WorldWideScience

Sample records for hands-on science projects

  1. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  2. 1st Hands-on Science Science Fair

    OpenAIRE

    Costa, Manuel F. M.; Esteves. Z.

    2017-01-01

    In school learning of science through investigative hands-on experiments is in the core of the Hands-on Science Network vision. However informal and non-formal contexts may also provide valuable paths for implementing this strategy aiming a better e!ective science education. In May 2011, a "rst country wide “Hands-on Science’ Science Fair” was organized in Portugal with the participation of 131 students that presented 38 projects in all "elds of Science. In this communication we will pr...

  3. A Year of Hands-on Science: Exciting Theme Units with More Than 100 Activities, Projects, and Experiments To Make Science Come Alive.

    Science.gov (United States)

    Kepler, Lynne; Novelli, Joan, Ed.

    This book contains 18 themed teaching units with 2 themes per chapter, organized seasonally around the traditional school year. Each theme includes natural connections and hands-on science activities that correspond to what children are already observing in their world. Each chapter begins with highlights of the month and a reproducible "Science…

  4. The Space Weather Monitor Project: Bringing Hands-on Science to Students of the Developing World for the IHY2007

    Science.gov (United States)

    Scherrer, D. K.; Rabello-Soares, M. C.; Morrow, C.

    2006-08-01

    Stanford's Solar Center, Electrical Engineering Department, and local educators have developed inexpensive Space Weather Monitors that students around the world can use to track solar-induced changes to the Earth's ionosphere. Through the United Nations Basic Space Science Initiative (UNBSSI) and the IHY Education and Public Outreach Program, our Monitors are being deployed to 191 countries for the International Heliophysical Year, 2007. In partnership with Chabot Space and Science Center, we are designing and developing classroom and educator support materials to accompany the distribution. Materials will be culturally sensitive and will be translated into the six official languages of the United Nations (Arabic, Chinese, English, French, Russian, and Spanish). Monitors will be provided free of charge to developing nations and can be set up anywhere there is access to power.

  5. Integrating Hands-On Undergraduate Research in an Applied Spatial Science Senior Level Capstone Course

    Science.gov (United States)

    Kulhavy, David L.; Unger, Daniel R.; Hung, I-Kuai; Douglass, David

    2015-01-01

    A senior within a spatial science Ecological Planning capstone course designed an undergraduate research project to increase his spatial science expertise and to assess the hands-on instruction methodology employed within the Bachelor of Science in Spatial Science program at Stephen F Austin State University. The height of 30 building features…

  6. Hands on CERN: A Well-Used Physics Education Project

    Science.gov (United States)

    Johansson, K. E.

    2006-01-01

    The "Hands on CERN" education project makes it possible for students and teachers to get close to the forefront of scientific research. The project confronts the students with contemporary physics at its most fundamental level with the help of particle collisions from the DELPHI particle physics experiment at CERN. It now exists in 14 languages…

  7. Hands-on optics: an informal science education initiative

    Science.gov (United States)

    Johnson, Anthony M.; Pompea, Stephen M.; Arthurs, Eugene G.; Walker, Constance E.; Sparks, Robert T.

    2007-09-01

    The project is collaboration between two scientific societies, the Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering and the National Optical Astronomy Observatory (NOAO). The program is designed to bring science education enrichment to thousands of underrepresented middle school students in more than ten states, including female and minority students, who typically have not been the beneficiaries of science and engineering resources and investments. HOO provides each teacher with up to six activity modules, each containing enough materials for up to 30 students to participate in 6-8 hours of hands-on optics-related activities. Sample activities, developed by education specialists at NOAO, include building kaleidoscopes and telescopes, communicating with a beam of light, and a hit-the-target laser beam challenge. Teachers engage in two days of training and, where possible, are partnered with a local optics professional (drawn from the local rosters of SPIE and OSA members) who volunteers to spend time with the teacher and students as they explore the module activities. Through these activities, students gain experience and understanding of optics principles, as well as learning the basics of inquiry, critical thinking, and problem solving skills involving optics, and how optics interfaces with other disciplines. While the modules were designed for use in informal after- school or weekend sessions, the number of venues has expanded to large and small science centers, Boys and Girls Clubs, Girl Scouts, summer camps, family workshops, and use in the classroom.

  8. Exploring quantum physics through hands-on projects

    CERN Document Server

    Prutchi, David

    2012-01-01

    Build an intuitive understanding of the principles behind quantum mechanics through practical construction and replication of original experiments With easy-to-acquire, low-cost materials and basic knowledge of algebra and trigonometry, Exploring Quantum Physics through Hands-on Projects takes readers step by step through the process of re-creating scientific experiments that played an essential role in the creation and development of quantum mechanics. From simple measurements of Planck's constant to testing violations of Bell's inequalities using entangled photons, Exploring Quantum Physics through Hands-on Projects not only immerses readers in the process of quantum mechanics, it provides insight into the history of the field--how the theories and discoveries apply to our world not only today, but also tomorrow. By immersing readers in groundbreaking experiments that can be performed at home, school, or in the lab, this first-ever, hands-on book successfully demystifies the world of quantum physics for...

  9. Hands-on science: science education with and for society

    OpenAIRE

    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.

    2014-01-01

    The decisive importance of Science on the development of modern societies gives Science Education a role of special impact. Society sets the requirements rules and procedures of Education defining what concepts and competencies citizens must learn and how this learning should take place. Educational policies set by governments, elected and or imposed, not always reflects the will and ruling of Society. The School as pivotal element of our modern educational system must look ...

  10. Science &Language Teaching in Hands-on Education

    Science.gov (United States)

    Gehlert, Sylvia

    2002-01-01

    As announced in the paper presented in Toulouse, a trinational teacher training program addressing school teachers from France, Germany and Italy on teaching foreign languages together with science and history through Space related projects has been implemented and launched successfully. Supported by the French Ministry of Education (Académie de Nice), the bigovernmental French-German Youth Office (Office franco- allemand pour la Jeunesse) and the European Space Agency the first session was held in Cannes in October 2001 and brought together 36 language, science and history teachers, 12 from each country. Through different workshops, presentations and visits this five-day training encounter initiated the participants with Space activities and exploration as well as offering them back-up information on astronomy. It gave them furthermore the opportunity of improving their linguistic skills and of exchanging their teaching experience. The program was highly welcomed by all the participants who will meet this year in Germany for the second session devoted to establishing together bi- or trinational projects for future class encounters based on the same subjects. My paper will deal with the results of the program which have been beyond expectation and will encourage us to continue this pluridisciplinary approach of language &science teaching and extend it to other language combinations.

  11. Hands-On Educational Programs and Projects at SICSA

    Science.gov (United States)

    Bell, L.

    2002-01-01

    The Sasakawa International Center for Space Architecture (SICSA) has a long history of projects that involve the design of space structures, including habitats for low-Earth orbit (LEO) and planetary applications. Some of these projects are supported by corporate sponsors, such as a space tourism research, planning and design study conducted for the owner of national U.S. hotel chain. Some have been undertaken in support of programs sponsored by the State Government of Texas, including current commercial spaceport development planning for the Texas Aerospace Commission and three counties that represent candidate spaceport sites. Other projects have been supported by NASA and the Texas Aerospace Consortium, including the design and development of SICSA's "Space Habitation Laboratory", a space station module sized environmental simulator facility which has been featured in the "NASA Select" television broadcast series. This presentation will highlight representative projects. SICSA is internationally recognized for its leadership in the field of space architecture. Many program graduates have embarked upon productive and rewarding careers with aerospace organizations throughout the world. NASA has awarded certificates of appreciation to SICSA for significant achievements contributing to its advanced design initiatives. SICSA and its work have been featured in numerous popular magazines, professional publications, and public media broadcasts in many countries. SICSA applies a very comprehensive scope of activities to the practice of space architecture. Important roles include mission planning conceptualization of orbital and planetary structures and assembly processes, and design of habitats to optimize human safety, adaptation and productivity. SICSA sponsors educational programs for upper division undergraduate students and graduate students with interests in space and experimental architecture. Many fourth year participants continue in the SICSA program throughout

  12. Promoting Female Students' Learning Motivation towards Science by Exercising Hands-On Activities

    Science.gov (United States)

    Wen-jin, Kuo; Chia-ju, Liu; Shi-an, Leou

    2012-01-01

    The purpose of this study is to design different hands-on science activities and investigate which activities could better promote female students' learning motivation towards science. This study conducted three types of science activities which contains nine hands-on activities, an experience scale and a learning motivation scale for data…

  13. Barrier Island Activity to Illustrate Hands-On Science

    Science.gov (United States)

    Griffin, Suzanne H.

    The department of Physics of the University of Glasgow was concerned about losing students after the end of the level 1 Physics course. The current research project started as an attempt to find out the reasons for this, but moved to investigate attitudes towards Physics at several stages during secondary school and attitudes towards science with primary pupils. Analyses of factors, which influence students' intentions towards studying Physics, were performed against the background of the Theory of Planned Behaviour, which interprets people's behaviour by considering three factors: attitude towards behaviour (advantages or disadvantages of being involved in the behaviour, e.g. studying Physics for Honours); subjective norm (approval or disapproval of important people towards engaging in the behaviour, e.g. parents, teacher, general norms of the society); perceived behavioural control (skills, knowledge, cooperation of others, abilities, efforts required to perform the behaviour). Analysis of these factors revealed some reasons for students' withdrawal from Physics after level 1 and pointed to factors which may facilitate students' persistence in the subject. A general analysis of level 1 and level 2 students' attitudes towards different aspects of the university Physics course revealed that the level 1 students' attitudes towards their university course of lectures and course of laboratories tended to be negatively polarised. Recommendations were suggested on the basis of the gathered evidence about how to make students' experience in university Physics more satisfactory for them. The data obtained from the separate analyses of females' and males' attitudes towards university Physics course have showed that attitudes of females and males were similar. The only significant difference between level 1 females and males was found to be the perceived behavioural control factor (students' attitudes towards course difficulty, attitudes towards work load in the course

  14. The effects of hands-on-science instruction on the science achievement of middle school students

    Science.gov (United States)

    Wiggins, Felita

    Student achievement in the Twenty First Century demands a new rigor in student science knowledge, since advances in science and technology require students to think and act like scientists. As a result, students must acquire proficient levels of knowledge and skills to support a knowledge base that is expanding exponentially with new scientific advances. This study examined the effects of hands-on-science instruction on the science achievement of middle school students. More specifically, this study was concerned with the influence of hands-on science instruction versus traditional science instruction on the science test scores of middle school students. The subjects in this study were one hundred and twenty sixth-grade students in six classes. Instruction involved lecture/discussion and hands-on activities carried out for a three week period. Specifically, the study ascertained the influence of the variables gender, ethnicity, and socioeconomic status on the science test scores of middle school students. Additionally, this study assessed the effect of the variables gender, ethnicity, and socioeconomic status on the attitudes of sixth grade students toward science. The two instruments used to collect data for this study were the Prentice Hall unit ecosystem test and the Scientific Work Experience Programs for Teachers Study (SWEPT) student's attitude survey. Moreover, the data for the study was treated using the One-Way Analysis of Covariance and the One-Way Analysis of Variance. The following findings were made based on the results: (1) A statistically significant difference existed in the science performance of middle school students exposed to hands-on science instruction. These students had significantly higher scores than the science performance of middle school students exposed to traditional instruction. (2) A statistically significant difference did not exist between the science scores of male and female middle school students. (3) A statistically

  15. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics

    Science.gov (United States)

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.

    2015-01-01

    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  16. Three Simple Hands-On Soil Exercises Extension Professionals Can Incorporate into Natural Sciences Curriculum

    Science.gov (United States)

    Kleinschmidt, Andy

    2011-01-01

    The importance of healthy soil and of conveying the importance of soils starts by conveying a few basic concepts of soil science cannot be overstated. This article provides three hands-on exercises Extension professionals can add to natural resources or Master Gardener education curricula. These natural sciences exercises are easy to prepare for…

  17. Hands-on earth science with students at schools for the Deaf

    Science.gov (United States)

    Cooke, M. L.

    2011-12-01

    Earth science teachers at schools for the Deaf face a variety of challenges. This community of students has a wide range of language skills, teaching resources can be limited and often teachers are not trained in geosciences. An NSF CAREER grant provided an opportunity to make a difference to this community and foster earth science learning at 8 schools for the Deaf around the country. We designed hands-on deformational sandboxes for the teachers and provided accompanying curriculum materials. The sandbox is a physical model of crustal deformation that students can manipulate to test hypotheses. The visual nature of the sandbox was well-suited for the spatial grammar of American Sign Language used by these students. Furthermore, language skills were enhanced by scaffolded observation, sketch, annotation, discussion, interpretation assignments. Geoscience training of teachers was strengthened with workshops and three 5-day field trips for teachers and selected students to Utah, western New England and southern California. The field trips provided opportunity for students to work as geoscientists observing, interpreting, discussing and presenting their investigations. Between field trips, we set up videoconferences from the UMass experimental lab with the high school earth science classrooms. These sessions facilitated dialog between students and researchers at UMass. While the project set out to provide geoscience learning opportunities for students at Schools for the Deaf, the long lasting impact was the improved geoscience training of teachers, most of whom had limited post-secondary earth science training. The success of the project also rested on the dedication of the teachers to their students and their willingness to try new approaches and experiences. By tapping into a community of 6 teachers, who already shared curriculum and had fantastic leadership, the project was able to have significant impact and exceed the initial goals. The project has led to a

  18. The Hands-On Optics Project: a demonstration of module 3-magnificent magnifications

    Science.gov (United States)

    Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.

    2014-07-01

    The Hands-On Optics project offers an example of a set of instructional modules that foster active prolonged engagement. Developed by SPIE, OSA, and NOAO through funding from the U.S. National Science Foundation, the modules were originally designed for afterschool settings and museums. However, because they were based on national standards in mathematics, science, and technology, they were easily adapted for use in classrooms. The philosophy and implementation strategies of the six modules will be described as well as lessons learned in training educators. The modules were implementing with the help of optics industry professionals who served as expert volunteers to assist educators. A key element of the modules was that they were developed around an understanding of optics misconceptions and used culminating activities in each module as a form of authentic assessment. Thus student achievement could be measured by evaluating the actual product created by each student in applying key concepts, tools, and applications together at the end of each module. The program used a progression of disciplinary core concepts to build an integrated sequence and crosscutting ideas and practices to infuse the principles of the modern electro-optical field into the modules. Whenever possible, students were encouraged to experiment and to create, and to pursue inquiry-based approaches. The result was a program that had high appeal to regular as well as gifted students.

  19. Increasing awareness about antibiotic use and resistance: a hands-on project for high school students.

    Science.gov (United States)

    Fonseca, Maria João; Santos, Catarina L; Costa, Patrício; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    importance of judicious antibiotic use. The findings inform about the educational benefits of incorporating hands-on activities in science education programs.

  20. Developing Physics Concepts through Hands-On Problem Solving: A Perspective on a Technological Project Design

    Science.gov (United States)

    Hong, Jon-Chao; Chen, Mei-Yung; Wong, Ashley; Hsu, Tsui-Fang; Peng, Chih-Chi

    2012-01-01

    In a contest featuring hands-on projects, college students were required to design a simple crawling worm using planning, self-monitoring and self-evaluation processes to solve contradictive problems. To enhance the efficiency of problem solving, one needs to practice meta-cognition based on an application of related scientific concepts. The…

  1. Calculator-Controlled Robots: Hands-On Mathematics and Science Discovery

    Science.gov (United States)

    Tuchscherer, Tyson

    2010-01-01

    The Calculator Controlled Robots activities are designed to engage students in hands-on inquiry-based missions. These activities address National science and technology standards, as well as specifically focusing on mathematics content and process standards. There are ten missions and three exploration extensions that provide activities for up to…

  2. The Role of Hands-On Science Labs in Engaging the Next Generation of Space Explorers

    Science.gov (United States)

    Williams, Teresa A. J.

    2002-01-01

    Each country participating on the International Space Station (ISS) recognizes the importance of educating the coming generation about space and its opportunities. In 2001 the St. James School in downtown Houston, Texas was approached with a proposal to renovate an unused classroom and become involved with the "GLOBE" Program and other Internet based international learning resources. This inner-city school willingly agreed to the program based on "hands-on" learning. One month after room conversion and ten computer terminals donated by area businesses connectivity established to the internet the students immediately began using the "Global Learning and Observations to Benefit the Environment (GLOBE)" program and the International Space Station (ISS) Program educational resources. The "GLOBE" program involves numerous scientific and technical agencies studying the Earth, who make it their goal to provide educational resources to an international community of K-12 scientist. This project was conceived as a successor to the "Interactive Elementary Space Museum for the New Millennium" a space museum in a school corridor without the same type of budget. The laboratory is a collaboration, which involved area businesses, volunteers from the NASA/Johnson Space Center ISS Outreach Program, and students. This paper will outline planning and operation of the school science laboratory project from the point of view of the schools interest and involvement and assess its success to date. It will consider the lessons learned by the participating school administrations in the management of the process and discuss some of the issues that can both promote and discourage school participation in such projects.

  3. Chemistry Science Investigation: Dognapping Workshop, an Outreach Program Designed to Introduce Students to Science through a Hands-On Mystery

    Science.gov (United States)

    Boyle, Timothy J.; Sears, Jeremiah M.; Hernandez-Sanchez, Bernadette A.; Casillas, Maddison R.; Nguyen, Thao H.

    2017-01-01

    The Chemistry Science Investigation: Dognapping Workshop was designed to (i) target and inspire fourth grade students to view themselves as "Junior Scientists" before their career decisions are solidified; (ii) enable hands-on experience in fundamental scientific concepts; (iii) increase public interaction with science, technology,…

  4. Communicate science: an example of food related hands-on laboratory approach

    Science.gov (United States)

    D'Addezio, Giuliana; Marsili, Antonella; Vallocchia, Massimiliano

    2014-05-01

    The Laboratorio Didattica e Divulgazione Scientifica of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Educational and Outreach Laboratory) organized activity with kids to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. The combination of games and learning in educational activity can be a valuable tool for study of complex phenomena. Hands-on activity may help in engage kids in a learning process through direct participation that significantly improves the learning performance of children. Making learning fun motivate audience to pay attention on and stay focused on the subject. We present the experience of the hand-on laboratory "Laboratorio goloso per bambini curiosi di scienza (a delicious hands-on laboratory for kids curious about science)", performed in Frascati during the 2013 European Researchers' Night, promoted by the European Commission, as part of the program organized by the Laboratorio Didattica e Divulgazione Scientifica in the framework of Associazione Frascati Scienza (http://www.frascatiscienza.it/). The hand-on activity were designed for primary schools to create enjoyable and unusual tools for learning Earth Science. During this activity kids are involved with something related to everyday life, such as food, through manipulation, construction and implementation of simple experiments related to Earth dynamics. Children become familiar with scientific concepts such as composition of the Earth, plates tectonic, earthquakes and seismic waves propagation and experience the effect of earthquakes on buildings, exploring their important implications for seismic hazard. During the activity, composed of several steps, participants were able to learn about Earth inner structure, fragile lithosphere, waves propagations, impact of waves on building ecc.., dealing with eggs, cookies, honey, sugar, polenta, flour, chocolate, candies, liquorice sticks, bread, pudding and sweets. The

  5. HSCI2014: booklet of the 11th International Conference on Hands-on Science

    OpenAIRE

    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.; International Conference on Hands-on Science, 11, Aveiro, 2014

    2014-01-01

    The core topic of the 11th Hands-on Science Conference is "Science Education with and for Society" As we all know it is the Society that sets the requirements rules and procedures of Education. It is Society that defines what citizens must learn in what concern either concepts and or competencies, and how this learning can, must in fact…, take place. Society is the ensemble of all of us citizens and of all the structures tangible and intangible we create and created along the y...

  6. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    Science.gov (United States)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  7. Hands-on-Science: Using Education Research to Construct Learner-Centered Classes

    Science.gov (United States)

    Ludwig, R. R.; Chimonidou, A.; Kopp, S.

    2014-07-01

    Research into the process of learning, and learning astronomy, can be informative for the development of a course. Students are better able to incorporate and make sense of new ideas when they are aware of their own prior knowledge (Resnick et al. 1989; Confrey 1990), have the opportunity to develop explanations from their own experience in their own words (McDermott 1991; Prather et al. 2004), and benefit from peer instruction (Mazur 1997; Green 2003). Students in astronomy courses often have difficulty understanding many different concepts as a result of difficulties with spatial reasoning and a sense of scale. The Hands-on-Science program at UT Austin incorporates these research-based results into four guided-inquiry, integrated science courses (50 students each). They are aimed at pre-service K-5 teachers but are open to other majors as well. We find that Hands-on-Science students not only attain more favorable changes in attitude towards science, but they also outperform students in traditional lecture courses in content gains. Workshop Outcomes: Participants experienced a research-based, guided-inquiry lesson about the motion of objects in the sky and discussed the research methodology for assessing students in such a course.

  8. Hands-On Math and Art Exhibition Promoting Science Attitudes and Educational Plans

    Directory of Open Access Journals (Sweden)

    Helena Thuneberg

    2017-01-01

    Full Text Available The current science, technology, engineering, art, math education (STEAM approach emphasizes integration of abstract science and mathematical ideas for concrete solutions by art. The main aim was to find out how experience of learning mathematics differed between the contexts of school and an informal Math and Art Exhibition. The study participants (N=256 were 12-13 years old from Finland. Several valid questionnaires and tests were applied (e.g., SRQ-A, RAVEN in pre- and postdesign showing a good reliability. The results based on General Linear Modeling and Structural Equation Path Modeling underline the motivational effects. The experience of the effectiveness of hands-on learning at school and at the exhibition was not consistent across the subgroups. The lowest achieving group appreciated the exhibition alternative for math learning compared to learning math at school. The boys considered the exhibition to be more useful than the girls as it fostered their science and technology attitudes. However, for the girls, the attractiveness of the exhibition, the experienced situation motivation, was much more strongly connected to the attitudes on science and technology and the worthiness of mathematics. Interestingly, the pupils experienced that even this short informal learning intervention affected their science and technology attitudes and educational plans.

  9. Back to the future with hands-on science: students' perceptions of learning anatomy and physiology.

    Science.gov (United States)

    Johnston, Amy Nicole Burne; McAllister, Margaret

    2008-09-01

    This article examines student perceptions of learning related to anatomy and physiology in a bachelor of nursing program. One strategy to teach the sciences is simulated learning, a technology that offers exciting potential. Virtual environments for laboratory learning may offer numerous benefits: teachers can convey information to a larger group of students, reducing the need for small laboratory classes; less equipment is required, thus containing ongoing costs; and students can learn in their own time and place. However, simulated learning may also diminish access to the teacher-student relationship and the opportunity for guided practice and guided linking of theory with practice. Without this hands-on experience, there is a risk that students will not engage as effectively, and thus conceptual learning and the development of critical thinking skills are diminished. However, student perceptions of these learning experiences are largely unknown. Thus, this study examined students' perceptions of anatomy and physiology laboratory experiences and the importance they placed on hands-on experience in laboratory settings.

  10. LIB LAB the Library Laboratory: hands-on multimedia science communication

    Science.gov (United States)

    Fillo, Aaron; Niemeyer, Kyle

    2017-11-01

    Teaching scientific research topics to K-12 audiences in an engaging and meaningful way does not need to be hard; with the right insight and techniques it can be fun to encourage self-guided STEAM (science, technology, engineering, arts, and mathematics) exploration. LIB LAB, short for Library Laboratory, is an educational video series produced by Aaron J. Fillo at Oregon State University in partnership with the Corvallis-Benton County Public Library targeted at K-12 students. Each episode explores a variety of scientific fundamentals with playful experiments and demonstrations. The video lessons are developed using evidence-based practices such as dispelling misconceptions, and language immersion. Each video includes directions for a related experiment that young viewers can conduct at home. In addition, science kits for these at-home experiments are distributed for free to students through the public library network in Benton County, Oregon. This talk will focus on the development of multimedia science education tools and several techniques that scientists can use to engage with a broad audience more effectively. Using examples from the LIB LAB YouTube Channel and collection of hands-on science demonstrations and take-home kits, this talk will present STEAM education in action. Corvallis-Benton County Public Library.

  11. Communicating Climate Science to Kids and Adults Through Citizen Science, Hands-On Demonstrations, and a Personal Approach

    Science.gov (United States)

    Cherry, L.; Braasch, G.

    2008-12-01

    There is a demonstrated need to increase the amount of formal and non-formal science education and to raise the level of climate literacy for children and adults. Scientists and technical leaders are more and more being called on to speak in non-academic settings ranging from grade schools to assemblies and seminars for the general public. This abstract describes some effective ways to teach and talk about climate change science in a way that engenders hope and empowerment while explaining scientific facts and research methods to non-scientists. Citizen participation in Science People's interest and learning increases when offered chances to do what scientists do. Relating science to their daily lives and showing the adventure of science can greatly increase communication. Citizen participation in science works because data collection stimulates experiential and cognitive ways of learning. Learn what programs for citizen science are available in your area. For instance, GLOBE and Budburst tie into the research of Smithsonian scientists who determined that the cherry blossoms and 40 other species of plants were blooming earlier due to climate warming. Hands-on Outdoor Activities Information enters the human brain through many different neural pathways and the more avenues that information comes in on, the more likely people are to retain that knowledge for their lifetimes. For instance, kids knowledge of how ice cores tell us about the earth's ancient history will be reinforced through making ice cores in the classroom. Gary Braasch's photographs from the children's book How We Know What We Know About Our Changing Climate: Scientists and Kids Explore Global Warming and from his adult book Earth Under Fire: How Global Warming is Changing the World will illustrate the presentation. . Making the Message Personal to the Audience. Reaching people through things they care about, their family lives, work or school and telling personal stories helps reach people. The videos

  12. 'Science in action': The politics of hands-on display at the New York Museum of Science and Industry.

    Science.gov (United States)

    Sastre-Juan, Jaume

    2018-06-01

    This article analyzes the changing politics of hands-on display at the New York Museum of Science and Industry by following its urban deambulation within Midtown Manhattan, which went hand in hand with sharp shifts in promoters, narrative, and exhibition techniques. The museum was inaugurated in 1927 as the Museum of the Peaceful Arts on the 7th and 8th floors of the Scientific American Building. It changed its name in 1930 to the New York Museum of Science and Industry while on the 4th floor of the Daily News Building, and it was close to being renamed the Science Center when it finally moved in 1936 to the ground floor of the Rockefeller Center. The analysis of how the political agenda of the different promoters of the New York Museum of Science and Industry was spatially and performatively inscribed in each of its sites suggests that the 1930s boom of visitor-operated exhibits had nothing to do with an Exploratorium-like rhetoric of democratic empowerment. The social paternalistic ideology of the vocational education movement, the ideas on innovation of the early sociology of invention, and the corporate behavioral approach to mass communications are more suitable contexts in which to understand the changing politics of hands-on display in interwar American museums of science and industry.

  13. MO-E-18C-02: Hands-On Monte Carlo Project Assignment as a Method to Teach Radiation Physics

    International Nuclear Information System (INIS)

    Pater, P; Vallieres, M; Seuntjens, J

    2014-01-01

    Purpose: To present a hands-on project on Monte Carlo methods (MC) recently added to the curriculum and to discuss the students' appreciation. Methods: Since 2012, a 1.5 hour lecture dedicated to MC fundamentals follows the detailed presentation of photon and electron interactions. Students also program all sampling steps (interaction length and type, scattering angle, energy deposit) of a MC photon transport code. A handout structured in a step-by-step fashion guides student in conducting consistency checks. For extra points, students can code a fully working MC simulation, that simulates a dose distribution for 50 keV photons. A kerma approximation to dose deposition is assumed. A survey was conducted to which 10 out of the 14 attending students responded. It compared MC knowledge prior to and after the project, questioned the usefulness of radiation physics teaching through MC and surveyed possible project improvements. Results: According to the survey, 76% of students had no or a basic knowledge of MC methods before the class and 65% estimate to have a good to very good understanding of MC methods after attending the class. 80% of students feel that the MC project helped them significantly to understand simulations of dose distributions. On average, students dedicated 12.5 hours to the project and appreciated the balance between hand-holding and questions/implications. Conclusion: A lecture on MC methods with a hands-on MC programming project requiring about 14 hours was added to the graduate study curriculum since 2012. MC methods produce “gold standard” dose distributions and slowly enter routine clinical work and a fundamental understanding of MC methods should be a requirement for future students. Overall, the lecture and project helped students relate crosssections to dose depositions and presented numerical sampling methods behind the simulation of these dose distributions. Research funding from governments of Canada and Quebec. PP acknowledges

  14. MO-E-18C-02: Hands-On Monte Carlo Project Assignment as a Method to Teach Radiation Physics

    Energy Technology Data Exchange (ETDEWEB)

    Pater, P; Vallieres, M; Seuntjens, J [McGill University, Montreal, Quebec (Canada)

    2014-06-15

    Purpose: To present a hands-on project on Monte Carlo methods (MC) recently added to the curriculum and to discuss the students' appreciation. Methods: Since 2012, a 1.5 hour lecture dedicated to MC fundamentals follows the detailed presentation of photon and electron interactions. Students also program all sampling steps (interaction length and type, scattering angle, energy deposit) of a MC photon transport code. A handout structured in a step-by-step fashion guides student in conducting consistency checks. For extra points, students can code a fully working MC simulation, that simulates a dose distribution for 50 keV photons. A kerma approximation to dose deposition is assumed. A survey was conducted to which 10 out of the 14 attending students responded. It compared MC knowledge prior to and after the project, questioned the usefulness of radiation physics teaching through MC and surveyed possible project improvements. Results: According to the survey, 76% of students had no or a basic knowledge of MC methods before the class and 65% estimate to have a good to very good understanding of MC methods after attending the class. 80% of students feel that the MC project helped them significantly to understand simulations of dose distributions. On average, students dedicated 12.5 hours to the project and appreciated the balance between hand-holding and questions/implications. Conclusion: A lecture on MC methods with a hands-on MC programming project requiring about 14 hours was added to the graduate study curriculum since 2012. MC methods produce “gold standard” dose distributions and slowly enter routine clinical work and a fundamental understanding of MC methods should be a requirement for future students. Overall, the lecture and project helped students relate crosssections to dose depositions and presented numerical sampling methods behind the simulation of these dose distributions. Research funding from governments of Canada and Quebec. PP acknowledges

  15. Hands-on approach to teaching Earth system sciences using a information-computational web-GIS portal "Climate"

    Science.gov (United States)

    Gordova, Yulia; Gorbatenko, Valentina; Martynova, Yulia; Shulgina, Tamara

    2014-05-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education because old-school training programs are not keeping pace with the rapidly changing situation in the professional field of environmental sciences. A joint group of specialists from Tomsk State University and Siberian center for Environmental research and Training/IMCES SB RAS developed several new courses for students of "Climatology" and "Meteorology" specialties, which comprises theoretical knowledge from up-to-date environmental sciences with practical tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational platform "Climate" (http://climate.scert.ru/) using web GIS tools. These trainings contain practical tasks on climate modeling and climate changes assessment and analysis and should be performed using typical tools which are usually used by scientists performing such kind of research. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The hands-on approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. The courses are implemented at Tomsk State University and help forming modern curriculum in Earth system science area. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants numbers 13-05-12034 and 14-05-00502.

  16. Could hands-on activities and smartphone in science CLIL teaching foster motivation and positive attitudes in students?

    Science.gov (United States)

    Ercolino, Immacolata; Maraffi, Sabina; Sacerdoti, Francesco M.

    2016-04-01

    Motivating students is one of the most challenging things we do as educators. We know that students need to be engaged to fully appreciate and learn what has been taught; the secret consists in nurturing student engagement. One of the newer ways to involve students and foster motivation in their Science learning consists in focusing on their usage and on applying knowledge and skills in their real-life. Students usually are engaged in authentic teaching pathway. Learning focusing on the experience helps teachers to improve classroom management by gathering students around a common organized activity. Hands-on activities support problem-based approaches to learning by focusing on the experience and process of investigating, proposing and creating solutions developing critical thinking skills and enlarge student's scientific glossary. We utilized in our classroom some lab activities that we learned at an ESA/GTTP Teacher training Workshop 2014 program at the Lorentz Center Leiden, Netherlands. "Cooking a comet - Ingredients for life" "Demonstration of the second Kepler's law using marbles" New media equipment, as student's own smartphones, can increase the teaching impact speaking the same language used by the students every day. They can measure magnetic fields, their GPS coordinates (longitude and latitude), and so on. In this way we can measure distances as parallax using mobile devices and simulating distance measurements in the classroom, on the school campus. The smartphone is the device with which the students answer questions, take decisions, and solve quests. Students infact can observe the Universe from their classroom and scientifically they can watch the Sun with "Google sky map" or "Star walk" are excellent tools to learn your way around the night sky .As teachers we used these apps in the classroom when Sun goes through the constellations so our students don't believe in horoscopes. This paper is focused on hands on activities and the effects of the

  17. The mobile GeoBus outreach project: hands-on Earth and Mars activities for secondary schools in the UK

    Science.gov (United States)

    Robinson, Ruth; Pike, Charlotte; Roper, Kathryn

    2015-04-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary schools by providing teaching resources that are not readily available to educators, to inspire young learners by incorporating new science research outcomes in teaching activities, and to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, GeoBus has visited over 160 different schools across the length and breadth of Scotland. Just under 35,000 pupils have been involved in practical hands-on Earth science learning activities since the project began in 2012, including many in remote and disadvantaged regions. The resources that GeoBus brings to schools include all the materials and equipment needed to run 50 - 80 minute workshops, and half- or whole-day Enterprise Challenges and field excursions. Workshops are aimed at a class of up to 30 pupils and topics include minerals, rocks, fossils, geological time, natural resources, climate change, volcanoes, earthquakes, and geological mapping. As with all GeoBus activities, the inclusion of equipment and technology otherwise unavailable to schools substantially increases the engagement of pupils in workshops. Field excursions are increasingly popular, as many teachers have little or no field trainng and feel unable to lead this type of activity. The excursions comprise half or full day sessions for up to 30 pupils and are tailored to cover the local geology or geomorphology. Enterprise Challenge are half or full day sessions for up to 100 pupils. Topics include "Journey to Mars", "Scotland's Rocks", "Drilling for Oil", and "Renewable Energy". Both of the energy Enterprise Challenges were designed to incorporates ideas and

  18. Seafloor Science and Remotely Operated Vehicle (SSROV) Day Camp: A Week-Long, Hands-On STEM Summer Camp

    Science.gov (United States)

    Wheat, C. G.; Fournier, T.; Monahan, K.; Paul, C.

    2015-12-01

    RETINA (Robotic Exploration Technologies IN Astrobiology) has developed a program geared towards stimulating our youth with innovative and relevant hands-on learning modules under a STEM umbrella. Given the breadth of potential science and engineering topics that excite children, the RETINA Program focuses on interactive participation in the design and development of simple robotic and sensor systems, providing a range of challenges to engage students through project-based learning (PBL). Thus, young students experience scientific discovery through the use and understanding of technology. This groundwork serves as the foundation for SSROV Camp, a week-long, summer day camp for 6th-8th grade students. The camp is centered on the sensors and platforms that guide seafloor exploration and discovery and builds upon the notion that transformative discoveries in the deep sea result from either sampling new environments or making new measurements with sensors adapted to this extreme environment. These technical and scientific needs are folded into the curriculum. Each of the first four days of the camp includes four team-based, hands-on technical challenges, communication among peer groups, and competition. The fifth day includes additional activities, culminating in camper-led presentations to describe a planned mission based on a given geologic setting. Presentations include hypotheses, operational requirements and expected data products. SSROV Camp was initiated last summer for three sessions, two in Monterey, CA and one in Oxford, MS. Campers from both regions grasped key elements of the program, based on written responses to questions before and after the camp. On average, 32% of the pre-test questions were answered correctly compared with 80% of the post-test questions. Additional confirmation of gains in campers' knowledge, skills, and critical thinking on environmental issues and engineering problems were apparent during the "jeopardy" competition, nightly homework

  19. The Healthy Heart Race: A Short-Duration, Hands-on Activity in Cardiovascular Physiology for Museums and Science Festivals

    Science.gov (United States)

    Pressley, Thomas A.; Limson, Melvin; Byse, Miranda; Matyas, Marsha Lakes

    2011-01-01

    The "Healthy Heart Race" activity provides a hands-on demonstration of cardiovascular function suitable for lay audiences. It was field tested during the United States of America Science and Engineering Festival held in Washington, DC, in October 2010. The basic equipment for the activity consisted of lengths of plastic tubing, a hand…

  20. A Study on Using Hands-On Science Inquiries to Promote the Geology Learning of Preservice Teachers

    Science.gov (United States)

    Lai, Ching-San

    2015-01-01

    This study aims to investigate the geology learning performance of preservice teachers. A total of 31 sophomores (including 11 preservice teachers) from an educational university in Taiwan participated in this study. The course arrangements include class teaching and hands-on science inquiry activities. The study searches both quantitative and…

  1. How Science Texts and Hands-on Explorations Facilitate Meaning Making: Learning from Latina/o Third Graders

    Science.gov (United States)

    Varelas, Maria; Pieper, Lynne; Arsenault, Amy; Pappas, Christine C.; Keblawe-Shamah, Neveen

    2014-01-01

    In this study, we examined opportunities for reasoning and meaning making that read-alouds of children's literature science information books and related hands-on explorations offered to young Latina/o students in an urban public school. Using a qualitative, interpretative framework, we analyzed classroom discourse and children's writing…

  2. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  3. Choices of Pre-Service Science Teachers Laboratory Environments: Hands-on or Hands-off?

    Science.gov (United States)

    Kapici, Hasan Ozgur; Akcay, Hakan

    2018-01-01

    Learning in laboratories for students is not only crucial for conceptual understanding, but also contributes to gaining scientific reasoning skills. Following fast developments in technology, online laboratory environments have been improved considerably and nowadays form an attractive alternative for hands-on laboratories. The study was done in…

  4. THE STERN PROJECT–HANDS ON ROCKETS SCIENCE FOR UNIVERSITY STUDENT

    OpenAIRE

    Schüttauf, Katharina; Stamminger, Andreas; Lappöhn, Karsten

    2017-01-01

    In April 2012, the German Aerospace Center DLR initiated a sponsorship program for university students to develop, build and launch their own rockets over a period of three years. The program designation STERN was abbreviated from the German “STudentische Experimental-RaketeN”, which translates to Student- Experimental-Rockets. The primary goal of the STERN program is to inspire students in the subject of space transportation through hands-on activities within a pro...

  5. Teaching chemistry and other sciences to blind and low-vision students through hands-on learning experiences in high school science laboratories

    Science.gov (United States)

    Supalo, Cary Alan

    2010-11-01

    Students with blindness and low vision (BLV) have traditionally been underrepresented in the sciences as a result of technological and attitudinal barriers to equal access in science laboratory classrooms. The Independent Laboratory Access for the Blind (ILAB) project developed and evaluated a suite of talking and audible hardware/software tools to empower students with BLV to have multisensory, hands-on laboratory learning experiences. This dissertation focuses on the first year of ILAB tool testing in mainstream science laboratory classrooms, and comprises a detailed multi-case study of four students with BLV who were enrolled in high school science classes during 2007--08 alongside sighted students. Participants attended different schools; curricula included chemistry, AP chemistry, and AP physics. The ILAB tools were designed to provide multisensory means for students with BLV to make observations and collect data during standard laboratory lessons on an equivalent basis with their sighted peers. Various qualitative and quantitative data collection instruments were used to determine whether the hands-on experiences facilitated by the ILAB tools had led to increased involvement in laboratory-goal-directed actions, greater peer acceptance in the students' lab groups, improved attitudes toward science, and increased interest in science. Premier among the ILAB tools was the JAWS/Logger Pro software interface, which made audible all information gathered through standard Vernier laboratory probes and visually displayed through Logger Pro. ILAB tools also included a talking balance, a submersible audible light sensor, a scientific talking stopwatch, and a variety of other high-tech and low-tech devices and techniques. While results were mixed, all four participating BLV students seemed to have experienced at least some benefit, with the effect being stronger for some than for others. Not all of the data collection instruments were found to reveal improvements for all

  6. Cultural Earth Science in Hawai`i: Hands-on Place-Based Investigations that Merge Traditional Knowledge with Earth Science Inquiry

    Science.gov (United States)

    Moxey, L.; Dias, R. K.; Legaspi, E.

    2011-12-01

    During the summer of 2011, the Mālama Ke Ahupua`a (to care of our watershed) GEARUP summer program provided 25 under-served and under-represented minority public high school students (Hawaiian, part-Hawaiian, Filipino, Pacific Islanders) from Farrington High School (Kalihi, Honolulu) with a hands-on place-based multidiscipline course located within Manoa Valley (Ahupua`a O Kona) with the objective of engaging participants in scientific environmental investigations while exploring Hawaii's linkages between traditional knowledge, culture and science. The 4-week field program enabled students to collect samples along the perennial Manoa Stream and conduct water quality assessments throughout the Manoa watershed. Students collected science quality data from eight different sampling stations by means of field- and laboratory-based quantitative water quality testing equipment and GPS/GIS technology. While earning Hawaii DOE academic credits, students were able to document changes along the stream as related to pollution and urbanization. While conducting the various scientific investigations, students also participated in cultural fieldtrips and activities that highlighted the linkages between historical sustainable watershed uses by native Hawaiian communities, and their connections with natural earth processes. Additionally, students also participated in environmental service-learning projects that highlight the Hawaiian values of laulima (teamwork), mālama (to care for), and imi `ike (to seek knowledge). By contextualizing and merging hands-on place-based earth science inquiry with native Hawaiian traditional knowledge, students experienced the natural-cultural significance of their ahupua`a (watershed). This highlighted the advantages for promoting environmental literacy and geoscience education to under-served and under-represented minority populations in Hawaii from a rich native Hawaiian cultural framework.

  7. The hands-on project office guaranteeing ROI and on-time delivery

    CERN Document Server

    Kesner, Richard M

    2003-01-01

    THE THREE PILLARS OF IT DELIVERY - PROBLEM RESOLUTION, SERVICE REQUESTS, AND PROJECTSIntroduction The Business Context The Internal Economy for Investing in IT Services and ProjectsThe Three Pillars of IT Delivery Managing Service DeliveryManaging Project Commitments IT Metrics and Reporting Tools THE PROJECT MANAGEMENT OFFICE BUSINESS MODELIntroduction: Revisiting the IT Organization IT Service and Project Delivery RolesThe Role of the Project Management Office: Measuring its ROI The PMO Value Proposition: An Initial ROI Estimate ALIGNMENT AND PLANNING - DOING THE RIGHT THINGS Introduction Ge

  8. Adapting a successful inquiry-based immersion program to create an Authentic, Hands- on, Field based Curriculum in Environmental Science at Barnard College

    Science.gov (United States)

    Kenna, T. C.; Pfirman, S.; Mailloux, B. J.; Martin, S.; Kelsey, R.; Bower, P.

    2008-12-01

    Adapting a successful inquiry-based immersion program to create an Authentic, Hands-on, Field based Curriculum in Environmental Science at Barnard College T. C. Kenna, S. Pfirman, B. J. Mailloux, M. Stute, R. Kelsey, and P. Bower By adapting a successful inquiry-based immersion program (SEA semester) to the typical college format of classes, we are improving the technical and quantitative skills of undergraduate women and minorities in environmental science and improving their critical thinking and problem-solving by exposing our students to open-ended real-world environmental issues. Our approach uses the Hudson River Estuary as a natural laboratory. In a series of hands-on inquiry-based activities, students use advanced equipment to collect data and samples. Each class session introduces new analytical and data analysis techniques. All classes have the connecting theme of the river. Working with real data is open-ended. Our major findings as indicated by surveys as well as journaling throughout the semester are that the field- based experience significantly contributed to student learning and engagement. Journaling responses indicated that nearly all students discussed the importance and excitement of an authentic research experience. Some students were frustrated with data irregularities, uncertainty in methods and data, and the general challenge of a curriculum with inherent ambiguity. The majority were satisfied with the aims of the course to provide an integrative experience. All students demonstrated transfer of learned skills. This project has had a significant impact on our undergraduate female students: several students have pursued senior thesis projects stemming from grant activities, stating that the field activities were the highlight of their semester. Some students love the experience and want more. Others decide that they want to pursue a different career. All learn how science is conducted and have a better foundation to understand concepts such

  9. Exploring the Effects of Specific, Hands-On Interventions, on Environmental Science Topics in Teacher Education Programs

    Science.gov (United States)

    Bullock, S. M.; Hayhoe, D.

    2012-12-01

    With increased concern over the environment, all Ontario students now study soils, energy conservation, water systems, and climate change & the greenhouse effect in Grades 3, 5, 7, 8 and 10. Unfortunately, many prospective teachers at the elementary and intermediate levels come to teacher education programs with little or no formal science education beyond their own experiences as students in the K-12 system. We devised a series of concept tests (some binary choice, some multiple choice) designed to assess teacher candidates' conceptual understandings of soils, energy, water systems, and climate change and the greenhouse effect - the very content they are expected to teach their future students in the school system. We administered a pre-test to our students at two institutions to establish a baseline of their understanding. Then, we specifically devoted class time to exploring each of these themes in our science curriculum methods courses in order using research-based principles of teaching devoted to promoting conceptual change through the use of hands-on, inquiry approaches in science. After a few months had passed, we again administered the same tests to teacher candidates to measure candidates' conceptual gain. Some teacher candidates also participated in follow-up focus group interviews so that they could have the opportunity to articulate their understandings of concepts in environmental science using their own words. In this poster we will report on data collected for this project over the past two academic years. We have reached two broad conclusions. First, teacher candidates know a considerable amount about the four environmental topics that were selected, despite the fact that most participants in the research did not have post-secondary training in science. For example, participants tended to know that planting different crops on the soil in different years helps to maintain fertile soils and that warmer oceans will cause an increase in the severity of

  10. Hands-on science methods class for pre-service elementary teachers

    Energy Technology Data Exchange (ETDEWEB)

    Manner, B.M. [Univ. of Pittsburgh, PA (United States)

    1994-12-31

    If elementary teachers are to be comfortable teaching science, they must have positive pre-service experiences. A science methods class that is activity-based and student-centered, rather than lecture-based and teacher-centered, peaks their interest in science and alleviates their fears. Activities conducted by the students illustrate science concepts or integrate science with children`s literature books such as The Grouchy Ladybug. These activities are conducted by each student with the rest of the class and the professor acting as an elementary class. Each activity is then evaluated as to the science concept, what was done well, and how it could be improved. The students also relate how the activity would be integrated with other subjects such as social studies, art, math, and language arts. Student feedback indicates this method is enjoyable, educational, and valuable in preparing them to teach science. The {open_quotes}oohs{close_quotes} and {open_quotes}I didn`t know that!{close_quotes} during activities are positives, but students have also learned some science, lost most of their science anxiety, and will teach science with the confidence and enthusiasm that was lacking at the beginning of the course.

  11. Project-Based Science

    Science.gov (United States)

    Krajcik, Joe

    2015-01-01

    Project-based science is an exciting way to teach science that aligns with the "Next Generation Science Standards" ("NGSS"). By focusing on core ideas along with practices and crosscutting concepts, classrooms become learning environments where teachers and students engage in science by designing and carrying out…

  12. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    Science.gov (United States)

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  13. "Who Dunnit?": Learning Chemistry and Critical Thinking through Hands-On Forensic Science.

    Science.gov (United States)

    Demetry, Chrysanthe; Nicoletti, Denise; Mix, Kimberlee; O'Connor, Kerri; Martin, Andrea

    2002-01-01

    Demonstrates how forensic science can be used as a framework for generating student interest and learning in chemistry and promoting critical thinking. The "Who Dunnit?" forensic science workshop was developed by undergraduate students and is one element of a two-week residential summer outreach program that seeks to develop interest in…

  14. Hands on CERN an education project on the Internet using real high energy particle collisions

    CERN Document Server

    Johansson, E K

    1999-01-01

    An educational project primarily aimed at teachers and 15 to 18 year- old students describing the essential features of a modern high energy physics experiment has been created. The whole education package is available on the Internet. It gives a detailed description of the physics processes involved and the Standard Model of Microcosm. Real particle collisions produced with the facilities at the European particle physics laboratory (CERN) are displayed using the platform-independent programming language Java, enabling interaction with the user. The project has been used by several groups of teachers and students, and has increased their knowledge of, and interest in, particle physics. This project complements the traditional physics education and introduces students to contemporary fundamental physics. (7 refs).

  15. Solar Collector Design Optimization: A Hands-on Project Case Study

    Science.gov (United States)

    Birnie, Dunbar P., III; Kaz, David M.; Berman, Elena A.

    2012-01-01

    A solar power collector optimization design project has been developed for use in undergraduate classrooms and/or laboratories. The design optimization depends on understanding the current-voltage characteristics of the starting photovoltaic cells as well as how the cell's electrical response changes with increased light illumination. Students…

  16. Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children

    Science.gov (United States)

    Klahr, David; Triona, Lara M.; Williams, Cameron

    2007-01-01

    Hands-on activities play an important, but controversial, role in early science education. In this study we attempt to clarify some of the issues surrounding the controversy by calling attention to distinctions between: (a) type of instruction (direct or discovery); (b) type of knowledge to be acquired (domain-general or domain-specific); and (c) type of materials that are used (physical or virtual). We then describe an empirical study that investigates the relative effectiveness of the physical-virtual dimension. In the present study, seventh and eighth grade students assembled and tested mousetrap cars with the goal of designing a car that would go the farthest. Children were assigned to four different conditions, depending on whether they manipulated physical or virtual materials, and whether they had a fixed number of cars they could construct or a fixed amount of time in which to construct them. All four conditions were equally effective in producing significant gains in learners' knowledge about causal factors, in their ability to design optimal cars, and in their confidence in their knowledge. Girls' performance, knowledge, and effort were equal to boys' in all conditions, but girls' confidence remained below boys' throughout. Given the fact that, on several different measures, children were able to learn as well with virtual as with physical materials, the inherent pragmatic advantages of virtual materials in science may make them the preferred instructional medium in many hands-on contexts.

  17. WFIRST Project Science Activities

    Science.gov (United States)

    Gehrels, Neil

    2012-01-01

    The WFIRST Project is a joint effort between GSFC and JPL. The project scientists and engineers are working with the community Science Definition Team to define the requirements and initial design of the mission. The objective is to design an observatory that meets the WFIRST science goals of the Astr02010 Decadal Survey for minimum cost. This talk will be a report of recent project activities including requirements flowdown, detector array development, science simulations, mission costing and science outreach. Details of the interim mission design relevant to scientific capabilities will be presented.

  18. Hands on, mobiles on The use of a digital narrative as a scaffolding remedy in a classical science centre

    Directory of Open Access Journals (Sweden)

    Anne Kahr-Højland

    2010-12-01

    Full Text Available This article examines an educational design experiment which aimed to support young people’s involvement and reflection in the exhibition at a Danish science centre. The experiment consisted in the examination of the design and implementation of a mobile phone facilitated narrative, which was planned as a so-called scaffolding remedy in the hands-on based exhibition. The digital narrative, called EGO-TRAP, was developed using Design-Based Research as the overall methodological framework. The study of students’ interactions in the exhibition suggests, among other things, that because of its quality as a digital narrative, EGO-TRAP scaffolds pleasurable engagement and counteracts the tendency of "random button pressing" that often occurs in classical science centre exhibitions. In this connection, the mobile phone plays an essential role due to the fact that it, as the favoured media by the young students, offers an experience which they describe as both personal and flexible.

  19. Science in Schools Project

    Science.gov (United States)

    Waugh, Mike

    As part of a program to increase learning and engagement in science classes 124 Victorian schools are trialing a best practice teaching model. The Science in Schools Research Project is a DEET funded project under the Science in Schools Strategy, developed in response to recent research and policy decisions at national and state levels through which literacy, numeracy and science have been identified as key priorities for learning. This major science research project aims to identify, develop and trial best practice in Science teaching and learning. The Department will then be able to provide clear advice to Victoria's schools that can be adopted and sustained to: * enhance teaching and learning of Science * enhance student learning outcomes in Science at all year levels * increase student access to, and participation in Science learning from Prep through to Year 10, and hence in the VCE as well. The nature of the SiS program will be detailed with specific reference to the innovative programs in solar model cars, robotics and environmental science developed at Forest Hill College in response to this project.

  20. Introducing computational thinking through hands-on projects using R with applications to calculus, probability and data analysis

    Science.gov (United States)

    Benakli, Nadia; Kostadinov, Boyan; Satyanarayana, Ashwin; Singh, Satyanand

    2017-04-01

    The goal of this paper is to promote computational thinking among mathematics, engineering, science and technology students, through hands-on computer experiments. These activities have the potential to empower students to learn, create and invent with technology, and they engage computational thinking through simulations, visualizations and data analysis. We present nine computer experiments and suggest a few more, with applications to calculus, probability and data analysis, which engage computational thinking through simulations, visualizations and data analysis. We are using the free (open-source) statistical programming language R. Our goal is to give a taste of what R offers rather than to present a comprehensive tutorial on the R language. In our experience, these kinds of interactive computer activities can be easily integrated into a smart classroom. Furthermore, these activities do tend to keep students motivated and actively engaged in the process of learning, problem solving and developing a better intuition for understanding complex mathematical concepts.

  1. Animal Science Project

    International Nuclear Information System (INIS)

    Anon.

    Researches carried out in the 'Animal Science Project' of the Agricultural Nuclear Energy Center, Piracicaba, Sao Paulo state, Brazil, are described. Such researches comprise : immunology and animal nutrition. Tracer techniques are employed in this study. (M.A.) [pt

  2. 20% Research & Design Science Project

    Science.gov (United States)

    Spear, Beth A.

    2015-04-01

    A project allowing employees to use 15 % of their time on independent projects was established at 3M in the 1950's. The result of this project included products like post it notes and masking tape. Google allows its employees to use 20% of their time on independently pursued projects. The company values creativity and innovation. Employees are allowed to explore projects of interest to them one day out of the week, 20 % of their work week. Products like AdSense, Gmail, Google Transit, Google News, and Google Talk are the result of this 20 % program. My school is implementing the Next Generation Science Standards (NGSS) as part of our regularly scheduled curriculum review. These new standards focus on the process of learning by doing and designing. The NGSS are very hands on and active. The new standards emphasize learning how to define, understand and solve problems in science and technology. In today's society everyone needs to be familiar with science and technology. This project allows students to develop and practice skills to help them be more comfortable and confident with science and technology while exploring something of interest to them. This project includes three major parts: research, design, and presentation. Students will spend approximately 2-4 weeks defining a project proposal and educating themselves by researching a science and technology topic that is of interest to them. In the next phase, 2-4 weeks, students design a product or plan to collect data for something related to their topic. The time spent on research and design will be dependant on the topic students select. Projects should be ambitious enough to encompass about six weeks. Lastly a presentation or demonstration incorporating the research and design of the project is created, peer reviewed and presented to the class. There are some problems anticipated or already experienced with this project. It is difficult for all students to choose a unique topic when you have large class sizes

  3. Weekend Science Project

    Science.gov (United States)

    Santos, Karey

    2012-01-01

    Weekend plans...every family has them. Whether it's fishing, swimming, or simply picnicking by the river, water plays a significant role in many recreational endeavors. Encouraging students and their families to use their "scientific eyes" to explore these wonderful wet places is what Weekend Science Project is all about. Weekend Science Project…

  4. Conservation Science Fair Projects.

    Science.gov (United States)

    Soil Conservation Society of America, Ankeny, IA.

    Included are ideas, suggestions, and examples for selecting and designing conservation science projects. Over 70 possible conservation subject areas are presented with suggested projects. References are cited with each of these subject areas, and a separate list of annotated references is included. The references pertain to general subject…

  5. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  6. Introducing Hands-on, Experiential Learning Experiences in an Urban Environmental Science Program at a Minority Serving Institution

    Science.gov (United States)

    Duzgoren-Aydin, N. S.; Freile, D.

    2013-12-01

    STEM education at New Jersey City University increasingly focuses on experiential, student-centered learning. The Department of Geoscience/Geography plays a significant role in developing and implementing a new Urban Environmental Science Program. The program aims at graduating highly skilled, demographically diverse students (14 % African-American and 18% Hispanic) to be employed in high-growth Earth and Environmental Science career paths, both at a technical (e.g. B.S.) as well as an educational (K-12 grade) (e.g. B.A) level. The core program, including the Earth and Environmental Science curricula is guided by partners (e.g. USDA-NRCS). The program is highly interdisciplinary and 'hands-on', focusing upon the high-tech practical skills and knowledge demanded of science professionals in the 21st century. The focus of the curriculum is on improving environmental quality in northern NJ, centering upon our urban community in Jersey City and Hudson County. Our Department is moving towards a more earth system science approach to learning. Most of our courses (e.g., Earth Surface Processes, Sedimentology/Stratigraphy, Earth Materials, Essential Methods, Historical Geology) have hands-on laboratory and/or field components. Although some of our other courses do not have formal laboratory components, research modules of many such courses (Geochemistry, Urban Environmental Issues and Policy and Environmental Geology) involve strong field or laboratory studies. The department has a wide range of analytical and laboratory capacities including a portable XRF, bench-top XRD and ICP-MS. In spring 2013, Dr. Duzgoren-Aydin was awarded $277K in Higher Education Equipment Leasing Fund monies from the University in order to establish an Environmental Teaching and Research Laboratory. The addition of these funds will make it possible for the department to increase its instrumentation capacity by adding a mercury analyzer, Ion Chromatography and C-N-S analyzer, as well as updating

  7. Action Research Using Entomological Research to Promote Hands-On Science Inquiry in a High-Poverty, Midwest Urban High School

    Science.gov (United States)

    Stockmann, Dustin

    The purpose of this mixed-methods action research study was to examine to what extent entomological research can promote students' hands-on learning in a high-poverty, urban, secondary setting. In reviewing the literature, the researcher was not able to find a specific study that investigated how entomological research could promote the hands-on learning of students. The researcher did find evidence that research on learning in a secondary setting was important to student growth. It should also be noted that support was established for the implementation of hands-on science inquiry in the classroom setting. The study's purpose was to aid educators in their instruction by combining research-based strategies and hands-on science inquiry. The surveys asked 30 students to rate their understanding of three basic ideas. These core ideas were entomological research, hands-on science inquiry, and urban studies. These core ideas provided the foundation for the study. The questionnaires were based on follow-up ideas from the surveys. Two interview sessions were used to facilitate this one-on-one focus. Because the study included only 30 student participants, its findings may not be totally replicable. Further study investigating the links between entomological research and hands-on science learning in an urban environment is needed.

  8. Science Engagement Through Hands-On Activities that Promote Scientific Thinking and Generate Excitement and Awareness of NASA Assets, Missions, and Science

    Science.gov (United States)

    Graff, P. V.; Foxworth, S.; Miller, R.; Runco, S.; Luckey, M. K.; Maudlin, E.

    2018-01-01

    The public with hands-on activities that infuse content related to NASA assets, missions, and science and reflect authentic scientific practices promotes understanding and generates excitement about NASA science, research, and exploration. These types of activities expose our next generation of explorers to science they may be inspired to pursue as a future STEM career and expose people of all ages to unique, exciting, and authentic aspects of NASA exploration. The activities discussed here (Blue Marble Matches, Lunar Geologist Practice, Let's Discover New Frontiers, Target Asteroid, and Meteorite Bingo) have been developed by Astromaterials Research and Exploration Science (ARES) Science Engagement Specialists in conjunction with ARES Scientists at the NASA Johnson Space Center. Activities are designed to be usable across a variety of educational environments (formal and informal) and reflect authentic scientific content and practices.

  9. Elementary and middle school science improvement project

    Science.gov (United States)

    Mcguire, Saundra Y.

    1989-01-01

    The Alabama A and M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted to improve the science knowledge of elementary and middle school teachers using the experimental or hands-on approach. Summer workshops were conducted during the summers of 1986, 1987, and 1988 in the areas of biology, chemistry, physics, and electricity, and magnetism. Additionally, a manual containing 43 lessons which included background information, experiments and activities for classroom and home use was provided to each teacher. During the course of the project activities, the teachers interacted with various university faculty members, scientists, and NASA staff. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcome are addressed.

  10. Portsmouth Atmospheric Science School (PASS) Project

    Science.gov (United States)

    Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)

    2002-01-01

    The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).

  11. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  12. Using place-based concepts, multicultural lenses, and hands-on experience to broaden participation in the sciences for native youth

    Science.gov (United States)

    Flick, K. C.; Keepseagle, L.

    2013-12-01

    . Through field trips to broaden perspective, self-directed action research projects, and formal and informal classroom settings, the SLC serves as a stepping stone for students to discover Science/Math/ Technology-related careers and interact with people and professionals of all ages who pursue these careers. SLC participation empowers young students so they may one day serve as leaders and roles models to positively influence their classmates, schools, and communities for future generations. Through this collaborative education design process we have used place-based concepts, multicultural lenses, and hands-on experiences to explore reciprocal learning relationships which broaden participation of native students in geosciences and geoscientists' participation in cultural teachings.

  13. Setting up crowd science projects.

    Science.gov (United States)

    Scheliga, Kaja; Friesike, Sascha; Puschmann, Cornelius; Fecher, Benedikt

    2016-11-29

    Crowd science is scientific research that is conducted with the participation of volunteers who are not professional scientists. Thanks to the Internet and online platforms, project initiators can draw on a potentially large number of volunteers. This crowd can be involved to support data-rich or labour-intensive projects that would otherwise be unfeasible. So far, research on crowd science has mainly focused on analysing individual crowd science projects. In our research, we focus on the perspective of project initiators and explore how crowd science projects are set up. Based on multiple case study research, we discuss the objectives of crowd science projects and the strategies of their initiators for accessing volunteers. We also categorise the tasks allocated to volunteers and reflect on the issue of quality assurance as well as feedback mechanisms. With this article, we contribute to a better understanding of how crowd science projects are set up and how volunteers can contribute to science. We suggest that our findings are of practical relevance for initiators of crowd science projects, for science communication as well as for informed science policy making. © The Author(s) 2016.

  14. Science communication in European projects

    International Nuclear Information System (INIS)

    Vachev, Boyko; Stamenov, Jordan

    2009-01-01

    Science communication in several resent successful projects of Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences (INRNE, BAS) from the 5th and 6th Framework Programmes of EC is presented: the joint INRNE, BAS project with JRC of EC (FP5 NUSES) and two subsequent Centre of Excellence projects (FP5 HIMONTONET and FP6 BEOBAL) are considered. Innovations and traditional forms development and application are discussed. An overview of presentation and communication of INRNE, BAS contribution to Bulgarian European Project is made. Good practices have been derived. Keywords: Science communication, European projects, Innovations

  15. The Effects of Hands-On Learning Stations on Building American Elementary Teachers' Understanding about Earth and Space Science Concepts

    Science.gov (United States)

    Bulunuz, Nermin; Jarrett, Olga S.

    2010-01-01

    Research on conceptual change indicates that not only children, but also teachers have incomplete understanding or misconceptions on science concepts. This mixed methods study was concerned with in-service teachers' understanding of four earth and space science concepts taught in elementary school: reason for seasons, phases of the moon, rock…

  16. Peter Fensham--Head, Heart and Hands (on) in the Service of Science Education and Social Equity and Justice

    Science.gov (United States)

    Gunstone, Richard

    2009-01-01

    When Peter Fensham was appointed to the new Chair of Science Education at Monash University in 1967 he was the first Professor of Science Education in Australia, and, we think, may well have been the first such professor anywhere in the world outside USA. Over the subsequent 40+ years he has made/still makes remarkable and diverse contributions to…

  17. Cognitive Achievement and Motivation in Hands-on and Teacher-Centred Science Classes: Does an additional hands-on consolidation phase (concept mapping) optimise cognitive learning at work stations?

    Science.gov (United States)

    Gerstner, Sabine; Bogner, Franz X.

    2010-05-01

    Our study monitored the cognitive and motivational effects within different educational instruction schemes: On the one hand, teacher-centred versus hands-on instruction; on the other hand, hands-on instruction with and without a knowledge consolidation phase (concept mapping). All the instructions dealt with the same content. For all participants, the hands-on approach as well as the concept mapping adaptation were totally new. Our hands-on approach followed instruction based on "learning at work stations". A total of 397 high-achieving fifth graders participated in our study. We used a pre-test, post-test, retention test design both to detect students' short-term learning success and long-term learning success, and to document their decrease rates of newly acquired knowledge. Additionally, we monitored intrinsic motivation. Although the teacher-centred approach provided higher short-term learning success, hands-on instruction resulted in relatively lower decrease rates. However, after six weeks, all students reached similar levels of newly acquired knowledge. Nevertheless, concept mapping as a knowledge consolidation phase positively affected short-term increase in knowledge. Regularly placed in instruction, it might increase long-term retention rates. Scores of interest, perceived competence and perceived choice were very high in all the instructional schemes.

  18. Electric Motorboat Drag Racing: A Hands-On Physics Project that Motivates Students from Start to Finish

    Science.gov (United States)

    Barry, Reno

    2008-01-01

    Electric Motorboat Drag Racing is a culminating high school physics project designed to apply and bring to life many content standards for physics. Students need to be given several weeks at home to design and build their model-sized electric motorboats for the 5-meter drag racing competition down rain gutters. In the process, they are discussing…

  19. The Hands-On Guide For Science Communicators A Step-By-Step Approach to Public Outreach

    CERN Document Server

    Christensen, Lars Lindberg

    2007-01-01

    Lars Lindberg Christensen is a science communication specialist and works in Munich, Germany, as head of communication for the NASA/ESA Hubble Space Telescope in Europe. Many people know something about communication – it is after all an innate human ability – but a full comprehension of how to do science communication effectively is not acquired easily. This Guide touches upon all aspects of science communication, revealing a tightly interwoven fabric of issues: product types, target groups, written communication, visual communication, validation processes, practices of efficient workflow, distribution, promotion, advertising and much more. New science communicators will find this Guide both helpful and inspirational. "I am overwhelmed at how thorough and how well thought-through this book is. Even with my regular relationships with popular communication and with public relations officers, I hadn’t realized how well documented the field could be until I saw it done here." -Jay M. Pasachoff, Williams Co...

  20. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  1. Hands on Stem Cells: How to Make the Elusive Science of Stem Cells Tangible for the Classroom

    Science.gov (United States)

    Sanderson, Aimee

    2010-01-01

    With new technologies developing so fast, it is difficult for students and teachers alike to keep up to date. Add into the mix skewed media reporting, some creative science fiction films and the unregulated world of the internet, and it becomes increasingly hard to separate fact from fiction. As Australia's largest funding body for stem cell…

  2. Who Is Watching and Who Is Playing: Parental Engagement with Children at a Hands-On Science Center

    Science.gov (United States)

    Nadelson, Louis S.

    2013-01-01

    Family interactions are common phenomenon at visits to science centers and natural history museums. Through interactions the family can support each other as the members individually and collectively learn from their visits. Interaction is particularly important between child(ren) and parent, which may be facilitated by media provided to parents.…

  3. Hands-On Nuclear Physics

    Science.gov (United States)

    Whittaker, Jeff

    2013-01-01

    Nuclear science is an important topic in terms of its application to power generation, medical diagnostics and treatment, and national defense. Unfortunately, the subatomic domain is far removed from daily experience, and few learning aids are available to teachers. What follows describes a low-tech, hands-on method to teach important concepts in…

  4. ScienceDesk Project Overview

    Science.gov (United States)

    Keller, Richard M.; Norvig, Peter (Technical Monitor)

    2000-01-01

    NASA's ScienceDesk Project at the Ames Research Center is responsible for scientific knowledge management which includes ensuring the capture, preservation, and traceability of scientific knowledge. Other responsibilities include: 1) Maintaining uniform information access which is achieved through intelligent indexing and visualization, 2) Collaborating both asynchronous and synchronous science teamwork, 3) Monitoring and controlling semi-autonomous remote experimentation.

  5. Acid Rain: Science Projects.

    Science.gov (United States)

    Stubbs, Harriett S.

    1989-01-01

    Presented is a science activity designed to help students monitor the pH of rainfall. Materials, procedures and follow-up activities are listed. A list of domestic and foreign sources of information is provided. Topics which relate to acid precipitation are outlined. (CW)

  6. Assessing Motivations and Use of Online Citizen Science Astronomy Projects

    Science.gov (United States)

    Nona Bakerman, Maya; Buxner, Sanlyn; Bracey, Georgia; Gugliucci, Nicole

    2018-01-01

    The exponential proliferation of astronomy data has resulted in the need to develop new ways to analyze data. Recent efforts to engage the public in the discussion of the importance of science has led to projects that are aimed at letting them have hands-on experiences. Citizen science in astronomy, which has followed the model of citizen science in other scientific fields, has increased in the number and type of projects in the last few years and poses captivating ways to engage the public in science.The primary feature of this study was citizen science users’ motivations and activities related to engaging in astronomy citizen science projects. We report on participants’ interview responses related to their motivations, length and frequency of engagement, and reasons for leaving the project. From May to October 2014, 32 adults were interviewed to assess their motivations and experiences with citizen science. In particular, we looked at if and how motivations have changed for those who have engaged in the projects in order to develop support for and understandparticipants of citizen science. The predominant reasons participants took part in citizen science were: interest, helping, learning or teaching, and being part of science. Everyone interviewed demonstrated an intrinsic motivation to do citizen science projects.Participants’ reasons for ending their engagement on any given day were: having to do other things, physical effects of the computer, scheduled event that ended, attention span or tired, computer or program issues. A small fraction of the participants also indicated experiencing negative feedback. Out of the participants who no longer took part in citizen science projects, some indicated that receiving negative feedback was their primary reason and others reported the program to be frustrating.Our work is helping us to understand participants who engage in online citizen science projects so that researchers can better design projects to meet their

  7. A Hands-On Approach to Maglev for Gifted Students.

    Science.gov (United States)

    Budd, Raymond T.

    2003-01-01

    This article discusses how Magnetic Levitation (Maglev) can be taught to gifted students in grades 4-9 using hands-on activities that align to the National Science Standards. Principles of magnetic levitation, advantages of magnetic levitation, construction of a Maglev project, testing and evaluation of vehicles, and presentation of the unit are…

  8. Earth Science Capability Demonstration Project

    Science.gov (United States)

    Cobleigh, Brent

    2006-01-01

    A viewgraph presentation reviewing the Earth Science Capability Demonstration Project is shown. The contents include: 1) ESCD Project; 2) Available Flight Assets; 3) Ikhana Procurement; 4) GCS Layout; 5) Baseline Predator B Architecture; 6) Ikhana Architecture; 7) UAV Capability Assessment; 8) The Big Picture; 9) NASA/NOAA UAV Demo (5/05 to 9/05); 10) NASA/USFS Western States Fire Mission (8/06); and 11) Suborbital Telepresence.

  9. Setting up crowd science projects

    NARCIS (Netherlands)

    Scheliga, Kaja; Friesike, Sascha; Puschmann, Cornelius; Fecher, Benedikt

    2016-01-01

    Crowd science is scientific research that is conducted with the participation of volunteers who are not professional scientists. Thanks to the Internet and online platforms, project initiators can draw on a potentially large number of volunteers. This crowd can be involved to support data-rich or

  10. Comparing the Pre- and Posttest Scores in Relations to the Emporium and the Hands-on Instructional Approaches of Teaching Science in Prekindergarten

    Science.gov (United States)

    Headen, Patricia Ann

    This quantitative, quasi-experimental research investigated if two instructional approaches, the Emporium Computer-Based (Group 2) versus the hands-on approach (Group 1), resulted any difference in student achievement in science for four-year-old prekindergarten students at a private childcare facility in North Carolina. Three research questions hypothesized these relationships: (a) Group 2 versus Group 1 assessed student achievement as theoretically based on Piaget and Vygotsky's perspectives of child development, (b) the instructional approaches related to gender, and (c) the instructional approaches interrelated to ethnicity. Using a two-factor ANOVA and ANCOVA techniques, involved a convenience sample of 126 four-year-old prekindergarten students of which a convenience sample of 126 participated. The Assessment of Measurements for Pre-K (AMP-K), pretest and posttest scores of each group of 63 students measured student achievement. The t tests determined if a significant difference in student achievement existed (dependent variable) with the Emporium Computer-Based versus hands-on instructional approaches (independent variables). The posttest scores of Group 2 (p = 0.00), indicated a significant difference in student achievement. However, gender and ethnicity variables had no effect on student achievement, male (M = 36.14, SD = 19.61) and female (M = 42.91, SD = 18.99) with (p = 0.49), and ethnicity resulted, F (1,125) = 1.65, (p = 0.20). These results suggested that further research on the Emporium Computer-Based instructional approach could improve students' intellectual abilities through more innovative practices.

  11. Overview of Neutron Science Project

    Energy Technology Data Exchange (ETDEWEB)

    Mukaiyama, Takehiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, (1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, (2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and (3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  12. Overview of Neutron Science Project

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko

    1997-01-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, 1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, 2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and 3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  13. Neutron Science Project at JAERI

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1998-01-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  14. Neutron Science Project at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  15. Hands-On Calculus

    Science.gov (United States)

    Sutherland, Melissa

    2006-01-01

    In this paper we discuss manipulatives and hands-on investigations for Calculus involving volume, arc length, and surface area to motivate and develop formulae which can then be verified using techniques of integration. Pre-service teachers in calculus courses using these activities experience a classroom in which active learning is encouraged and…

  16. Hands-on Humidity.

    Science.gov (United States)

    Pankiewicz, Philip R.

    1992-01-01

    Presents five hands-on activities that allow students to detect, measure, reduce, and eliminate moisture. Students make a humidity detector and a hygrometer, examine the effects of moisture on different substances, calculate the percent of water in a given food, and examine the absorption potential of different desiccants. (MDH)

  17. Hands-On Hydrology

    Science.gov (United States)

    Mathews, Catherine E.; Monroe, Louise Nelson

    2004-01-01

    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  18. Educational Experiences in Oceanography through Hands-On Involvement with Surface Drifters: an Introduction to Ocean Currents, Engineering, Data Collection, and Computer Science

    Science.gov (United States)

    Anderson, T.

    2015-12-01

    The Northeast Fisheries Science Center's (NEFSC) Student Drifters Program is providing education opportunities for students of all ages. Using GPS-tracked ocean drifters, various educational institutions can provide students with hands-on experience in physical oceanography, engineering, and computer science. In building drifters many high school and undergraduate students may focus on drifter construction, sometimes designing their own drifter or attempting to improve current NEFSC models. While learning basic oceanography younger students can build drifters with the help of an educator and directions available on the studentdrifters.org website. Once drifters are deployed, often by a local mariner or oceanographic partner, drifter tracks can be visualised on maps provided at http://nefsc.noaa.gov/drifter. With the lesson plans available for those interested in computer science, students may download, process, and plot the drifter position data with basic Python code provided. Drifter tracks help students to visualize ocean currents, and also allow them to understand real particle tracking applications such as in search and rescue, oil spill dispersion, larval transport, and the movement of injured sea animals. Additionally, ocean circulation modelers can use student drifter paths to validate their models. The Student Drifters Program has worked with over 100 schools, several of them having deployed drifters on the West Coast. Funding for the program often comes from individual schools and small grants but in the future will preferably come from larger government grants. NSF, Sea-Grant, NOAA, and EPA are all possible sources of funding, especially with the support of multiple schools and large marine education associations. The Student Drifters Program is a unique resource for educators, students, and scientists alike.

  19. Evaluation of radiological workstations and web-browser-based image distribution clients for a PACS project in hands-on workshops

    International Nuclear Information System (INIS)

    Boehm, Thomas; Handgraetinger, Oliver; Voellmy, Daniel R.; Marincek, Borut; Wildermuth, Simon; Link, Juergen; Ploner, Ricardo

    2004-01-01

    The methodology and outcome of a hands-on workshop for the evaluation of PACS (picture archiving and communication system) software for a multihospital PACS project are described. The following radiological workstations and web-browser-based image distribution software clients were evaluated as part of a multistep evaluation of PACS vendors in March 2001: Impax DS 3000 V 4.1/Impax Web1000 (Agfa-Gevaert, Mortsel, Belgium); PathSpeed V 8.0/PathSpeed Web (GE Medical Systems, Milwaukee, Wis., USA); ID Report/ID Web (Image Devices, Idstein, Germany); EasyVision DX/EasyWeb (Philips Medical Systems, Eindhoven, Netherlands); and MagicView 1000 VB33a/MagicWeb (Siemens Medical Systems, Erlangen, Germany). A set of anonymized DICOM test data was provided to enable direct image comparison. Radiologists (n=44) evaluated the radiological workstations and nonradiologists (n=53) evaluated the image distribution software clients using different questionnaires. One vendor was not able to import the provided DICOM data set. Another vendor had problems in displaying imported cross-sectional studies in the correct stack order. Three vendors (Agfa-Gevaert, GE, Philips) presented server-client solutions with web access. Two (Siemens, Image Devices) presented stand-alone solutions. The highest scores in the class of radiological workstations were achieved by ID Report from Image Devices (p<0.005). In the class of image distribution clients, the differences were statistically not significant. Questionnaire-based evaluation was shown to be useful for guaranteeing systematic assessment. The workshop was a great success in raising interest in the PACS project in a large group of future clinical users. The methodology used in the present study may be useful for other hospitals evaluating PACS. (orig.)

  20. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    their states, regions, and countries with one another. A subset of the Field School students continue their polar science exploration by traveling to and experiencing science at the top of the Greenlandic ice sheet, as participants in Arctic Science Education Week. They launched weather balloons, took measurements of reflectivity to learn more about albedo, studied glaciers and ice sheets and created hands-on models to study their flow, shadowed the Summit science technicians on their rounds, practiced taking clean snow samples, examined a back-lit snow pit to observe the differences between seasonal snows and ice formation, and assisted researchers by taking samples from the snow pit for isotope analysis. Lastly, I will share one group multi- and interdisciplinary activity used at JSEP which illustrates how to combine mathematics and science with global studies. As noted in the Mathematics of Planet Earth 2013 initiative: "The challenges facing our planet and our civilization are multidisciplinary and multifaceted, and the mathematical sciences play a central role in the scientific effort to understand and to deal with these challenges." In particular, this group activity uses mathematical modeling and data representation to spark a discussion of civic engagement and to raise awareness that the polar regions are critically important to the global system.

  1. Impact of an Educational Hands-on Project on the Antimicrobial, Antitumor and Anti-Inflammatory Properties of Plants on Portuguese Students’ Awareness, Knowledge, and Competences

    Directory of Open Access Journals (Sweden)

    Maria-Manuel Azevedo

    2015-02-01

    Full Text Available Promoting environmental and health education is crucial to allow students to make conscious decisions based on scientific criteria. The study is based on the outcomes of an Educational Project implemented with Portuguese students and consisted of several activities, exploring pre-existent Scientific Gardens at the School, aiming to investigate the antibacterial, antitumor and anti-inflammatory properties of plant extracts, with posterior incorporation in soaps and creams. A logo and a webpage were also created. The effectiveness of the project was assessed via the application of a questionnaire (pre- and post-test and observations of the participants in terms of engagement and interaction with all individuals involved in the project. This project increased the knowledge about autochthonous plants and the potential medical properties of the corresponding plant extracts and increased the awareness about the correct design of scientific experiments and the importance of the use of experimental models of disease. The students regarded their experiences as exciting and valuable and believed that the project helped to improve their understanding and increase their interest in these subjects and in science in general. This study emphasizes the importance of raising students’ awareness on the valorization of autochthonous plants and exploitation of their medicinal properties.

  2. Collaborative online projects for English language learners in science

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Rivas, Carmen

    2013-12-01

    This paper summarizes how collaborative online projects (COPs) are used to facilitate science content-area learning for English Learners of Hispanic origin. This is a Mexico-USA partnership project funded by the National Science Foundation. A COP is a 10-week thematic science unit, completely online, and bilingual (Spanish and English) designed to provide collaborative learning experiences with culturally and linguistically relevant science instruction in an interactive and multimodal learning environment. Units are integrated with explicit instructional lessons that include: (a) hands-on and laboratory activities, (b) interactive materials and interactive games with immediate feedback, (c) animated video tutorials, (d) discussion forums where students exchange scientific learning across classrooms in the USA and in Mexico, and (e) summative and formative assessments. Thematic units have been aligned to U.S. National Science Education Standards and are under current revisions for alignment to the Common Core State Standards. Training materials for the teachers have been integrated into the project website to facilitate self-paced and independent learning. Preliminary findings of our pre-experimental study with a sample of 53 students (81 % ELs), distributed across three different groups, resulted in a 21 % statistically significant points increase from pretest to posttest assessments of science content learning, t( 52) = 11.07, p = .000.

  3. Reflexivity in performative science shop projects

    OpenAIRE

    Beunen, R.; Duineveld, M.; During, R.; Straver, G.H.M.B.; Aalvanger, A.

    2012-01-01

    Science shop research projects offer possibilities for universities to engage with communities. Many science shop projects directly or indirectly intend to empower certain marginalised groups or interests within a decision-making process. In this article we argue that it is important to reflect on the role and position the researchers have in these projects. We present three science shop projects to illustrate some of the dilemmas that may arise in relation to citizen empowerment, democracy, ...

  4. Project Lifescape | Initiatives | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Project Lifescape. This project is part of the Academy initiative to enhance the quality of science education. It is pursued in collaboration with the Centre for Ecological Sciences at the Indian Institute of Science to spread biodiversity literacy, expecially within the high school and college student community, and to involve them ...

  5. The LOFAR Transients Key Science Project

    NARCIS (Netherlands)

    Stappers, B.; Fender, R.; Wijers, R.

    2009-01-01

    The Transients Key Science Project (TKP) is one of six Key Science Projects of the next generation radio telescope LOFAR. Its aim is the study of transient and variable low-frequency radio sources with an extremely broad science case ranging from relativistic jet sources to pulsars, exoplanets,

  6. Project LAUNCH: Bringing Space into Math and Science Classrooms

    Science.gov (United States)

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-01-01

    Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.

  7. Citizen science projects for non-science astronomy students

    OpenAIRE

    Barmby, Pauline; Gallagher, S. C.; Cami, J.

    2014-01-01

    A poster from the 2011 Western Conference on Science Education, describing the use of citizen science project Galaxy Zoo in a non-majors astronomy course. Lots more on this topic at https://www.zooniverse.org/education  

  8. Project Lifescape | Initiatives | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This project is part of the Academy initiative to enhance the quality of science education. It is pursued in ... database through a website. Project Lifescape has also initiated work using some Indian languages. ... and Outreach. Math and Finance ...

  9. [Nebraska 4-H Wheat Science School Enrichment Project, Teacher/Leader Guides 213-222 and 227.

    Science.gov (United States)

    Nebraska Univ., Lincoln. Inst. of Agriculture and Natural Resources.

    Through the 4-H Wheat Science project, students learn the importance of wheat from the complete process of growing wheat to the final product of bread. The curriculum is designed to include hands-on experiences in science, consumer education, nutrition, production economics, vocabulary, and applied mathematics. Teachers can select those units out…

  10. Bringing nursing science to the classroom: a collaborative project.

    Science.gov (United States)

    Reams, Susan; Bashford, Carol

    2009-01-01

    This project resulted as a collaborative effort on the part of a public school system and nursing faculty. The fifth grade student population utilized in this study focused on the skeletal, muscular, digestive, circulatory, respiratory, and nervous systems as part of their school system's existing science and health curriculum. The intent of the study was to evaluate the impact on student learning outcomes as a result of nursing-focused, science-based, hands-on experiential activities provided by nursing faculty in the public school setting. An assessment tool was created for pretesting and posttesting to evaluate learning outcomes resulting from the intervention. Over a two day period, six classes consisting of 25 to 30 students each were divided into three equal small groups and rotated among three interactive stations. Students explored the normal function of the digestive system, heart, lungs, and skin. Improvement in learning using the pretest and posttest assessment tools were documented.

  11. Methods and Strategies: Beyond the Textbook--But Not Just "Hands On". Using High-Quality Informational Texts to Meet the "Next Generation Science Standards"

    Science.gov (United States)

    Vick, Matthew

    2016-01-01

    Science teaching continues to move away from teaching science as merely a body of facts and figures to be memorized to a process of exploring and drawing conclusions. The Next Generation Science Standards (NGSS) emphasize eight science and engineering practices that ask students to apply scientific and engineering reasoning and explanation. This…

  12. 4-H Textile Science Beginner Projects.

    Science.gov (United States)

    Scholl, Jan

    This packet contains three 4-H projects for students beginning the sewing sequence of the textile sciences area. The projects cover basics of sewing using sewing machines, more difficult sewing machine techniques, and hand sewing. Each project provides an overview of what the student will learn, what materials are needed, and suggested projects…

  13. Science Projects | Akron-Summit County Public Library

    Science.gov (United States)

    Hours & Locations Main Library Science & Technology Division Science Projects Science Projects Have fun with science experiments. Whether you need to do a project for a school science fair or you want to be a mad scientist, our Science Project Index and other resources can get you started. Find how

  14. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  15. The LOFAR Magnetism Key Science Project

    NARCIS (Netherlands)

    Anderson, James; Beck, Rainer; Bell, Michael; de Bruyn, Ger; Chyzy, Krzysztof; Eislöffel, Jochen; Enßlin, Torsten; Fletcher, Andrew; Haverkorn, Marijke; Heald, George; Horneffer, Andreas; Noutsos, Aris; Reich, Wolfgang; Scaife, Anna; the LOFAR collaboration, [No Value

    2012-01-01

    Measuring radio waves at low frequencies offers a new window to study cosmic magnetism, and LOFAR is the ideal radio telescope to open this window widely. The LOFAR Magnetism Key Science Project (MKSP) draws together expertise from multiple fields of magnetism science and intends to use LOFAR to

  16. Progress of JAERI neutron science project

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1999-01-01

    Neutron Science Project was started at Japan Atomic Energy Research Institute since 1996 for promoting futuristic basic science and nuclear technology utilizing neutrons. For this purpose, research and developments of intense proton accelerator and spallation neutron target were initiated. The present paper describes the current status of such research and developments. (author)

  17. Group Projects and the Computer Science Curriculum

    Science.gov (United States)

    Joy, Mike

    2005-01-01

    Group projects in computer science are normally delivered with reference to good software engineering practice. The discipline of software engineering is rapidly evolving, and the application of the latest 'agile techniques' to group projects causes a potential conflict with constraints imposed by regulating bodies on the computer science…

  18. The Aeolus project: Science outreach through art.

    Science.gov (United States)

    Drumm, Ian A; Belantara, Amanda; Dorney, Steve; Waters, Timothy P; Peris, Eulalia

    2015-04-01

    With a general decline in people's choosing to pursue science and engineering degrees there has never been a greater need to raise the awareness of lesser known fields such as acoustics. Given this context, a large-scale public engagement project, the 'Aeolus project', was created to raise awareness of acoustics science through a major collaboration between an acclaimed artist and acoustics researchers. It centred on touring the large singing sculpture Aeolus during 2011/12, though the project also included an extensive outreach programme of talks, exhibitions, community workshops and resources for schools. Described here are the motivations behind the project and the artwork itself, the ways in which scientists and an artist collaborated, and the public engagement activities designed as part of the project. Evaluation results suggest that the project achieved its goal of inspiring interest in the discipline of acoustics through the exploration of an other-worldly work of art. © The Author(s) 2013.

  19. Citizens Science for Sustainability (SuScit) Project Briefing

    DEFF Research Database (Denmark)

    Eames, Malcolm; Mortensen, Jonas Egmose; Adebowale, Maria

    This project briefing gives a short overview of the Citizens Science for Sustainability (SuScit) Project.......This project briefing gives a short overview of the Citizens Science for Sustainability (SuScit) Project....

  20. Dissemination and Exploitation: Project Goals beyond Science

    Science.gov (United States)

    Hamann, Kristin; Reitz, Anja

    2017-04-01

    Dissemination and Exploitation are essential parts of public funded projects. In Horizon 2020 a plan for the exploitation and dissemination of results (PEDR) is a requirement. The plan should contain a clear vision on the objectives of the project in relation to actions for dissemination and potential exploitation of the project results. The actions follow the basic idea to spread the knowledge and results gathered within the project and face the challenge of how to bring the results into potentially relevant policy circle and how they impact the market. The plan follows the purpose to assess the impact of the project and to address various target groups who are interested in the project results. Simply put, dissemination concentrates on the transfer of knowledge and exploitation on the commercialization of the project. Beyond the question of the measurability of project`s impact, strategies within science marketing can serve purposes beyond internal and external communication. Accordingly, project managers are facing the challenge to implement a dissemination and exploitation strategy that ideally supports the identification of all partners with the project and matches the current discourse of the project`s content within the society, politics and economy. A consolidated plan might unite all projects partners under a central idea and supports the identification with the project beyond the individual research questions. Which applications, strategies and methods can be used to bring forward a PEDR that accompanies a project successfully and allows a comprehensive assessment of the project afterwards? Which hurdles might project managers experience in the dissemination process and which tasks should be fulfilled by the project manager?

  1. Tohoku Women's Hurdling Project: Science Angels (abstract)

    Science.gov (United States)

    Mizuki, Kotoe; Watanabe, Mayuko

    2009-04-01

    Tohoku University was the first National University to admit three women students in Japan in 1913. To support the university's traditional ``open-door'' policy, various projects have been promoted throughout the university since its foundation. A government plan, the Third-Stage Basic Plan for Science and Technology, aims to increase the women scientist ratio up to 25% nationwide. In order to achieve this goal, the Tohoku Women's Hurdling Project, funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), was adopted in 2006. This project is threefold: support for child/family, improvement of facilities, and support for the next generation, which includes our Science Angels program. ``Science Angels'' are women PhD students appointed by the university president, with the mission to form a strong support system among each other and to become role-models to inspire younger students who want to become researchers. Currently, 50 women graduate students of the natural sciences are Science Angels and are encouraged to design and deliver lectures in their areas of specialty at their alma maters. Up to now, 12 lectures have been delivered and science events for children in our community have been held-all with great success.

  2. A biotic game design project for integrated life science and engineering education.

    Directory of Open Access Journals (Sweden)

    Nate J Cira

    2015-03-01

    Full Text Available Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course. We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  3. A biotic game design project for integrated life science and engineering education.

    Science.gov (United States)

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  4. International Collaboration in Packaging Education: Hands-on System-on-Package (SOP) Graduate Level Courses at Indian Institute of Science and Georgia Tech PRC

    OpenAIRE

    Varadarajan, Mahesh; Bhattacharya, Swapan; Doraiswami, Ravi; Rao, Ananda G; Rao, NJ; May, Gary; Conrad, Leyla; Tummala, Rao

    2005-01-01

    System-on-Package (SOP) continues to revolutionize the realization of convergent systems in microelectronics packaging. The SOP concept which began at the Packaging Research Center (PRC) at Georgia Tech has benefited its international collaborative partners in education including the Indian Institute of Science (IISc). The academic program for electronics packaging currently in the Centre for Electronics Design and Technology (CEDT) at IISc is aimed at educating a new breed of globally-compet...

  5. The Use of Online Citizen-Science Projects to Provide Experiential Learning Opportunities for Nonmajor Science Students

    Directory of Open Access Journals (Sweden)

    Donna M. Kridelbaugh

    2015-11-01

    Full Text Available Citizen science is becoming even more accessible to the general public through technological advances in the development of mobile applications, facilitating information dissemination and data collection. With the advent of “big data,” many citizen-science projects designed to help researchers sift through piles of research data now exist entirely online, either in the form of playing a game or via other digital avenues. Recent trends in citizen science have also focused on “crowdsourcing” solutions from the general public to help solve societal issues, often requiring nothing more than brainstorming and a computer to submit ideas. Online citizen science thus provides an excellent platform to expand the accessibility of experiential learning opportunities for a broad range of nonmajor science students at institutions with limited resources (e.g., community colleges. I created an activity for a general microbiology lecture to engage students in hands-on experiences via participation in online citizen-science projects. The objectives of the assignment were for students to: 1 understand that everyone can be a scientist; 2 learn to be creative and innovative in designing solutions to health and science challenges; and 3 further practice science communication skills with a written report. This activity is designed for introductory science courses with nonmajor science students who have limited opportunities to participate in undergraduate research experiences.

  6. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  7. Water Integration Project Science Strategies White Paper

    International Nuclear Information System (INIS)

    Alan K. Yonk

    2003-01-01

    This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document

  8. Water Integration Project Science Strategies White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Alan K. Yonk

    2003-09-01

    This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document.

  9. Impact of clinical osteoarthritis of the hip, knee and hand on self-rated health in six European countries: the European Project on OSteoArthritis.

    Science.gov (United States)

    van Schoor, N M; Zambon, S; Castell, M V; Cooper, C; Denkinger, M; Dennison, E M; Edwards, M H; Herbolsheimer, F; Maggi, S; Sánchez-Martinez, M; Pedersen, N L; Peter, R; Schaap, L A; Rijnhart, J J M; van der Pas, S; Deeg, D J H

    2016-06-01

    Osteoarthritis (OA) has been shown to be associated with decreased physical function, which may impact upon a person's self-rated health (SRH). Only a few studies have examined the association between OA and SRH in the general population, but to date none have used a clinical definition of OA. The objectives are: (1) To examine the cross-sectional association between clinical OA and fair-to-poor SRH in the general population; (2) To examine whether this association differs between countries; (3) To examine whether physical function is a mediator in the association between clinical OA and SRH. Baseline data of the European Project on OSteoArthritis (EPOSA) were used, which includes pre-harmonized data from six European cohort studies (n = 2709). Clinical OA was defined according to the American College of Rheumatology criteria. SRH was assessed using one question: How is your health in general? Physical function was assessed using the Western Ontario and McMaster Universities OA Index and Australian/Canadian OA Hand Index. The prevalence of fair-to-poor SRH ranged from 19.8 % in the United Kingdom to 63.5 % in Italy. Although country differences in the strength of the associations were observed, clinical OA of the hip, knee and hand were significantly associated with fair-to-poor SRH in five out of six European countries. In most countries and at most sites, the association between clinical OA and fair-to-poor SRH was partly or fully mediated by physical function. Clinical OA at different sites was related to fair-to-poor SRH in the general population. Most associations were (partly) mediated by physical functioning, indicating that deteriorating physical function in patients with OA should be a point of attention in patient care.

  10. THEMES, DREAMS AND REAUTY: THE SCIENCE PROJECT ...

    African Journals Online (AJOL)

    Science Education Project (SEP) is a non-profit making educational trust ... us that many of them fail to survive the rigours of the school and ... environment) emphasis will be placed on in-service training and ... The 'status quo' is safe, everyone.

  11. Hands-on Universe - Europe

    Science.gov (United States)

    Ferlet, R.

    2006-08-01

    The EU-HOU project aims at re-awakening the interest for science through astronomy and new technologies, by challenging middle and high schools pupils. It relies on real observations acquired through an internet-based network of robotic optical and radio telescopes or with didactical tools such as Webcam. Pupils manipulate and measure images in the classroom environment, using the specifically designed software SalsaJ, within pedagogical trans-disciplinary resources constructed in close collaboration between researchers and teachers. Gathering eight European countries coordinated in France, EU-HOU is partly funded by the European Union. All its outputs are freely available on the Web, in English and the other languages involved. A European network of teachers is being developed through training sessions.

  12. Evaluation of authentic science projects on climate change in secondary schools: a focus on gender differences

    Science.gov (United States)

    Dijkstra, Elma; Goedhart, Martin

    2011-07-01

    Background and purpose This study examines secondary-school students' opinions on participating in authentic science projects which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects, in which students work with and learn from scientists about the global carbon cycle. This study focuses in particular on differences between male and female students, as female students normally like traditional school science less than male students. Sample and design Data, drawn from 1370 students from 60 secondary schools across Europe, were collected through questionnaires taken at the end of the projects. The evaluated aspects were: organization; enjoyment; difficulty; and impact of the projects. Results The findings suggest that authentic science education is appreciated very much by both male students and even more by female students. The projects had positive impacts on climate change ideas, in particular for female students. Female students felt that they had learned many new things more often than male students. Conclusions Both male and female students have positive opinions about the authentic science projects. The results further point to positive effects of activities in which students have an active role, like hands-on experiments or presentation of results. The findings are placed in the international context of science education and their implications for policy are discussed.

  13. 2011 Joint Science Education Project: Research Experience in Polar Science

    Science.gov (United States)

    Wilkening, J.; Ader, V.

    2011-12-01

    The Joint Science Education Project (JSEP), sponsored by the National Science Foundation, is a two-part program that brings together students and teachers from the United States, Greenland, and Denmark, for a unique cross-cultural, first-hand experience of the realities of polar science field research in Greenland. During JSEP, students experienced research being conducted on and near the Greenland ice sheet by attending researcher presentations, visiting NSF-funded field sites (including Summit and NEEM field stations, both located on the Greenland ice sheet), and designing and conducting research projects in international teams. The results of two of these projects will be highlighted. The atmospheric project investigated the differences in CO2, UVA, UVB, temperature, and albedo in different Arctic microenvironments, while also examining the interaction between the atmosphere and water present in the given environments. It was found that the carbon dioxide levels varied: glacial environments having the lowest levels, with an average concentration of 272.500 ppm, and non-vegetated, terrestrial environments having the highest, with an average concentration of 395.143 ppm. Following up on these results, it is planned to further investigate the interaction of the water and atmosphere, including water's role in the uptake of carbon dioxide. The ecology project investigated the occurrence of unusual large blooms of Nostoc cyanobacteria in Kangerlussuaq area lakes. The water chemistry of the lakes which contained the cyanobacteria and the lakes that did not were compared. The only noticeable difference was of the lakes' acidity, lakes containing the blooms had an average pH value of 8.58, whereas lakes without the blooms had an average pH value of 6.60. Further investigation of these results is needed to determine whether or not this was a cause or effect of the cyanobacteria blooms. As a next step, it is planned to attempt to grow the blooms to monitor their effects on

  14. Cartographic science: a compendium of map projections, with derivations

    National Research Council Canada - National Science Library

    Fenna, Donald

    2007-01-01

    "From basic projecting to advanced transformations, Cartographic Science: A Compendium of Map Projections, with Derivations comprehensively explores the depiction of a curved world on a flat surface...

  15. [Earth Science Technology Office's Computational Technologies Project

    Science.gov (United States)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  16. Science Literacy Project, August 2006 - August 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nasseh, Bizhan [Ball State Univ., Muncie, IN (United States)

    2008-08-01

    Ball State University (BSU) was the recipient of a U.S. Department of Energy award to develop educational games teaching science and math. The Science Media Program will merge Ball State University’s nationally recognized capabilities in education, technology, and communication to develop new, interactive, game-based media for the teaching and learning of science and scientific principles for K-12 students. BSU established a team of educators, researchers, scientists, animators, designers, technology specialists, and hired a professional media developer company (Outside Source Design) from Indianapolis. After six months discussions and assessments the project team selected the following 8 games in Math, Physics, Chemistry, and Biology, 2 from each discipline. The assembled teams were innovative and unique. This new model of development and production included a process that integrated all needed knowledge and expertise for the development of high quality science and math games for K-12 students. This new model has potential to be used by others for the development of the educational games. The uniqueness of the model is to integrate domain experts’ knowledge with researchers/quality control group, and combine a professional development team from the game development company with the academic game development team from Computer Science and Art departments at Ball State University. The developed games went through feasibility tests with selected students for improvement before use in the research activities.

  17. Hands-on physics displays for undergraduates

    Science.gov (United States)

    Akerlof, Carl W.

    2014-07-01

    Initiated by Frank Oppenheimer in 1969, the Exploratorium in San Francisco has been the model for hands-on science museums throughout the world. The key idea has been to bring people with all levels of scientific background in contact with interesting and attractive exhibits that require the active participation of the visitor. Unfortunately, many science museums are now forced to cater primarily to very young audiences, often 8 years old or less, with predictable constraints on the intellectual depth of their exhibits. To counter this trend, the author has constructed several hands-on displays for the University of Michigan Physics Department that demonstrate: (1) magnetic levitation of pyrolytic graphite, (2) the varied magnetic induction effects in aluminum, copper and air, (3) chaotic motion of a double pendulum, (4) conservation of energy and momentum in a steel ball magnetic accelerator, (5) the diffraction pattern of red and green laser pointer beams created by CDs and DVDs, (6) a magnetic analog of the refraction of light at a dielectric boundary and (7) optical rotation of light in an aqueous fructose solution. Each of these exhibits can be constructed for something like $1000 or less and are robust enough to withstand unsupervised public use. The dynamic behavior of these exhibits will be shown in accompanying video sequences. The following story has a history that goes back quite a few years. In the late 70's, I was spending time at the Stanford Linear Accelerator Center accompanied by my family that included our two grade school children. Needless to say, we much enjoyed weekend excursions to all sorts of interesting sites in the Bay Area, especially the Exploratorium, an unusual science museum created by Frank Oppenheimer that opened in 1969. The notion that exhibits would be designed specifically for "hands-on" interactions was at that time quite revolutionary. This idea captivated a number of people everywhere including a friend in Ann Arbor, Cynthia

  18. Computer Technology-Integrated Projects Should Not Supplant Craft Projects in Science Education

    Science.gov (United States)

    Klopp, Tabatha J.; Rule, Audrey C.; Schneider, Jean Suchsland; Boody, Robert M.

    2014-01-01

    The current emphasis on computer technology integration and narrowing of the curriculum has displaced arts and crafts. However, the hands-on, concrete nature of craft work in science modeling enables students to understand difficult concepts and to be engaged and motivated while learning spatial, logical, and sequential thinking skills. Analogy…

  19. Project management of life-science research projects: project characteristics, challenges and training needs.

    Science.gov (United States)

    Beukers, Margot W

    2011-02-01

    Thirty-four project managers of life-science research projects were interviewed to investigate the characteristics of their projects, the challenges they faced and their training requirements. A set of ten discriminating parameters were identified based on four project categories: contract research, development, discovery and call-based projects--projects set up to address research questions defined in a call for proposals. The major challenges these project managers are faced with relate to project members, leadership without authority and a lack of commitment from the respective organization. Two-thirds of the project managers indicated that they would be interested in receiving additional training, mostly on people-oriented, soft skills. The training programs that are currently on offer, however, do not meet their needs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. A Coastal Citizen Science Project - How to run an international Citizen Science Project?

    Science.gov (United States)

    Kruse, K.; Knickmeier, K.; Thiel, M.; Gatta, M.

    2016-02-01

    "Searching for plastic garbage" is an international Citizen Science project that aims to participate school students in the public discussion on the topic "plastic pollution in the ocean". For this, young people apply various research methods, evaluate their data, communicate and publish their results and investigate solutions solving this problem. The project will be carried out in Chile and Germany at the same time, which allows the participating students to share and compare their results and discuss their ideas with an international partner. This takes place on the website www.save-ocean.org. The project promotes intercultural and scientific skills of the students. They get insights into scientific research, get into another culture and experiences plastic pollution as an important global problem. Since May 2015, 450 pupils aged 10 to 15 years and 20 teachers in Germany and Chile have explored the plastic garbage on beaches. Where are the largest plastic garbage deposits? Which items of plastic are mostly found in Germany and Chile? Or where does this garbage comes from? These and other research questions are being answered by an international network between students, teachers and scientists. After completing the first Citizen Science pilot study successfully in summer 2015, the entire German and Chilean coast will be explored in spring 2016 by around 2500 participating school students. The project "Searching for plastic garbage" is the first international Citizen Science project that is a cooperation between the ocean:lab of Kiel Science Factory and the "Cientificos de la Basura", a project of the department of marine biology at University Catolica del Norte in Coquimbo, Chile. The project is supported by the Cluster of Excellence "The Future Ocean", the Leibniz Institute for Science Education and Mathematics (IPN), the Ministry of School and Professional Education of Land Schleswig-Holstein and the University Catolica del Norte in Coquimbo, Chile

  1. Analyzing the Watershed Dynamics project as an example of successful science and education partnerships

    Science.gov (United States)

    Buzby, C. K.; Jona, K.

    2009-12-01

    The Watershed Dynamics project is a partnership between Northwestern University, the Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), and the GLOBE Program (Global Learning and Observations to Benefit the Environment). The goal of the project is to develop inquiry-based educational materials that use authentic scientific data and analysis techniques to teach students about the watershed. The relationship between Northwestern, CUAHSI, and GLOBE allows each partner to contribute to the development of the project in the area of their expertise. Science researchers from CUAHSI share science content knowledge and data access through the development of their Hydrologic Information System (HIS). Curriculum developers at Northwestern write inquiry-based curriculum using GIS technology to access and analyze live data. The GLOBE Program is a worldwide hands-on, primary and secondary school-based science education program that provides teacher training opportunities to a network of teachers around the world. This partnership allows each partner to bring their area of expertise to the project and make the best use of one another's resources. The Watershed Dynamics project can serve as a model for future partnerships between the science and education communities. The Office of Science, Technology, Engineering, and Math Education Partnerships (OSEP) at Northwestern is a service organization that supports Northwestern researchers in developing proposals and implementing research projects that incorporate K-12 educational components, particularly in the fields of science, technology, engineering and mathematics (STEM). OSEP assists faculty with the development of sound plans for education and outreach that reflect current research on learning and educational reform and provides expertise in STEM education materials development, learning technologies, and professional development for K-12 teachers and facilitators in informal education institutions

  2. Doing the Project and Learning the Content: Designing Project-Based Science Curricula for Meaningful Understanding

    Science.gov (United States)

    Kanter, David E.

    2010-01-01

    Project-based science curricula can improve students' usable or meaningful understanding of the science content underlying a project. However, such curricula designed around "performances" wherein students design or make something do not always do this. We researched ways to design performance project-based science curricula (pPBSc) to better…

  3. Space Sciences Education and Outreach Project of Moscow State University

    Science.gov (United States)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space

  4. Quality Assurance Project Plan for Citizen Science Projects

    Science.gov (United States)

    The Quality Assurance Project Plan is necessary for every project that collects or uses environmental data. It documents the project planning process and serves as a blueprint for how your project will run.

  5. Project TIMS (Teaching Integrated Math/Science)

    Science.gov (United States)

    Edwards, Leo, Jr.

    1993-01-01

    The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.

  6. Curiosity: the Mars Science Laboratory Project

    Science.gov (United States)

    Cook, Richard A.

    2012-01-01

    The Curiosity rover landed successfully in Gale Crater, Mars on August 5, 2012. This event was a dramatic high point in the decade long effort to design, build, test and fly the most sophisticated scientific vehicle ever sent to Mars. The real achievements of the mission have only just begun, however, as Curiosity is now searching for signs that Mars once possessed habitable environments. The Mars Science Laboratory Project has been one of the most ambitious and challenging planetary projects that NASA has undertaken. It started in the successful aftermath of the 2003 Mars Exploration Rover project and was designed to take significant steps forward in both engineering and scientific capabilities. This included a new landing system capable of emplacing a large mobile vehicle over a wide range of potential landing sites, advanced sample acquisition and handling capabilities that can retrieve samples from both rocks and soil, and a high reliability avionics suite that is designed to permit long duration surface operations. It also includes a set of ten sophisticated scientific instruments that will investigate both the geological context of the landing site plus analyze samples to understand the chemical & organic composition of rocks & soil found there. The Gale Crater site has been specifically selected as a promising location where ancient habitable environments may have existed and for which evidence may be preserved. Curiosity will spend a minimum of one Mars year (about two Earth years) looking for this evidence. This paper will report on the progress of the mission over the first few months of surface operations, plus look retrospectively at lessons learned during both the development and cruise operations phase of the mission..

  7. Effectiveness of hands-on tutoring and guided self-directed learning versus self-directed learning alone to educate critical care fellows on mechanical ventilation - a pilot project.

    Science.gov (United States)

    Ramar, Kannan; De Moraes, Alice Gallo; Selim, Bernardo; Holets, Steven; Oeckler, Richard

    2016-01-01

    Physicians require extensive training to achieve proficiency in mechanical ventilator (MV) management of the critically ill patients. Guided self-directed learning (GSDL) is usually the method used to learn. However, it is unclear if this is the most proficient approach to teaching mechanical ventilation to critical care fellows. We, therefore, investigated whether critical care fellows achieve higher scores on standardized testing and report higher satisfaction after participating in a hands-on tutorial combined with GSDL compared to self-directed learning alone. First-year Pulmonary and Critical Care Medicine (PCCM) fellows ( n =6) and Critical Care Internal Medicine (CCIM) ( n =8) fellows participated. Satisfaction was assessed using the Likert scale. MV knowledge assessment was performed by administering a standardized 25-question multiple choice pre- and posttest. For 2 weeks the CCIM fellows were exposed to GSDL, while the PCCM fellows received hands-on tutoring combined with GSDL. Ninety-three percentage (6 PCCM and 7 CCIM fellows, total of 13 fellows) completed all evaluations and were included in the final analysis. CCIM and PCCM fellows scored similarly in the pretest (64% vs. 52%, p =0.13). Following interventions, the posttest scores increased in both groups. However, no significant difference was observed based on the interventions (74% vs. 77%, p =0.39). The absolute improvement with the hands-on-tutoring and GSDL group was higher than GSDL alone (25% vs. 10%, p =0.07). Improved satisfaction scores were noted with hands-on tutoring. Hands-on tutoring combined with GSDL and GSDL alone were both associated with an improvement in posttest scores. Absolute improvement in test and satisfaction scores both trended higher in the hands-on tutorial group combined with GSDL group.

  8. Effectiveness of hands-on tutoring and guided self-directed learning versus self-directed learning alone to educate critical care fellows on mechanical ventilation – a pilot project

    Directory of Open Access Journals (Sweden)

    Kannan Ramar

    2016-09-01

    Full Text Available Background: Physicians require extensive training to achieve proficiency in mechanical ventilator (MV management of the critically ill patients. Guided self-directed learning (GSDL is usually the method used to learn. However, it is unclear if this is the most proficient approach to teaching mechanical ventilation to critical care fellows. We, therefore, investigated whether critical care fellows achieve higher scores on standardized testing and report higher satisfaction after participating in a hands-on tutorial combined with GSDL compared to self-directed learning alone. Methods: First-year Pulmonary and Critical Care Medicine (PCCM fellows (n=6 and Critical Care Internal Medicine (CCIM (n=8 fellows participated. Satisfaction was assessed using the Likert scale. MV knowledge assessment was performed by administering a standardized 25-question multiple choice pre- and posttest. For 2 weeks the CCIM fellows were exposed to GSDL, while the PCCM fellows received hands-on tutoring combined with GSDL. Results: Ninety-three percentage (6 PCCM and 7 CCIM fellows, total of 13 fellows completed all evaluations and were included in the final analysis. CCIM and PCCM fellows scored similarly in the pretest (64% vs. 52%, p=0.13. Following interventions, the posttest scores increased in both groups. However, no significant difference was observed based on the interventions (74% vs. 77%, p=0.39. The absolute improvement with the hands-on-tutoring and GSDL group was higher than GSDL alone (25% vs. 10%, p=0.07. Improved satisfaction scores were noted with hands-on tutoring. Conclusions: Hands-on tutoring combined with GSDL and GSDL alone were both associated with an improvement in posttest scores. Absolute improvement in test and satisfaction scores both trended higher in the hands-on tutorial group combined with GSDL group.

  9. ‘‘Lend a Hand’’ Project Helps Students: Improved Spatial Visualization Skills Through Engaging in Hands-On 3-D Printed Prosthetics Project During a 9th Grade Engineering Course

    OpenAIRE

    Smith, Shaunna; Talley, Kimberly

    2018-01-01

    Research shows that high spatial ability is linked to success and persistence in STEM. Empirical investigations often report a gender gap in favor of male students. The purpose of this research study was to assess changes to 9th grade engineering students’ spatial visualization skills through engagement in a nine-week collaborative 3-D printed prosthetics project embedded within their existing ‘‘Beginning Concepts of Engineering’’ course curriculum. Using concurrent mixed methods, this study ...

  10. The Elwha Science Education Project (ESEP): Engaging an Entire Community in Geoscience Education

    Science.gov (United States)

    Young, R. S.; Kinner, F.

    2008-12-01

    Native Americans are poorly represented in all science, technology and engineering fields. This under- representation results from numerous cultural, economic, and historical factors. The Elwha Science Education Project (ESEP), initiated in 2007, strives to construct a culturally-integrated, geoscience education program for Native American young people through engagement of the entire tribal community. The ESEP has developed a unique approach to informal geoscience education, using environmental restoration as a centerpiece. Environmental restoration is an increasingly important goal for tribes. By integrating geoscience activities with community tradition and history, project stakeholders hope to show students the relevance of science to their day-to-day lives. The ESEP's strength lies in its participatory structure and unique network of partners, which include Olympic National Park; the non-profit, educational center Olympic Park Institute (OPI); a geologist providing oversight and technical expertise; and the Lower Elwha Tribe. Lower Elwha tribal elders and educators share in all phases of the project, from planning and implementation to recruitment of students and discipline. The project works collaboratively with tribal scientists and cultural educators, along with science educators to develop curriculum and best practices for this group of students. Use of hands-on, place-based outdoor activities engage students and connect them with the science outside their back doors. Preliminary results from this summer's middle school program indicate that most (75% or more) students were highly engaged approximately 90% of the time during science instruction. Recruitment of students has been particularly successful, due to a high degree of community involvement. Preliminary evaluations of the ESEP's outcomes indicate success in improving the outlook of the tribe's youth towards the geosciences and science, in general. Future evaluation will be likewise participatory

  11. Double Star project - master science operations plan

    Science.gov (United States)

    Shen, C.; Liu, Z.

    2005-11-01

    For Double Star Project (DSP) exploration, the scientific operations are very important and essential for achieving its scientific objectives. Two years before the launch of the DSP satellites (TC-1 and TC-2) and during the mission operating phase, the long-term and short-term master science operations plans (MSOP) were produced. MSOP is composed of the operation schedules of all the scientific instruments, the modes and timelines of the Payload Service System on TC-1 and TC-2, and the data receiving schedules of the three ground stations. The MSOP of TC-1 and TC-2 have been generated according to the scientific objectives of DSP, the orbits of DSP, the near-Earth space environments and the coordination with Cluster, etc., so as to make full use of the exploration resources provided by DSP and to acquire as much quality scientific data as possible for the scientific communities. This paper has summarized the observation resources of DSP, the states of DSP and its evolution since the launch, the strategies and rules followed for operating the payload and utilizing the ground stations, and the production of MSOP. Until now, the generation and execution of MSOP is smooth and successful, the operating of DSP is satisfactory, and most of the scientific objectives of DSP have been fulfilled.

  12. Double Star project - master science operations plan

    Directory of Open Access Journals (Sweden)

    C. Shen

    2005-11-01

    Full Text Available For Double Star Project (DSP exploration, the scientific operations are very important and essential for achieving its scientific objectives. Two years before the launch of the DSP satellites (TC-1 and TC-2 and during the mission operating phase, the long-term and short-term master science operations plans (MSOP were produced. MSOP is composed of the operation schedules of all the scientific instruments, the modes and timelines of the Payload Service System on TC-1 and TC-2, and the data receiving schedules of the three ground stations. The MSOP of TC-1 and TC-2 have been generated according to the scientific objectives of DSP, the orbits of DSP, the near-Earth space environments and the coordination with Cluster, etc., so as to make full use of the exploration resources provided by DSP and to acquire as much quality scientific data as possible for the scientific communities. This paper has summarized the observation resources of DSP, the states of DSP and its evolution since the launch, the strategies and rules followed for operating the payload and utilizing the ground stations, and the production of MSOP. Until now, the generation and execution of MSOP is smooth and successful, the operating of DSP is satisfactory, and most of the scientific objectives of DSP have been fulfilled.

  13. Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course

    Science.gov (United States)

    Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol

    2016-01-01

    Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning,…

  14. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  15. Special Project Examination in Integrated Science - Ordinary Level.

    Science.gov (United States)

    Wimpenny, David

    A science achievement test for the General Certificate of Education (GCE, England) was developed for students enrolled in the curriculum of the Schools Council Integrated Science Project. This document contains discussions of the testing program and a copy of the 1973 test. After an overview of the curriculum project and issues related to…

  16. Science 101: What Constitutes a Good Science Project

    Science.gov (United States)

    Robertson, Bill

    2016-01-01

    Having written columns dealing with science fairs before, Bill Robertson notes that it's been a long time since he has tackled the subject of what passes for a "science fair" in schools these days. Because science fairs have changed over the years, Robertson revisits the topic and explains the scientific method. The main focus of the…

  17. Making the Invisible Visible: The Oklahoma Science Project.

    Science.gov (United States)

    McCarty, Robbie; Pedersen, Jon E.

    2002-01-01

    Reports that teachers in preservice education programs still view the teaching of science much in the same traditional ways as our predecessors. "The Oklahoma Science Project (OSP) Model for Professional Development: Practicing Science Across Contexts" will build discourses and relationships that can be extended across contexts to establish…

  18. Building Bridges between Science Courses Using Honors Organic Chemistry Projects

    Science.gov (United States)

    Hickey, Timothy; Pontrello, Jason

    2016-01-01

    Introductory undergraduate science courses are traditionally offered as distinct units without formalized student interaction between classes. To bridge science courses, the authors used three Honors Organic Chemistry projects paired with other science courses. The honors students delivered presentations to mainstream organic course students and…

  19. The PISCES Project: How Teacher-Scientist Partners can Enhance Elementary Science Instruction

    Science.gov (United States)

    Reif, C.; Oechel, W.

    2003-12-01

    The PISCES Project (Partnerships Involving the Scientific Community in Elementary Schools www.sdsa.org/pisces) is an innovative program that brings high quality standards-based elementary science curriculum and hands-on laboratory materials into San Diego County's classrooms. The project is funded by the NSF Graduate Teaching Fellows in K-12 Education (GK-12) program. The project was designed and is administered through cooperation among faculty at San Diego State University and the Science Department of the San Diego County Office of Education. Undergraduate and graduate students enrolled in science programs in San Diego area universities including San Diego State University, California State University San Marcos, and University of California San Diego partner with elementary school teachers. Through this partnership, the scientist brings scientific expertise to the classroom while the teacher delivers the lesson using current pedagogic methods. This is accomplished during a 3 month partnership in which the scientist joins the teacher in the classroom a few days each week to complete professional kit-based curriculum such as that available from FOSS (Full Option Science System) and STC (Science and Technology for Children). The teachers remain in the program for two years during which they have continuous access to the kit-based curriculum as well as two to three partnership cycles. Teachers receive assistance outside of the classroom as well attending professional development institutes three times a year to establish and maintain effective science teaching methods. The San Diego Science Alliance and other community and industry supporters provide the additionalfunding necessary to provide this teacher professional development Currenty, PISCES is present in over 40 schools and is able to provide partnerships to over 100 classrooms each year. In addition to the work done in San Diego, the project has expanded to Barrow, Alaska with plans to expand to La Paz

  20. Teaching Hands-On Linux Host Computer Security

    Science.gov (United States)

    Shumba, Rose

    2006-01-01

    In the summer of 2003, a project to augment and improve the teaching of information assurance courses was started at IUP. Thus far, ten hands-on exercises have been developed. The exercises described in this article, and presented in the appendix, are based on actions required to secure a Linux host. Publicly available resources were used to…

  1. Innovative Project Activities in Science [From the NSTA Study of Innovative Project Activities

    Science.gov (United States)

    Science Teacher, 1975

    1975-01-01

    Describes four projects chosen as innovative project activities in science which exhibited identification of unique or novel problems and creative approaches to their solutions. Projects included a study of fish in Lake Erie, a goat raising project, an analysis of terrestrial plant ecology and soil composition, and a study of marine and wetlands…

  2. Connecting Mathematics in Primary Science Inquiry Projects

    Science.gov (United States)

    So, Winnie Wing-mui

    2013-01-01

    Science as inquiry and mathematics as problem solving are conjoined fraternal twins attached by their similarities but with distinct differences. Inquiry and problem solving are promoted in contemporary science and mathematics education reforms as a critical attribute of the nature of disciplines, teaching methods, and learning outcomes involving…

  3. An Educational Model for Hands-On Hydrology Education

    Science.gov (United States)

    AghaKouchak, A.; Nakhjiri, N.; Habib, E. H.

    2014-12-01

    This presentation provides an overview of a hands-on modeling tool developed for students in civil engineering and earth science disciplines to help them learn the fundamentals of hydrologic processes, model calibration, sensitivity analysis, uncertainty assessment, and practice conceptual thinking in solving engineering problems. The toolbox includes two simplified hydrologic models, namely HBV-EDU and HBV-Ensemble, designed as a complement to theoretical hydrology lectures. The models provide an interdisciplinary application-oriented learning environment that introduces the hydrologic phenomena through the use of a simplified conceptual hydrologic model. The toolbox can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching more advanced topics including uncertainty analysis, and ensemble simulation. Both models have been administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of hydrology.

  4. Science operations management. [with Infrared Astronomy Satellite project

    Science.gov (United States)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  5. Real Life Science with Dandelions and Project BudBurst

    Directory of Open Access Journals (Sweden)

    Katherine A. Johnson

    2015-12-01

    Full Text Available Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone.

  6. Real Life Science with Dandelions and Project BudBurst.

    Science.gov (United States)

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education.

  7. Microgravity science and applications projects and payloads

    Science.gov (United States)

    Crouch, R. K.

    1987-01-01

    An overview of work conducted by the Microgravity Science and Applications Division of NASA is presented. The goals of the program are the development and implementation of a reduced-gravity research, science and applications program, exploitation of space for human benefits, and the application of reduced gravity research for the development of advanced technologies. Space research of fluid dynamics and mass transport phenomena is discussed and the facilities available for reduced gravity experiments are presented. A program for improving communication with the science and applications communities and the potential use of the Space Station for microgravity research are also examined.

  8. Space life sciences: Programs and projects

    Science.gov (United States)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  9. Data Science Methodology for Cybersecurity Projects

    OpenAIRE

    Foroughi, Farhad; Luksch, Peter

    2018-01-01

    Cyber-security solutions are traditionally static and signature-based. The traditional solutions along with the use of analytic models, machine learning and big data could be improved by automatically trigger mitigation or provide relevant awareness to control or limit consequences of threats. This kind of intelligent solutions is covered in the context of Data Science for Cyber-security. Data Science provides a significant role in cyber-security by utilising the power of data (and big data),...

  10. ENSAR, a Nuclear Science Project for European Research Area

    NARCIS (Netherlands)

    Turzó, Ketel; Lewitowicz, Marek; Harakeh, Muhsin N.

    2015-01-01

    During the period from September 2010 to December 2014, the European project European Nuclear Science and Applications Research (ENSAR) coordinated research activities of the Nuclear Physics community performing research in three major subfields: Nuclear Structure, Nuclear Astrophysics, and Nuclear

  11. Optical Payload for Lasercomm Science

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Payload for Lasercomm Science (OPALS) project, which is part of the JPL Phaeton early career employee hands-on training program, aims to demonstrate...

  12. Using design science in educational technology research projects

    Directory of Open Access Journals (Sweden)

    Susan M. Chard

    2017-12-01

    Full Text Available Design science is a research paradigm where the development and evaluation of a technology artefact is a key contribution. Design science is used in many domains and this paper draws on those domains to formulate a generic structure for design science research suitable for educational technology research projects. The paper includes guidelines for writing proposals using the design science research methodology for educational technology research and presents a generic research report structure. The paper presents ethical issues to consider in design science research being conducted in educational settings and contributes guidelines for assessment when the research contribution involves the creation of a technology artefact.

  13. Hands-On Skills for Caregivers

    Science.gov (United States)

    ... A + A You are here Home Hands-On Skills for Caregivers Printer-friendly version When you’re ... therapist who can help you develop your transferring skills. Allow for their reality Remember to accept your ...

  14. Current Status of the LOFAR EoR Key Science Project

    Science.gov (United States)

    Koopmans, L. V. E.; LOFAR EoR KSP Team

    2018-05-01

    A short status update on the LOFAR Epoch of Reionization (EoR) Key Science Project (KSP) is given, regarding data acquisition, data processing and analysis, and current power-spectrum limits on the redshifted 21-cm signal of neutral hydrogen at redshifts z = 8 - 10. With caution, we present a preliminary astrophysical analysis of ~60 hr of processed LOFAR data and their resulting power spectrum, showing that potentially already interesting limits on X-ray heating during the Cosmic Dawn can already be gained. This is by no means the final analysis of this sub-set of data, but illustrates the future potential when all nearly 3000 hr of data in hand on two EoR windows will have been processed.

  15. Improving Science Attitude and Creative Thinking through Science Education Project: A Design, Implementation and Assessment

    Science.gov (United States)

    Sener, Nilay; Türk, Cumhur; Tas, Erol

    2015-01-01

    The purpose of this study is to examine the effects of a science education project implemented in different learning environments on secondary school students' creative thinking skills and their attitudes to science lesson. Within this scope, a total of 50 students who participated in the nature education project in Samsun City in 2014 make up the…

  16. STAR Library Education Network: a hands-on learning program for libraries and their communities

    Science.gov (United States)

    Dusenbery, P.

    2010-12-01

    Science and technology are widely recognized as major drivers of innovation and industry (e.g. Rising above the Gathering Storm, 2006). While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement and public understanding of STEM disciplines. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. Designed spaces, like libraries, allow lifelong, life-wide, and life-deep learning to take place though the research basis for learning in libraries is not as developed as other informal settings like science centers. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national education project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. This project will deepen our knowledge of informal/lifelong learning that takes place in libraries and establish a learning model that can be compared to the more established free-choice learning model for science centers and museums. The project includes the development of two STEM hands-on exhibits on topics that are of interest to library staff and their patrons: Discover Earth and Discover Tech. In addition, the project will produce resources and inquiry-based activities that libraries can use to enrich the exhibit experience. Additional resources will be provided through partnerships with relevant

  17. Duplex Design Project: Science Pilot Test.

    Science.gov (United States)

    Center for Research on Evaluation, Standards, and Student Testing, Los Angeles, CA.

    Work is reported towards the completion of a prototype duplex-design assessment instrument for grade-12 science. The student course-background questionnaire and the pretest section of the two-stage instrument that was developed were administered to all 134 12th-grade students at St. Clairsville High School (Ohio). Based on the information obtained…

  18. Physical Science-Supplement: Project Oriented.

    Science.gov (United States)

    Nederland Independent School District, TX.

    GRADES OR AGES: No mention; appears to be for secondary grades. SUBJECT MATTER: Physical sciences for slow learners. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 11 units, each of which is further subdivided into several chapters. Each chapter is laid out in three columns; column headings are concepts, content, and activities.…

  19. Approaches to Teaching Plant Nutrition. Children's Learning in Science Project.

    Science.gov (United States)

    Leeds Univ. (England). Centre for Studies in Science and Mathematics Education.

    During the period 1984-1986, over 30 teachers from the Yorkshire (England) region have worked in collaboration with the Children's Learning in Science Project (CLIS) developing and testing teaching schemes in the areas of energy, particle theory, and plant nutrition. The project is based upon the constructivist approach to teaching. This document…

  20. Social Science Methods Used in the RESTORE Project

    Science.gov (United States)

    Lynne M. Westphal; Cristy Watkins; Paul H. Gobster; Liam Heneghan; Kristen Ross; Laurel Ross; Madeleine Tudor; Alaka Wali; David H. Wise; Joanne Vining; Moira. Zellner

    2014-01-01

    The RESTORE (Rethinking Ecological and Social Theories of Restoration Ecology) project is an interdisciplinary, multi-institutional research endeavor funded by the National Science Foundation's Dynamics of Coupled Natural Human Systems program. The goal of the project is to understand the links between organizational type, decision making processes, and...

  1. NPOESS Preparatory Project (NPP) Science Overview

    Science.gov (United States)

    Butler, James J.

    2011-01-01

    NPP Instruments are: (1) well understood thanks to instrument comprehensive test, characterization and calibration programs. (2) Government team ready for October 25 launch followed by instrument activation and Intensive Calibration/Validation (ICV). NPP Data Products preliminary work includes: (1) JPSS Center for Satellite Applications and Research (STAR) team ready to support NPP ICV and operational data products. (2) NASA NPP science team ready to support NPP ICV and EOS data continuity.

  2. Science and students: Yucca Mountain project's education outreach program

    International Nuclear Information System (INIS)

    Gil, A.V.; Larkin, E.L.; Reilly, B.; Austin, P.

    1992-01-01

    The U.S. Department of Energy (DOE) is very concerned about the lack of understanding of basic science. Increasingly, critical decisions regarding the use of energy, technology, and the environment are being made. A well-educated and science-literate public is vital to the success of these decisions. Science education and school instruction are integral parts of the DOE's public outreach program on the Yucca Mountain Site Characterization Project (YMP). Project staff and scientists speak to elementary, junior high, high school, and university students, accepting all speaking invitations. The objectives of this outreach program include the following: (1) educating Nevada students about the concept of a high-level nuclear waste repository; (2) increasing awareness of energy and environmental issues; (3) helping students understand basic concepts of earth science and geology in relation to siting a potential repository; and (4) giving students information about careers in science and engineering

  3. The Citizen Science Program "H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change" teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. This is a continuation of the Program presented last year at the Poster Session.

    Science.gov (United States)

    Weiss, N. K.; Wood, J. H.

    2017-12-01

    TThe Citizen Science Program H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to Ocean Quest where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by Ocean Quest.

  4. Faculty Workshops for Teaching Information Assurance through Hands-On Exercises and Case Studies

    Science.gov (United States)

    Yuan, Xiaohong; Williams, Kenneth; Yu, Huiming; Rorrer, Audrey; Chu, Bei-Tseng; Yang, Li; Winters, Kathy; Kizza, Joseph

    2017-01-01

    Though many Information Assurance (IA) educators agree that hands-on exercises and case studies improve student learning, hands-on exercises and case studies are not widely adopted due to the time needed to develop them and integrate them into curricula. Under the support of the National Science Foundation (NSF) Scholarship for Service program, we…

  5. Disaster Relief and Emergency Medical Services Project (DREAMS TM): Clinical and Basic Science Projects

    National Research Council Canada - National Science Library

    Casscells, Ward

    1999-01-01

    DREAMS clinical and basic science projects complement the digital EMS effort by investigating the mechanisms of tissue injury in order to minimize the mortality and mortality of trauma and "natural...

  6. Science projects in renewable energy and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    First, the book is written for teachers and other adults who educate children in grades K-12. This allows us to include projects with a variety of levels of difficulty, leaving it to the teacher to adapt them to the appropriate skill level. Second, the book generally focuses on experimental projects that demonstrate the scientific method. We believe that learning the experimental process is most beneficial for students and prepares them for further endeavors in science and for life itself by developing skills in making decisions and solving problems. Although this may appear to limit the book's application to more advanced students and more experienced science teachers, we hope that some of the ideas can be applied to beginning science classes. In addition, we recognize that there are numerous sources of nonexperimental science activities in the field and we hope this book will fill a gap in the available material. Third, we've tried to address the difficulties many teachers face in helping their students get started on science projects. By explaining the process and including extensive suggestions of resources -- both nationally and locally -- we hope to make the science projects more approachable and enjoyable. We hope the book will provide direction for teachers who are new to experimental projects. And finally, in each section of ideas, we've tried to include a broad sampling of projects that cover most of the important concepts related to each technology. Additional topics are listed as one-liners'' following each group of projects.

  7. Open-science projects get kickstarted at CERN

    CERN Multimedia

    Achintya Rao

    2015-01-01

    CERN is one of the host sites for the Mozilla Science Lab Global Sprint to be held on 4 and 5 June, which will see participants around the world work on projects to further open science and educational tools.   IdeaSquare will be hosting the event at CERN. The Mozilla Science Lab Global Sprint was first held in 2014 to bring together open-science practitioners and enthusiasts to collaborate on projects designed to advance science on the open web. The sprint is a loosely federated event, and CERN is participating in the 2015 edition, hosting sprinters in the hacker-friendly IdeaSquare. Five projects have been formally proposed and CERN users and staff are invited to participate in a variety of ways. A special training session will also be held to introduce the CERN community to existing open-science and collaborative tools, including ones that have been deployed at CERN. 1. GitHub Science Badges: Sprinters will work on developing a badge-style visual representation of how open a software pro...

  8. Advertising Citizen Science: A Trailer for the Citizen Sky Project

    Science.gov (United States)

    Wyatt, Ryan; Price, A.

    2012-01-01

    Citizen Sky is a multi-year, NSF funded citizen science project involving the bright and mysterious variable star epsilon Aurigae. The project was conceived by the IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists. Citizen Sky goes beyond simple observing to include a major data analysis component, introducing participants to the full scientific process from background research to paper writing for a peer-reviewed journal. As a means of generating interest in the project, the California Academy of Sciences produced a six-minute "trailer” formatted for both traditional and fulldome planetariums as well as HD and web applications. This talk will review the production process for the trailer as well as the methods of distribution via planetariums, social media, and other venues_along with an update on the Citizen Sky Project as a whole. We will show how to use a small, professionally-produced planetarium trailer to help spread word on a citizen science project. We will also show preliminary results on a study about how participation level/type in the project affects science learning.

  9. Teaching radio astrophysics the hand-on way

    Science.gov (United States)

    Joshi, Bhal Chandra

    Astronomy and space sciences have always been instrumental in attracting young students to physical sciences. While the lectures/demonstrations and exhibitions pertaining to space sci-ences capture the imagination of young students, these alone are not sufficient to induce them to join scientific research. In countries like India, where a large number of students take to physical sciences for under-graduate education, complex sociological factors are key issues in translating this large body of students to potential researchers. While lectures and exhibition lead to an increase in scientific awareness for these students, these do not give a feel for scien-tific research and bridge the gap between high school/college science education and high end research. In this context, a hands-on approach to astronomy education, in science research environments or closely connected to scientific institutions, offers a promising alternative. This approach has been used in optical astronomy, where inexpensive small telescopes are available, often coupling a vast network of amateur astronomy clubs to leading astronomy institutes. The non-visual and relatively more technical nature of radio astronomy has limited a similar approach in past for connecting students to space sciences using radio waveband. The tech-nological explosion in communication industry and radio connectivity in the last decade along with an expansion in engineering education makes this possible now using a hands-on approach in teaching radio astrophysics. In this presentation, the sociological factors affecting the student choice are discussed followed by a review of the efforts to bridge the above mentioned gap by various groups in the world in the last decade with a view to enumerate the best practices in a hands-on approach. A program using this approach at National Center for Radio Astrophysics is described, where the students are exposed to simple hands-on radio astronomy experiments such as spectral line

  10. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  11. Comb-e-Chem: an e-science research project

    OpenAIRE

    Frey, Jeremy G.

    2003-01-01

    The background to the Comb-e-Chem e-Science pilot project funded under the UK -Science Programme is presented and the areas being addresses within chemistry and more specifically combinatorial chemistry are disucssed. The ways in which the ideas underlying the application of computer technology can improve the production, analysis and dissemination of chemical information and knowledge in a collaborative environment are discussed.

  12. Astronomy and Space Science On The School - An Outreach Project for Elementary and High School Students of Brasilia

    Science.gov (United States)

    Ferreira, Jose Leonardo

    2016-07-01

    This project aims to develop interdisciplinary actions, articulated and convergence in the field of education, dissemination and popularization of science and technology in Brasilia-DF, the Federal District of Brazil. These actions are also been carried out at DF surroundings areas. Since 2015 linked convergent actions are focused on the development of space science and astronomy teaching with hands on experimental activities. Workshops, short basic astronomy courses, expositions and planetarium show are been carried out by a team of professors, graduate and under graduate students from University of Brasilia- UnB. At the same time upgrade actions are been done in order to modernize The Luiz Cruls Astronomical Observatory located at the far campus of UnB, named Fazenda Água Limpa. It is now a Center for research and space science dissemination and popularization not only for students but also for the whole community of Brasilia. Working toghether with the Physics Institute of UnB we have the recently created Museum of Science and Technology of Brasilia, also located at the UnB campus. The Museum is responsible for contac with schools and Brasilia community and for the organization of the activities of the Science on the School Project. Science on the School is an educational, scientific and cultural proposal approved and financed by the brazillian national research council (CNPq) and by the Science and Technology Reseach Foundation of Brasilia. Besides science dissemination for the brazillian society the project is also developing theoretical and experimental research in the area of Space Science and Astronomy. The project also aim to transform the Museum in a strong Science Education Center for the Brazil central region population, It is going to be a cultural environment and leisure for the Federal District and surrounding areas of Brasilia. In this work we will describe the coordinate actions of The Luiz Cruls Astronomical Observatory the Physics Institute of

  13. Student Content Knowledge Increases after Participation in a Hands-on Biotechnology Intervention

    Science.gov (United States)

    Bigler, Amber M.; Hanegan, Nikki L.

    2011-01-01

    Implementing biotechnology education through hands-on teaching methods should be considered by secondary biology teachers. This study is an experimental research design to examine increased student content knowledge in biotechnology after a hands-on biotechnology intervention. The teachers from both school groups participated in, Project Crawfish,…

  14. The Human Genome Project: big science transforms biology and medicine

    OpenAIRE

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called ‘big science’ - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and a...

  15. The Effect of Environmental Science Projects on Students' Environmental Knowledge and Science Attitudes

    Science.gov (United States)

    Al-Balushi, Sulaiman M.; Al-Aamri, Shamsa S.

    2014-01-01

    The current study explores the effectiveness of involving students in environmental science projects for their environmental knowledge and attitudes towards science. The study design is a quasi-experimental pre-post control group design. The sample was 62 11th-grade female students studying at a public school in Oman. The sample was divided into…

  16. Student projects in medicine: a lesson in science and ethics.

    Science.gov (United States)

    Edwards, Sarah J L

    2009-11-01

    Regulation of biomedical research is the subject of considerable debate in the bioethics and health policy worlds. The ethics and governance of medical student projects is becoming an increasingly important topic in its own right, especially in the U.K., where there are periodic calls to change it. My main claim is that there seems to be no good reason for treating student projects differently from projects led by qualified and more experienced scientists and hence no good grounds for changing the current system of ethics review. I first suggest that the educational objectives cannot be met without laying down standards of good science, whatever they may be. Weak science is unnecessary for educational purposes, and it is, in any case, unlikely to produce good researchers in the future. Furthermore, it is curious to want to change the system of ethics review specifically for students when it is the science that is at stake, and when the science now falls largely outside the ethics remit. I further show that ethics review is nevertheless important since students carry a new potential conflict of interests that warrants independent oversight which supervisory support does not offer. This potential conflict may become more morally troublesome the greater the risks to the subjects of the research, and students may impose greater risks on their subjects (relative to professional researchers) by virtue of being inexperienced, whatever the nature of the project. Pragmatic concerns may finally be allayed by organizing the current system more efficiently at critical times of the university calendar.

  17. Chemical Database Projects Delivered by RSC eScience

    OpenAIRE

    Williams, Antony

    2013-01-01

    This presentation is an overview of some of the projects we are involved with at RSC eScience. The presentation was given at the FDA Meeting regarding the “Development of a Freely Distributable Data System for the Registration of Substances"  

  18. Effect of project work on secondary school students science process ...

    African Journals Online (AJOL)

    The study investigated the effect of students' project work on secondary school science process skills acquisition in Biology. The study was carried out in Owerri North Local Government Area of Imo State. Three research questions guided the study and three null hypotheses were postulated and tested at 0.05 level of ...

  19. Investigating Science Interest in a Game-Based Learning Project

    Science.gov (United States)

    Annetta, Leonard; Vallett, David; Fusarelli, Bonnie; Lamb, Richard; Cheng, Meng-Tzu; Holmes, Shawn; Folta, Elizabeth; Thurmond, Brandi

    2014-01-01

    The purpose of this study was to examine the effect Serious Educational Games (SEGs) had on student interest in science in a federally funded game-based learning project. It can be argued that today's students are more likely to engage in video games than they are to interact in live, face-to-face learning environments. With a keen eye on…

  20. STEM Projects: Should We Add the "TEM" to Science?

    Science.gov (United States)

    Hall, Angela

    2012-01-01

    A recent curriculum development from the Nuffield Foundation rose to the challenge of producing a set of resources to establish STEM (Science, Technology, Engineering and Mathematics) as a curriculum focus. The result is two STEM cross-curricular projects: "Games," inspired by the London Olympics, and "Futures," a novel…

  1. Electronic Learning in the German Science Project "NAWI-Interaktiv"

    Science.gov (United States)

    Wegner, Claas; Homann, Wiebke; Strehlke, Friederike

    2014-01-01

    The German science project "NAWI-Interaktiv" is an example of innovative use of E-Learning and new media education. Since 2009, the learning platform provides learners and teachers with high-quality learning tools, teaching material, useful information and E-learning programs for free. This is to raise the pupils' motivation to learn…

  2. Parts of the Whole: Hands On Statistics

    Directory of Open Access Journals (Sweden)

    Dorothy Wallace

    2018-01-01

    Full Text Available In this column we describe a hands-on data collection lab for an introductory statistics course. The exercise elicits issues of normality, sampling, and sample mean comparisons. Based on volcanology models of tephra dispersion, this lab leads students to question the accuracy of some assumptions made in the model, particularly regarding the normality of the dispersal of tephra of identical size in a given atmospheric layer.

  3. Learning about the Earth through Societally-relevant Interdisciplinary Research Projects: the Honours Integrated Science Program at McMaster

    Science.gov (United States)

    Eyles, C.; Symons, S. L.; Harvey, C. T.

    2016-12-01

    Students in the Honours Integrated Science (iSci) program at McMaster University (Hamilton, Ontario, Canada) learn about the Earth through interdisciplinary research projects that focus on important societal issues. The iSci program is a new and innovative undergraduate program that emphasizes the links between scientific disciplines and focuses on learning through research and the development of scientific communication skills. The program accepts up to 60 students each year and is taught by a team of 18 instructors comprising senior and junior faculty, post-doctoral fellows, a lab coordinator, instructional assistant, a librarian and library staff, and an administrator. The program is designed around a pedagogical model that emphasizes hands-on learning through interdisciplinary research (Research-based Integrated Education: RIE) and is mostly project-based and experiential. In their freshman year students learn fundamental Earth science concepts (in conjunction with chemistry, physics, mathematics and biology) through research projects focused on environmental contamination, interplanetary exploration, the effect of drugs on the human body and environment, sustainable energy, and cancer. In subsequent years they conduct research on topics such as the History of the Earth, Thermodynamics, Plant-Animal Interactions, Wine Science, Forensics, and Climate Change. The iSci program attracts students with a broad interest in science and has been particularly effective in directing high quality students into the Earth sciences as they are introduced to the discipline in their first year of study through research projects that are interesting and stimulating. The structure of the iSci program encourages consideration of geoscientific applications in a broad range of societally relevant research projects; these projects are reviewed and modified each year to ensure their currency and ability to meet program learning objectives.

  4. Testing the robustness of Citizen Science projects: Evaluating the results of pilot project COMBER.

    Science.gov (United States)

    Chatzigeorgiou, Giorgos; Faulwetter, Sarah; Dailianis, Thanos; Smith, Vincent Stuart; Koulouri, Panagiota; Dounas, Costas; Arvanitidis, Christos

    2016-01-01

    Citizen Science (CS) as a term implies a great deal of approaches and scopes involving many different fields of science. The number of the relevant projects globally has been increased significantly in the recent years. Large scale ecological questions can be answered only through extended observation networks and CS projects can support this effort. Although the need of such projects is apparent, an important part of scientific community cast doubt on the reliability of CS data sets. The pilot CS project COMBER has been created in order to provide evidence to answer the aforementioned question in the coastal marine biodiversity monitoring. The results of the current analysis show that a carefully designed CS project with clear hypotheses, wide participation and data sets validation, can be a valuable tool for the large scale and long term changes in marine biodiversity pattern change and therefore for relevant management and conservation issues.

  5. The GeoBus project: a mobile Earth science outreach project for secondary schools in the UK

    Science.gov (United States)

    Robinson, R. A.; Roper, K. A.; Macfarlane, D.; Pike, C.

    2013-12-01

    GeoBus is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews. It is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary (high) schools by providing teaching resources that are not readily available to educators, to inspire young learners by incorporating new science research outcomes in teaching activities, and to provide a bridge between industry, higher education institutions, research councils and schools. These linkages are important for introducing career opportunities in Earth sciences. Since its launch, GeoBus has visited over 140 different schools across the length and breadth of Scotland. Over 20,000 pupils will have been involved in practical hands-on Earth science learning activities by December 2013, including many in remote and disadvantaged regions. The resources that GeoBus brings to schools include all the materials and equipment needed to run workshops, field excursions and Enterprise Challenges. GeoBus provides 16 workshops which can be adapted for different learning levels. Workshops are 50 to 80 minute sessions for up to 30 pupils and topics include minerals, rocks, fossils, geological time, natural resources, climate change, volcanoes, earthquakes, and geological mapping. As with all GeoBus activities, the inclusion of equipment and technology otherwise unavailable to schools substantially increases the engagement of pupils in workshops. Field excursions are popular, as many teachers have little or no field trainng and feel unable to lead this type of activity. The excursions comprise half or full day sessions for up to 30 pupils and are tailored to cover the local geology or geomorphology. The Enterprise Challenges are half or full day sessions for up to 100 pupils. Current topics are Drilling for Oil, Renewable Energy, a Journey to Mars and Scotland

  6. The Inspiring Science Education project and the resources for HEP analysis by university students

    International Nuclear Information System (INIS)

    Fassouliotis, Dimitris; Kourkoumelis, Christine; Vourakis, Stylianos

    2016-01-01

    The Inspiring Science Education outreach project has been running for more than two years, creating a large number of inquiry based educational resources for high-school teachers and students. Its goal is the promotion of science education in schools though new methods built on the inquiry based education techniques, involving large consortia of European partners and implementation of large-scale pilots in schools. Recent hands-on activities, developing and testing the above mentioned innovative applications are reviewed. In general, there is a lack for educational scenaria and laboratory courses earmarked for more advanced, namely university, students. At the University of Athens for the last four years, the HYPATIA on-line event analysis tool has been used as a lab course for fourth year undergraduate physics students, majoring in HEP. Up to now, the course was limited to visual inspection of a few tens of ATLAS events. Recently the course was enriched with additional analysis exercises, which involve large samples of events. The students through a user friendly interface can analyse the samples and optimize the cut selection in order to search for new physics. The implementation of this analysis is described

  7. International Science Education: A Study of UNESCO Science Education Improvement Projects in Selected Anglophone Countries of Africa: Project Problems.

    Science.gov (United States)

    Nichter, Richard

    1984-01-01

    Discusses some of the problems faced by technical advisors implementing projects for the improvement of science education in Africa and reasons for these problems. Problem areas considered include underdevelopment, underestimating the process, finances, personality conflict and motivation, and opposition from key groups. (A list of major UNESCO…

  8. [Analysis of ophthalmic projects granted by National Natural Science Foundation].

    Science.gov (United States)

    Shao, Jing-Jing; Mo, Xiao-Fen; Pan, Zhi-Qiang; Gan, De-Kang; Xu, Yan-Ying

    2008-09-01

    To understand the status of basic research work in the field of ophthalmology by analyzing the projects funded by the National Natural Science Foundation of China (NSFC) from the year of 1986 to 2007, and offer as a reference to the ophthalmologists and researchers. NSFC supported ophthalmology projects in the 22 year's period were collected from the database of NSFC. The field of funded projects, the research team and their achievements were analyzed. There were 228 applicants from 47 home institutions were funded in the field of ophthalmology during the past 22 years, 323 projects funded with 66.74 million Yuan in total, in which 165 projects were fulfilled before the end of 2006. The applied and funded projects mainly focus on six different kinds of research area related to retinal diseases, corneal diseases, glaucoma, optic nerve diseases, myopia and cataract, and 70% of them were basic research in nature. As a brief achievement of 165 fulfilled projects, more than 610 papers were published in domestic journals, over 140 papers were published in Science Citation Index journals, more than 600 people were trained, and over 20 scientific awards were obtained. The number of funded projects and achievement of fulfilled projects in the discipline of ophthalmology gradually increased over the past two decades, the research fields were concentrated in certain diseases. NSFC has played an important role in promoting the development of ophthalmology research and bringing up specialists in China. However, clinical research, continuously research, transforming from basic research to clinic applications and multidisciplinary cross studies should be strengthened.

  9. The NPOESS Preparatory Project Science Data Segment: Brief Overview

    Science.gov (United States)

    Schweiss, Robert J.; Ho, Evelyn; Ullman, Richard; Samadi, Shahin

    2006-01-01

    The NPOESS Preparatory Project (NPP) provides remotely-sensed land, ocean, atmospheric, ozone, and sounder data that will serve the meteorological and global climate change scientific communities while also providing risk reduction for the National Polar-orbiting Operational Environmental Satellite System (NPOESS), the U.S. Government s future low-Earth orbiting satellite system monitoring global weather and environmental conditions. NPOESS and NPP are a new era, not only because the sensors will provide unprecedented quality and volume of data but also because it is a joint mission of three federal agencies, NASA, NOAA, and DoD. NASA's primary science role in NPP is to independently assess the quality of the NPP science and environmental data records. Such assessment is critical for making NPOESS products the best that they can be for operational use and ultimately for climate studies. The Science Data Segment (SDS) supports science assessment by assuring the timely provision of NPP data to NASA s science teams organized by climate measurement themes. The SDS breaks down into nine major elements, an input element that receives data from the operational agencies and acts as a buffer, a calibration analysis element, five elements devoted to measurement based quality assessment, an element used to test algorithmic improvements, and an element that provides overall science direction. This paper will describe how the NPP SDS will leverage on NASA experience to provide a mission-reliable research capability for science assessment of NPP derived measurements.

  10. The creation of science projects in the physics teachers preparation

    Science.gov (United States)

    Horváthová, Daniela; Rakovská, Mária; Zelenický, Ľubomír

    2017-01-01

    Terms - project, projecting and the method of projecting - are nowadays frequently used in different relations. Those terms, especially as methods (of a cognitive process), are also transferred to the educational process. Before a new educational method comes to practice, the teacher should be familiar with it and preferably when it is done so during his university studies. An optional subject called Physics in a system of science subjects has been included into physics curricula for students of the fourth year of their studies at the Faculty of Science of Constantine the Philosopher University in Nitra. Its task is to make students aware of ways how to coordinate knowledge and instructions presented in these subjects through analysis of curricula and textbooks. As a part of their seminars students are asked to create integrated tasks and experiments which can be assessed from the point of view of either physics or chemistry or biology and which can motivate pupils and form their complex view on various phenomena in the nature. Therefore the article discusses theoretical and also practical questions related to experience that originates from placing the mentioned method and the subject Physics in a system of science subjects into the preparation of a natural sciences teacher in our workplace.

  11. Results of Needs Assessments Related to Citizen Science Projects

    Science.gov (United States)

    Buxner, Sanlyn; Bracey, Georgia; Glushko, Anna; Bakerman, Maya; Gay, Pamela L.; CosmoQuest Team

    2017-01-01

    The CosmoQuest Virtual Research Facility invites the public and classrooms to participate in NASA Science Mission Directorate related research that leads to publishable results and data catalogues. One of the main goals of the project is to support professional scientists in doing science and the general public--including parents, children, teachers, and students--in learning and doing science. Through the effort, the CosmoQuest team is developing a variety of supports and opportunities to support the doing and teaching of science. To inform our efforts, we have implemented a set of needs surveys to assess the needs of our different audiences. These surveys are being used to understand the interests, motivations, resources, challenges and demographics of our growing CosmoQuest community and others interested in engaging in citizen science projects. The surveys include those for teachers, parents, adult learners, planetarium professionals, subject matter experts (SMEs), and the general public. We will share the results of these surveys and discuss the implications of the results for broader education and outreach programs.

  12. Science teachers’ individual and social learning related to IBSE in the frames of a large-scale, long-term, collaborative TPD project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Sillasen, Martin

    of collaborative inquiries locally. A major theme in the first year has been Inquiry Based Science Education (IBSE) recommended as a focus to improve science education internationally. The research presented focuses on the participating teachers’ intertwined levels of individual and social learning. Data from...... repeated surveys and case studies reveal a positive attitude towards trying IBSE in the own classroom, however with the main part of the reflections focused on students’ hands-on experiences and fewer including students manipulating science ideas, like posing hypotheses. Teachers’ reflections indicate......It is acknowledged internationally that teachers’ Professional Development (TPD) is crucial for reforming science teaching. The Danish QUEST project (“Qualifying in-service Education of Science Teachers”) is designed using widely agreed criteria for effective TPD: content focus, active learning...

  13. The Manhattan Project: Science in the Second World War

    Energy Technology Data Exchange (ETDEWEB)

    Gosling, F.G.

    1990-08-01

    The Manhattan Project: Science in the Second World War'' is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details of the role of the United States government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  14. Exploring the Solar System in the Classroom: A Hands-On Approach

    Science.gov (United States)

    Coombs, Cassandra R.

    2000-01-01

    This final report discusses the development and implementation of several educational products for K-16 teachers and students. Specifically, I received support for: (A) three K-12 Teacher workshops, Exploring the Solar System in the Classroom: A Hands-On Approach, and minimal Support to finish two computer-based tutorials. (B) Contact Light: An Interactive CD-ROM, and (C) Another Look at Taurus Littrow: An Interactive GIS Database. Each of these projects directly supports NASA's Strategic Plan to: "Involve the education community in our endeavors to inspire America's students, create learning opportunities, enlighten inquisitive minds", and, to "communicate widely the content, relevancy, and excitement of NASA's missions and discoveries to inspire and to increase understanding and the broad application of science and technology." Attachment: Appendix A. And also article: "Aristarchus plateau: as potential lunar base site."

  15. Citizen Science Opportunity With the NASA Heliophysics Education Consortium (HEC)-Radio JOVE Project

    Science.gov (United States)

    Fung, S. F.; Higgins, C.; Thieman, J.; Garcia, L. N.; Young, C. A.

    2016-12-01

    The Radio JOVE project has long been a hands-on inquiry-based educational project that allows students, teachers and the general public to learn and practice radio astronomy by building their own radio antenna and receiver system from an inexpensive kit that operates at 20.1 MHz and/or using remote radio telescopes through the Internet. Radio JOVE participants observe and analyze natural radio emissions from Jupiter and the Sun. Within the last few years, several Radio JOVE amateurs have upgraded their equipment to make semi-professional spectrographic observations in the frequency band of 15-30 MHz. Due to the widely distributed Radio JOVE observing stations across the US, the Radio JOVE observations can uniquely augment observations by professional telescopes, such as the Long Wavelength Array (LWA) . The Radio JOVE project has recently partnered with the NASA Heliophysics Education Consortium (HEC) to work with students and interested amateur radio astronomers to establish additional spectrograph and single-frequency Radio JOVE stations. These additional Radio JOVE stations will help build a larger amateur radio science network and increase the spatial coverage of long-wavelength radio observations across the US. Our presentation will describe the Radio JOVE project within the context of the HEC. We will discuss the potential for citizen scientists to make and use Radio JOVE observations to study solar radio bursts (particularly during the upcoming solar eclipse in August 2017) and Jovian radio emissions. Radio JOVE observations will also be used to study ionospheric radio scintillation, promoting appreciation and understanding of this important space weather effect.

  16. Using mockups for hands-on training

    International Nuclear Information System (INIS)

    Morris, A.R.

    1991-01-01

    The presentation of Using Mockups for Hands-on Training will be a slide presentation showing slides of mockups that are used by the Westinghouse Hanford Company in Maintenance Training activities. This presentation will compare mockups to actual plant equipment. It will explain the advantages and disadvantages of using mockups. The presentation will show students using the mockups in the classroom environment and slides of the actual plant equipment. The presentation will discuss performance-based training. This part of the presentation will show slides of students doing hands-on training on aerial lifts, fork trucks, and crane and rigging applications. Also shown are mockups that are used for basic hydraulics; hydraulic torquing; refrigeration and air conditioning; valve seat repair; safety relief valve training; and others. The presentation will discuss functional duplicate equipment and simulated nonfunctional equipment. The presentation will discuss the acquisition of mockups from spare parts inventory or from excess parts inventory. The presentation will show attendees how the mockups are used to enhance the training of the Hanford Site employees and how similar mockups could be used throughout the nuclear industry

  17. International and interlaboratory collaboration on Neutron Science Project

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    For effectiveness of facility development for Neutron Science Projects at JAERI, international and interlaboratory collaborations have been extensively planned and promoted, especially in the areas of accelerator and target technology. Here status of two collaborations relevant to a spallation neutron target development is highlighted from those collaborations. The two collaborations are experiments on BNL-AGS spallation target simulation and PSI materials irradiation. Both are planned to start in spring of 1997. (author)

  18. Neutron nuclear physics under the neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    The concept of fast neutron physics facility in the Neutron Science Research project is described. This facility makes use of an ultra-short proton pulse (width < 1 ns) for fast neutron time-of-flight works. The current design is based on an assumption of the maximum proton current of 100 {mu}A. Available neutron fluence and energy resolution are explained. Some of the research subjects to be performed at this facility are discussed. (author)

  19. Earth Science Enterprise Scientific Data Purchase Project: Verification and Validation

    Science.gov (United States)

    Jenner, Jeff; Policelli, Fritz; Fletcher, Rosea; Holecamp, Kara; Owen, Carolyn; Nicholson, Lamar; Dartez, Deanna

    2000-01-01

    This paper presents viewgraphs on the Earth Science Enterprise Scientific Data Purchase Project's verification,and validation process. The topics include: 1) What is Verification and Validation? 2) Why Verification and Validation? 3) Background; 4) ESE Data Purchas Validation Process; 5) Data Validation System and Ingest Queue; 6) Shipment Verification; 7) Tracking and Metrics; 8) Validation of Contract Specifications; 9) Earth Watch Data Validation; 10) Validation of Vertical Accuracy; and 11) Results of Vertical Accuracy Assessment.

  20. HiggsHunters - a citizen science project for ATLAS

    CERN Document Server

    Haas, Andrew; The ATLAS collaboration

    2016-01-01

    Since the launch of HiggsHunters.org in November 2014, citizen science volunteers have classified more than a million points of interest in images from the ATLAS experiment at the LHC. Volunteers have been looking for displaced vertices and unusual features in images recorded during LHC Run-1. We discuss the design of the project, its impact on the public, and the surprising results of how the human volunteers performed relative to the computer algorithms in identifying displaced secondary vertices.

  1. Teachers' tendencies to promote student-led science projects: Associations with their views about science

    Science.gov (United States)

    Bencze, J. Lawrence; Bowen, G. Michael; Alsop, Steve

    2006-05-01

    School science students can benefit greatly from participation in student-directed, open-ended scientific inquiry projects. For various possible reasons, however, students tend not to be engaged in such inquiries. Among factors that may limit their opportunities to engage in open-ended inquiries of their design are teachers' conceptions about science. To explore possible relationships between teachers' conceptions about science and the types of inquiry activities in which they engage students, instrumental case studies of five secondary science teachers were developed, using field notes, repertory grids, samples of lesson plans and student activities, and semistructured interviews. Based on constructivist grounded theory analysis, participating teachers' tendencies to promote student-directed, open-ended scientific inquiry projects seemed to correspond with positions about the nature of science to which they indicated adherence. A tendency to encourage and enable students to carry out student-directed, open-ended scientific inquiry projects appeared to be associated with adherence to social constructivist views about science. Teachers who opposed social constructivist views tended to prefer tight control of student knowledge building procedures and conclusions. We suggest that these results can be explained with reference to human psychological factors, including those associated with teachers' self-esteem and their relationships with knowledge-building processes in the discipline of their teaching.

  2. Providing open-access online materials and hands-on sessions for GIS exercises

    Science.gov (United States)

    Oguchi, T.; Yamauchi, H.; Hayakawa, Y. S.

    2017-12-01

    Researchers of GIS (Geographical Information Systems/Sciences) in Japan have collaborated to provide materials for GIS lecture classes in universities for the last 20 years. The major outcomes include 1) a GIS core curriculum, 2) a GIS "body of knowledge" explaining the details of the curriculum, 3) a series of PowerPoint presentations, and 4) a comprehensive GIS textbook. However, materials for GIS exercises at university classes using GIS software have been limited in Japan. Therefore, we launched a project to provide such materials which will be available online and accessible by anybody. The materials cover broad basic aspects of GIS including geoscientific applications such as terrain analysis using digital elevation models. The materials utilize public-domain and open-source software packages such as QGIS and GRASS. The data used are also freely available ones such as those from the Geospatial Information Authority of Japan. The use of the GitHub platform to distribute the materials allow easier online interactions by both material producers and users. Selected sets of the materials have been utilized for hands-on activities including both official university classes and public instructions. We have been updating the materials based on the opinions of people who took the hands-on courses for better GIS education. The current materials are in Japanese, but we plan to translate some of them into English.

  3. Teaching weather and climate science in primary schools - a pilot project from the UK Met Office

    Science.gov (United States)

    Orrell, Richard; Liggins, Felicity; Challenger, Lesley; Lethem, Dom; Campbell, Katy

    2017-04-01

    Wow Schools is a pilot project from the Met Office with an aim to inspire and educate the next generation of scientists and, uniquely, use the data collected by schools to improve weather forecasts and warnings across the UK. Wow Schools was launched in late 2015 with a competition open to primary schools across the UK. 74 schools entered the draw, all hoping to be picked as one of the ten lucky schools taking part in the pilot scheme. Each winning school received a fully automatic weather station (AWS), enabling them to transmit real-time local weather observations to the Met Office's Weather Observation Website (WOW - wow.metoffice.gov.uk), an award winning web portal for uploading and sharing a range of environmental observations. They were also given a package of materials designed to get students out of the classroom to observe the weather, get hands-on with the science underpinning weather forecasting, and analyse the data they are collecting. The curriculum-relevant materials were designed with the age group 7 to 11 in mind, but could be extended to support other age groups. Each school was offered a visit by a Wow Schools Ambassador (a Met Office employee) to bring the students' learning to life, and access to a dedicated forecast for its location generated by our new supercomputer. These forecasts are improved by the school's onsite AWS reinforcing the link between observations and forecast production. The Wow Schools pilot ran throughout 2016. Here, we present the initial findings of the project, examining the potential benefits and challenges of working with schools across the UK to: enrich students' understanding of the science of weather forecasting; to source an ongoing supply of weather observations and discover how these might be used in the forecasting process; and explore what materials and business model(s) would be most useful and affordable if a wider roll-out of the initiative was undertaken.

  4. National Academy of Sciences Recommends Continued Support of ALMA Project

    Science.gov (United States)

    2000-05-01

    A distinguished panel of scientists today announced their support for the continued funding of the Atacama Large Millimeter Array (ALMA) Project at a press conference given by the National Academy of Sciences. The ALMA Project is an international partnership between U.S. and European astronomy organizations to build a complete imaging telescope that will produce astronomical images at millimeter and submillimeter wavelengths. The U.S. partner is the National Science Foundation, through Associated Universities, Inc., (AUI), led by Dr. Riccardo Giacconi, and the National Radio Astronomy Observatory (NRAO). "We are delighted at this show of continued support from our peers in the scientific community," said Dr. Robert Brown, ALMA U.S. Project Director and Deputy Director of NRAO. "The endorsement adds momentum to the recent strides we've made toward the building of this important telescope." In 1998, the National Research Council, the working arm of the National Academy of Sciences, charged the Astronomy and Astrophysics Survey Committee to "survey the field of space- and ground-based astronomy and astrophysics" and to "recommend priorities for the most important new initiatives of the decade 2000-2010." In a report released today, the committee wrote that it "re-affirms the recommendations of the 1991 Astronomy and Astrophysics Survey Committee by endorsing the completion of . . . the Millimeter Array (MMA, now part of the Atacama Large Millimeter Array)." In the 1991 report "The Decade of Discovery," a previous committee chose the Millimeter Array as one of the most important projects of the decade 1990-2000. Early last year, the National Science Foundation signed a Memorandum of Understanding with a consortium of European organizations that effectively merged the MMA Project with the European Large Southern Array project. The combined project was christened the Atacama Large Millimeter Array. ALMA, expected to consist of 64 antennas with 12-meter diameter dishes

  5. An Evaluation of the Science Education Component of the Cross River State Science and Technical Education Project

    Science.gov (United States)

    Ekuri, Emmanuel Etta

    2012-01-01

    The Cross River State Science and Technical Education Project was introduced in 1992 by edict number 9 of 20 December 1991, "Cross River State Science and Technical Education Board Edit, 20 December, 1991", with the aim of improving the quality of science teaching and learning in the state. As the success of the project depends…

  6. Examining the relationship between leadership and mega science projects

    CERN Document Server

    Eggleton, David Christopher; Tang, Puay

    A development over the past 70 to 80 years within scientific research has been the need for very large pieces of apparatus to enable the exploration of new scientific topics, particularly within particle physics and space science. These ‘megascience projects’ are generally undertaken as cooperative ventures by countries seeking to pursue scientific experimental opportunities in these fields. Such projects, a subcategory of large/megaprojects that have a minimum budget of one billion US dollars, are characterised by high levels of technological uncertainty, given that their success depends on the development of new, highly-advanced technologies . However, there is a notable lack of research into the leadership of megascience projects - an important consideration when embarking on a substantial project. The leadership literature traditionally categorises leaders into five discrete leadership styles, but there is a gap when it comes to understanding the characteristics and development of leaders of megascien...

  7. [Earth and Space Sciences Project Services for NASA HPCC

    Science.gov (United States)

    Merkey, Phillip

    2002-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  8. 78 FR 32637 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2013-05-31

    ..., Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of the Army, Army Research, Development and...

  9. Aeronautics and Aviation Science: Careers and Opportunities Project

    Science.gov (United States)

    Texter, P. Cardie

    1998-01-01

    The National Aeronautics and Space Administration funded project, Aeronautics and Aviation Science: Careers and Opportunities has been in operation since July, 1995. This project operated as a collaboration with Massachusetts Corporation for Educational Telecommunications, the Federal Aviation Administration, Bridgewater State College and four targeted "core sites" in the greater Boston area. In its first and second years, a video series on aeronautics and aviation science was developed and broadcast via "live, interactive" satellite feed. Accompanying teacher and student supplementary instructional materials for grades 6-9 were produced and disseminated by the Massachusetts Corporation for Educational Telecommunications (MCET). In the MCET grant application it states that project Take Off! in its initial phase would recruit and train teachers at "core" sites in the greater Boston area, as well as opening participation to other on-line users of MCET's satellite feeds. "Core site" classrooms would become equipped so that teachers and students might become engaged in an interactive format which aimed at not only involving the students during the "live" broadcast of the instructional video series, but which would encourage participation in electronic information gathering and sharing among participants. As a Take Off! project goal, four schools with a higher than average proportion of minority and underrepresented youth were invited to become involved with the project to give these students the opportunity to consider career exploration and development in the field of science aviation and aeronautics. The four sites chosen to participate in this project were: East Boston High School, Dorchester High School, Randolph Junior-Senior High School and Malden High School. In year 3 Dorchester was unable to continue to fully participate and exited out. Danvers was added to the "core site" list in year 3. In consideration of Goals 2000, the National Science Foundation

  10. Frames for Learning Science: Analyzing Learner Positioning in a Technology-Enhanced Science Project

    Science.gov (United States)

    Silseth, K.; Arnseth, H. C.

    2016-01-01

    In this article, we examine the relationship between how students are positioned in social encounters and how this influences learning in a technology-supported science project. We pursue this topic by focusing on the participation trajectory of one particular learner. The analysis shows that the student cannot be interpreted as one type of…

  11. "Saturday Night Live" Goes to High School: Conducting and Advising a Political Science Fair Project

    Science.gov (United States)

    Allen, Meg; Brewer, Paul R.

    2010-01-01

    This article uses a case study to illustrate how science fair projects--which traditionally focus on "hard science" topics--can contribute to political science education. One of the authors, a high school student, conducted an experimental study of politics for her science fair project. The other author, a faculty member, was asked to advise the…

  12. The history and science of the Manhatten project

    International Nuclear Information System (INIS)

    Reed, Bruce Cameron

    2014-01-01

    This is the only popular-level history of the Project prepared by a writer who is a physicist and who has broad knowledge of the relevant scientific details. Ideal for readers who have no specialized scientific background but who want to learn more about how atomic bombs came to be. Relevant scientific concepts are explained in the text as they are needed. For readers who do possess some scientific background (high-school physics), this book will provide a deeper understanding of some of the technical issues involved in developing atomic bombs. An ideal text for a college-level ''general education'' history or science class. Based on years of research by the author into the physics of nuclear weapons, augmented by familiarity with relevant official archival documentation. The development of atomic bombs under the auspices of the U. S. Army's Manhattan Project during World War II is considered to be the outstanding news story of the twentieth century. In this book, a physicist and expert on the history of the Project presents a comprehensive overview of this momentous achievement. The first three chapters cover the history of nuclear physics from the discovery of radioactivity to the discovery of fission, and would be ideal for instructors of a sophomore-level ''Modern Physics'' course. Student-level exercises at the ends of the chapters are accompanied by answers. Chapter 7 covers the physics of first-generation fission weapons at a similar level, again accompanied by exercises and answers. For the interested layman and for non-science students and instructors, the book includes extensive qualitative material on the history, organization, implementation, and results of the Manhattan Project and the Hiroshima and Nagasaki bombing missions. The reader also learns about the legacy of the Project as reflected in the current world stockpiles of nuclear weapons.

  13. The history and science of the Manhatten project

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Bruce Cameron [Alma College, Alma, MI (United States). Dept. of Physics

    2014-03-01

    This is the only popular-level history of the Project prepared by a writer who is a physicist and who has broad knowledge of the relevant scientific details. Ideal for readers who have no specialized scientific background but who want to learn more about how atomic bombs came to be. Relevant scientific concepts are explained in the text as they are needed. For readers who do possess some scientific background (high-school physics), this book will provide a deeper understanding of some of the technical issues involved in developing atomic bombs. An ideal text for a college-level ''general education'' history or science class. Based on years of research by the author into the physics of nuclear weapons, augmented by familiarity with relevant official archival documentation. The development of atomic bombs under the auspices of the U. S. Army's Manhattan Project during World War II is considered to be the outstanding news story of the twentieth century. In this book, a physicist and expert on the history of the Project presents a comprehensive overview of this momentous achievement. The first three chapters cover the history of nuclear physics from the discovery of radioactivity to the discovery of fission, and would be ideal for instructors of a sophomore-level ''Modern Physics'' course. Student-level exercises at the ends of the chapters are accompanied by answers. Chapter 7 covers the physics of first-generation fission weapons at a similar level, again accompanied by exercises and answers. For the interested layman and for non-science students and instructors, the book includes extensive qualitative material on the history, organization, implementation, and results of the Manhattan Project and the Hiroshima and Nagasaki bombing missions. The reader also learns about the legacy of the Project as reflected in the current world stockpiles of nuclear weapons.

  14. Visualization and characterization of users in a citizen science project

    Science.gov (United States)

    Morais, Alessandra M. M.; Raddick, Jordan; Coelho dos Santos, Rafael D.

    2013-05-01

    Recent technological advances allowed the creation and use of internet-based systems where many users can collaborate gathering and sharing information for specific or general purposes: social networks, e-commerce review systems, collaborative knowledge systems, etc. Since most of the data collected in these systems is user-generated, understanding of the motivations and general behavior of users is a very important issue. Of particular interest are citizen science projects, where users without scientific training are asked for collaboration labeling and classifying information (either automatically by giving away idle computer time or manually by actually seeing data and providing information about it). Understanding behavior of users of those types of data collection systems may help increase the involvement of the users, categorize users accordingly to different parameters, facilitate their collaboration with the systems, design better user interfaces, and allow better planning and deployment of similar projects and systems. Behavior of those users could be estimated through analysis of their collaboration track: registers of which user did what and when can be easily and unobtrusively collected in several different ways, the simplest being a log of activities. In this paper we present some results on the visualization and characterization of almost 150.000 users with more than 80.000.000 collaborations with a citizen science project - Galaxy Zoo I, which asked users to classify galaxies' images. Basic visualization techniques are not applicable due to the number of users, so techniques to characterize users' behavior based on feature extraction and clustering are used.

  15. Student Learning through Hands-On Industry Projects

    Science.gov (United States)

    Acheson, Lingma Lu

    2014-01-01

    Learning is most effective when accompanied by doing. If someone desires to become a baseball player, being told how to play the game, watching others play and even understanding the rules of the game are mostly ineffective if the individual never "swings the bat". This paper outlines the implementation of this method (swinging the bat)…

  16. [Neurophenomenology: Project for a Science of Past Experiences].

    Science.gov (United States)

    Segovia-Cuellar, Andrés

    2012-09-01

    Since the middle of 20(th) Century, cognitive science has been recognized as the genuine convergence field for all scientific advances in human mind studies with the mechanisms enabling knowledge. Since then, it has become a multidisciplinary area where several research disciplines and actors have acquired citizenship, allowing new expectations on the scientific study of human uniqueness. Critical assessment of the discussion that the discourse of theoretical biology has been assuming regarding the study of the cognitive phenomenon with special attention to the enactive project and, extensively, to the neuro-phenomenology of Francisco J. Varela. Starting with a brief and synthesized history of cognitive science, we will establish the key principles for understanding the emergence of the enactive paradigm and the "embodied" turn influenced by continental phenomenology in the cognitive science, as well as the general guidelines of Neurophenomenology. The "hard problem" of consciousness still faces several types of reductionism relegating the cognitive issue to a kind of merely rational, individual, abstract and disembodied mechanism, thus strengthening the functionalist paradigm in mind philosophy. A solution to classic dichotomies in mind sciences must start rejecting such assumptions. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  17. Project LASER: Learning about science, engineering, and research

    Science.gov (United States)

    1990-01-01

    The number of American students entering science and engineering careers and their ranking in comparison with other countries is on the decline. This decline has alarmed Congress which, in 1987, established a Task Force on Women, Minorities, and the Handicapped in Science and Technology to define the problem and find solutions. If left unchanged, the task force has warned that the prospects for maintaining an advanced industrial society will diminish. NASA is supportive of the six goals outlined by the task force, which are paraphrase herein, and is carefully assessing its education programs to identify those offering the greatest potential for achieving the task force objectives with a reasonable range of resources. A major initiative is under way on behalf of NASA at its Marshall Space Flight Center, where highly effective features of several NASA education programs along with innovations are being integrated into a comprehensive pilot program. This program, dubbed Project LASER, is discussed.

  18. Development and Validation of a Project Package for Junior Secondary School Basic Science

    Science.gov (United States)

    Udofia, Nsikak-Abasi

    2014-01-01

    This was a Research and Developmental study designed to develop and validate projects for Junior Secondary School Basic Science instruction and evaluation. The projects were developed using the project blueprint and sent for validation by experts in science education and measurement and evaluation; using a project validation scale. They were to…

  19. Student and Faculty Outcomes of Undergraduate Science Research Projects by Geographically Dispersed Students

    Science.gov (United States)

    Shaw, Lawton; Kennepohl, Dietmar

    2013-01-01

    Senior undergraduate research projects are important components of most undergraduate science degrees. The delivery of such projects in a distance education format is challenging. Athabasca University (AU) science project courses allow distance education students to complete research project courses by working with research supervisors in their…

  20. Project HEAT: Temperature as an Organizing Theme for Inquiry-Based Learning in the Environmental Sciences

    Science.gov (United States)

    Albright, T. P.; Howard, K. L.; Ewing-Taylor, J.

    2014-12-01

    Professionals in science, technology, engineering, and mathematics (STEM) fields do not reflect the diversity of the US population. Among the most effective ways to attract and retain underrepresented students in STEM disciplines is to provide opportunities for participation in the scientific process and interaction with practicing scientists. Project HEAT (Hot Environments, Animals, & Temperature) is "boot-camp"-style workshop aimed at increasing interest in STEM topics among underrepresented, first-generation, college-bound middle school students. Linking to our NASA-funded research project "Desert Birds in a Warming World", we focused on how surprisingly variable temperature is in space and time, why temperature is important to plants, animals, and people, and how we measure temperature in the field and from space. Perhaps more importantly, this theme was a vehicle for students to experience science as a process: field observations, brainstorming questions and hypotheses, designing experiments to test them, and analyzing and reporting their data. The centerpiece was a set of experiments with small temperature sensors and radiation shields that teams of students designed, executed at a local park, analyzed, and reported. Two years of pre and post assessments revealed that Project HEAT participants increased understanding in content areas and showed slight increases in STEM interest. Year two results were markedly stronger than year one in both assessments as well as our perception. We attribute this to earlier summer timing of the workshop, a change from two half-day weeks to one full-day week, and a more age-homogeneous selection of students. In comments, participants expressed their special enjoyment of the hands-on nature of the program and the outdoor learning. Though providing such opportunities can be challenging, our experience here suggests that it can be worth while. Project HEAT also benefited our cadre of graduate student mentors by providing exposure

  1. Ka Hana `Imi Na`auao: A Science Curriculum Project

    Science.gov (United States)

    Napeahi, K.; Roberts, K. D.; Galloway, L. M.; Stodden, R. A.; Akuna, J.; Bruno, B.

    2005-12-01

    In antiquity, the first people to step foot on what are now known as the Hawaiian islands skillfully traversed the Pacific Ocean using celestial navigation and learned observations of scientific phenomena. Long before the Western world ventured beyond the horizon, Hawaiians had invented the chronometer, built aqueduct systems (awai) that continue to amaze modern engineers, and had preventive health systems as well as a comprehensive knowledge of medicinal plants (including antivirals) which only now are working their way through trials for use in modern pharmacopia. Yet, today, Native Hawaiians are severely underrepresented in science-related fields, reflecting (in part) a failure of the Western educational system to nurture the potential of these resourceful students, particularly the many "at-risk" students who are presently over-represented in special education. A curriculum which draws from and incorporates traditional Hawaiian values and knowledge is needed to reinforce links to the inquiry process which nurtured creative thinking during the renaissance of Polynesian history. The primary goal of the Ka Hana `Imi Na`auao Project (translation: `science` or `work in which you seek enlightenment, knowledge or wisdom`) is to increase the number of Native Hawaiian adults in science-related postsecondary education and employment fields. Working closely with Native Hawaiian cultural experts and our high school partners, we will develop and implement a culturally responsive 11th and 12th grade high school science curriculum, infused with math, literacy and technology readiness skills. Software and assistive technology will be used to adapt instruction to individual learners` reading levels, specific disabilities and learning styles. To ease the transition from secondary to post-secondary education, selected grade 12 students will participate in planned project activities that link high school experiences with college science-related programs of study. Ka Hana `Imi Na

  2. [Collaborative projects with academia for regulatory science studies on biomarkers].

    Science.gov (United States)

    Saito, Yoshiro; Nakamura, Ryosuke; Maekawa, Keiko

    2014-01-01

    Biomarkers are useful tools to be utilized as indicators/predictors of disease severity and drug responsiveness/safety, and thus are expected to promote efficient drug development and to accelerate proper use of approved drugs. Many academic achievements have been reported, but only a small number of biomarkers are used in clinical trials and drug treatments. Regulatory sciences on biomarkers for their secure development and proper qualification are necessary to facilitate their practical application. We started to collaborate with Tohoku University and Nagoya City University for sample quality, biomarker identification, evaluation of their usage, and making guidances. In this short review, scheme and progress of these projects are introduced.

  3. HiggsHunters - a citizen science project for ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00053405; The ATLAS collaboration

    2017-01-01

    Since the launch of HiggsHunters.org in November 2014, citizen science volunteers have classified more than a million points of interest in images from the ATLAS experiment at the LHC. Volunteers have been looking for displaced vertices and unusual features in images recorded during LHC Run-1. We discuss the design of the project, its impact on the public, and the results of how the human volunteers performed relative to the computer algorithms in identifying displaced secondary vertices. People were better than existing algorithms at identifying displaced vertices for some masses and lifetimes, and showed good ability to recognize unexpected new features in the data.

  4. Mini-Portfolio on Math and Science.

    Science.gov (United States)

    Teaching PreK-8, 1996

    1996-01-01

    Presents six articles dealing with math and science education: "Sneaker Geometry" (Jack George), "Fairs with a Flair" (Diane McCarty), "Generating Excitement with Math Projects" (Jeffrey Kostecky and Louis Roe), "Playing with Numbers" (Diana Smith), "When Student Teachers Want to Do Hands-On Science" (Betsy Feldkamp-Price), and "Science ala Carte"…

  5. New challenges for Life Sciences flight project management

    Science.gov (United States)

    Huntoon, C. L.

    1999-01-01

    Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.

  6. Improving Environmental Literacy through GO3 Citizen Science Project

    Science.gov (United States)

    Wilkening, B.

    2011-12-01

    In the Global Ozone (GO3) Project students measure ground-level ozone on a continuous basis and upload their results to a global network used by atmospheric scientists and schools. Students learn important concepts such as chemical measurement methods; instrumentation; calibration; data acquisition using computers; data quality; statistics; data analysis and graphing; posting of data to the web; the chemistry of air pollution; stratospheric ozone depletion and global climate change. Students collaborate with researchers and other students globally in the GO3 network. Wilson K-8 School is located in a suburban area in Pima County, Arizona. Throughout the year we receive high ozone alert days. Prior to joining the GO3 project, my students were unaware of air pollution alerts, risks and causes. In the past when Pima County issued alerts to the school, they were posted on signs around the school. No explanation was provided to the students and the signs were often left up for days. This discounted the potential health effects of the situation, resulting in the alerts effectively being ignored. The GO3 project is transforming both my students and our school community. Now my students are: Performing science research Utilizing technology and increasing their skills Collaborating in a responsible manner on the global GO3 social network Communicating their work to the community Issuing their own ozone alerts to their school Advocating for actions that will improve air quality My students participation in this citizen science project is creating a more cognizant and active community in regards to air pollution.

  7. Geneva University: Experiments in Physics: Hands-on Creative Processes

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92   Lundi 3 octobre 2011, 17h00 Ecole de Physique, Auditoire Stueckelberg «Experiments in Physics : Hands-on Creative Processes» Prof. Manfred Euler Leibniz-Institute for Mathematics and Science Education (IPN) University of Kiel, Deutschland Experiments play a variety of different roles in knowledge generation. The lecture will focus on the function of experiments as engines of intuition that foster insights into complex processes. The experimental presentations consider self-organization phenomena in various domains that range from the nanomechanics of biomolecules to perception and cognition. The inherent universality contributes to elucidating the enigmatic phenomenon of creativity. Une verrée en compagnie du conférencier sera offerte après le colloque.       &...

  8. Designing a hands-on brain computer interface laboratory course.

    Science.gov (United States)

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2016-08-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.

  9. Practical data science cookbook

    CERN Document Server

    Ojeda, Tony; Bengfort, Benjamin; Dasgupta, Abhijit

    2014-01-01

    If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of data science projects, the steps in the data science pipeline, and the programming examples presented in this book. Since the book is formatted to walk you through the projects with examples and explanations along the way, no prior programming experience is required.

  10. Evaluation of American Indian Science and Engineering Society Intertribal Middle School Science and Math Bowl Project

    Energy Technology Data Exchange (ETDEWEB)

    AISES, None

    2013-09-25

    Engineering Fair (NAISEF) and EXPO at the Albuquerque, NM Convention Center. Albuquerque is also the home of the AISES national office. The AISES staff also recruits volunteers to assist with implementation of the science and math bowl event. In 2011, there were 7 volunteers; in 2012, 15 volunteers, and in 2013, 19 volunteers. Volunteers are recruited from a variety of local sources, including Sandia Laboratories, Southwest Indian Polytechnic Institute students, Department of Defense, as well as family members of AISES staff. For AISES, the goals of the Intertribal Middle School Science and Math Bowl project are to have more Native students learn science, for them to gain confidence in competing, and to reward their effort in order to motivate them to pursue studies in the sciences and engineering. For DOE, the goals of the project are to get more Native students to compete at the National Science Bowl, held in Washington, DC.

  11. Investigating Changes in Student Attitudes and Understanding of Science through Participation in Citizen Science Projects in College Coursework

    Science.gov (United States)

    Cardamone, Carolin; Cobb, Bethany E.

    2018-01-01

    Over the last decade, web-based “citizen science” projects such as the Zooniverse have allowed volunteers and professional scientists to work together for the advancement of science. While much attention has been paid to the benefits to science from these new projects, less attention has been paid to their impact on the participants and, in particular, to the projects’ potential to impact students who might engage in these projects through coursework. We report on a study engaging students in introductory astronomy classes at the George Washington University and Wheelock College in an assignment in which each student individually contributed to a “physics” or “space” citizen science project of their choice, and groups of students worked together to understand and articulate the scientific purpose of a citizen science project to which they all contributed. Over the course of approximately four weeks, the students kept logs of their individual contributions to the project, and recorded a brief reflection on each of their visits (noting, for example, interesting or confusing things they might encounter along the way). The project culminated with each group delivering a creative presentation that demonstrated their understanding of both the science goals of the project and the value of their own contributions to the project. In this talk, we report on the experience of the students with the project and on an assessment of the students’ attitudes toward science and knowledge of the process of science completed before the introduction of the assignment and again at its conclusion.

  12. System engineering and science projects: lessons from MeerKAT

    Science.gov (United States)

    Kapp, Francois

    2016-08-01

    The Square Kilometre Array (SKA) is a large science project planning to commence construction of the world's largest Radio Telescope after 2018. MeerKAT is one of the precursor projects to the SKA, based on the same site that will host the SKA Mid array in the central Karoo area of South Africa. From the perspective of signal processing hardware development, we analyse the challenges that MeerKAT encountered and extrapolate them to SKA in order to prepare the System Engineering and Project Management methods that could contribute to a successful completion of SKA. Using the MeerKAT Digitiser, Correlator/Beamformer and Time and Frequency Reference Systems as an example, we will trace the risk profile and subtle differences in engineering approaches of these systems over time and show the effects of varying levels of System Engineering rigour on the evolution of their risk profiles. It will be shown that the most rigorous application of System Engineering discipline resulted in the most substantial reduction in risk over time. Since the challenges faced by SKA are not limited to that of MeerKAT, we also look into how that translates to a system development where there is substantial complexity in both the created system as well as the creating system. Since the SKA will be designed and constructed by consortia made up from the ten member countries, there are many additional complexities to the organisation creating the system - a challenge the MeerKAT project did not encounter. Factors outside of engineering, for instance procurement models and political interests, also play a more significant role, and add to the project risks of SKA when compared to MeerKAT.

  13. Hands-on courses in petroleum engineering improve performance

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H.; Islam, M.R. [Regina Univ., Regina, SK (Canada)

    1999-07-01

    A hands-on methodology was employed to teach eight lecture-based courses in the United Arab Emirates University in which initially two petroleum engineering courses were used to test the methodology. The courses are considered to be basic to petroleum engineering. Although the courses did not have any impact on the overall student grades, the courses stimulated independent thought among students who were not previously used to this mode of thinking. Students were exposed to laboratory experiments and project works that were considered previously to be too-difficult-to-handle by undergraduate students. The course methodology was more acceptable to the female than the male population. The course methodology centered on creative thinking, questioning the establishment methods and critiquing conventional modes of thinking. Despite the differences between male and female students, overall the student population recognized that their ability to think independently and critically improved after taking the course. An appendix contains examples of learning modules. 18 refs.

  14. The history and science of the Manhattan project

    CERN Document Server

    Reed, Bruce Cameron

    2014-01-01

    The development of atomic bombs under the auspices of the U. S. Army’s Manhattan Project during World War II is considered to be the outstanding news story of the twentieth century. In this book, a physicist and expert on the history of the Project presents a comprehensive overview of this momentous achievement. The first three chapters cover the history of nuclear physics from the discovery of radioactivity to the discovery of fission, and would be ideal for instructors of a sophomore-level “Modern Physics” course. Student-level exercises at the ends of the chapters are accompanied by answers. Chapter 7 covers the physics of first-generation fission weapons at a similar level, again accompanied by exercises and answers. For the interested layman and for non-science students and instructors, the book includes extensive qualitative material on the history, organization, implementation, and results of the Manhattan Project and the Hiroshima and Nagasaki bombing missions. The reader also learns about the l...

  15. The Backyard Worlds: Planet 9 Citizen Science Project

    Science.gov (United States)

    Faherty, Jacqueline K.; Kuchner, Marc; Schneider, Adam; Meisner, Aaron; Gagné, Jonathan; Filippazzo, Joeseph; Trouille, Laura; Backyard Worlds: Planet 9 Collaboration; Jacqueline Faherty

    2018-01-01

    In February of 2017 our team launched a new citizen science project entitled Backyard Worlds: Planet 9 to scan the cosmos for fast moving stars, brown dwarfs, and even planets. This Zooniverse website, BackyardWorlds.org, invites anyone with a computer or smartphone to flip through WISE images taken over a several year baseline and mark any point source that appears to move. This “blinking technique” is the same that Clyde Tombaugh discovered Pluto with over 80 years ago. In the first few days of our program we recruited over 30,000 volunteers. After 3/4 of a year with the program we have completed 30% of the sky and our participants have identified several hundred candidate movers. These include (1) over 20 candidate Y-type brown dwarfs, (2) a handful of new co-moving systems containing a previously unidentified low mass object and a known nearby star, (3) over 100 previously missed M dwarfs, (4) and more than 200 candidate L and T brown dwarfs, many of which occupy outlier positions on reduced proper motion diagrams. Our first publication credited four citizen scientists as co-authors. The Backyard Worlds: Planet 9 project is both scientifically fruitful and empowering for any mind across the globe that has ever wanted to participate in a discovery-driven astronomy research project.

  16. COSEE-AK Ocean Science Fairs: A Science Fair Model That Grounds Student Projects in Both Western Science and Traditional Native Knowledge

    Science.gov (United States)

    Dublin, Robin; Sigman, Marilyn; Anderson, Andrea; Barnhardt, Ray; Topkok, Sean Asiqluq

    2014-01-01

    We have developed the traditional science fair format into an ocean science fair model that promoted the integration of Western science and Alaska Native traditional knowledge in student projects focused on the ocean, aquatic environments, and climate change. The typical science fair judging criteria for the validity and presentation of the…

  17. A Study on the Evaluation of Science Projects of Primary School Students Based on Scientific Criteria

    Science.gov (United States)

    Gungor, Sema Nur; Ozer, Dilek Zeren; Ozkan, Muhlis

    2013-01-01

    This study re-evaluated 454 science projects that were prepared by primary school students between 2007 and 2011 within the scope of Science Projects Event for Primary School Students. Also, submitted to TUBITAK BIDEB Bursa regional science board by MNE regional work groups in accordance with scientific research methods and techniques, including…

  18. Theme-Based Project Learning: Design and Application of Convergent Science Experiments

    Science.gov (United States)

    Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee

    2015-01-01

    This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…

  19. Earth Science community support in the EGI-Inspire Project

    Science.gov (United States)

    Schwichtenberg, H.

    2012-04-01

    The Earth Science Grid community is following its strategy of propagating Grid technology to the ES disciplines, setting up interactive collaboration among the members of the community and stimulating the interest of stakeholders on the political level since ten years already. This strategy was described in a roadmap published in an Earth Science Informatics journal. It was applied through different European Grid projects and led to a large Grid Earth Science VRC that covers a variety of ES disciplines; in the end, all of them were facing the same kind of ICT problems. .. The penetration of Grid in the ES community is indicated by the variety of applications, the number of countries in which ES applications are ported, the number of papers in international journals and the number of related PhDs. Among the six virtual organisations belonging to ES, one, ESR, is generic. Three others -env.see-grid-sci.eu, meteo.see-grid-sci.eu and seismo.see-grid-sci.eu- are thematic and regional (South Eastern Europe) for environment, meteorology and seismology. The sixth VO, EGEODE, is for the users of the Geocluster software. There are also ES users in national VOs or VOs related to projects. The services for the ES task in EGI-Inspire concerns the data that are a key part of any ES application. The ES community requires several interfaces to access data and metadata outside of the EGI infrastructure, e.g. by using grid-enabled database interfaces. The data centres have also developed service tools for basic research activities such as searching, browsing and downloading these datasets, but these are not accessible from applications executed on the Grid. The ES task in EGI-Inspire aims to make these tools accessible from the Grid. In collaboration with GENESI-DR (Ground European Network for Earth Science Interoperations - Digital Repositories) this task is maintaining and evolving an interface in response to new requirements that will allow data in the GENESI-DR infrastructure to

  20. UNH Project SMART 2017: Space Science for High School Students

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Goelzer, S.; Levergood, R.; Lugaz, N.; Moebius, E.

    2017-12-01

    Every summer for the past 26 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. This year the student research projects used data from the Messenger, STEREO, and Triana missions. In addition, the students build and fly a high-altitude balloon payload with instruments of their own construction. Students learn circuit design and construction, microcontroller programming, and core atmospheric and space science along with fundamental concepts in space physics and engineering. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute. Our flight hardware includes an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This year we developed, built and flew a successful line cutter based on GPS location information that prevents our payload from falling into the ocean while also separating the payload from the balloon remains for a cleaner descent. We will describe that new line cutter design and implementation along with the shielded Geiger counters that we flew as part of our cosmic ray air shower experiment. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  1. Shell’s use of science in de-risking projects

    CSIR Research Space (South Africa)

    Rossouw, N

    2017-10-01

    Full Text Available This presentation discusses Shell’s use of science in de-risking projects. The presentation includes examples of applying science in the De-Risking process, supporting scientific research and De-Risking the Karoo Basin....

  2. Project, building and utilization of a tomograph of micro metric resolution to application in soil science

    International Nuclear Information System (INIS)

    Macedo, Alvaro; Torre Neto, Andre; Cruvinel, Paulo Estevao; Crestana, Silvio

    1996-08-01

    This paper describes the project , building and utilization of a tomograph of micro metric resolution in soil science. It describes the problems involved in soil's science study and it describes the system and methodology

  3. Streaking into middle school science: The Dell Streak pilot project

    Science.gov (United States)

    Austin, Susan Eudy

    A case study is conducted implementing the Dell Streak seven-inch android device into eighth grade science classes of one teacher in a rural middle school in the Piedmont region of North Carolina. The purpose of the study is to determine if the use of the Dell Streaks would increase student achievement on standardized subject testing, if the Streak could be used as an effective instructional tool, and if it could be considered an effective instructional resource for reviewing and preparing for the science assessments. A mixed method research design was used for the study to analyze both quantitative and qualitative results to determine if the Dell Streaks' utilization could achieve the following: 1. instructional strategies would change, 2. it would be an effective instructional tool, and 3. a comparison of the students' test scores and benchmark assessments' scores would provide statistically significant difference. Through the use of an ANOVA it was determined a statistically significant difference had occurred. A Post Hoc analysis was conducted to identify where the difference occurred. Finally a T-test determined was there was no statistically significance difference between the mean End-of-Grade tests and four quarterly benchmark scores of the control and the experimental groups. Qualitative research methods were used to gather results to determine if the Streaks were an effective instructional tool. Classroom observations identified that the teacher's teaching styles and new instructional strategies were implemented throughout the pilot project. Students had an opportunity to complete a questionnaire three times during the pilot project. Results revealed what the students liked about using the devices and the challenges they were facing. The teacher completed a reflective questionnaire throughout the pilot project and offered valuable reflections about the use of the devices in an educational setting. The reflection data supporting the case study was drawn

  4. A Low-Tech, Hands-On Approach To Teaching Sorting Algorithms to Working Students.

    Science.gov (United States)

    Dios, R.; Geller, J.

    1998-01-01

    Focuses on identifying the educational effects of "activity oriented" instructional techniques. Examines which instructional methods produce enhanced learning and comprehension. Discusses the problem of learning "sorting algorithms," a major topic in every Computer Science curriculum. Presents a low-tech, hands-on teaching method for sorting…

  5. 76 FR 56406 - Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army...

    Science.gov (United States)

    2011-09-13

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army Research, Development and Engineering Command; Tank... personnel management demonstration project for eligible TARDEC employees. Within that notice the table...

  6. A Comparison of Creativity in Project Groups in Science and Engineering Education in Denmark and China

    DEFF Research Database (Denmark)

    Zhou, Chunfang; Valero, Paola

    2015-01-01

    Different pedagogical strategies influence the development of creativity in project groups in science and engineering education. This study is a comparison between two cases: Problem-Based Learning (PBL) in Denmark and Project-Organized Learning (POL) in China.......Different pedagogical strategies influence the development of creativity in project groups in science and engineering education. This study is a comparison between two cases: Problem-Based Learning (PBL) in Denmark and Project-Organized Learning (POL) in China....

  7. COMUNICA Project: a commitment for strategic communication on Earth Sciences

    Science.gov (United States)

    Cortes-Picas, Jordi; Diaz, Jordi; Fernandez-Turiel, Jose-Luis

    2016-04-01

    The Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) has just celebrated its 50-year anniversary last year. It is a reference research center on Earth Sciences both national and international level. The Institute includes 4 research groups which focus their scientific activity on the structure and dynamics of the Earth, the environmental changes in the geological record, geophysical and geochemical modelling and crystallography and optical properties. Only when large geological disasters happens, mainly earthquakes and volcanic eruptions, some interaction between ICTJA-CSIC researchers and traditional media occurs, which is limited by the fact that the aim of the Institute is the scientific research and it has no responsibilities in the area of civil protection. This relationship reduces the knowledge of our activity to the general public. To overcome this situation, the ICTJA-CSIC has decided to take an active role in the social dissemination of geological and geophysical knowledge. Thus, the ICTJA-CSIC has launched the COMUNICA Project. The project is aimed to increase the social visibility of the ICTJA-CSIC and to promote the outreach of researchers. Therefore ICTJA-CSIC has created the Communication Unit, which is in charge of designing communication strategies to give to different audiences (media, students of secondary and higher education, general public) an overview of the scientific and institutional activity of the ICTJA-CSIC. A global communication plan is being designed to define the strategic actions, both internal and external. An important role has been reserved for digital channels, to promote ICTJA-CSIC activity on social networks such as Twitter, Facebook or Youtube, besides making a major effort in the renovation and maintenance of the corporate website. A strong effort will be done to collect and spread through press releases the major scientific milestones achieved by the researchers, to promote the interest of mass media. Communication

  8. The Communication in Science Inquiry Project (CISIP): A Project to Enhance Scientific Literacy through the Creation of Science Classroom Discourse Communities

    Science.gov (United States)

    Baker, Dale R.; Lewis, Elizabeth B.; Purzer, Senay; Watts, Nievita Bueno; Perkins, Gita; Uysal, Sibel; Wong, Sissy; Beard, Rachelle; Lang, Michael

    2009-01-01

    This study reports on the context and impact of the Communication in Science Inquiry Project (CISIP) professional development to promote teachers' and students' scientific literacy through the creation of science classroom discourse communities. The theoretical underpinnings of the professional development model are presented and key professional…

  9. Hands-on Summer Camp to Attract K-12 Students to Engineering Fields

    Science.gov (United States)

    Yilmaz, Muhittin; Ren, Jianhong; Custer, Sheryl; Coleman, Joyce

    2010-01-01

    This paper explains the organization and execution of a summer engineering outreach camp designed to attract and motivate high school students as well as increase their awareness of various engineering fields. The camp curriculum included hands-on, competitive design-oriented engineering projects from several disciplines: the electrical,…

  10. Alignment of Hands-On STEM Engagement Activities with Positive STEM Dispositions in Secondary School Students

    Science.gov (United States)

    Christensen, Rhonda; Knezek, Gerald; Tyler-Wood, Tandra

    2015-01-01

    This study examines positive dispositions reported by middle school and high school students participating in programs that feature STEM-related activities. Middle school students participating in school-to-home hands-on energy monitoring activities are compared to middle school and high school students in a different project taking part in…

  11. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    Science.gov (United States)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; hide

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  12. The Polaris Project: Undergraduate Research Catalyzing Advances in Arctic Science

    Science.gov (United States)

    Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Bunn, A. G.; Frey, K. E.

    2017-12-01

    With guidance and sufficient resources, undergraduates can drive the exploration of new research directions, lead high impact scientific products, and effectively communicate the value of science to the public. As mentors, we must recognize the strong contribution undergraduates make to the advancement of scientific understanding and their unique ability and desire to be transdisciplinary and to translate ideas into action. Our job is to be sure students have the resources and tools to successfully explore questions that they care about, not to provide or lead them towards answers we already have. The central goal of the Polaris Project is to advance understanding of climate change in the Arctic through an integrated research, training, and outreach program that has at its heart a research expedition for undergraduates to a remote field station in the Arctic. Our integrative approach to training provides undergraduates with strong intellectual development and they bring fresh perspectives, creativity, and a unique willingness to take risks on new ideas that have an energizing effect on research and outreach. Since the projects inception in summer 2008, we have had >90 undergraduates participate in high-impact field expeditions and outreach activities. Over the years, we have also been fortunate enough to attract an ethnically, racially, and culturally diverse group of students, including students from Puerto Rico, Hispanic-, African- and Native-Americans, members of the LGBT community, and first-generation college students. Most of these students have since pursued graduate degrees in ecology, and many have received NSF fellowships and Fulbright scholarships. One of our major goals is to increase the diversity of the scientific community, and we have been successful in our short-term goal of recruiting and retaining a diverse group of students. The goal of this presentation is to provide a description of the mentoring model at the heart of the Polaris Project

  13. A community sharing hands-on centers in engineer's training

    Directory of Open Access Journals (Sweden)

    jean-pierre jpt Taboy

    2006-02-01

    Full Text Available As teachers in Technical Universities, we must think about the engineer's training. We need good applicants, up to date hardware and software for hand-on. Each university don't have enough money and technical people to cover the new needs. A community sharing remote hand-on centers could be a solution.

  14. Math in Action. Hands-On, Minds-On Math.

    Science.gov (United States)

    Waite-Stupiansky, Sandra; Stupiansky, Nicholas G.

    1998-01-01

    Hands-on math must also involve students' minds in creative thinking. Math manipulatives must be used for uncovering, not just discovering. This paper presents guidelines for planning hands-on, minds-on math for elementary students. Suggestions include dialoging, questioning, integrating manipulatives and other tools, writing, and evaluating. (SM)

  15. HANDS-ON MATERIALS AS INVITATION TO A FANTASY WORLD

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye

    In this article I wish to introduce an innovative use of hands-on-materials, developed by Peter Müller, a Danish elementary school teacher. The hands-on material itself consists of a collection of small plastic bears in different colors and sizes, which can be used for many different purposes among...

  16. The Two-Column Aerosol Project (TCAP) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

    2011-07-27

    The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

  17. High intensity proton linear accelerator for Neutron Science Project

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1999-01-01

    JAERI has been proposing the Neutron Science Project (NSP) which will be composed of a high intensity proton accelerator and various research facilities. With an energy of 1.5 GeV and a beam power of 8 MW, the accelerator is required for basic research fields and nuclear waste transmutation studies. The R and D work has been carried out for the components of the accelerator. In the low energy accelerator part, a beam test with an ion source and an RFQ has been performed with a current of 80 mA and a duty factor of 10% at an energy of 2 MeV. A 1 m long high power test model of DTL has been fabricated and tested with a duty factor of 20%. In the high energy accelerator part, a superconducting (SC) linac has been selected as a main option from 100 MeV to 1.5 GeV. A test stand for SC linac cavity with equipment of cryogenics, vacuum, RF source and cavity processing and cleaning system has been prepared to test the fabrication process and physics issues. The vertical tests of β = 0.5 (145 MeV) and β = 0.89 (1.1 GeV) single cell SC cavities have been made resulting in a maximum electric field strength of 44 MV/m and 47 MV/m at 2 K, respectively. (author)

  18. Telescope Construction: A Hands-On Approach to Astronomy Education

    Science.gov (United States)

    Sarrazine, Angela R.; Albin, E.

    2009-01-01

    We report on a popular semester-long telescope making course offered at Fernbank Science Center in Atlanta, GA. The program is tailored for junior / senior level high school students and incorporates the current educational performance standards for the state of Georgia. This course steps out of the traditional classroom environment and allows students to explore optics and astronomical concepts by constructing their own telescopes. Student telescopes follow the classic six-inch f/8 Newtonian reflector design, which has proven to be a good compromise between portability and aperture. Participants meet for a few hours, twice weekly, to build their telescopes. Over the course of the semester, raw one-inch thick Pyrex mirror blanks are ground, polished, and figured by hand into precision telescope objectives. Along the way, students are introduced to the Ronchi and Foucault methods for testing optics and once figured, completed mirrors are then chemically silvered. A plywood Dobsonian-style base is built and eventually mated with an optical tube made from a standard eight-inch concrete form tube or sonotube. An evening of star testing the optics and observation is planned at the end of the semester to insure the proper operation of each telescope. In summary, we believe that a hands-on approach to the understanding and use of optical telescopes is a great way not only to instill enthusiasm among students for the night sky, but may perhaps inspire the next generation of professional telescope makers.

  19. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    Science.gov (United States)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  20. Cartographic science: a compendium of map projections, with derivations

    National Research Council Canada - National Science Library

    Fenna, Donald

    2007-01-01

    .... Starting from widely described geometric projecting onto flat paper, cylinder, and cone, and then progressing through several layers of mathematics to reach modern projections, the author maximizes...

  1. Changes in Participants' Scientific Attitudes and Epistemological Beliefs during an Astronomical Citizen Science Project

    Science.gov (United States)

    Price, C. Aaron; Lee, Hee-Sun

    2013-01-01

    Citizen science projects provide non-scientists with opportunities to take part in scientific research. While their contribution to scientific data collection has been well documented, there is limited research on how participation in citizen science projects may affect their scientific literacy. In this study, we investigated (1) how volunteers'…

  2. How Teaching Science Using Project-Based Learning Strategies Affects the Classroom Learning Environment

    Science.gov (United States)

    Hugerat, Muhamad

    2016-01-01

    This study involved 458 ninth-grade students from two different Arab middle schools in Israel. Half of the students learned science using project-based learning strategies and the other half learned using traditional methods (non-project-based). The classes were heterogeneous regarding their achievements in the sciences. The adapted questionnaire…

  3. Hands-on-Entropy, Energy Balance with Biological Relevance

    Science.gov (United States)

    Reeves, Mark

    2015-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory

  4. The Use of Online Citizen-Science Projects to Provide Experiential Learning Opportunities for Nonmajor Science Students?

    OpenAIRE

    Kridelbaugh, Donna M.

    2016-01-01

    Citizen science is becoming even more accessible to the general public through technological advances in the development of mobile applications, facilitating information dissemination and data collection. With the advent of “big data,” many citizen-science projects designed to help researchers sift through piles of research data now exist entirely online, either in the form of playing a game or via other digital avenues. Recent trends in citizen science have also focused on “crowdsourcing” so...

  5. Airway Science curriculum demonstration project : summary of initial evaluation findings.

    Science.gov (United States)

    1988-10-01

    The performance, perceptions, and characteristics of Airway Science hires were compared with those of traditional hires. As of May 12, 1987. a total of 197 Airway Science candidates had been selected into FAA occupations. The demographic characterist...

  6. PBL, Hands-On/ Digital resources in Geology, (Teaching/ Learning)

    Science.gov (United States)

    Soares, Rosa; Santos, Cátia; Carvalho, Sara

    2015-04-01

    The present study reports the elaboration, application and evaluation of a problem-based learning (PBL) program that aims to evaluate the effectiveness in students learning the Rock Cycle theme. Prior research on both PBL and Rock Cycle was conducted within the context of science education so as to elaborate and construct the intervention program. Findings from these studies indicated both the PBL methodology and Rock Cycle as helpful for teachers and students. PBL methodology has been adopted in this study since it is logically incorporated in a constructivism philosophy application and it was expected that this approach would assist students towards achieving a specific set of competencies. PBL is a student-centered method based on the principle of using problems as the starting point for the acquisition of new knowledge. Problems are based on complex real-world situations. All information needed to solve the problem is initially not given. Students will identify, find, and use appropriate resources to complete the exercise. They work permanently in small groups, developing self-directed activities and increasing participation in discussions. Teacher based guidance allows students to be fully engaged in knowledge building. That way, the learning process is active, integrated, cumulative, and connected. Theme "Rock Cycle" was introduced using a problematic situation, which outlined the geological processes highlighted in "Foz do Douro" the next coastline of the school where the study was developed. The questions proposed by the students were solved, using strategies that involved the use of hands-on activities and virtual labs in Geology. The systematization of the selected theme was performed in a field excursion, implemented according to the organizational model of Nir Orion, to The "Foz do Douro" metamorphic complex. In the evaluation of the learning process, data were obtained on students' development of knowledge and competencies through the application of

  7. The Role of Project Science in the Chandra X-Ray Observatory

    Science.gov (United States)

    O'Dell, Stephen L.; Weisskopf, Martin C.

    2006-01-01

    The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.

  8. Project-Based Learning versus Textbook/Lecture Learning in Middle School Science

    Science.gov (United States)

    Main, Sindy

    2015-01-01

    As schools continue to become more diverse, it is important to look at science teaching methods that will meet the needs of all students. In this study, 172 students in a middle school in Northwestern Illinois were taught using two methods of teaching science. Half of the students were taught using project-based science (PBS) and the other half of…

  9. History, Philosophy, and Science in a Social Perspective: A Pedagogical Project

    Science.gov (United States)

    Guerra, Andreia; Braga, Marco; Reis, Jose Claudio

    2013-01-01

    Various studies have promoted instruction in the history and philosophy of science (HPS) in science classes, but the best way of putting this perspective into practice remains undetermined. To contribute to this issue, we developed a pedagogical project in some high schools in Brazil that aimed to present science content using an…

  10. Looking at Life. Study Guide. Unit A2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    Science.gov (United States)

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide presents activities…

  11. Looking at Life. Teacher's Guide. Unit A2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    Science.gov (United States)

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  12. Swiss Life Sciences - a science communication project for both schools and the wider public led by the foundation Science et Cité.

    Science.gov (United States)

    Röthlisberger, Michael

    2012-01-01

    The foundation Science et Cité was founded 1998 with the aim to inform the wider Swiss public about current scientific topics and to generate a dialogue between science and society. Initiated as an independent foundation by the former State Secretary for Science and Research, Dr. Charles Kleiber, Science et Cité is now attached to the Swiss Academies of Arts and Sciences as a competence center for dialogue with the public. Due to its branches in all language regions of the country, the foundation is ideally suited to initiate and implement communication projects on a nationwide scale. These projects are subdivided into three categories: i) science communication for children/adolescents, ii) establishing a dialogue between science and the wider public, and iii) conducting the role of a national center of competence and networking in science communication. Swiss Life Sciences is a project that fits into all of these categories: a year-round program for schools is complemented with an annual event for the wider public. With the involvement of most of the major Swiss universities, the Swiss National Science Foundation, the foundation Gen Suisse and many other partners, Swiss Life Sciences also sets an example of national networking within the science communication community.

  13. Citizen science participation in research in the environmental sciences: key factors related to projects' success and longevity.

    Science.gov (United States)

    Cunha, Davi G F; Marques, Jonatas F; Resende, Juliana C DE; Falco, Patrícia B DE; Souza, Chrislaine M DE; Loiselle, Steven A

    2017-01-01

    The potential impacts of citizen science initiatives are increasing across the globe, albeit in an imbalanced manner. In general, there is a strong element of trial and error in most projects, and the comparison of best practices and project structure between different initiatives remains difficult. In Brazil, the participation of volunteers in environmental research is limited. Identifying the factors related to citizen science projects' success and longevity within a global perspective can contribute for consolidating such practices in the country. In this study, we explore past and present projects, including a case study in Brazil, to identify the spatial and temporal trends of citizen science programs as well as their best practices and challenges. We performed a bibliographic search using Google Scholar and considered results from 2005-2014. Although these results are subjective due to the Google Scholar's algorithm and ranking criteria, we highlighted factors to compare projects across geographical and disciplinary areas and identified key matches between project proponents and participants, project goals and local priorities, participant profiles and engagement, scientific methods and funding. This approach is a useful starting point for future citizen science projects, allowing for a systematic analysis of potential inconsistencies and shortcomings in this emerging field.

  14. NASA's NPOESS Preparatory Project Science Data Segment: A Framework for Measurement-based Earth Science Data Systems

    Science.gov (United States)

    Schwaller, Mathew R.; Schweiss, Robert J.

    2007-01-01

    The NPOESS Preparatory Project (NPP) Science Data Segment (SDS) provides a framework for the future of NASA s distributed Earth science data systems. The NPP SDS performs research and data product assessment while using a fully distributed architecture. The components of this architecture are organized around key environmental data disciplines: land, ocean, ozone, atmospheric sounding, and atmospheric composition. The SDS thus establishes a set of concepts and a working prototypes. This paper describes the framework used by the NPP Project as it enabled Measurement-Based Earth Science Data Systems for the assessment of NPP products.

  15. Kids Making Sense of Air Quality Around Them Through a Hands-On, STEM-Based Program

    Science.gov (United States)

    Dye, T.

    2015-12-01

    Air pollution in many parts of the world is harming millions of people, shortening lives, and taking a toll on our ecosystem. Cities in India, China, and even the United States frequently exceed air quality standards. The use of localized data is a powerful enhancement to regulatory monitoring site data. Learning about air quality at a local level is a powerful driver for change. The Kids Making Sense program unites Science, Technology, Engineering, and Mathematics (STEM) education with a complete measurement and environmental education system that teaches youth about air pollution and empowers them to drive positive change in their communities. With this program, youth learn about particle pollution, its sources, and health effects. A half-day lecture is followed by hands-on activity using handheld air sensors paired with an app on smartphones. Students make measurements around schools to discover pollution sources and cleaner areas. Next, the data they collect are crowdsourced on a website for guided discussion and data interpretation. This program meets Next Generation Science Standards, encourages project-based learning and deep understanding of applied science, and allows students to practice science like real scientists. The program has been successfully implemented in several schools in the United States and Asia, including New York City, San Francisco, Los Angeles, and Sacramento in the United States, and Taipei and Taichung in Taiwan. During this talk, we'll provide an overview of the program, discuss some of the challenges, and lay out the next steps for Kids Making Sense.

  16. Support of an Active Science Project by a Large Information System: Lessons for the EOS Era

    Science.gov (United States)

    Angelici, Gary L.; Skiles, J. W.; Popovici, Lidia Z.

    1993-01-01

    The ability of large information systems to support the changing data requirements of active science projects is being tested in a NASA collaborative study. This paper briefly profiles both the active science project and the large information system involved in this effort and offers some observations about the effectiveness of the project support. This is followed by lessons that are important for those participating in large information systems that need to support active science projects or that make available the valuable data produced by these projects. We learned in this work that it is difficult for a large information system focused on long term data management to satisfy the requirements of an on-going science project. For example, in order to provide the best service, it is important for all information system staff to keep focused on the needs and constraints of the scientists in the development of appropriate services. If the lessons learned in this and other science support experiences are not applied by those involved with large information systems of the EOS (Earth Observing System) era, then the final data products produced by future science projects may not be robust or of high quality, thereby making the conduct of the project science less efficacious and reducing the value of these unique suites of data for future research.

  17. [The role of science in policy making--EuSANH-ISA project, framework for science advice for health].

    Science.gov (United States)

    Cianciara, Dorota; Piotrowicz, Maria; Bielska-Lasota, Magdalena; Wysocki, Mirosław J

    2012-01-01

    Governments and other authorities (including MPs) should be well informed on issues of science and technology. This is particularly important in the era of evidence-based practice. This implies the need to get expert advice. The process by which scientific knowledge is transmitted, along with proposals how to solve the problem, is called science advice. The main aim of the article is to discuss the issue of science advice--definitions, interaction between science and policymaking, and its position in contemporary policies. The second aim is to present European Science Advisory Network for Health (EuSANH), EuSANH-ISA project, and framework for science advice for health which was developed by participants. Furthermore, the role of civil society in decision-making process and science advice is also discussed. Interaction between scientists and policy-makers are described in terms of science-push approach (technocratic model), policy-pull (decisionistic) and simultaneous push-pull approach (pragmatic). The position of science advice is described in historical perspective from the 50s, especially in the last two decades. Description relies to USA, Canada and UK. Principles of scientific advice to government (Government Office for Science, UK) are quoted. Some important documents related to science advice in EU and UN are mentioned. EuSANH network is described as well as EuSANH-ISA project, with its objectives and outcomes. According to findings of this project, the process of science advice for health should follow some steps: framing the issue to be covered; planning entire process leading to the conclusion; drafting the report; reviewing the report and revision; publishing report and assessing the impact on policy.

  18. The Chemical Engineering behind How Carbonated Beverages Go Flat: A Hands-On Experiment for Freshmen Students

    Science.gov (United States)

    Hohn, Keith L.

    2007-01-01

    A hands-on project was developed to educate new chemical engineering students about the types of problems chemical engineers solve and to improve student enthusiasm for studying chemical engineering. In this project, students studied the phenomenon of carbonated beverages going flat. The project was implemented in 2003 and 2004 at Kansas State…

  19. Field Studies in Science Teacher Preparation Programs: Examples of Research-Oriented Earth and Environmental Science Field Projects for Pre-service and In-service Teachers

    Science.gov (United States)

    O'Neal, M. L.

    2005-12-01

    Science teaching reforms of the past 10 to 20 years have focused on a pedagogical shift from verification-style laboratory exercises, toward hands-on and inquiry-based constructivist teaching methods. Such methods, however, require teachers to be proficient in more than just basic content and teaching strategies. To be effective teachers, these professionals must also be skilled in the design and implementation of research-style investigations. At Loyola College in Maryland, topics in the earth and environmental sciences are used as the basis for field research projects that teach our students science content, along with how to design age-appropriate investigative activities and how to implement them in a stimulating, inquiry-based learning environment. Presented here are examples of three projects, demonstrating how these themes are woven throughout our pre- and in-service teacher preparation programs, at both undergraduate and graduate levels. 1. Watershed Studies - In our undergraduate, pre-service, elementary education teacher preparation program, students design and implement a water quality study in a local watershed. In the classroom, students use topographic maps and aerial photographs to delineate the watersheds' boundaries, to identify current land use patterns, and to select appropriate locations on the trunk stream for testing. Water testing at these sites is conducted during field trips, with data analysis and interpretation performed on-site. On-site work allows students to make connections between stream water quality and adjacent land use practices. Students then relate the content and research results to science teaching standards, in order to develop a unit-plan for use in their future classrooms. 2. Land Use Assessment - In our graduate, in-service, elementary and middle school science program, a local stream valley is used as the basis for an analysis of potential land use changes. Students first construct a topographic base map of the area, and

  20. Evaluation of authentic science projects on climate change in secondary schools : a focus on gender differences

    NARCIS (Netherlands)

    Dijkstra, Elma; Goedhart, Martin

    2011-01-01

    Background and purpose: This study examines secondary-school students' opinions on participating in authentic science projects, which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects

  1. Scientific Value and Educational Goals: Balancing Priorities and Increasing Adult Engagement in a Citizen Science Project

    Science.gov (United States)

    Sickler, Jessica; Cherry, Tammy Messick; Allee, Leslie; Smyth, Rebecca Rice; Losey, John

    2014-01-01

    The Lost Ladybug Project is a citizen science project that engages individuals and groups in research and learning about ladybug population dynamics. With a dual purpose of advancing scientists' research about ladybug populations and achieving learning outcomes with participants, the project's summative evaluation led to critical reflection on the…

  2. Evaluation of Authentic Science Projects on Climate Change in Secondary Schools: A Focus on Gender Differences

    Science.gov (United States)

    Dijkstra, Elma; Goedhart, Martin

    2011-01-01

    Background and purpose: This study examines secondary-school students' opinions on participating in authentic science projects which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects, in which students work with and learn from…

  3. An Interdisciplinary Team Project: Psychology and Computer Science Students Create Online Cognitive Tasks

    Science.gov (United States)

    Flannery, Kathleen A.; Malita, Mihaela

    2014-01-01

    We present our case study of an interdisciplinary team project for students taking either a psychology or computer science (CS) course. The project required psychology and CS students to combine their knowledge and skills to create an online cognitive task. Each interdisciplinary project team included two psychology students who conducted library…

  4. Using videos, apps and hands-on experience in undergraduate hydrology teaching

    Science.gov (United States)

    Van Loon, Anne

    2016-04-01

    Hydrological sciences teaching always needs to make a link between the classroom and the outside world. This can be done with fieldwork and excursions, but the increasing availability of open educational resources gives more-and-more other options to make theory more understandable and applicable. In the undergraduate teaching of hydrology at the University of Birmingham we make use of a number of tools to enhance the hydrology 'experience' of students. Firstly, we add hydrological science videos available in the public domain to our explanations of theory. These are both visualisations of concepts and recorded demonstrations in the field or the lab. One example is the concept of catchments and travel times which has been excellently visualised by MetEd. Secondly, we use a number of mobile phone apps, which provide virtual reality information and real-time monitoring information. We use the MySoil App (by Natural Environment Research Council (NERC), British Geological Survey (BGS) and Centre for Ecology & Hydrology (CEH)) and iGeology / iGeology3D (by BGS) to let students explore soil properties and hydrogeology of an area of interest. And we use the River Levels App (by OGL based on Environment Agency real time data) for exploring real time river levels and investigating spatial variability. Finally, we developed small hands-on projects for students to apply the theory outside the classroom. We for instance let them do simple infiltration experiments and ask them to them design a measurement plan. Evaluations have shown that students enjoy these activities and that it helps their learning. In this presentation we hope to share our experience so that the options for using open (educational) resources for hydrology teaching become more used in linking the classroom to the outside world.

  5. Museums for Science Education: can we make the difference? The case of the EST project

    Directory of Open Access Journals (Sweden)

    Maria Xanthoudaki

    2007-06-01

    Full Text Available This paper addresses the role of museums in education in science and technology through the discussion of a specific project entitled EST “Educate in Science and Technology”. The Project puts together methodologies and activities through which museums can be used as resources for long-term project work. In-service training for teachers, work in class with learning kits or with materials brought in by a Science Van, and visits to the museum are planned and developed jointly by museum experts and teachers. The Project proposes a teaching and learning model which sees the museum experience as central and integral part of a teaching and learning process with more effective outcomes. The analysis of the Project activities and methodologies is based on the work carried out at the National Museum of Science and Technology Leonardo da Vinci, which perceives the learner (the visitor at the heart of its educational methodologies and provision.

  6. Project LASER

    Science.gov (United States)

    1990-01-01

    NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.

  7. LLNL Mercury Project Trinity Open Science Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Shawn A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-17

    The Mercury Monte Carlo particle transport code is used to simulate the transport of radiation through urban environments. These challenging calculations include complicated geometries and require significant computational resources to complete. In the proposed Trinity Open Science calculations, I will investigate computer science aspects of the code which are relevant to convergence of the simulation quantities with increasing Monte Carlo particle counts.

  8. Homogenisation in project management for large German research projects in the Earth system sciences: overcoming the institutional coordination bias

    Science.gov (United States)

    Rauser, Florian; Vamborg, Freja

    2016-04-01

    The interdisciplinary project on High Definition Clouds and Precipitation for advancing climate prediction HD(CP)2 (hdcp2.eu) is an example for the trend in fundamental research in Europe to increasingly focus on large national and international research programs that require strong scientific coordination. The current system has traditionally been host-based: project coordination activities and funding is placed at the host institute of the central lead PI of the project. This approach is simple and has the advantage of strong collaboration between project coordinator and lead PI, while exhibiting a list of strong, inherent disadvantages that are also mentioned in this session's description: no community best practice development, lack of integration between similar projects, inefficient methodology development and usage, and finally poor career development opportunities for the coordinators. Project coordinators often leave the project before it is finalized, leaving some of the fundamentally important closing processes to the PIs. This systematically prevents the creation of professional science management expertise within academia, which leads to an automatic imbalance that hinders the outcome of large research programs to help future funding decisions. Project coordinators in academia often do not work in a professional project office environment that could distribute activities and use professional tools and methods between different projects. Instead, every new project manager has to focus on methodological work anew (communication infrastructure, meetings, reporting), even though the technological needs of large research projects are similar. This decreases the efficiency of the coordination and leads to funding that is effectively misallocated. We propose to challenge this system by creating a permanent, virtual "Centre for Earth System Science Management CESSMA" (cessma.com), and changing the approach from host- based to centre-based. This should

  9. Scientific visualization as an expressive medium for project science inquiry

    Science.gov (United States)

    Gordin, Douglas Norman

    Scientists' external representations can help science education by providing powerful tools for students' inquiry. Scientific visualization is particularly well suited for this as it uses color patterns, rather than algebraic notation. Nonetheless, visualization must be adapted so it better fits with students' interests, goals, and abilities. I describe how visualization was adapted for students' expressive use and provide a case study where students successfully used visualization. The design process began with scientists' tools, data sets, and activities which were then adapted for students' use. I describe the design through scenarios where students create and analyze visualizations and present the software's functionality through visualization's sub-representations of data; color; scale, resolution, and projection; and examining the relationships between visualizations. I evaluate these designs through a "hot-house" study where a small group of students used visualization under near ideal circumstances for two weeks. Using videotapes of group interactions, software logs, and students' work I examine their representational and inquiry strategies. These inquiries were successful in that the group pursued their interest in world hunger by creating a visualization of daily per capita calorie consumption. Through creating the visualization the students engage in a process of meaning making where they interweave their prior experiences and beliefs with the representations they are using. This interweaving and other processes of collaborative visualization are shown when the students (a) computed values, (b) created a new color scheme, (c) cooperated to create the visualization, and (d) presented their work to other students. I also discuss problems that arose when students (a) used units without considering their meaning, (b) chose inappropriate comparisons in case-based reasoning, (c) did not participate equally during group work, (d) were confused about additive

  10. At-risk children's use of reflection and revision in hands-on experimental activities

    Science.gov (United States)

    Petrosino, Anthony J., Jr.

    The goal of this study was to investigate the effects of incorporating opportunities for reflection and revision in hands-on science instruction which emphasized experimentation using model rockets. The participants were low achieving sixth grade summer school students (n = 23) designated as at-risk for school failure by their district. The group was asked a series of interview questions based on work by Schauble et al. (1995) relating to experimentation. The interviews took place over three distinct time points corresponding to a "hands-on only" condition, a "hands-on with reflection and revision" condition and a "hands-on with repeated reflection and revision" condition. A Friedman's Two-Way Analysis of Variance by Ranks indicate students score low at first with traditional hands-on instruction but improve significantly with opportunities to reflect and revise their experiments. In addition, a sociocultural analysis was conducted during the summer school session to assess the model rocket activity as an apprenticeship, as guided participation and as participatory appropriation using a framework established by Rogoff (1994). Finally, a survey (the Classroom Environment Survey) was administered to the students measuring five constructs consistent with a constructivist classroom: participation, autonomy, relevance, commitment to learning and disruptions to learning. Analysis indicate students in the summer school model rocket intervention experienced a greater sense of constructivist principles during the activity than a similar comparison group utilizing reform minded instruction but not including opportunities for reflection and revision cycles. This research provides important evidence that, like scientists, students in school can learn effectively from extended practice in a varied context. Importantly, the data indicate that hands-on instruction is best utilized when opportunities for reflection and revision are made explicit. Implications are discussed related

  11. Conducting Original, Hands-On Astronomical Research in the Classroom

    Science.gov (United States)

    Corneau, M. J.

    2009-12-01

    teachers to convey moderately complex computer science, optical, geographic, mathematical, informational and physical principles through hands-on telescope operations. In addition to the general studies aspects of classroom internet-based astronomy, Tzec Maun supports real science by enabling operators precisely point telescopes and acquire extremely faint, magnitude 19+ CCD images. Thanks to the creative Team of Photometrica (photometrica.org), my teams now have the ability to process and analyze images online and produce results in short order. Normally, astronomical data analysis packages cost greater than thousands of dollars for single license operations. Free to my team members, Photometrica allows students to upload their data to a cloud computing server and read precise photometric and/or astrometric results. I’m indebted to Michael and Geir for their support. The efficacy of student-based research is well documented. The Council on Undergraduate Research defines student research as, "an inquiry or investigation conducted by an undergraduate that makes an original intellectual or creative contribution to the discipline." (http://serc.carleton.edu/introgeo/studentresearch/What. Teaching from Tzec Maun in the classroom is the most original teaching research I can imagine. I very much look forward to presenting this program to the convened body.

  12. Factors Affecting Construction of Science Discourse in the Context of an Extracurricular Science and Technology Project

    Science.gov (United States)

    Webb, Horace P.

    2009-01-01

    Doing and learning science are social activities that require certain language, activities, and values. Both constitute what Gee (2005) calls Discourses. The language of learning science varies with the learning context (Lemke, 2001,1990). "Science for All Americans" (AAAS, 1990) and "Inquiry and the National Science Education…

  13. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Science.gov (United States)

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  14. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N G; Shea, N [eds.

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  15. Hands-on-Universe, Europe Bringing frontline interactive astronomy to the classroom

    Science.gov (United States)

    Ferlet, R.

    Hands-on-Universe, Europe (EU-HOU) aims at re-awakening the interest for science in the young generations through astronomy and new technologies. It relies on real observations acquired through a worldwide internet-based network of automatic telescopes or with didactical tools (webcam, radiotelescope). Pupils manipulate images in the classroom environment, using specific software within pedagogical resources constructed in close collaboration between researchers and teachers. EU-HOU is freely available on the web, and trains european teachers.

  16. participatory evaluation: the case of the natal primary science project ...

    African Journals Online (AJOL)

    IS crucial in participatory evaluation IS the realization that such a .... action research models in which the researcher is a participant ... They do, however, neglect the research ... example, about how children learn science) and by the process of ...

  17. Magellan Project: Evolving enhanced operations efficiency to maximize science value

    Science.gov (United States)

    Cheuvront, Allan R.; Neuman, James C.; Mckinney, J. Franklin

    1994-01-01

    Magellan has been one of NASA's most successful spacecraft, returning more science data than all planetary spacecraft combined. The Magellan Spacecraft Team (SCT) has maximized the science return with innovative operational techniques to overcome anomalies and to perform activities for which the spacecraft was not designed. Commanding the spacecraft was originally time consuming because the standard development process was envisioned as manual tasks. The Program understood that reducing mission operations costs were essential for an extended mission. Management created an environment which encouraged automation of routine tasks, allowing staff reduction while maximizing the science data returned. Data analysis and trending, command preparation, and command reviews are some of the tasks that were automated. The SCT has accommodated personnel reductions by improving operations efficiency while returning the maximum science data possible.

  18. Project Stakeholder Management: A Case Study of a Brazilian Science Park

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Pacagnella Júnior

    2015-07-01

    Full Text Available The stakeholder management has been a topic increasingly discussed in the literature about project management, though still existing, large gaps to be filled, especially in complex projects such as the implementation of science parks. Thus, in this paper is presented a case of a Brazilian Science Park which shows how the management team of the project identified key stakeholders and established strategies for engagement and collaboration that sought to increase their engagement, get resources and make use of specific capabilities that were required during the lifecycle of the project to the reaching of its goals.

  19. The muon science facility at the JAERI/KEK joint project

    International Nuclear Information System (INIS)

    Miyake, Y.; Nishiyama, K.; Makimura, S.; Kawamura, N.; Shimomura, K.; Kadono, R.; Higemoto, W.; Fukuchi, K.; Beveridge, J.L.; Ishida, K.; Matsuzaki, T.; Watanabe, I.; Matsuda, Y.; Sakamoto, S.; Nakamura, S.N.; Nagamine, K.

    2003-01-01

    The Muon Science Facility is one of the experimental arenas of the JAERI/KEK Joint Project, which also includes neutron science, particle and nuclear physics, neutrino physics and nuclear transmutation science. Following the recommendations by the review committees, the Joint Project was finally approved for construction at the end of December, 2000. The approval is for Phase 1 of 1335 Oku Yen out of the total project cost of 1890 Oku Yen. It is planned to locate the muon science experimental area together with the neutron facility in an integrated building, as a facility for materials and life science studies. Because its construction will be started in April 2003, we are now working to complete the detailed design of the building structure, shielding, electrical services, cooling water, primary proton beam line, one muon target and secondary beam lines

  20. Project Mapping to Build Capacity and Demonstrate Impact in the Earth Sciences

    Science.gov (United States)

    Hemmings, S. N.; Searby, N. D.; Murphy, K. J.; Mataya, C. J.; Crepps, G.; Clayton, A.; Stevens, C. L.

    2017-12-01

    Diverse organizations are increasingly using project mapping to communicate location-based information about their activities. NASA's Earth Science Division (ESD), through the Earth Science Data Systems and Applied Sciences' Capacity Building Program (CBP), has created a geographic information system of all ESD projects to support internal program management for the agency. The CBP's NASA DEVELOP program has built an interactive mapping tool to support capacity building for the program's varied constituents. This presentation will explore the types of programmatic opportunities provided by a geographic approach to management, communication, and strategic planning. We will also discuss the various external benefits that mapping supports and that build capacity in the Earth sciences. These include activities such as project matching (location-focused synergies), portfolio planning, inter- and intra-organizational collaboration, science diplomacy, and basic impact analysis.

  1. Classroom Environment in the Implementation of an Innovative Curriculum Project in Science Education.

    Science.gov (United States)

    Suarez, Mercedes; Pias, Rosa; Membiela, Pedro; Dapia, Dolores

    1998-01-01

    Analyzes the perceptions of students, teachers, and external observers in order to study the influence of classroom environment on the implementation of an innovative project in science education. Contains 33 references. (DDR)

  2. Scientific literacy of adult participants in an online citizen science project

    Science.gov (United States)

    Price, Charles Aaron

    Citizen Science projects offer opportunities for non-scientists to take part in scientific research. Scientific results from these projects have been well documented. However, there is limited research about how these projects affect their volunteer participants. In this study, I investigate how participation in an online, collaborative astronomical citizen science project can be associated with the scientific literacy of its participants. Scientific literacy is measured through three elements: attitude towards science, belief in the nature of science and competencies associated with learning science. The first two elements are measured through a pre-test given to 1,385 participants when they join the project and a post-test given six months later to 125 participants. Attitude towards science was measured using nine Likert-items custom designed for this project and beliefs in the nature of science were measured using a modified version of the Nature of Science Knowledge scale. Responses were analyzed using the Rasch Rating Scale Model. Competencies are measured through analysis of discourse occurring in online asynchronous discussion forums using the Community of Inquiry framework, which describes three types of presence in the online forums: cognitive, social and teaching. Results show that overall attitudes did not change, p = .225. However, there was significant change towards attitudes about science in the news (positive) and scientific self efficacy (negative), p impact on some aspects of scientific literacy. Using the Rasch Model allowed us to uncover effects that may have otherwise been hidden. Future projects may want to include social interactivity between participants and also make participants specifically aware of how they are contributing to the entire scientific process.

  3. Mapping epistemic cultures and learning potential of participants in citizen science projects.

    Science.gov (United States)

    Vallabh, Priya; Lotz-Sisitka, Heila; O'Donoghue, Rob; Schudel, Ingrid

    2016-06-01

    The ever-widening scope and range of global change and interconnected systemic risks arising from people-environment relationships (social-ecological risks) appears to be increasing concern among, and involvement of, citizens in an increasingly diversified number of citizen science projects responding to these risks. We examined the relationship between epistemic cultures in citizen science projects and learning potential related to matters of concern. We then developed a typology of purposes and a citizen science epistemic-cultures heuristic and mapped 56 projects in southern Africa using this framework. The purpose typology represents the range of knowledge-production purposes, ranging from laboratory science to social learning, whereas the epistemic-cultures typology is a relational representation of scientist and citizen participation and their approach to knowledge production. Results showed an iterative relationship between matters of fact and matters of concern across the projects; the nexus of citizens' engagement in knowledge-production activities varied. The knowledge-production purposes informed and shaped the epistemic cultures of all the sampled citizen science projects, which in turn influenced the potential for learning within each project. Through a historical review of 3 phases in a long-term river health-monitoring project, we found that it is possible to evolve the learning curve of citizen science projects. This evolution involved the development of scientific water monitoring tools, the parallel development of pedagogic practices supporting monitoring activities, and situated engagement around matters of concern within social activism leading to learning-led change. We conclude that such evolutionary processes serve to increase potential for learning and are necessary if citizen science is to contribute to wider restructuring of the epistemic culture of science under conditions of expanding social-ecological risk. © 2016 Society for

  4. Withholding answers during hands-on scientific investigations? Comparing effects on developing students' scientific knowledge, reasoning, and application

    Science.gov (United States)

    Zhang, Lin

    2018-03-01

    As more concerns have been raised about withholding answers during science teaching, this article argues for a need to detach 'withholding answers' from 'hands-on' investigation tasks. The present study examined students' learning of light-related content through three conditions: 'hands-on' + no 'withholding' (hands-on only: HO), 'hands-on' + 'withholding' (hands-on investigation with answers withheld: HOW), and no 'hands-on' + no 'withholding' (direction instruction: DI). Students were assessed in terms of how well they (1) knew the content taught in class; (2) reasoned with the learned content; and (3) applied the learned content to real-life situations. Nine classes of students at 4th and 5th grades, N = 136 in total, were randomly assigned to one of the three conditions. ANCOVA results showed that students in the hands-on only condition reasoned significantly better than those in the other two conditions. Students in this condition also seemed to know the content fairly better although the advance was not significant. Students in all three conditions did not show a statistically significant difference in their ability to apply the learned content to real-life situations. The findings from this study provide important contributions regarding issues relating to withholding answers during guided scientific inquiry.

  5. Project Citizen: Promoting Action-Oriented Citizen Science in the Classroom

    Science.gov (United States)

    Green, Carie; Medina-Jerez, William

    2012-01-01

    In recent years, citizen science projects have emerged as a means to involve students in scientific inquiry, particularly in the fields of ecology and environmental science. A citizen scientist is "a volunteer who collects and/or processes data as part of a scientific inquiry" (Silverton 2009, p. 467). Participation in citizen science…

  6. Primary teachers conducting inquiry projects : the effect on attitude towards science and inquiry

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte

    2015-01-01

    This paper presents the results of a theoretically informed professionalisation project that was set up to improve primary teachers’ attitudes towards science and attitude towards inquiry. A positive attitude towards science is of fundamental importance for teachers when stimulating interest in

  7. Investigating and Stimulating Primary Teachers' Attitudes Towards Science: Summary of a Large-Scale Research Project

    Science.gov (United States)

    Walma van der Molen, Juliette; van Aalderen-Smeets, Sandra

    2013-01-01

    Attention to the attitudes of primary teachers towards science is of fundamental importance to research on primary science education. The current article describes a large-scale research project that aims to overcome three main shortcomings in attitude research, i.e. lack of a strong theoretical concept of attitude, methodological flaws in…

  8. Investigating and stimulating primary teachers’ attitudes towards science: Summary of a large-scale research project

    NARCIS (Netherlands)

    Walma van der Molen, Julie Henriëtte; van Aalderen-Smeets, Sandra

    2013-01-01

    Attention to the attitudes of primary teachers towards science is of fundamental importance to research on primary science education. The current article describes a large-scale research project that aims to overcome three main shortcomings in attitude research, i.e. lack of a strong theoretical

  9. 77 FR 58111 - Notice of Submission for OMB Review; Institute of Education Sciences; FAFSA Completion Project...

    Science.gov (United States)

    2012-09-19

    ... DEPARTMENT OF EDUCATION Notice of Submission for OMB Review; Institute of Education Sciences; FAFSA Completion Project Evaluation SUMMARY: The Institute of Education Sciences (IES) at the U.S. Department of Education (ED) is conducting a rigorous study of the Free Application for Federal Student Aid...

  10. The PERFORM project: using performing arts to increase engagement and understanding of science.

    Science.gov (United States)

    James, Jon

    2017-04-01

    This commentary describes some of the current challenges for science education in the UK and how an EU educational project (PERFORM) is seeking to use performing arts to engage young people with science, its values and the processes of research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. A rural virtual health sciences library project: research findings with implications for next generation library services*

    OpenAIRE

    Richwine, Margaret (Peggy); McGowan, Julie J.

    2001-01-01

    Purpose: The Shared Hospital Electronic Library of Southern Indiana (SHELSI) research project was designed to determine whether access to a virtual health sciences library and training in its use would support medical decision making in rural southern Indiana and achieve the same level of impact seen by targeted information services provided by health sciences librarians in urban hospitals.

  12. Final Technical Report for earmark project "Atmospheric Science Program at the University of Louisville"

    Energy Technology Data Exchange (ETDEWEB)

    Dowling, Timothy Edward [University of Louisville

    2014-02-11

    We have completed a 3-year project to enhance the atmospheric science program at the University of Louisville, KY (est. 2008). The goals were to complete an undergraduate atmospheric science laboratory (Year 1) and to hire and support an assistant professor (Years 2 and 3). Both these goals were met on schedule, and slightly under budget.

  13. Scientific Knowledge and Attitude Change: The Impact of a Citizen Science Project. Research Report

    Science.gov (United States)

    Brossard, Dominique; Lewenstein, Bruce; Bonney, Rick

    2005-01-01

    This paper discusses the evaluation of an informal science education project, The Birdhouse Network (TBN) of the Cornell Laboratory of Ornithology. The Elaboration Likelihood Model and the theory of Experiential Education were used as frameworks to analyse the impact of TBN on participants' attitudes toward science and the environment, on their…

  14. Balancing the Equation. A Study of Women and Science and Technology within Further Education. Project Report.

    Science.gov (United States)

    Stoney, Sheila M.; Reid, Margaret I.

    A 1-year project was conducted to explore ways and suggest possible strategies by which Further Education staff in Great Britain can help improve women's participation, progress, and attainment in physical science and technology, particularly at technician and craft levels. Data were collected by a questionnaire survey of heads of science and…

  15. Examining of the Predictors of Pre-Service Teachers' Perceptions of the Quality of the Science Fair Projects in Turkey

    Science.gov (United States)

    Tortop, Hasan Said

    2014-01-01

    This study aimed at examining the predictors of quality of science fair (SF) projects in the light of pre-service teachers' evaluation of SF rubric' domains. These projects were selected by judges in A city for the A Regional Exhibition of Science and Mathematics Project Study for Primary School Students: The SF projects were evaluated by thirty…

  16. Citizen Data Science for Social Good in Complex Systems: Case Studies and Vignettes from Recent Projects

    OpenAIRE

    Banerjee, Soumya

    2017-01-01

    The confluence of massive amounts of openly available data, sophisticated machine learning algorithms and an enlightened citizenry willing to engage in data science presents novel opportunities for crowd sourced data science for social good. In this submission, I present vignettes of data science projects that I have been involved in and which have impact in various spheres of life and on social good. Complex systems are all around us: from social networks to transportation sys...

  17. Virtual Mockup test based on computational science and engineering. Near future technology projected by JSPS-RFTFADVENTURE project

    International Nuclear Information System (INIS)

    Yoshimura, Shinobu

    2001-01-01

    The ADVENTURE project began on August, 1997, as a project in the computational science' field of JSPS-RFTFADVENTURE project, and is progressed as five year project. In this project, by using versatile parallel computer environment such as PC cluster, super parallel computer, and so on , to solve an arbitrary shape of actual dynamical equation by using 10 to 100 million freedom class mode under maintaining a general use analytical capacity agreeable with present general use computational mechanics system, further development of a large-scale parallel computational mechanics system (ADVENTURE system) capable of carrying out an optimization design on shapes, physical properties, loading conditions, and so on is performed. Here was scoped, after outlining on background of R and D on ADVENTURE system and its features, on near future virtual mockup test forecast from it. (G.K.)

  18. Hands-on Training Courses Using Research Reactors and Accelerators

    International Nuclear Information System (INIS)

    2014-01-01

    The enhancement of nuclear science education and training in all Member States is of interest to the IAEA since many of these countries, particularly in the developing world, are building up and expanding their scientific and technological infrastructures. Unfortunately, most of these countries still lack sufficient numbers of well-educated and qualified nuclear specialists and technologists. This may arise from, amongst other things: a lack of candidates with sufficient educational background in nuclear science who would qualify to receive specialized training; a lack of institutions available for training nuclear science specialists; a lack of lecturers in nuclear related fields; and a lack of suitable educational and teaching materials. A related concern is the potential loss of valuable knowledge accumulated over many decades due to the ageing workforce. An imperative for Member States is to develop and offer suitable graduate and postgraduate academic programmes which combine study and project work so that students can attain a prerequisite level of knowledge, abilities and skills in their chosen subject area. In nearly all academic programmes, experimental work forms an essential and integral component of study to help students develop general and subject specific skills. Experimental laboratory courses and exercises can mean practical work in a conventional laboratory or an advanced facility with an operational particle accelerator or research reactor often accompanied by computer simulations and theoretical exercises. In this context, available or newly planned research reactors and particle accelerators should be seen as extremely important and indispensable components of nuclear science and technology curricula. Research reactors can demonstrate nuclear science and technology based on nuclear fission and the interaction of neutrons and photons with matter, while particle accelerators can demonstrate nuclear science and technology based on charged particle

  19. Network attacks and defenses a hands-on approach

    CERN Document Server

    Trabelsi, Zouheir; Al Braiki, Arwa; Mathew, Sujith Samuel

    2012-01-01

    The attacks on computers and business networks are growing daily, and the need for security professionals who understand how malfeasants perform attacks and compromise networks is a growing requirement to counter the threat. Network security education generally lacks appropriate textbooks with detailed, hands-on exercises that include both offensive and defensive techniques. Using step-by-step processes to build and generate attacks using offensive techniques, Network Attacks and Defenses: A Hands-on Approach enables students to implement appropriate network security solutions within a laborat

  20. Improving the Science-Policy Interface of Biodiversity Research Projects

    NARCIS (Netherlands)

    Neßhöver, C.; Timaeus, J.; Wittmer, H.; Krieg, A.; Geamana, N.; Van den Hove, S.; Young, J.; Watt, A.

    2013-01-01

    Against the background of a continuing biodiversity loss there is a strong need to improve the interfaces between science and policy. Many approaches for such interfaces exist, the most recent being the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES). A less prominent

  1. The GLOBE Carbon Project: Integrating the Science of Carbon Cycling and Climate Change into K-12 Classrooms.

    Science.gov (United States)

    Ollinger, S. V.; Silverberg, S.; Albrechtova, J.; Freuder, R.; Gengarelly, L.; Martin, M.; Randolph, G.; Schloss, A.

    2007-12-01

    The global carbon cycle is a key regulator of the Earth's climate and is central to the normal function of ecological systems. Because rising atmospheric CO2 is the principal cause of climate change, understanding how ecosystems cycle and store carbon has become an extremely important issue. In recent years, the growing importance of the carbon cycle has brought it to the forefront of both science and environmental policy. The need for better scientific understanding has led to establishment of numerous research programs, such as the North American Carbon Program (NACP), which seeks to understand controls on carbon cycling under present and future conditions. Parallel efforts are greatly needed to integrate state-of-the-art science on the carbon cycle and its importance to climate with education and outreach efforts that help prepare society to make sound decisions on energy use, carbon management and climate change adaptation. Here, we present a new effort that joins carbon cycle scientists with the International GLOBE Education program to develop carbon cycle activities for K-12 classrooms. The GLOBE Carbon Cycle project is focused on bringing cutting edge research and research techniques in the field of terrestrial ecosystem carbon cycling into the classroom. Students will collect data about their school field site through existing protocols of phenology, land cover and soils as well as new protocols focused on leaf traits, and ecosystem growth and change. They will also participate in classroom activities to understand carbon cycling in terrestrial ecosystems, these will include plant- a-plant experiments, hands-on demonstrations of various concepts, and analysis of collected data. In addition to the traditional GLOBE experience, students will have the opportunity to integrate their data with emerging and expanding technologies including global and local carbon cycle models and remote sensing toolkits. This program design will allow students to explore research

  2. A Case Study for Comparing the Effectiveness of a Computer Simulation and a Hands-on Activity on Learning Electric Circuits

    Science.gov (United States)

    Ekmekci, Adem; Gulacar, Ozcan

    2015-01-01

    Science education reform emphasizes innovative and constructivist views of science teaching and learning that promotes active learning environments, dynamic instructions, and authentic science experiments. Technology-based and hands-on instructional designs are among innovative science teaching and learning methods. Research shows that these two…

  3. A Professional Development Project for Improving the Use of Information and Communication Technologies in Science Teaching

    Science.gov (United States)

    Lavonen, Jari; Juuti, Kalle; Aksela, Maija; Meisalo, Veijo

    2006-01-01

    This article describes a professional development project aiming to develop practical approaches for the integration of information and communication technologies (ICT) into science education. Altogether, 13 two-day face-to-face seminars and numerous computer network conferences were held during a three-year period. The goals for the project were…

  4. 75 FR 60091 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2010-09-29

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of the Army, Army Research, Development and... project; correction. SUMMARY: On September 9, 2010 (75 FR 55199), DoD published a notice concerning the...

  5. Use of a Laboratory Field Project in an Introductory Crop Science Course.

    Science.gov (United States)

    Lane, Robert A.

    1986-01-01

    Assesses the benefits resulting from a laboratory field project and report for agricultural students in an introductory crop science course. Student responses to evaluation statements indicated that the project helped them identify crops, understand cultural and management practices, and recognize environmental influences that affect crop…

  6. Primary teachers conducting inquiry projects : effects on attitudes towards teaching science and conducting inquiry

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte; van Hest, Erna G.W.C.M.; Poortman, Cindy Louise

    2017-01-01

    This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers’ attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of

  7. Primary Teachers Conducting Inquiry Projects: Effects on Attitudes towards Teaching Science and Conducting Inquiry

    Science.gov (United States)

    van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; van Hest, Erna G. W. C. M.; Poortman, Cindy

    2017-01-01

    This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers' attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of teachers' attitudes. Teachers felt less anxious…

  8. Statistics on Science and Technology in Latin America, Experience with UNESCO Pilot Projects, 1972-1974.

    Science.gov (United States)

    Thebaud, Schiller

    This report examines four UNESCO pilot projects undertaken in 1972 in Brazil, Colombia, Peru, and Uruguay to study the methods used for national statistical surveys of science and technology. The projects specifically addressed the problems of comparing statistics gathered by different methods in different countries. Surveys carried out in Latin…

  9. Fuels planning: science synthesis and integration; fact sheet: The Fuels Synthesis Project overview

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The geographic focus of the "Fuels Planning: Science Synthesis and Integration" project #known as the Fuels Synthesis Project# is on the dry forests of the Western United States. Target audiences include fuels management specialists, resource specialists, National Environmental Policy Act #NEPA# planning team leaders, line officers in the USDA Forest Service...

  10. The epistemic culture in an online citizen science project: Programs, antiprograms and epistemic subjects.

    Science.gov (United States)

    Kasperowski, Dick; Hillman, Thomas

    2018-05-01

    In the past decade, some areas of science have begun turning to masses of online volunteers through open calls for generating and classifying very large sets of data. The purpose of this study is to investigate the epistemic culture of a large-scale online citizen science project, the Galaxy Zoo, that turns to volunteers for the classification of images of galaxies. For this task, we chose to apply the concepts of programs and antiprograms to examine the 'essential tensions' that arise in relation to the mobilizing values of a citizen science project and the epistemic subjects and cultures that are enacted by its volunteers. Our premise is that these tensions reveal central features of the epistemic subjects and distributed cognition of epistemic cultures in these large-scale citizen science projects.

  11. LAMMPS Project Report for the Trinity KNL Open Science Period.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thompson, Aidan P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wood, Mitchell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    LAMMPS is a classical molecular dynamics code (lammps.sandia.gov) used to model materials science problems at Sandia National Laboratories and around the world. LAMMPS was one of three Sandia codes selected to participate in the Trinity KNL (TR2) Open Science period. During this period, three different problems of interest were investigated using LAMMPS. The first was benchmarking KNL performance using different force field models. The second was simulating void collapse in shocked HNS energetic material using an all-atom model. The third was simulating shock propagation through poly-crystalline RDX energetic material using a coarse-grain model, the results of which were used in an ACM Gordon Bell Prize submission. This report describes the results of these simulations, lessons learned, and some hardware issues found on Trinity KNL as part of this work.

  12. Art meets science: The Cosmopolitan Chicken Research Project.

    Science.gov (United States)

    Stinckens, A; Vereijken, A; Ons, E; Konings, P; Van As, P; Cuppens, H; Moreau, Y; Sakai, R; Aerts, J; Goddeeris, B; Buys, N; Vanmechelen, K; Cassiman, J J

    2015-01-01

    The Cosmopolitan Chicken Project is an artistic undertaking of renowned artist Koen Vanmechelen. In this project, the artist interbreeds domestic chickens from different countries aiming at the creation of a true Cosmopolitan Chicken as a symbol for global diversity. The unifying theme is the chicken and the egg, symbols that link scientific, political, philosophical and ethical issues. The Cosmopolitan Chicken Research Project is the scientific component of this artwork. Based on state of the art genomic techniques, the project studies the effect of the crossing of chickens on the genetic diversity. Also, this research is potentially applicable to the human population. The setup of the CC®P is quite different from traditional breeding experiments: starting from the crossbreed of two purebred chickens (Mechelse Koekoek x Poule de Bresse), every generation is crossed with a few animals from another breed. For 26 of these purebred and crossbred populations, genetic diversity was measured (1) under the assumption that populations were sufficiently large to maintain all informative SNP within a generation and (2) under the circumstances of the CCP breeding experiment. Under the first assumption, a steady increase in genetic diversity was witnessed over the consecutive generations, thus indeed indicating the creation of a "Cosmopolitan Chicken Genome". However, under the conditions of the CCP, which reflects the reality within the human population, diversity is seen to fluctuate within given boundaries instead of steadily increasing. A reflection on this might be that this is because, in humans, an evolutionary optimum in genetic diversity is reached. Key words.

  13. Hands-On Mathematics: Two Cases from Ancient Chinese Mathematics

    Science.gov (United States)

    Wang, Youjun

    2009-01-01

    In modern mathematical teaching, it has become increasingly emphasized that mathematical knowledge should be taught by problem-solving, hands-on activities, and interactive learning experiences. Comparing the ideas of modern mathematical education with the development of ancient Chinese mathematics, we find that the history of mathematics in…

  14. Teaching DNA Fingerprinting using a Hands-on Simulation.

    Science.gov (United States)

    Schug, Thatcher

    1998-01-01

    Presents an inexpensive hands-on lesson in DNA fingerprinting that can be completed in a single class period. Involves students in solving a murder in which a drop of blood is fingerprinted and matched with the blood of the murderer. (DDR)

  15. Enhancing Lean Manufacturing Learning Experience through Hands-On Simulation

    Science.gov (United States)

    Elbadawi, Isam; McWilliams, Douglas L.; Tetteh, Edem G.

    2010-01-01

    Finding appropriate interactive exercises to increase students' learning in technical topic courses is always challenging to educators. In this study, several paper plane hands-on simulation exercises were developed, used, and tested in a lean manufacturing course for beginning college students. A pretest and posttest was used to assess the…

  16. Google Earth for Landowners: Insights from Hands-on Workshops

    Science.gov (United States)

    Huff, Tristan

    2014-01-01

    Google Earth is an accessible, user-friendly GIS that can help landowners in their management planning. I offered hands-on Google Earth workshops to landowners to teach skills, including mapmaking, length and area measurement, and database management. Workshop participants were surveyed at least 6 months following workshop completion, and learning…

  17. Life sciences flight experiments program, life sciences project division, procurement quality provisions

    Science.gov (United States)

    House, G.

    1980-01-01

    Methods are defined for implementing quality assurance policy and requirements for life sciences laboratory equipment, experimental hardware, integration and test support equipment, and integrated payloads.

  18. The science of laboratory and project management in regulated bioanalysis.

    Science.gov (United States)

    Unger, Steve; Lloyd, Thomas; Tan, Melvin; Hou, Jingguo; Wells, Edward

    2014-05-01

    Pharmaceutical drug development is a complex and lengthy process, requiring excellent project and laboratory management skills. Bioanalysis anchors drug safety and efficacy with systemic and site of action exposures. Development of scientific talent and a willingness to innovate or adopt new technology is essential. Taking unnecessary risks, however, should be avoided. Scientists must strategically assess all risks and find means to minimize or negate them. Laboratory Managers must keep abreast of ever-changing technology. Investments in instrumentation and laboratory design are critical catalysts to efficiency and safety. Matrix management requires regular communication between Project Managers and Laboratory Managers. When properly executed, it aligns the best resources at the right times for a successful outcome. Attention to detail is a critical aspect that separates excellent laboratories. Each assay is unique and requires attention in its development, validation and execution. Methods, training and facilities are the foundation of a bioanalytical laboratory.

  19. Uncertainty Quantification for Ice Sheet Science and Sea Level Projections

    Science.gov (United States)

    Boening, C.; Schlegel, N.; Limonadi, D.; Schodlok, M.; Seroussi, H. L.; Larour, E. Y.; Watkins, M. M.

    2017-12-01

    In order to better quantify uncertainties in global mean sea level rise projections and in particular upper bounds, we aim at systematically evaluating the contributions from ice sheets and potential for extreme sea level rise due to sudden ice mass loss. Here, we take advantage of established uncertainty quantification tools embedded within the Ice Sheet System Model (ISSM) as well as sensitivities to ice/ocean interactions using melt rates and melt potential derived from MITgcm/ECCO2. With the use of these tools, we conduct Monte-Carlo style sampling experiments on forward simulations of the Antarctic ice sheet, by varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges. Uncertainty bounds for climate forcing are informed by CMIP5 ensemble precipitation and ice melt estimates for year 2100, and uncertainty bounds for ocean melt rates are derived from a suite of regional sensitivity experiments using MITgcm. Resulting statistics allow us to assess how regional uncertainty in various parameters affect model estimates of century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  20. Science Fair Projects. LC Science Tracer Bullet. TB 07-6

    Science.gov (United States)

    Howland, Joyce, Comp.

    2007-01-01

    Selected sources in this bibliography provide guidance to students, parents, and teachers throughout the process of planning, developing, implementing and competing in science fair activities. Sources range in suitability from elementary to high school levels. This guide updates "Library of Congress Science Tracer Bullet" 01-4. More specialized…

  1. Developing an Innovative and Creative Hands-on Lean Six Sigma Manufacturing Experiments for Engineering Education

    Directory of Open Access Journals (Sweden)

    I. Badawi

    2016-12-01

    Full Text Available The goal of this study was to develop an innovative and creative hands-on project based on Lean Six Sigma experiments for engineering education at the College of Engineering at the University of Hail. The exercises were designed using junction box assembly to meet the following learning outcomes: 1-to provide students with solid experience on waste elimination and variation reduction and 2-to engage students in exercises related to assembly line mass production and motion study. To achieve these objectives, students were introduced to the principles of Lean manufacturing and Six Sigma through various pedagogical activities such as classroom instruction, laboratory experiments, hands-on exercises, and interactive group work. In addition, Minitab 17 statistical package and Quality Companion 3 software were used to facilitate The Lean Six Sigma exercises. The software application and hands-on manufacturing assembly were found to be extremely valuable in giving students the chance to identify which variables to control in order to minimize variation and eliminate waste. This research was funded by a grant from the Deanship of Academic Research at University of Hail for project number E-26-IC, and under the umbrella of Ministry of Education within the framework of the National Initiative on Creativity and Innovation in Saudi Universities at University of Hail.

  2. Citizen Sky, An Update on the AAVSO's New Citizen Science Project

    Science.gov (United States)

    Turner, Rebecca; Price, A.; Henden, A.; Stencel, R.; Kloppenborg, B.

    2011-01-01

    Citizen Sky is a multi-year, NSF-funded, citizen science project focusing on the bright variable star, epsilon Aurigae. Citizen Sky goes beyond simple observing to include a major data analysis component. The goal is to introduce the participant to the full scientific process from background research to paper writing for a peer-reviewed journal. The first year of the project, 2009-10, was dedicated to developing project infrastructure, educating participants about epsilon Aurigae, and training these participants to observe the star and report their data. Looking forward, years two and three of the project will focus on assembling teams of participants to work on their own analysis and research. Results will be published in a special issue of the peer-reviewed Journal of the AAVSO. This project has been made possible by the National Science Foundation.

  3. Science in Action: How Middle School Students Are Changing Their World through STEM Service-Learning Projects

    Science.gov (United States)

    Newman, Jane L.; Dantzler, John; Coleman, April N.

    2015-01-01

    The purpose of Science in Action (SIA) was to examine the relationship between implementing quality science, technology, engineering, and math (STEM) service-learning (SL) projects and the effect on students' academic engagement in middle school science, civic responsibility, and resilience to at-risk behaviors. The innovative project funded by…

  4. Student cognition and motivation during the Classroom BirdWatch citizen science project

    Science.gov (United States)

    Tomasek, Terry Morton

    The purpose of this study was to examine and describe the ways various stakeholders (CBW project developer/coordinator, elementary and middle school teachers, and 5th through 8th grade students) envisioned, implemented and engaged in the citizen science project, eBird/Classroom BirdWatch. A multiple case study mixed-methods research design was used to examine student engagement in the cognitive processes associated with scientific inquiry as part of citizen science participation. Student engagement was described based on a sense of autonomy, competence, relatedness and intrinsic motivation. A goal of this study was to expand the taxonomy of differences between authentic scientific inquiry and simple inquiry to include those inquiry tasks associated with participation in citizen science by describing how students engaged in this type of science. This research study built upon the existing framework of cognitive processes associated with scientific inquiry described by Chinn and Malhotra (2002). This research provides a systematic analysis of the scientific processes and related reasoning tasks associated with the citizen science project eBird and the corresponding curriculum Classroom BirdWatch . Data consisted of responses to surveys, focus group interviews, document analysis and individual interviews. I suggest that citizen science could be an additional form of classroom-based science inquiry that can promote more authentic features of scientific inquiry and engage students in meaningful ways.

  5. LLNL Mercury Project Trinity Open Science Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Brantley, Patrick [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dawson, Shawn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McKinley, Scott [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); O' Brien, Matt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Peters, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pozulp, Mike [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Becker, Greg [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mohror, Kathryn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moody, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-20

    The Mercury Monte Carlo particle transport code developed at Lawrence Livermore National Laboratory (LLNL) is used to simulate the transport of radiation through urban environments. These challenging calculations include complicated geometries and require significant computational resources to complete. As a result, a question arises as to the level of convergence of the calculations with Monte Carlo simulation particle count. In the Trinity Open Science calculations, one main focus was to investigate convergence of the relevant simulation quantities with Monte Carlo particle count to assess the current simulation methodology. Both for this application space but also of more general applicability, we also investigated the impact of code algorithms on parallel scaling on the Trinity machine as well as the utilization of the Trinity DataWarp burst buffer technology in Mercury via the LLNL Scalable Checkpoint/Restart (SCR) library.

  6. The Science and Applications Tethered Platform (SATP) project

    Science.gov (United States)

    Merlina, P.

    1986-01-01

    The capabilities of tether systems in orbit are going to be demonstrated by the first planned flights of the Tethered Satellite System (TSS). These test flights will investigate the properties of tether systems as low altitude atmospheric research facilities and as electric power generators. Studies are being conducted with the purpose of testing a variety of concepts and approaches. A comparative analysis of results will allow the choosing of the most promising ideas for further development. The broad range of applications presently under study include applications in electrodynamics, transportation, microgravity in addition to basic research. The SATP project definition study is now about midway through its first phase. The analyses conducted have led to an appraisal of users interest in the project and to a deeper understanding of the problems associated with large, long-lived tether systems in space. In addition, two specialized platform designs, devoted to microgravity and precise pointing applications, are being studied because of their potential usefulness and the promise of technical feasibility.

  7. From Engineering Science to Big Science: The NACA and NASA Collier Trophy Research Project Winners

    Science.gov (United States)

    Mack, Pamela E. (Editor)

    1998-01-01

    The chapters of this book discuss a series of case studies of notable technological projects carried out at least in part by the NACA and NASA. The case studies chosen are those projects that won the National Aeronautic Association's (NAA) Collier Trophy for "the greatest achievement in aviation in America, the value of which has been thoroughly demonstrated by use during the preceding year." Looking back on the whole series of projects we can examine both what successes were seen as important at various times, and how the goals and organization of these notable projects changed over time.

  8. How can the curation of hands-on STEM activities power successful mobile apps and websites?

    Science.gov (United States)

    Porcello, D.; Peticolas, L. M.; Schwerin, T. G.

    2015-12-01

    The Lawrence Hall of Science (LHS) is University of California, Berkeley's public science center. Over the last decade, the Center for Technology Innovation at LHS has partnered with many institutions to establish a strong track record of developing successful technology solutions to support STEM teaching and learning within informal environments. Curation by subject-matter experts has been at the heart of many educational technology products from LHS and its partners that are directed at educators and families. This work includes: (1) popular digital libraries for inquiry-based activities at Howtosmile.org (NSF DRL #0735007) and NASA Earth and Space science education resources at NASAwavelength.org; and novel mobile apps like DIY Sun Science (NASA NNX10AE05G) and DIY Human Body (NIH 5R25OD010543) designed to scaffold exploration of STEM phenomena at home. Both NASA Wavelength and DIY Sun Science arose out of long-term collaborations with the Space Sciences Laboratory at UC Berkeley, Institute for Global Environmental Strategies (IGES), and other NASA-funded organizations, in partnership with NASA through cooperative agreements. This session will review the development, formative evaluation, and usage metrics for these two Earth and Space science-themed educational technology products directly relevant to the AGU community. Questions reviewed by presenters will include: What makes a good hands-on activity, and what essential information do educators depend on when searching for programming additions? What content and connections do families need to explore hands-on activities? How can technology help incorporate educational standards into the discovery process for learning experiences online? How do all these components drive the design and user experience of websites and apps that showcase STEM content?

  9. A Hands-On Approach To Teaching Microcontroller

    Directory of Open Access Journals (Sweden)

    Che Fai Yeong

    2013-02-01

    Full Text Available Practice and application-oriented approach in education is important, and some research on active learning and cooperative problem-solving have shown that a student will learn faster and develop communication skill, leadership and team work through these methods. This paper presents a study of student preference and performance while learning the microcontroller subject with a 2-day curriculum that emphasized on hands-on approach. The curriculum uses the PIC16F877A microcontroller and participants learned to develop basic circuits and several other applications. Programming was completed on the MPLAB platform. Results show that participants had better understanding in this subject after attending the hands-on course.

  10. The Rural Girls in Science Project: from Pipelines to Affirming Science Education

    Science.gov (United States)

    Ginorio, Angela B.; Huston, Michelle; Frevert, Katie; Seibel, Jane Bierman

    The Rural Girls in Science (RGS) program was developed to foster the interest in science, engineering, and mathematics among rural high school girls in the state of Washington. Girls served include American Indians, Latinas, and Whites. This article provides an overview of the program and its outcomes not only for the participants (girls, teachers, counselors, and schools) but the researchers. Lessons learned from and about the participants are presented, and lessons learned from the process are discussed to illustrate how RGS moved from a focus on individuals to a focus on the school. The initial guiding concepts (self-esteem and scientific pipeline) were replaced by “possible selves” and our proposed complementary concepts: science-affirming and affirming science education.

  11. IT release management a hands-on guide

    CERN Document Server

    Howard, Dave

    2011-01-01

    When implemented correctly, release management can help ensure that quality is integrated throughout the development, implementation, and delivery of services, applications, and infrastructure. This holistic, total cost of ownership approach allows for higher levels of system availability, is more cost effective to maintain, and increases overall stability, maintainability, and reliability. Filled with practical insights, IT Release Management: A Hands-on Guide clearly illustrates the effective implementation of a release process in the real world. It examines the similarities and differences

  12. Mapping Project on Energy and the Social Sciences. Progress report, October 1, 1978-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Walker, C.A.; Doob, L.W.; Gould, L.C.

    1979-01-01

    This is a progress report of activities in the fourth year of the Yale Institution for Social and Policy Studies Mapping Project on Energy and the Social Sciences. The Mapping Project evaluates past and present social and behavioral science energy studies, assesses the potential for social and behavioral science contributions to a resolution of the energy problems in the future, and diffuses social and behavioral science information and perspectives to policymakers and others concerned with US or world energy developments. Activities in FY 1979 included meetings, workshops, collecting bibliographic material, publications, evaluating DOE programs in buildings and transportation, performing a special study of potential social impacts of 4 coal technologies, and developing plans for 10 specific research studies on energy.

  13. Project BudBurst: Continental-scale citizen science for all seasons

    Science.gov (United States)

    Henderson, S.; Newman, S. J.; Ward, D.; Havens-Young, K.; Alaback, P.; Meymaris, K.

    2011-12-01

    Project BudBurst's (budburst.org) recent move to the National Ecological Observatory Network (NEON) has benefitted both programs. NEON has been able to use Project BudBurst as a testbed to learn best practices, network with experts in the field, and prototype potential tools for engaging people in continental-scale ecology as NEON develops its citizen science program. Participation in Project BudBurst has grown significantly since the move to NEON. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst and will report on the results of the 2010 field campaign and discuss plans to expand Project BudBurst in 2012 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago

  14. Space science technology: In-situ science. Sample Acquisition, Analysis, and Preservation Project summary

    Science.gov (United States)

    Aaron, Kim

    1991-01-01

    The Sample Acquisition, Analysis, and Preservation Project is summarized in outline and graphic form. The objective of the project is to develop component and system level technology to enable the unmanned collection, analysis and preservation of physical, chemical and mineralogical data from the surface of planetary bodies. Technology needs and challenges are identified and specific objectives are described.

  15. Changes in Participants’ Scientific Attitudes and Epistemological Beliefs During an Astronomical Citizen Science Project

    Science.gov (United States)

    Price, Aaron

    2012-01-01

    Citizen science projects offer opportunities for non-scientists to take part in scientific research. While their contribution to scientific data collection has been well documented, there is limited research on changes that may occur to their volunteer participants. In this study, we investigated (1) how volunteers’ attitudes towards science and beliefs in the nature of science changed over six months of participation in an astronomy-themed citizen science project and (2) how the level of project participation accounted for these changes. To measure attitudes towards science and beliefs about the nature of science, identical pre- and post-tests were used. We used pre-test data from 1,375 participants and post-test data collected from 175 participants. Responses were analyzed using the Rasch Rating Scale Model. The pre-test sample was used to create the Rasch scales for the two scientific literacy measures. For the pre/post-test comparisons, data from those who completed both tests were used. Fourteen participants who took the pre/post-tests were interviewed. Results show that overall scientific attitudes did not change, p = .812. However, we did find significant changes related towards two scientific attitude items about science in the news (positive change; p self-efficacy (negative change, p scale did not change much and this change was not related to any of our recorded project activity variables. The interviews suggest that the social aspect of the project is important to participants and the change in self-efficacy is not due to a lowering of esteem but rather a greater appreciation for what they have yet to learn.

  16. Pilot Study on the Feasibility and Indicator Effects of Collaborative Online Projects on Science Learning for English Learners

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Walden, Emily

    2015-01-01

    The 2006 National Science Board called for new strategies and instructional materials for teachers to better serve English Learners' (EL) needs. Bilingual Collaborative Online Projects in science were created to assist ELs' construction of science knowledge, facilitate academic English acquisition, and improve science learning. Two bilingual…

  17. The Moon Zoo citizen science project: Preliminary results for the Apollo 17 landing site

    OpenAIRE

    Bugiolacchi, Roberto; Bamford, Steven; Tar, Paul; Thacker, Neil; Crawford, Ian A.; Joy, Katherine H.; Grindrod, Peter M.; Lintott, Chris

    2016-01-01

    Moon Zoo is a citizen science project that utilises internet crowd-sourcing techniques. Moon Zoo users are asked to review high spatial resolution images from the Lunar Reconnaissance Orbiter Camera (LROC), onboard NASA’s LRO spacecraft, and perform characterisation such as measuring impact crater sizes and identify morphological ‘features of interest’. The tasks are designed to address issues in lunar science and to aid future exploration of the Moon. We have tested various methodologies and...

  18. On the compressor ring for the JAERI neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Isao [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-11-01

    (1), As long as a 1.5 GeV-8 MW linear accelerator is constructed in the JAERI neutron science center, it is quite reasonable to construct a 5 MW compressor ring as a driver of a high intensity spallation neutron source to generate pulsed neutron beams. (2), Suppression of beam loss around the compressor ring to an acceptable level is the most crucial subject to be coped with in designing a MW-class compressor ring. This subject should be successfully cleared by carefully studying and designing the overall system of accelerator and tunnel. (3), The `PSR instability` was comprehensively discussed in the NSNS workshop held at Santa Fe in March, 1997, as a remaining problem of a high intensity proton compressor ring. People of Los Alamos attributed it to an e-p instability. But some questions like the cause that makes some part of protons leak away from a beam bunch to a bunch gap are yet left open. (4), A new scheme of two step H{sup 0} injection is proposed to remove defects of the conventional one of Los Alamos PSR. (author)

  19. Mars Science Laboratory Flight Software Boot Robustness Testing Project Report

    Science.gov (United States)

    Roth, Brian

    2011-01-01

    On the surface of Mars, the Mars Science Laboratory will boot up its flight computers every morning, having charged the batteries through the night. This boot process is complicated, critical, and affected by numerous hardware states that can be difficult to test. The hardware test beds do not facilitate testing a long duration of back-to-back unmanned automated tests, and although the software simulation has provided the necessary functionality and fidelity for this boot testing, there has not been support for the full flexibility necessary for this task. Therefore to perform this testing a framework has been build around the software simulation that supports running automated tests loading a variety of starting configurations for software and hardware states. This implementation has been tested against the nominal cases to validate the methodology, and support for configuring off-nominal cases is ongoing. The implication of this testing is that the introduction of input configurations that have yet proved difficult to test may reveal boot scenarios worth higher fidelity investigation, and in other cases increase confidence in the robustness of the flight software boot process.

  20. Influences on teachers' curricular choices in project-based science classrooms

    Science.gov (United States)

    Laba, Karen Anne

    This descriptive research will present two case studies of experienced science teachers using project-based curricula in all or part of their secondary life science/biology courses. The purpose of this study is to reveal the underlying relationships between teachers' conceptions of the nature of science, their understanding of their role as science teachers and their expectations for appropriate and worthwhile student learning, and to describe the influence of these factors on their curricular choices within the project-based framework. Using a modification of Hewson, Kerby and Cook's (1995) Conceptions of Teaching Science protocol as a model, teachers' beliefs and intentions are classified and examined to identify organizing themes. Comparisons between teachers' beliefs and the actions they take in their project-based classroom are used to reveal relationships among the choices that result in students' learning experiences. Finally, the curricula presented by these two exemplary teachers are compared with the teaching standards and content goals defined in the National Science Education Standards (NRC, 1996). Recommendations for the application of the case study perspective of the evolution of learning experiences to reform efforts are offered to practitioners, policy makers, curriculum developers and teacher educators.

  1. Technology Foresight For Youth: A Project For Science and Technology Education in Sweden

    Science.gov (United States)

    Kendal, Anne Louise

    "Technology Foresight for Youth" is a project run by two science museums, two science centres and "Technology Foresight (Sweden)" an organization in which both business and scientists are represented. The project is designed to strengthen young people's interest in ongoing technological work, research and education. It should give them confidence in their own ability both to understand today's techniques including its influence on people's daily lives, and to influence future developments. One part of the project is aimed at school teachers, teacher cooperation groups and students in the age group 12 to 18 years. A second part encourages dialog and meetings by arranging debates, seminars, theatre, science demonstrations in cooperation with business representatives and scientists. A third important part of the project is a special exhibition to be shown at the four cooperating institutions: "To be where I am not - young people's dreams about the future". The exhibition is meant to be sensual, interactive and partly virtual. It will change and grow with time as young people contribute with their thoughts, visions and challenges. Young people in different parts of the country will be able to interact electronically with each other and with the virtual part of the exhibition. The main aim of the project is to develop new interactive pedagogic methods for science and technology based on young people's own visions about the future.

  2. Translational Science Project Team Managers: Qualitative Insights and Implications from Current and Previous Postdoctoral Experiences.

    Science.gov (United States)

    Wooten, Kevin C; Dann, Sara M; Finnerty, Celeste C; Kotarba, Joseph A

    2014-07-01

    The development of leadership and project management skills is increasingly important to the evolution of translational science and team-based endeavors. Team science is dependent upon individuals at various stages in their careers, inclusive of postdocs. Data from case histories, as well as from interviews with current and former postdocs, and those supervising postdocs, indicate six essential tasks required of project managers in multidisciplinary translational teams, along with eight skill-related themes critical to their success. To optimize the opportunities available and to ensure sequential development of team project management skills, a life cycle model for the development of translational team skills is proposed, ranging from graduate trainees, postdocs, assistant professors, and finally to mature scientists. Specific goals, challenges and project management roles and tasks are recommended for each stage for the life cycle.

  3. Climate change projections: past and future mysteries of climate science

    International Nuclear Information System (INIS)

    Meehl, Gerald A.

    2007-01-01

    Full text: Full text: The history of climate change has been wrapped in mysteries. Some have been solved, and we await the outcome of others. The major mystery of 20th century climate was why did temperatures rise in the early part of the century, level off, and then rise rapidly again after the 1970s? It has only been in the past seven years that advances in climate modelling have allowed us to deconstruct 20th century climate to pull apart the separate influences of natural and human-caused factors. This has allowed us to understand the subtle interplay between these various influences that produced the temperature time evolution. Another mystery has involved extreme weather and climate events. Again, climate models have allowed us to quantify how the small changes in average climate translate into much larger changes of regional extremes. The biggest remaining mysteries in climate science involve the future, and how the climate will evolve over the coming century. Up until now, various scenarios postulating different possible outcomes for 21st century climate, assuming different types of human activities, have been run in the climate models to provide a wide range of possible futures. However, more recently the outlook for global warming is being framed as a combination of mitigation and adaptation. If policy actions are taken to mitigate part of the problem of global warming, then climate models must be relied on to quantify the time-evolving picture of how much regional climate change we must adapt to. Solving this mystery will be the biggest and most important challenge ever taken on by the climate modelling community

  4. Snohomish RARE project update for Tulalip Tribes | Science ...

    Science.gov (United States)

    Rising atmospheric CO2 due to anthropogenic emissions alters local atmospheric gas exchange rates in estuaries, causing alterations of the seawater carbonate system and reductions in pH broadly described as coastal acidification. These changes in marine chemistry have been demonstrated to negatively affect a variety of coastal and estuarine organisms. The naturally dynamic carbonate chemistry of estuaries driven by biological activity, hydrodynamic processes, and intensive biogeochemical cycling has led to uncertainty regarding the role of rising atmospheric CO2 as a driver in these systems, and the suggestion that altered atmospheric exchange may be relatively unimportant to estuarine biogeochemistry. In this presentation, we illustrate how rising atmospheric CO2 from 1765 through 2100 interacts with the observed local carbonate chemistry dynamics of a seagrass bed, and calculated how pHT, pCO2, and Ωaragonite respond. This presentation is part of an informal meeting with the Tulalip Tribes of Tulalip, WA to update them on the progress of the ORD/Region 10 RARE project in the Snohomish estuary to study drivers of coastal acidification. Multiple processes, including primary production and respiration, river runoff, cultural eutrophication, oceanic upwelling, and atmospheric exchange contribute to the characteristically dynamic carbonate conditions in these habitats, with potential interactions amongst these processes leading to coastal acidification. As a

  5. RESOLVE (Regolith & Environmental Science Oxygen & Lunar Volatile Extraction) Project

    Science.gov (United States)

    Parker, Ray; Coan, Mary; Captain, Janine; Cryderman, Kate; Quinn, Jacqueline

    2015-01-01

    The RESOLVE Project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer for the Surge Tank (NIRST), WDD, Sample Delivery System, and GC-MS in the vacuum chamber. Since LAVA is a scientific subsystem, the near infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  6. The Hands-On Universe: Making Sense of the Universe with All Your Senses

    Science.gov (United States)

    Trotta, R.

    2018-02-01

    For the past four years, the Hands-On Universe public engagement programme has explored unconventional, interactive and multi-sensorial ways of communicating complex ideas in cosmology and astrophysics to a wide variety of audiences. The programme lead, Roberto Trotta, has reached thousands of people through food-based workshops, art and science collaborations and a book written using only the 1000 most common words in the English language. In this article, Roberto reflects in first person on what has worked well in the programme, and what has not.

  7. Science Literacy Project for Mid-Career Public Radio Producers, Reporters, Editors and News Directors

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bari [SoundVision Productions, Berkeley, CA (United States)

    2012-12-01

    SoundVision held a post-workshop teleconference for our 2011 graduates (as we have done for all participants) to consolidate what they'd learned during the workshop. To maximize the Science Literacy Project's impact after it ends, we strengthened and reinforced our alumni's vibrant networking infrastructure so they can continue to connect and support each other, and updated our archive system to ensure all of our science and science journalism resources and presentations will be easy to access and use over time.

  8. D4SCIENCE-II - Report on inter-projects coordination and collaboration

    OpenAIRE

    Castelli, Donatella; Zoppi, Franco

    2010-01-01

    This deliverable reports on the collaborations with other FP7 projects and R&D programmes established by D4Science-II from the beginning of the project until July 2010. The collaborations described are of different nature, as they range from purely technical exchanges involving mutual exploitation of technologies to the sharing of e- Infrastructure resources and to the joint organization of networking and dissemination events. The deliverable presents these collaborations clustered into: (i) ...

  9. The meaning-making of science teachers participating in a school-based PD project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    The meaning-making of four science teachers involved in collaboratively analyzing video and other artifacts from practice in local science classrooms in a school-based professional development project is examined through repeated interviews and represented as meaning-making maps. The research aim...... is to examine how these collaborative inquiries make sense to the teachers: what they identify as outcomes, how they make use of inputs and support in their classrooms and in collegial interactions and how their ideas about teaching and learning of science might play a role. An adapted version...... learning of science in concrete situations. They refer to outcomes from sharing experiments with new tools and materials and refer to being encouraged to continue collaboration around science at the school. Beside this the teachers emphasize various outcomes apparently for each of them in areas where...

  10. The meaning-making of science teachers participating in as school based PD project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    The meaning-making of four science teachers involved in collaboratively analyzing video and other artifacts from practice in local science classrooms in a school-based professional development project is examined through repeated interviews and represented as meaning-making maps. The research aim...... is to examine how these collaborative inquiries make sense to the teachers: what they identify as outcomes, how they make use of inputs and support in their classrooms and in collegial interactions and how their ideas about teaching and learning of science might play a role. An adapted version...... learning of science in concrete situations. They refer to outcomes from sharing experiments with new tools and materials and refer to being encouraged to continue collaboration around science at the school. Beside this the teachers emphasize various outcomes apparently for each of them in areas where...

  11. Involving stakeholders in the commissioning and implementation of fishery science projects: experiences from the U.K. Fisheries Science Partnership.

    Science.gov (United States)

    Armstrong, M J; Payne, A I L; Deas, B; Catchpole, T L

    2013-10-01

    Following from similar initiatives worldwide, the U.K.'s Fisheries Science Partnership (FSP) was established in 2003 to provide the fishing industry with opportunities to propose and participate in scientific studies in collaboration with fishery scientists. Key concepts were that most of the available funding would support industry participation, that industry, not scientists, would come up with the ideas for projects, and that commercial fishing vessels and fishing methods would be used to address specific concerns of the fishing industry in a scientifically controlled manner. Nearly 100 projects had been commissioned by March 2012, covering annual time-series surveys of stocks subject to traditional assessment, and ad hoc projects on, e.g. gear selectivity, discard survival, tagging and migration and fishery development. The extent to which the results of the projects have been used by stakeholders, fishery scientists and fishery managers at a national and E.U. level is evaluated, along with the degree of industry interest and involvement, and reasons are identified for successes or failures in the uptake of the results into management and policy. Finally, the question is posed whether the programme has been successful in improving the engagement of the fishing community in the science-management process and in fostering communication and greater trust between fishers, scientists and managers. © 2013 Crown Copyright. © 2013 The Fisheries Society of the British Isles.

  12. Collaborative Project-Based Learning: An Integrative Science and Technological Education Project

    Science.gov (United States)

    Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan

    2017-01-01

    Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills. Purpose: The study aims to understand how seventh grade students…

  13. Detection and Characterisation of Meteors as a Big Data Citizen Science project

    Science.gov (United States)

    Gritsevich, M.

    2017-12-01

    Out of a total around 50,000 meteorites currently known to science, the atmospheric passage was recorded instrumentally in only 30 cases with the potential to derive their atmospheric trajectories and pre-impact heliocentric orbits. Similarly, while the observations of meteors, add thousands of new entries per month to existing databases, it is extremely rare they lead to meteorite recovery. Meteor studies thus represent an excellent example of the Big Data citizen science project, where progress in the field largely depends on the prompt identification and characterisation of meteor events as well as on extensive and valuable contributions by amateur observers. Over the last couple of decades technological advancements in observational techniques have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced scientific goals. We review some of the developments that push meteor science into the Big Data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere. The recent increased interest in meteor science triggered by the Chelyabinsk fireball helps in building the case for technologically and logistically more ambitious meteor projects. This requires developing new methodological approaches in meteor research, with Big Data science and close collaboration between citizen science, geoscience and astronomy as critical elements. We discuss possibilities for improvements and promote an opportunity for collaboration in meteor science within the currently

  14. Examining student conceptions of the nature of science from two project-based classrooms

    Science.gov (United States)

    Moss, David M.

    The purpose of this research was to develop descriptive accounts of precollege students' conceptions of the nature of science from two project-based classrooms, and track those conceptions over the course of an academic year. A model of the nature of science was developed and served as the criterion by which students' beliefs were evaluated. The model distinguishes between two major categories of science, the nature of the scientific enterprise and the nature of scientific knowledge. Five students were selected from each class and interviewed individually for 30-45 minutes each, six times over the year. Data from semi-structured, formal interviewing consisted of audio-recorded interviews which were transcribed verbatim. All passages were coded using codes which corresponded to the premises of the model of the nature of science. Passages in the transcripts were interpreted to develop a summary of the students' conceptions over the year. Qualitative methodologies, especially formal interviewing in conjunction with participant observation, were effective for uncovering students' conceptions of the nature of science, adding to the knowledge base in this field. The research design of the current study was a significant factor in explaining the inconsistencies seen between findings from this study and the literature. This study finds that participants at both classroom sites held fully formed conceptions of the nature of science for approximately 40 percent of the premises across the model. For two-thirds of the elements which comprise the premises, participants held full understandings. Participants held more complete understandings of the nature of scientific knowledge than the nature of the scientific enterprise. Most participants had difficulty distinguishing between science and non-science and held poor understandings of the role of questions in science. Students' beliefs generally remained unchanged over the year. When their conceptions did evolve, project

  15. Pacific CRYSTAL Project: Explicit Literacy Instruction Embedded in Middle School Science Classrooms

    Science.gov (United States)

    Anthony, Robert J.; Tippett, Christine D.; Yore, Larry D.

    2010-01-01

    Science literacy leading to fuller and informed participation in the public debate about science, technology, society, and environmental (STSE) issues that produce justified decisions and sustainable actions is the shared and central goal of the Pacific CRYSTAL Project. There is broad agreement by science education researchers that learners need to be able to construct and interpret specific scientific discourses and texts to be literate in science. We view these capabilities as components in the fundamental sense of science literacy and as interactive and synergetic to the derived sense of science literacy, which refers to having general knowledge about concepts, principles, and methods of science. This article reports on preliminary findings from Years 1, 2, and 3 of the 5-year Pacific CRYSTAL project that aims to identify, develop, and embed explicit literacy instruction in science programs to achieve both senses of science literacy. A community-based, opportunistic, engineering research and development approach has been utilized to identify problems and concerns and to design instructional solutions for teaching middle school (Grades 6, 7, and 8) science. Initial data indicate (a) opportunities in programs for embedding literacy instruction and tasks; (b) difficulties generalist teachers have with new science curricula; (c) difficulties specialist science teachers have with literacy activities, strategies, genre, and writing-to-learn science tasks; and (d) potential literacy activities (vocabulary, reading comprehension, visual literacy, genre, and writing tasks) for middle school science. Preinstruction student assessments indicate a range of challenges in achieving effective learning in science and the need for extensive teacher support to achieve the project’s goals. Postinstructional assessments indicate positive changes in students’ ability to perform target reading and writing tasks. Qualitative data indicate teachers’ desire for external direction

  16. Pittsburgh Science Technology Society Project: Instruction Modules. Interrelationships Science--Technology--Society.

    Science.gov (United States)

    O'Brien, George, Ed.

    This collection of instruction modules studies the interactions of science, technology, and society (STS) using five activity sets. The introduction module includes activities which show students the STS relationships in their world, develop good organizational skills, develop an understanding of who and what a scientist is, develop graphing…

  17. Live Storybook Outcomes of Pilot Multidisciplinary Elementary Earth Science Collaborative Project

    Science.gov (United States)

    Soeffing, C.; Pierson, R.

    2017-12-01

    Live Storybook Outcomes of pilot multidisciplinary elementary earth science collaborative project Anchoring phenomena leading to student led investigations are key to applying the NGSS standards in the classroom. This project employs the GLOBE elementary storybook, Discoveries at Willow Creek, as an inspiration and operational framework for a collaborative pilot project engaging 4th grade students in asking questions, collecting relevant data, and using analytical tools to document and understand natural phenomena. The Institute of Global Environmental Strategies (IGES), a GLOBE Partner, the Outdoor Campus, an informal educational outdoor learning facility managed by South Dakota Game, Fish and Parks, University of Sioux Falls, and All City Elementary, Sioux Falls are collaborating partners in this project. The Discoveries at Willow Creek storyline introduces young students to the scientific process, and models how they can apply science and engineering practices (SEPs) to discover and understand the Earth system in which they live. One innovation associated with this project is the formal engagement of elementary students in a global citizen science program (for all ages), GLOBE Observer, and engaging them in data collection using GLOBE Observer's Cloud and Mosquito Habitat Mapper apps. As modeled by the fictional students from Willow Creek, the 4th grade students will identify their 3 study sites at the Outdoor Campus, keep a journal, and record observations. The students will repeat their investigations at the Outdoor Campus to document and track change over time. Students will be introduced to "big data" in a manageable way, as they see their observations populate GLOBE's map-based data visualization and . Our research design recognizes the comfort and familiarity factor of literacy activities in the elementary classroom for students and teachers alike, and postulates that connecting a science education project to an engaging storybook text will contribute to a

  18. The International Science and Technology Center (ISTC) and ISTC projects related to nuclear safety. Information review

    International Nuclear Information System (INIS)

    Tocheny, Lev V.

    2003-01-01

    The ISTC is an intergovernmental organization created ten years ago by Russia, USA, EU and Japan in Moscow. The Center supports numerous science and technology projects in different areas, from biotechnologies and environmental problems to all aspects of nuclear studies, including those focused on the development of effective innovative concepts and technologies in the nuclear field, in general, and for improvement of nuclear safety, in particular. The presentation addresses some technical results of the ISTC projects as well as methods and approaches employed by the ISTC to foster close international collaboration and manage projects towards fruitful results. (author)

  19. Community College Economics Instruction: Results from a National Science Foundation Project

    Science.gov (United States)

    Maier, Mark; Chi, W. Edward

    2016-01-01

    The principal investigator of a National Science Foundation project, "Economics at Community Colleges," surveyed community college economics faculty and organized workshops, webinars, and regional meetings to address community college faculty isolation from new ideas in economics and economics instruction. Survey results, combined with…

  20. The Biome Project: Developing a Legitimate Parallel Curriculum for Physical Education and Life Sciences

    Science.gov (United States)

    Hastie, Peter Andrew

    2013-01-01

    The purpose of this article is to describe the outcomes of a parallel curriculum project between life sciences and physical education. Throughout a 6-week period, students in grades two through five became members of teams that represented different animal species and biomes, and concurrently participated in a season of gymnastics skills and…

  1. The Use of Mobile Technologies in Project-Based Science: A Case Study

    Science.gov (United States)

    Avraamidou, Lucy

    2013-01-01

    The main aim of this study was to examine how a group of elementary students perceived their engagement in a project-based science intervention investigating the water quality of a local lake. The students collaborated with a scientist to conduct various experiments and used handheld computers to collect and analyze data in order to examine the…

  2. Focused Campaign Increases Activity among Participants in "Nature's Notebook," a Citizen Science Project

    Science.gov (United States)

    Crimmins, Theresa M.; Weltzin, Jake F.; Rosemartin, Alyssa H.; Surina, Echo M.; Marsh, Lee; Denny, Ellen G.

    2014-01-01

    Science projects, which engage non-professional scientists in one or more stages of scientific research, have been gaining popularity; yet maintaining participants' activity level over time remains a challenge. The objective of this study was to evaluate the potential for a short-term, focused campaign to increase participant activity in a…

  3. The Disk Mass project; science case for a new PMAS IFU module

    NARCIS (Netherlands)

    Verheijen, M. A. W.; Bershady, M. A.; Andersen, D. R.; Swaters, R. A.; Westfall, K.; Kelz, A.; Roth, M. M.

    2004-01-01

    We present our Disk Mass project as the main science case for building a new fiber IFU-module for the PMAS spectrograph, currently mounted at the Cassegrain focus of the 3.5m telescope on Calar Alto. Compared to traditional long-slit observations, the large light collecting power of 2-dimensional

  4. Children and their 4-H animal projects: How children use science in agricultural activity

    Science.gov (United States)

    Emo, Kenneth Roy

    Many children are introduced to science through informal educational programs. 4-H, an educational youth program, has a history of introducing scientific practices into agriculture. The purpose of this ethnographically-driven case study is to examine how science informs the actions of children raising market animals in a 4-H project. For two years the researcher collected data on 4-H children with market animal projects. Observations, interviews, and artifacts gathered are interpreted using the framework of activity theory. This study provides evidence for how the context of an activity system influences individual actions. Rules developed by the organization guide the actions of children to incorporate physical and psychological tools of science into their project to achieve the object: producing animals of proper weight and quality to be competitive in the county fair. Children learn the necessary actions from a community of practitioners through which expertise is distributed. Children's learning is demonstrated by the way their participation in their project changes with time, from receiving assistance from others to developing expertise in which they provide assistance to others. The strength of this educational experience is how children apply specific tools of science in ways that provide meaning and relevancy to their 4-H activity.

  5. Research as Praxis: Perspectives on Interpreting Data from a Science and Indigenous Knowledge Systems Project

    Science.gov (United States)

    Nhalevilo, Emilia Afonso; Ogunniyi, Meshach

    2014-01-01

    This article presents a reflection on an aspect of research methodology, particularly on the interpretation strategy of data from a Science and Indigenous Knowledge Systems Project (SIKSP) in a South African university. The data interpretation problem arose while we were analysing the effects of a series of SIKSP-based workshops on the views of a…

  6. The Use of Wikis in a Science Inquiry-Based Project in a Primary School

    Science.gov (United States)

    Lau, Wilfred W. F.; Lui, Vicky; Chu, Samuel K. W.

    2017-01-01

    This study explored the use of wikis in a science inquiry-based project conducted with Primary 6 students (aged 11-12). It used an online wiki-based platform called PBworks and addressed the following research questions: (1) What are students' attitudes toward learning with wikis? (2) What are students' interactions in online group collaboration…

  7. Global Warning: Project-Based Science Inspired by the Intergovernmental Panel on Climate Change

    Science.gov (United States)

    Colaianne, Blake

    2015-01-01

    Misconceptions about climate change are common, which suggests a need to effectively address the subject in the classroom. This article describes a project-based science activity in which students report on the physical basis, adaptations, and mitigation of this global problem, adapting the framework of the United Nations' Intergovernmental Panel…

  8. A Community-University Exchange Project Modeled after Europe's Science Shops

    Science.gov (United States)

    Tryon, Elizabeth; Ross, J. Ashleigh

    2012-01-01

    This article describes a pilot project of the Morgridge Center for Public Service at the University of Wisconsin-Madison for a new structure for community-based learning and research. It is based on the European-derived science shop model for democratizing campus-community partnerships using shared values of mutual respect and validation of…

  9. The Low-Frequency Array (LOFAR) and EoR Key-Science Project

    NARCIS (Netherlands)

    Brentjens, Michiel; Koopmans, L. V. E.; de Bruyn, A. G.; Zaroubi, S.

    The Low-Frequency ARray (LOFAR) is a novel radio-telescope facility with its core and operation center in the Netherlands. LOFAR is one of several current pathfinders toward SKA. One of LOFAR's key science projects is the detection and characterization of the redshifted 21-cm emission from neutral

  10. Introduction in Indonesian Social Sciences and Humanities Research Articles: How Indonesian Writers Justify Their Research Projects

    Science.gov (United States)

    Arsyad, Safnil; Wardhana, Dian Eka Chandra

    2014-01-01

    The introductory part of a research article (RA) is very important because in this section writers must argue about the importance of their research topic and project so that they can attract their readers' attention to read the whole article. This study analyzes RA introductions written by Indonesian writers in social sciences and humanities…

  11. Big Data Science Education: A Case Study of a Project-Focused Introductory Course

    Science.gov (United States)

    Saltz, Jeffrey; Heckman, Robert

    2015-01-01

    This paper reports on a case study of a project-focused introduction to big data science course. The pedagogy of the course leveraged boundary theory, where students were positioned to be at the boundary between a client's desire to understand their data and the academic class. The results of the case study demonstrate that using live clients…

  12. Pupils' Views about Spiders. Learning in Science Project (Primary). Working Paper No. 123.

    Science.gov (United States)

    Hawe, Eleanor

    The Learning in Science Project (Primary)--LISP(P)--investigated the ideas and interests about spiders held by 8- to 10-year-old children. Data included 303 questions--and answers to some of the questions--about spiders obtained from children in four classes and from responses obtained during individual interviews with 10 children from each age…

  13. Computer Assisted Project-Based Instruction: The Effects on Science Achievement, Computer Achievement and Portfolio Assessment

    Science.gov (United States)

    Erdogan, Yavuz; Dede, Dinçer

    2015-01-01

    The purpose of this study is to compare the effects of computer assisted project-based instruction on learners' achievement in a science and technology course, in a computer course and in portfolio development. With this aim in mind, a quasi-experimental design was used and a sample of 70 seventh grade secondary school students from Org. Esref…

  14. Hands on with ASP.NET MVC covering MVC 6

    CERN Document Server

    Sahay, Rahul

    2014-01-01

    MVC (Model-View-Controller) is the popular Microsoft technology which enables you to build dynamic, data-driven, mobile websites, TDD site. Hands-On with ASP.NET MVC is not only written for those who are going to have affair with MVC for the 1st time, rather it is written in such a way that even experienced professional will love reading this book. This book covers all the tiny steps on using MVC at its best. With complete practical tutorials to illustrate the concepts, you will step by step build one End to End application which covers below mentioned techniques - Controllers, Views, Models,

  15. Circuits and electronics hands-on learning with analog discovery

    CERN Document Server

    Okyere Attia, John

    2018-01-01

    The book provides instructions on building circuits on breadboards, connecting the Analog Discovery wires to the circuit under test, and making electrical measurements. Various measurement techniques are described and used in this book, including: impedance measurements, complex power measurements, frequency response measurements, power spectrum measurements, current versus voltage characteristic measurements of diodes, bipolar junction transistors, and Mosfets. The book includes end-of-chapter problems for additional exercises geared towards hands-on learning, experimentation, comparisons between measured results and those obtained from theoretical calculations.

  16. Discovering SQL A Hands-On Guide for Beginners

    CERN Document Server

    Kriegel, Alex

    2011-01-01

    Teaching the SQL skills that businesses demand when hiring programmers If you're a SQL beginner, you don't just want to learn SQL basics, you also want to get some practical SQL skills you can use in the job market. This book gives you both. Covering the basics through intermediate topics with clear explanations, hands-on exercises, and helpful solutions, this book is the perfect introduction to SQL. Topics include both the current SQL:2008 standards, the upcoming SQL:2011 standards, and also how to use SQL against current releases of the most popular commercial SQL databases, such as Oracle,

  17. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Quality Assurance Manual

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; R. Nims; K. J. Kvarfordt; C. Wharton

    2008-08-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment using a personal computer running the Microsoft Windows operating system. SAPHIRE is primarily funded by the U.S. Nuclear Regulatory Commission (NRC). The role of the INL in this project is that of software developer and tester. This development takes place using formal software development procedures and is subject to quality assurance (QA) processes. The purpose of this document is to describe how the SAPHIRE software QA is performed for Version 6 and 7, what constitutes its parts, and limitations of those processes.

  18. Science teachers' meaning-making when involved in a school-based professional development project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    2012-01-01

    A group of teachers’ meaning-making when they are collaboratively analyzing artifacts from practice in local science classrooms in a school-based professional development (PD) project is examined through repeated interviews and represented as meaning-making maps. The interpretation of the teachers......’ meaningmaking includes both their reference to outcomes from the project and their expressed ideas about teaching and learning of science. All four teachers refer to experiences from experimenting in their classrooms and interpret the collected artifacts in relation to students’ learning. Furthermore, they all...... felt encouraged to continue collaboration around science. During the interviews, the teachers emphasize various elements apparently connected to concrete challenges they each experience in their professional work. Implications in relation to the design of PD are discussed....

  19. Science teachers' meaning-making when involved in a school-based professional development project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    2012-01-01

    A group of teachers' meaning-making when they are collaboratively analyzing artifacts from practice in local science classrooms in a school-based professional development (PD) project is examined through repeated interviews and represented as meaning-makig maps. The interpretation of the teachers......' meaning-making includes both their reference to outcomes from the project and their expressed ideas about teaching and learning of science. All four teachers refer to experiences from experimenting in their classrooms and interpret the collected artifacts in relation to students' learning. Furthermore......, they all felt encouraged to continue collaboration around science. During the interviews, the teachers emphasize various elements apparently connected to concrete challenges they each experience in their professional work. Implications in relation to the design of PD are discussed....

  20. Communicating through humour: A project of stand-up comedy about science.

    Science.gov (United States)

    Pinto, Bruno; Marçal, David; Vaz, Sofia G

    2015-10-01

    A study of a project on science stand-up comedy developed in Portugal between 2009 and 2013 is presented, in which thirteen scientists, coordinated by a science communicator and a professional actor, created and presented comedy acts. Eleven of these scientists were asked about their motivations to participate, the process of performance development and the perceived value of the project. Personal motivations were highly important, but professional reasons were also mentioned. Working in a group with the guidance of coordinators, testing and re-writing the texts and gradually gaining confidence on stage were considered fundamental in the development of the shows. Additionally, a questionnaire revealed that the audience, most of whom were young adults, and held a higher education degree, were satisfied with the show. Overall, both participating scientists and audience members considered that stand-up comedy has potential for science communication. © The Author(s) 2013.

  1. Collaborative Visualization Project: shared-technology learning environments for science learning

    Science.gov (United States)

    Pea, Roy D.; Gomez, Louis M.

    1993-01-01

    Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.

  2. The Navajo Learning Network and the NASA Life Sciences/AFOSR Infrastructure Development Project

    Science.gov (United States)

    1999-01-01

    The NSF-funded Navajo Learning Network project, with help from NASA Life Sciences and AFOSR, enabled Dine College to take a giant leap forward technologically - in a way that could never had been possible had these projects been managed separately. The combination of these and other efforts created a network of over 500 computers located at ten sites across the Navajo reservation. Additionally, the college was able to install a modern telephone system which shares network data, and purchase a new higher education management system. The NASA Life Sciences funds further allowed the college library system to go online and become available to the entire campus community. NSF, NASA and AFOSR are committed to improving minority access to higher education opportunities and promoting faculty development and undergraduate research through infrastructure support and development. This project has begun to address critical inequalities in access to science, mathematics, engineering and technology for Navajo students and educators. As a result, Navajo K-12 education has been bolstered and Dine College will therefore better prepare students to transfer successfully to four-year institutions. Due to the integration of the NSF and NASA/AFOSR components of the project, a unified project report is appropriate.

  3. The Environmental and Molecular Sciences Laboratory project -- Continuous evolution in leadership

    International Nuclear Information System (INIS)

    Knutson, D.E.; McClusky, J.K.

    1994-10-01

    The Environmental and Molecular Sciences Laboratory (EMSL) construction project at Pacific Northwest Laboratory (PNL) in Richland, Washington, is a $230M Major Systems Acquisition for the US Department of Energy (DOE). The completed laboratory will be a national user facility that provides unparalleled capabilities for scientists involved in environmental molecular science research. This project, approved for construction by the Secretary of Energy in October 1993, is underway. The United States is embarking on an environmental cleanup effort that dwarfs previous scientific enterprise. Using current best available technology, the projected costs of cleaning up the tens of thousands of toxic waste sites, including DOE sites, is estimated to exceed one trillion dollars. The present state of scientific knowledge regarding the effects of exogenous chemicals on human biology is very limited. Long term environmental research at the molecular level is needed to resolve the concerns, and form the building blocks for a structure of cost effective process improvement and regulatory reform

  4. Institutional repository in communication: the REPOSCOM project implemented in the digital libraries federation of communication science

    Directory of Open Access Journals (Sweden)

    Sueli Mara Soares Pinto Ferreira

    2007-01-01

    Full Text Available Considering the conceptualization, characterization and context of the institutional repositories (IR this paper discuss the procedures, policies and strategies delineated to the implementation of IR in a research environment. The object of discussion is the project called Reposcom - Institutional Repository of Intercom (Brazilian Society of Interdisciplinary Studies of Communication – which is part of a broader project managed by the Portcom – Information Network in Communication Sciences of Countries of Portuguese Language – and called Digital Libraries Federation in the Communication Sciences. Aiming to share the knowledge and experience acquired with the implementation of the Reposcom, this paper describes its work activities, the decisions made, the customization of the software DSpace (the technological solution and the initial results achieved with the project.

  5. DEVELOPMENT OF SCIENCE PROCESS SKILLS STUDENTS WITH PROJECT BASED LEARNING MODEL- BASED TRAINING IN LEARNING PHYSICS

    Directory of Open Access Journals (Sweden)

    Ratna Malawati

    2016-06-01

    Full Text Available This study aims to improve the physics Science Process Skills Students on cognitive and psychomotor aspects by using model based Project Based Learning training.The object of this study is the Project Based Learning model used in the learning process of Computationa Physics.The method used is classroom action research through two learning cycles, each cycle consisting of the stages of planning, implementation, observation and reflection. In the first cycle of treatment with their emphasis given training in the first phase up to third in the model Project Based Learning, while the second cycle is given additional treatment with emphasis discussion is collaboration in achieving the best results for each group of products. The results of data analysis showed increased ability to think Students on cognitive and Science Process Skills in the psychomotor.

  6. The Environmental and Molecular Sciences Laboratory project -- Continuous evolution in leadership

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, D.E.; McClusky, J.K.

    1994-10-01

    The Environmental and Molecular Sciences Laboratory (EMSL) construction project at Pacific Northwest Laboratory (PNL) in Richland, Washington, is a $230M Major Systems Acquisition for the US Department of Energy (DOE). The completed laboratory will be a national user facility that provides unparalleled capabilities for scientists involved in environmental molecular science research. This project, approved for construction by the Secretary of Energy in October 1993, is underway. The United States is embarking on an environmental cleanup effort that dwarfs previous scientific enterprise. Using current best available technology, the projected costs of cleaning up the tens of thousands of toxic waste sites, including DOE sites, is estimated to exceed one trillion dollars. The present state of scientific knowledge regarding the effects of exogenous chemicals on human biology is very limited. Long term environmental research at the molecular level is needed to resolve the concerns, and form the building blocks for a structure of cost effective process improvement and regulatory reform.

  7. On the Application of Science Systems Engineering and Uncertainty Quantification for Ice Sheet Science and Sea Level Projections

    Science.gov (United States)

    Schlegel, Nicole-Jeanne; Boening, Carmen; Larour, Eric; Limonadi, Daniel; Schodlok, Michael; Seroussi, Helene; Watkins, Michael

    2017-04-01

    Research and development activities at the Jet Propulsion Laboratory (JPL) currently support the creation of a framework to formally evaluate the observational needs within earth system science. One of the pilot projects of this effort aims to quantify uncertainties in global mean sea level rise projections, due to contributions from the continental ice sheets. Here, we take advantage of established uncertainty quantification tools embedded within the JPL-University of California at Irvine Ice Sheet System Model (ISSM). We conduct sensitivity and Monte-Carlo style sampling experiments on forward simulations of the Greenland and Antarctic ice sheets. By varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges, we assess the impact of the different parameter ranges on century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  8. The Art-Science Connection: Students Create Art Inspired by Extracurricular Lab Investigations

    Science.gov (United States)

    Hegedus, Tess; Segarra, Verónica A.; Allen, Tawannah G.; Wilson, Hillary; Garr, Casey; Budzinski, Christina

    2016-01-01

    The authors developed an integrated science-and-art program to engage science students from a performing arts high school in hands-on, inquiry based lab experiences. The students participated in eight biology-focused investigations at a local university with undergraduate mentors. After the laboratory phase of the project, the high school students…

  9. An Interactive Robotic Fish Exhibit for Designed Settings in Informal Science Learning

    Science.gov (United States)

    Phamduy, Paul; Leou, Mary; Milne, Catherine; Porfiri, Maurizio

    2017-01-01

    Informal science learning aims to improve public understanding of STEM. Free-choice learners can be engaged in a wide range of experiences, ranging from watching entertaining educational videos to actively participating in hands-on projects. Efforts in informal science learning are often gauged by their ability to elicit interaction, to foster…

  10. National Science Resources Center Project to Improve Science Teaching in Elementary Schools. Appendix C. Elementary Science Information Database

    Science.gov (United States)

    1988-12-01

    individual particles. They mix the powders with water and perform tests with heat, iodine, and vinegar in order to gain additional information about the...illusions ; light ; fermentation ; chromatography ; moon ; astronomy AN SCIENCE - A PROCESS APPROACH, PART G focuses on experimentation, incorporating all...skills ; flowers plants astronomy ; animals ; sensory perception ; vision ; optical illusions ; eyes ; density ; viscosity ; fermentation ; moon

  11. National Science Resources Center Project for Improving Science Teaching in Elementary Schools. Appendix A. School Systems With Exemplary Elementary Science Programs. Appendix B. Elementary Science Network

    Science.gov (United States)

    1988-12-01

    Glass, Lawrence, Deer Park High School Glass, Millard, K-12 Science Supervisor Bloomfield Municipal School District Glassman, Neil, Gleason, Steve...Superientendent Vaughn Municipal Schools Knop, Ronald N., Teacher Grissom Junior High School Knox, Amie, Director of Master Teacher Program W. Wilson...Science Supervisor Pequannock Township Public Schools Mercado , Roberto, Science Coordinator Colegio Radians, Inc. Merchant, Edwin, K-12 Science

  12. Merging science, engineering, and data with FUN: Recreational Drones in STEaM Education Activities and Science Fair Projects

    Science.gov (United States)

    Olds, S. E.; Mooney, M. E.; Dahlman, L. E.

    2016-12-01

    Recreational drones, also known as unmanned aerial vehicles (UAVs), provide an ideal platform for engaging students in science, technology, engineering, and math (STEM) investigations for science fair projects, after-school clubs, and in-class activities. UAVs are very popular (estimate of >1 million received as gifts this past year), relatively inexpensive (Arduino board. This presentation will elaborate upon the year-long process of working with educators via webinars and a 1-day workshop at the 2016 ESIP summer meeting and beyond. It will also provide examples of student-led investigations, instructions for building the SABEL sensor package, insights gleaned from workshop feedback - and - the status of the new e-book compilation of student-focused activities using recreational drones to pursue STEM investigations!

  13. Science Roles and Interactions in Adaptive Management of Large River Restoration Projects, Midwest United States

    Science.gov (United States)

    Jacobson, R. B.; Galat, D. L.; Smith, C. B.

    2010-12-01

    Most large-river restoration projects include formal or informal implementations of adaptive management strategies which acknowledge uncertainty and use scientific inquiry to learn and refine management options. Although the central role of science in reducing uncertainty is acknowledged in such projects, specific roles and interactions can vary widely, including how science relates to decision-making within the governance of these projects. Our objective is to present some structured generalizations about science roles and interactions as developed from the authors’ experiences in adaptive management of large river restoration in the Midwest United States. Scientific information may be introduced into decision making by scientists acting in any of the three roles common to adaptive management -- action agency representative, stakeholder, or science provider. We have observed that confusion and gridlock can arise when it is unclear if a scientist is acting as an advocate for a stakeholder or management position, or instead as an independent, “honest broker” of science. Although both advocacy and independence are proper and expected in public decision making, it is useful when scientists unambiguously identify their role. While complete scientific independence may be illusory, transparency and peer review can promote the ideal. Transparency comes from setting clear directions and objectives at the decision-making level and defining at the outset how learning will help assess progress and inform decisions. Independent peer reviews of proposals, study plans, and publications serve as a powerful tool to advance scientific independence, even if funding sources present a potential conflict of interest. Selection of experts for scientific advice and review often requires consideration of the balance between benefits of the “outside” expert (independent, knowledgeable but with little specific understanding of the river system), compared to those provided by the

  14. Adoption of ICT in Science Education: A Case Study of Communication Channels in a Teachers' Professional Development Project

    Science.gov (United States)

    Juuti, Kalle; Lavonen, Jari; Aksela, Maija; Meisalo, Veijo

    2009-01-01

    This paper analyses the use of various communication channels in science teachers' professional development project aiming to develop versatile uses for ICT (Information and Communication Technologies) in science teaching. A teacher network was created specifically for this project, and the researchers facilitated three forms of communication…

  15. Mega-science accelerator projects in China and their impact on economy

    International Nuclear Information System (INIS)

    Zhang Chuang

    2012-01-01

    Along with the rapid development of national economy in China, a number of mega-science projects have been or being constructed. In respect to the large accelerator-based projects, the Beijing Electron-Positron Colliders (BEPC) and its upgrading project BEPCⅡ, the Hefei Light Source (HLS), the Heavy Ion Research Facility in Lanzhou (HIRFL) and its Cooling Storage Rings (HIRFL-CSR) and the Shanghai Synchrotron Radiation Facility (SSRF) were successfully constructed and put into operation. The Beijing Radioactive Ion Facility (BRIF) and the China Spallation Neutron Source (CSNS) are under construction. A particle accelerator is an integration of many HI-tech components. In order to reach the scientific goal of an accelerator project, a great deal new technologies need to be developed during its construction and operation and thus speed up technology development and this will positively impact on the economy. In this paper, the mega-science accelerator projects are briefly described and applications of accelerators in the economy are reviewed. The paper emphasizes spin-off of the accelerator technology developed during R and D and construction of the projects. Approaches of collaboration between academia and industry are discussed. With some examples, the benefits experienced in the laboratory-industry collaboration and approach of its economic compact are illustrated. (author)

  16. [Review and analysis of transplant biological research projects funded by National Natural Science Foundation of China].

    Science.gov (United States)

    Gong, Weihua; Sun, Ruijuan; Dong, Erdan

    2015-08-01

    To study the funding and achievements in the field of organ transplantation support by the National Natural Science Foundation of China (NSFC). A search of NSFC database was made by using the key word "transplantation" and excluding "bone marrow transplantation" for the projects funded between 1988 and 2013. SCI indexed publications that marked with NSFC project number were collected by searching each grant number in the database of the Web of Science. Six hundreds fifty-five projects were identified and received about 220 million yuan in grant funding. These funded research projects were distributed among 25 provinces and autonomous regions, however, which were mainly in the developed coastal areas; of them, 43 (6.56%) projects were granted in xenotransplantation and 17 projects (2.60%) were funded in the field of traditional Chinese medicine-related organ transplantation; Transplantation on blood vessels, heart, kidney, liver, lung, small intestine, pancreatic, cornea, trachea, skin, etc. were primarily performed in research. Nine hundreds and sixty-one SCI-indexed publications were achieved. Magnitude and intensity of NSFC funding, output of SCI publications have been increasing, suggesting that NSFC positively promotes the development of organ transplantation. Although a great progress of transplantation has been made, basic and translational studies should be vigorously strengthened.

  17. Student and Faculty Outcomes of Undergraduate Science Research Projects by Geographically Dispersed Students

    Directory of Open Access Journals (Sweden)

    Lawton Shaw

    2013-12-01

    Full Text Available Senior undergraduate research projects are important components of most undergraduate science degrees. The delivery of such projects in a distance education format is challenging. Athabasca University (AU science project courses allow distance education students to complete research project courses by working with research supervisors in their local area, coordinated at a distance by AU faculty. This paper presents demographics and course performance for 155 students over five years. Pass rates were similar to other distance education courses. Research students were surveyed by questionnaire, and external supervisors and AU faculty were interviewed, to examine the outcomes of these project courses for each group. Students reported high levels of satisfaction with the course, local supervisors, and faculty coordinators. Students also reported that the experience increased their interest in research, and the probability that they would pursue graduate or additional certification. Local supervisors and faculty affirmed that the purposes of project courses are to introduce the student to research, provide opportunity for students to use their cumulative knowledge, develop cognitive abilities, and independent thinking. The advantages and challenges associated with this course model are discussed.

  18. Blast a Biofilm: A Hands-On Activity for School Children and Members of the Public

    Directory of Open Access Journals (Sweden)

    Victoria L. Marlow

    2013-08-01

    Full Text Available Microbial biofilms are very common in nature and have both detrimental and beneficial effects on everyday life. Practical and hands-on activities have been shown to achieve greater learning and engagement with science by young people (1, 4, 5. We describe an interactive activity, developed to introduce microbes and biofilms to school age children and members of the public. Biofilms are common in nature and, as the favored mode of growth for microbes, biofilms affect many parts ofeveryday life. This hands-on activity highlights the key  concepts of biofilms by allowing participants to first build, then attempt to ‘blast,’ a biofilm, thus enabling the robust nature of biofilms to become apparent. We developed the blast-a-biofilm activity as part of our two-day Magnificent Microbes event, which took place at the Dundee Science Centre-Sensation in May 2010 (6. This public engagement event was run by scientists from the Division of Molecular Microbiology at the University of Dundee. The purpose of the event was to use fun and interesting activities to make both children and adults think about how fascinating microbes are. Additionally, we aimed to develop interactive resources that could be used in future events and learning environments, of which the blast-a-biofilm activity is one such resource. Scientists and policy makers in the UK believe engaging the public with research ensures that the work of universities and research institutes is relevant to society and wider social concerns and can also help scientists actively contribute to positive social change (2. The activity is aimed at junior school age children (9–11 years and adults with little or no knowledge of microbiology. The activity is suitable for use at science festivals, science clubs, and also in the classroom, where it can serve as a tool to enrich and enhance the school curriculum.

  19. Immersive, hands-on, team-based geophysical education at the University of Texas Marine Geology and Geophysics Field Course

    Science.gov (United States)

    Saustrup, S.; Gulick, S. P.; Goff, J. A.; Davis, M. B.; Duncan, D.; Reece, R.

    2013-12-01

    , data acquisition optimization, quality control, data archival, log-keeping, real-time data processing, laboratory sediment analysis, and even boat-handling. Teams are rotated through the two vessels and the onshore field laboratory to ensure that each student has hands-on experience with each aspect of the process. Although all students work on all data areas in the field, after returning from the field each team is assigned a particular region or geologic problem to interpret. Each team prepares and presents a formal presentation to UTIG researchers and industry representatives, explaining and defending their interpretations. This unique approach to hands-on field training, real-world science, and project-based teamwork helps prepare students for direct entry into the workforce, giving them a leg up on competitors for positions. This course has an impressive success ratio to show, with many students receiving job offers directly as a result of their participation in the course.

  20. Selling science 2.0: What scientific projects receive crowdfunding online?

    Science.gov (United States)

    Schäfer, Mike S; Metag, Julia; Feustle, Jessica; Herzog, Livia

    2016-09-19

    Crowdfunding has emerged as an additional source for financing research in recent years. The study at hand identifies and tests explanatory factors influencing the success of scientific crowdfunding projects by drawing on news value theory, the "reputation signaling" approach, and economic theories of online payment. A standardized content analysis of 371 projects on English- and German-language platforms reveals that each theory provides factors influencing crowdfunding success. It shows that projects presented on science-only crowdfunding platforms have a higher success rate. At the same time, projects are more likely to be successful if their presentation includes visualizations and humor, the lower their targeted funding is, the less personal data potential donors have to relinquish and the more interaction between researchers and donors is possible. This suggests that after donors decide to visit a scientific crowdfunding platform, factors unrelated to science matter more for subsequent funding decisions, raising questions about the potential and implications of crowdfunding science. © The Author(s) 2016.

  1. Impact of problem finding on the quality of authentic open inquiry science research projects

    Science.gov (United States)

    Labanca, Frank

    2008-11-01

    Problem finding is a creative process whereby individuals develop original ideas for study. Secondary science students who successfully participate in authentic, novel, open inquiry studies must engage in problem finding to determine viable and suitable topics. This study examined problem finding strategies employed by students who successfully completed and presented the results of their open inquiry research at the 2007 Connecticut Science Fair and the 2007 International Science and Engineering Fair. A multicase qualitative study was framed through the lenses of creativity, inquiry strategies, and situated cognition learning theory. Data were triangulated by methods (interviews, document analysis, surveys) and sources (students, teachers, mentors, fair directors, documents). The data demonstrated that the quality of student projects was directly impacted by the quality of their problem finding. Effective problem finding was a result of students using resources from previous, specialized experiences. They had a positive self-concept and a temperament for both the creative and logical perspectives of science research. Successful problem finding was derived from an idiosyncratic, nonlinear, and flexible use and understanding of inquiry. Finally, problem finding was influenced and assisted by the community of practicing scientists, with whom the students had an exceptional ability to communicate effectively. As a result, there appears to be a juxtaposition of creative and logical/analytical thought for open inquiry that may not be present in other forms of inquiry. Instructional strategies are suggested for teachers of science research students to improve the quality of problem finding for their students and their subsequent research projects.

  2. Observing Some Life Cycles. Teacher's Guide. Unit E3. ZIM-SCI, Zimbabwe Secondary School Science Project.

    Science.gov (United States)

    Chitepo, Thoko; And Others

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide contains instructional…

  3. Potential Science and Technology Game Changers for the Ground Warfare of 2050: Selected Projections Made in 2017

    Science.gov (United States)

    2018-02-01

    ARL-TR-8283 ● FEB 2018 US Army Research Laboratory Potential Science and Technology Game Changers for the Ground Warfare of 2050...Science and Technology Game Changers for the Ground Warfare of 2050: Selected Projections Made in 2017 by Alexander Kott Office of the Director...Brian Sadler Vehicle Technology Directorate, ARL Ananthram Swami Computational and Information Sciences Directorate, ARL Approved for

  4. Analysis of an Interactive Technology Supported Problem-Based Learning STEM Project Using Selected Learning Sciences Interest Areas (SLSIA)

    Science.gov (United States)

    Kumar, David Devraj

    2017-01-01

    This paper reports an analysis of an interactive technology-supported, problem-based learning (PBL) project in science, technology, engineering and mathematics (STEM) from a Learning Sciences perspective using the Selected Learning Sciences Interest Areas (SLSIA). The SLSIA was adapted from the "What kinds of topics do ISLS [International…

  5. Atoms and Molecules. 'O' Level. Teacher's Guide. Unit 2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    Science.gov (United States)

    Mandizha, George

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be used in…

  6. Forces. 'O' Level Teacher's Guide. Unit 1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    Science.gov (United States)

    Udwin, Martin

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  7. Forces. 'O' Level Study Guide. Unit 1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    Science.gov (United States)

    Udwin, Martin

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide is a five-part unit…

  8. Project for the Space Science in Moscow State University of Geodesy and Cartography (MIIGAiK)

    Science.gov (United States)

    Semenov, M.; Oberst, J.; Malinnikov, V.; Shingareva, K.; Grechishchev, A.; Karachevtseva, I.; Konopikhin, A.

    2012-04-01

    Introduction: Based on the proposal call of the Government of Russian Federation 40 of international scientists came to Russia for developing and support-ing research capabilities of national educational institutions. Moscow State University of Geodesy and Cartography (MIIGAiK) and invited scientist Prof. Dr. Jurgen Oberst were awarded a grant to establish a capable research facility concerned with Planetary Geodesy, Cartography and Space Exploration. Objectives: The goals of the project are to build laboratory infrastructure, and suitable capability for MIIGAiK to participate in the planning, execution and analyses of data from future Russian planetary mis-sions and also to integrate into the international science community. Other important tasks are to develop an attractive work place and job opportunities for planetary geodesy and cartography students. For this purposes new MIIGAiK Extraterrestrial Laboratory (MExLab) was organized. We involved professors, researchers, PhD students in to the projects of Moon and planets exploration at the new level of Russian Space Science development. Main results: MExLab team prepare data for upcom-ing Russian space missions, such as LUNA-GLOB and LUNA-RESOURSE. We established cooperation with Russian and international partners (IKI, ESA, DLR, and foreign Universities) and actively participated in international conferences and workshops. Future works: For the future science development we investigated the old Soviet Archives and received the access to the telemetry data of the Moon rovers Lunokhod-1 and Lunokhod-2. That data will be used in education purposes and could be the perfect base for the analysis, development and support in new Russian and international missions and especially Moon exploration projects. MExLab is open to cooperate and make the consortiums for science projects for the Moon and planets exploration. Acknowledgement: Works are funded by the Rus-sian Government (Project name: "Geodesy, cartography and the

  9. Hands on versus remote techniques in waste management and decommissioning

    International Nuclear Information System (INIS)

    Asquith, J.D.

    1994-01-01

    The nuclear industry has many requirements for planned and uplanned physical interactions with radioactive materials or their environment. In each case a choice must be made as to whether the interaction should be made directly by the operator using a 'hands on' technique, wearing any necessary protective clothing, or by entirely remote techniques. In facilities where remote handling equipment has already been provided and planned for, remote techniques are usually the obvious choice. However in radioactive waste management and decommissioning there are many cases where unexpected requirements emerge, often for relatively short term activities, where the choice is more complex. This paper takes a look at the various factors which should be considered in order to make these decisions, an overview of the types of remote equipment available in the UK and some examples of the benefits which have resulted when remote techniques have been adopted in Britain

  10. [Analysis of projects of schistosomiasis sponsored by National Science Foundation of China].

    Science.gov (United States)

    Wen-di, Zhou; Liang, Shi; Xue-Dan, Ke; Jie, Wang

    2017-07-27

    To summarize the present development by analysis of projects in schistosomiasis funded by National Science Foundation of China (NSFC). Based on the ISIS database of NFSC, the projects in the studies of schistosomiasis from 2005 to 2016 were analyzed. The distributions of sponsored numbers, amounts, types, agencies, disciplines and changes in research topics by means of network profiles were described. During the study period, 198 projects were funded by NSFC totally with 76.05 million yuan in which the general and youth projects were main types. The main sponsored agencies were research institutes and medical colleges. The top three fields sponsored were medical pathogenic microbes and infection, veterinary and medical immunology. The funding on schistosomiasis researches has a downward trend, but studies are continuing in depth. In this situation, innovative and interdisciplinary researches need to be encouraged to promote the development of schistosomiasis.

  11. The role of assessment infrastructures in crafting project-based science classrooms

    Science.gov (United States)

    D'Amico, Laura Marie

    In project-based science teaching, teachers engage students in the practice of conducting meaningful investigations and explanations of natural phenomena, often in collaboration with fellow students or adults. Reformers suggest that this approach can provide students with more profitable learning experiences; but for many teachers, a shift to such instruction can be difficult to manage. As some reform-minded teachers have discovered, classroom assessment can serve as a vital tool for meeting the challenges associated with project science activity. In this research, classroom assessment was viewed as an infrastructure that both students and teachers rely upon as a mediational tool for classroom activity and communications. The study explored the classroom assessment infrastructures created by three teachers involved in the Learning through Collaborative Visualization (CoVis) Project from 1993--94 to 1995--96. Each of the three teachers under study either created a new course or radically reformulated an old one in an effort to incorporate project-based science pedagogy and supporting technologies. Data in the form of interviews, classroom observations, surveys, student work, and teacher records was collected. From these data, an interpretive case study was developed for each course and its accompanying assessment infrastructure. A set of cross-case analyses was also constructed, based upon common themes that emerged from all three cases. These themes included: the assessment challenges based on the nature of project activity, the role of technology in the teachers' assessment infrastructure designs, and the influence of the wider assessment infrastructure on their course and assessment designs. In combination, the case studies and cross-case analyses describe the synergistic relationship between the design of pedagogical reforms and classroom assessment infrastructures, as well as the effectiveness of all three assessment designs. This work contributes to research

  12. The International Science and Technology Center: Scope of activities and scientific projects in the field of nuclear data

    International Nuclear Information System (INIS)

    Klepatsky, Alexander B.

    2002-01-01

    The review of the ISTC (The International Science and Technology Center) Programs and activities including Science Project Program, Partner Program, Seminar Program and others is presented. Project funding by technology area, by funding Parties, by CIS (Commonwealth of Independent States) States etc. is demonstrated with emphasis on projects in the field of nuclear data. The ISTC opportunities for international cooperation in the fields of nuclear data measurements, calculation, evaluation and dissemination are discussed. (author)

  13. Projects of Earth Sciences Supported by National Natural Science Foundation of China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Influence on Forms of Plant Nutrients\tZHOU Jian-min 40071052\tEffect of Humus on Potassium Fixon and Release in Soil\tLIANG Cheng-hua 40071053\tStudy on the Stability and Scale Change Method of Diagnostic Parameters of Ecological Balanced Fertilization Model\tHOU Yan-lin 40071054\tSpatio-temporal Patterns and Efficiency of Plant Roots in Stabilizing Soil Structure and Reducing Water Erosion in Hilly Landscape\tLI Yong 40071055\tEffect of Changes in Soil Organic Matter on the Erodibility of Red Soils and Their Application to Planning of Soil & Water Conservation\tZHAO Qi-guo 40071056\tResearches of Desertification Disaster Early-warning System in Hunshandake Sandy Land\tDING Guo-dong 40071057\tThe Soil Air Entrapment Lessen Infiltration Rate and Principle Between in the Muddy Water Infiltration\tLI Yuan-nong 40071058\tErosion and Transport Processes at Loessial Hillslope\tZHENG Fen-li 40071059\tUse of 137Cs and 7Be Measurements to Study the Temporal and Spatial Patterns of Soil Erosion Delivering Sediment of Water-induced on Agricultural Slope Land\tYANG Ming-yi 40071060\tQuick Monitoring of Land Use Changes Using Satellite SAR Images in South China\tLI Xia 40071061\tThe Approach of Spatial Analysis in Automatic Interpretation of Satellite Digital Image\tQIN Qi-ming 40071062\tVegetation Effect and Scattering Mechanism Analysis of SRTM Interferometric Data\tWANG Chao 40071063\tChlorophyll High Precision Detection on Remote Sensing & Environmental Science in Coastal Waters\tCHEN Xiao-xiang 40071064\tStudies on Dynamic Simulation for the Modern Loess Geomorphic Process Based on Geographic Information Systems\tWU Lun 40071065\tStudy on Spatial Data Model of Digital Earth\tYANG Chong-jun 40071066\tEco-environmental Study with Remote Sensing Dynamic Detection Based on GIS in Resource Region of the Yellow River\tZENG Yong-nian 40071067\tResearch on Theories and Key Techniques of Spatial Mathematics Basis of "Digital Earth"\tHU Peng 40071068\tThe Location Uncertainty of Imagery

  14. Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies

    International Nuclear Information System (INIS)

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.

    2008-01-01

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R and D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  15. Strategical integration and prior evaluation of science and innovation projects in Ecuadorians sports organizations.

    Directory of Open Access Journals (Sweden)

    Gloria Barroso Rodríguez

    2015-09-01

    Full Text Available This work shows the design of a procedure for evaluating the strategical integration of science and innovation projects level in the physical and sport sphere, and its validation through expert criteria for application to Ecuadorian sports organizations. As a result, it was possible to demonstrate the validity of the procedure designed, so it will be possible to be used to facilitate decision-making in relation to the execution of such projects considering, as a value judgment, the level of their essential components integration for the achievement of objectives aligned to the strategic priorities of the Ecuadorians sports organizations.  

  16. NASA's Student Launch Projects: A Government Education Program for Science and Engineering

    Science.gov (United States)

    Shepherd, Christena C.

    2009-01-01

    Among the many NASA education activities, the Student Launch projects are examples of how one agency has been working with students to inspire math, science and engineering interest. There are two Student Launch projects: Student Launch Initiative (SLI) for middle and high school students and the University Student Launch Initiative (USLI) for college students. The programs are described and website links are provided for further information. This document presents an example of how an agency can work with its unique resources in partnership with schools and communities to bring excitement to the classroom.

  17. Science Students Creating Hybrid Spaces when Engaging in an Expo Investigation Project

    Science.gov (United States)

    Ramnarain, Umesh; de Beer, Josef

    2013-02-01

    In this paper, we report on the experiences of three 9th-grade South African students (13-14 years) in doing open science investigation projects for a science expo. A particular focus of this study was the manner in which these students merge the world of school science with their social world to create a hybrid space by appropriating knowledge and resources of the school and home. Within this hybrid space they experienced a deeper, more meaningful and authentic engagement in science practical work. This hybrid space redefined the landscape of the science learning experience for these students, as they could derive the twofold benefit of appropriating support when necessary and at the same time maintain their autonomy over the investigation. For South Africa and quite probably other countries; these findings serve as a guideline as to how opportunities can be created for students to do open science investigations, against prevailing school factors such as large classes, a lack of physical resources, the lack of time for practical work and the demands of syllabus coverage.

  18. The ATLAS Computing Agora: a resource web site for citizen science projects

    CERN Document Server

    Bourdarios, Claire; The ATLAS collaboration

    2016-01-01

    The ATLAS collaboration has recently setup a number of citizen science projects which have a strong IT component and could not have been envisaged without the growth of general public computing resources and network connectivity: event simulation through volunteer computing, algorithms improvement via Machine Learning challenges, event display analysis on citizen science platforms, use of open data, etc. Most of the interactions with volunteers are handled through message boards, but specific outreach material was also developed, giving an enhanced visibility to the ATLAS software and computing techniques, challenges and community. In this talk the Atlas Computing Agora (ACA) web platform will be presented as well as some of the specific material developed for some of the projects.

  19. Taking a 'Big Data' approach to data quality in a citizen science project.

    Science.gov (United States)

    Kelling, Steve; Fink, Daniel; La Sorte, Frank A; Johnston, Alison; Bruns, Nicholas E; Hochachka, Wesley M

    2015-11-01

    Data from well-designed experiments provide the strongest evidence of causation in biodiversity studies. However, for many species the collection of these data is not scalable to the spatial and temporal extents required to understand patterns at the population level. Only data collected from citizen science projects can gather sufficient quantities of data, but data collected from volunteers are inherently noisy and heterogeneous. Here we describe a 'Big Data' approach to improve the data quality in eBird, a global citizen science project that gathers bird observations. First, eBird's data submission design ensures that all data meet high standards of completeness and accuracy. Second, we take a 'sensor calibration' approach to measure individual variation in eBird participant's ability to detect and identify birds. Third, we use species distribution models to fill in data gaps. Finally, we provide examples of novel analyses exploring population-level patterns in bird distributions.

  20. Training Teens to Teach Agricultural Biotechnology: A National 4-H Science Demonstration Project

    Directory of Open Access Journals (Sweden)

    Chad Ripberger

    2013-12-01

    Full Text Available This article discusses a National 4-H Science agricultural biotechnology demonstration project and the impact of the pilot programs on the teenage leaders and teachers. A total of 82 teenagers were extensively trained, who in turn, engaged 620 youth participants with agricultural biotechnology education in afterschool and summer programs in five states. This article details the national and state level trainings for these teen teachers as well as the content rich partners from agribusinesses, agricultural commodity groups, and universities who supported their involvement. The impact on the content knowledge, science process and life skills, and program development and implementation skills of the teen leaders and teachers was evaluated using multiple instruments over multiple administrations (pre-training, post-training, and post-teaching. Results indicate significant gains in most areas assessed. Project recommendations and future plans are also discussed.

  1. Motivations of participants in the citizen science of microbiomics: data from the British Gut Project.

    Science.gov (United States)

    Del Savio, Lorenzo; Prainsack, Barbara; Buyx, Alena

    2017-08-01

    The establishment of databases for research in human microbiomics is dependent on the recruitment of sufficient numbers and diversity of participants. Factors that support or impede participant recruitment in studies of this type have not yet been studied. We report the results of a survey aimed at establishing the motivations of participants in the British Gut Project, a research project that relies on volunteers to provide samples and to help fund the project. The two most frequently reported motivations for participation were altruism and solidarity. Low education levels appeared to be a recruitment obstacle. More than half of our 151 respondents said they would participate in further citizen-science projects; 38% said they would not participate in a similar project if it was for-profit or in a project that did not release data sets in repositories accessible to scientists (30%). The desire to take part in research was reported as a key motivation for participation in the British Gut Project (BGP). Such prosocial motivations can be mobilized for the establishment of large data sets for research.Genet Med advance online publication 26 January 2017.

  2. Embracing Diversity: The Exploration of User Motivations in Citizen Science Astronomy Projects

    Science.gov (United States)

    Lee, Lo

    2018-06-01

    Online citizen science projects ask members of the public to donate spare time on their personal computers to process large datasets. A critical challenge for these projects is volunteer recruitment and retention. Many of these projects use Berkeley Open Infrastructure for Network Computing (BOINC), a piece of middleware, to support their operations. This poster analyzes volunteer motivations in two large, BOINC-based astronomy projects, Einstein@Home and Milkyway@Home. Volunteer opinions are addressed to assess whether and how competitive elements, such as credit and ranking systems, motivate volunteers. Findings from a study of project volunteers, comprising surveys (n=2,031) and follow-up interviews (n=21), show that altruism is the main incentive for participation because volunteers consider scientific research to be critical for humans. Multiple interviewees also revealed a passion for extrinsic motivations, i.e. those that involve recognition from other people, such as opportunities to become co-authors of publications or to earn financial benefits. Credit and ranking systems motivate nearly half of interviewees. By analyzing user motivations in astronomical BOINC projects, this research provides scientists with deeper understandings about volunteer communities and various types of volunteers. Building on these findings, scientists can develop different strategies, for example, awarding volunteers badges, to recruit and retain diverse volunteers, and thus enhance long-term user participation in astronomical BOINC projects.

  3. Science in Hawaii/Haawina Hoopapau: A Culturally Responsive Curriculum Project

    Science.gov (United States)

    Galloway, L. M.; Roberts, K.; Leake, D. W.; Stodden, R. S.; Crabbe, V.

    2005-12-01

    The marvels of modern science often fail to engage indigenous students, as the content and instructional style are usually rooted in the Western experience. This 3 year project, funded by the US Dept. of Education for the Education of Native Hawaiians, offers a curriculum that teaches science through (rather than just about) Native Hawaiian culture. The curriculum focuses on the interdependence of natural resources in our ahupuaa, or watersheds, and helps students strengthen their sense of place and self to malama i ka aina, to care for the land. Further, the curriculum is designed to: engage students in scientific study with relevant, interesting content and activities; improve student achievement of state department of education standards; increase student knowledge and skills in science, math and language arts; respond to the learning needs of Native Hawaiian and/or at-risk students. The project will be presented by a curriculum writer who created and adapted more than a year's worth of materials by teaming with kupuna (respected elders), local cultural experts and role models, educators (new, veteran, Hawaiian, non-Hawaiian, mainland, general and special education teachers), and professionals at the Center on Disability Studies at the University of Hawaii and ALU LIKE, Inc, a non-profit organization to assist Native Hawaiians. The materials created thus far are available for viewing at: www.scihi.hawaii.edu The curriculum, designed for grades 8-11 science classes, can be used to teach a year-long course, a unit, or single lesson related to astronomy, biology, botany, chemistry, geology, oceanography, physical and environmental sciences. This project is in its final year of field testing, polishing and dissemination, and therefore this session will encourage idea sharing, as does our copyright free Web site.

  4. Dagik Earth: A Digital Globe Project for Classrooms, Science Museums, and Research Institutes

    Science.gov (United States)

    Saito, A.; Tsugawa, T.

    2017-12-01

    Digital globe system is a powerful tool to make the audiences understand phenomena on the Earth and planets in intuitive way. Geo-cosmos of Miraikan, Japan uses 6-m spherical LED, and is one of the largest systems of digital globe. Science on a Sphere (SOS) by NOAA is a digital globe system that is most widely used in science museums around the world. These systems are so expensive that the usage of the digital globes is mainly limited to large-scale science museums. Dagik Earth is a digital globe project that promotes educational programs using digital globe with low cost. It aims to be used especially in classrooms. The cost for the digital globe of Dagik Earth is from several US dollars if PC and PC projector are available. It uses white spheres, such as balloons and balance balls, as the screen. The software is provided by the project with free of charge for the educational usage. The software runs on devices of Windows, Mac and iOS. There are English and Chinese language versions of the PC software besides Japanese version. The number of the registered users of Dagik Earth is about 1,400 in Japan. About 60% of them belongs to schools, 30% to universities and research institutes, and 8% to science museums. In schools, it is used in classes by teachers, and science activities by students. Several teachers have used the system for five years and more. In a students' activity, Dagik Earth contents on the typhoon, solar eclipse, and satellite launch were created and presented in a school festival. This is a good example of the usage of Dagik Earth for STEM education. In the presentation, the system and activity of Dagik Earth will be presented, and the future expansion of the project will be discussed.

  5. Project-Based Learning as a Vehicle for Teaching Science at the University Level

    Science.gov (United States)

    Courtney, A. R.; Wade, P.

    2012-12-01

    In a typical science course learning is teacher directed. Students are presented with knowledge and concepts via textbooks and lecture and then given the opportunity to apply them. Project-based learning (PBL) creates a context and reason to learn information and concepts. In PBL, learning is student directed and teacher facilitated. Students take ownership of their learning by finding, evaluating and synthesizing information from a variety of resources and via interaction between each other. In PBL, the project is central rather than peripheral to the curriculum. It is not just an activity that provides examples, additional practice or applications of the course content, but rather, the vehicle through which major concepts are discovered. The PBL process requires students to do revision and reflection encouraging them to think about what and how they are learning. PBL projects also allow students to develop important life-work skills such as collaboration, communication and critical thinking within the discipline. We have employed PBL in both Liberal Arts courses for non-science majors and upper division courses for science students. Three examples will be discussed. The first will be the production of video documentaries in a non-science major course; the second, a student generated electronic textbook in a 300-level energy course for science students; and lastly, a student designed analysis project in a chemistry major capstone laboratory course. The product in each of these examples was used to deliver knowledge to others in the class as well as members of the public providing motivation for students to do high-quality work. In our examples, student documentaries are publicly screened as part of a university-wide Academic Excellence Showcase; the student generated electronic textbook is available for public use on the internet; and the results of the student designed analysis were communicated to the real-world clients via letters and reports. We will discuss

  6. Materials Information for Science and Technology (MIST): Project overview: Phase 1 and 2 and general considerations

    Energy Technology Data Exchange (ETDEWEB)

    Grattidge, W.; Westbrook, J.; McCarthy, J.; Northrup, C. Jr.; Rumble, J. Jr.

    1986-11-01

    The National Bureau of Standards and the Department of Energy have embarked on a program to build a demonstration computerized materials data system called Materials Information for Science and Technology (MIST). This report documents the first two phases of the project. The emphasis of the first phase was on determining what information was needed and how it could impact user productivity. The second phase data from the Aerospace Metal Handbook on a set of alloys was digitized and incorporated in the system.

  7. Connecting university science experiences to middle school science teaching

    Science.gov (United States)

    Johnson, Gordon; Laughran, Laura; Tamppari, Ray; Thomas, Perry

    1991-06-01

    Science teachers naturally rely on their university science experiences as a foundation for teaching middle school science. This foundation consists of knowledge far too complex for the middle level students to comprehend. In order for middle school science teachers to utilize their university science training they must search for ways to adapt their college experiences into appropriate middle school learning experience. The criteria set forth above provide broad-based guidelines for translating university science laboratory experiences into middle school activities. These guidelines are used by preservice teachers in our project as they identify, test, and organize a resource file of hands-on inquiry activities for use in their first year classrooms. It is anticipated that this file will provide a basis for future curriculum development as the teacher becomes more comfortable and more experienced in teaching hands-on science. The presentation of these guidelines is not meant to preclude any other criteria or considerations which a teacher or science department deems important. This is merely one example of how teachers may proceed to utilize their advanced science training as a basis for teaching middle school science.

  8. The Windows to the Universe Project: Using the Internet to Support K-12 Science Education

    Science.gov (United States)

    Gardiner, L.; Johnson, R.; Bergman, J.; Russell, R.; Genyuk, J.; La Grave, M.

    2003-12-01

    The World Wide Web can be a powerful tool for reaching the public as well as students and teachers around the world, supporting both formal and informal science education. The Windows to the Universe Project, initiated in 1995, provides a case study of approaches for the use of the web to support earth and space science education and literacy efforts. Through the use of innovative approaches such as easy to use design, multi-level content, and science concepts presented in a broader background context that includes connections to culture and the humanities, Windows to the Universe is an accessible format for individuals of various ages and learning styles. A large global audience regularly uses the web site to learn about earth and space science as well as related humanities content such as myths from around the world. User surveys show that the site has over 4 millions users per year, 65 percent of which are K-12 teachers and students. Approximately 46 percent of users access the site once per week or more. Recently, we have had the opportunity to expand our efforts while we continue to update existing content based on new scientific findings and events. Earth science content on Windows to the Universe is currently growing with a new geology section and development efforts are underway to expand our space weather content with a new curriculum. Educational games allow users to learn about space in a playful context, and an online journaling tool further integrates literacy into the learning experience. In addition, we are currently translating the entire Windows to the Universe web site into Spanish. We have included educators in the project as co-designers from its inception, and by aggressively utilizing and providing professional development opportunities for teachers, the web site is now used in thousands of classrooms around the world. In the past year we have continued to support K-12 educators by adding to our suite of classroom activities and leading

  9. Adult-Rated Oceanography Part 1: A Project Integrating Ocean Sciences into Adult Basic Education Programs.

    Science.gov (United States)

    Cowles, S.; Collier, R.; Torres, M. K.

    2004-12-01

    Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing

  10. A rural virtual health sciences library project: research findings with implications for next generation library services.

    Science.gov (United States)

    Richwine, M P; McGowan, J J

    2001-01-01

    The Shared Hospital Electronic Library of Southern Indiana (SHELSI) research project was designed to determine whether access to a virtual health sciences library and training in its use would support medical decision making in rural southern Indiana and achieve the same level of impact seen by targeted information services provided by health sciences librarians in urban hospitals. Based on the results of a needs assessment, a virtual medical library was created; various levels of training were provided. Virtual library users were asked to complete a Likert-type survey, which included questions on intent of use and impact of use. At the conclusion of the project period, structured interviews were conducted. Impact of the virtual health sciences library showed a strong correlation with the impact of information provided by health sciences librarians. Both interventions resulted in avoidance of adverse health events. Data collected from the structured interviews confirmed the perceived value of the virtual library. While librarians continue to hold a strong position in supporting information access for health care providers, their roles in the information age must begin to move away from providing information toward selecting and organizing knowledge resources and instruction in their use.

  11. A rural virtual health sciences library project: research findings with implications for next generation library services*

    Science.gov (United States)

    Richwine, Margaret (Peggy); McGowan, Julie J.

    2001-01-01

    Purpose: The Shared Hospital Electronic Library of Southern Indiana (SHELSI) research project was designed to determine whether access to a virtual health sciences library and training in its use would support medical decision making in rural southern Indiana and achieve the same level of impact seen by targeted information services provided by health sciences librarians in urban hospitals. Methods: Based on the results of a needs assessment, a virtual medical library was created; various levels of training were provided. Virtual library users were asked to complete a Likert-type survey, which included questions on intent of use and impact of use. At the conclusion of the project period, structured interviews were conducted. Results: Impact of the virtual health sciences library showed a strong correlation with the impact of information provided by health sciences librarians. Both interventions resulted in avoidance of adverse health events. Data collected from the structured interviews confirmed the perceived value of the virtual library. Conclusion: While librarians continue to hold a strong position in supporting information access for health care providers, their roles in the information age must begin to move away from providing information toward selecting and organizing knowledge resources and instruction in their use. PMID:11209799

  12. Hands-on Physics Education of Residents in Diagnostic Radiology.

    Science.gov (United States)

    Zhang, Jie; Hardy, Peter A; DiSantis, David J; Oates, M Elizabeth

    2017-06-01

    The American Board of Radiology Core Examination integrates assessment of physics knowledge into its overall testing of clinical radiology, with an emphasis on understanding image quality and artifacts, radiation dose, and patient safety for each modality or subspecialty organ system. Accordingly, achieving a holistic approach to physics education of radiology residents is a huge challenge. The traditional teaching of radiological physics-simply through didactic lectures-was not designed for such a holistic approach. Admittedly, time constraints and clinical demands can make incorporation of physics teaching into clinical practice problematic. We created and implemented a week-long, intensive physics rotation for fledgling radiology residents and evaluated its effectiveness. The dedicated physics rotation is held for 1 week during the first month of radiology residency. It comprises three components: introductory lectures, hands-on practical clinical physics operations, and observation of clinical image production. A brief introduction of the physics pertinent to each modality is given at the beginning of each session. Hands-on experimental demonstrations are emphasized, receiving the greatest allotment of time. The residents perform experiments such as measuring radiation dose, studying the relationship between patient dose and clinical practice (eg, fluoroscopy technique), investigating the influence of acquisition parameters (kV, mAs) on radiographs, and evaluating image quality using computed tomography, magnetic resonance imaging, ultrasound, and gamma camera/single-photon emission computed tomography/positron emission tomography phantoms. Quantitative assessment of the effectiveness of the rotation is based on an examination that tests the residents' grasp of basic medical physics concepts along with written course evaluations provided by each resident. The pre- and post-rotation tests show that after the physics rotation, the average correct score of 25

  13. Students' Hands-on Experimental Work vs Lecture Demonstration in Teaching Elementary School Chemistry.

    Science.gov (United States)

    Logar, Ana; Ferk-Savec, Vesna

    2011-12-01

    Science educators have suggested many benefits that accrue from engaging students in experimental activities, therefore, experimental work has a long and distinctive role in chemistry curriculum since. The presented empirical study focuses on the valuation of effectiveness of different forms of experimental work - students' hands-on experimental work vs teacher's lecture demonstration - from the viewpoint of the quality of content knowledge acquisition and knowledge retention in teaching primary school chemistry. 106 primary school students (age 14-15 years) participated in the study. The data was collected via pre- and post- test protocol and two delayed post tests. Additionally 16 students selected from the sample were interviewed. The results indicate that students' content knowledge gained through teacher's demonstration of experiment is better and better knowledge retention takes place in comparison to students' knowledge gained through students' hands-on experimental work. However, most of the inteviewed students stated that they prefered conducting of experiments by themselves in comparison to observation of teacher's demonstration.

  14. Management of a science and technology popularization project in the nuclear area

    International Nuclear Information System (INIS)

    Soares, Wellington Antonio; Maretti Junior, Fausto

    2007-01-01

    The goal of this paper is to show the management results of the 2005-2007 project 'Nuclear energy: itinerant expositions' sponsored by the Foundation for Research Support of Minas Gerais (FAPEMIG), a state agency, in a science and technology popularization program. The project coordinated by the Nuclear Technology Development Center (CDTN/CNEN) in partnership with the Minas Commerce Association (ACMinas) was designed to students from public high school of the Belo Horizonte metropolitan region. It consisted of an exposition and a previous talk motivating the audience to the nuclear technology in connection with subjects taught at schools, like physics, chemistry, biology, mathematics, history, etc. Small scale models of nuclear and radioactive installations, irradiated food and fruits samples and colored gems by gamma rays were presented at the stand exposition. Designing, performing and evaluating the project required the following activities: searching of information on the target public, infrastructure mounting, team training, multimedia material elaboration, strategy for dealing with the students, talk presentation, distribution of booklet on nuclear themes, reception at the exposition, interviews with students and teachers by journalists, evaluation of the project by the schools, evaluation of the project by some students three months after the event and also reporting the project to the media. About forty people of CDTN took part in the project that reached thirty high schools and encompassed about 11,000 students. About five hundred state high school teachers of chemistry, physics and biology were reached by the experience of the project in a specialization course given by a local university. Only high approval was received by the project in the returned questionnaires. (author)

  15. Management of a science and technology popularization project in the nuclear area

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Wellington Antonio; Maretti Junior, Fausto [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: soaresw@cdtn.br; fmj@cdtn.br

    2007-07-01

    The goal of this paper is to show the management results of the 2005-2007 project 'Nuclear energy: itinerant expositions' sponsored by the Foundation for Research Support of Minas Gerais (FAPEMIG), a state agency, in a science and technology popularization program. The project coordinated by the Nuclear Technology Development Center (CDTN/CNEN) in partnership with the Minas Commerce Association (ACMinas) was designed to students from public high school of the Belo Horizonte metropolitan region. It consisted of an exposition and a previous talk motivating the audience to the nuclear technology in connection with subjects taught at schools, like physics, chemistry, biology, mathematics, history, etc. Small scale models of nuclear and radioactive installations, irradiated food and fruits samples and colored gems by gamma rays were presented at the stand exposition. Designing, performing and evaluating the project required the following activities: searching of information on the target public, infrastructure mounting, team training, multimedia material elaboration, strategy for dealing with the students, talk presentation, distribution of booklet on nuclear themes, reception at the exposition, interviews with students and teachers by journalists, evaluation of the project by the schools, evaluation of the project by some students three months after the event and also reporting the project to the media. About forty people of CDTN took part in the project that reached thirty high schools and encompassed about 11,000 students. About five hundred state high school teachers of chemistry, physics and biology were reached by the experience of the project in a specialization course given by a local university. Only high approval was received by the project in the returned questionnaires. (author)

  16. Livestock Judges Training Provides Hands-On Experience

    Science.gov (United States)

    Nash, Scott; Harrison, Steve; Packham, Joel; Sanchez, Dawn; Jensen, Jim; Kaysen, Brett; King, Marc

    2016-01-01

    The judging of a market animal at a fair is the highlight of a youth-owned livestock project. Livestock judges are hired to evaluate youth projects at fairs. They are critical ambassadors for agriculture and influence countless youths and adults. Judges must be knowledgeable about current animal evaluation methods that support youth development.…

  17. Zombie projects, negative networks, and multigenerational science: The temporality of the International Map of the World.

    Science.gov (United States)

    Rankin, William

    2017-06-01

    The International Map of the World was a hugely ambitious scheme to create standardized maps of the entire world. It was first proposed in 1891 and remained a going concern until 1986. Over the course of the project's official life, nearly every country in the world took part, and map sheets were published showing all but a few areas of the planet. But the project ended quite unceremoniously, repudiated by cartographers and mapping institutions alike, and it is now remembered as a 'sad story' of network failure. How can we evaluate this kind of sprawling, multigenerational project? In order to move beyond practitioners' (and historians') habit of summarizing the entire endeavor using the blunt categories of success and failure, I propose a more temporally aware reading, one that both disaggregates the (persistent) project from the (always changing) network and sees project and network as invertible, with the possibility of zombie projects and negative networks that can remain robust even when disconnected from their original goals. I therefore see the abandonment of the International Map of the World as resulting from vigorous collaboration and new norms in cartography, not from lack of cooperation or other resources. New categories are required for analyzing science over the long durée.

  18. [Analysis of projects of infectious disease epidemiology sponsored by National Natural Science Foundation of China].

    Science.gov (United States)

    Jian-Ming, Wang; Yan-Kai, Xia; Hui-Juan, Zhu; Feng, Chen; Hong-Bing, Shen

    2016-05-10

    To analyze the projects on the infectious disease epidemiology sponsored by the National Natural Science Foundation of China (NSFC), explore the hotspot and development trend, and offer a reference for researchers in this field. Based on the NSFC database, the projects on the infectious disease epidemiology (H2609) sponsored from 1987 to 2014 were analyzed. The changes of fund numbers, amounts and research fields were described. During the study period, NSFC sponsored 373 projects, including 228 general projects (61.1%), 78 youth projects (20.9%) and 67 other projects (18.0%). The average amount of the grant was 358.2 thousand Yuan (20 thousand-8 million). The main sponsored research fields were mechanisms of pathogen and immunity (36.2%) and population-based epidemiological studies (33.0%). The top three diseases were hepatitis, HIV/AIDS and tuberculosis. The amount of funding on researches of infectious disease epidemiology has increased continuously, which has played an important role in training scientific talents in the field of prevention and control of infectious diseases.

  19. Outline of quantum beam science research and J-PARC project

    International Nuclear Information System (INIS)

    Okada, Sohei

    2009-01-01

    The word of atomic power indicates the fields of science and technology described by not only nuclear energy but also radiation utilization where Quantum Beam Technology' is intrinsic to both high intensity particles as neutron, proton, ion, electron, muon, for example, and electromagnetic waves as synchrotron radiation and light quantum. The quantum beams have functions to 'observe' with 'nano eyes', to 'create' with 'nano hands' and to 'cure' with 'nano- scalpel'. The applications are widely spread to the industries, research and development (R and D) and medical treatments. The Japan Atomic Energy Agency, JAEA, pursues R and D activities in order to contribute to sustain global environments and energy production, to qualify life science and advanced medical treatment, to develop new materials and to innovate on quantum beam probes. Authors constructed 'J-PARC', the Japan Proton Accelerator Research Complex in cooperation with the High Energy Accelerator Research Organization, and commenced its operation in fiscal 2008. The facilities started to provide neutrons and other secondary particles to each of beam lines at increasing intensities, by proton bombardment onto a target. The objective of this project is to utilize the particles for a variety of areas in science and technology from materials science, life science and particle physics to industrial applications. The completion of the facilities will open new prospects for advanced applications of quantum beams. (K. Kikuchi)

  20. Project first and eye on the sky: strategies for teaching space science in the early grades

    Science.gov (United States)

    Paglierani, R.; Hawkins, I.

    Elementary educators typically have only limited opportunity to teach substantive science units. This is due, in great part, to the current primary focus on literacy and mathematics instruction in the early grades. It is not surprising then, that the time and resources allocated to science teaching are significantly less than those allocated to language arts and mathematics. The integration of elementary science curricula with language arts provides one means of addressing the challenge of maintaining a robust science presence in the elementary classroom. Project FIRST's Eye on the Sky suggests a model for the successful integration of science instruction with language arts through inquiry-based learning. The model has been adopted by other Education/Public Outreach efforts, most recently, the Cassini- Huygens Mission and the Space Telescope Institute. We will present Eye on the Sky: Our Star the Sun, a suite of integrated, inquiry-based lessons designed specifically for K-4 students and discuss data showing the program's impact on the user audience. These materials offer an exciting opportunity to explore the dynamic Sun and share research discoveries of NASA's Sun-Earth Connection with the elementary education community. The lessons were developed and tested by UC Berkeley educators and NASA scientists in partnership with classroom teachers. We will review the program components and examine the benefits and challenges inherent in implementing such a program in the elementary school setting.

  1. Application of Model Project Based Learning on Integrated Science in Water Pollution

    Science.gov (United States)

    Yamin, Y.; Permanasari, A.; Redjeki, S.; Sopandi, W.

    2017-09-01

    The function of this research was to analyze the influence model Project Based Learning (PjBl) on integrated science about the concept mastery for junior high school students. Method used for this research constitutes the quasi of experiment method. Population and sample for this research are the students junior high school in Bandung as many as two classes to be experiment and control class. The instrument that used for this research is the test concept mastery, assessment questionnaire of product and the questionnaire responses of the student about learning integrated science. Based on the result of this research get some data that with accomplishment the model of PjBl. Learning authority of integrated science can increase the concept mastery for junior high school students. The highest increase in the theme of pollution water is in the concept of mixtures and the separation method. The students give a positive response in learning of integrated science for the theme of pollution of the water used model PjBL with questionnaire of the opinion aspect in amount of 83.5%, the anxiety of the students in amount of 95.5%, the profit learning model of PjBL in amount of 96.25% and profit learning of integrated science in amount of 95.75%.

  2. Variables that impact the implementation of project-based learning in high school science

    Science.gov (United States)

    Cunningham, Kellie

    Wagner and colleagues (2006) state the mediocrity of teaching and instructional leadership is the central problem that must be addressed if we are to improve student achievement. Educational reform efforts have been initiated to improve student performance and to hold teachers and school leaders accountable for student achievement (Wagner et al., 2006). Specifically, in the area of science, goals for improving student learning have led reformers to establish standards for what students should know and be able to do, as well as what instructional methods should be used. Key concepts and principles have been identified for student learning. Additionally, reformers recommend student-centered, inquiry-based practices that promote a deep understanding of how science is embedded in the everyday world. These new approaches to science education emphasize inquiry as an essential element for student learning (Schneider, Krajcik, Marx, & Soloway, 2002). Project-based learning (PBL) is an inquiry-based instructional approach that addresses these recommendations for science education reform. The objective of this research was to study the implementation of project-based learning (PBL) in an urban school undergoing reform efforts and identify the variables that positively or negatively impacted the PBL implementation process and its outcomes. This study responded to the need to change how science is taught by focusing on the implementation of project-based learning as an instructional approach to improve student achievement in science and identify the role of both school leaders and teachers in the creation of a school environment that supports project-based learning. A case study design using a mixed-method approach was used in this study. Data were collected through individual interviews with the school principal, science instructional coach, and PBL facilitator. A survey, classroom observations and interviews involving three high school science teachers teaching grades 9

  3. National Register of research projects, 1986/1987: Part 3, Human sciences: Social sciences. Nasionale Register van navorsingsprojekte, 1986/1987: Deel III, Geesteswetenskappe: Sosiale wetenskappe

    Energy Technology Data Exchange (ETDEWEB)

    1988-08-01

    This Register is intended to serve as a source of information on research which is being conducted in all fields (both natural and human sciences) in the Republic of South Africa. New and current research projects that were commenced or modified during 1986--1987, on which information was received by the compilers until January 1988, are included, with the exception of confidential projects.

  4. [Overview of research projects funding in traditional Chinese medicine oncology field supported by National Natural Science Foundation of China].

    Science.gov (United States)

    Tang, Dong-Xin; Chen, Lian-Yu; Guo, Shu-Zhen; Han, Li-Wei; Zhang, Feng-Zhu

    2017-05-01

    In this paper, the funding situation of traditional Chinese medicine oncology research projects supported by National Natural Science Fund from 1986-2016 was reviewed. The characteristics of funded projects were summarized from funding amount, funding expenses, funding category, and the main research contents of projects, etc. At the same time, the main problems in the projects were analyzed in this paper, in order to provide reference for the relevant fund applicants. Copyright© by the Chinese Pharmaceutical Association.

  5. Collaborative Projects Weaving Indigenous and Western Science, Knowledge and Perspectives in Climate Change Education

    Science.gov (United States)

    Sparrow, E. B.; Chase, M.; Brunacini, J.; Spellman, K.

    2017-12-01

    The "Reaching Arctic Communities Facing Climate Change" and "Feedbacks and Impacts of A Warming Arctic: Engaging Learners in STEM Using GLOBE and NASA Assets" projects are examples of Indigenous and western science communities' collaborative efforts in braiding multiple perspectives and methods in climate change education. Lessons being learned and applied in these projects include the need to invite and engage members of the indigenous and scientific communities in the beginning as a project is being proposed or formulated; the need for negotiated space in the project and activities where opportunity to present and access both knowledge systems is equitable, recognizes and validates each knowledge and method, and considers the use of pedagogical practices including pace/rhythm and instructional approach most suitable to the target audience. For example with Indigenous audiences/participants, it is important to follow local Indigenous protocol to start an event and/or use a resource that highlights the current experience or voices of Indigenous people with climate change. For mixed audience groups, it is critical to have personal introductions at the beginning of an event so that each participant is given an opportunity and encouraged to voice their ideas and opinions starting with how they want to introduce themselves and thus begin to establish a welcoming and collegial atmosphere for dialog. It is also important to communicate climate science in humanistic terms, that people and communities are affected not just the environment or economies. These collaborative partnerships produce mutual benefits including increased awareness and understanding of personal connections to climate change impacts; opportunities for cultural enrichment; opportunities for accessing elder knowledge which is highly valued as well as science, education and communication tools that are needed in working together in addressing issues and making communities resilient and adaptive.

  6. A new synthetic approach to the science of complexity: the MISSION project at NIFS

    International Nuclear Information System (INIS)

    Tetsuya Sato

    1999-01-01

    The present day stage of computer simulation has entered into the third phase. The age of computer simulation in plasma physics dawned in the late 1950's when Oscar Buneman and John Dawson developed the sheet particle model. In 1960's and the early part of 1970's, one devoted oneself to refine the particle model and to develop, more practically, fluid magnetic hydrodynamic models so that the feasibility of the computer simulation methodology could be tested. This age can be called 'dawning of computer simulation'. The so-called supercomputer appeared in the late 1970's and the computer simulation entered the second phase where individual nonlinear phenomena have become possible to be attacked. At present when a supercomputer with the ability of higher than 100 GFlops speed and lager than 10GBytes common memory is available, almost any individual nonlinear phenomenon, whatever it may look complex, can be solved. This age may well be called 'the age of nonlinear solver'. However, as far as the authors are satisfied with using a supercomputer for simply solving an individual nonlinear problem, the computer simulation plays only a passive role in science and would never cause a catastrophic transition to it. Then, the modern science of the 20th century based on reductionism would continue in the coming 21st century, thus the 21st century's science would stay boring and tedious. It must be the computer simulation that can refresh this boring state. At NIFS an extensive effort has been made to establish a new paradigm of science in the 21st century by developing a new synthetic methodology of computer simulation, which the authors call the MISSION Project. The authors present this MISSION Project and propose a working hypothesis of the science of complexity in this talk

  7. [SciELO: A cooperative project for the dissemination of science].

    Science.gov (United States)

    Bojo Canales, C; Fraga Medín, C; Hernández Villegas, S; Primo Peña, E

    2009-10-01

    The article describes the SciELO (Scientific Electronic Library Online) model for the electronic publication and dissemination of scientific journals, its origin and evolution, methodology, components, services and potential, and its implantation in Spain. It consists of thirteen participant countries with eight certified web portals, with another 5 under development and another two thematic ones. In February 2009 Scielo.org had 611 magazines and 195,789 articles of which 46% were about health sciences. Spain became a project member in 1999 and launched the SciELO web portal in 2001, as well as 4 magazines. It currently has 39 titles in the field of Health Sciences; one of which is the Revista Española de Sanidad Penitenciaria, which joined the project in 2007 and which currently has 6 issues from 2007 and 2008 available. This makes it one of the most important open access initiatives existing. The report concludes by stating that the SciELO model contributes to the development of research and science by offering an effective and efficient method of promoting and increasing the dissemination of scientific publications in Latin America.

  8. The Milky Way Project: A Citizen Science Catalog of Infrared Bow Shock Nebulae

    Science.gov (United States)

    Dixon, Don; Jayasinghe, Tharindu; Povich, Matthew S.

    2017-01-01

    We present preliminary results from the first citizen-science search for infrared stellar-wind bow shock candidates. This search uses the Milky Way project, hosted by the Zooniverse, an online platform with over 1 million volunteer citizen scientists. Milky Way Project volunteers examine 77,000 randomly-distributed Spitzer image cutouts at varying zoom levels. Volunteers mark the infrared arc of potential bow shock candidates as well as the star likely driving the nebula. We produce lists of candidates from bow shocks flagged by multiple volunteers, which after merging and final visual review form the basis for our catalog. Comparing our new catalog to a recently-published catalog of 709 infrared bow shock candidates identified by a small team of (primarily undergraduate) researchers will allow us to assess the effectiveness of citizen science for this type of search and should yield a more complete catalog. Planned studies using these large catalogs will improve constraints on the mass-loss rates for the massive stars that create these bow shock nebulae. Mass-loss rates are highly uncertain but are a critical component of evolutionary models for massive stars. This work is supported by the National Science Foundation under grants CAREER-1454334, AST-1411851 (RUI) and AST-1412845.

  9. SpaceScience@Home: Authentic Research Projects that Use Citizen Scientists

    Science.gov (United States)

    Méndez, B. J. H.

    2008-06-01

    In recent years, several space science research projects have enlisted the help of large numbers of non-professional volunteers, ``citizen scientists'', to aid in performing tasks that are critical to a project, but require more person-time (or computing time) than a small professional research team can practically perform themselves. Examples of such projects include SETI@home, which uses time from volunteers computers to process radio-telescope observation looking for signals originating from extra-terrestrial intelligences; Clickworkers, which asks volunteers to review images of the surface of Mars to identify craters; Spacewatch, which used volunteers to review astronomical telescopic images of the sky to identify streaks made by possible Near Earth Asteroids; and Stardust@home, which asks volunteers to review ``focus movies'' taken of the Stardust interstellar dust aerogel collector to search for possible impacts from interstellar dust particles. We shall describe these and other similar projects and discuss lessons learned from carrying out such projects, including the educational opportunities they create.

  10. The PACA Project: Creating Synergy Between Observing Campaigns, Outreach and Citizen Science

    Science.gov (United States)

    Yanamandra-Fisher, Padma

    2017-04-01

    The PACA (Pro-Am Collaborative Astronomy) Project's primary goal is to develop and build synergy between professional and amateur astronomers from observations in the many aspects of support of missions and campaigns. To achieve this, the PACA has three main components: observational campaigns aligned with scientific research; outreach to engage all forms of audiences and citizen science projects that aim to produce specific scientific results, by engaging professional scientific and amateur communities and a variety of audiences. The primary observational projects are defined by specific scientific goals by professionals, resulting in global observing campaigns involving a variety of observers, and observing techniques. Some of PACA's observing campaigns have included global characterization of comets (e.g., C/ISON, SidingSpring, 67P/Churyumov-Gerasimenko, Lovejoy, etc.), planets (Jupiter, Saturn and Mars) and currently expanded to include (i) polarimetric exploration of solar system objects with small apertures and (ii) in collaboration with CITIZEN CATE, a citizen science observing campaign to observe the 2017 Continental America Total Eclipse, engage many levels of informal audiences using interactive social media to participate in the campaign. Our Outreach campaigns leverage the multiple social media/platforms for at least two important reasons: (i) the immediate dissemination of observations and interaction with the global network and (ii) free or inexpensive resources for most of the participants. The final stage of the PACA ecosystem is the integration of these components into publications. We shall highlight some of the interesting challenges and solutions of the PACA Project so far and provide a view of future projects and new partnerships in all three categories.

  11. Proceedings of the public meeting to address a proposed federal radiation research agenda. Volume 2. Science projection papers

    International Nuclear Information System (INIS)

    1980-03-01

    Separate abstracts were prepared for the 14 science projection papers presented at a public meeting on March 10-11, 1980 to address a proposed federal radiation research agenda into the biological effects of ionizing radiation

  12. Citizen Science Air Sensor Project with Clean Air Carolina and the Eastern Band of Cherokee Indians Fact Sheet

    Science.gov (United States)

    EPA scientists are partnering with Clean Air Carolina (CAC) in Charlotte, N.C., and the Eastern Band of Cherokee Indians (EBCI) in Cherokee, N.C., to conduct a citizen science air quality project in these regions.

  13. Science to Improve Nutrient Management Practices, Metrics of Benefits, Accountability, and Communication (Project SSWR 4.03)

    Science.gov (United States)

    This project will demonstrate transferable modeling techniques and monitoring approaches to enable water resource professionals to make comparisons among nutrient reduction management scenarios across urban and agricultural areas. It will produce the applied science to allow bett...

  14. Projective methodical system of students training to the course «History of computer science»

    OpenAIRE

    С А Виденин

    2008-01-01

    Components of teachers readiness to professional activity are described in the item. The projective methods of training to a course « History of computer science « in favour to improve professional grounding of students' are considered.

  15. On-going research projects at Ankara Nuclear Research Center in Agriculture and Animal Science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  16. Projection on a Sphere for a More Interactive Approach for Education and Outreach in Earth Sciences

    Science.gov (United States)

    Hardy, A.; King, S. D.

    2011-12-01

    Anna Hardy, Scott D. King, Department of Geosciences, Virginia Tech, Blacksburg, VA 24061 Systems that project images onto a spherical surface are relatively new, moderately priced technology that could change the way students and the general public learn about Earth Sciences. For classroom and small museum spaces, such as the Geoscience Museum at Virginia Tech, a globe of about one-meter diameter can be used. Such a system has been recently installed in our 2500 square foot museum space. With this system we are able to display many types of Earth Science data including: global sea rise, weather and climate data, plate reconstructions, and projections of planets in the solar system. Animations show phenomenon over time including motions of plates over millions of years or evolution of global weather patterns over periods of days to weeks. We are importing other deep Earth data sets including global tomographic models to the system. As an outreach tool, one advantage of this technology is that it allows visitors to view global data in its natural spherical geometry and does not require them to visualize global spherical data or models from two-dimensional maps or displays. We will report on the effectiveness of this tool at communicating concepts with both college general education students and museum guests (pre-school through adult) via general surveying. Our initial comparison will be comprehension from classes with and without access to the spherical projection system.

  17. On-going research projects at Ankara Nuclear research center in agriculture and animal science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text:The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  18. The how and why of societal publications for citizen science projects and scientists

    Science.gov (United States)

    van Vliet, Arnold J. H.; Bron, Wichertje A.; Mulder, Sara

    2014-05-01

    In the scientific community, the importance of communication to society is often underestimated. Scientists and scientific organisations often lack the skills to organise such communication effectively. The Dutch citizen science phenology network Nature's Calendar has been successful in communicating to the general public via numerous newspaper articles, television appearances, presentations, websites and social media. We refer to these publications as societal publications. Due to active communication to mass media, we frequently reach millions of people. This communication helped us to involve thousands of volunteers in recording the timing of phenological events like the start of flowering, leaf unfolding and bird migration, but also several health-related events like hay fever symptoms and tick bites. In this paper, we analyse and present our experiences with the Nature's Calendar project regarding societal publications. Based on this analysis, we explain the importance of societal publications for citizen science projects and scientists in general, and we show how scientists can increase the newsworthiness of scientific information and what factors and activities can increase the chances of media paying attention to this news. We show that societal publications help phenological networks by facilitating the recruitment, retention and instruction of observers. Furthermore, they stimulate the generation of new ideas and partners that lead to an increase in knowledge, awareness and behavioural change of the general public or specific stakeholders. They make projects, and scientists involved, better known to the public and increase their credibility and authority. Societal publications can catalyse the production of new publications, thereby enforcing the previous mentioned points.

  19. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    Science.gov (United States)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    Project ALERT (Augmented Learning Environment and Renewable Teaching) was founded in 1998, with funding from NASA and the California State University (CSU), to improve earth system science education for pre-service teachers. Project ALERT has formed linkages between ten campuses of the CSU, which prepares about 60 percent of California's teachers, and two NASA centers, Ames Research Center and the Jet Propulsion Laboratory. ALERT has also fostered alliances between earth science and science education faculty. The combined expertise of Project ALERT's diverse partners has led to a wide array of activities and products, including: 1) incorporation in university classrooms of NASA-developed imagery, data, and educational resources; 2) creation and/or enhancement of several courses that bring earth systems science to pre-service teachers; 3) fellowships for CSU faculty to participate in collaborative research and education projects at the NASA Centers; 4) development of teaching modules on such varied topics as volcanoes, landslides, and paleoclimate; and 5) a central web site that highlights resources for teaching introductory Earth system science. An outgrowth of Project ALERT is the increased interest on the part of CSU earth scientists in education issues. This has catalyzed their participation in other projects, including NASA's Project NOVA, Earth System Science Education Alliance, and Sun-Earth Connection Education Forum, the Digital Library for Earth System Science Education, and the California Science Project. Project ALERT has also expanded to provide professional development opportunities for in-service teachers, as exemplified by its support of the Bay Area Earth Science Institute (BAESI) at San Jose State University. Each year, BAESI offers 10-15 full-day workshops that supply teachers and teachers-to-be with a blend of science concepts and classroom activities, free instructional materials, and the opportunity to earn inexpensive university credit. These

  20. Hydroponic Garden Promotes Hands-on Learning, Healthy Eating

    Science.gov (United States)

    Anderson, Melinda; Swafford, Melinda

    2011-01-01

    The Carl D. Perkins Career Technical Improvement Act of 2006 encourages integration of academic instruction to improve student learning, impact employment skills of students, and enhance problem-solving skills by using authentic real-world situations. Academic integration is accomplished by integrating concepts of English, math, science,…