised operators who completed the hands-on teaching programme (n = 32) and followed the pleural pathway (127 of 146 procedures). The instigation of a clinical pathway focused on the use of bedside pleural ultrasound, and teaching of drainage techniques with procedure supervision vastly improved patient outcomes. This not only allowed better quality of care for patients, it also provided the acquisition of new skills to medical staff, not limiting these skills to specialised staff. © 2017 Royal Australasian College of Physicians.

  20. Math in Motion: Origami in the Classroom. A Hands-On Creative Approach to Teaching Mathematics. K-8.

    Science.gov (United States)

    Pearl, Barbara

    This perfect bound teacher's guide presents techniques and activities to teach mathematics using origami paper folding. Part 1 includes a history of origami, mathematics and origami, and careers using mathematics. Parts 2 and 3 introduce paper-folding concepts and teaching techniques and include suggestions for low-budget paper resources. Part 4…

  1. Portable Planetariums Teach Science

    Science.gov (United States)

    2015-01-01

    With the Internet proving to be the wave of the future, in the 1990s Johnson Space Center awarded grants to Rice University in Houston for developing the world's first Internet-accessible museum kiosk. Further grants were awarded to the school for creating educational software for use in homes and schools, leading to the creation of Museums Teaching Planet Earth Inc. The company has gone on to develop and sell portable planetariums and accompanying educational shows.

  2. Teaching Data Science

    OpenAIRE

    Brunner, Robert J.; Kim, Edward J.

    2016-01-01

    We describe an introductory data science course, entitled Introduction to Data Science, offered at the University of Illinois at Urbana-Champaign. The course introduced general programming concepts by using the Python programming language with an emphasis on data preparation, processing, and presentation. The course had no prerequisites, and students were not expected to have any programming experience. This introductory course was designed to cover a wide range of topics, from the nature of ...

  3. Teaching Building Science with Simulations

    Science.gov (United States)

    Hatherly, Amanda

    2017-01-01

    Teaching building science to community college students can be challenging given both the macro (houses change subject to varying seasons) and the micro (heat transfer, moisture movement) level of the topics taught. Simulations and games can provide a way of learning material that can otherwise be difficult for students to understand. In this…

  4. Teaching Creativity through Inquiry Science

    Science.gov (United States)

    Thompson, Taylor

    2017-01-01

    The experience that students gain through creative thinking contributes to their readiness for the 21st century. For this and other reasons, educators have always considered creative thinking as a desirable part of any curriculum. The focus of this article is on teaching creative thinking in K-12 science as a way to serve all students and,…

  5. Teaching Science to Dyslexic Children

    Science.gov (United States)

    Ward, Linda

    2010-01-01

    Working in a school with a high proportion of dyslexic children has helped this author to discover and improve her teaching of science. Officially, dyslexia is seen as "a specific learning difficulty that hinders the learning of literacy skills. This problem of managing verbal codes in memory is neurologically based." Many children come to the…

  6. Peer Assessment of Elementary Science Teaching Skills

    Science.gov (United States)

    Kilic, Gulsen Bagci; Cakan, Mehtap

    2007-01-01

    In this study, peer assessment was applied in assessing elementary science teaching skills. Preservice teachers taught a science topic as a team to their peers in an elementary science methods course. The peers participating in the science lesson assessed teacher-groups' elementary science teaching skills on an assessment form provided by the…

  7. Teaching science through literature

    Science.gov (United States)

    Barth, Daniel

    2007-12-01

    The hypothesis of this study was that a multidisciplinary, activity rich science curriculum based around science fiction literature, rather than a conventional text book would increase student engagement with the curriculum and improve student performance on standards-based test instruments. Science fiction literature was chosen upon the basis of previous educational research which indicated that science fiction literature was able to stimulate and maintain interest in science. The study was conducted on a middle school campus during the regular summer school session. Students were self-selected from the school's 6 th, 7th, and 8th grade populations. The students used the science fiction novel Maurice on the Moon as their only text. Lessons and activities closely followed the adventures of the characters in the book. The student's initial level of knowledge in Earth and space science was assessed by a pre test. After the four week program was concluded, the students took a post test made up of an identical set of questions. The test included 40 standards-based questions that were based upon concepts covered in the text of the novel and in the classroom lessons and activities. The test also included 10 general knowledge questions that were based upon Earth and space science standards that were not covered in the novel or the classroom lessons or activities. Student performance on the standards-based question set increased an average of 35% for all students in the study group. Every subgroup disaggregated by gender and ethnicity improved from 28-47%. There was no statistically significant change in the performance on the general knowledge question set for any subgroup. Student engagement with the material was assessed by three independent methods, including student self-reports, percentage of classroom work completed, and academic evaluation of student work by the instructor. These assessments of student engagement were correlated with changes in student performance

  8. Design, Implementation and Evaluation of Innovative Science Teaching Strategies for Non-Formal Learning in a Natural History Museum

    Science.gov (United States)

    Çil, Emine; Maccario, Nihal; Yanmaz, Durmus

    2016-01-01

    Background: Museums are useful educational resources in science teaching. Teaching strategies which promote hands-on activities, student-centred learning, and rich social interaction must be designed and implemented throughout the museum visit for effective science learning. Purpose: This study aimed to design and implement innovative teaching…

  9. Teaching Teachers of Science

    Science.gov (United States)

    Lockman, F. J.; Heatherly, S. A.

    2001-05-01

    Most K-12 teachers of science have never actually done research, and this creates considerable confusion and misunderstanding about the nature of science. For more than 10 years the NRAO at Green Bank has conducted programs of teacher training, funded by the NSF, which provide a research experience in radio astronomy that can be generalized and applied in the classroom. Our program is under the direction of educators from the NRAO and WVU, but uses the unique facilities of the Observatory and the active participation of its scientific staff. Evaluations have shown that the two-week programs are effective in making significant, positive changes in attitude and understanding of the participants. We are in the process of expanding our educational activities so that every student in the region and the State will be able to participate in at least one program at the Observatory before they graduate from high school.

  10. Chantey Castings: A Hands-On Simulation to Teach Constraint Management and Demand-Driven Supply Chain Approaches

    Science.gov (United States)

    Grandzol, Christian J.; Grandzol, John R.

    2018-01-01

    Supply chain design and constraint management are widely-adopted techniques in industry, necessitating that operations and supply chain educators teach these topics in ways that enhance student learning and retention, optimize resource utilization (especially time), and maximize student interest. The Chantey Castings Simulation provides a platform…

  11. Cultural Earth Science in Hawai`i: Hands-on Place-Based Investigations that Merge Traditional Knowledge with Earth Science Inquiry

    Science.gov (United States)

    Moxey, L.; Dias, R. K.; Legaspi, E.

    2011-12-01

    During the summer of 2011, the Mālama Ke Ahupua`a (to care of our watershed) GEARUP summer program provided 25 under-served and under-represented minority public high school students (Hawaiian, part-Hawaiian, Filipino, Pacific Islanders) from Farrington High School (Kalihi, Honolulu) with a hands-on place-based multidiscipline course located within Manoa Valley (Ahupua`a O Kona) with the objective of engaging participants in scientific environmental investigations while exploring Hawaii's linkages between traditional knowledge, culture and science. The 4-week field program enabled students to collect samples along the perennial Manoa Stream and conduct water quality assessments throughout the Manoa watershed. Students collected science quality data from eight different sampling stations by means of field- and laboratory-based quantitative water quality testing equipment and GPS/GIS technology. While earning Hawaii DOE academic credits, students were able to document changes along the stream as related to pollution and urbanization. While conducting the various scientific investigations, students also participated in cultural fieldtrips and activities that highlighted the linkages between historical sustainable watershed uses by native Hawaiian communities, and their connections with natural earth processes. Additionally, students also participated in environmental service-learning projects that highlight the Hawaiian values of laulima (teamwork), mālama (to care for), and imi `ike (to seek knowledge). By contextualizing and merging hands-on place-based earth science inquiry with native Hawaiian traditional knowledge, students experienced the natural-cultural significance of their ahupua`a (watershed). This highlighted the advantages for promoting environmental literacy and geoscience education to under-served and under-represented minority populations in Hawaii from a rich native Hawaiian cultural framework.

  12. Science teaching scholarship

    Science.gov (United States)

    1999-09-01

    Physics research projects undertaken by secondary or high school students are once again being sought for consideration in the annual international competition entitled `First step to the Nobel Prize in physics'. This, the eighth in the series, is being organized by the Institute of Physics of the Polish Academy of Sciences for the academic year 1999/2000, and as in previous years the competition is open to all secondary (high) school students regardless of country, type of school, sex, nationality etc. The only conditions are that the school must not be a university college and the participant's age should not exceed 20 years on 31 March 2000 (the deadline for competition entries). There are no restrictions on the subject matter of papers, their level, methods applied etc but they must have a research character and deal with physics topics or topics directly related to physics. Participation in the competition does not need any agreement from the candidate's school or educational authorities: the students must conduct their research in the most appropriate way for them. More than one paper can be submitted by a participant but each paper must have only one author; papers must not exceed 25 typed pages in length. The winners do not receive financial prizes or gifts but instead are invited to undertake a month's research work at the Polish Institute of Physics, with their expenses (except travel) paid for by the competition organizers. Entries should be sent by the competition deadline to Mrs M E Gorzkowska, Secretary of the First Step, Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL 02-668 Warszawa, Poland. All those who receive an award will have their papers published in the competition proceedings. Information on the competition can be found in the pub/competitions subdirectory of the anonymous section of the server ftp.ifpan.edu.pl (see also nobelprizes.com/firstep/).

  13. In Brief: Science teaching certificate

    Science.gov (United States)

    Showstack, Randy

    2008-11-01

    More than 200 educators will receive fellowships over the next 5 years to participate in NASA's Endeavor Science Teaching Certificate Project, the agency announced on 14 November. Through workshops, online and on-site graduate courses, and NASA educational materials, the project will expose educators to NASA science and engineering and support them in translating the information for use in classrooms. ``Through the program, educators will learn to deliver cutting-edge science into the classroom, promoting science, technology, engineering, and mathematics education,'' according to Joyce Winterton, assistant administrator for education at NASA Headquarters, in Washington, D. C. Project fellows will earn a certificate from Teachers College Innovations at Teachers College, Columbia University, New York, and graduate credit from other institutional partners. For more information, visit http://education.nasa.gov/home/index.html.

  14. Using place-based concepts, multicultural lenses, and hands-on experience to broaden participation in the sciences for native youth

    Science.gov (United States)

    Flick, K. C.; Keepseagle, L.

    2013-12-01

    . Through field trips to broaden perspective, self-directed action research projects, and formal and informal classroom settings, the SLC serves as a stepping stone for students to discover Science/Math/ Technology-related careers and interact with people and professionals of all ages who pursue these careers. SLC participation empowers young students so they may one day serve as leaders and roles models to positively influence their classmates, schools, and communities for future generations. Through this collaborative education design process we have used place-based concepts, multicultural lenses, and hands-on experiences to explore reciprocal learning relationships which broaden participation of native students in geosciences and geoscientists' participation in cultural teachings.

  15. Teachers' perceptions on primary science teaching

    Science.gov (United States)

    Kijkuakul, Sirinapa

    2018-01-01

    This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.

  16. Teaching the science of learning.

    Science.gov (United States)

    Weinstein, Yana; Madan, Christopher R; Sumeracki, Megan A

    2018-01-01

    The science of learning has made a considerable contribution to our understanding of effective teaching and learning strategies. However, few instructors outside of the field are privy to this research. In this tutorial review, we focus on six specific cognitive strategies that have received robust support from decades of research: spaced practice, interleaving, retrieval practice, elaboration, concrete examples, and dual coding. We describe the basic research behind each strategy and relevant applied research, present examples of existing and suggested implementation, and make recommendations for further research that would broaden the reach of these strategies.

  17. Teaching bioprocess engineering to undergraduates: Multidisciplinary hands-on training in a one-week practical course.

    Science.gov (United States)

    Henkel, Marius; Zwick, Michaela; Beuker, Janina; Willenbacher, Judit; Baumann, Sandra; Oswald, Florian; Neumann, Anke; Siemann-Herzberg, Martin; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Bioprocess engineering is a highly interdisciplinary field of study which is strongly benefited by practical courses where students can actively experience the interconnection between biology, engineering, and physical sciences. This work describes a lab course developed for 2nd year undergraduate students of bioprocess engineering and related disciplines, where students are challenged with a real-life bioprocess-engineering application, the production of recombinant protein in a fed-batch process. The lab course was designed to introduce students to the subject of operating and supervising an experiment in a bioreactor, along with the analysis of collected data and a final critical evaluation of the experiment. To provide visual feedback of the experimental outcome, the organism used during class was Escherichia coli which carried a plasmid to recombinantly produce enhanced green fluorescent protein (eGFP) upon induction. This can easily be visualized in both the bioreactor and samples by using ultraviolet light. The lab course is performed with bioreactors of the simplest design, and is therefore highly flexible, robust and easy to reproduce. As part of this work the implementation and framework, the results, the evaluation and assessment of student learning combined with opinion surveys are presented, which provides a basis for instructors intending to implement a similar lab course at their respective institution. © 2015 by the International Union of Biochemistry and Molecular Biology.

  18. Confronting Barriers to Teaching Elementary Science: After-School Science Teaching Experiences for Preservice Teachers

    Science.gov (United States)

    Cartwright, Tina; Smith, Suzanne; Hallar, Brittan

    2014-01-01

    This qualitative study examines the transition of eight elementary preservice teachers into student teaching after participating in a science methods course that included a significant amount of teaching after-school science to elementary grade students. These eight participants had a chance to practice teaching inquiry-based science and to reform…

  19. Adapting a successful inquiry-based immersion program to create an Authentic, Hands- on, Field based Curriculum in Environmental Science at Barnard College

    Science.gov (United States)

    Kenna, T. C.; Pfirman, S.; Mailloux, B. J.; Martin, S.; Kelsey, R.; Bower, P.

    2008-12-01

    Adapting a successful inquiry-based immersion program to create an Authentic, Hands-on, Field based Curriculum in Environmental Science at Barnard College T. C. Kenna, S. Pfirman, B. J. Mailloux, M. Stute, R. Kelsey, and P. Bower By adapting a successful inquiry-based immersion program (SEA semester) to the typical college format of classes, we are improving the technical and quantitative skills of undergraduate women and minorities in environmental science and improving their critical thinking and problem-solving by exposing our students to open-ended real-world environmental issues. Our approach uses the Hudson River Estuary as a natural laboratory. In a series of hands-on inquiry-based activities, students use advanced equipment to collect data and samples. Each class session introduces new analytical and data analysis techniques. All classes have the connecting theme of the river. Working with real data is open-ended. Our major findings as indicated by surveys as well as journaling throughout the semester are that the field- based experience significantly contributed to student learning and engagement. Journaling responses indicated that nearly all students discussed the importance and excitement of an authentic research experience. Some students were frustrated with data irregularities, uncertainty in methods and data, and the general challenge of a curriculum with inherent ambiguity. The majority were satisfied with the aims of the course to provide an integrative experience. All students demonstrated transfer of learned skills. This project has had a significant impact on our undergraduate female students: several students have pursued senior thesis projects stemming from grant activities, stating that the field activities were the highlight of their semester. Some students love the experience and want more. Others decide that they want to pursue a different career. All learn how science is conducted and have a better foundation to understand concepts such

  20. Developing Interpretive Power in Science Teaching

    Science.gov (United States)

    Rosebery, Ann S.; Warren, Beth; Tucker-Raymond, Eli

    2016-01-01

    Early career teachers rarely receive sustained support for addressing issues of diversity and equity in their science teaching. This paper reports on design research to create a 30 hour professional development seminar focused on cultivating the interpretive power of early career teachers who teach science to students from historically…

  1. "Hands-On" Undergraduate Research Opportunities in the Life Sciences: Preparing the Next Generation of Biological Researchers

    Science.gov (United States)

    Levis-Fitzgerald, Marc; Denson, Nida; Kerfeld, Cheryl A.

    2004-01-01

    Over the past decade, a number of scholars have publicly criticized large research universities for failing to provide undergraduate students with the skills and abilities needed to succeed both in life and in the workforce. At the heart of this criticism is the concern that research institutions have de-emphasized teaching by increasing the size…

  2. Science Teaching Methods: A Rationale for Practices

    Science.gov (United States)

    Osborne, Jonathan

    2011-01-01

    This article is a version of the talk given by Jonathan Osborne as the Association for Science Education (ASE) invited lecturer at the National Science Teachers' Association Annual Convention in San Francisco, USA, in April 2011. The article provides an explanatory justification for teaching about the practices of science in school science that…

  3. The Effects of Hands-On Learning Stations on Building American Elementary Teachers' Understanding about Earth and Space Science Concepts

    Science.gov (United States)

    Bulunuz, Nermin; Jarrett, Olga S.

    2010-01-01

    Research on conceptual change indicates that not only children, but also teachers have incomplete understanding or misconceptions on science concepts. This mixed methods study was concerned with in-service teachers' understanding of four earth and space science concepts taught in elementary school: reason for seasons, phases of the moon, rock…

  4. Peter Fensham--Head, Heart and Hands (on) in the Service of Science Education and Social Equity and Justice

    Science.gov (United States)

    Gunstone, Richard

    2009-01-01

    When Peter Fensham was appointed to the new Chair of Science Education at Monash University in 1967 he was the first Professor of Science Education in Australia, and, we think, may well have been the first such professor anywhere in the world outside USA. Over the subsequent 40+ years he has made/still makes remarkable and diverse contributions to…

  5. Using a Professional Development Program for Enhancing Chilean Biology Teachers' Understanding of Nature of Science (NOS) and Their Perceptions about Using History of Science to Teach NOS

    Science.gov (United States)

    Pavez, José M.; Vergara, Claudia A.; Santibañez, David; Cofré, Hernán

    2016-01-01

    A number of authors have recognized the importance of understanding the nature of science (NOS) for scientific literacy. Different instructional strategies such as decontextualized, hands-on inquiry, and history of science (HOS) activities have been proposed for teaching NOS. This article seeks to understand the contribution of HOS in enhancing…

  6. Cognitive Achievement and Motivation in Hands-on and Teacher-Centred Science Classes: Does an additional hands-on consolidation phase (concept mapping) optimise cognitive learning at work stations?

    Science.gov (United States)

    Gerstner, Sabine; Bogner, Franz X.

    2010-05-01

    Our study monitored the cognitive and motivational effects within different educational instruction schemes: On the one hand, teacher-centred versus hands-on instruction; on the other hand, hands-on instruction with and without a knowledge consolidation phase (concept mapping). All the instructions dealt with the same content. For all participants, the hands-on approach as well as the concept mapping adaptation were totally new. Our hands-on approach followed instruction based on "learning at work stations". A total of 397 high-achieving fifth graders participated in our study. We used a pre-test, post-test, retention test design both to detect students' short-term learning success and long-term learning success, and to document their decrease rates of newly acquired knowledge. Additionally, we monitored intrinsic motivation. Although the teacher-centred approach provided higher short-term learning success, hands-on instruction resulted in relatively lower decrease rates. However, after six weeks, all students reached similar levels of newly acquired knowledge. Nevertheless, concept mapping as a knowledge consolidation phase positively affected short-term increase in knowledge. Regularly placed in instruction, it might increase long-term retention rates. Scores of interest, perceived competence and perceived choice were very high in all the instructional schemes.

  7. The Hands-On Guide For Science Communicators A Step-By-Step Approach to Public Outreach

    CERN Document Server

    Christensen, Lars Lindberg

    2007-01-01

    Lars Lindberg Christensen is a science communication specialist and works in Munich, Germany, as head of communication for the NASA/ESA Hubble Space Telescope in Europe. Many people know something about communication – it is after all an innate human ability – but a full comprehension of how to do science communication effectively is not acquired easily. This Guide touches upon all aspects of science communication, revealing a tightly interwoven fabric of issues: product types, target groups, written communication, visual communication, validation processes, practices of efficient workflow, distribution, promotion, advertising and much more. New science communicators will find this Guide both helpful and inspirational. "I am overwhelmed at how thorough and how well thought-through this book is. Even with my regular relationships with popular communication and with public relations officers, I hadn’t realized how well documented the field could be until I saw it done here." -Jay M. Pasachoff, Williams Co...

  8. Teaching Grade Eight Science with Reference to the Science Curriculum

    Directory of Open Access Journals (Sweden)

    Rasel Babu

    2016-08-01

    Full Text Available A mixed methodological approach was used to explore to what extent the science curriculum was being reflected in science teaching-learning of grade VIII students in Bangladesh. 160 students were randomly selected and 10 science teachers were purposively selected as study respondents. Fifteen science lessons were observed. Data were collected via student questionnaires, teacher interviews, and classroom observation checklists. Grade VIII science teaching-learning activities were not conducted according to the instructions of the science curriculum. Most teachers did not adhere to the curriculum and teacher's guide. Teachers mainly depended on lecture methods for delivering lessons. Learning by doing, demonstrating experiments, scientific inquiry, rational thinking, and analysing cause-effect relationships were noticeably absent. Teachers reported huge workloads and a lack of ingredients as reasons for not practising these activities. Teachers did not use teaching aids properly. Science teaching-learning was fully classroom centred, and students were never involved in any creative activities. 

  9. A Case Study for Comparing the Effectiveness of a Computer Simulation and a Hands-on Activity on Learning Electric Circuits

    Science.gov (United States)

    Ekmekci, Adem; Gulacar, Ozcan

    2015-01-01

    Science education reform emphasizes innovative and constructivist views of science teaching and learning that promotes active learning environments, dynamic instructions, and authentic science experiments. Technology-based and hands-on instructional designs are among innovative science teaching and learning methods. Research shows that these two…

  10. Hands on Stem Cells: How to Make the Elusive Science of Stem Cells Tangible for the Classroom

    Science.gov (United States)

    Sanderson, Aimee

    2010-01-01

    With new technologies developing so fast, it is difficult for students and teachers alike to keep up to date. Add into the mix skewed media reporting, some creative science fiction films and the unregulated world of the internet, and it becomes increasingly hard to separate fact from fiction. As Australia's largest funding body for stem cell…

  11. Who Is Watching and Who Is Playing: Parental Engagement with Children at a Hands-On Science Center

    Science.gov (United States)

    Nadelson, Louis S.

    2013-01-01

    Family interactions are common phenomenon at visits to science centers and natural history museums. Through interactions the family can support each other as the members individually and collectively learn from their visits. Interaction is particularly important between child(ren) and parent, which may be facilitated by media provided to parents.…

  12. Perspectives on learning, learning to teach and teaching elementary science

    Science.gov (United States)

    Avraamidou, Lucy

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first

  13. The Space Weather Monitor Project: Bringing Hands-on Science to Students of the Developing World for the IHY2007

    Science.gov (United States)

    Scherrer, D. K.; Rabello-Soares, M. C.; Morrow, C.

    2006-08-01

    Stanford's Solar Center, Electrical Engineering Department, and local educators have developed inexpensive Space Weather Monitors that students around the world can use to track solar-induced changes to the Earth's ionosphere. Through the United Nations Basic Space Science Initiative (UNBSSI) and the IHY Education and Public Outreach Program, our Monitors are being deployed to 191 countries for the International Heliophysical Year, 2007. In partnership with Chabot Space and Science Center, we are designing and developing classroom and educator support materials to accompany the distribution. Materials will be culturally sensitive and will be translated into the six official languages of the United Nations (Arabic, Chinese, English, French, Russian, and Spanish). Monitors will be provided free of charge to developing nations and can be set up anywhere there is access to power.

  14. A Hands-on Approach to Teaching Geophysics through the University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course in the Gulf of Mexico.

    Science.gov (United States)

    Duncan, D.; Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez-Vasquez, R. A.; Saustrup, S.

    2017-12-01

    The three week field course is offered to graduate and upper-level undergraduate students as hands-on instruction and training for marine geology and geophysics applications. Instructors provide theoretical and technical background of high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling, and the sedimentology of resulting seabed samples in the initial phase of the course. The class then travels to the Gulf Coast for a week of at-sea field work. Over the last 10 years, field sites at Freeport, Port Aransas, and Galveston, TX, and Grand Isle, LA, have provided ideal locations for students to explore and investigate coastal and continental shelf processes through the application of geophysical techniques. Students with various backgrounds work in teams of four and rotate between two marine vessels: the R/V Scott Petty, a 26' vessel owned and operated by UTIG, and the R/V Manta, an 82' vessel owned and operated by NOAA. They assist with survey design, instrumentation setup and breakdown, data acquisition, trouble-shooting, data quality control, and safe instrumentation deployment and recovery. Teams also process data and sediment samples in an onshore field lab. During the final week, students visualize, integrate and interpret data for a final project using industry software. The course concludes with final presentations and discussions wherein students examine Gulf Coast geological history and sedimentary processes with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course satisfies field experience requirements for

  15. Minority Preservice Teachers' Conceptions of Teaching Science: Sources of Science Teaching Strategies

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2013-01-01

    This study explores five minority preservice teachers' conceptions of teaching science and identifies the sources of their strategies for helping students learn science. Perspectives from the literature on conceptions of teaching science and on the role constructs used to describe and distinguish minority preservice teachers from their mainstream…

  16. History, philosophy and science teaching new perspectives

    CERN Document Server

    2018-01-01

    This anthology opens new perspectives in the domain of history, philosophy, and science teaching research. Its four sections are: first, science, culture and education; second, the teaching and learning of science; third, curriculum development and justification; and fourth, indoctrination. The first group of essays deal with the neglected topic of science education and the Enlightenment tradition. These essays show that many core commitments of modern science education have their roots in this tradition, and consequently all can benefit from a more informed awareness of its strengths and weaknesses. Other essays address research on leaning and teaching from the perspectives of social epistemology and educational psychology. Included here is the first ever English translation of Ernst Mach’s most influential 1890 paper on ‘The Psychological and Logical Moment in Natural Science Teaching’. This paper launched the influential Machian tradition in education. Other essays address concrete cases of the ...

  17. The Science of Human Interaction and Teaching

    Science.gov (United States)

    Yano, Kazuo

    2013-01-01

    There is a missing link between our understanding of teaching as high-level social phenomenon and teaching as a physiological phenomenon of brain activity. We suggest that the science of human interaction is the missing link. Using over one-million days of human-behavior data, we have discovered that "collective activenes" (CA), which indicates…

  18. Five male preservice elementary teachers: Their understandings, beliefs and practice regarding science teaching

    Science.gov (United States)

    Hoover, Barbara Grambo

    Many factors influence teacher choices concerning the frequency, instructional methods, and content of science teaching. Although the role of gender in science learning has been studied extensively, the gender of elementary teachers as it intersects their teaching of science has not been investigated. In this ethnographic study, I focused on five male preservice elementary teachers as they experienced their student teaching internship, aiming to understand their underlying beliefs about science and science teaching and how those beliefs influenced their practice. In an attempt to illuminate the complex interplay of personality, experience, interests, and gender in the professional lives of these men, this study emphasized the importance of context in the formation and expression of their science beliefs and pedagogy. For this reason, I collected data from a number of sources. From September, 2001 to May, 2002, I observed my participants in their science methods courses and on multiple occasions as they taught science in elementary classrooms in a suburban school district. I reviewed journal entries required for the science methods class and examined documents such as handouts, readings and teacher guides from their elementary teaching experience. I conducted semi-structured and informal interviews. I analyzed data from these sources using grounded theory methodology. Although these five men had many similarities, they differed in their love of science, their exposure to science, their avocational interests, and their views of science pedagogy. This study, however, revealed a unifying theme: each participant had his own set of personal and academic resources that he carried into the classroom and used to construct a distinctive science learning environment. Some of these resources intersect with gender. For example, several men had science-related avocational interests. There was a common emphasis on creating a relaxed, enjoyable, hands-on teaching environment as

  19. Common Earth Science Misconceptions in Science Teaching

    Science.gov (United States)

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…

  20. Being a Scientist While Teaching Science: Implementing Undergraduate Research Opportunities for Elementary Educators

    Science.gov (United States)

    Hock, Emily; Sharp, Zoe

    2016-03-01

    Aspiring teachers and current teachers can gain insight about the scientific community through hands-on experience. As America's standards for elementary school and middle school become more advanced, future and current teachers must gain hands-on experience in the scientific community. For a teacher to be fully capable of teaching all subjects, they must be comfortable in the content areas, equipped to answer questions, and able to pass on their knowledge. Hands-on research experiences, like the Summer Astronomy Research Experience at California Polytechnic University, pair liberal studies students with a cooperative group of science students and instructors with the goal of doing research that benefits the scientific community and deepens the team members' perception of the scientific community. Teachers are then able to apply the basic research process in their classrooms, inspire students to do real life science, and understand the processes scientists' undergo in their workplace.

  1. Third Workshop on Teaching Computational Science (WTCS 2009)

    NARCIS (Netherlands)

    Tirado-Ramos, A.; Shiflet, A.

    2009-01-01

    The Third Workshop on Teaching Computational Science, within the International Conference on Computational Science, provides a platform for discussing innovations in teaching computational sciences at all levels and contexts of higher education. This editorial provides an introduction to the work

  2. Second Workshop on Teaching Computational Science WTCS 2008

    NARCIS (Netherlands)

    Tirado-Ramos, A.

    2008-01-01

    The Second Workshop on Teaching Computational Science, within the International Conference on Computational Science, provides a platform for discussing innovations in teaching computational sciences at all levels and contexts of higher education. This editorial provides an introduction to the work

  3. Teaching Science from Cultural Points of Intersection

    Science.gov (United States)

    Grimberg, Bruna Irene; Gummer, Edith

    2013-01-01

    This study focuses on a professional development program for science teachers near or on American Indian reservations in Montana. This program was framed by culturally relevant pedagogy premises and was characterized by instructional strategies and content foci resulting from the intersection between three cultures: tribal, science teaching, and…

  4. Recent Research in Science Teaching and Learning

    Science.gov (United States)

    Allen, Deborah

    2012-01-01

    This article features recent research in science teaching and learning. It presents three current articles of interest in life sciences education, as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as "Abstract available," full text may be…

  5. Preparing Elementary Mathematics-Science Teaching Specialists.

    Science.gov (United States)

    Miller, L. Diane

    1992-01-01

    Describes a professional development program to train math/science specialists for the upper elementary school grades. Using results from an interest survey, 30 teachers were chosen to participate in a 3-year program to become math/science specialists. Presents the teaching model used and the advantages for teachers and students in having subject…

  6. Teaching Primary Science: How Research Helps

    Science.gov (United States)

    Harlen, Wynne

    2010-01-01

    The very first edition of "Primary Science Review" included an article entitled "Teaching primary science--how research can help" (Harlen, 1986), which announced that a section of the journal would be for reports of research and particularly for teachers reporting their classroom research. The intervening 24 years have seen…

  7. A New Approach to Teaching Science to Elementary Education Majors in Response to the NGSS

    Science.gov (United States)

    Brevik, C.; Daniels, L.; McCoy, C.

    2015-12-01

    The Next Generation Science Standards (NGSS) place an equal emphasis on science process skills and science content. The goal is to have K-12 students "doing" science, not just "learning about" science. However, most traditional college science classes for elementary education majors place a much stronger emphasis on science content knowledge with the hands-on portion limited to a once-a-week lab. The two models of instruction are not aligned. The result is that many elementary school teachers are unprepared to offer interactive science with their students. Without additional coaching, many teachers fall back on the format they learned in college - lecture, handouts, homework. If we want teachers to use more hands-on methods in the classroom, these techniques should be taught to elementary education majors when they are in college. Dickinson State University has begun a collaboration between the Teacher Education Department and the Department of Natural Sciences. The physical science course for elementary education majors has been completely redesigned to focus equally on the needed science content and the science process skills emphasized by the NGSS. The format of the course has been adjusted to more closely mirror a traditional K-5 classroom; the course meets for 50 minutes five days a week. A flipped-classroom model has been adopted to ensure no content is lost, and hands-on activities are done almost every day as new concepts are discussed. In order to judge the effectiveness of these changes, a survey tool was administered to determine if there was a shift in the students' perception of science as an active instead of a passive field of study. The survey also measured the students' comfort-level in offering a hands-on learning environment in their future classrooms and their confidence in their ability to effectively teach science concepts to elementary students. Results from the first year of the study will be presented.

  8. Professional development in college science teaching

    Science.gov (United States)

    Thomas, Aimee Kathryn

    Graduate students earning a doctorate in the sciences historically focus their work on research and not professional development in college science teaching. However, for those who go on to a career in academia, a majority of their time will be dedicated to teaching. During the past few years, graduate teaching assistants (GTAs) have been prepared to teach by attending a daylong workshop that included logistical information, but left pedagogy largely unexplored. Since that time, a seminar has been added to provide an introduction to pedagogical theory and practices and to provide practice teaching in the biological sciences laboratory course. Yet, more pedagogical preparation is needed. This study was conducted to determine if there was a need for a teaching certificate program for doctoral students in the College of Science and Technology (CoST) at The University of Southern Mississippi. The GTA respondents studied set teaching goals that were consistent with faculty members across the country; however, this research went further by finding out how competent the GTAs perceived they were and how much support they perceived they needed with respect to teaching and professional development. The GTAs did not differ in their perceived level of competence based on experience level; however, the less experienced GTAs did perceive they needed more support than the experienced GTAs. To help GTAs develop a skill set that many CoST graduates currently lack, it is recommended that the University provide ample training and supervision. Establishing a certificate program can potentially impact the community in the following ways: (1) the training of GTAs contributes to the academic preparation of future academic professionals who will be teaching in various institutions; (2) GTA training provides professional development and awareness that teaching requires life long professional development; (3) ensuring competent academicians, not only in content but also in pedagogy; (4

  9. Teaching Citizenship in Science Classes at the University of Arizona

    Science.gov (United States)

    Thompson, R. M.; Mangin, K.

    2008-12-01

    credits while teaching young people about marine science and conservation. Classes of elementary and middle school students attend a class field trip to a UA teaching laboratory where they explore a variety of hands-on marine biology centers. Undergraduates facilitate the learning centers and develop new centers for future years of the program. In addition, undergraduates in Marine Discovery do a marine ecology field project during a field trip to the Gulf of California, and present their results as a research poster to their peers. The course is entirely project- based, and helps students to develop informal as well as formal science communication skills. Many outreach programs suffer from loss of funding and lack of sustainability. Marine Discovery's popularity with both UA undergraduates and K-12 teachers has helped sustain it into its sixteenth year.

  10. Teaching Science Fact with Science Fiction

    Science.gov (United States)

    Raham, R. Gary

    2004-01-01

    The literature of science fiction packs up the facts and discoveries of science and runs off to futures filled with both wonders and warnings. Kids love to take the journeys it offers for the thrill of the ride, but they can learn as they travel, too. This book will provide the reader with: (1) an overview of the past 500 years of scientific…

  11. Changing Science Teaching Practice in Early Career Secondary Teaching Graduates

    Science.gov (United States)

    Bartholomew, Rex; Moeed, Azra; Anderson, Dayle

    2011-01-01

    Initial teacher education (ITE) is being challenged internationally to prepare teachers with the understandings needed to teach an increasingly diverse student population. Science teachers need to prepare students with both conceptual and procedural understanding. The challenge is to prioritise a balance in ITE courses between theoretical…

  12. Learning to teach effectively: Science, technology, engineering, and mathematics graduate teaching assistants' teaching self-efficacy

    Science.gov (United States)

    Dechenne, Sue Ellen

    Graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) are important in the teaching of undergraduate students (Golde & Dore, 2001). However, they are often poorly prepared for teaching (Luft, Kurdziel, Roehrig, & Turner, 2004). This dissertation addresses teaching effectiveness in three related manuscripts: (1) A position paper that summarizes the current research on and develops a model of GTA teaching effectiveness. (2) An adaptation and validation of two instruments; GTA perception of teaching training and STEM GTA teaching self-efficacy. (3) A model test of factors that predict STEM GTA teaching self-efficacy. Together these three papers address key questions in the understanding of teaching effectiveness in STEM GTAs including: (a) What is our current knowledge of factors that affect the teaching effectiveness of GTAs? (b) Given that teaching self-efficacy is strongly linked to teaching performance, how can we measure STEM GTAs teaching self-efficacy? (c) Is there a better way to measure GTA teaching training than currently exists? (d) What factors predict STEM GTA teaching self-efficacy? An original model for GTA teaching effectiveness was developed from a thorough search of the GTA teaching literature. The two instruments---perception of training and teaching self-efficacy---were tested through self-report surveys using STEM GTAs from six different universities including Oregon State University (OSU). The data was analyzed using exploratory and confirmatory factor analysis. Using GTAs from the OSU colleges of science and engineering, the model of sources of STEM GTA teaching self-efficacy was tested by administering self-report surveys and analyzed by using OLS regression analysis. Language and cultural proficiency, departmental teaching climate, teaching self-efficacy, GTA training, and teaching experience affect GTA teaching effectiveness. GTA teaching self-efficacy is a second-order factor combined from self

  13. Science at Your Fingertips. Teaching Science.

    Science.gov (United States)

    Leyden, Michael B.

    1993-01-01

    Describes the use of fingerprinting to interest students in the practical applications of science. Teachers can have students fingerprint each other, compare prints, and learn how they are used to solve crimes and find missing children. (MDM)

  14. Impact of SCALE-UP on science teaching self-efficacy of students in general education science courses

    Science.gov (United States)

    Cassani, Mary Kay Kuhr

    The objective of this study was to evaluate the effect of two pedagogical models used in general education science on non-majors' science teaching self-efficacy. Science teaching self-efficacy can be influenced by inquiry and cooperative learning, through cognitive mechanisms described by Bandura (1997). The Student Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) model of inquiry and cooperative learning incorporates cooperative learning and inquiry-guided learning in large enrollment combined lecture-laboratory classes (Oliver-Hoyo & Beichner, 2004). SCALE-UP was adopted by a small but rapidly growing public university in the southeastern United States in three undergraduate, general education science courses for non-science majors in the Fall 2006 and Spring 2007 semesters. Students in these courses were compared with students in three other general education science courses for non-science majors taught with the standard teaching model at the host university. The standard model combines lecture and laboratory in the same course, with smaller enrollments and utilizes cooperative learning. Science teaching self-efficacy was measured using the Science Teaching Efficacy Belief Instrument - B (STEBI-B; Bleicher, 2004). A science teaching self-efficacy score was computed from the Personal Science Teaching Efficacy (PTSE) factor of the instrument. Using non-parametric statistics, no significant difference was found between teaching models, between genders, within models, among instructors, or among courses. The number of previous science courses was significantly correlated with PTSE score. Student responses to open-ended questions indicated that students felt the larger enrollment in the SCALE-UP room reduced individual teacher attention but that the large round SCALE-UP tables promoted group interaction. Students responded positively to cooperative and hands-on activities, and would encourage inclusion of more such activities in all of the

  15. Teaching computer science at school: some ideas

    OpenAIRE

    Bodei, Chiara; Grossi, Roberto; Lagan?, Maria Rita; Righi, Marco

    2010-01-01

    As a young discipline, Computer Science does not rely on longly tested didactic procedures. This allows the experimentation of innovative teaching methods at schools, especially in early childhood education. Our approach is based on the idea that abstracts notions should be gained as the final result of a learning path made of concrete and touchable steps. To illustrate our methodology, we present some of the teaching projects we proposed.

  16. From learning science to teaching science: What transfers?

    Science.gov (United States)

    Harlow, Danielle Boyd

    As educational researchers and teacher educators, we have the responsibility to help teachers gain the skills and knowledge necessary to provide meaningful learning activities for their students. For elementary school science, this means helping teachers create situations in which children can participate in the practices associated with scientific inquiry. Through the framework of transfer I investigated how a professional development course based on an inquiry-based physics curriculum influenced five elementary teachers teaching practices and identified the factors that led to or hindered this transfer. In this study, evidence of transfer consisted of episodes where the teachers used the ideas learned in the physics course to solve new problems such as transforming activities to be appropriate for their students and responding to unexpected students' ideas. The findings of this study highlight the many different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. What the teachers transferred depended upon their existing teaching context as well as their prior ideas about teaching science and physics content. Specifically, the findings of this study suggest that the teachers transferred only what they sought from the course. One implication of this study is that the sort of science training we provide teachers can affect far more than just the teachers' conceptual understanding of science and performance on written conceptual exams. Science courses have the potential to impact the sort of science education that K-5 children receive in elementary classrooms in terms of the topics taught but the way that science is represented. An additional implication is that teaching science to teachers in ways

  17. Hands-On Calculus

    Science.gov (United States)

    Sutherland, Melissa

    2006-01-01

    In this paper we discuss manipulatives and hands-on investigations for Calculus involving volume, arc length, and surface area to motivate and develop formulae which can then be verified using techniques of integration. Pre-service teachers in calculus courses using these activities experience a classroom in which active learning is encouraged and…

  18. Hands-on Humidity.

    Science.gov (United States)

    Pankiewicz, Philip R.

    1992-01-01

    Presents five hands-on activities that allow students to detect, measure, reduce, and eliminate moisture. Students make a humidity detector and a hygrometer, examine the effects of moisture on different substances, calculate the percent of water in a given food, and examine the absorption potential of different desiccants. (MDH)

  19. Hands-On Hydrology

    Science.gov (United States)

    Mathews, Catherine E.; Monroe, Louise Nelson

    2004-01-01

    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  20. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    It makes good sense to conclude that the goal of academic teaching should not be seen in ... the wonderful feeling of the young adult to be free not only for professional training, but also for ... competence which a young engineer would like to offer to society. .... methods, to improve lifetime under rough service conditions;.

  1. Teaching science through video games

    Science.gov (United States)

    Smaldone, Ronald A.; Thompson, Christina M.; Evans, Monica; Voit, Walter

    2017-02-01

    Imagine a class without lessons, tests and homework, but with missions, quests and teamwork. Video games offer an attractive educational platform because they are designed to be fun and engaging, as opposed to traditional approaches to teaching through lectures and assignments.

  2. Educational Experiences in Oceanography through Hands-On Involvement with Surface Drifters: an Introduction to Ocean Currents, Engineering, Data Collection, and Computer Science

    Science.gov (United States)

    Anderson, T.

    2015-12-01

    The Northeast Fisheries Science Center's (NEFSC) Student Drifters Program is providing education opportunities for students of all ages. Using GPS-tracked ocean drifters, various educational institutions can provide students with hands-on experience in physical oceanography, engineering, and computer science. In building drifters many high school and undergraduate students may focus on drifter construction, sometimes designing their own drifter or attempting to improve current NEFSC models. While learning basic oceanography younger students can build drifters with the help of an educator and directions available on the studentdrifters.org website. Once drifters are deployed, often by a local mariner or oceanographic partner, drifter tracks can be visualised on maps provided at http://nefsc.noaa.gov/drifter. With the lesson plans available for those interested in computer science, students may download, process, and plot the drifter position data with basic Python code provided. Drifter tracks help students to visualize ocean currents, and also allow them to understand real particle tracking applications such as in search and rescue, oil spill dispersion, larval transport, and the movement of injured sea animals. Additionally, ocean circulation modelers can use student drifter paths to validate their models. The Student Drifters Program has worked with over 100 schools, several of them having deployed drifters on the West Coast. Funding for the program often comes from individual schools and small grants but in the future will preferably come from larger government grants. NSF, Sea-Grant, NOAA, and EPA are all possible sources of funding, especially with the support of multiple schools and large marine education associations. The Student Drifters Program is a unique resource for educators, students, and scientists alike.

  3. A New Two-Step Approach for Hands-On Teaching of Gene Technology: Effects on Students' Activities During Experimentation in an Outreach Gene Technology Lab

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2011-08-01

    Emphasis on improving higher level biology education continues. A new two-step approach to the experimental phases within an outreach gene technology lab, derived from cognitive load theory, is presented. We compared our approach using a quasi-experimental design with the conventional one-step mode. The difference consisted of additional focused discussions combined with students writing down their ideas (step one) prior to starting any experimental procedure (step two). We monitored students' activities during the experimental phases by continuously videotaping 20 work groups within each approach ( N = 131). Subsequent classification of students' activities yielded 10 categories (with well-fitting intra- and inter-observer scores with respect to reliability). Based on the students' individual time budgets, we evaluated students' roles during experimentation from their prevalent activities (by independently using two cluster analysis methods). Independently of the approach, two common clusters emerged, which we labeled as `all-rounders' and as `passive students', and two clusters specific to each approach: `observers' as well as `high-experimenters' were identified only within the one-step approach whereas under the two-step conditions `managers' and `scribes' were identified. Potential changes in group-leadership style during experimentation are discussed, and conclusions for optimizing science teaching are drawn.

  4. Teaching Planetary Sciences in Bilingual Classrooms

    Science.gov (United States)

    Lebofsky, L. A.; Lebofsky, N. R.

    1993-05-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. It also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80% feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K--3 and 38 minutes per day in 4--6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. Therefore in order to teach earth/space science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. Tucson has another, but not unique, problem. The largest public school district, the Tucson Unified School District (TUSD), provides a neighborhood school system enhanced with magnet, bilingual and special needs schools for a school population of 57,000 students that is 4.1% Native American, 6.0% Black, and 36.0% Hispanic (1991). This makes TUSD and the other school districts in and around Tucson ideal for a program that reaches students of diverse ethnic backgrounds. However, few space sciences materials exist in Spanish; most materials could not be used effectively in the classroom. To address this issue, we have translated NASA materials into Spanish and are conducting a series of workshops for bilingual classroom teachers. We will discuss in detail our bilingual classroom workshops

  5. Teaching Political Science through Memory Work

    Science.gov (United States)

    Jansson, Maria; Wendt, Maria; Ase, Cecilia

    2009-01-01

    In this article, we present the results of a research project where we have tried to elaborate more socially inclusive ways of teaching and learning political science by making use of a specific feminist method of analyzing social relations--memory work. As a method, memory work involves writing and interpreting stories of personal experience,…

  6. Teaching science students to identify entrepreneurial opportunities

    NARCIS (Netherlands)

    Nab, J.

    2015-01-01

    This dissertation describes a research project on teaching science students to identify entrepreneurial opportunities, which is a core competence for entrepreneurs that should be emphasized in education. This research consists of four studies. The first case study aims at finding design strategies

  7. Restructuring Post-School Science Teaching Programmes

    Indian Academy of Sciences (India)

    OFFICE USER

    system available to those passing out of the +2 level in Science stream. II) The first .... University Grants Commission, whole-heartedly supported the ... interdisciplinary curricula and stimulating teaching methods that evoke ... water or electricity supply. .... share with you for inclusiveness, there are several decisions taken by.

  8. Social representations of science and gender in Science teaching

    Directory of Open Access Journals (Sweden)

    Bettina Heerdt

    2017-09-01

    Full Text Available This paper analyzes the Social Representations (SR of teachers regarding the Nature of Science (NoS, gender issues in society, Science and in the teaching context. The theoretical approach is Moscovici’s SR associated to NoS discussions, Science feminist theories and Teaching of Science. A number of twenty-two teachers were part of this research. Data were collected through the filmic record. The lexical analysis was performed using the Alceste software. Four classes were formed: NoS, Gender and women in Science, Gender and teaching context, and Gender and society. In the areas of the teachers’ education, it was not possible to find significant differences in SR. Through empirical data, the distinct argumentation of men and women is noticed. The SR of men, naturalized, discriminatory and of gender issue denial in society and Science, is more forceful than of women. It is necessary, in the initial and continued education, the problematization of gender issues in Science.

  9. How do science centers perceive their role in science teaching?

    DEFF Research Database (Denmark)

    Nielsen, Jan Alexis; Stougaard, Birgitte; Andersen, Beth Wehner

    This poster presents the data of a survey of 11 science centres in the Region of Southern Denmark. The survey is the initial step in a project which aims, on the one hand, to identify the factors which conditions successful learning outcomes of visits to science centres, and, on the other hand...... and teachers. In the present survey we have approached the topic from the perspective of science centres. Needless to say, the science centres’ own perception of their role in science teaching plays a vital role with respect to the successfulness of such visits. The data of our survey suggest that, also from......, to apply this identification so as to guide the interaction of science teachers and science centres. Recent literature on this topic (Rennie et. al. 2003; Falk & Dierking 2000) suggest that stable learning outcomes of such visits require that such visits are (1) prepared in the sense that the teacher has...

  10. Teachers' and Students' Conceptions of Good Science Teaching

    Science.gov (United States)

    Yung, Benny Hin Wai; Zhu, Yan; Wong, Siu Ling; Cheng, Man Wai; Lo, Fei Yin

    2013-01-01

    Capitalizing on the comments made by teachers on videos of exemplary science teaching, a video-based survey instrument on the topic of "Density" was developed and used to investigate the conceptions of good science teaching held by 110 teachers and 4,024 year 7 students in Hong Kong. Six dimensions of good science teaching are identified…

  11. The Teaching Processes of Prospective Science Teachers with Different Levels of Science-Teaching Self-Efficacy Belief

    Science.gov (United States)

    Saka, Mehpare; Bayram, Hale; Kabapinar, Filiz

    2016-01-01

    The concept of self-efficacy, which is an important variable in the teaching process, and how it reflects on teaching have recently been the focus of attention. Therefore, this study deals with the relationship between the science-teaching self-efficacy beliefs of prospective science teachers and their teaching practices. It was conducted with…

  12. A case of learning to teach elementary science: Investigating beliefs, experiences, and tensions

    Science.gov (United States)

    Bryan, Lynn Ann

    This study examines how preservice elementary teacher beliefs and experiences within the context of reflective science teacher education influence the development of professional knowledge. From a cognitive constructivist theoretical perspective, I conducted a case analysis to investigate the beliefs about science teaching and learning held by a preservice teacher (Barbara), identify the tensions she encountered in learning to teach elementary science, understand the frames from which she identified problems of practice, and discern how her experiences influenced the process of reflecting on her own science teaching. From an analysis of interviews, observation, and written documents, I constructed a profile of Barbara's beliefs that consisted of three foundational and three dualistic beliefs about science teaching and learning. Her foundational beliefs concerned: (a) the value of science and science teaching, (b) the nature of scientific concepts and goals of science instruction, and (c) control in the science classroom. Barbara held dualistic beliefs about: (a) how children learn science, (b) the science students' role, and (c) the science teacher's role. The dualistic beliefs formed two contradictory nests of beliefs. One nest, grounded in life-long science learner experiences, reflected a didactic teaching orientation and predominantly guided her practice. The second nest, not well-grounded in experience, embraced a hands-on approach and predominantly guided her vision of practice. Barbara encountered tensions in thinking about science teaching and learning as a result of inconsistencies between her vision of science teaching and her actual practice. Confronting these tensions prompted Barbara to rethink the connections between her classroom actions and students' learning, create new perspectives for viewing her practice, and consider alternative practices more resonant with her visionary beliefs. However, the self-reinforcing belief system created by her

  13. Teaching Science through the Science Technology and Society ...

    African Journals Online (AJOL)

    ... the teaching methods course of all teacher training Programmes and that the science syllabus be reviewed regularly so that it responds to current needs. Relevant authorities need inject more resources towards in-service programmes and come up with legislation on in-service programmes e.g. promotion or salary hikes ...

  14. Learning to teach science in urban schools

    Science.gov (United States)

    Tobin, Kenneth; Roth, Wolff-Michael; Zimmermann, Andrea

    2001-10-01

    Teaching in urban schools, with their problems of violence, lack of resources, and inadequate funding, is difficult. It is even more difficult to learn to teach in urban schools. Yet learning in those locations where one will subsequently be working has been shown to be the best preparation for teaching. In this article we propose coteaching as a viable model for teacher preparation and the professional development of urban science teachers. Coteaching - working at the elbow of someone else - allows new teachers to experience appropriate and timely action by providing them with shared experiences that become the topic of their professional conversations with other coteachers (including peers, the cooperating teacher, university supervisors, and high school students). This article also includes an ethnography describing the experiences of a new teacher who had been assigned to an urban high school as field experience, during which she enacted a curriculum that was culturally relevant to her African American students, acknowledged their minority status with respect to science, and enabled them to pursue the school district standards. Even though coteaching enables learning to teach and curricula reform, we raise doubts about whether our approaches to teacher education and enacting science curricula are hegemonic and oppressive to the students we seek to emancipate through education.

  15. Changes in Preservice Elementary Teachers' Personal Science Teaching Efficacy and Science Teaching Outcome Expectancies: The Influence of Context

    Science.gov (United States)

    Hechter, Richard P.

    2011-01-01

    This study investigated contextual changes in perceptions of science teaching self-efficacy through pre-, post- and retrospective administrations of the Science Teaching Expectancy Belief Instrument (STEBI-B) among preservice elementary teachers when exposed to a science teaching methods course. Findings revealed that the number of postsecondary…

  16. Teaching with Moodle in Soil Science

    Science.gov (United States)

    Roca, Núria

    2014-05-01

    Soil is a 3-dimensional body with properties that reflect the impact of climate, vegetation, fauna, man and topography on the soil's parent material over a variable time span. Therefore, soil is integral to many ecological and social systems and it holds potential solutions for many of the world's economic and scientific problems as climate change or scarcity of food and water. The teaching of Soil Science, as a natural science in its own right, requires principles that reflect the unique features and behaviour of soil and the practices of soil scientists. It could be argued that a unique set of teaching practices applies to Soil Science; however specific teaching practices are scarce in literature. The present work was triggered by the need to develop new techniques of teaching to speed up the learning process and to experiment with new methods of teaching. For such, it is necessary to adopt virtual learning environment to new learning requirements regarding Soil Science. This paper proposes a set of e-teaching techniques (as questionnaires, chats as well as forums) introduced in Moodle virtual learning Environment in order to increase student motivation and interest in Soil Science. Such technologies can be used to: a)Increase the amount of time a teacher allots for student reflection after asking a question and before a student responds (wait-time). This practice increases the quantity and quality of students' answers. The students give longer responses, students give more evidence for their ideas and conclusions, students speculate and hypothesize more and more students participated in responding. Furthermore, students ask more questions and talk more to other students. b)Improve active learning, an essential paradigm in education. In contrast to learning-before-doing, we propose to focus on learning-in-doing, a model where learners are increasingly involved in the authentic practices of communities through learning conversations and activities involving expert

  17. Using Calendars to Teach Science

    Directory of Open Access Journals (Sweden)

    Eric A. Kincanon

    2017-07-01

    Full Text Available This paper considers the use of calendar construction as an activity for 5th through 8th graders to reinforce science and mathematics concepts. The fundamental cyclic nature of many processes makes it possible to posit alternatives to the modern calendar. Students, in constructing their own calendars, will better appreciate the scientific basis of the modern calendar as well as the cyclic nature of the processes considered in the construction of alternatives. This enhances STEM skills by requiring the students to apply creative mathematical and scientific solutions to a real world problem: tracking cyclic time.

  18. Recruiting Science Majors into Secondary Science Teaching: Paid Internships in Informal Science Settings

    Science.gov (United States)

    Worsham, Heather M.; Friedrichsen, Patricia; Soucie, Marilyn; Barnett, Ellen; Akiba, Motoko

    2014-01-01

    Despite the importance of recruiting highly qualified individuals into the science teaching profession, little is known about the effectiveness of particular recruitment strategies. Over 3 years, 34 college science majors and undecided students were recruited into paid internships in informal science settings to consider secondary science teaching…

  19. Art: ally or tool in science teaching?

    Directory of Open Access Journals (Sweden)

    Fernando Cesar Ferreira

    2012-10-01

    Full Text Available We know that art and science have influenced one another over the centuries. As an example, in the nineteenth century, the poets of the Romantic movement portrayed in some of their most beautiful poems the anguish they felt facing the development of thermodynamics and the possibility of heat death of the universe. In recent years different methodological possibilities have been put in evidence in science education: experimenting with low cost materials, history of science, virtual environments, among others. We believe that the art in this process has played an important role, but still marginal, because, as well as science, it also produces knowledge about reality. However, their potential is perceived more as a tool for teaching rather than as an active participant in building relationships and about the nature of humankind.

  20. Tips and Tools for Teaching Planetary Science

    Science.gov (United States)

    Schneider, N. M.

    2011-10-01

    The poster will describe handson exercises with demonstrations, clicker questions and discussion to demonstrate how to help students understand planets on a deeper conceptual level. We'll also discuss ways to take the latest discoveries beyond "wow" and turn them into teachable moments. The goal is to give modern strategies for teaching planetary science, emphasizing physical concepts and comparative principles. All will be given digital copies of video clips, demonstration descriptions, clicker questions, web links and powerpoint slidesets on recent planetary science discoveries.

  1. Taking a Scientific Approach to Science Teaching

    Science.gov (United States)

    Pollock, S.

    2011-09-01

    It is now well-documented that traditionally taught, large-scale introductory science courses often fail to teach our students the basics. In fact, these same courses have been found to teach students things we don't intend. Building on a tradition of research, the physics and astronomy education research communities have been investigating the effects of educational reforms at the undergraduate level for decades. Both within these scientific communities and in the fields of education, cognitive science, psychology, and other social sciences, we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students. This presentation will discuss a variety of effective classroom practices, (with an emphasis on peer instruction, "clickers," and small group activities), the surrounding educational structures, and examine assessments which indicate when and why these do (and sometimes do not) work. After a broad survey of education research, we will look at some of the exciting theoretical and experimental developments within this field that are being conducted at the University of Colorado. Throughout, we will consider research and practices that can be of value in both physics and astronomy classes, as well as applications to teaching in a variety of environments.

  2. Investigating Your School's Science Teaching and Learning Culture

    Science.gov (United States)

    Sato, Mistilina; Bartiromo, Margo; Elko, Susan

    2016-01-01

    The authors report on their work with the Academy for Leadership in Science Instruction, a program targeted to help science teachers promote a science teaching and learning culture in their own schools.

  3. Hands on exotics

    Science.gov (United States)

    Sandy. Bivens

    1998-01-01

    To lead, teach, rear, bring up, instruct, train, show, inform, guide, direct, inspire, and foster expansion of knowledge-that is education. Environmental education has been defined as the interdisciplinary process of developing a citizenry that is knowledgeable about the total environment, including both its natural and built aspects, that has the capacity and the...

  4. Pre-Service Teachers’ Attitudes Toward Teaching Science and Their Science Learning at Indonesia Open University

    Directory of Open Access Journals (Sweden)

    Nadi SUPRAPTO

    2017-10-01

    Full Text Available This study focuses on attitudes toward (teaching science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs from the Open University in Surabaya regional office. Attitudes toward (teaching science’ (ATS instrument was used to portray PSTs’ preparation for becoming primary school teachers. Data analyses were used, including descriptive analysis and confirmatory factor analysis. The model fit of the attitudes toward (teaching science can be described from seven dimensions: self-efficacy for teaching science, the relevance of teaching science, gender-stereotypical beliefs, anxiety in teaching science, the difficulty of teaching science, perceived dependency on contextual factors, and enjoyment in teaching science. The results of the research also described science learning at the Open University of Indonesia looks like. Implications for primary teacher education are discussed.

  5. Popular Science Articles for Chemistry Teaching

    Directory of Open Access Journals (Sweden)

    Ketevan Kupatadze

    2017-07-01

    Full Text Available The presented paper reviews popular science articles (these articles are published in online magazine “The Teacher” as one of the methods of chemistry teaching. It describes which didactic principles they are in line with and how this type of articles can be used in order to kindle the interest of pupils, students and generally, the readers of other specialties, in chemistry.  The articles review the main topics of inorganic/organic chemistry, biochemistry and ecological chemistry in a simple and entertaining manner. A part of the articles is about "household" chemistry. Chemical topics are related to poetry, literature, history of chemistry or simply, to fun news. The paper delineates the structure of popular science articles and the features of engaging students. It also reviews the teachers' and students' interview results about the usage of popular science articles in chemistry teaching process. The aforementioned pedagogical study revealed that the popular science articles contain useful information not only for the students of other specialties, but also for future biologists and ecologists (having chemistry as a mandatory subject at their universities. The articles are effectively used by teachers on chemistry lessons to kindle students' interest in this subject. DOI: http://dx.doi.org/10.17807/orbital.v9i3.960 

  6. Collaborative activities for improving the quality of science teaching and learning and learning to teach science

    Science.gov (United States)

    Tobin, Kenneth

    2012-03-01

    I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.

  7. Teaching Science as Science Is Practiced: Opportunities and Limits for Enhancing Preservice Elementary Teachers' Self-Efficacy for Science and Science Teaching

    Science.gov (United States)

    Avery, Leanne M.; Meyer, Daniel Z.

    2012-01-01

    Science teaching in elementary schools, or the lack thereof, continues to be an area of concern and criticism. Preservice elementary teachers' lack of confidence in teaching science is a major part of this problem. In this mixed-methods study, we report the impacts of an inquiry-based science course on preservice elementary teachers' self-efficacy…

  8. Science student teacher's perceptions of good teaching | Setlalentoa ...

    African Journals Online (AJOL)

    Science student teacher's perceptions of good teaching. ... of 50 senior students enrolled in the Bachelor of Education (Further Education and Training ... and teaching strategies employed are perceived to influence what students perceived as ...

  9. Americans aim to overhaul science teaching by 2061

    CERN Document Server

    1990-01-01

    Project 2061 is a long-term initiative by the AAAS to reform classroom science. Deputy director Walter Gillespie claims that the aim is for schools to teach less content but teach it better (1/2 page).

  10. Quality Teaching in Science: an Emergent Conceptual Framework

    Science.gov (United States)

    Jordens, J. Zoe; Zepke, Nick

    2017-09-01

    Achieving quality in higher education is a complex task involving the interrelationship of many factors. The influence of the teacher is well established and has led to some general principles of good teaching. However, less is known about the extent that specific disciplines influence quality teaching. The purposes of the paper are to investigate how quality teaching is perceived in the sciences and from these perceptions to develop for discussion a framework for teaching practice in the sciences. A New Zealand study explored the views of national teaching excellence award winners in science on quality teaching in undergraduate science. To capture all possible views from this expert panel, a dissensus-recognising Delphi method was used together with sensitising concepts based on complexity and wickedity. The emergent conceptual framework for quality teaching in undergraduate science highlighted areas of consensus and areas where there were a variety of views. About the purposes of science and its knowledge base, there was relative consensus, but there was more variable support for values underpinning science teaching. This highlighted the complex nature of quality teaching in science. The findings suggest that, in addition to general and discipline-specific influences, individual teacher values contribute to an understanding of quality in undergraduate science teaching.

  11. Urban High School Teachers' Beliefs Concerning Essential Science Teaching Dispositions

    Science.gov (United States)

    Miranda, Rommel

    2012-01-01

    This qualitative study addresses the link between urban high school science teachers' beliefs about essential teaching dispositions and student learning outcomes. The findings suggest that in order to help students to do well in science in urban school settings, science teachers should possess essential teaching dispositions which include…

  12. Caught in the Balance: An Organizational Analysis of Science Teaching in Schools with Elementary Science Specialists

    Science.gov (United States)

    Marco-Bujosa, Lisa M.; Levy, Abigail Jurist

    2016-01-01

    Elementary schools are under increasing pressure to teach science and teach it well; yet, research documents that classroom teachers must overcome numerous personal and school-based challenges to teach science effectively at this level, such as access to materials and inadequate instructional time. The elementary science specialist model…

  13. Project TIMS (Teaching Integrated Math/Science)

    Science.gov (United States)

    Edwards, Leo, Jr.

    1993-01-01

    The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.

  14. Science in Cinema. Teaching Science Fact through Science Fiction Films.

    Science.gov (United States)

    Dubeck, Leroy W.; And Others

    Many feel that secondary school graduates are not prepared to compete in a world of rapidly expanding technology. High school and college students in the United States often prefer fantasy to science. This book offers a strategy for overcoming student apathy toward the physical sciences by harnessing the power of the cinema. In it, ten popular…

  15. Pedagogy of Science Teaching Tests: Formative assessments of science teaching orientations

    Science.gov (United States)

    Cobern, William W.; Schuster, David; Adams, Betty; Skjold, Brandy Ann; Zeynep Muğaloğlu, Ebru; Bentz, Amy; Sparks, Kelly

    2014-09-01

    A critical aspect of teacher education is gaining pedagogical content knowledge of how to teach science for conceptual understanding. Given the time limitations of college methods courses, it is difficult to touch on more than a fraction of the science topics potentially taught across grades K-8, particularly in the context of relevant pedagogies. This research and development work centers on constructing a formative assessment resource to help expose pre-service teachers to a greater number of science topics within teaching episodes using various modes of instruction. To this end, 100 problem-based, science pedagogy assessment items were developed via expert group discussions and pilot testing. Each item contains a classroom vignette followed by response choices carefully crafted to include four basic pedagogies (didactic direct, active direct, guided inquiry, and open inquiry). The brief but numerous items allow a substantial increase in the number of science topics that pre-service students may consider. The intention is that students and teachers will be able to share and discuss particular responses to individual items, or else record their responses to collections of items and thereby create a snapshot profile of their teaching orientations. Subsets of items were piloted with students in pre-service science methods courses, and the quantitative results of student responses were spread sufficiently to suggest that the items can be effective for their intended purpose.

  16. In-Service Turkish Elementary and Science Teachers' Attitudes toward Science and Science Teaching: A Sample from Usak Province

    Science.gov (United States)

    Turkmen, Lutfullah

    2013-01-01

    The purpose of this study is to reveal Turkish elementary teachers' and science teachers' attitudes toward science and science teaching. The sample of the study, 138 in-service elementary level science teachers from a province of Turkey, was selected by a clustered sampling method. The Science Teaching Attitude Scale-II was employed to measure the…

  17. The effect of electronic networking on preservice elementary teachers' science teaching self-efficacy and attitude towards science teaching

    Science.gov (United States)

    Mathew, Nishi Mary

    Preservice elementary teachers' science teaching efficacy and attitude towards science teaching are important determinants of whether and how they will teach science in their classrooms. Preservice teachers' understanding of science and science teaching experiences have an impact on their beliefs about their ability to teach science. This study had a quasi-experimental pretest-posttest control group design (N = 60). Preservice elementary teachers in this study were networked through the Internet (using e-mail, newsgroups, listserv, world wide web access and electronic mentoring) during their science methods class and student practicum. Electronic networking provides a social context in which to learn collaboratively, share and reflect upon science teaching experiences and practices, conduct tele-research effectively, and to meet the demands of student teaching through peer support. It was hoped that the activities over the electronic networks would provide them with positive and helpful science learning and teaching experiences. Self-efficacy was measured using a 23-item Likert scale instrument, the Science Teaching Efficacy Belief Instrument, Form-B (STEBI-B). Attitude towards science teaching was measured using the Revised Science Attitude Scale (RSAS). Analysis of covariance was used to analyze the data, with pretest scores as the covariate. Findings of this study revealed that prospective elementary teachers in the electronically networked group had better science teaching efficacy and personal science teaching efficacy as compared to the non-networked group of preservice elementary teachers. The science teaching outcome expectancy of prospective elementary teachers in the networked group was not greater than that of the prospective teachers in the non-networked group (at p < 0.05). Attitude towards science teaching was not significantly affected by networking. However, this is surmised to be related to the duration of the study. Information about the

  18. Derivation and Implementation of a Model Teaching the Nature of Science Using Informal Science Education Venues

    Science.gov (United States)

    Spector, Barbara S.; Burkett, Ruth; Leard, Cyndy

    2012-01-01

    This paper introduces a model for using informal science education venues as contexts within which to teach the nature of science. The model was initially developed to enable university education students to teach science in elementary schools so as to be consistent with "National Science Education Standards" (NSES) (1996) and "A Framework for…

  19. Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses

    Science.gov (United States)

    Menon, Deepika; Sadler, Troy D.

    2018-01-01

    Self-efficacy beliefs play a major role in determining teachers' science teaching practices and have been a topic of great interest in the area of preservice science teacher education. This qualitative study investigated factors that influenced preservice elementary teachers' science teaching self-efficacy beliefs in a physical science content…

  20. Using food as a tool to teach science to 3 grade students in Appalachian Ohio.

    Science.gov (United States)

    Duffrin, Melani W; Hovland, Jana; Carraway-Stage, Virginia; McLeod, Sara; Duffrin, Christopher; Phillips, Sharon; Rivera, David; Saum, Diana; Johanson, George; Graham, Annette; Lee, Tammy; Bosse, Michael; Berryman, Darlene

    2010-04-01

    The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. In 2007-2008, a foods curriculum developed by professionals in nutrition and education was implemented in 10 3(rd)-grade classrooms in Appalachian Ohio; teachers in these classrooms implemented 45 hands-on foods activities that covered 10 food topics. Subjects included measurement; food safety; vegetables; fruits; milk and cheese; meat, poultry, and fish; eggs; fats; grains; and meal management. Students in four other classrooms served as the control group. Mainstream 3(rd)-grade students were targeted because of their receptiveness to the subject matter, science standards for upper elementary grades, and testing that the students would undergo in 4(th) grade. Teachers and students alike reported that the hands-on FoodMASTER curriculum experience was worthwhile and enjoyable. Our initial classroom observation indicated that the majority of students, girls and boys included, were very excited about the activities, became increasingly interested in the subject matter of food, and were able to conduct scientific observations.

  1. Is Teaching Neoclassical Economics as "the" Science of Economics Moral?

    Science.gov (United States)

    Parvin, Manoucher

    1992-01-01

    Discusses the morality of teaching neoclassical theory as the only science of economics. Argues that the teaching of neoclassical theory violates moral principles unless each and every attribute of neoclassical theory is proven superior to corresponding attributes of competing theories. Criticizes neoclassical economics for teaching what rather…

  2. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-01-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an…

  3. How Constructivist-Based Teaching Influences Students Learning Science

    Science.gov (United States)

    Seimears, C. Matt; Graves, Emily; Schroyer, M. Gail; Staver, John

    2012-01-01

    The purpose of this article is to provide details about the beneficial processes the constructivist pedagogy has in the area of teaching science. No Child Left Behind could possibly cause detrimental effects to the science classroom and the constructivist teacher, so this essay tells how constructivist-based teaching influences students and their…

  4. New Pedagogies on Teaching Science with Computer Simulations

    Science.gov (United States)

    Khan, Samia

    2011-01-01

    Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…

  5. Iconic Gestures as Undervalued Representations during Science Teaching

    Science.gov (United States)

    Chue, Shien; Lee, Yew-Jin; Tan, Kim Chwee Daniel

    2015-01-01

    Iconic gestures that are ubiquitous in speech are integral to human meaning-making. However, few studies have attempted to map out the role of these gestures in science teaching. This paper provides a review of existing literature in everyday communication and education to articulate potential contributions of iconic gestures for science teaching.…

  6. On Teaching the Nature of Science: Perspectives and Resources

    Science.gov (United States)

    Radloff, Jeffrey

    2016-01-01

    In this paper, I present a critical review of the recent book, "On Teaching the Nature of Science: Perspectives and Resources," written by Douglas Allchin (2013). This publication presents an in-depth examination of the nature of science construct, as well as instruction for educators about how to teach it effectively utilizing…

  7. A Graduate Teaching Assistant Workshop in a Faculty of Science

    Science.gov (United States)

    Harris, Dik; McEwen, Laura April

    2009-01-01

    This article describes the design and implementation of a workshop on teaching and learning for graduate teaching assistants (GTAs) in a Faculty of Science at a major Canadian research-intensive university. The approach borrows heavily from an existing successful workshop for faculty but is tailored specifically to the needs of GTAs in science in…

  8. Teaching Climate Science in Non-traditional Classrooms

    Science.gov (United States)

    Strybos, J.

    2015-12-01

    San Antonio College is the oldest, largest and centrally-located campus of Alamo Colleges, a network of five community colleges based around San Antonio, Texas with a headcount enrollment of approximately 20,000 students. The student population is diverse in ethnicity, age and income; and the Colleges understand that they play a salient role in educating its students on the foreseen impacts of climate change. This presentation will discuss the key investment Alamo Colleges has adopted to incorporate sustainability and climate science into non-traditional classrooms. The established courses that cover climate-related course material have historically had low enrollments. One of the most significant challenges is informing the student population of the value of this class both in their academic career and in their personal lives. By hosting these lessons in hands-on simulations and demonstrations that are accessible and understandable to students of any age, and pursuing any major, we have found an exciting way to teach all students about climate change and identify solutions. San Antonio College (SAC) hosts the Bill R. Sinkin Eco Centro Community Center, completed in early 2014, that serves as an environmental hub for Alamo Colleges' staff and students as well as the San Antonio community. The center actively engages staff and faculty during training days in sustainability by presenting information on Eco Centro, personal sustainability habits, and inviting faculty to bring their classes for a tour and sustainability primer for students. The Centro has hosted professors from diverse disciplines that include Architecture, Psychology, Engineering, Science, English, Fine Arts, and International Studies to bring their classes to center to learn about energy, water conservation, landscaping, and green building. Additionally, Eco Centro encourages and assists students with research projects, including a solar-hydroponic project currently under development with the support

  9. Teaching Tomorrow: A Handbook of Science Fiction for Teachers.

    Science.gov (United States)

    Calkins, Elizabeth; McGhan, Barry

    Science Fiction appeals to young people and is suited for use in a wide range of classrooms. This handbook of Science Fiction for Teachers suggests ways of using Science Fiction to teach literature and English skills. Study guides based on two Science Fiction stories are presented, with activities such as individual papers and small group…

  10. Science Teaching Methods Preferred by Grade 9 Students in Finland

    Science.gov (United States)

    Juuti, Kalle; Lavonen, Jari; Uitto, Anna; Byman, Reijo; Meisalo, Veijo

    2010-01-01

    Students find science relevant to society, but they do not find school science interesting. This survey study analyzes Finnish grade 9 students' actual experiences with science teaching methods and their preferences for how they would like to study science. The survey data were collected from 3,626 grade 9 students (1,772 girls and 1,832 boys)…

  11. The Role of Research on Science Teaching and Learning

    Science.gov (United States)

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Research on science teaching and learning plays an important role in improving science literacy, a goal called for in the National Science Education Standards (NRC 1996) and supported by the National Science Teachers Association (NSTA 2003). NSTA promotes a research agenda that is focused on the goal of enhancing student learning through effective…

  12. Highly qualified does not equal high quality: A study of urban stakeholders' perceptions of quality in science teaching

    Science.gov (United States)

    Miranda, Rommel Joseph

    By employing qualitative methods, this study sought to determine the perceptions that urban stakeholders hold about what characteristics should distinguish a high school science teacher whom they would consider to demonstrate high quality in science teaching. A maximum variation sample of six science teachers, three school administrators, six parents and six students from a large urban public school district were interviewed using semi-structured, in-depth interview techniques. From these data, a list of observable characteristics which urban stakeholders hold as evidence of high quality in science teaching was generated. Observational techniques were utilized to determine the extent to which six urban high school science teachers, who meet the NCLB Act criteria for being "highly qualified", actually possessed the characteristics which these stakeholders hold as evidence of high quality in science teaching. Constant comparative analysis was used to analyze the data set. The findings suggest that urban stakeholders perceive that a high school science teacher who demonstrates high quality in science teaching should be knowledgeable about their subject matter, their student population, and should be resourceful; should possess an academic background in science and professional experience in science teaching; should exhibit professionalism, a passion for science and teaching, and a dedication to teaching and student learning; should be skillful in planning and preparing science lessons and in organizing the classroom, in presenting the subject matter to students, in conducting a variety of hands-on activities, and in managing a classroom; and should assess whether students complete class goals and objectives, and provide feedback about grades for students promptly. The findings further reveal that some of the urban high school science teachers who were deemed to be "highly qualified", as defined by the NCLB Act, engaged in practices that threatened quality in science

  13. The Relationship between Multiple Intelligences with Preferred Science Teaching and Science Process Skills

    Directory of Open Access Journals (Sweden)

    Mohd Ali Samsudin

    2015-02-01

    Full Text Available This study was undertaken to identify the relationship between multiple intelligences with preferred science teaching and science process skills. The design of the study is a survey using three questionnaires reported in the literature: Multiple Intelligences Questionnaire, Preferred Science Teaching Questionnaire and Science Process Skills Questionnaire. The study selected 300 primary school students from five (5 primary schools in Penang, Malaysia. The findings showed a relationship between kinesthetic, logical-mathematical, visual-spatial and naturalistic intelligences with the preferred science teaching. In addition there was a correlation between kinesthetic and visual-spatial intelligences with science process skills, implying that multiple intelligences are related to science learning.

  14. Shoring Up Math and Science in the Elementary Grades: Schools Enlist Specialists to Teach Science Lessons

    Science.gov (United States)

    Jacobson, Linda

    2004-01-01

    As science gets squeezed in the elementary curriculum, at least two Florida districts are trying a new approach to keeping hands-on lessons a part of pupils' experiences. This article reports how Broward and Palm Beach county districts have increased the number of science specialists working in their elementary schools--teachers who, like physical…

  15. Integration of ICT Methods for Teaching Science and Astronomy to Students and Teachers

    Science.gov (United States)

    Ghosh, Sumit; Chary, Naveen; Raghavender, G.; Aslam, Syed

    All children start out as scientist, full of curiosity and questions about the world, but schools eventually destroy their curiosity. In an effective teaching and learning process, the most challenging task is to motivate the students. As the science subjects are more abstract and complex, the job of teachers become even more daunting. We have devised an innovative idea of integrating ICT methods for teaching space science to students and teachers. In a third world country like India, practical demonstrations are given less importance and much emphasis is on theoretical aspects. Even the teachers are not trained or aware of the basic concepts. With the intention of providing the students and as well as the teachers more practical, real-time situations, we have incorporated innovative techniques like video presentation, animations, experimental models, do-yourself-kits etc. In addition to these we provide hands on experience on some scientific instruments like telescope, Laser. ICT has the potential to teach complex science topics to students and teachers in a safe environment and cost effective manner. The students are provided with a sense of adventure, wherein now they can manipulate parameters, contexts and environment and can try different scenarios and in the process they not only learn science but also the content and also the reasoning behind the content. The response we have obtained is very encouraging and students as well as teachers have acknowledged that they have learnt new things, which up to now they were ignorant of.

  16. Innovative Methods of Teaching Science and Engineering in Secondary Schools

    Directory of Open Access Journals (Sweden)

    Nathan BALASUBRAMANIAN

    2006-12-01

    Full Text Available This article describes the design of an interactive learning environment to increase student achievement in middle schools by addressing students' preconceptions, and promoting purposeful social collaboration, distributed cognition, and contextual learning. The paper presents the framework that guided our design efforts to immerse all students in a progression of guided-inquiry hands-on activities. Students find compelling reasons to learn by responding to authentic science-based challenges, both in simulations and hands-on activities, based on specific instructional objectives from the national standards.

  17. Preservice Science Teacher Beliefs about Teaching and the Science Methods Courses: Exploring Perceptions of Microteaching Outcomes

    Science.gov (United States)

    McLaury, Ralph L.

    2011-01-01

    This study investigates beliefs about teaching held by preservice science teachers and their influences on self-perceived microteaching outcomes within interactive secondary science teaching methods courses. Hermeneutic methodology was used in cooperation with seven preservice science teachers (N = 7) to infer participant beliefs about teaching…

  18. Turkish Preservice Science Teachers' Socioscientific Issues-Based Teaching Practices in Middle School Science Classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Topçu, Mustafa Sami

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle…

  19. Facilitating Elementary Science Teachers' Implementation of Inquiry-Based Science Teaching

    Science.gov (United States)

    Qablan, Ahmad M.; DeBaz, Theodora

    2015-01-01

    Preservice science teachers generally feel that the implementation of inquiry-based science teaching is very difficult to manage. This research project aimed at facilitating the implementation of inquiry-based science teaching through the use of several classroom strategies. The evaluation of 15 classroom strategies from 80 preservice elementary…

  20. Science That Matters: Exploring Science Learning and Teaching in Primary Schools

    Science.gov (United States)

    Fitzgerald, Angela; Smith, Kathy

    2016-01-01

    To help support primary school students to better understand why science matters, teachers must first be supported to teach science in ways that matter. In moving to this point, this paper identifies the dilemmas and tensions primary school teachers face in the teaching of science. The balance is then readdressed through a research-based…

  1. The ontology of science teaching in the neoliberal era

    Science.gov (United States)

    Sharma, Ajay

    2017-12-01

    Because of ever stricter standards of accountability, science teachers are under an increasing and unrelenting pressure to demonstrate the effects of their teaching on student learning. Econometric perspectives of teacher quality have become normative in assessment of teachers' work for accountability purposes. These perspectives seek to normalize some key ontological assumptions about teachers and teaching, and thus play an important role in shaping our understanding of the work science teachers do as teachers in their classrooms. In this conceptual paper I examine the ontology of science teaching as embedded in econometric perspectives of teacher quality. Based on Foucault's articulation of neoliberalism as a discourse of governmentality in his `The Birth of Biopolitics' lectures, I suggest that this ontology corresponds well with the strong and substantivist ontology of work under neoliberalism, and thus could potentially be seen as reflection of the influence of neoliberal ideas in education. Implications of the mainstreaming of an ontology of teaching that is compatible with neoliberalism can be seen in increasing marketization of teaching, `teaching evangelism', and impoverished notions of learning and teaching. A shift of focus from teacher quality to quality of teaching and building conceptual models of teaching based on relational ontologies deserve to be explored as important steps in preserving critical and socially just conceptions of science teaching in neoliberal times.

  2. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  3. Newly qualified teachers' visions of science learning and teaching

    Science.gov (United States)

    Roberts, Deborah L.

    2011-12-01

    This study investigated newly qualified teachers' visions of science learning and teaching. The study also documented their preparation in an elementary science methods course. The research questions were: What educational and professional experiences influenced the instructor's visions of science learning and teaching? What visions of science learning and teaching were promoted in the participants' science methods course? What visions of science learning and teaching did these newly qualified teachers bring with them as they graduated from their teacher preparation program? How did these visions compare with those advocated by reform documents? Data sources included participants' assignments, weekly reflections, and multi-media portfolio finals. Semi-structured interviews provided the emic voice of participants, after graduation but before they had begun to teach. These data were interpreted via a combination of qualitative methodologies. Vignettes described class activities. Assertions supported by excerpts from participants' writings emerged from repeated review of their assignments. A case study of a typical participant characterized weekly reflections and final multi-media portfolio. Four strands of science proficiency articulated in a national reform document provided a framework for interpreting activities, assignments, and interview responses. Prior experiences that influenced design of the methods course included an inquiry-based undergraduate physics course, participation in a reform-based teacher preparation program, undergraduate and graduate inquiry-based science teaching methods courses, participation in a teacher research group, continued connection to the university as a beginning teacher, teaching in diverse Title 1 schools, service as the county and state elementary science specialist, participation in the Carnegie Academy for the Scholarship of Teaching and Learning, service on a National Research Council committee, and experience teaching a

  4. Jordanian Preservice Primary Teachers' Perceptions of Mentoring in Science Teaching

    Science.gov (United States)

    Abed, Osama H.; Abd-El-Khalick, Fouad

    2015-03-01

    Quality mentoring is fundamental to preservice teacher education because of its potential to help student and novice teachers develop the academic and pedagogical knowledge and skills germane to successful induction into the profession. This study focused on Jordanian preservice primary teachers' perceptions of their mentoring experiences as these pertain to science teaching. The Mentoring for Effective Primary Science Teaching instrument was administered to 147 senior preservice primary teachers in a university in Jordan. The results indicated that the greater majority of participants did not experience effective mentoring toward creating a supportive and reflexive environment that would bolster their confidence in teaching science; further their understanding of primary science curriculum, and associated aims and school policies; help with developing their pedagogical knowledge; and/or furnish them with specific and targeted feedback and guidance to help improve their science teaching. Substantially more participants indicated that their mentors modeled what they perceived to be effective science teaching. The study argues for the need for science-specific mentoring for preservice primary teachers, and suggests a possible pathway for achieving such a model starting with those in-service primary teachers-much like those identified by participants in the present study-who are already effective in their science teaching.

  5. Teaching secondary science constructing meaning and developing understanding

    CERN Document Server

    Ross, Keith; McKechnie, Janet

    2010-01-01

    Now fully updated in its third edition Teaching Secondary Science is a comprehensive guide to all aspects of science teaching, providing a wealth of information and ideas about different approaches. With guidance on how children understand scientific ideas and the implications this has on teaching, teachers are encouraged to construct their own meanings and become reflective in their practice. Relating science to government agendas, such as the National Strategies, Assessment for Learning and Every Child Matters, this new edition reflects and maps to changes in national standards. Ke

  6. Interaction between Science Teaching Orientation and Pedagogical Content Knowledge Components

    Science.gov (United States)

    Demirdögen, Betül

    2016-01-01

    The purpose of this case study is to delve into the complexities of how preservice science teachers' science teaching orientations, viewed as an interrelated set of beliefs, interact with the other components of pedagogical content knowledge (PCK). Eight preservice science teachers participated in the study. Qualitative data were collected in the…

  7. Creative Science Teaching Labs: New Dimensions in CPD

    Science.gov (United States)

    Chappell, Kerry; Craft, Anna

    2009-01-01

    This paper offers analysis and evaluation of "Creative Science Teaching (CST) Labs III", a unique and immersive approach to science teachers' continuing professional development (CPD) designed and run by a London-based organisation, Performing Arts Labs (PAL), involving specialists from the arts, science and technology as integral. Articulating…

  8. What Science Teaching Looks Like: An International Perspective

    Science.gov (United States)

    Roth, Kathleen; Garnier, Helen

    2007-01-01

    Using the Trends in International Mathematics and Science (TIMSS) video study, the authors compare science teaching practices in the United States and in four other countries that outperformed the United States: Australia, the Czech Republic, Japan, and the Netherlands. Their observations of videotapes from 100 8th-grade science lessons in each…

  9. New Pathways for Teaching Chemistry: Reflective Judgment in Science.

    Science.gov (United States)

    Finster, David C.

    1992-01-01

    The reflective judgment model offers a rich context for analysis of science and science teaching. It provides deeper understanding of the scientific process and its critical thinking and reveals fundamental connections between science and the other liberal arts. Classroom techniques from a college chemistry course illustrate the utility of the…

  10. My Science Is Better than Your Science: Conceptual Change as a Goal in Teaching Science Majors Interested in Teaching Careers about Education

    Science.gov (United States)

    Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.

    2018-01-01

    We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…

  11. Science Thought and Practices: A Professional Development Workshop on Teaching Scientific Reasoning, Mathematical Modeling and Data Analysis

    Science.gov (United States)

    Robbins, Dennis; Ford, K. E. Saavik

    2018-01-01

    The NSF-supported “AstroCom NYC” program, a collaboration of the City University of New York and the American Museum of Natural History (AMNH), has developed and offers hands-on workshops to undergraduate faculty on teaching science thought and practices. These professional development workshops emphasize a curriculum and pedagogical strategies that uses computers and other digital devices in a laboratory environment to teach students fundamental topics, including: proportional reasoning, control of variables thinking, experimental design, hypothesis testing, reasoning with data, and drawing conclusions from graphical displays. Topics addressed here are rarely taught in-depth during the formal undergraduate years and are frequently learned only after several apprenticeship research experiences. The goal of these workshops is to provide working and future faculty with an interactive experience in science learning and teaching using modern technological tools.

  12. Values of Catholic science educators: Their impact on attitudes of science teaching and learning

    Science.gov (United States)

    DeMizio, Joanne Greenwald

    This quantitative study examined the associations between the values held by middle school science teachers in Catholic schools and their attitudes towards science teaching. A total of six value types were studied---theoretical, economic, aesthetic, social, political, and religious. Teachers can have negative, positive, or neutral attitudes towards their teaching that are linked to their teaching practices and student learning. These teachers' attitudes may affect their competence and have a subsequent impact on their students' attitudes and dispositions towards science. Of particular interest was the relationship between science teaching attitudes and religious values. A non-experimental research design was used to obtain responses from 54 teachers with two survey instruments, the Science Teaching Attitude Scale II and the Allport-Vernon-Lindzey Study of Values. Stepwise multiple regression analysis showed that political values were negatively associated with attitudes towards science teaching. Data collected were inconsistent with the existence of any measurable association between religious values and attitudes towards science teaching. This study implies that science teacher preparation programs should adopt a more contextual perspective on science that seeks to develop the valuation of science within a cultural context, as well as programs that enable teachers to identify the influence of their beliefs on instructional actions to optimize the impact of learning new teaching practices that may enhance student learning.

  13. Teaching Soil Science in Primary and Secondary Schools

    Science.gov (United States)

    Levine, Elissa R.

    1998-01-01

    general community. Students benefit by having a "hands-on"experience in science, math, and technology, using their local environment as a learning laboratory, as well as contact with scientists and other students around the world. Soil investigations have become an essential component of GLOBE. The protocols that have been developed so far within the GLOBE program include GPS Location, Atmosphere/Climate, Soil Characterization, Soil Moisture and Temperature, Land Cover/Biometry, Hydrology, and Satellite Image Classification. For the GLOBE Soil Characterization Protocol, students explore the physical. chemical, and morphological properties of the soil at their study site. They are asked to dig a pit or use an auger to about 1 meter at at least 2 sites.

  14. Review. Teaching Legal and Administrative Science Nadia-Cerasela Anitei and Roxana Alina Petraru

    OpenAIRE

    Doina Mihaela POPA

    2011-01-01

    The work Didactica predarii stiintelor juridice si administrative (Teaching Legal and Administrative Science) authors Nadia- Cerasela Anitei and Roxana Alina Petraru is structured around the following 10 lessons: 1. General notions about teaching legal science, 2. Teaching legal science, 3. Learning with application in legal science, 4. Legal science teaching aims, 5. Education curriculum for teaching legal science, 6. Learning Methods 7. Educational assessment with applications for legal sci...

  15. Teaching professionalism in science courses: Anatomy to zoology

    Directory of Open Access Journals (Sweden)

    Cheryl C. Macpherson

    2012-02-01

    Full Text Available Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies’ trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences.

  16. Teaching professionalism in science courses: anatomy to zoology.

    Science.gov (United States)

    Macpherson, Cheryl C

    2012-02-01

    Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies' trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences. Copyright © 2011. Published by Elsevier B.V.

  17. The use of simulation in teaching the basic sciences.

    Science.gov (United States)

    Eason, Martin P

    2013-12-01

    To assess the current use of simulation in medical education, specifically, the teaching of the basic sciences to accomplish the goal of improved integration. Simulation is increasingly being used by the institutions to teach the basic sciences. Preliminary data suggest that it is an effective tool with increased retention and learner satisfaction. Medical education is undergoing tremendous change. One of the directions of that change is increasing integration of the basic and clinical sciences to improve the efficiency and quality of medical education, and ultimately to improve the patient care. Integration is thought to improve the understanding of basic science conceptual knowledge and to better prepare the learners for clinical practice. Simulation because of its unique effects on learning is currently being successfully used by many institutions as a means to produce that integration through its use in the teaching of the basic sciences. Preliminary data indicate that simulation is an effective tool for basic science education and garners high learner satisfaction.

  18. Teaching Graduate Students The Art of Science

    Science.gov (United States)

    Snieder, Roel; Larner, Ken; Boyd, Tom

    2012-08-01

    Graduate students traditionally learn the trade of research by working under the supervision of an advisor, much as in the medieval practice of apprenticeship. In practice, however, this model generally falls short in teaching students the broad professional skills needed to be a well-rounded researcher. While a large majority of graduate students considers professional training to be of great relevance, most graduate programs focus exclusively on disciplinary training as opposed to skills such as written and oral communication, conflict resolution, leadership, performing literature searches, teamwork, ethics, and client-interaction. Over the past decade, we have developed and taught the graduate course "The Art of Science", which addresses such topics; we summarize the topics covered in the course here. In order to coordinate development of professional training, the Center for Professional Education has been founded at the Colorado School of Mines. After giving an overview of the Center's program, we sketch the challenges and opportunities in offering professional education to graduate students. Offering professional education helps create better-prepared graduates. We owe it to our students to provide them with such preparation.

  19. Teaching for competence in science education in Denmark

    DEFF Research Database (Denmark)

    Chaiklin, Seth

    2016-01-01

    teaching situations. Nonetheless, the idea of competence is viewed as an important and valuable way for engaging with the more general goals for science education in Denmark (and elsewhere). In service of that interest, we introduce the ideas of germcell and theoretical thinking from the developmental...... teaching tradition as a way to operationalise a meaning of competence that can be realised in concrete teaching situations....

  20. Modeling Sources of Teaching Self-Efficacy for Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants.

    Science.gov (United States)

    DeChenne, Sue Ellen; Koziol, Natalie; Needham, Mark; Enochs, Larry

    2015-01-01

    Graduate teaching assistants (GTAs) in science, technology, engineering, and mathematics (STEM) have a large impact on undergraduate instruction but are often poorly prepared to teach. Teaching self-efficacy, an instructor's belief in his or her ability to teach specific student populations a specific subject, is an important predictor of teaching skill and student achievement. A model of sources of teaching self-efficacy is developed from the GTA literature. This model indicates that teaching experience, departmental teaching climate (including peer and supervisor relationships), and GTA professional development (PD) can act as sources of teaching self-efficacy. The model is pilot tested with 128 GTAs from nine different STEM departments at a midsized research university. Structural equation modeling reveals that K-12 teaching experience, hours and perceived quality of GTA PD, and perception of the departmental facilitating environment are significant factors that explain 32% of the variance in the teaching self-efficacy of STEM GTAs. This model highlights the important contributions of the departmental environment and GTA PD in the development of teaching self-efficacy for STEM GTAs. © 2015 S. E. DeChenne et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. The Relationship between Multiple Intelligences with Preferred Science Teaching and Science Process Skills

    OpenAIRE

    Mohd Ali Samsudin; Noor Hasyimah Haniza; Corrienna Abdul-Talib; Hayani Marlia Mhd Ibrahim

    2015-01-01

    This study was undertaken to identify the relationship between multiple intelligences with preferred science teaching and science process skills. The design of the study is a survey using three questionnaires reported in the literature: Multiple Intelligences Questionnaire, Preferred Science Teaching Questionnaire and Science Process Skills Questionnaire. The study selected 300 primary school students from five (5) primary schools in Penang, Malaysia. The findings showed a relationship betwee...

  2. 2012 International Conference on Teaching and Computational Science (ICTCS 2012)

    CERN Document Server

    Advanced Technology in Teaching

    2013-01-01

    2012 International Conference on Teaching and Computational Science (ICTCS 2012) is held on April 1-2, 2012, Macao.   This volume contains 120 selected papers presented at 2012 International Conference on Teaching and Computational Science (ICTCS 2012), which is to bring together researchers working in many different areas of teaching and computational Science to foster international collaborations and exchange of new ideas.   This volume book can be divided into two sections on the basis of the classification of manuscripts considered. The first section deals with teaching. The second section of this volume consists of computational Science.   We hope that all the papers here published can benefit you in the related researching fields.

  3. Effective Use of the Internet in Science Teaching.

    Science.gov (United States)

    Pickersgill, Dave

    2003-01-01

    Explores effective ways of utilizing the Internet to teach science. Discusses classroom layout, searching techniques, downloading, copyright issues, accessibility, web-page design, and site creation. (Author/NB)

  4. Approaches to Teaching Plant Nutrition. Children's Learning in Science Project.

    Science.gov (United States)

    Leeds Univ. (England). Centre for Studies in Science and Mathematics Education.

    During the period 1984-1986, over 30 teachers from the Yorkshire (England) region have worked in collaboration with the Children's Learning in Science Project (CLIS) developing and testing teaching schemes in the areas of energy, particle theory, and plant nutrition. The project is based upon the constructivist approach to teaching. This document…

  5. Teaching Writing and Critical Thinking in Large Political Science Classes

    Science.gov (United States)

    Franklin, Daniel; Weinberg, Joseph; Reifler, Jason

    2014-01-01

    In the interest of developing a combination of teaching techniques designed to maximize efficiency "and" quality of instruction, we have experimentally tested three separate and relatively common teaching techniques in three large introductory political science classes at a large urban public university. Our results indicate that the…

  6. Artful Teaching and Science Investigations: A Perfect Match

    Science.gov (United States)

    McGee, Christy

    2018-01-01

    Tomlinson's explanation of Artful Teaching and her 2017 expansion of this concept The Five Key Elements of Differentiation provide the theoretical framework of this examination of the need for science investigations in elementary schools. The Artful Teaching framework uses an equilateral triangle with vertices labeled The Teacher, The Student, and…

  7. Approaches To Teaching Science in the Jordanian Primary School.

    Science.gov (United States)

    Qualter, Anne; Abu-Hola, I. R. A.

    2000-01-01

    Reports on a study of the influence of different approaches to teaching units from the Jordanian science curriculum on over 600 students from grades 6, 9, and 10. Trains a small sample of male and female teachers in the use of cooperative learning and lecture-demonstration approaches to teaching. (Contains 17 references.) (Author/YDS)

  8. Towards a Competency Model for Teaching Computer Science

    Science.gov (United States)

    Bender, Elena; Hubwieser, Peter; Schaper, Niclas; Margaritis, Melanie; Berges, Marc; Ohrndorf, Laura; Magenheim, Johannes; Schubert, Sigrid

    2015-01-01

    To address the special challenges of teaching computer science, adequate development of teachers' competencies during their education is extremely important. In particular, pedagogical content knowledge and teachers' beliefs and motivational orientations play an important role in effective teaching. This research field has been sparsely…

  9. Teaching the TEMI way how using mysteries supports science learning

    CERN Document Server

    Olivotto, Cristina

    2015-01-01

    In this booklet, you will be introduced to an exciting new way to teach science in your classroom. The TEMI project (Teaching Enquiry with Mysteries Incorporated) is an EU-funded project that brings together experts in teacher training from across Europe to help you introduce enquiry-based learning successfully in the classroom and improve student engagement and skills.

  10. Teaching planetary sciences to elementary school teachers: Programs that work

    Science.gov (United States)

    Lebofsky, Larry A.; Lebofsky, Nancy R.

    1993-01-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. Planetary sciences also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80 percent feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K-3 and 38 minutes per day in 4-6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. It was pointed out that science is not generally given high priority by either teachers or school districts, and is certainly not considered on a par with language arts and mathematics. Therefore, in order to teach science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. In our earlier workshops, several of our teachers taught in classrooms where the majority of the students were Hispanic (over 90 percent). However, few space sciences materials existed in Spanish. Therefore, most of our materials could not be used effectively in the classroom. To address this issue, NASA materials were translated into Spanish and a series of workshops for bilingual classroom teachers from Tucson and surrounding cities was conducted. Our space sciences workshops and our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona are

  11. International Collaboration in Packaging Education: Hands-on System-on-Package (SOP) Graduate Level Courses at Indian Institute of Science and Georgia Tech PRC

    OpenAIRE

    Varadarajan, Mahesh; Bhattacharya, Swapan; Doraiswami, Ravi; Rao, Ananda G; Rao, NJ; May, Gary; Conrad, Leyla; Tummala, Rao

    2005-01-01

    System-on-Package (SOP) continues to revolutionize the realization of convergent systems in microelectronics packaging. The SOP concept which began at the Packaging Research Center (PRC) at Georgia Tech has benefited its international collaborative partners in education including the Indian Institute of Science (IISc). The academic program for electronics packaging currently in the Centre for Electronics Design and Technology (CEDT) at IISc is aimed at educating a new breed of globally-compet...

  12. The Impact of Science Teachers' Beliefs on Teaching Science: The Case of Saudi Science Teachers

    Science.gov (United States)

    Alabdulkareem, Saleh Abdullah

    2016-01-01

    The researcher aims to investigate Saudi science teachers' beliefs about learning and teaching issues. The sample consisted of 247 middle school teachers in Riyadh, Saudi Arabia. The study conducted in the academic school year 2014/2015, and utilized a questionnaire and an interview that included 10% of the sample. The questionnaire targeted the…

  13. Macro photography with a tablet: applications on Science Teaching

    OpenAIRE

    Vieira, Leonardo Pereira; Lara, Vitor de Oliveira Moraes

    2013-01-01

    In this work we present a simple way to get Macro photography (enlarged photographs) using a tablet or phone. We initially discuss the technique, which is essentially the accommodation of a drop of water on the camera lens. Next, we explore some applications to science teaching in primary and secondary levels. As discussed in the text, the simplicity and power of the technique may make it a good teaching tool for use in various disciplines such as Science, Biology and Physics.

  14. Resilience of Science Teaching Philosophies and Practice in Early Career Primary Teaching Graduates

    Science.gov (United States)

    Bartholomew, Rex; Anderson, Dayle; Moeed, Azra

    2012-01-01

    There has been recent concern over the variable quality of science teaching in New Zealand primary schools. One reason suggested has been the relatively low levels of science education components in initial teacher education (ITE) programmes. This paper follows a cohort of recent teacher graduates from a science education course in their ITE…

  15. Science Teachers' Utilisation of Innovative Strategies for Teaching Senior School Science in Ilorin, Nigeria

    Science.gov (United States)

    Oyelekan, Oloyede Solomon; Igbokwe, Emoyoke Faith; Olorundare, Adekunle Solomon

    2017-01-01

    Efforts have been made to improve science teaching in secondary schools in Nigeria, yet, students continue to perform poorly in science subjects. Many innovative teaching strategies have been developed by educators and found to impact significantly on students' academic performance when utilised. Hence, this study was aimed at examining science…

  16. On teaching the nature of science: perspectives and resources

    Science.gov (United States)

    Radloff, Jeffrey

    2016-06-01

    In this paper, I present a critical review of the recent book, On Teaching the Nature of Science: Perspectives and Resources, written by Douglas Allchin (2013). This publication presents an in-depth examination of the nature of science construct, as well as instruction for educators about how to teach it effectively utilizing historical case studies as vehicles for knowledge. Although several themes in the book merit further attention, a central issue present across all chapters is the largely masculine, monocultural nature of science presented, which is common to a multitude of scientific publications. In this review, I illustrate how culture and gender in science is not addressed throughout the book. I also discuss where we can build on the work of the author to integrate more aspects of gender and culture in teaching the nature of science.

  17. Teaching Science Is a Sacred Act

    Science.gov (United States)

    Madden, Lauren

    2018-01-01

    Science, as enterprise and epistemology, has been politicized. This essay recounts one science teacher educator's perspective and experience on this politicization of science and describes the necessity for preservice and practicing teachers to understand the nature and process of science. The role of teachers in advocating for science is clearly…

  18. Construction of teacher knowledge in context: Preparing elementary teachers to teach mathematics and science

    Science.gov (United States)

    Lowery, Maye Norene Vail

    1998-12-01

    The purposes of this study were to further the understanding of how preservice teacher construct teacher knowledge and pedagogical content knowledge of elementary mathematics and science and to determine the extent of that knowledge in a school-based setting. Preservice teachers, university instructors, inservice teachers, and other school personnel were involved in this context-specific study. Evidence of the preservice teachers' knowledge construction (its acquisition, its dimensions, and the social context) was collected through the use of a qualitative methodology. Collected data included individual and group interviews, course documents, artifacts, and preservice teaching portfolios. Innovative aspects of this integrated mathematics and science elementary methods course included standards-based instruction with immediate access to field experiences. Grade-level teams of preservice and inservice teachers planned and implemented lessons in mathematics and science for elementary students. An on-site, portable classroom building served as a mathematics and science teaching and learning laboratory. A four-stage analysis was performed, revealing significant patterns of learning. An ecosystem of learning within a constructivist learning environment was identified to contain three systems: the university system; the school system; and the cohort of learners system. A mega system for the construction of teacher knowledge was revealed in the final analysis. Learning venues were discovered to be the conduits of learning in a situated learning context. Analysis and synthesis of data revealed an extensive acquisition of teacher knowledge and pedagogical content knowledge through identified learning components. Patience, flexibility, and communication were identified as necessities for successful teaching. Learning components included: collaboration with inservice teachers; implementation of discovery learning and hands-on/minds-on learning; small groupwork; lesson planning

  19. Teaching science and ethics to undergraduates: a multidisciplinary approach.

    Science.gov (United States)

    McGowan, Alan H

    2013-06-01

    The teaching of the ethical implications of scientific advances in science courses for undergraduates has significant advantages for both science and non-science majors. The article describes three courses taught by the author as examples of the concept, and examines the disadvantages as well as the advantages. A significant advantage of this approach is that many students take the courses primarily because of the ethical component who would not otherwise take science. A disadvantage is less time in the course for the science; arguably, this is outweighed by the greater retention of the science when it is put into context.

  20. Linking Teaching in Mathematics and the Subjects of Natural Science

    DEFF Research Database (Denmark)

    Michelsen, Claus

    2017-01-01

    teaching programs. This is partly due to the lack of a framework for integrating productive ideas across the disciplines. This paper focus on how to grasp the challenges of an interdisciplinary approach to teaching in mathematics and the subjects of natural science. Based on contemporary mathematics...... and science education we design a didactical framework for interdisciplinary teaching centered on modeling activities across mathematics and the disciplines of natural science. To exemplify the potential of the framework we present a case study of an intensive in-service teacher-training program...... for mathematics and biology teachers. The teachers were presented to the didactical framework and in pairs of two, one mathematics teacher and one biology teacher; they designed and implemented interdisciplinary mathematicsbiology teaching sequences. The teachers’ reports on their development and implementation...

  1. ASAS Centennial Paper: animal science teaching: a century of excellence.

    Science.gov (United States)

    Buchanan, D S

    2008-12-01

    Teaching has a long and varied history in the life of departments of animal science and the American Society of Animal Science. Some of the earliest reports from meetings of the society have strong indication that planning the curriculum was a prominent feature of the meetings. Teaching symposia were also included almost from the beginning. The society went through a lengthy period from the 1940s through most of the 1960s when teaching was not a prominent focus, but a symposium in 1968 appeared to be a catalyst for change, and, since that date, teaching has again been an important part of the meetings. In recent years, outstanding symposia and contributed papers have made the teaching section a vibrant entry. Departments of animal science have changed considerably since the early days in which "men taught boys" and the primary goal was to produce farmers. More female students, more urban students, interest in a wide variety of animals, and greatly diversified career goals have been emerging during the last few decades. Departments of animal science and the American Society of Animal Science are positioning to be able to respond to change and face the challenge of providing excellence in teaching during the next century.

  2. Understanding Teaching or Teaching for Understanding: Alternative Frameworks for Science Classrooms.

    Science.gov (United States)

    Wildy, Helen; Wallace, John

    1995-01-01

    Describes the findings of a study that involved exploring the classroom practices of an experienced physics teacher to enable researchers to reexamine assumptions about good teaching. Asserts that a broader view of good science teaching is needed than that proposed by the constructivist literature. (ZWH)

  3. Crossing borders: High school science teachers learning to teach the specialized language of science

    Science.gov (United States)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  4. Modeling Sources of Teaching Self-Efficacy for Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants

    Science.gov (United States)

    DeChenne, Sue Ellen; Koziol, Natalie; Needham, Mark; Enochs, Larry

    2015-01-01

    Graduate teaching assistants (GTAs) in science, technology, engineering, and mathematics (STEM) have a large impact on undergraduate instruction but are often poorly prepared to teach. Teaching self-efficacy, an instructor’s belief in his or her ability to teach specific student populations a specific subject, is an important predictor of teaching skill and student achievement. A model of sources of teaching self-efficacy is developed from the GTA literature. This model indicates that teaching experience, departmental teaching climate (including peer and supervisor relationships), and GTA professional development (PD) can act as sources of teaching self-efficacy. The model is pilot tested with 128 GTAs from nine different STEM departments at a midsized research university. Structural equation modeling reveals that K–12 teaching experience, hours and perceived quality of GTA PD, and perception of the departmental facilitating environment are significant factors that explain 32% of the variance in the teaching self-efficacy of STEM GTAs. This model highlights the important contributions of the departmental environment and GTA PD in the development of teaching self-efficacy for STEM GTAs. PMID:26250562

  5. Teaching of Mathematics and Science in English: The Teachers' Voices

    Science.gov (United States)

    Yahaya, Mohamad Fadhili Bin; Noor, Mohd Asri Bin Mohd; Mokhtar, Ahmad Azman Bin; Rawian, Rafizah Binti Mohd; Othman, Mahmod Bin; Jusoff, Kamaruzaman

    2009-01-01

    The policy to change the medium of instruction in the teaching of Mathematics and Science from Bahasa Melayu (Malay Language) to English in 2003 is an important innovation affecting not only the students but also teachers of Mathematics and Science. However, how far the changes affect the teachers is the issue addressed in the paper. In fact the…

  6. Teaching Critical Thinking? New Directions in Science Education

    Science.gov (United States)

    Osborne, Jonathan

    2014-01-01

    Critique and questioning are central to the practice of science; without argument and evaluation, the construction of reliable knowledge would be impossible. The challenge is to incorporate an understanding of the role of critique and, more importantly, the ability to engage in critique, within the teaching of science. The emphasis in both the US…

  7. Research and teaching nuclear sciences at universities in developing countries

    International Nuclear Information System (INIS)

    1981-11-01

    A formulation is given for a set of ground rules to be applied when introducing or improving nuclear science training at the university level in developing countries. Comments are made on the general requirements needed for the teaching of nuclear science at the university and particular suggestions made for the areas of nuclear physics radiochemistry and radiation chemistry and electronics

  8. Stateless Programming as a Motif for Teaching Computer Science

    Science.gov (United States)

    Cohen, Avi

    2004-01-01

    With the development of XML Web Services, the Internet could become an integral part of and the basis for teaching computer science and software engineering. The approach has been applied to a university course for students studying introduction to computer science from the point of view of software development in a stateless, Internet…

  9. Reflecting on Teaching of the "Appliance of Science"

    Science.gov (United States)

    Linfield, Rachel

    2016-01-01

    As a primary school teacher, Rachel Linfield has always been insistent that her students were taught and understood the use behind a particular science fact or process. These days, however, she finds very few students who can recall a single useful science fact that they learned in primary school. Linfield wonders if teaching of the National…

  10. Critical Debates in Teaching Research Methods in the Social Sciences

    Science.gov (United States)

    Gunn, Andrew

    2017-01-01

    This paper explores some of the critical debates in social science research methods education and is set out in three parts. The first section introduces the importance and relevance of research methods to the social sciences. It then outlines the problems and challenges experienced in the teaching and learning of research methods, which are…

  11. Leon Cooper's Perspective on Teaching Science: An Interview Study

    Science.gov (United States)

    Niaz, Mansoor; Klassen, Stephen; McMillan, Barbara; Metz, Don

    2010-01-01

    The authors of this paper portray the perspective of Professor Leon Cooper, a theoretical physicist, Nobel laureate, active researcher, and physics textbook author, on teaching science and on the nature of science (NOS). The views presented emerged from an interview prepared by the authors and responded to in writing by Professor Cooper. Based on…

  12. Teaching and Assessing the Nature of Science

    Science.gov (United States)

    Clough, Michael P.

    2011-01-01

    Understanding the nature of science (NOS)--what science is and how it works, the assumptions that underlie scientific knowledge, how scientists function as a social group, and how society impacts and reacts to science--is prominent in science education reform documents (Rutherford and Ahlgren 1990; AAAS 1993; McComas and Olson 1998; NRC 1996; AAAS…

  13. Withholding answers during hands-on scientific investigations? Comparing effects on developing students' scientific knowledge, reasoning, and application

    Science.gov (United States)

    Zhang, Lin

    2018-03-01

    As more concerns have been raised about withholding answers during science teaching, this article argues for a need to detach 'withholding answers' from 'hands-on' investigation tasks. The present study examined students' learning of light-related content through three conditions: 'hands-on' + no 'withholding' (hands-on only: HO), 'hands-on' + 'withholding' (hands-on investigation with answers withheld: HOW), and no 'hands-on' + no 'withholding' (direction instruction: DI). Students were assessed in terms of how well they (1) knew the content taught in class; (2) reasoned with the learned content; and (3) applied the learned content to real-life situations. Nine classes of students at 4th and 5th grades, N = 136 in total, were randomly assigned to one of the three conditions. ANCOVA results showed that students in the hands-on only condition reasoned significantly better than those in the other two conditions. Students in this condition also seemed to know the content fairly better although the advance was not significant. Students in all three conditions did not show a statistically significant difference in their ability to apply the learned content to real-life situations. The findings from this study provide important contributions regarding issues relating to withholding answers during guided scientific inquiry.

  14. (The Ethics of Teaching Science and Ethics: A Collaborative Proposal

    Directory of Open Access Journals (Sweden)

    William P. Kabasenche

    2014-10-01

    Full Text Available I offer a normative argument for a collaborative approach to teaching ethical issues in the sciences. Teaching science ethics requires expertise in at least two knowledge domains—the relevant science(s and philosophical ethics. Accomplishing the aims of ethics education, while ensuring that science ethics discussions remain grounded in the best empirical science, can generally best be done through collaboration between a scientist and an ethicist. Ethics as a discipline is in danger of being misrepresented or distorted if presented by someone who lacks appropriate disciplinary training and experience. While there are exceptions, I take philosophy to be the most appropriate disciplinary domain in which to gain training in ethics teaching. Science students, who must be prepared to engage with many science ethics issues, are poorly served if their education includes a misrepresentation of ethics or specific issues. Students are less well prepared to engage specific issues in science ethics if they lack an appreciation of the resources the discipline of ethics provides. My collaborative proposal looks at a variety of ways scientists and ethicists might collaborate in the classroom to foster good science ethics education.

  15. (The Ethics of) Teaching Science and Ethics: A Collaborative Proposal.

    Science.gov (United States)

    Kabasenche, William P

    2014-12-01

    I offer a normative argument for a collaborative approach to teaching ethical issues in the sciences. Teaching science ethics requires expertise in at least two knowledge domains-the relevant science(s) and philosophical ethics. Accomplishing the aims of ethics education, while ensuring that science ethics discussions remain grounded in the best empirical science, can generally best be done through collaboration between a scientist and an ethicist. Ethics as a discipline is in danger of being misrepresented or distorted if presented by someone who lacks appropriate disciplinary training and experience. While there are exceptions, I take philosophy to be the most appropriate disciplinary domain in which to gain training in ethics teaching. Science students, who must be prepared to engage with many science ethics issues, are poorly served if their education includes a misrepresentation of ethics or specific issues. Students are less well prepared to engage specific issues in science ethics if they lack an appreciation of the resources the discipline of ethics provides. My collaborative proposal looks at a variety of ways scientists and ethicists might collaborate in the classroom to foster good science ethics education.

  16. Toward using games to teach fundamental computer science concepts

    Science.gov (United States)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  17. Teaching science as argument: Prospective elementary teachers' knowledge

    Science.gov (United States)

    Barreto-Espino, Reizelie

    For the past two decades there has been increasing emphasis on argumentation in school science. In 2007, the National Research Council published a synthesis report that emphasizes the centrality of constructing, evaluating, and using scientific explanations. Participating in argumentation is seen as fundamental to children's science learning experiences. These new expectations increase challenges for elementary teachers since their understanding of and experiences with science are overwhelmingly inconsistent with teaching science as argument. These challenges are further amplified when dealing with prospective elementary teachers. The current study was guided by the following research questions: (1) What are the ways in which preservice elementary teachers appropriate components of "teaching science as argument" during their student teaching experience? (2) To what extent do components from prospective elementary teachers' reflections influence planning for science teaching? (3) What elements from the context influence preservice elementary teachers' attention to teaching science as argument? This study followed a multi-participant case study approach and analyses were informed by grounded theory. Three participants were selected from a larger cohort of prospective elementary teachers enrolled in an innovative Elementary Professional Development School (PDS) partnership at a large Northeast University. Cross-case analysis allowed for the development of five key assertions: (1) The presence of opportunities for interacting with phenomena and collecting first hand data helped participants increase their emphasis on evidence-based explanations. (2) Participants viewed science talks as an essential mechanism for engaging students in the construction of evidence-based explanations and as being fundamental to meaning-making. (3) Participants demonstrated attention to scientific subject matter during instruction rather than merely focusing on activities and/or inquiry

  18. The integration of creative drama into science teaching

    Science.gov (United States)

    Arieli, Bracha (Bari)

    This study explored the inclusion of creative drama into science teaching as an instructional strategy for enhancing elementary school students' understanding of scientific concepts. A treatment group of sixth grade students was taught a Full Option Science System (FOSS) science unit on Mixtures and Solutions with the addition of creative drama while a control group was taught using only the FOSS teaching protocol. Quantitative and qualitative data analyses demonstrated that students who studied science through creative drama exhibited a greater understanding of scientific content of the lessons and preferred learning science through creative drama. Treatment group students stated that they enjoyed participating in the activities with their friends and that the creative drama helped them to better understand abstract scientific concepts. Teachers involved with the creative drama activities were positively impressed and believed creative drama is a good tool for teaching science. Observations revealed that creative drama created a positive classroom environment, improved social interactions and self-esteem, that all students enjoyed creative drama, and that teachers' teaching style affected students' use of creative drama. The researcher concluded that the inclusion of creative drama with the FOSS unit enhanced students' scientific knowledge and understanding beyond that of the FOSS unit alone, that both teachers and students reacted positively to creative drama in science and that creative drama requires more time.

  19. Zimbabwe's Better Environmental Science Teaching Programme

    African Journals Online (AJOL)

    engage learners in collaborative reflection and learning from direct experience. A direct ... (3) To improve teaching and learning in all subjects in primary schools through .... Informal interviews were also conducted with community members.

  20. Learning to teach science for social justice in urban schools

    Science.gov (United States)

    Vora, Purvi

    This study looks at how beginner teachers learn to teach science for social justice in urban schools. The research questions are: (1) what views do beginner teachers hold about teaching science for social justice in urban schools? (2) How do beginner teachers' views about teaching science for social justice develop as part of their learning? In looking at teacher learning, I take a situative perspective that defines learning as increased participation in a community of practice. I use the case study methodology with five teacher participants as the individual units of analysis. In measuring participation, I draw from mathematics education literature that offers three domains of professional practice: Content, pedagogy and professional identity. In addition, I focus on agency as an important component of increased participation from a social justice perspective. My findings reveal two main tensions that arose as teachers considered what it meant to teach science from a social justice perspective: (1) Culturally responsive teaching vs. "real" science and (2) Teaching science as a political act. In negotiating these tensions, teachers drew on a variety of pedagogical and conceptual tools offered in USE that focused on issues of equity, access, place-based pedagogy, student agency, ownership and culture as a toolkit. Further, in looking at how the five participants negotiated these tensions in practice, I describe four variables that either afforded or constrained teacher agency and consequently the development of their own identity and role as socially just educators. These four variables are: (1) Accessing and activating social, human and cultural capital, (2) reconceptualizing culturally responsive pedagogical tools, (3) views of urban youth and (4) context of participation. This study has implications for understanding the dialectical relationship between agency and social justice identity for beginner teachers who are learning how to teach for social justice. Also

  1. Preparing perservice teachers to teach elementary school science

    Science.gov (United States)

    Lewis, Amy D.

    The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in providing both the content knowledge and pedagogical content knowledge necessary to teach science effectively (Baumgartner, 2010; Bodzin & Beerer, 2003; Bulunuz & Jarrett 2009). This mixed methods study examined what happened when a science methods course was interactively co-taught by an expert in elementary teaching methods and a physics expert. This study also aimed to discover what aspects of the curriculum pre-service teachers (PSTs) said helped them in developing their understanding of science content and scientific reasoning, and how to implement inquiry practices to teach science. A nested case study of three PSTs provided descriptive portraits of student experiences in the class. A whole class case analysis was used to examine what PSTs learned in terms of science, scientific reasoning skills, and pedagogical content knowledge (PCK) from their experiences in the course. It was found that students often conflated science content with the experiences they had in learning the content. Although PSTs felt the interactive co-teaching model effectively created a balance between theory and practice, it was their experiences doing science--conducting physical experiments, developing and discussing scientific models, and the use of inquiry-based instruction--that they credited for their learning. Even with careful curriculum planning, and a course purposely designed to bridge the theory to practice gap, this study found one semester-long methods course to be insufficient in providing the vast content knowledge and PCK elementary school science teachers need.

  2. Embedding Indigenous Perspectives in Teaching School Science

    Science.gov (United States)

    Appanna, Subhashni Devi

    2011-01-01

    Some Indigenous students are at risk of academic failure and science teachers have a role in salvaging these equally able students. This article firstly elucidates the research entailed in Indigenous science education in Australia and beyond. Secondly, it reviews the cultural and language barriers when learning science, faced by middle and senior…

  3. Teaching Primary Science with Almost Nothing

    Science.gov (United States)

    Kelly, Lois; Schofield, Kathy

    2012-01-01

    In the summer of 2010 the authors spent two weeks helping teachers in a primary school near Kampala to develop their science curriculum. In common with many primary schools in Uganda science was taught as "facts to be learnt." This was partly because the teachers had had little or no first-hand experience of practical science or science…

  4. Saudi Elementary School Science Teachers' Beliefs: Teaching Science in the New Millennium

    Science.gov (United States)

    Alghamdi, Amani K. Hamdan; Al-Salouli, Misfer Saud

    2013-01-01

    This study explored Saudi elementary school science teachers' beliefs about the process of teaching and learning science. This involved the exploration of their views about the new Saudi science curriculum, which emphasizes critical thinking and problem solving. Comprehensive interviews were held in 8 schools with 4 male and 6 female--2 of whom…

  5. Emphasizing Morals, Values, Ethics, and Character Education in Science Education and Science Teaching

    Science.gov (United States)

    Chowdhury, Mohammad

    2016-01-01

    This article presents the rationale and arguments for the presence of morals, values, ethics and character education in science curriculum and science teaching. The author examines how rapid science and technological advancements and globalization are contributing to the complexities of social life and underpinning the importance of morals, values…

  6. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    Science.gov (United States)

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  7. Teaching at the interface of dance science and somatics.

    Science.gov (United States)

    Geber, Pamela; Wilson, Margaret

    2010-01-01

    This article introduces a combined scientific and somatic approach to teaching and learning about the body, and explains how it can be of benefit to dancers and dance educators. The study of the science of movement (kinesiology) and a somatic approach to teaching are initially defined and described as distinct entities; following this, a model for integration of the two is presented. The authors advocate for such a combination in order to enhance dancing.

  8. Competences for science teaching at the 21st century

    OpenAIRE

    Sá, Patrícia; Paixão, Fátima

    2016-01-01

    This study presents a contribution to the conceptual and terminological clarification of the concept of teaching competence, as well as for the identification of a competencial framework of competences for science teaching at a primary education level, having in mind educating citizens for the 21st century as scientific literates. The proposed framework was developed based on an intensive literature review and on the contributions emerging from a shared reflection between researchers in scien...

  9. Saudi Science Teachers' Views and Teaching Strategies of Socioscientific Issues

    Science.gov (United States)

    Alamri, Aziz S.

    Scientific developments such as cloning and nuclear energy have generated many controversial issues pertain to many political, social, environmental, ethical and cultural values in different societies around the globe. These controversies delimited and encircled the potential of including and teaching some important aspects of science in schools and therefore caused less consideration to the influence of these issues on enhancing the scientific literacy of people in general. The purpose of this study was to investigate how Saudi science teachers in the city of Tabuk in Saudi Arabia view and teach SSI in Saudi Arabia. This study employed semi-structured interviews with Saudi science teachers. Methodologically, this study used a constructivist grounded theory as a method for analysis to generate in-depth descriptive data about Saudi science teachers' views and teaching strategies of socio-scientific issues. Some direct and indirect benefits pertain to teaching science, understanding the relationship between science, religion, and society and some other topics are discussed in this study.

  10. Conceptions of Teaching Science Held by Novice Teachers in an Alternative Certification Program

    Science.gov (United States)

    Koballa, Thomas R.; Glynn, Shawn M.; Upson, Leslie

    2005-01-01

    Case studies to investigate the conceptions of teaching science held by three novice teachers participating in an alternative secondary science teacher certification program were conducted, along with the relationships between their conceptions of science teaching and their science teaching practice. Data used to build the cases included the…

  11. Emotions and elementary school science teaching: Postmodernism in practice

    Science.gov (United States)

    Zembylas, Michalinos

    This is an ethnographic study about an elementary school teacher's emotions in her science teaching and pedagogy. This study is an interdisciplinary account of emotions in teaching and draws both methodologically and theoretically from a variety of disciplines: philosophy, sociology, psychology, anthropology, cultural studies and feminist studies. The account developed here is based on my understanding of the role of one teacher's (Catherine) emotions in her classroom life for three years. I describe my approach in terms of what I call emotional genealogies of teaching; referring to an account of the events, objects, persons and their relationships that are present or absent in the realization of emotions, and the ways that these emotions are experienced in relation to the self (individual reality), the others (social interactions) and the world in general (sociopolitical context). Applied to my study, an emotional genealogy of Catherine's science teaching seeks not to trace the gradual evolution of her emotions but to record the singularity of various events that make some emotions present and others absent. My study shows how certain emotions are constructed in the science classroom and how they are transformed over the years (as mediated by values, philosophies, beliefs and so on). Catherine's emotions in science teaching is a "history of the present," a history of her emotions' "presences and absences" in her daffy interactions with her students, parents and administrators in the context of the science classroom. This work raises important questions that go beyond the meaning and interpretation of teachers' emotions: How can teachers' emotions become a legitimate topic in (science) education as well as in efforts for science curricular reform? Further, how can educational institutions (universities and schools) and elementary school science teachers themselves support their personal and professional emotional growth?

  12. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  13. Science teachers teaching socioscientific issues (SSI): Four case studies

    Science.gov (United States)

    Lee, Hyunju

    Socioscientific issues (SSI) are a class of issues that represent the social, ethical, and moral aspects of science in society. The need for the inclusion of SSI into science curricula has been generally accepted, but relatively few science teachers have incorporated SSI into their courses. Most science teachers feel that their most important task by far is to teach the principles of science, and any substantive pedagogical changes represent a burden. However, there are some teachers who address SSI out of personal initiatives. This dissertation study investigates four high school science teachers who address SSI out of their own initiative and explores their deeper inspirations, values, philosophies, and personal ideals that lead them to teach SSI. The overall approach is based on essentialist methodology (Witz, Goodwin, Hart, & Thomas, 2001; Witz, 2006a) with its focus on "the participant as ally" and "essentialist portraiture." The primary data source is four to six in-depth interviews with individual teachers (about 40-90 minutes for each interview). The interviews are complemented by extensive classroom observations of individual teachers' teaching SSI and by document analysis (including teaching materials, rubrics, student group projects and journals, etc.). There are two major findings. First, the teachers' deeper values and ideals are a source of larger inspiration that plays a significant role in changing their teaching practice. This inspiration may involve higher aspects (e.g., deep concern for students' development, unselfishness, caring, etc.) and commitment. Their teaching represents an integration of their personal experiences, values, concerns, and worldviews, which forms a larger inspiration for teaching. Teaching SSI is a part of this larger process. Second, the current curriculum reforms (STS, SSI, and NOS) only suggest theoretical ideals and do not effectively touch teachers' deeper values and ideals. Basically, the teachers are doing what they

  14. Using an interdisciplinary MOOC to teach climate science and science communication to a global classroom

    Science.gov (United States)

    Cook, J.

    2016-12-01

    MOOCs (Massive Open Online Courses) are a powerful tool, making educational content available to a large and diverse audience. The MOOC "Making Sense of Climate Science Denial" applied science communication principles derived from cognitive psychology and misconception-based learning in the design of video lectures covering many aspects of climate change. As well as teaching fundamental climate science, the course also presented psychological research into climate science denial, teaching students the most effective techniques for responding to misinformation. A number of enrolled students were secondary and tertiary educators, who adopted the course content in their own classes as well as adapted their teaching techniques based on the science communication principles presented in the lectures. I will outline how we integrated cognitive psychology, educational research and climate science in an interdisciplinary online course that has had over 25,000 enrolments from over 160 countries.

  15. Exploration of Factors Related to the Development of Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants' Teaching Orientations

    Science.gov (United States)

    Gilmore, Joanna; Maher, Michelle A.; Feldon, David F.; Timmerman, Briana

    2014-01-01

    Research indicates that modifying teachers' beliefs about learning and teaching (i.e. teaching orientation) may be a prerequisite to changing their teaching practices. This mixed methods study quantitized data from interviews with 65 graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) fields to assess…

  16. Controversy as a Blind Spot in Teaching Nature of Science: Why the Range of Different Positions Concerning Nature of Science Should Be an Issue in the Science Classroom

    Science.gov (United States)

    Kötter, Mario; Hammann, Marcus

    2017-01-01

    In this article, the argument is put forth that controversies about the scope and limits of science should be considered in Nature of Science (NOS) teaching. Reference disciplines for teaching NOS are disciplines, which reflect upon science, like philosophy of science, history of science, and sociology of science. The culture of these disciplines…

  17. Preparing teachers for ambitious and culturally responsive science teaching

    Science.gov (United States)

    Seiler, Gale

    2013-03-01

    Communities, schools and classrooms across North America are becoming more ethnically, racially, and linguistically diverse, particularly in urban areas. Against this backdrop, underrepresentation of certain groups in science continues. Much attention has been devoted to multicultural education and the preparation of teachers for student diversity. In science education, much research has focused on classrooms as cultural spaces and the need for teachers to value and build upon students' everyday science knowledge and ways of sense-making. However it remains unclear how best to prepare science teachers for this kind of culturally responsive teaching. In attempting to envision how to prepare science teachers with cross-cultural competency, we can draw from a parallel line of research on preparing teachers for ambitious science instruction. In ambitious science instruction, students solve authentic problems and generate evidence and models to develop explanations of scientific phenomenon, an approach that necessitates great attention to students' thinking and sense-making, thus making it applicable to cultural relevance aims. In addition, this line of research on teacher preparation has developed specific tools and engages teachers in cycles of reflection and rehearsal as they develop instructional skills. While not addressing cross-cultural teaching specifically, this research provides insights into specific ways through which to prepare teachers for culturally responsive practices. In my presentation, I will report on efforts to join these two areas of research, that is, to combine ideas about multicultural science teacher preparation with what has been learned about how to develop ambitious science instruction. This research suggests a new model for urban science teacher preparation--one that focuses on developing specific teaching practices that elicit and build on student thinking, and doing so through cycles of individual and collective planning, rehearsal

  18. Theoretical Branches in Teaching Computer Science

    Science.gov (United States)

    Habiballa, Hashim; Kmet, Tibor

    2004-01-01

    The present paper describes an educational experiment dealing with teaching the theory of formal languages and automata as well as their application concepts. It presents a practical application of an educational experiment and initial results based on comparative instruction of two samples of students (n = 56). The application concept should…

  19. What is taking place in science classrooms?: A case study analysis of teaching and learning in seventh-grade science of one Alabama school and its impact on African American student learning

    Science.gov (United States)

    Norman, Lashaunda Renea

    This qualitative case study investigated the teaching strategies that improve science learning of African American students. This research study further sought the extent the identified teaching strategies that are used to improve African American science learning reflect culturally responsive teaching. Best teaching strategies and culturally responsive teaching have been researched, but there has been minimal research on the impact that both have on science learning, with an emphasis on the African American population. Consequently, the Black-White achievement gap in science persists. The findings revealed the following teaching strategies have a positive impact on African American science learning: (a) lecture-discussion, (b) notetaking, (c) reading strategies, (d) graphic organizers, (e) hands-on activities, (f) laboratory experiences, and (g) cooperative learning. Culturally responsive teaching strategies were evident in the seventh-grade science classrooms observed. Seven themes emerged from this research data: (1) The participating teachers based their research-based teaching strategies used in the classroom on all of the students' learning styles, abilities, attitudes towards science, and motivational levels about learning science, with no emphasis on the African American student population; (2) The participating teachers taught the state content standards simultaneously using the same instructional model daily, incorporating other content areas when possible; (3) The participating African American students believed their seventh-grade science teachers used a variety of teaching strategies to ensure science learning took place, that science learning was fun, and that science learning was engaging; (4) The participating African American students genuinely liked their teacher; (5) The participating African American students revealed high self-efficacy; (6) The African American student participants' parents value education and moved to Success Middle School

  20. Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?

    Science.gov (United States)

    Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian

    2016-01-01

    This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…

  1. Science Understanding through Playground Physics: Organized Recess Teaching (SUPPORT)

    Science.gov (United States)

    Kincaid, Russell

    2010-03-01

    From 1995-2007, U.S. science students in grade four scored higher than the scaled TIMSS average, but their scores did not improve over this time. Moreover, in the area of physical science, the U.S. scored significantly lower than several Asian countries, as well as Russia, England, and Latvia (TIMSS). Methods to enhance student achievement in science are still being sought. An approach to utilizing playground equipment as a teaching tool for a variety of physics concepts was developed as a physical science teaching method. This program established an appropriate set of experiments, coordinated the effort with local school districts, and implemented a brief pilot study to test the teaching methodology. The program assigned undergraduate middle school science education majors to teach small groups of fourth grade students. The experimental group used the newly developed ``Playground Physics'' methodology while the control group used traditional approaches. Follow up activities will include an expansion of the duration and the scope of the program.

  2. Hands-on physics displays for undergraduates

    Science.gov (United States)

    Akerlof, Carl W.

    2014-07-01

    Initiated by Frank Oppenheimer in 1969, the Exploratorium in San Francisco has been the model for hands-on science museums throughout the world. The key idea has been to bring people with all levels of scientific background in contact with interesting and attractive exhibits that require the active participation of the visitor. Unfortunately, many science museums are now forced to cater primarily to very young audiences, often 8 years old or less, with predictable constraints on the intellectual depth of their exhibits. To counter this trend, the author has constructed several hands-on displays for the University of Michigan Physics Department that demonstrate: (1) magnetic levitation of pyrolytic graphite, (2) the varied magnetic induction effects in aluminum, copper and air, (3) chaotic motion of a double pendulum, (4) conservation of energy and momentum in a steel ball magnetic accelerator, (5) the diffraction pattern of red and green laser pointer beams created by CDs and DVDs, (6) a magnetic analog of the refraction of light at a dielectric boundary and (7) optical rotation of light in an aqueous fructose solution. Each of these exhibits can be constructed for something like $1000 or less and are robust enough to withstand unsupervised public use. The dynamic behavior of these exhibits will be shown in accompanying video sequences. The following story has a history that goes back quite a few years. In the late 70's, I was spending time at the Stanford Linear Accelerator Center accompanied by my family that included our two grade school children. Needless to say, we much enjoyed weekend excursions to all sorts of interesting sites in the Bay Area, especially the Exploratorium, an unusual science museum created by Frank Oppenheimer that opened in 1969. The notion that exhibits would be designed specifically for "hands-on" interactions was at that time quite revolutionary. This idea captivated a number of people everywhere including a friend in Ann Arbor, Cynthia

  3. Graduate performance of science education department in implementing conservation-based science teaching

    Science.gov (United States)

    Parmin; Savitri, E. N.; Amalia, A. V.; Pratama, M. R.

    2018-04-01

    This study aims to measure the performance of graduates in implementing conservation-based science teaching. The study employed a qualitative method by collecting the self-assessment data from alumni and the performance assessment from the headmasters of schools where the graduates are currently teaching. There are nine indicators of conservation insight examined in this study. The study concluded that the 78 alumni, who have become teachers when the study was conducted, perform well in implementing conservative science lessons.

  4. Pre-Service Teachers’ Attitudes Toward Teaching Science and Their Science Learning at Indonesia Open University

    OpenAIRE

    Nadi SUPRAPTO; Ali MURSID

    2017-01-01

    This study focuses on attitudes toward (teaching) science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs) from the Open University in Surabaya regional office. Attitudes toward (teaching) science’ (ATS) instrument was used to portray PSTs’ preparation for becoming primary school teachers. Data analyses were used, including descrip...

  5. Teaching Science Down on the Farm

    Science.gov (United States)

    Hicks, Debbie

    2016-01-01

    Throughout the United Kingdom's (UK's) primary science curriculum, there are numerous opportunities for teachers to use the farming industry as a rich and engaging real-world context for science learning. Teachers can focus on the animals and plants on the farm as subjects for children to learn about life processes. They can turn attention…

  6. Restructuring Post-School Science Teaching Programmes

    Indian Academy of Sciences (India)

    2008-09-30

    Sep 30, 2008 ... Country needs flexible and multi-choice higher education system in Sciences .... methodologies, (6) limited options for movement between science and ..... and capabilities of their academic and other support staff on the one ...... Universities should have uninterrupted water and electric supply, .... decisions.

  7. On teaching computer ethics within a computer science department.

    Science.gov (United States)

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  8. A Longitudinal Investigation of the Preservice Science Teachers' Beliefs about Science Teaching during a Science Teacher Training Programme

    Science.gov (United States)

    Buldur, Serkan

    2017-01-01

    The aim of this longitudinal study was to investigate the changes in preservice science teachers' beliefs about science teaching during a science teacher training programme. The study was designed as a panel study, and the data were collected from the same participants at the end of each academic year during a four-year period. The participants…

  9. Pair Programming as a Modern Method of Teaching Computer Science

    OpenAIRE

    Irena Nančovska Šerbec; Branko Kaučič; Jože Rugelj

    2008-01-01

    At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM C...

  10. Physics in Films: A New Approach to Teaching Science

    OpenAIRE

    Efthimiou, Costas J.; Llewellyn, Ralph

    2004-01-01

    Over the past year and a half we have developed an innovative approach to the teaching of `Physical Science', a general education course typically found in the curricula of nearly every college and university. The new approach uses popular movies to illustrate the principles of physical science, analyzing individual scenes against the background of the fundamental physical laws. The impact of being able to understand why, in reality, the scene could or could not have occurred as depicted in t...

  11. Animated movies and cartoons in teaching science topics

    OpenAIRE

    Jeraj, Tina; Susman, Katarina

    2016-01-01

    Children meet cartoons in their early childhood in their home environment and afterwards also in their school environment. Cartoons and animated movies in teaching process strongly motivates and evoke good learning processes through watching, discussing and active participation in accompanying classroom activities. In this contribution, the survey about the presence of science topics and science sli-ups (errors, in contrary with reality) in selected cartoons is presented. In the research, ten...

  12. Pre-Service Teachers Methods of Teaching Science

    Directory of Open Access Journals (Sweden)

    Dr. Raquel C. Pambid

    2015-02-01

    Full Text Available The study described the teaching methods used by pre-service teachers in Science. It focused on the strategies, techniques, materials, innovative methods and pattern of teaching science used by the pre-service teachers as described in their lesson plans. The qualitative and quantitative design was used in the study. The books, teacher hand-outs from classroom lectures were the sources of methods, strategies and techniques. The chalkboard and self-made drawings and charts were the materials often used. Conventional methods like lecture, open class discussion and demonstration were commonly employed. The strategies included group discussion, use of motivating questions and stories to arouse the interest of students. The direct eye contact, body expressions, jokes and news/trivia were frequent techniques. Integration of values in the lesson became less as the year level increases. The pattern of teaching drawn followed the formal style: I Objectives, II Subject matter, III Learning Tasks, IV Synthesis of the lesson, V Assessment and VI Enrichment. The conventional method and pattern of teaching by the pre-service teachers of PSU suggest that students in the College of Teacher Education should be trained to be more innovative and open in trying out more advanced teaching methods. Furthermore, PSU science pre-service teachers should use methods which can develop higher order thinking skills among high school students.

  13. THE DEVELOPMENT OF AIR-THEME INTEGRATED SCIENCE TEACHING MATERIAL USING FOUR STEPS TEACHING MATERIAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A. Arifin

    2016-01-01

    Full Text Available The purposes of this study are to develop, to test the feasibility, to describe the characteristic, and to test the students understanding about integrated science teaching material about air using Four Steps Teaching Material Development (4S TMD. The Research and Development method was use to develop integrated science teaching materials which is involving  all science perspectives that are not presented in junior high school science book. The air theme was chosen in this study since it can be explained using biology, chemistry, physics, and earth and space science  perspectives. Development the teaching materials was consists of selection, structuring, characterization, and reduction didactic steps. Based on the of feasibility test results, the teaching material is qualified in content, presentation, language, and graphic feasibility aspects. The characteristic of this teaching material expose the closeness theme with student daily lifes and its compatibility with National Books Standard. Based on the understanding test results, the teaching material is qualified in understanding aspect with high category. It can be concluded that the teaching material qualified to be used as supplement teaching material of science learning.Penelitian ini bertujuan untuk mengembangkan, menguji kelayakan, memaparkan karakteristik, dan menguji keterpahaman bahan ajar IPA terpadu pada tema udara untuk siswa SMP kelas VII melalui Four Steps Teaching Material Development (4S TMD. Penelitian dengan metode Research and Development (R&D ini dilatar belakangi oleh tidak tersedianya bahan ajar IPA SMP yang disajikan secara terpadu melalui tema udara. Pengembangan bahan ajar IPA terpadu tema udara terdiri dari tahap seleksi, strukturisasi, karakterisasi dan reduksi didaktik. Berdasarkan uji kelayakan, bahan ajar telah memenuhi aspek kelayakan isi, kelayakan penyajian, kelayakan bahasa dan kelayakan kegrafikan. Karakteristik bahan ajar meliputi kedekatan tema bahan ajar

  14. Building a Democratic Model of Science Teaching

    Directory of Open Access Journals (Sweden)

    Suhadi Ibnu

    2016-02-01

    Full Text Available Earlier in the last century, learning in science, as was learning in other disciplines, was developed according to the philosophy of behaviorism. This did not serve the purposes of learning in science properly, as the students were forced to absorb information transferred from the main and the only source of learning, the teacher. Towards the end of the century a significant shift from behaviorism to constructivism philosophy took place. The shift promoted the development of more democratic models of learning in science which provided greater opportunities to the students to act as real scientist, chattering for the building of knowledge and scientific skills. Considering the characteristics of science and the characteristics of the students as active learners, the shift towards democratic models of learning is unavoidable and is merely a matter of time

  15. A Science Faculty's Transformation of Nature of Science Understanding into His Teaching Graduate Level Chemistry Course

    Science.gov (United States)

    Aydin, Sevgi

    2015-01-01

    This is an interpretive case study to examine the teaching of an experienced science faculty who had a strong interest in teaching undergraduate and graduate science courses and nature of science specifically. It was interested in how he transformed knowledge from his experience as a scientist and his ideas about nature of science into forms…

  16. On Using GIS to Teach in the Social Sciences

    Science.gov (United States)

    Harris, Jill S.

    2012-01-01

    In this article, the author discusses how a professor can harness the power of Geographic Information Systems (GIS) and use GIS to teach in the social sciences. She shows examples of how GIS can illustrate concepts during lecture or discussion, and provides two specific GIS assignments: one for undergraduate students and the other for graduate…

  17. Teaching science problem solving: an overview of experimental work

    NARCIS (Netherlands)

    Taconis, R.; Ferguson-Hessler, M.G.M.; Broekkamp, H.

    2001-01-01

    The traditional approach to teaching science problem solving is having the students work individually on a large number of problems. This approach has long been overtaken by research suggesting and testing other methods, which are expected to be more effective. To get an overview of the

  18. Collaborative curriculum design to increase science teaching self-efficacy

    NARCIS (Netherlands)

    Velthuis, C.H.

    2014-01-01

    The focus in this study is on developing a teacher training program for improving teachers’ science teaching self-efficacy. Teachers with a high sense of self-efficacy will set higher goals for themselves, are less afraid of failure and will find new strategies when old ones fail. If their sense of

  19. Mobile Phone Images and Video in Science Teaching and Learning

    Science.gov (United States)

    Ekanayake, Sakunthala Yatigammana; Wishart, Jocelyn

    2014-01-01

    This article reports a study into how mobile phones could be used to enhance teaching and learning in secondary school science. It describes four lessons devised by groups of Sri Lankan teachers all of which centred on the use of the mobile phone cameras rather than their communication functions. A qualitative methodological approach was used to…

  20. Using Copy Change with Trade Books to Teach Earth Science

    Science.gov (United States)

    Bintz, William P.; Wright, Pam; Sheffer, Julie

    2010-01-01

    Developing and implementing relevant, challenging, integrative, and exploratory curriculum is critical at all levels of schooling. This article describes one attempt to develop and implement an instance of interdisciplinary curriculum by using copy change with trade books to teach earth science. Specifically, it introduces trade books as a way to…

  1. The Design and Evaluation of Teaching Experiments in Computer Science.

    Science.gov (United States)

    Forcheri, Paola; Molfino, Maria Teresa

    1992-01-01

    Describes a relational model that was developed to provide a framework for the design and evaluation of teaching experiments for the introduction of computer science in secondary schools in Italy. Teacher training is discussed, instructional materials are considered, and use of the model for the evaluation process is described. (eight references)…

  2. Science Teaching as Educational Interrogation of Scientific Research

    Science.gov (United States)

    Ginev, Dimitri

    2013-01-01

    The main argument of this article is that science teaching based on a pedagogy of questions is to be modeled on a hermeneutic conception of scientific research as a process of the constitution of texts. This process is spelled out in terms of hermeneutic phenomenology. A text constituted by scientific practices is at once united by a hermeneutic…

  3. Use of ICT facilities for teaching library and information science ...

    African Journals Online (AJOL)

    This article investigated availability and functionality of ICT facilities and its utilization in the teaching of Library and Information Science (LIS) students in the University of Uyo. The study adopted a survey design and was guided by four objectives, four research questions, and two hypotheses. The population of the study ...

  4. What Teachers Want: Supporting Primary School Teachers in Teaching Science

    Science.gov (United States)

    Fitzgerald, Angela; Schneider, Katrin

    2013-01-01

    Impending change can provide us with the opportunity to rethink and renew the things that we do. The first phase of the Australian Curriculum implementation offers primary school teachers the chance to examine their approaches to science learning and teaching. This paper focuses on the perceptions of three primary school teachers regarding what…

  5. The Ontology of Science Teaching in the Neoliberal Era

    Science.gov (United States)

    Sharma, Ajay

    2017-01-01

    Because of ever stricter standards of accountability, science teachers are under an increasing and unrelenting pressure to demonstrate the effects of their teaching on student learning. Econometric perspectives of "teacher quality" have become normative in assessment of teachers' work for accountability purposes. These perspectives seek…

  6. CDM: Teaching Discrete Mathematics to Computer Science Majors

    Science.gov (United States)

    Sutner, Klaus

    2005-01-01

    CDM, for computational discrete mathematics, is a course that attempts to teach a number of topics in discrete mathematics to computer science majors. The course abandons the classical definition-theorem-proof model, and instead relies heavily on computation as a source of motivation and also for experimentation and illustration. The emphasis on…

  7. Heuristic Diagrams as a Tool to Teach History of Science

    Science.gov (United States)

    Chamizo, Jose A.

    2012-01-01

    The graphic organizer called here heuristic diagram as an improvement of Gowin's Vee heuristic is proposed as a tool to teach history of science. Heuristic diagrams have the purpose of helping students (or teachers, or researchers) to understand their own research considering that asks and problem-solving are central to scientific activity. The…

  8. An Overview of the History of Library Science Teaching Materials.

    Science.gov (United States)

    Metzger, Philip A.

    1986-01-01

    This introduction to, and overview of, history of library science instructional materials covers the Williamson Report, teaching materials from early Columbia days onward, American Library Association book publishing activity, media in curricula and library school publication of syllabi, commercial publishing of textbooks, and periodicals in…

  9. Microsoft Excel Software Usage for Teaching Science and Engineering Curriculum

    Science.gov (United States)

    Singh, Gurmukh; Siddiqui, Khalid

    2009-01-01

    In this article, our main objective is to present the use of Microsoft Software Excel 2007/2003 for teaching college and university level curriculum in science and engineering. In particular, we discuss two interesting and fascinating examples of interactive applications of Microsoft Excel targeted for undergraduate students in: 1) computational…

  10. "Bacon Brains": Video Games for Teaching the Science of Addiction

    Science.gov (United States)

    Epstein, Joel; Noel, Jeffrey; Finnegan, Megan; Watkins, Kate

    2016-01-01

    Researchers have developed many different computerized interventions designed to teach students about the dangers of substance use. Following in this tradition, we produced a series of video games called "Bacon Brains." However, unlike many other programs, ours focused on the "Science of Addiction," providing lessons on how…

  11. The influence of contextual teaching with the problem solving method on students' knowledge and attitudes toward horticulture, science, and school

    Science.gov (United States)

    Whitcher, Carrie Lynn

    2005-08-01

    Adolescence is marked with many changes in the development of higher order thinking skills. As students enter high school they are expected to utilize these skills to solve problems, become abstract thinkers, and contribute to society. The goal of this study was to assess horticultural science knowledge achievement and attitude toward horticulture, science, and school in high school agriculture students. There were approximately 240 high school students in the sample including both experimental and control groups from California and Washington. Students in the experimental group participated in an educational program called "Hands-On Hortscience" which emphasized problem solving in investigation and experimentation activities with greenhouse plants, soilless media, and fertilizers. Students in the control group were taught by the subject matter method. The activities included in the Hands-On Hortscience curriculum were created to reinforce teaching the scientific method through the context of horticulture. The objectives included evaluating whether the students participating in the Hands-On Hortscience experimental group benefited in the areas of science literacy, data acquisition and analysis, and attitude toward horticulture, science, and school. Pre-tests were administered in both the experimental and control groups prior to the research activities and post-tests were administered after completion. The survey questionnaire included a biographical section and attitude survey. Significant increases in hortscience achievement were found from pre-test to post-test in both control and experimental study groups. The experimental treatment group had statistically higher achievement scores than the control group in the two areas tested: scientific method (p=0.0016) and horticulture plant nutrition (p=0.0004). In addition, the students participating in the Hands-On Hortscience activities had more positive attitudes toward horticulture, science, and school (p=0

  12. Girls on Ice: Using Immersion to Teach Fluency in Science

    Science.gov (United States)

    Pettit, E. C.; Mortenson, C.; Stiles, K.; Coryell-Martin, M.; Long, L.

    2010-12-01

    Young women choose not to pursue science careers for several reasons; two important ones are that they more often lack the confidence in their own ability to succeed or they perceive many science jobs as isolated (working alone in a lab) or lacking in altruistic values of helping other people or communities. We developed an immersion-science program, Girls on Ice, to provide young women with strong, female role models; with an opportunity to see what a career in the Earth sciences is like; with one-on-one interactions with scientists; with facilitated discussions on the value of Earth science in societal issues such as climate change; and with challenges that will build their self-confidence in multiple ways. Girls on Ice is field-based program for teenage young women with the theme of Glaciers, Climate, and the Alpine Landscape. The concepts we cover range from glacier dynamics to alpine plant ecology to mountain weather. The educational goals are 1. to increase young women's self-efficacy and interest in pursuing science as a career, 2. to create life-long advocates for the scientific process and its role in public policy 3. to teach critical thinking skills which will be important for all of their future pursuits 4. to enhance their leadership self-confidence so that they have a higher likelihood of becoming community leaders in the future. The educational philosophy of Girls on Ice consists of three core values: that teaching the whole process of science gives students ownership of the science; that teaching to the whole student puts the science in context; and that diversity inspires new ideas, new approaches, and better science in the end. We use a field-based immersion format -- the science equivalent of language-immersion course - in order to achieve the goals listed above in a setting that emphasizes this educational philosophy. The immersion-style course creates a deep connection between science and daily life for these young women. Combined with climate

  13. Scientific Analogies and Their Use in Teaching Science

    Science.gov (United States)

    Kipnis, Nahum

    Analogy in science knew its successes and failures, as illustrated by examples from the eighteenth-century physics. At times, some scientists abstained from using a certain analogy on the ground that it had not yet been demonstrated. Several false discoveries in the 18th and early 19th centuries appeared to support their caution. It is now clear that such a position reflected a methodological confusion that resulted from a failure to distinguish between particular and general analogies. Considering analogy as a hierarchical structure provides a new insight into "testing an analogy". While warning science teachers of dangers associated with use of analogy, historical cases and their analysis provided here may encourage them to use analogy more extensively while avoiding misconceptions. An argument is made that the history of science may be a better guide than philosophy of science and cognitive psychology when it concerns the role of analogy in science and in teaching science for understanding.

  14. Teaching and learning theories, and teaching methods used in postgraduate education in the health sciences: a systematic review protocol.

    Science.gov (United States)

    McInerney, Patricia A; Green-Thompson, Lionel P

    2017-04-01

    The objective of this scoping review is to determine the theories of teaching and learning, and/or models and/or methods used in teaching in postgraduate education in the health sciences. The longer term objective is to use the information gathered to design a workshop for teachers of postgraduate students.The question that this review seeks to answer is: what theories of teaching and learning, and/or models and/or methods of teaching are used in postgraduate teaching?

  15. Errors in Science and Their Treatment in Teaching Science

    Science.gov (United States)

    Kipnis, Nahum

    2011-01-01

    This paper analyses the real origin and nature of scientific errors against claims of science critics, by examining a number of examples from the history of electricity and optics. This analysis leads to a conclusion that errors are a natural and unavoidable part of scientific process. If made available to students, through their science teachers,…

  16. Teaching for Conceptual Change in Elementary and Secondary Science Methods Courses.

    Science.gov (United States)

    Marion, Robin; Hewson, Peter W.; Tabachnick, B. Robert; Blomker, Kathryn B.

    1999-01-01

    Describes and analyzes two science methods courses at the elementary and secondary levels for how they addressed four ideas: (1) how students learn science; (2) how teachers teach science to students; (3) how prospective science teachers learn about the first two ideas; and (4) how methods instructors teach prospective science teachers about the…

  17. Teaching science for conceptual change: Toward a proposed taxonomy of diagnostic teaching strategies to gauge students' personal science conceptions

    Science.gov (United States)

    Shope, Richard Edwin, III

    Science instruction aims to ensure that students properly construct scientific knowledge so that each individual may play a role as a science literate citizen or as part of the science workforce (National Research Council, 1996, 2000). Students enter the classroom with a wide range of personal conceptions regarding science phenomena, often at variance with prevailing scientific views (Duschl, Hamilton, & Grandy, 1992; Hewson, 1992). The extensive misconceptions research literature emphasizes the importance of diagnosing students' initial understandings in order to gauge the accuracy and depth of what each student knows prior to instruction and then to use that information to adapt the teaching to address student needs. (Ausubel, 1968; Carey, 2000; Driver et al., 1985; Karplus & Thier, 1967; Mintzes, Wandersee, & Novak, 1998; Osborne & Freyberg, 1985; Project 2061, 1993; Strike & Posner, 1982, 1992; Vygotsky, 1934/1987). To gain such insight, teachers diagnose not only the content of the students' personal conceptions but also the thinking processes that produced them (Strike and Posner, 1992). Indeed, when teachers design opportunities for students to express their understanding, there is strong evidence that such diagnostic assessment also enhances science teaching and learning (Black & William, 1998). The functional knowledge of effective science teaching practice resides in the professional practitioners at the front lines---the science teachers in the classroom. Nevertheless, how teachers actually engage in the practice of diagnosis is not well documented. To help fill this gap, the researcher conducted a study of 16 sixth grade science classrooms in four Los Angeles area middle schools. Diagnostic teaching strategies were observed in action and then followed up by interviews with each teacher. Results showed that teachers use strategies that vary by the complexity of active student involvement, including pretests, strategic questions, interactive discussion

  18. Hands-On Mathematics: Two Cases from Ancient Chinese Mathematics

    Science.gov (United States)

    Wang, Youjun

    2009-01-01

    In modern mathematical teaching, it has become increasingly emphasized that mathematical knowledge should be taught by problem-solving, hands-on activities, and interactive learning experiences. Comparing the ideas of modern mathematical education with the development of ancient Chinese mathematics, we find that the history of mathematics in…

  19. Google Earth for Landowners: Insights from Hands-on Workshops

    Science.gov (United States)

    Huff, Tristan

    2014-01-01

    Google Earth is an accessible, user-friendly GIS that can help landowners in their management planning. I offered hands-on Google Earth workshops to landowners to teach skills, including mapmaking, length and area measurement, and database management. Workshop participants were surveyed at least 6 months following workshop completion, and learning…

  20. Exploring Science Teaching Efficacy of CASE Curriculum Teachers: A Post-Then-Pre Assessment

    Science.gov (United States)

    Ulmer, Jonathan D.; Velez, Jonathan J.; Lambert, Misty D.; Thompson, Greg W.; Burris, Scott; Witt, Phillip A.

    2013-01-01

    This descriptive-correlational study sought to investigate teachers' levels of Personal Science Teaching Efficacy (PSTE) and Science Teaching Outcome Expectancy (STOE) using the Science Teaching Efficacy Beliefs Instrument (STEBI). The population included all teachers completing a CASE Institute training session during summer 2010. Assessments…

  1. Influencing Science Teaching Self-Efficacy Beliefs of Primary School Teachers: A Longitudinal Case Study

    Science.gov (United States)

    McKinnon, Merryn; Lamberts, Rod

    2014-01-01

    The science teaching self-efficacy beliefs of primary school teachers influence teaching practice. The purpose of this research was to determine if informal education institutions, such as science centres, could provide professional development that influences the science teaching self-efficacy beliefs of pre-service and in-service primary school…

  2. Science Educators Teaching Engineering Design: An Examination across Science Professional Development Sites

    Science.gov (United States)

    Grubbs, Michael E.; Love, Tyler S.; Long, David E.; Kittrell, Danielle

    2016-01-01

    Although the currently employed STEM (science, technology, engineering, and mathematics) acronym is of recent origin, dating to the early 2000s (Chute, 2009), the United States has long emphasized the importance of teaching STEM in its public schools. Early efforts, such as "Science, the Endless Frontier" (Bush, 1945) and the…

  3. Core Skills for Effective Science Communication: A Teaching Resource for Undergraduate Science Education

    Science.gov (United States)

    Mercer-Mapstone, Lucy; Kuchel, Louise

    2017-01-01

    Science communication is a diverse and transdisciplinary field and is taught most effectively when the skills involved are tailored to specific educational contexts. Few academic resources exist to guide the teaching of communication with non-scientific audiences for an undergraduate science context. This mixed methods study aimed to explore what…

  4. Models in Science Education: Applications of Models in Learning and Teaching Science

    Science.gov (United States)

    Ornek, Funda

    2008-01-01

    In this paper, I discuss different types of models in science education and applications of them in learning and teaching science, in particular physics. Based on the literature, I categorize models as conceptual and mental models according to their characteristics. In addition to these models, there is another model called "physics model" by the…

  5. Educational Technologies in Health Science Libraries: Teaching Technology Skills

    Science.gov (United States)

    Hurst, Emily J.

    2014-01-01

    As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting? PMID:24528269

  6. Educational technologies in health sciences libraries: teaching technology skills.

    Science.gov (United States)

    Hurst, Emily J

    2014-01-01

    As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many librarians. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting?

  7. Teaching nuclear science: A cosmological approach

    International Nuclear Information System (INIS)

    Viola, V.E.

    1994-01-01

    Theories of the origin of the chemical elements can be used effectively to provide a unifying theme in teaching nuclear phenomena to chemistry students. By tracing the element-producing steps that are thought to characterize the chemical evolution of the universe, one can introduce the basic principles of nuclear nomenclature, structure, reactions, energetics, and decay kinetics in a self-consistent context. This approach has the additional advantage of giving the student a feeling for the origin of the elements and their relative abundances in the solar system. Further, one can logically introduce all of the basic forces and particles of nature, as well as the many analogies between nuclear and atomic systems. The subjects of heavy-element synthesis, dating, and the practical applications of nuclear phenomena fit naturally in this scheme. Within the nucleosynthesis framework it is possible to modify the presentation of nuclear behavior to suit the audience--ranging from an emphasis on description for the beginning student to a quantitative theoretical approach for graduate students. The subject matter is flexible in that the basic principles can be condensed into a few lecture as part of a more general course of expanded into an entire course. The following sections describe this approach, with primary emphasis on teaching at the elementary level

  8. The impact of a curriculum course on pre-service primary teachers' science content knowledge and attitudes towards teaching science

    OpenAIRE

    Murphy, Clíona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students' conceptual and pedagogical knowledge of science and on their attitudes towards teaching science in the primary classroom. A questionnaire, containing closed ...

  9. Using Forensic Science Problems as Teaching Tools

    Science.gov (United States)

    Duncan, Kanesa; Daly-Engel, Toby

    2006-01-01

    The desire to observe and understand the natural world is strong in young children, but high school students often consider science irrelevant to their daily lives. Therefore, as teachers of older age groups, the authors constantly struggle to engage students in scientific exploration so they can master concepts and appreciate the nature of…

  10. The Eyes Have It. Teaching Science.

    Science.gov (United States)

    Leyden, Michael B.

    1995-01-01

    Features science concepts with accompanying activities teachers can use in the classroom. Presents a lesson in optics that utilizes optical illusions to illustrate scientific points and allows students to use the following processes: observing, communicating, controlling variables, hypothesizing, and gathering and interpreting data. (ET)

  11. Pre-service secondary school science teachers science teaching ...

    African Journals Online (AJOL)

    PROF.MIREKU

    pre-service secondary science teachers' self-efficacy beliefs with regard to gender and educational .... outcome. As a consequence, instruments for the determination of self-efficacy ...... Sex Roles: A Journal of Research, 42, 119–31. Bursal, M.

  12. Science teachers understanding of inquiry-based science teaching ...

    African Journals Online (AJOL)

    owner

    This paper aims at finding out Rwandan lower secondary school science teachers' ... enterprise, which in the context of the present study has a focus on inquiry. .... methods was adopted and both quantitative and qualitative data collected.

  13. Elucidating elementary science teachers' conceptions of the nature of science: A view to beliefs about both science and teaching

    Science.gov (United States)

    Keske, Kristina Palmer

    The purpose of this interpretive case study was to elucidate the conceptions of the nature of science held by seven elementary science teachers. The constructivist paradigm provided the philosophical and methodological foundation for the study. Interviews were employed to collect data from the participants about their formal and informal experiences with science. In addition, the participants contributed their perspectives on four aspects of the nature of science: what is science; who is a scientist; what are the methods of science; and how is scientific knowledge constructed. Data analysis not only revealed these teachers' views of science, but also provided insights into how they viewed science teaching. Four themes emerged from the data. The first theme developed around the participants' portrayals of the content of science, with participant views falling on a continuum of limited to universal application of science as procedure. The second theme dealt with the participants' views of the absolute nature of scientific knowledge. Participants' perceptions of the tentative nature of science teaching provided the basis for the third theme concerning the need for absolutes in practice. The fourth theme drew parallels between participants' views of science and science teaching, with two participants demonstrating a consistency in beliefs about knowledge construction across contexts. This study revealed both personal and contextual factors which impacted how the participants saw science and science teaching. Many of the participants' memories of formal science revolved around the memorization of content and were viewed negatively. All the participants had limited formal training in science. Of the seven participants, only two had chosen to be science teachers at the beginning of their careers. The participants' limited formal experiences with science provided little time for exploration into historical, philosophical, and sociological studies of science, a necessary

  14. Pair Programming as a Modern Method of Teaching Computer Science

    Directory of Open Access Journals (Sweden)

    Irena Nančovska Šerbec

    2008-10-01

    Full Text Available At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM Computing Curricula. The professional knowledge is therefore associated and combined with the teaching knowledge and skills. In the paper we present how to achieve competences related to programming by using different didactical models (semiotic ladder, cognitive objectives taxonomy, problem solving and modern teaching method “pair programming”. Pair programming differs from standard methods (individual work, seminars, projects etc.. It belongs to the extreme programming as a discipline of software development and is known to have positive effects on teaching first programming language. We have experimentally observed pair programming in the introductory programming course. The paper presents and analyzes the results of using this method: the aspects of satisfaction during programming and the level of gained knowledge. The results are in general positive and demonstrate the promising usage of this teaching method.

  15. Looking in a science classroom: exploring possibilities of creative cultural divergence in science teaching and learning

    Science.gov (United States)

    Baron, Alex; Chen, Hsiao-Lan Sharon

    2012-03-01

    Worldwide proliferation of pedagogical innovations creates expanding potential in the field of science education. While some teachers effectively improve students' scientific learning, others struggle to achieve desirable student outcomes. This study explores a Taiwanese science teacher's ability to effectively enhance her students' science learning. The authors visited a Taipei city primary school class taught by an experienced science teacher during a 4-week unit on astronomy, with a total of eight, 90-minute periods. Research methods employed in this study included video capture of each class as well as reflective interviews with the instructor, eliciting the teacher's reflection upon both her pedagogical choices and the perceived results of these choices. We report that the teacher successfully teaches science by creatively diverging from culturally generated educational expectations. Although the pedagogical techniques and ideas enumerated in the study are relevant specifically to Taiwan, creative cultural divergence might be replicated to improve science teaching worldwide.

  16. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments

    Science.gov (United States)

    Drinkwater, Michael J.; Matthews, Kelly E.; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. PMID:28232589

  17. Graduate teaching assistants' perceptions of teaching competencies required for work in undergraduate science labs

    Science.gov (United States)

    Deacon, Christopher; Hajek, Allyson; Schulz, Henry

    2017-11-01

    Many post-secondary institutions provide training and resources to help GTAs fulfil their teaching roles. However, few programmes focus specifically on the teaching competencies required by GTAs who work with undergraduate students in laboratory settings where learning tends to be more active and inquiry based than in classroom settings. From a review of 8 GTA manuals, we identified 20 competencies and then surveyed faculty and lab coordinators (FIS) and GTAs from a Faculty of Science at a comprehensive Canadian university to identify which of those competencies are required of GTAs who work in undergraduate science labs. GTAs and FIS did not significantly differ in the competencies they view as required for GTAs to work effectively in undergraduate labs. But, when comparing the responses of GTAs and FIS to TA manuals, 'Clearly and effectively communicates ideas and information with students' was the only competency for which there was agreement on the level of requirement. We also examined GTAs' self-efficacy for each of the identified competencies and found no overall relationship between self-efficacy and demographic characteristics, including experience and training. Our results can be used to inform the design of training programmes specifically for GTAs who work in undergraduate science labs, for example, programmes should provide strategies for GTAs to obtain feedback which they can use to enhance their teaching skills. The goal of this study is to improve undergraduate lab instruction in faculties of science and to enhance the teaching experience of GTAs by better preparing them for their role.

  18. The Role of Technology in Science Teaching Activities: Web Based Teaching Applications

    Directory of Open Access Journals (Sweden)

    Fatma ALKAN

    2016-12-01

    Full Text Available 2015 Abstract In this research the attitudes of pre-service teachers studying at Hacettepe University, Division of Science Education towards the importance of technological equipment in chemistry education activities and how effective they find technology in teaching different skills and applications have been examined. Pre-test/post-test control group design has been used in the research. In the experimental group Titrimetric Analysis has been conducted with simulations supported web based instruction and in the control group with teacher-centered instruction. In general, it has been found out that the attitudes of pre-service teachers in experiment group towards the importance of technological equipment as a teaching tool in chemistry are more positive than those in control group. In other words, statistically significant differences have occurred in attitudes of pre-service teachers in both experiment and control group towards the role of technology in chemistry teaching activities after web based teaching.

  19. "Look at what I am saying": Multimodal science teaching

    Science.gov (United States)

    Pozzer-Ardenghi, Lilian

    Language constitutes the dominant representational mode in science teaching, and lectures are still the most prevalent of the teaching methods in school science. In this dissertation, I investigate lectures from a multimodal and communicative perspective to better understand how teaching as a cultural-historical and social activity unfolds; that is, I am concerned with teaching as a communicative event, where a variety of signs (or semiotic resources), expressed in diverse modalities (or modes of communication) are produced and reproduced while the teacher articulates very specific conceptual meanings for the students. Within a trans-disciplinary approach that merges theoretical and methodical frameworks of social and cultural studies of human activity and interaction, communicative and gestures studies, linguistics, semiotics, pragmatics, and studies on teaching and learning science, I investigate teaching as a communicative, dynamic, multimodal, and social activity. My research questions include: What are the resources produced and reproduced in the classroom when the teacher is lecturing? How do these resources interact with each other? What meanings do they carry and how are these associated to achieve the coherence necessary to accomplish the communication of complex and abstract scientific concepts, not only within one lecture, but also within an entire unit of the curricula encompassing various lectures? My results show that, when lecturing, the communication of scientific concepts occur along trajectories driven by the dialectical relation among the various semiotic resources a lecturer makes available that together constitute a unit---the idea. Speech, gestures, and other nonverbal resources are but one-sided expressions of a higher order communicative meaning unit. The iterable nature of the signs produced and reproduced during science lectures permits, supports, and encourages the repetition, variation, and translation of ideas, themes, and languages and

  20. UCSF partnership to enrich science teaching for sixth graders in San Francisco's schools.

    Science.gov (United States)

    Doyle, H J

    1999-04-01

    Increasing the diversity of students entering the health professions is a challenging goal for medical schools. One approach to this goal is to share the enthusiasm and energy of medical students with younger students, who may pursue medical education in the future. The MedTeach program, established in 1989 and coordinated by the Science & Health Education Partnership of the University of California, San Francisco (UCSF), does so by partnering volunteer medical students from UCSF with sixth-grade classes studying the human body. In 1997-98, around 350 sixth-graders in the San Francisco Schools benefitted from the program. Each team of medical student's visits its class ten to 12 times a year to present engaging, hands-on lessons on body systems and health. The medical students are also role models for the middle-school students. In addition, the diverse student population of San Francisco public schools provides a rich environment for the medical students to improve their communication and teaching skills.

  1. Conducting Original, Hands-On Astronomical Research in the Classroom

    Science.gov (United States)

    Corneau, M. J.

    2009-12-01

    teachers to convey moderately complex computer science, optical, geographic, mathematical, informational and physical principles through hands-on telescope operations. In addition to the general studies aspects of classroom internet-based astronomy, Tzec Maun supports real science by enabling operators precisely point telescopes and acquire extremely faint, magnitude 19+ CCD images. Thanks to the creative Team of Photometrica (photometrica.org), my teams now have the ability to process and analyze images online and produce results in short order. Normally, astronomical data analysis packages cost greater than thousands of dollars for single license operations. Free to my team members, Photometrica allows students to upload their data to a cloud computing server and read precise photometric and/or astrometric results. I’m indebted to Michael and Geir for their support. The efficacy of student-based research is well documented. The Council on Undergraduate Research defines student research as, "an inquiry or investigation conducted by an undergraduate that makes an original intellectual or creative contribution to the discipline." (http://serc.carleton.edu/introgeo/studentresearch/What. Teaching from Tzec Maun in the classroom is the most original teaching research I can imagine. I very much look forward to presenting this program to the convened body.

  2. Teaching Interdisciplinary Engineering and Science Educations

    DEFF Research Database (Denmark)

    Kofoed, Lise B.; S. Stachowicz, Marian

    2014-01-01

    In this paper we study the challenges for the involved teachers who plan and implement interdisciplinary educations. They are confronted with challenges regarding their understanding of using known disciplines in a new interdisciplinary way and see the possibilities of integrating disciplines when...... creating new knowledge. We will address the challenges by defining the term interdisciplinary in connection with education, and using the Problem Based Learning educational approach and experience from the engineering and science educational areas to find the obstacles. Two cases based on interdisciplinary...... and understand how different expertise can contribute to an interdisciplinary education....

  3. Teaching the Ethical Aspects of Environmental Science

    Science.gov (United States)

    Palinkas, C. M.

    2014-12-01

    Environmental and societal issues are often inherently linked, especially in coastal and estuarine environments, and science and social values must often be balanced in ecosystem management and decision-making. A new seminar course has been developed for the Marine Estuarine and Environmental Science (MEES) graduate program, an inter-institutional program within the University System of Maryland, to examine these issues. This 1-credit course, offered for the first time in Spring 2015, takes a complex systems perspective on major environmental and societal challenges to examine these linked issues in a variety of contexts. After a brief introduction to the emerging field of "geoethics," students develop a list of issues to examine throughout the seminar. Example topics could include fracking, offshore wind technology, dam removal, and iron fertilization, among others. A case-study approach is taken, with each class meeting focusing on one issue. For each case study, students are asked to 1) identify relevant scientific principles and major knowledge gaps, 2) predict potential outcomes, 3) identify stakeholders and likely viewpoints, and 4) construct communication plans to disseminate findings to these stakeholders. At the end of the semester, students give a brief presentation of the ethical aspects of their own research topics.

  4. Elementary Teachers' Beliefs about Teaching Science and Classroom Practice: An Examination of Pre/Post NCLB Testing in Science

    Science.gov (United States)

    Milner, Andrea R.; Sondergeld, Toni A.; Demir, Abdulkadir; Johnson, Carla C.; Czerniak, Charlene M.

    2012-01-01

    The impact of No Child Left Behind (NCLB) mandated state science assessment on elementary teachers' beliefs about teaching science and their classroom practice is relatively unknown. For many years, the teaching of science has been minimized in elementary schools in favor of more emphasis on reading and mathematics. This study examines the…

  5. Measuring primary teachers' attitudes toward teaching science: development of the dimensions of attitude toward science (DAS) instrument

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte

    2013-01-01

    In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is

  6. Measuring Primary Teachers' Attitudes toward Teaching Science: Development of the Dimensions of Attitude toward Science (DAS) Instrument

    Science.gov (United States)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Juliette

    2013-01-01

    In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is of fundamental importance to the…

  7. Undergraduates' Perceived Gains and Ideas about Teaching and Learning Science from Participating in Science Education Outreach Programs

    Science.gov (United States)

    Carpenter, Stacey L.

    2015-01-01

    This study examined what undergraduate students gain and the ideas about science teaching and learning they develop from participating in K-12 science education outreach programs. Eleven undergraduates from seven outreach programs were interviewed individually about their experiences with outreach and what they learned about science teaching and…

  8. Teaching and Assessing Teamwork Skills in Engineering and Computer Science

    Directory of Open Access Journals (Sweden)

    Robert W. Lingard

    2010-02-01

    Full Text Available To be successful in today's workplace, engineering and computer science students must possess high levels of teamwork skills. Unfortunately, most engineering programs provide little or no specific instruction in this area. This paper outlines an assessment-driven approach toward teaching teamwork skills. Working with the Industrial Advisory Board for the College, a set of performance criteria for teamwork was developed. This set of criteria was used to build an assessment instrument to measure the extent to which students are able to achieve the necessary skills. This set of criteria provides a clear basis for the development of an approach toward teaching teamwork skills. Furthermore, the results from the assessment can be used to adjust the teaching techniques to address the particular skills where students show some weaknesses. Although this effort is in the early stages, the approach seems promising and will be improved over time.

  9. Preparing clinical laboratory science students with teaching skills.

    Science.gov (United States)

    Isabel, Jeanne M

    2010-01-01

    Training clinical laboratory science (CLS) students in techniques of preparation and delivery of an instructional unit is an important component of all CLS education programs and required by the national accrediting agency. Participants of this study included students admitted to the CLS program at Northern Illinois University and enrolled in the teaching course offered once a year between the years of 1997 and 2009. Courses on the topic of "teaching" may be regarded by CLS students as unnecessary. However, entry level practitioners are being recruited to serve as clinical instructors soon after entering the workforce. Evaluation of the data collected indicates that students are better prepared to complete tasks related to instruction of a topic after having an opportunity to study and practice skills of teaching. Mentoring CLS students toward the career role of clinical instructor or professor is important to maintaining the workforce.

  10. The investigation of science teachers’ experience in integrating digital technology into science teaching

    Science.gov (United States)

    Agustin, R. R.; Liliasari; Sinaga, P.; Rochintaniawati, D.

    2018-05-01

    The use of technology into science learning encounters problems. One of the problem is teachers’ less technological pedagogical and content knowledge (TPACK) on the implementation of technology itself. The purpose of this study was to investigate science teachers’ experience in using digital technology into science classroom. Through this study science teachers’ technological knowledge (TK) and technological content knowledge (TCK) can be unpacked. Descriptive method was used to depict science teachers’ TK and TCK through questionnaire that consisted of 20 questions. Subjects of this study were 25 science teachers in Bandung, Indonesia. The study was conducted in the context of teacher professional training. Result shows that science teachers still have less TK, yet they have high TCK. The teachers consider characteristics of concepts as main aspect for implementing technology into science teaching. This finding describes teachers’ high technological content knowledge. Meanwhile, science teachers’ technological knowledge was found to be still low since only few of them who can exemplify digital technology that can be implemented into several science concept. Therefore, training about technology implementation into science teaching and learning is necessary as a means to improve teachers’ technological knowledge.

  11. An Educational Model for Hands-On Hydrology Education

    Science.gov (United States)

    AghaKouchak, A.; Nakhjiri, N.; Habib, E. H.

    2014-12-01

    This presentation provides an overview of a hands-on modeling tool developed for students in civil engineering and earth science disciplines to help them learn the fundamentals of hydrologic processes, model calibration, sensitivity analysis, uncertainty assessment, and practice conceptual thinking in solving engineering problems. The toolbox includes two simplified hydrologic models, namely HBV-EDU and HBV-Ensemble, designed as a complement to theoretical hydrology lectures. The models provide an interdisciplinary application-oriented learning environment that introduces the hydrologic phenomena through the use of a simplified conceptual hydrologic model. The toolbox can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching more advanced topics including uncertainty analysis, and ensemble simulation. Both models have been administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of hydrology.

  12. From Students to Teachers: Investigating the Science Teaching Efficacy Beliefs and Experiences of Graduate Primary Teachers

    Science.gov (United States)

    Deehan, James; Danaia, Lena; McKinnon, David H.

    2018-03-01

    The science achievement of primary students, both in Australia and abroad, has been the subject of intensive research in recent decades. Consequently, much research has been conducted to investigate primary science education. Within this literature, there is a striking juxtaposition between tertiary science teaching preparation programs and the experiences and outcomes of both teachers and students alike. Whilst many tertiary science teaching programs covary with positive outcomes for preservice teachers, reports of science at the primary school level continue to be problematic. This paper begins to explore this apparent contradiction by investigating the science teaching efficacy beliefs and experiences of a cohort of graduate primary teachers who had recently transitioned from preservice to inservice status. An opportunity sample of 82 primary teachers responded to the science teaching efficacy belief instrument A (STEBI-A), and 10 graduate teachers provided semi-structured interview data. The results showed that participants' prior science teaching efficacy belief growth, which occurred during their tertiary science education, had remained durable after they had completed their teaching degrees and began their careers. Qualitative data showed that their undergraduate science education had had a positive influence on their science teaching experiences. The participants' school science culture, however, had mixed influences on their science teaching. The findings presented within this paper have implications for the direction of research in primary science education, the design and assessment of preservice primary science curriculum subjects and the role of school contexts in the development of primary science teachers.

  13. Animal Science.

    Science.gov (United States)

    VanCleave, Janice

    2001-01-01

    Presents a set of hands-on, outdoor science experiments designed to teach elementary school students about animal adaptation. The experiments focus on: how color camouflage affects an insect population; how spiderlings find a home; and how chameleons camouflage themselves by changing color. (SM)

  14. Teaching 5th grade science for aesthetic understanding

    Science.gov (United States)

    Girod, Mark A.

    Many scientists speak with great zeal about the role of aesthetics and beauty in their science and inquiry. Few systematic efforts have been made to teach science in ways that appeal directly to aesthetics and this research is designed to do just that. Drawing from the aesthetic theory of Dewey, I describe an analytic lens called learning for aesthetic understanding that finds power in the degree to which our perceptions of the world are transformed, our interests and enthusiasm piqued, and our actions changed as we seek further experiences in the world. This learning theory is contrasted against two other current and popular theories of science learning, that of learning for conceptual understanding via conceptual change theory and learning for a language-oriented or discourse-based understanding. After a lengthy articulation of the pedagogical strategies used to teach for aesthetic understanding the research is described in which comparisons are drawn between students in two 5th grade classrooms---one taught for the goal of conceptual understanding and the other taught for the goal of aesthetic understanding. Results of this comparison show that more students in the treatment classroom had aesthetic experiences with science ideas and came to an aesthetic understanding when studying weather, erosion, and structure of matter than students in the control group. Also statistically significant effects are shown on measures of interest, affect, and efficacy for students in the treatment class. On measures of conceptual understanding it appears that treatment class students learned more and forgot less over time than control class students. The effect of the treatment does not generally depend on gender, ethnicity, or prior achievement except in students' identity beliefs about themselves as science learners. In this case, a significant interaction for treatment class females on science identity beliefs did occur. A discussion of these results as well as elaboration and

  15. A Science Education that Promotes the Characteristics of Science and Scientists: Features of teaching

    Directory of Open Access Journals (Sweden)

    Michael P. Clough

    2015-07-01

    Full Text Available Effectively teaching about science, technology, engineering and mathematics (STEM is far more complex than policymakers, the public, and even many teachers realize. Leinhardt and Greeno (1986, p. 75 write that “teaching occurs in a relatively ill-structured, dynamic environment”, and this is even more so the case when attempting to teach STEM through inquiry (activities that require significant student decision-making and sense-making, and the necessary pedagogical practices that support student learning in those experiences and as inquiry (helping students understand how knowledge in STEM disciplines is developed and comes to be accepted.

  16. Interactive Methods for Teaching Action Potentials, an Example of Teaching Innovation from Neuroscience Postdoctoral Fellows in the Fellowships in Research and Science Teaching (FIRST) Program

    Science.gov (United States)

    Keen-Rhinehart, E.; Eisen, A.; Eaton, D.; McCormack, K.

    2009-01-01

    Acquiring a faculty position in academia is extremely competitive and now typically requires more than just solid research skills and knowledge of one’s field. Recruiting institutions currently desire new faculty that can teach effectively, but few postdoctoral positions provide any training in teaching methods. Fellowships in Research and Science Teaching (FIRST) is a successful postdoctoral training program funded by the National Institutes of Health (NIH) providing training in both research and teaching methodology. The FIRST program provides fellows with outstanding interdisciplinary biomedical research training in fields such as neuroscience. The postdoctoral research experience is integrated with a teaching program which includes a How to Teach course, instruction in classroom technology and course development and mentored teaching. During their mentored teaching experiences, fellows are encouraged to explore innovative teaching methodologies and to perform science teaching research to improve classroom learning. FIRST fellows teaching neuroscience to undergraduates have observed that many of these students have difficulty with the topic of neuroscience. Therefore, we investigated the effects of interactive teaching methods for this topic. We tested two interactive teaching methodologies to determine if they would improve learning and retention of this information when compared with standard lectures. The interactive methods for teaching action potentials increased understanding and retention. Therefore, FIRST provides excellent teaching training, partly by enhancing the ability of fellows to integrate innovative teaching methods into their instruction. This training in turn provides fellows that matriculate from this program more of the characteristics that hiring institutions desire in their new faculty. PMID:23493377

  17. Case study of science teaching in an elementary school: Characteristics of an exemplary science teacher

    Science.gov (United States)

    Kao, Huey-Lien

    Improving the quality of science teaching is one of the greatest concerns in recent science education reform efforts. Many science educators suggest that case studies of exemplary science teachers may provide guidance for these reform efforts. For this reason, the characteristics of exemplary science teaching practices have been identified in recent years. However, the literature lacks research exploring exemplary teacher beliefs about the nature of science and science pedagogy, the relationships between their beliefs and practices, or how outstanding teachers overcome difficulties in order to facilitate their students' science learning. In this study, Sam-Yu, an identified exemplary science teacher who teaches in an elementary school in Pintung, Taiwan, was the subject. An interpretative research design (Erickson, 1986) based on principles of naturalistic inquiry (Lincoln & Guba, 1985) was used. Both qualitative and quantitative methods were employed in this case study. The qualitative method involved conducting interviews with the teacher and students, observing classroom activities and analyzing the structure of the learning materials. The quantitative methods involved using the Learning Climate Inventory (LCI) (Lin, 1997) instrument to assess the learning environment of the exemplary science classroom. This study found that Sam-Yu had a blend of views on the nature of science and a varied knowledge about science pedagogy. Personal preferences, past experiences, and the national science curriculum all played important roles in the development and refinement of Sam-Yu's beliefs about science and pedagogy. Regarding his teaching practices, Sam-Yu provided the best learning experiences, as evidenced in both classroom observations and the survey results, for his students by using a variety of strategies. In addition, his classroom behaviors were highly associated with his beliefs about science and pedagogy. However, due to school-based and socio-cultural constraints

  18. Science learning and teaching in a Creole-speaking environment

    Science.gov (United States)

    Lodge, Wilton

    2017-09-01

    The focus of this response to Charity Hudley and Christine Mallinson's article, `"Its worth our time": A model of culturally and linguistically responsive professional development for K-12 STEM educators', is to underpin a pedagogy that encourages and provides opportunities for the use of non-standard language in the description and practice of science. I discuss this within the context of Jamaica and provide an alternative way of science teaching, one which promotes Jamaican Creole as a mode of instruction for classroom talk and printed material.

  19. Lviv period for Smoluchowski: Science, teaching, and beyond

    Directory of Open Access Journals (Sweden)

    A. Rovenchak

    2012-12-01

    Full Text Available A major part of Marian Smoluchowski's achievements in science corresponds to the period of his work at the University of Lviv. Since this part is well described in the literature, in the paper the emphasis is made on some less known activities of this outstanding scientist: his teaching, his organizational efforts, and even his hobbies. The list of publications corresponding to the Lviv period is given.

  20. Teaching citizen science skills online: Implications for invasive species training programs

    Science.gov (United States)

    Newman, G.; Crall, A.; Laituri, M.; Graham, J.; Stohlgren, T.; Moore, J.C.; Kodrich, K.; Holfelder, K.A.

    2010-01-01

    Citizen science programs are emerging as an efficient way to increase data collection and help monitor invasive species. Effective invasive species monitoring requires rigid data quality assurances if expensive control efforts are to be guided by volunteer data. To achieve data quality, effective online training is needed to improve field skills and reach large numbers of remote sentinel volunteers critical to early detection and rapid response. The authors evaluated the effectiveness of online static and multimedia tutorials to teach citizen science volunteers (n = 54) how to identify invasive plants; establish monitoring plots; measure percent cover; and use Global Positioning System (GPS) units. Participants trained using static and multimedia tutorials provided less (p plant cover estimates between static (??10%) and multimedia (??13%) participants did not differ (p =.86 and.08, respectively) from those of professionals (??9%). Trained volunteers struggled with plot setup and GPS skills. Overall, the online approach used did not influence conferred field skills and abilities. Traditional or multimedia online training augmented with more rigorous, repeated, and hands-on, in-person training in specialized skills required for more difficult tasks will likely improve volunteer abilities, data quality, and overall program effectiveness. ?? Taylor & Francis Group, LLC.

  1. Back to the basic sciences: an innovative approach to teaching senior medical students how best to integrate basic science and clinical medicine.

    Science.gov (United States)

    Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L

    2008-07-01

    Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.

  2. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    Science.gov (United States)

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  3. Teaching Traditions in Science Education in Switzerland, Sweden and France: A Comparative Analysis of Three Curricula

    Science.gov (United States)

    Marty, Laurence; Venturini, Patrice; Almqvist, Jonas

    2018-01-01

    Classroom actions rely, among other things, on teaching habits and traditions. Previous research has clarified three different teaching traditions in science education: the academic tradition builds on the idea that simply the products and methods of science are worth teaching; the applied tradition focuses on students' ability to use scientific…

  4. Dispositions Supporting Elementary Interns in the Teaching of Reform-Based Science Materials

    Science.gov (United States)

    Eick, Charles J.; Stewart, Bethany

    2010-01-01

    Dispositions supporting the teaching of science as structured inquiry by four elementary candidates are presented. Candidates were studied during student teaching based on their positive attitudes toward teaching science with reform-based materials in their methods course. Personal learning histories informed their attitudes, values, and beliefs…

  5. Learning from Rookie Mistakes: Critical Incidents in Developing Pedagogical Content Knowledge for Teaching Science to Teachers

    Science.gov (United States)

    Cite, Suleyman; Lee, Eun; Menon, Deepika; Hanuscin, Deborah L.

    2017-01-01

    While there is a growing literature focused on doctoral preparation for teaching about science teaching, rarely have recommendations extended to preparation for teaching science content to teachers. We three doctoral students employ self-study as a research methodology to investigate our developing pedagogical content knowledge for teaching…

  6. Investigating Coherence among Turkish Elementary Science Teachers' Teaching Belief Systems, Pedagogical Content Knowledge and Practice

    Science.gov (United States)

    Bahcivan, Eralp; Cobern, William W.

    2016-01-01

    This study investigated comprehensive science teaching belief systems and their relation to science teachers' pedagogical content knowledge and teaching practices. Rokeach's (1968) belief system was used as a framework for representing the hierarchy among in-service teachers' teaching beliefs. This study employed a multiple case study design with…

  7. Can the Faculty Development Door Swing Both Ways? Science and Clinical Teaching in the 1990s.

    Science.gov (United States)

    Tedesco, Lisa A.

    1988-01-01

    The relationship between clinical teaching and research in the basic sciences is discussed. The same energy expended to enhance clinical research will also efficiently build new curricula; ease the strains associated with assigning a priority to teaching or research; and serve to further science, teaching, and technology transfer. (MLW)

  8. Fieldwork, Co-Teaching and Co-Generative Dialogue in Lower Secondary School Environmental Science

    Science.gov (United States)

    Rahmawati, Yuli; Koul, Rekha

    2016-01-01

    This article reports one of the case studies in a 3-year longitudinal study in environmental science education. This case explores the process of teaching about ecosystems through co-teaching and co-generative dialogue in a Year-9 science classroom in Western Australia. Combining with co-teaching and co-generative dialogue aimed at transforming…

  9. Teaching Writing in the Social Sciences: A Comparison and Critique of Three Models

    Science.gov (United States)

    Hansen, Kristine; Adams, Joyce

    2010-01-01

    This article describes and evaluates three approaches to teaching writing in the social sciences, particularly psychology: an English department-based course for all social science majors; a team-teaching model that embeds writing in core courses in psychology; and a stand-alone course dedicated to teaching writing in psychology, often taken…

  10. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments.

    Science.gov (United States)

    Drinkwater, Michael J; Matthews, Kelly E; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. © 2017 M. J. Drinkwater et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Discussion of Science and Math Teaching Methods: criticism and possibilities in teaching practices

    Directory of Open Access Journals (Sweden)

    Elizabeth Gerhardt Manfredo

    2005-06-01

    Full Text Available This paper presents a discussion of practices among Science and Math teachers in Brazilian Basic Education. Analysis focuses on criticism over teaching practices throughout Basic Education which includes Children, Primary and Medium levels. Discussion highlights the interdisciplinary and educational projects as the most chosen tool for reflective practices. Most educational problems must be solved by the use of shared theoretical choices and investigative methodological approach. Such choices ought to be made during teachers' continuing trainning based on a researcher-teacher action as it provides ways for methodological changes in Sciences and Math Education in the Country

  12. Heuristic Diagrams as a Tool to Teach History of Science

    Science.gov (United States)

    Chamizo, José A.

    2012-05-01

    The graphic organizer called here heuristic diagram as an improvement of Gowin's Vee heuristic is proposed as a tool to teach history of science. Heuristic diagrams have the purpose of helping students (or teachers, or researchers) to understand their own research considering that asks and problem-solving are central to scientific activity. The left side originally related in Gowin's Vee with philosophies, theories, models, laws or regularities now agrees with Toulmin's concepts (language, models as representation techniques and application procedures). Mexican science teachers without experience in science education research used the heuristic diagram to learn about the history of chemistry considering also in the left side two different historical times: past and present. Through a semantic differential scale teachers' attitude to the heuristic diagram was evaluated and its usefulness was demonstrated.

  13. The Role of Technology in Science Teaching Activities: Web Based Teaching Applications

    OpenAIRE

    Fatma ALKAN; Canan KOÇAK ALTUNDAĞ

    2016-01-01

    2015 Abstract In this research the attitudes of pre-service teachers studying at Hacettepe University, Division of Science Education towards the importance of technological equipment in chemistry education activities and how effective they find technology in teaching different skills and applications have been examined. Pre-test/post-test control group design has been used in the research. In the experimental group Titrimetric Analysis has been conducted with simulations ...

  14. Hands-on Universe - Europe

    Science.gov (United States)

    Ferlet, R.

    2006-08-01

    The EU-HOU project aims at re-awakening the interest for science through astronomy and new technologies, by challenging middle and high schools pupils. It relies on real observations acquired through an internet-based network of robotic optical and radio telescopes or with didactical tools such as Webcam. Pupils manipulate and measure images in the classroom environment, using the specifically designed software SalsaJ, within pedagogical trans-disciplinary resources constructed in close collaboration between researchers and teachers. Gathering eight European countries coordinated in France, EU-HOU is partly funded by the European Union. All its outputs are freely available on the Web, in English and the other languages involved. A European network of teachers is being developed through training sessions.

  15. The CSI Academy: Encouraging Diverse Students to Consider Science Careers and Science Teaching

    Science.gov (United States)

    Kaye, Karen; Turner, John F.; Emigh, James

    2011-01-01

    The CSI academies employed a multi-layered, collaborative approach to encourage diverse students to consider STEM careers, including science teaching. The academies recruited a diverse group of high school students. This was due, in large part, to the creation of a unique selection process that identified students with unrealized potential. The…

  16. Teacher students' dilemmas when teaching science through inquiry

    Science.gov (United States)

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-09-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE is rarely adopted in schools. Often barriers for teachers account for this lack, with the result that even good teachers struggle to teach science as inquiry. More importantly, studies indicate that several barriers and constraints could be ascribed to problems teacher students have at the university stage. Purpose: The purpose of this explorative investigation is to examine the problems teacher students have when teaching science through inquiry. In order to draw a holistic picture of these problems, we identified problems from three different points of view leading to the research question: What problems regarding IBSE do teacher students have from an objective, a subjective, and a self-reflective perspective? Design & method: Using video analysis and observation tools as well as qualitative content analysis and open questionnaires we identified problems from each perspective. Results: The objectively stated problems comprise the lack of essential features of IBSE especially concerning 'Supporting pupils' own investigations' and 'Guiding analysis and conclusions.' The subjectively perceived problems comprise concerns about 'Teachers' abilities' and 'Pupils' abilities,' 'Differentiated instruction' and institutional frame 'Conditions' while the self-reflectively noticed problems mainly comprise concerns about 'Allowing inquiry,' 'Instructional Aspects,' and 'Pupils' behavior.' Conclusions: Each of the three different perspectives provides plenty of problems, partially overlapping, partially complementing one another, and partially revealing completely new problems. Consequently, teacher educators have to consider these

  17. Teaching Mathematical Modelling for Earth Sciences via Case Studies

    Science.gov (United States)

    Yang, Xin-She

    2010-05-01

    Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).

  18. Teaching of anatomical sciences: A blended learning approach.

    Science.gov (United States)

    Khalil, Mohammed K; Abdel Meguid, Eiman M; Elkhider, Ihsan A

    2018-04-01

    Blended learning is the integration of different learning approaches, new technologies, and activities that combine traditional face-to-face teaching methods with authentic online methodologies. Although advances in educational technology have helped to expand the selection of different pedagogies, the teaching of anatomical sciences has been challenged by implementation difficulties and other limitations. These challenges are reported to include lack of time, costs, and lack of qualified teachers. Easy access to online information and advances in technology make it possible to resolve these limitations by adopting blended learning approaches. Blended learning strategies have been shown to improve students' academic performance, motivation, attitude, and satisfaction, and to provide convenient and flexible learning. Implementation of blended learning strategies has also proved cost effective. This article provides a theoretical foundation for blended learning and proposes a validated framework for the design of blended learning activities in the teaching and learning of anatomical sciences. Clin. Anat. 31:323-329, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  19. Graduate students teaching elementary earth science through interactive classroom lessons

    Science.gov (United States)

    Caswell, T. E.; Goudge, T. A.; Jawin, E. R.; Robinson, F.

    2014-12-01

    Since 2005, graduate students in the Brown University Department of Earth, Environmental, and Planetary Studies have volunteered to teach science to second-grade students at Vartan Gregorian Elementary School in Providence, RI. Initially developed to bring science into classrooms where it was not explicitly included in the curriculum, the graduate student-run program today incorporates the Providence Public Schools Grade 2 science curriculum into weekly, interactive sessions that engage the students in hypothesis-driven science. We will describe the program structure, its integration into the Providence Public Schools curriculum, and 3 example lessons relevant to geology. Lessons are structured to develop the students' ability to share and incorporate others' ideas through written and oral communication. The volunteers explain the basics of the topic and engage the students with introductory questions. The students use this knowledge to develop a hypothesis about the upcoming experiment, recording it in their "Science Notebooks." The students record their observations during the demonstration and discuss the results as a group. The process culminates in the students using their own words to summarize what they learned. Activities of particular interest to educators in geoscience are called "Volcanoes!", "The "Liquid Race," and "Phases of the Moon." The "Volcanoes!" lesson explores explosive vs. effusive volcanism using two simulated volcanoes: one explosive, using Mentos and Diet Coke, and one effusive, using vinegar and baking soda (in model volcanoes that the students construct in teams). In "Liquid Race," which explores viscosity and can be integrated into the "Volcanoes!" lesson, the students connect viscosity to flow speed by racing liquids down a ramp. "Phases of the Moon" teaches the students why the Moon has phases, using ball and stick models, and the terminology of the lunar phases using cream-filled cookies (e.g., Oreos). These lessons, among many others

  20. The use of parent involved take-home science activities during student teaching: Understanding the challenges of implementation

    Science.gov (United States)

    Zarazinski, Jill

    had agreed to implement it, not because they appreciated its worth to students and their families. Altering candidate beliefs in one semester prior to student teaching proved difficult, especially when cooperating teachers were demonstrating and encouraging methodologies which were frowned upon during the science methods coursework. Therefore, this study also raised issues with teacher education and identified the need to better align educational philosophies taught throughout the program and those showcased by cooperating teachers if science education reform is to transpire. Teacher candidates very often abandoned the inquiry-based modes of instruction taught to them during the science methods course prior to student teaching and replaced them with ideas and suggestions from their cooperating teacher, approaches which were more traditional and teacher-centered. Cooperating teacher opinions and suggestions appeared to take precedence over what was taught and practiced during their preparation coursework. Candidates' prior beliefs and experiences with education appeared to dominate their teaching repertoire. The culmination of their own K-12 education and much of their undergraduate courses made altering their beliefs toward inquiry-based methodologies difficult during only one semester prior to student teaching. Therefore, all candidates reverted back to some level of teacher-centered, recipe-like science lessons and tasks. It was also noted that the candidates' understanding of hands-on versus inquiry learning was often blurred. Hands-on learning was often demonstrated and applauded by cooperating teachers, as well as parents, once they responded to Science in a Bag surveys and interviews, further supporting this misconception by praising hands-on learning and in some cases stating it was the way students learned best. Most parents were willing to and enjoyed performing these take-home family activities. Some of the most frequent parent comments related to family

  1. A Hands-On Approach to Maglev for Gifted Students.

    Science.gov (United States)

    Budd, Raymond T.

    2003-01-01

    This article discusses how Magnetic Levitation (Maglev) can be taught to gifted students in grades 4-9 using hands-on activities that align to the National Science Standards. Principles of magnetic levitation, advantages of magnetic levitation, construction of a Maglev project, testing and evaluation of vehicles, and presentation of the unit are…

  2. Science Teaching Efficacy of Preservice Elementary Teachers: Examination of the Multiple Factors Reported as Influential

    Science.gov (United States)

    Tastan Kirik, Özgecan

    2013-01-01

    This study explores the science teaching efficacy beliefs of preservice elementary teachers and the relationship between efficacy beliefs and multiple factors such as antecedent factors (participation in extracurricular activities and number of science and science teaching methods courses taken), conceptual understanding, classroom management…

  3. Pathways in Learning to Teach Elementary Science: Navigating Contexts, Roles, Affordances and Constraints

    Science.gov (United States)

    Smith, Deborah C.; Jang, Shinho

    2011-01-01

    This case study of a fifth-year elementary intern's pathway in learning to teach science focused on her science methods course, placement science teaching, and reflections as a first-year teacher. We studied the sociocultural contexts within which the intern learned, their affordances and constraints, and participants' perspectives on their roles…

  4. An Analysis of Pre-Service Elementary Teachers' Understanding of Inquiry-Based Science Teaching

    Science.gov (United States)

    Lee, Carole K.; Shea, Marilyn

    2016-01-01

    This study examines how pre-service elementary teachers (PSETs) view inquiry-based science learning and teaching, and how the science methods course builds their confidence to teach inquiry science. Most PSETs think that inquiry is asking students questions rather than a formal set of pedagogical tools. In the present study, three groups of PSETs…

  5. Tensions Teaching Science for Equity: Lessons Learned from the Case of Ms. Dawson

    Science.gov (United States)

    Braaten, Melissa; Sheth, Manali

    2017-01-01

    When teachers engage in forms of science teaching that disrupt the status quo of typical school science practices, they often experience dilemmas as problems of practice that are difficult--or even impossible--to solve. This instrumental case study examines one teacher's efforts to teach science for equity across two contexts: a public middle…

  6. Perceptions and Practices of Culturally Relevant Science Teaching in American Indian Classrooms

    Science.gov (United States)

    Nam, Younkyeong; Roehrig, Gillian; Kern, Anne; Reynolds, Bree

    2013-01-01

    This study explores the perceptions of culturally relevant science teaching of 35 teachers of American Indian students. These teachers participated in professional development designed to help them better understand climate change science content and teaching climate change using both Western science and traditional and cultural knowledge. Teacher…

  7. Teaching and Learning Science through Song: Exploring the Experiences of Students and Teachers

    Science.gov (United States)

    Governor, Donna; Hall, Jori; Jackson, David

    2013-01-01

    This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and…

  8. Microteaching Lesson Study: An Approach to Prepare Teacher Candidates to Teach Science through Inquiry

    Science.gov (United States)

    Zhou, George; Xu, Judy

    2017-01-01

    Inquiry-based teaching has become the most recommended approach in science education for a few decades; however, it is not a common practice yet in k-12 school classrooms. In order to prepare future teachers to teach science through inquiry, a Microteaching Lesson Study (MLS) approach was employed in our science methods courses. Instead of asking…

  9. Physics Teachers' Challenges in Using History and Philosophy of Science in Teaching

    Science.gov (United States)

    Henke, Andreas; Höttecke, Dietmar

    2015-01-01

    The inclusion of the history and philosophy of science (HPS) in science teaching is widely accepted, but the actual state of implementation in schools is still poor. This article investigates possible reasons for this discrepancy. The demands science teachers associate with HPS-based teaching play an important role, since these determine teachers'…

  10. Teacher Training and Pre-Service Primary Teachers' Self-Efficacy for Science Teaching

    Science.gov (United States)

    Velthuis, Chantal; Fisser, Petra; Pieters, Jules

    2014-01-01

    This study focuses on the improvement of pre-service teachers' self-efficacy for teaching science by including science courses within the teacher training program. Knowing how efficacy beliefs change over time and what factors influence the development by pre-service primary teachers of positive science teaching efficacy beliefs may be useful for…

  11. Teaching Science in the Primary School: Surveying Teacher Wellbeing and Planning for Survival

    Science.gov (United States)

    Morgan, Anne-Marie

    2012-01-01

    A teacher-researcher in a primary school setting surveyed the middle years' teachers of her school and those in the local science hub group, to determine their confidence and satisfaction levels in relation to teaching science. Her results confirm feelings of inadequacy and reluctance to teach Science, but also indicate ways that schools can…

  12. The Rationale for a Teaching Innovation about the Interrelationship between Science and Technology

    Science.gov (United States)

    Hadjilouca, R.; Constantinou, C. P.; Papadouris, N.

    2011-01-01

    This paper refers to the development of a teaching innovation for the nature of science (NOS), for students aged 11-15, which specifically focuses on the interrelationship between science and technology. The development of the teaching and learning materials relied on inputs from three sources: the history and philosophy of science and technology,…

  13. Virtual school teacher's science efficacy beliefs: The effects of community of practice on science-teaching efficacy beliefs

    Science.gov (United States)

    Uzoff, Phuong Pham

    The purpose of this study was to examine how much K-12 science teachers working in a virtual school experience a community of practice and how that experience affects personal science-teaching efficacy and science-teaching outcome expectancy. The study was rooted in theoretical frameworks from Lave and Wenger's (1991) community of practice and Bandura's (1977) self-efficacy beliefs. The researcher used three surveys to examine schoolteachers' experiences of a community of practice and science-teaching efficacy beliefs. The instrument combined Mangieri's (2008) virtual teacher demographic survey, Riggs and Enochs (1990) Science-teaching efficacy Beliefs Instrument-A (STEBI-A), and Cadiz, Sawyer, and Griffith's (2009) Experienced Community of Practice (eCoP) instrument. The results showed a significant linear statistical relationship between the science teachers' experiences of community of practice and personal science-teaching efficacy. In addition, the study found that there was also a significant linear statistical relationship between teachers' community of practice experiences and science-teaching outcome expectancy. The results from this study were in line with numerous studies that have found teachers who are involved in a community of practice report higher science-teaching efficacy beliefs (Akerson, Cullen, & Hanson, 2009; Fazio, 2009; Lakshmanan, Heath, Perlmutter, & Elder, 2011; Liu, Lee, & Lin, 2010; Sinclair, Naizer, & Ledbetter, 2010). The researcher concluded that school leaders, policymakers, and researchers should increase professional learning opportunities that are grounded in social constructivist theoretical frameworks in order to increase teachers' science efficacy.

  14. How can the curation of hands-on STEM activities power successful mobile apps and websites?

    Science.gov (United States)

    Porcello, D.; Peticolas, L. M.; Schwerin, T. G.

    2015-12-01

    The Lawrence Hall of Science (LHS) is University of California, Berkeley's public science center. Over the last decade, the Center for Technology Innovation at LHS has partnered with many institutions to establish a strong track record of developing successful technology solutions to support STEM teaching and learning within informal environments. Curation by subject-matter experts has been at the heart of many educational technology products from LHS and its partners that are directed at educators and families. This work includes: (1) popular digital libraries for inquiry-based activities at Howtosmile.org (NSF DRL #0735007) and NASA Earth and Space science education resources at NASAwavelength.org; and novel mobile apps like DIY Sun Science (NASA NNX10AE05G) and DIY Human Body (NIH 5R25OD010543) designed to scaffold exploration of STEM phenomena at home. Both NASA Wavelength and DIY Sun Science arose out of long-term collaborations with the Space Sciences Laboratory at UC Berkeley, Institute for Global Environmental Strategies (IGES), and other NASA-funded organizations, in partnership with NASA through cooperative agreements. This session will review the development, formative evaluation, and usage metrics for these two Earth and Space science-themed educational technology products directly relevant to the AGU community. Questions reviewed by presenters will include: What makes a good hands-on activity, and what essential information do educators depend on when searching for programming additions? What content and connections do families need to explore hands-on activities? How can technology help incorporate educational standards into the discovery process for learning experiences online? How do all these components drive the design and user experience of websites and apps that showcase STEM content?

  15. Reconstructing the science teaching in initial series through continuing education

    Directory of Open Access Journals (Sweden)

    Suzana Margarete Kurzmann Fagundes

    2015-11-01

    Full Text Available This paper presents the report of an investigation whose aim was to know the focus on Science teaching in initial series of elementary school and to understand the contributions of teacher’s participation in study groups for transformation of teaching practice in Sciences classes. It’s believed that the role of teachers is to give to their students opportunities for construction/reconstruction of knowledge. Thus, there is essential that teachers keep themselves in constant training The study was conducted with teachers of initial series (to 1st from 4th from a school from the Rio Grande do Sul (RS state in the 2006 / 2007 period. A qualitative analysis methodology was employed in this study, and data was obtained in the natural environment, namely,the school. Through Discoursive Textual Analysis (MORAES and GALIAZZI, 2007 about the data that was collected, it was concluded that the study groups can contribute to transformation and to development of pedagogical teacher’s practice, particularly in regard to Sciences classes, as well on student learning, ie the construction of their knowledge. It has been observed a growth of the group in the course of the meetings, not only by the concern of the teachers in changing their classes, but also to taking the necessary decisions to make it possible.

  16. Bacon Brains: Video Games for Teaching the Science of Addiction.

    Science.gov (United States)

    Epstein, Joel; Noel, Jeffrey; Finnegan, Megan; Watkins, Kate

    2016-01-01

    Researchers have developed many different computerized interventions designed to teach students about the dangers of substance use. Following in this tradition, we produced a series of video games called Bacon Brains . However, unlike many other programs, ours focused on the "Science of Addiction," providing lessons on how alcohol and other drugs affect the brain. The purpose of this study was to evaluate the effectiveness of our games in teaching students our science-based curriculum. We enrolled over 200 students and randomly assigned them to play our games or a different series of NIDA-produced games. Of the students in the Bacon Brains conditions, half were instructed to play collaboratively and the other half was told to play competitively. Results indicate significantly greater knowledge gains among students in Bacon Brains compared to the existing games (5.01 mean knowledge score difference; [F(1,242)=9.588, p=.002]). Girls demonstrated knowledge gains in both collaborative and competitive conditions, but boys demonstrated similar gains only in the competitive condition. Based on our outcomes, we conclude that video games can serve as an effective method of science instruction. We further discuss the importance of considering gender differences in light of differential response to collaborative vs. competitive learning environments.

  17. Gaps in Science Content Knowledge Encountered during Teaching Practice: A Study of Early-Career Middle-School Science Teachers

    Science.gov (United States)

    Kinghorn, Brian Edward

    2013-01-01

    Subject-specific content knowledge is crucial for effective science teaching, yet many teachers are entering the field not fully equipped with all the science content knowledge they need to effectively teach the subject. Learning from practice is one approach to bridging the gap between what practicing teachers know and what they need to know.…

  18. "I Didn't Always Perceive Myself as a "Science Person"": Examining Efficacy for Primary Science Teaching

    Science.gov (United States)

    Mansfield, Caroline F.; Woods-McConney, Amanda

    2012-01-01

    Teacher efficacy has become an important field of research especially in subjects teachers may find challenging, such as science. This study investigates the sources of teachers' efficacy for teaching science in primary schools in the context of authentic teaching situations with a view to better understanding sources of teachers' efficacy…

  19. Developing and testing multimedia educational tools to teach Polar Sciences in the Italian school

    Science.gov (United States)

    Macario, Maddalena; Cattadori, Matteo; Bianchi, Cristiana; Zattin, Massimiliano; Talarico, Franco Maria

    2013-04-01

    In the last few years science education moved forward rapidly by connecting the expertise and enthusiasm of polar educators worldwide. The interest in Polar Sciences determined the creation of a global professional network for those that educate in, for, and about the Polar Regions. In Italy, this cooperation is well represented by APECS-Italy, the Italian section of the Association of Polar Early Career Scientists (APECS) that is composed by young researchers and teachers of the Italian School. The Polar Regions represent one of the best natural environments where students can investigate directly on global changes. In this sense, the working group UNICAMearth of the Geology Division of School of Science and Technology, University of Camerino (Italy), promotes the arrangement of instructional resources based on real data coming from the research world. Our project aims to develop innovative teaching resources and practices designed to bring the importance of the Polar Regions closer to home. Consequently, Polar Sciences could become a focus point in the new national school curricula, where Earth Sciences have to be thought and learnt in an integrated way together with other sciences. In particular, M. Macario is producing a teaching tool package, starting from a case study, which includes a dozen of full lesson plans based on multimedia tools (images, smart board lessons and videos of lab experiments) as well as on hands-on activities about polar issues and phenomena. Among the resources the teaching tool package is referring to, there is also an App for tablet named CLAST (CLimate in Antartica from Sediments and Tectonics). This App has been designed by a team made up of polar scientists belonging to the University of Siena and University of Padova, two science teachers of the Museo delle Scienze (MUSE) of Trento other than M. Macario. CLAST has been funded by two Research Projects, CLITEITAM ("CLImate-TEctonics Interactions along the TransAntarctic Mountains

  20. Teaching Galileo? Get to Know Riccioli! What a Forgotten Italian Astronomer Can Teach Students about How Science Works

    Science.gov (United States)

    Graney, Christopher M.

    2012-01-01

    What can physics students learn about science from those scientists who got the answers wrong? Your students probably have encountered little science history. What they have encountered probably has portrayed scientists as "The People with the Right Answers." But those who got the wrong answers can teach students that in science, answers are often…

  1. Physical Science Teachers' Attitudes to and Factors Affecting Their Integration of Technology Education in Science Teaching in Benin

    Science.gov (United States)

    Kelani, Raphael R.; Gado, Issaou

    2018-01-01

    Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…

  2. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    Science.gov (United States)

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  3. Science Teaching Experiences in Informal Settings: One Way to Enrich the Preparation Program for Preservice Science Teachers

    Science.gov (United States)

    Hsu, Pei-Ling

    2016-01-01

    The high attrition rate of new science teachers demonstrates the urgent need to incorporate effective practices in teacher preparation programs to better equip preservice science teachers. The purpose of the study is to demonstrate a way to enrich preservice science teachers' preparation by incorporating informal science teaching practice into…

  4. The Impact of a Curriculum Course on Pre-Service Primary Teachers' Science Content Knowledge and Attitudes towards Teaching Science

    Science.gov (United States)

    Murphy, Cliona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students'…

  5. Transforming student's discourse as a method of teaching science inquiry

    Science.gov (United States)

    Livingston, David

    2005-07-01

    A qualitative case study on the instructional practice of one secondary science teacher addresses the persistent reluctance of many science teachers to integrate the cultural resources and social practices of professional science communities into the science content they teach. The literature has shown that teachers' hesitation to implement a social and locally situated learning strategy curtails students' ability to draw upon the language of science necessary to co-construct and shape authentic science inquiry and in particular appropriate argument schemes. The study hypothesized that a teacher's dialogic facilitation of a particular social context and instructional practices enhances a students' ability to express verbally the claims and warrants that rise from evidence taken from their inquiries of natural phenomena. The study also tracks students' use of the Key Words and Ideas of this science curriculum for the purpose of assessing the degree of students' assimilation of these terms into their speech and written expressions of inquiry. The theoretical framework is Vygotskian (1978) and the analysis of the qualitative data is founded on Toulmin (1958), Walton (1996), Jimenez-Alexandre et al. (2000) and Shavelson (1996). The dialogic structure of this teacher's facilitation of student's science knowledge is shown to utilize students' presumptive statements to hone their construction of inductive or deductive arguments. This instructional practice may represent teacher-student activity within the zone of proximal development and supports Vygotsky's notion that a knowledgeable other is instrumental in transforming student's spontaneous talk into scientific speech. The tracking of the curriculum's Key Words and Ideas into students' speech and writing indicated that this teachers' ability to facilitate students' presumptuous reasoning into logic statements did not necessarily guarantee that they could post strong written expressions of this verbal know-how in

  6. Teaching Critical Thinking through a course on Science and Religion

    Science.gov (United States)

    Shipman, H. L.; Jordan, J. J.

    2004-12-01

    The relationship between science and religion is, according to the public debate, rather stormy. It doesn't have to be this way. Since 1998, an astronomer (Shipman) and a philosopher (Jordan) have team-taught a course with a more constructive approach. This course has a recognized role in the University's General Education program and in the philosophy major. As overall course goals, we hope that our students will be able to: - exhibit critical thinking skills in being able to tell the difference between good arguments and bad arguments in this area - recognize that the relationship between science and religion is not necessarily an antagonistic one. We accomplish these goals by focusing the course on four major issues, namely: - Does Big Bang Cosmology leave room for a Creator? - Can a rational person believe in miracle reports? - In the light of modern science, what does it mean to be human? - Can a theist, someone who believes in God, rationally accept the scientific theory of biological evolution? We have evidence in the course to evaluate student progress towards our goals. Student responses to a pre- and post-testing methodology, where they responded to the same assignment at the beginning and at the end of the course, were classified as seeing the relationship between science and religion as confrontational, distinct, convergent, or transitional between distinct and convergent. Preliminary analysis of the student responses shows a significant shift away from a confrontational position and towards a more convergent position. The development of this course was supported by the John Templeton Foundation's Science and Religion course program. H.L.S.'s scholarly work integrating science research and science education research is supported by the National Science Foundation's Distinguished Teaching Scholars Program. DUE-0306557),

  7. Student Content Knowledge Increases after Participation in a Hands-on Biotechnology Intervention

    Science.gov (United States)

    Bigler, Amber M.; Hanegan, Nikki L.

    2011-01-01

    Implementing biotechnology education through hands-on teaching methods should be considered by secondary biology teachers. This study is an experimental research design to examine increased student content knowledge in biotechnology after a hands-on biotechnology intervention. The teachers from both school groups participated in, Project Crawfish,…

  8. Status of teaching elementary science for English learners in science, mathematics and technology centered magnet schools

    Science.gov (United States)

    Han, Alyson Kim

    According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning

  9. Prolog as description and implementation language in computer science teaching

    DEFF Research Database (Denmark)

    Christiansen, Henning

    population with uneven mathematical backgrounds. % Definitional interpreters, compilers, and other models of computation are defined in a systematic way as Prolog programs, and as a result, formal descriptions become running prototypes that can be tested and modified by the students. These programs can......Prolog is a powerful pedagogical instrument for theoretical elements of computer science when used as combined description language and experimentation tool. A teaching methodology based on this principle has been developed and successfully applied in a context with a heterogeneous student...

  10. Science school and culture school: improving the efficiency of high school science teaching in a system of mass science education.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    Educational expansion in western countries has been achieved mainly by adding years to full-time education; however, this process has probably reduced efficiency. Sooner or later, efficiency must improve, with a greater educational attainment per year. Future societies will probably wish more people to study science throughout high school (aged c. 11-19 years) and the first college degree. 'Science' may be defined as any abstract, systematic and research-based discipline: including mathematics, statistics and the natural sciences, economics, music theory, linguistics, and the conceptual or quantitative social sciences. Since formal teaching is usually necessary to learn science, science education should be regarded as the core function of high schools. One standard way to improve efficiency is the 'division of labour', with increased specialization of function. Modern schools are already specialized: teachers are specialized according to age-group taught, subject matter expertise, and administrative responsibilities. School students are stratified by age and academic aptitude. I propose a further institutional division of school function between science education, and cultural education (including education in arts, sports, ethics, social interaction and good citizenship). Existing schools might split into 'science school' and 'culture school', reflected in distinct buildings and zones, separate administrative structures, and the recruitment of differently-specialized teaching personnel. Science school would be distinguished by its focus on education in disciplines which promote abstract systematic cognition. All students would spend some part of each day (how much would depend on their aptitude and motivation) in the 'science school'; experiencing a traditional-style, didactic, disciplined and rigorous academic education. The remainder of the students' time at school would be spent in the cultural division, which would focus on broader aspects, and aim to generate

  11. Novel ex vivo model for hands-on teaching of and training in EUS-guided biliary drainage: creation of "Mumbai EUS" stereolithography/3D printing bile duct prototype (with videos)

    NARCIS (Netherlands)

    Dhir, Vinay; Itoi, Takao; Fockens, Paul; Perez-Miranda, Manuel; Khashab, Mouen A.; Seo, Dong Wan; Yang, Ai Ming; Lawrence, Khek Yu; Maydeo, Amit

    2015-01-01

    Background: EUS-guided biliary drainage (EUS-BD) has emerged as an alternative rescue method in patients with failed ERCP. Opportunities for teaching and training are limited because of a low case volume at most centers. Objective: To evaluate a stereolithography/3-dimensional (3D) printing bile

  12. Setting the Stage for Science in Schools - EIROforum presents the very best of European science teaching

    Science.gov (United States)

    2005-11-01

    EIROforum presents the very best of European science teaching How can you weigh the Earth with a straw, a paperclip and a piece of thread? Why don't we really know what we see? How can a juggling act explain mathematics? These are but a few of the on-stage activities that will be shown at the EIROforum [1] Science on Stage Festival, to be held from 21 to 25 November at CERN in Geneva (Switzerland). With support from the European Commission, this international festival brings together around 500 science educators from 29 European countries to show how fascinating and entertaining science can be. "Science is fun! This is what this week-long event will show by presenting innovative methods of teaching science and demonstrations", says Helen Wilson from the European Space Agency and co-ordinator of the event. "At the festival, teachers have the chance to view things from a new perspective, to be entertained and enchanted by science", says Rolf Landua, Head of Education at CERN and Chairman of the event. "As well as taking to the stage, they set up stalls in fair-like surroundings to share their most successful teaching tricks." Workshops on themes as varied as "flying on stage", "the theatre of science", or "stem cell research" and "gamma-ray bursts", will give the attendees - teachers and other science educators - the chance to discuss and come up with solutions to the problem of growing disinterest for science in Europe. "A key element of the Science on Stage concept is to give teachers an up-to-date 'insider's view' of what is happening in big science, to tell them about new, highly diverse and interesting career opportunities for their pupils, and to create a European atmosphere where bright young people can meet and interact", says Colin Carlile, Director General of the Institut Laue-Langevin and current chairman of the EIROforum. At the end of the festival, the European Science Teaching Awards will be presented. The names of the winners will be made public on the

  13. Production of a Science Documentary and Its Usefulness in Teaching the Nature of Science: Indirect Experience of How Science Works

    Science.gov (United States)

    Kim, Sun Young; Yi, Sang Wook; Cho, Eun Hee

    2014-01-01

    In this study, we produced a documentary which portrays scientists at work and critically evaluated the use of this film as a teaching tool to help students develop an understanding of the nature of science. The documentary, "Life as a Scientist: People in Love with 'Caenorhabditis elegans,' a Soil Nematode" encompasses the…

  14. Teacher beliefs about teaching science through Science-Technology-Society (STS)

    Science.gov (United States)

    Massenzio, Lynn

    2001-07-01

    Statement of the problem. As future citizens, students will have the enormous responsibility of making decisions that will require an understanding of the interaction of science and technology and its interface with society. Since many societal issues today are grounded in science and technology, learning science in its social context is vital to science education reform. Science-Technology-Society (STS) has been strongly identified with meeting this goal, but despite its benefits, putting theory into practice has been difficult. Research design and methodology. The purpose of this study was to explore teacher beliefs about teaching science through STS. The following broad research questions guided the study: (1) What are the participants' initial beliefs about teaching science through STS? (2) What beliefs emerge as participants reflect upon and share their STS instructional experiences with their peers? A social constructivist theoretical framework was developed to plan interactions and collect data. Within this framework, a qualitative methodology was used to interpret the data and answer the research questions. Three provisionally certified science teachers engaged in a series of qualitative tasks including a written essay, verbal STS unit explanation, reflective journal writings, and focus group interviews. After implementing their STS unit, the participants engaged in meaningful dialogue with their peers as they reflected upon, shared, and constructed their beliefs. Conclusions. The participants strongly believed in STS as a means for achieving scientific and technological literacy, developing cognition, enhancing scientific habits of mind and affective qualities, and fostering citizen responsibility. Four major assertions were drawn: (a) Participants' initial belief in teaching for citizen responsibility did not fully align with practice, (b) Educators at the administrative level should be made aware of the benefits of teaching science through STS, (c

  15. The Science Teaching Fellows Program: A Model for Online Faculty Development of Early Career Scientists Interested in Teaching?

    OpenAIRE

    Brancaccio-Taras, Loretta; Gull, Kelly A.; Ratti, Claudia

    2016-01-01

    The American Society for Microbiology (ASM) has a history of providing a wide range of faculty development opportunities. Recently, ASM developed the Science Teaching Fellows Program (STF) for early career biologists and postdoctoral students to explore student-centered teaching and develop the skills needed to succeed in positions that have a significant teaching component. Participants were selected to STF through a competitive application process. The STF program consisted of a series of s...

  16. Exploring the Relations of Inquiry-Based Teaching to Science Achievement and Dispositions in 54 Countries

    Science.gov (United States)

    Cairns, Dean; Areepattamannil, Shaljan

    2017-06-01

    This study, drawing on data from the third cycle of the Program for International Student Assessment (PISA) and employing three-level hierarchical linear modeling (HLM) as an analytic strategy, examined the relations of inquiry-based science teaching to science achievement and dispositions toward science among 170,474 15-year-old students from 4780 schools in 54 countries across the globe. The results of the HLM analyses, after accounting for student-, school-, and country-level demographic characteristics and students' dispositions toward science, revealed that inquiry-based science teaching was significantly negatively related to science achievement. In contrast, inquiry-based science teaching was significantly positively associated with dispositions toward science, such as interest in and enjoyment of science learning, instrumental and future-oriented science motivation, and science self-concept and self-efficacy. Implications of the findings for policy and practice are discussed.

  17. Investigation of the Self-Efficacy Beliefs in Teaching Science and Attitudes towards Teaching Profession of the Candidate Teachers

    Science.gov (United States)

    Uyanik, Gökhan

    2016-01-01

    The aim of this study is to investigate the attitudes of the primary school teacher candidates towards teaching profession and self-efficacy beliefs in teaching science. The research was conducted with a survey model. The sample of the study consisted of 182 teacher candidates who were studying at the 2015-2016 spring term from Kastamonu…

  18. Teaching creativity and inventive problem solving in science.

    Science.gov (United States)

    DeHaan, Robert L

    2009-01-01

    Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known or used. In this essay, I review the evidence that creativity is not a single hard-to-measure property. The creative process can be explained by reference to increasingly well-understood cognitive skills such as cognitive flexibility and inhibitory control that are widely distributed in the population. I explore the relationship between creativity and the higher-order cognitive skills, review assessment methods, and describe several instructional strategies for enhancing creative problem solving in the college classroom. Evidence suggests that instruction to support the development of creativity requires inquiry-based teaching that includes explicit strategies to promote cognitive flexibility. Students need to be repeatedly reminded and shown how to be creative, to integrate material across subject areas, to question their own assumptions, and to imagine other viewpoints and possibilities. Further research is required to determine whether college students' learning will be enhanced by these measures.

  19. Principles of Gestalt Psychology and Their Application to Teaching Junior High School Science

    Science.gov (United States)

    Blosser, Patricia E.

    1973-01-01

    Discusses insightful learning, trace system,'' and laws of perception and Pragnanz in connection with problem solving and critical thinking in science teaching. Suggests 19 guidelines for sequencing curriculum and identifying activities for use in science classes. (CC)

  20. Improving Group Work Practices in Teaching Life Sciences: Trialogical Learning

    Science.gov (United States)

    Tammeorg, Priit; Mykkänen, Anna; Rantamäki, Tomi; Lakkala, Minna; Muukkonen, Hanni

    2017-08-01

    Trialogical learning, a collaborative and iterative knowledge creation process using real-life artefacts or problems, familiarizes students with working life environments and aims to teach skills required in the professional world. We target one of the major limitation factors for optimal trialogical learning in university settings, inefficient group work. We propose a course design combining effective group working practices with trialogical learning principles in life sciences. We assess the usability of our design in (a) a case study on crop science education and (b) a questionnaire for university teachers in life science fields. Our approach was considered useful and supportive of the learning process by all the participants in the case study: the students, the stakeholders and the facilitator. Correspondingly, a group of university teachers expressed that the trialogical approach and the involvement of stakeholders could promote efficient learning. In our case in life sciences, we identified the key issues in facilitating effective group work to be the design of meaningful tasks and the allowance of sufficient time to take action based on formative feedback. Even though trialogical courses can be time consuming, the experience of applying knowledge in real-life cases justifies using the approach, particularly for students just about to enter their professional careers.

  1. Teaching the process of science: faculty perceptions and an effective methodology.

    Science.gov (United States)

    Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew; Dirks, Clarissa

    2010-01-01

    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy.

  2. `You Have to Give Them Some Science Facts': Primary Student Teachers' Early Negotiations of Teacher Identities in the Intersections of Discourses About Science Teaching and About Primary Teaching

    Science.gov (United States)

    Danielsson, Anna T.; Warwick, Paul

    2014-04-01

    In the broadest sense, the goal for primary science teacher education could be described as preparing these teachers to teach for scientific literacy. Our starting point is that making such science teaching accessible and desirable for future primary science teachers is dependent not only on their science knowledge and self-confidence, but also on a whole range of interrelated sociocultural factors. This paper aims to explore how intersections between different Discourses about primary teaching and about science teaching are evidenced in primary school student teachers' talk about becoming teachers. The study is founded in a conceptualisation of learning as a process of social participation. The conceptual framework is crafted around two key concepts: Discourse (Gee 2005) and identity (Paechter, Women's Studies International Forum, 26(1):69-77, 2007). Empirically, the paper utilises semi-structured interviews with 11 primary student teachers enrolled in a 1-year Postgraduate Certificate of Education course. The analysis draws on five previously identified teacher Discourses: `Teaching science through inquiry', `Traditional science teacher', `Traditional primary teacher', `Teacher as classroom authority', and `Primary teacher as a role model' (Danielsson and Warwick, International Journal of Science Education, 2013). It explores how the student teachers, at an early stage in their course, are starting to intersect these Discourses to negotiate their emerging identities as primary science teachers.

  3. Promoting Shifts in Preservice Science Teachers' Thinking through Teaching and Action Research in Informal Science Settings

    Science.gov (United States)

    Wallace, Carolyn S.

    2013-08-01

    The purpose of this study was to investigate the influence of an integrated experiential learning and action research project on preservice science teachers' developing ideas about science teaching, learning, and action research itself. The qualitative, interpretive study examined the action research of 10 master's degree students who were involved in service learning with children in informal education settings. Results indicated that all of the participants enhanced their knowledge of children as diverse learners and the importance of prior knowledge in science learning. In-depth case studies for three of the participants indicated that two developed deeper understandings of science learners and learning. However, one participant was resistant to learning and gained more limited understandings.

  4. Exploration on the reform of the science and engineering experiment teaching based on the combination with teaching and scientific research

    Science.gov (United States)

    Song, Peng

    2017-08-01

    The existing problems of the experiment education in colleges and universities are analyzed. Take the science and engineering specialty as example, the idea of the combination with teaching and scientific research is discussed. The key problems are how the scientific research and scientific research achievements are used effectively in the experiment education, how to effectively use scientific research laboratories and scientific researchers. Then, a specialty experiment education system is established which is good for the teaching in accordance of all students' aptitude. The research in this paper can give the construction of the experiment teaching methods and the experiment system reform for the science and engineering specialties in colleges and universities.

  5. A Comparison of Didactic and Inquiry Teaching Methods in a Rural Community College Earth Science Course

    Science.gov (United States)

    Beam, Margery Elizabeth

    The combination of increasing enrollment and the importance of providing transfer students a solid foundation in science calls for science faculty to evaluate teaching methods in rural community colleges. The purpose of this study was to examine and compare the effectiveness of two teaching methods, inquiry teaching methods and didactic teaching methods, applied in a rural community college earth science course. Two groups of students were taught the same content via inquiry and didactic teaching methods. Analysis of quantitative data included a non-parametric ranking statistical testing method in which the difference between the rankings and the median of the post-test scores was analyzed for significance. Results indicated there was not a significant statistical difference between the teaching methods for the group of students participating in the research. The practical and educational significance of this study provides valuable perspectives on teaching methods and student learning styles in rural community colleges.

  6. Learner-centered teaching in the college science classroom: a practical guide for teaching assistants, instructors, and professors

    Science.gov (United States)

    Dominguez, Margaret Z.; Vorndran, Shelby

    2014-09-01

    The Office of Instruction and Assessment at the University of Arizona currently offers a Certificate in College Teaching Program. The objective of this program is to develop the competencies necessary to teach effectively in higher education today, with an emphasis on learner-centered teaching. This type of teaching methodology has repeatedly shown to have superior effects compared to traditional teacher-centered approaches. The success of this approach has been proven in both short term and long term teaching scenarios. Students must actively participate in class, which allows for the development of depth of understanding, acquisition of critical thinking, and problem-solving skills. As optical science graduate students completing the teaching program certificate, we taught a recitation class for OPTI 370: Photonics and Lasers for two consecutive years. The recitation was an optional 1-hour long session to supplement the course lectures. This recitation received positive feedback and learner-centered teaching was shown to be a successful method for engaging students in science, specifically in optical sciences following an inquiry driven format. This paper is intended as a guide for interactive, multifaceted teaching, due to the fact that there are a variety of learning styles found in every classroom. The techniques outlined can be implemented in many formats: a full course, recitation session, office hours and tutoring. This guide is practical and includes only the most effective and efficient strategies learned while also addressing the challenges faced, such as formulating engaging questions, using wait time and encouraging shy students.

  7. Hands-On Skills for Caregivers

    Science.gov (United States)

    ... A + A You are here Home Hands-On Skills for Caregivers Printer-friendly version When you’re ... therapist who can help you develop your transferring skills. Allow for their reality Remember to accept your ...

  8. The Teaching Practices Inventory: A New Tool for Characterizing College and University Teaching in Mathematics and Science

    Science.gov (United States)

    Gilbert, Sarah

    2014-01-01

    We have created an inventory to characterize the teaching practices used in science and mathematics courses. This inventory can aid instructors and departments in reflecting on their teaching. It has been tested with several hundred university instructors and courses from mathematics and four science disciplines. Most instructors complete the inventory in 10 min or less, and the results allow meaningful comparisons of the teaching used for the different courses and instructors within a department and across different departments. We also show how the inventory results can be used to gauge the extent of use of research-based teaching practices, and we illustrate this with the inventory results for five departments. These results show the high degree of discrimination provided by the inventory, as well as its effectiveness in tracking the increase in the use of research-based teaching practices. PMID:25185237

  9. Interactive Methods for Teaching Action Potentials, an Example of Teaching Innovation from Neuroscience Postdoctoral Fellows in the Fellowships in Research and Science Teaching (FIRST) Program

    OpenAIRE

    Keen-Rhinehart, E.; Eisen, A.; Eaton, D.; McCormack, K.

    2009-01-01

    Acquiring a faculty position in academia is extremely competitive and now typically requires more than just solid research skills and knowledge of one?s field. Recruiting institutions currently desire new faculty that can teach effectively, but few postdoctoral positions provide any training in teaching methods. Fellowships in Research and Science Teaching (FIRST) is a successful postdoctoral training program funded by the National Institutes of Health (NIH) providing training in both researc...

  10. Determination of Factors Affecting Preschool Teacher Candidates' Attitudes towards Science Teaching

    Science.gov (United States)

    Timur, Betul

    2012-01-01

    The purpose of this study was to determine preschool teacher candidates' attitudes towards science teaching and to examine the reasons behind their attitudes in depth. In this study, mixed methods were used including quantitative and qualitative data. Quantitative data gained by attitudes towards science teaching scale, qualitative data gained by…

  11. Developing Turkish Preservice Preschool Teachers' Attitudes and Understanding about Teaching Science through Play

    Science.gov (United States)

    Bulunuz, Mizrap

    2012-01-01

    This research studied the development of preservice teachers' understandings and attitudes about teaching science through playful experiences. Subjects were 94 senior preservice teachers in two sections of a science methods class on teaching preschool children. Data sources were semi-structured interviews and open-ended questionnaire at the…

  12. The Art of Teaching Science in Secondary Schools: A Meta Analysis

    Science.gov (United States)

    Hassan, Sharifah Sariah Syed; Ibrahim, Ahmad Abdullahi

    2018-01-01

    This study attempted to highlight the trend of research in science related subjects specifically in schools. Articles and journals were retrieved from Google scholar under peer reviewed with the aim to highlight the trend of research methods, findings and teaching strategies. The themes were based on pedagogical approaches of teaching science,…

  13. Utilization of Smartphones in Science Teaching and Learning in Selected Universities in Ghana

    Science.gov (United States)

    Twum, Rosemary

    2017-01-01

    This study was designed to examine the use of mobile phone, a widespread technology, and determined how this technology influences science students' learning. The study intended to examine the use of smartphones in science teaching and learning and propose of model in the use of smartphones for teaching and learning. The research design employed…

  14. Self-Efficacy for Science Teaching Scale Development: Construct Validation with Elementary School Teachers

    Science.gov (United States)

    Yangin, Selami; Sidekli, Sabri

    2016-01-01

    The measurement of teacher self-efficacy has a history of more than 30 years. The purpose of this research is to evaluate the development and validation of a new scale to measure the science teaching self-efficacy of elementary school teachers. Therefore, a scale has been created to measure elementary teachers' science teaching self-efficacy and…

  15. Pre- and In-Service Preschool Teachers' Science Teaching Efficacy Beliefs

    Science.gov (United States)

    Aslan, Durmus; Tas, Isil; Ogul, Irem Gürgah

    2016-01-01

    In this study, pre- and in-service preschool teachers' science teaching efficacy beliefs were investigated. The sample included 100 pre-service (50 first grades and 50 last grades) and 73 in-service preschool teachers. As a data collection tool "Science Teaching Efficacy Belief Instrument" was used. Findings indicated that in-service…

  16. Analysis of the Science and Technology Preservice Teachers' Opinions on Teaching Evolution and Theory of Evolution

    Science.gov (United States)

    Töman, Ufuk; Karatas, Faik Özgür; Çimer, Sabiha Odabasi

    2014-01-01

    In this study, we investigate of science and technology teachers' opinions about the theory of evolution and the evolution teaching. The aim of this study, we investigate of science and technology teachers' opinions about the theory of evolution and the evolution teaching. This study is a descriptive study. Open-ended questions were used to…

  17. Adopting Just-in-Time Teaching in the Context of an Elementary Science Education Methodology Course

    Science.gov (United States)

    Osmond, Pamela; Goodnough, Karen

    2011-01-01

    In this self-study, Pamela, a new science teacher educator, adopted Just-in-Time Teaching (JiTT) in the context of an elementary science education methodology course. JiTT is a teaching and learning strategy involving interaction between web-based study assignments and face-to-face class sessions. Students respond electronically to web-based…

  18. Relationships between Prospective Elementary Teachers' Classroom Practice and Their Conceptions of Biology and of Teaching Science.

    Science.gov (United States)

    Meyer, Helen; Tabachnick, B. Robert; Hewson, Peter W.; Lemberger, John; Park, Hyun-Ju

    1999-01-01

    Discusses three prospective elementary teachers' conceptions of teaching science and selected portions of their knowledge base in life science. Explores how these teachers' conceptions, along with their teaching actions, developed during the course of a teacher-education program. Contains 21 references. (Author/WRM)

  19. Using Food as a Tool to Teach Science to 3rd Grade Students in Appalachian Ohio

    Science.gov (United States)

    Duffrin, Melani W.; Hovland, Jana; Carraway-Stage, Virginia; McLeod, Sara; Duffrin, Christopher; Phillips, Sharon; Rivera, David; Saum, Diana; Johanson, George; Graham, Annette; Lee, Tammy; Bosse, Michael; Berryman, Darlene

    2010-01-01

    The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. In 2007 to 2008, a foods curriculum developed by professionals in nutrition and education was implemented in 10 3rd-grade classrooms in Appalachian Ohio; teachers in these…

  20. Theoretically and Practically Speaking, What Is Needed in Diversity and Equity in Science Teaching and Learning?

    Science.gov (United States)

    Mensah, Felicia Moore

    2013-01-01

    This article discusses how issues of diversity and equity are addressed in the preparation of science teachers who are charged with teaching diverse students in schools. Highlighting examples from my own teaching and research and other studies in education, I frame this article in terms of a broad application of theory in science teacher…

  1. Investigating the Self-Perceived Science Teaching Needs of Local Elementary Educators

    Science.gov (United States)

    Carver, Cynthia G.

    2012-01-01

    Elementary teachers in one school system have expressed low self-efficacy teaching science and desire more support teaching science. However, little research has been conducted on how best to meet these teachers' needs. The theories of perceived self-efficacy, social cognition, and behaviorism make up the conceptual framework of this study. The…

  2. Science of Materials: A Case Study of Intentional Teaching in the Early Years

    Science.gov (United States)

    Hackling, Mark; Barratt-Pugh, Caroline

    2012-01-01

    Australia's Early Years Learning Framework and leading international researchers argue for more intentional and purposeful teaching of science in the early years. This case study of exemplary practice illustrates intentional teaching of science materials which opened-up learning opportunities in literacy and number. Student-led hands-on…

  3. Exploring the impact of an industrial volunteer/school science partnership on elementary teaching strategies and attitudes about future science study: A case study

    Science.gov (United States)

    White, Michael Robert

    This study reports the results of research designed to explore the impact of industrial volunteer/school partnerships on elementary science teaching behaviors and students' attitudes about future science study. Since these partnerships involved teachers and students in hands-on or laboratory-type science experiences, the study will add an elementary school component to a series of other studies conducted through the Science Education Program at Temple University that have addressed how to improve the learning outcomes from these experiences. Three suburban elementary schools were randomly selected by a single school district's science supervisor to be involved in this study. Two of the buildings were designated as the experimental schools and teachers worked directly with the researcher as an industrial partner. The third school served as a control with no organized industrial partner. An additional school building in a second suburban school district was selected to serve as a comparison school and a second scientist participated as an industrial volunteer. Unlike the researcher, this scientist had no formal training in science education. Each phase of the study included instruments piloted and reviewed by experienced elementary teachers for appropriateness or by objective experts in the field of education. A student attitude survey and selected tasks from the Inventory of Piagetian Developmental Tasks were administered to all students involved in the study. Empirical data collected through videotaped analysis using the validated Modified-Revised Vickery Science Teacher Behavior Inventory led to the development of a pattern of the most frequently used behaviors during elementary science instruction. A profile of each participating teacher was developed through the use of a validated attitude survey, notes taken during classroom interactions and from information collected during ethnographic interviews. A major conclusion drawn from this study is that neither type

  4. Prospective Science Teachers' Attitudes and Views of Using Journal Writing in the "Methods of Teaching Science" Course

    Science.gov (United States)

    Ambusaidi, Abdullah

    2014-01-01

    The aim of this study was to investigate the attitudes of prospective science teachers at Sultan Qaboos University towards and their views about using journal writing in the Methods of Teaching Science course. Twenty-six prospective science teachers were asked to write about each topic in the course in their journal to show their understanding of…

  5. Participation in a Multi-Institutional Curriculum Development Project Changed Science Faculty Knowledge and Beliefs about Teaching Science

    Science.gov (United States)

    Donovan, Deborah A.; Borda, Emily J.; Hanley, Daniel M.; Landel, Carolyn C.

    2015-01-01

    Despite significant pressure to reform science teaching and learning in K12 schools, and a concurrent call to reform undergraduate courses, higher education science content courses have remained relatively static. Higher education science faculty have few opportunities to explore research on how people learn, examine state or national science…

  6. A Longitudinal Investigation of the Science Teaching Efficacy Beliefs and Science Experiences of a Cohort of Preservice Elementary Teachers

    Science.gov (United States)

    Deehan, James; Danaia, Lena; McKinnon, David H.

    2017-01-01

    This paper assesses the relationship between participation in two tertiary science courses and the science teaching efficacy beliefs (STEBs) of one cohort of preservice elementary teachers over a four-year period. Two Type II case studies were conducted within the courses. Data were collected through 26 administrations of the Science Teaching…

  7. Effects of a Science Content Course on Elementary Preservice Teachers' Self-Efficacy of Teaching Science

    Science.gov (United States)

    Bergman, Daniel J.; Morphew, Jason

    2015-01-01

    The preparation of elementary teachers to successfully teach science in their classrooms is a central issue in science education. The teacher preparation program at a large Midwestern university was modified to include a new science content course aimed at this need. A pre-/postassessment research model involved participants (N = 154) completing a…

  8. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    Science.gov (United States)

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  9. Caring Enough to Teach Science: Helping Pre-Service Teachers View Science Instruction as an Ethical Responsibility

    Science.gov (United States)

    Grinell, Smith; Rabin, Colette

    2017-01-01

    The goal of this project was to motivate pre-service elementary teachers to commit to spending significant instructional time on science in their future classrooms despite their self-assessed lack of confidence about teaching science and other impediments (e.g., high-stakes testing practices that value other subjects over science). Pre-service…

  10. Characteristics of High School Students' and Science Teachers' Cognitive Frame about Effective Teaching Method for High School Science Subject

    Science.gov (United States)

    Chung, Duk Ho; Park, Kyeong-Jin; Cho, Kyu Seong

    2016-04-01

    We investigated the cognitive frame of high school students and inservice high school science teachers about effective teaching method, and we also explored how they understood about the teaching methods suggested by the 2009 revised Science Curriculum. Data were collected from 275 high school science teachers and 275 high school students. We analyzed data in terms of the words and the cognitive frame using the Semantic Network Analysis. The results were as follows. First, the teachers perceived that an activity oriented class was the effective science class that helped improve students'' problem-solving abilities and their inquiry skills. The students had the cognitive frame that their teacher had to present relevant and enough teaching materials to students, and that they should also receive assistance from teachers in science class to better prepare for college entrance exam. Second, both students and teachers retained the cognitive frame about the efficient science class that was not reflected 2009 revised Science Curriculum exactly. Especially, neither groups connected the elements of ''convergence'' as well as ''integration'' embedded across science subject areas to their cognitive frame nor cognized the fact that many science learning contents were closed related to one another. Therefore, various professional development opportunities should be offered so that teachers succinctly comprehend the essential features and the intents of the 2009 revised Science Curriculum and thereby implement it in their science lessons effectively. Keywords : semantic network analysis, cognitive frame, teaching method, science lesson

  11. Hopes and Fears for Science Teaching: The Possible Selves of Preservice Teachers in a Science Education Program

    Science.gov (United States)

    Hong, Ji; Greene, Barbara

    2011-01-01

    Given the high attrition rate of beginning science teachers, it is imperative to better prepare science preservice teachers, so that they can be successful during the early years of their teaching. The purpose of this study was to explore science preservice teachers' views of themselves as a future teacher, in particular their hopes and fears for…

  12. Clubes de Ciencia: Intensive science workshops in Mexico provide a unique opportunity for teaching, scientific and cultural exchange

    Science.gov (United States)

    Le Bras, I.; Rosengard, S.; Estefania, M.; Jinich, A.

    2016-02-01

    Clubes de Ciencia, which translates to "Science Clubs" is an initiative started by a group of graduate students at Harvard University in 2014 to encourage scientific exchange between the US and Mexico. These science clubs are one-week long intensive workshops taught by graduate students and/or postdocs on a subject of their choice in six Mexican cities. Instructors apply to teach a workshop by sending a proposal to the organizing committee, who is looking for workshops that emphasize hands-on, practical ideas. The instructors, primarily graduate students in the US, are paired with local co-instructors who assist and often co-teach the workshop. Local student participants, who are in their last two years of high school and the first two years of college, are selected based on their interest and enthusiasm. Each class has about 15-20 students, so that the classroom setting is intimate and interactive Sponsors, who fund instructor stipends, class supplies and program development, include the Mexican department of energy (SENER), the Mexican national science foundation (CONACYT), Harvard and MIT. Host universities also provide space and resources. In this presentation we focus on clubs that were taught in January 2015 on ocean physics and July 2015 on ocean chemistry, both taught in Ensenada, Baja California at the national autonomous university. Both workshops included a combination of data analysis, lectures, experiments and computational modeling. The ocean physics class was also recorded intermittently and is being used as a test case for an online course. The format provided an intensive teaching and networking experience and could be interesting to implement in other contexts.

  13. An inquiry approach to science and language teaching

    Science.gov (United States)

    Rodriguez, Imelda; Bethel, Lowell J.

    The purpose of this study was to determine the effectiveness of an inquiry approach to science and language teaching to further develop classification and oral communication skills of bilingual Mexican American third graders. A random sample consisting of 64 subjects was selected for experimental and control groups from a population of 120 bilingual Mexican American third graders. The Solomon Four-Group experimental design was employed. Pre- and posttesting was performed by use of the Goldstein-Sheerer Object Sorting Test, (GSOST) and the Test of Oral Communication Skills, (TOCS). The experimental group participated in a sequential series of science lessons which required manipulation of objects, exploration, peer interaction, and teacher-pupil interaction. The children made observations and comparisons of familiar objects and then grouped them on the basis of perceived and inferred attributes. Children worked individually and in small groups. Analysis of variance procedures was used on the posttest scores to determine if there was a significant improvement in classification and oral communication skills in the experimental group. The results on the posttest scores indicated a significant improvement at the 0.01 level for the experimental group in both classification and oral communication skills. It was concluded that participation in the science inquiry lessons facilitated the development of classification and oral communication skills of bilingual children.

  14. Learning and Teaching about the Nature of Science through Process Skills

    Science.gov (United States)

    Mulvey, Bridget K.

    2012-01-01

    This dissertation, a three-paper set, explored whether the process skills-based approach to nature of science instruction improves teachers' understandings, intentions to teach, and instructional practice related to the nature of science. The first paper examined the nature of science views of 53 preservice science teachers before and after a…

  15. Changes in Science Teaching Self-Efficacy among Primary Teacher Education Students

    Science.gov (United States)

    Palmer, David; Dixon, Jeanette; Archer, Jennifer

    2015-01-01

    Many preservice primary teachers have low self-efficacy for science teaching. Although science methods courses have often been shown to enhance self-efficacy, science content courses have been relatively ineffective in this respect. This study investigated whether a tailored science content course would enhance self-efficacy. The participants were…

  16. Color Visions from the Past in Science Teaching within a Cultural Historical Activity Theory (CHAT) Context

    Science.gov (United States)

    Kolokouri, Eleni; Plakitsi, Katerina

    2012-01-01

    This study uses history of science in teaching natural sciences from the early grades. The theoretical framework used is Cultural Historical Activity Theory (CHAT), which is a theory with expanding applications in different fields of science. The didactical scenario, in which history of science is used in a CHAT context, refers to Newton's…

  17. The Junior High School Integrated Science: The Actual Teaching Process in the Perspective of an Ethnographer

    Science.gov (United States)

    Adu-Gyamfi, Kenneth; Ampiah, Joseph Ghartey

    2016-01-01

    Science education at the Basic School (Primary and Junior High School) serves as the foundation upon which higher levels of science education are pivoted. This ethnographic study sought to investigate the teaching of Integrated Science at the Junior High School (JHS) level in the classrooms of two science teachers in two schools of differing…

  18. Gains in the Education of Mathematics and Science GEMS: Teaching Robotics to High School Students

    Science.gov (United States)

    2013-01-01

    find amusing but that we find of less educational value, like having the robots say comical things. Those who have more teaching time would doubtless...Gains in the Education of Mathematics and Science GEMS: Teaching Robotics to High School Students by Edward M. Measure and Edward Creegan...TR-6220 January 2013 Gains in the Education of Mathematics and Science (GEMS): Teaching Robotics to High School Students Edward M

  19. Fostering Change from Within: Influencing Teaching Practices of Departmental Colleagues by Science Faculty with Education Specialties.

    Science.gov (United States)

    Bush, Seth D; Rudd, James A; Stevens, Michael T; Tanner, Kimberly D; Williams, Kathy S

    2016-01-01

    Globally, calls for the improvement of science education are frequent and fervent. In parallel, the phenomenon of having Science Faculty with Education Specialties (SFES) within science departments appears to have grown in recent decades. In the context of an interview study of a randomized, stratified sample of SFES from across the United States, we discovered that most SFES interviewed (82%) perceived having professional impacts in the realm of improving undergraduate science education, more so than in research in science education or K-12 science education. While SFES reported a rich variety of efforts towards improving undergraduate science education, the most prevalent reported impact by far was influencing the teaching practices of their departmental colleagues. Since college and university science faculty continue to be hired with little to no training in effective science teaching, the seeding of science departments with science education specialists holds promise for fostering change in science education from within biology, chemistry, geoscience, and physics departments.

  20. Teaching science to English Language Learners: Instructional approaches of high school teachers

    Science.gov (United States)

    Frank, Betty-Vinca N.

    Students who are English Language Learners (ELLs) form the fastest growing segment of the American school population. Prompted by the call for scientific literacy for all citizens, science educators too have investigated the intersection of language and science instruction of ELLs. However these studies have typically been conducted with elementary students. Few studies have explored how high school science teachers, particularly those who have not received any special training, approach science instruction of ELLs and what supports them in this endeavor. This was a qualitative case study conducted with five science teachers in one small urban high school that predominantly served ELLs. The purpose of this study was to examine instructional approaches used by teachers to make science accessible to ELLs and the factors that supported or inhibited them in developing their instructional approaches. This goal encompassed the following questions: (a) how teachers viewed science instruction of ELLs, (b) how teachers designed a responsive program to teach science to ELLs, (c) what approaches teachers used for curriculum development and instruction, (d) how teachers developed classroom learning communities to meet the needs of ELLs. Seven instructional strategies and five perceived sources of support emerged as findings of this research. In summary, teachers believed that they needed to make science more accessible for their ELL students while promoting their literacy skills. Teachers provided individualized attention to students to provide relevant support. Teachers engaged their students in various types of active learning lessons in social contexts, where students worked on both hands-on and meaning-making activities and interacted with their peers and teachers. Teachers also created classroom communities and learning spaces where students felt comfortable to seek and give help. Finally, teachers identified several sources of support that influenced their instructional

  1. A Self-Study of a Thai Teacher Educator Developing a Better Understanding of PCK for Teaching about Teaching Science

    Science.gov (United States)

    Faikhamta, Chatree; Clarke, Anthony

    2013-01-01

    In this study, I, the first author as a Thai teacher educator employed self-study as a research methodology to investigate my own understandings, questions, and curiosities about pedagogical content knowledge (PCK) for teaching science student teachers and the ways I engaged student teachers in a field-based science methods course designed to help…

  2. Teaching science as inquiry in US and in Japan: A cross-cultural comparison of science teachers' understanding of, and attitudes toward inquiry-based teaching

    Science.gov (United States)

    Tosa, Sachiko

    Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.

  3. Research on teaching and learning processes in Earth Sciences education, particularly centred on the awareness on natural risks and hazards

    Science.gov (United States)

    Occhipinti, Susanna

    2013-04-01

    This research, main subject of a PhD now in progress, aims to promote the teaching - learning of Earth Sciences in schools of all levels of educations, with the interesting opportunity to experience innovative and effective practices in our local contest, sharing them between all the teachers as a community of practice and all schools as an open laboratory. Based on experiences already acted in other branches of science, we have made a work notebook freely downloadable from the internet, containing an archive of teaching tools, kits, interactive lessons, easy or complex, common and new, developing contents in a vertical approach, which are now shared and used by nearly all the teachers of our Region. The most important is that each teacher, if request, is initially supported in the practices, then trained and, finally, able to carry out the activity on his own. All the materials and kits necessary for carrying out the various activities are freely available at the regional Science Centre and ready to be used, with clear instructions for the use. Traditional educational scientific instruments, trolleys and trays with all the necessary materials, but mostly models and kits, organised in structured paths, sometime a bit naive but highly effective and able to interest, intrigue and involve, are proposed to students of all ages, sometimes in a peer-to-peer exchange of knowledge. Topics are linked to the curricula of Earth Science, such as minerals and rocks, air and water, plate tectonics, volcanoes and Earthquakes, but a special attention has been paid to the topic of natural hazards and risks: dealing with natural hazard and risks, so common in our Country, requires that local communities, starting from schools, become more and more aware of the natural phenomena, beneficial or catastrophic as they are, but always making a direct impact on the quality of life. For example, students can experience how and why landslides and floods occur, by varying on hands-on models

  4. Development of Socioscientific Issues-Based Teaching for Preservice Science Teachers

    OpenAIRE

    Prasart Nuangchalerm

    2009-01-01

    Problem statement: In the context of science education reform in Thailand, we need to prepare science teachers who can face science and social issues controversial; teachers can response the question socioscientific issues and let their students to meet the goal of science education. This study investigated the conception leading preservice science teachers approaching socioscientific issues-based teaching. The activities in classroom emphasized on peer discussion about science and social ref...

  5. The Analysis of Curriculum Development Studies Which are Applied For Effective Science Teaching at Primary Level in Turkey and Suggestions to Problems Encountered

    OpenAIRE

    Rahmi YAĞBASAN; Murat DEMİRBAŞ

    2005-01-01

    In this study, curriculum development studies for effective science teaching were analyzed in Turkey, solution suggestions were made by determining the confronted problems. The studies for curriculum analysis toward science teaching were done by covering applications of modern science teaching started in 1970s, curriculum of science teaching made in 1990s and applications of science teaching curriculum put into practice in 2000. It was determined that new science teaching studies that will be...

  6. Teaching and Learning in the Mixed-Reality Science Classroom

    Science.gov (United States)

    Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher

    2009-12-01

    As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to combine best practices in traditional science learning with the powerful affordances of audio/visual simulations. This paper introduces the realization of a learning environment called SMALLab, the Situated Multimedia Arts Learning Laboratory. We present a recent teaching experiment for high school chemistry students. A mix of qualitative and quantitative research documents the efficacy of this approach for students and teachers. We conclude that mixed-reality learning is viable in mainstream high school classrooms and that students can achieve significant learning gains when this technology is co-designed with educators.

  7. Teaching and learning science in linguistically diverse classrooms

    Science.gov (United States)

    Moore, Emilee; Evnitskaya, Natalia; Ramos-de Robles, S. Lizette

    2017-01-01

    In this paper we reflect on the article, Science education in a bilingual class: problematising a translational practice, by Zeynep Ünsal, Britt Jakobson, Bengt-Olav Molander and Per-Olaf Wickman (Cult Stud Sci Educ, 10.1007/s11422-016-9747-3). In their article, the authors present the results of a classroom research project by responding to one main question: How is continuity between everyday language and the language of science construed in a bilingual science classroom where the teacher and the students do not speak the same minority language? Specifically, Ünsal et al. examine how bilingual students construe relations between everyday language and the language of science in a class taught in Swedish, in which all students also spoke Turkish, whereas the teacher also spoke Bosnian, both being minority languages in the context of Swedish schools. In this forum, we briefly discuss why close attention to bilingual dynamics emerging in classrooms such as those highlighted by Ünsal et al. matters for science education. We continue by discussing changing ontologies in relation to linguistic diversity and education more generally. Recent research in bilingual immersion classroom settings in so-called "content" subjects such as Content and Language Integrated Learning, is then introduced, as we believe this research offers some significant insights in terms of how bilingualism contributes to knowledge building in subjects such as science. Finally, we offer some reflections in relation to the classroom interactional competence needed by teachers in linguistically diverse classrooms. In this way, we aim to further the discussion initiated by Ünsal et al. and to offer possible frameworks for future research on bilingualism in science education. In their article, Ünsal et al. conclude the analysis of the classroom data by arguing in favor of a translanguaging pedagogy, an approach to teaching and learning in which students' whole language repertoires are used as

  8. Educational teaching materials for nuclear science: A proposal

    International Nuclear Information System (INIS)

    Puse, Judeza S.; Awata, Takaaki; Atobe, Kozo; Xu, Qiu; Okada, Moritami

    2005-01-01

    It has been made clear and possible that problems met in teaching nuclear topics can be remedied with much care and attention to the application of the experimental photographs converted into a classroom science teaching device; a proposal which was conducted at Kyoto University Research Reactor Institute. Under Methodology, materials that comprised the experimentation process were provided with simplicity and clarity. Introductions on how to carry out the experiments were logically arranged so as to ensure systematic execution and organization of experimental processes. The inclusion of the experimental set ups were also manifested and of the experimental results (developed photos) presented in a manner suitably good for learners. Determination of the sequential models of the study was reflected, highlighted and specifically simplified as appropriate as possible. Further results and discussions were not shown but can be proposed and suggested that as to further application of the device, peak area spectral measurement and nuclide identification of irradiated samples can be made possible using DSA-1000 Digital Spectrum Analyzer System for countries equipped with ''high touch'' apparatus and facility as spiral basis for concept development. Production and dissemination of photographs can be realized for schools far beyond to cope and afford to buy these expensive laboratory and experimental facility to perform the same task. (author)

  9. A multimedia and interactive approach to teach soil science

    Science.gov (United States)

    Badía-Villas, D.; Martí-Dalmau, C.; Iñiguez-Remón, E.

    2012-04-01

    lectures, real field visits and other learning activities on soil sciences. The development of these programmes has been sponsored by the Spanish Ministry of Science and Innovation (Fundación Española para la Ciencia y la Tecnología, FECYT) and it has won the "Félix de Azara" Award (2011). Çaliskan, O. (2011). Virtual field trips in education of earth and environmental sciences. Procedia Social and Behavioral Sciences, 15: 3229-3243. Churchman, G. J. (2010). The philosophical status of soil science. Geoderma 157, 214-221. European Commission (2006). Thematic strategy for soil protection. COM (2006) 231. Field D.J., A. J. Koppi, L. E. Jarrett, L. K. Abbott, S. R. Cattle, C. D. Grant, A. B. McBratney, N. W. Menzies, A. J. Weatherley (2011). Soil Science teaching principles. Geoderma, 167-168: 9-14. IUSS Working Group WRB (2007). World Reference Base for Soil Resources 2006, fist update 2007. World Soil Resources Reports n° 103. FAO. Rome.

  10. Using constructivist teaching strategies in high school science classrooms to cultivate positive attitudes toward science

    Science.gov (United States)

    Heron, Lory Elen

    This study investigated the premise that the use of constructivist teaching strategies (independent variable) in high school science classrooms can cultivate positive attitudes toward science (dependent variable) in high school students. Data regarding the relationship between the use of constructivist strategies and change in student attitude toward science were collected using the Science Attitude Assessment Tool (SAAT) (Heron & Beauchamp, 1996). The format of this study used the pre-test, post-test, control group-experimental group design. The subjects in the study were high school students enrolled in biology, chemistry, or environmental science courses in two high schools in the western United States. Ten teachers and twenty-eight classes, involving a total of 249 students participated in the study. Six experimental group teachers and four control group teachers were each observed an average of six times using the Science Observation Guide (Chapman, 1995) to measure the frequency of observed constructivist behaviors. The mean for the control group teachers was 12.89 and the mean for experimental group teachers was 20.67; F(1, 8) = 16.2, p =.004, revealing teaching behaviors differed significantly between the two groups. After a four month experimental period, the pre-test and post-test SAAT scores were analyzed. Students received a score for their difference in positive attitude toward science. The null hypothesis stating there would be no change in attitude toward science as a subject, between students exposed to constructivist strategies, and students not exposed to constructivist strategies was rejected F(1, 247) = 8.04, p =.005. The control group had a generally higher reported grade in their last science class than the experimental group, yet the control group attitude toward science became more negative (-1.18) while attitude toward science in the experimental group became more positive (+1.34) after the four-month period. An analysis of positive

  11. Teaching Graduate Students How To Do Informal Science Education

    Science.gov (United States)

    Ackerman, S. A.; Crone, W.; Dunwoody, S. L.; Zenner, G.

    2011-12-01

    One of the most important skills a student needs to develop during their graduate days is the skill of communicating their scientific work with a wide array of audiences. That facility will serve them across audiences, from scientific peers to students to neighbors and the general public. Increasingly, graduate students express a need for training in skills needed to manage diverse communicative environments. In response to that need we have created a course for graduate students in STEM-related fields which provides a structured framework and experiential learning about informal science education. This course seeks to familiarize students with concepts and processes important to communicating science successfully to a variety of audiences. A semester-long course, "Informal Science Education for Scientists: A Practicum," has been co-taught by a scientist/engineer and a social scientist/humanist over several years through the Delta Program in Research, Teaching, & Learning at the University of Wisconsin-Madison. The course is project based and understanding audience is stressed throughout the class. Through development and exhibition of the group project, students experience front end, formative and summative evaluation methods. The disciplines of the participating students is broad, but includes students in the geosciences each year. After a brief description of the course and its evolution, we will present assessment and evaluation results from seven different iterations of the course showing significant gains in how informed students felt about evaluation as a tool to determine the effectiveness of their science outreach activities. Significant gains were found in the graduate students' perceptions that they were better qualified to explain a research topic to a lay audience, and in the students' confidence in using and understanding evaluation techniques to determine the effectiveness of communication strategies. There were also increases in the students

  12. Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area

    Science.gov (United States)

    Chamnanwong, Pornpaka; Thathong, Kongsak

    2018-01-01

    In preparing a science lesson plan, teachers may deal with numerous difficulties. Having a deep understanding of their problems and their demands is extremely essential for the teachers in preparing themselves for the job. Moreover, it is also crucial for the stakeholders in planning suitable and in-need teachers' professional development programs, in school management, and in teaching aid. This study aimed to investigate the primary school science teachers' opinion toward practice of teaching and learning activities in science learning area. Target group was 292 primary science teachers who teach Grade 4 - 6 students in Khon Kaen Province, Thailand in the academic year of 2014. Data were collected using Questionnaire about Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area. The questionnaires were consisted of closed questions scored on Likert scale and open-ended questions that invite a sentence response to cover from LS Process Ideas. Research findings were as follow. The primary science teachers' level of opinion toward teaching and learning science subject ranged from 3.19 - 3.93 (mean = 3.43) as "Moderate" level of practice. The primary school science teachers' needs to participate in a training workshop based on LS ranged from 3.66 - 4.22 (mean = 3.90) as "High" level. The result indicated that they were interested in attending a training course under the guidance of the Lesson Study by training on planning of management of science learning to solve teaching problems in science contents with the highest mean score 4.22. Open-ended questions questionnaire showed the needs of the implementation of the lesson plans to be actual classrooms, and supporting for learning Medias, innovations, and equipment for science experimentation.

  13. An exploration of middle school science teachers' understandings and teaching practice of science as inquiry

    Science.gov (United States)

    Castle, Margaret Ann

    understanding of science increases (Akkus, Gunel & Hand, 2007; Gibson, 2002; Liu, Lee & Linn, 2010). As a result, it is important to explore middle school science teachers' definition of science as inquiry because of its importance in how their understandings are reflected in their practice. Researchers must witness, first- hand, what is taking place in middle school science classrooms with respect to the teaching of scientific inquiry before recommendations for improvements can be made. We must also allow opportunities for middle school science teachers to broach, examine, explore, interpret and report implementation strategies when practicing the elements of scientific inquiry as a science content area. It then stands to reason that more research needs to be done to: (1) assess teachers' knowledge related to reform-based teaching, (2) investigate teachers' views about the goals and purposes of inquiry, and (3) investigate the processes by which teachers carry out SI and motivation for undertaking such a complex and difficult to manage form of instruction. The purpose of this study was to examine middle school science teachers' understandings and skills related to scientific inquiry; how those understandings and skills were translated into classroom practice, and the role the school district played in the development of such understandings and skills.

  14. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    Science.gov (United States)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  15. Food-Based Science Curriculum Increases 4th Graders Multidisciplinary Science Knowledge

    Science.gov (United States)

    Hovland, Jana A.; Carraway-Stage, Virginia G.; Cela, Artenida; Collins, Caitlin; Díaz, Sebastián R.; Collins, Angelo; Duffrin, Melani W.

    2013-01-01

    Health professionals and policymakers are asking educators to place more emphasis on food and nutrition education. Integrating these topics into science curricula using hand-on, food-based activities may strengthen students' understanding of science concepts. The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a…

  16. Understanding primary school science teachers' pedagogical content knowledge: The case of teaching global warming

    Science.gov (United States)

    Chordnork, Boonliang; Yuenyong, Chokchai

    2018-01-01

    This aim of this research was to investigate primary school science teachers understanding and teaching practice as well as the influence on teaching and learning a topic like global warming. The participants were four primary science teachers, who were not graduated in science education. Methodology was the case study method, which was under the qualitative research regarded from interpretive paradigm. Data were collected by openended questionnaire, semi-structure interview, and document colleting. The questionnaire examined teachers' background, teachers' understanding of problems and threats of science teaching, desiring of development their PCK, sharing the teaching approaches, and their ideas of strength and weakness. a semi-structured interview was conducted based on the approach for capturing PCK of Loughran [23] content representation (CoRe). And, the document was collected to clarify what evidence which was invented to effect on students' learning. These document included lesson plan, students' task, and painting about global warming, science projects, the picture of activities of science learning, the exercise and test. Data analysis employed multiple approach of evidence looking an issue from each primary science teachers and used triangulation method to analyze the data with aiming to make meaning of teachers' representation of teaching practice. These included descriptive statistics, CoRe interpretation, and document analysis. The results show that teachers had misunderstanding of science teaching practice and they has articulated the pedagogical content knowledge in terms of assessment, goal of teaching and linking to the context of socio cultural. In contrast, knowledge and belief of curriculum, students' understanding of content global warming, and strategies of teaching were articulated indistinct by non-graduate science teacher. Constructing opportunities for personal development, the curiosity of the student learning center, and linking context

  17. Teaching Primary Science in Rural and Regional Australia: Some Challenges Facing Practicing and Pre-Service Teachers

    Science.gov (United States)

    Laidlaw, Kristy-Rebecca; Taylor, Neil; Fletcher, Peter

    2009-01-01

    The teaching of science has long been viewed as problematic within primary classrooms across Australia. This study explores the teaching of primary science in an area of rural and regional Australia (the New England Region of New South Wales) where small populations, remote settings and isolation can make the teaching of science and other Key…

  18. Discovering SQL A Hands-On Guide for Beginners

    CERN Document Server

    Kriegel, Alex

    2011-01-01

    Teaching the SQL skills that businesses demand when hiring programmers If you're a SQL beginner, you don't just want to learn SQL basics, you also want to get some practical SQL skills you can use in the job market. This book gives you both. Covering the basics through intermediate topics with clear explanations, hands-on exercises, and helpful solutions, this book is the perfect introduction to SQL. Topics include both the current SQL:2008 standards, the upcoming SQL:2011 standards, and also how to use SQL against current releases of the most popular commercial SQL databases, such as Oracle,

  19. Pre-service Science Teachers’ Self-efficacy Beliefs to Teach Socio-scientific Issues

    OpenAIRE

    Muğaloğlu, Ebru Z.; Küçük, Zerrin Doğança; Güven, Devrim

    2016-01-01

    This study aims to examine self-efficacy of pre-service science teachers to teach socio-scientific issues (SSI). Twenty-three senior pre-service science teachers participated in the study. Science Teaching Efficacy Belief Instrument (STEBI) was modified with an emphasis on SSI rather than scientific issues. The modified STEBI was applied to the participants before and after the intervention. As for the six-week intervention, three modules, which focused on understanding nature of SSI, teachin...

  20. Understanding How Science Works: The Nature of Science as The Foundation for Science Teaching and Learning

    Science.gov (United States)

    McComas, William F.

    2017-01-01

    The nature of science (NOS) is a phrase used to represent the rules of the game of science. Arguably, NOS is the most important content issue in science instruction because it helps students understand the way in which knowledge is generated and validated within the scientific enterprise. This article offers a proposal for the elements of NOS that…