Sample records for hands-on learning model

  1. Blended Learning Model on Hands-On Approach for In-Service Secondary School Teachers: Combination of E-Learning and Face-to-Face Discussion (United States)

    Ho, Vinh-Thang; Nakamori, Yoshiteru; Ho, Tu-Bao; Lim, Cher Ping


    The purpose of this study was to examine the effectiveness of a blended learning model on hands-on approach for in-service secondary school teachers using a quasi-experimental design. A 24-h teacher-training course using the blended learning model was administered to 117 teachers, while face-to-face instruction was given to 60 teachers. The…

  2. A low-cost approach for rapidly creating demonstration models for hands-on learning (United States)

    Kinzli, Kristoph-Dietrich; Kunberger, Tanya; O'Neill, Robert; Badir, Ashraf


    Demonstration models allow students to readily grasp theory and relate difficult concepts and equations to real life. However drawbacks of using these demonstration models are that they are can be costly to purchase from vendors or take a significant amount of time to build. These two limiting factors can pose a significant obstacle for adding demonstrations to the curriculum. This article presents an assignment to overcome these obstacles, which has resulted in 36 demonstration models being added to the curriculum. The article also presents the results of student performance on course objectives as a result of the developed models being used in the classroom. Overall, significant improvement in student learning outcomes, due to the addition of demonstration models, has been observed.

  3. The Effect of an Instructional Model Utilizing Hands-on Learning and Manipulatives on Math Achievement of Middle School Students in Georgia (United States)

    White, Kara Morgan


    The concepts and ideas of mathematics is a major element of educational curriculum. Many different instructional strategies are implemented in mathematics classrooms. The purpose of this study was to evaluate the effect of an instructional model utilizing hands-on learning and use of manipulatives on mathematics achievement of middle school…

  4. The use of a hands-on model in learning the regulation of an inducible operon and the development of a gene regulation concept inventory (United States)

    Stefanski, Katherine M.

    A central concept in genetics is the regulation of gene expression. Inducible gene expression is often taught in undergraduate biology courses using the lac operon of Escherichia coli (E. coli ). With national calls for reform in undergraduate biology education and a body of literature that supports the use of active learning techniques including hands-on learning and analogies we were motivated to develop a hands-on analogous model of the lac operon. The model was developed over two iterations and was administered to genetics students. To determine the model's worth as a learning tool a concept inventory (CI) was developed using rigorous protocols. Concept inventories are valuable tools which can be used to assess students' understanding of a topic and pinpoint commonly held misconceptions as well as the value of educational tools. Through in-class testing (n =115) the lac operon concept inventory (LOCI) was demonstrated to be valid, predictive, and reliable (? coefficient = 0.994). LOCI scores for students who participated in the hands-on activity (n = 67) were 7.5% higher (t = -2.281, P operon. We were able to determine the efficacy of the activity and identify misconceptions held by students about the lac operon because of the use of a valid and reliable CI.

  5. Are all hands-on activities equally effective? Effect of using plastic models, organ dissections, and virtual dissections on student learning and perceptions. (United States)

    Lombardi, Sara A; Hicks, Reimi E; Thompson, Katerina V; Marbach-Ad, Gili


    This study investigated the impact of three commonly used cardiovascular model-assisted activities on student learning and student attitudes and perspectives about science. College students enrolled in a Human Anatomy and Physiology course were randomly assigned to one of three experimental groups (organ dissections, virtual dissections, or plastic models). Each group received a 15-min lecture followed by a 45-min activity with one of the treatments. Immediately after the lesson and then 2 mo later, students were tested on anatomy and physiology knowledge and completed an attitude survey. Students who used plastic models achieved significantly higher overall scores on both the initial and followup exams than students who performed organ or virtual dissections. On the initial exam, students in the plastic model and organ dissection treatments scored higher on anatomy questions than students who performed virtual dissections. Students in the plastic model group scored higher than students who performed organ dissections on physiology questions. On the followup exam, when asked anatomy questions, students in the plastic model group scored higher than dissection students and virtual dissection students. On attitude surveys, organ dissections had higher perceived value and were requested for inclusion in curricula twice as often as any other activity. Students who performed organ dissections were more likely than the other treatment groups to agree with the statement that "science is fun," suggesting that organ dissections may promote positive attitudes toward science. The findings of this study provide evidence for the importance of multiple types of hands-on activities in anatomy laboratory courses.

  6. PBL, Hands-On/ Digital resources in Geology, (Teaching/ Learning) (United States)

    Soares, Rosa; Santos, Cátia; Carvalho, Sara


    The present study reports the elaboration, application and evaluation of a problem-based learning (PBL) program that aims to evaluate the effectiveness in students learning the Rock Cycle theme. Prior research on both PBL and Rock Cycle was conducted within the context of science education so as to elaborate and construct the intervention program. Findings from these studies indicated both the PBL methodology and Rock Cycle as helpful for teachers and students. PBL methodology has been adopted in this study since it is logically incorporated in a constructivism philosophy application and it was expected that this approach would assist students towards achieving a specific set of competencies. PBL is a student-centered method based on the principle of using problems as the starting point for the acquisition of new knowledge. Problems are based on complex real-world situations. All information needed to solve the problem is initially not given. Students will identify, find, and use appropriate resources to complete the exercise. They work permanently in small groups, developing self-directed activities and increasing participation in discussions. Teacher based guidance allows students to be fully engaged in knowledge building. That way, the learning process is active, integrated, cumulative, and connected. Theme "Rock Cycle" was introduced using a problematic situation, which outlined the geological processes highlighted in "Foz do Douro" the next coastline of the school where the study was developed. The questions proposed by the students were solved, using strategies that involved the use of hands-on activities and virtual labs in Geology. The systematization of the selected theme was performed in a field excursion, implemented according to the organizational model of Nir Orion, to The "Foz do Douro" metamorphic complex. In the evaluation of the learning process, data were obtained on students' development of knowledge and competencies through the application of

  7. Enhancing Lean Manufacturing Learning Experience through Hands-On Simulation (United States)

    Elbadawi, Isam; McWilliams, Douglas L.; Tetteh, Edem G.


    Finding appropriate interactive exercises to increase students' learning in technical topic courses is always challenging to educators. In this study, several paper plane hands-on simulation exercises were developed, used, and tested in a lean manufacturing course for beginning college students. A pretest and posttest was used to assess the…

  8. Circuits and electronics hands-on learning with analog discovery

    CERN Document Server

    Okyere Attia, John


    The book provides instructions on building circuits on breadboards, connecting the Analog Discovery wires to the circuit under test, and making electrical measurements. Various measurement techniques are described and used in this book, including: impedance measurements, complex power measurements, frequency response measurements, power spectrum measurements, current versus voltage characteristic measurements of diodes, bipolar junction transistors, and Mosfets. The book includes end-of-chapter problems for additional exercises geared towards hands-on learning, experimentation, comparisons between measured results and those obtained from theoretical calculations.

  9. An Educational Model for Hands-On Hydrology Education (United States)

    AghaKouchak, A.; Nakhjiri, N.; Habib, E. H.


    This presentation provides an overview of a hands-on modeling tool developed for students in civil engineering and earth science disciplines to help them learn the fundamentals of hydrologic processes, model calibration, sensitivity analysis, uncertainty assessment, and practice conceptual thinking in solving engineering problems. The toolbox includes two simplified hydrologic models, namely HBV-EDU and HBV-Ensemble, designed as a complement to theoretical hydrology lectures. The models provide an interdisciplinary application-oriented learning environment that introduces the hydrologic phenomena through the use of a simplified conceptual hydrologic model. The toolbox can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching more advanced topics including uncertainty analysis, and ensemble simulation. Both models have been administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of hydrology.

  10. Are All Hands-On Activities Equally Effective? Effect of Using Plastic Models, Organ Dissections, and Virtual Dissections on Student Learning and Perceptions (United States)

    Lombardi, Sara A.; Hicks, Reimi E.; Thompson, Katerina V.; Marbach-Ad, Gili


    This study investigated the impact of three commonly used cardiovascular model-assisted activities on student learning and student attitudes and perspectives about science. College students enrolled in a Human Anatomy and Physiology course were randomly assigned to one of three experimental groups (organ dissections, virtual dissections, or…

  11. Promoting Female Students' Learning Motivation towards Science by Exercising Hands-On Activities (United States)

    Wen-jin, Kuo; Chia-ju, Liu; Shi-an, Leou


    The purpose of this study is to design different hands-on science activities and investigate which activities could better promote female students' learning motivation towards science. This study conducted three types of science activities which contains nine hands-on activities, an experience scale and a learning motivation scale for data…

  12. All hands on deck: CREWED for technology-enabled learning


    Russell, Carol


    The University of New South Wales’ (UNSW’s) Faculty of Engineering is introducing a new process for designing and developing blended and fully online (distance) courses, as part of action research to support curriculum renewal. The process, referred to as CREWED (Curriculum Renewal and E-learning Workloads: Embedding in Disciplines), is being used to develop key courses that add flexibility to student progression pathways. By integrating the design of learning activities with the planning and...

  13. Hydroponic Garden Promotes Hands-on Learning, Healthy Eating (United States)

    Anderson, Melinda; Swafford, Melinda


    The Carl D. Perkins Career Technical Improvement Act of 2006 encourages integration of academic instruction to improve student learning, impact employment skills of students, and enhance problem-solving skills by using authentic real-world situations. Academic integration is accomplished by integrating concepts of English, math, science,…

  14. Student Learning through Hands-On Industry Projects (United States)

    Acheson, Lingma Lu


    Learning is most effective when accompanied by doing. If someone desires to become a baseball player, being told how to play the game, watching others play and even understanding the rules of the game are mostly ineffective if the individual never "swings the bat". This paper outlines the implementation of this method (swinging the bat)…

  15. Teaching genetics using hands-on models, problem solving, and inquiry-based methods (United States)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  16. STAR Library Education Network: a hands-on learning program for libraries and their communities (United States)

    Dusenbery, P.


    Science and technology are widely recognized as major drivers of innovation and industry (e.g. Rising above the Gathering Storm, 2006). While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement and public understanding of STEM disciplines. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. Designed spaces, like libraries, allow lifelong, life-wide, and life-deep learning to take place though the research basis for learning in libraries is not as developed as other informal settings like science centers. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national education project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. This project will deepen our knowledge of informal/lifelong learning that takes place in libraries and establish a learning model that can be compared to the more established free-choice learning model for science centers and museums. The project includes the development of two STEM hands-on exhibits on topics that are of interest to library staff and their patrons: Discover Earth and Discover Tech. In addition, the project will produce resources and inquiry-based activities that libraries can use to enrich the exhibit experience. Additional resources will be provided through partnerships with relevant

  17. Hands On Earth Science. (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  18. Back to the future with hands-on science: students' perceptions of learning anatomy and physiology. (United States)

    Johnston, Amy Nicole Burne; McAllister, Margaret


    This article examines student perceptions of learning related to anatomy and physiology in a bachelor of nursing program. One strategy to teach the sciences is simulated learning, a technology that offers exciting potential. Virtual environments for laboratory learning may offer numerous benefits: teachers can convey information to a larger group of students, reducing the need for small laboratory classes; less equipment is required, thus containing ongoing costs; and students can learn in their own time and place. However, simulated learning may also diminish access to the teacher-student relationship and the opportunity for guided practice and guided linking of theory with practice. Without this hands-on experience, there is a risk that students will not engage as effectively, and thus conceptual learning and the development of critical thinking skills are diminished. However, student perceptions of these learning experiences are largely unknown. Thus, this study examined students' perceptions of anatomy and physiology laboratory experiences and the importance they placed on hands-on experience in laboratory settings.

  19. Implementation of a Modular Hands-on Learning Pedagogy: Student Attitudes in a Fluid Mechanics and Heat Transfer Course (United States)

    Burgher, J. K.; Finkel, D.; Adesope, O. O.; Van Wie, B. J.


    This study used a within-subjects experimental design to compare the effects of learning with lecture and hands-on desktop learning modules (DLMs) in a fluid mechanics and heat transfer class. The hands-on DLM implementation included the use of worksheets and one of two heat exchangers: an evaporative cooling device and a shell and tube heat…

  20. Teaching with Dogs: Learning about Learning through Hands-on Experience in Dog Training (United States)

    McConnell, Bridget L.


    This paper summarizes a pilot study of an experiential learning technique that was designed to give undergraduate students a greater understanding of the principles and theories of learning and behavior, which is traditionally taught only in a lecture-based format. Students were assigned the role of a dog trainer, and they were responsible for…

  1. eLearning Hands-On: Blending Interactive eLearning with Practical Engineering Laboratory (United States)

    Kiravu, Cheddi; Yanev, Kamen M.; Tunde, Moses O.; Jeffrey, Anna M.; Schoenian, Dirk; Renner, Ansel


    Purpose: Integrating laboratory work into interactive engineering eLearning contents augments theory with practice while simultaneously ameliorating the apparent theory-practice gap in traditional eLearning. The purpose of this paper is to assess and recommend media that currently fulfil this desirable dual pedagogical goal.…

  2. Robotic Mission to Mars: Hands-on, minds-on, web-based learning (United States)

    Mathers, Naomi; Goktogen, Ali; Rankin, John; Anderson, Marion


    Problem-based learning has been demonstrated as an effective methodology for developing analytical skills and critical thinking. The use of scenario-based learning incorporates problem-based learning whilst encouraging students to collaborate with their colleagues and dynamically adapt to their environment. This increased interaction stimulates a deeper understanding and the generation of new knowledge. The Victorian Space Science Education Centre (VSSEC) uses scenario-based learning in its Mission to Mars, Mission to the Orbiting Space Laboratory and Primary Expedition to the M.A.R.S. Base programs. These programs utilize methodologies such as hands-on applications, immersive-learning, integrated technologies, critical thinking and mentoring to engage students in Science, Technology, Engineering and Mathematics (STEM) and highlight potential career paths in science and engineering. The immersive nature of the programs demands specialist environments such as a simulated Mars environment, Mission Control and Space Laboratory, thus restricting these programs to a physical location and limiting student access to the programs. To move beyond these limitations, VSSEC worked with its university partners to develop a web-based mission that delivered the benefits of scenario-based learning within a school environment. The Robotic Mission to Mars allows students to remotely control a real rover, developed by the Australian Centre for Field Robotics (ACFR), on the VSSEC Mars surface. After completing a pre-mission training program and site selection activity, students take on the roles of scientists and engineers in Mission Control to complete a mission and collect data for further analysis. Mission Control is established using software developed by the ACRI Games Technology Lab at La Trobe University using the principles of serious gaming. The software allows students to control the rover, monitor its systems and collect scientific data for analysis. This program encourages

  3. Getting Their Hands Dirty: Qualitative Study on Hands-on Learning for Architectural Students in Design-build Course

    Directory of Open Access Journals (Sweden)

    Zunaibi B. Abdullah


    Full Text Available This qualitative study provides an in-depth perspective of hands-on learning through the observation and analysis of architectural students' views in a design-build program at the University of Nebraska-Lincoln during the fall semester of 2008. Qualitative data was gathered from 14 participants involved in the construction of a low energy double-storey house in the city of Lincoln, Nebraska. The study inventoried the requisite characteristics of a design-build course. Participants' views and activities were studied to ascribe the qualitative benefits of hands-on learning. In addition, students' motivation towards hands-on activities were evaluated in reference to student confidence and independence levels towards their future career as architects, designers or other design-build professionals. The findings showed the design-build course could offer a specific knowledge that link between theoretical subjects and the practical expect of building contractions.

  4. A Study on Using Hands-On Science Inquiries to Promote the Geology Learning of Preservice Teachers (United States)

    Lai, Ching-San


    This study aims to investigate the geology learning performance of preservice teachers. A total of 31 sophomores (including 11 preservice teachers) from an educational university in Taiwan participated in this study. The course arrangements include class teaching and hands-on science inquiry activities. The study searches both quantitative and…

  5. 3D printed simulation models based on real patient situations for hands-on practice. (United States)

    Kröger, E; Dekiff, M; Dirksen, D


    During the last few years, the curriculum of many dentistry schools in Germany has been reorganised. Two key aspects of the applied changes are the integration of up-to-date teaching methods and the promotion of interdisciplinarity. To support these efforts, an approach to fabricating individualised simulation models for hands-on courses employing 3D printing is presented. The models are based on real patients, thus providing students a more realistic preparation for real clinical situations. As a wide variety of dental procedures can be implemented, the simulation models can also contribute to a more interdisciplinary dental education. The data used for the construction of the models were acquired by 3D surface scanning. The data were further processed with 3D modelling software. Afterwards, the models were fabricated by 3D printing with the PolyJet technique. Three models serve as examples: a prosthodontic model for training veneer preparation, a conservative model for practicing dental bonding and an interdisciplinary model featuring carious teeth and an insufficient crown. The third model was evaluated in a hands-on course with 22 fourth-year dental students. The students answered a questionnaire and gave their personal opinion. Whilst the concept of the model received very positive feedback, some aspects of the implementation were criticised. We discuss these observations and suggest ways for further improvement. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. The impact of a hands-on approach to learning visible spectrometry upon students' performance, motivation, and attitudes. (United States)

    Vrtacnik, Margareta; Gros, Natasa


    In this paper, the effect of introducing visible spectrometry concepts through hands-on laboratory work upon student learning within four vocational programs are discussed. All together, 118 students, average 18.6 years old, participated in the study. The results showed no correlation between students' motivational components (intrinsic, regulated, and controlled), chemistry self-concept and their achievement on an experiential knowledge test and knowledge gained from this hands-on approach. Statistically significant differences were found for academic achievement among students in a biotechnology technical program (School 1), food processing program (School 2), laboratory biomedicine program (School 3), and a biotechnology general program (School 4). Differences in academic achievement are further reflected in students' perception of particular knowledge gained through their hands-on experiences and in their expressed attitude toward different didactical characteristics. All students, regardless of their study program, highly evaluated the relaxed atmosphere that contributed to their self-confidence in completing their laboratory activities.

  7. Cognitive Achievement and Motivation in Hands-on and Teacher-Centred Science Classes: Does an additional hands-on consolidation phase (concept mapping) optimise cognitive learning at work stations? (United States)

    Gerstner, Sabine; Bogner, Franz X.


    Our study monitored the cognitive and motivational effects within different educational instruction schemes: On the one hand, teacher-centred versus hands-on instruction; on the other hand, hands-on instruction with and without a knowledge consolidation phase (concept mapping). All the instructions dealt with the same content. For all participants, the hands-on approach as well as the concept mapping adaptation were totally new. Our hands-on approach followed instruction based on "learning at work stations". A total of 397 high-achieving fifth graders participated in our study. We used a pre-test, post-test, retention test design both to detect students' short-term learning success and long-term learning success, and to document their decrease rates of newly acquired knowledge. Additionally, we monitored intrinsic motivation. Although the teacher-centred approach provided higher short-term learning success, hands-on instruction resulted in relatively lower decrease rates. However, after six weeks, all students reached similar levels of newly acquired knowledge. Nevertheless, concept mapping as a knowledge consolidation phase positively affected short-term increase in knowledge. Regularly placed in instruction, it might increase long-term retention rates. Scores of interest, perceived competence and perceived choice were very high in all the instructional schemes.

  8. The analysis of student’s critical thinking ability on discovery learning by using hand on activity based on the curiosity (United States)

    Sulistiani, E.; Waluya, S. B.; Masrukan


    This study aims to determine (1) the effectiveness of Discovery Learning model by using Hand on Activity toward critical thinking abilities, and (2) to describe students’ critical thinking abilities in Discovery Learning by Hand on Activity based on curiosity. This study is mixed method research with concurrent embedded design. Sample of this study are students of VII A and VII B of SMP Daarul Qur’an Ungaran. While the subject in this study is based on the curiosity of the students groups are classified Epistemic Curiosity (EC) and Perceptual Curiosity (PC). The results showed that the learning of Discovery Learning by using Hand on Activity is effective toward mathematics critical thinking abilities. Students of the EC type are able to complete six indicators of mathematics critical thinking abilities, although there are still two indicators that the result is less than the maximum. While students of PC type have not fully been able to complete the indicator of mathematics critical thinking abilities. They are only strong on indicators formulating questions, while on the other five indicators they are still weak. The critical thinking abilities of EC’s students is better than the critical thinking abilities of the PC’s students.


    Directory of Open Access Journals (Sweden)

    Istika Ramadhani


    Full Text Available Penelitian ini bertujuan untuk mengetahui keefektifan pembelajaran model PBL dengan mind map melalui hands on activity terhadap kemampuan berpikir kreatif siswa. Populasi dalam penelitian ini adalah siswa kelas VII SMP Negeri 7 Semarang Tahun Ajaran 2014/2015. Pemilihan sampel dengan menggunakan cluster random sampling, diperoleh siswa kelas VII G sebagai kelas eksperimen1, kelas VII E sebagai kelas eksperimen 2, dan kelas VII C sebagai kelas kontrol. Kelas eksperimen 1 diberikan pembelajaran model PBL dengan mind map melalui hands on activity, kelas eksperimen 2 diberikan pembelajaran model PBL dengan mind map, dan kelas kontrol diberikan pembelajaran model ekspositori. Instrumen penelitian yang digunakan adalah tes kemampuan berpikir kreatif dan lembar pengamatan aktivitas siswa. Data dianalisis dengan uji proporsi, uji beda rata dengan anava, uji lanjut LSD, dan uji regresi. Hasil penelitian adalah (1 kemampuan berpikir kreatif siswa pada kelas eksperimen 1 dapat mencapai kriteria ketuntasan belajar; (2 kemampuan berpikir kreatif siswa pada kelas eksperimen 2 dapat mencapai kriteria ketuntasan belajar; (3 terdapat perbedaan kemampuan berpikir kreatif antara siswa pada kelas eksperimen 1, eksperimen 2, dan kelas kontrol. (4 terdapat pengaruh positif dari aktivitas belajar siswa pada kelas eksperimen 1 terhadap kemampuan berpikir kreatif siswa

  10. Learning ion-solid interactions hands-on: An activity based, inquiry oriented, graduate course

    International Nuclear Information System (INIS)

    Braunstein, Gabriel


    Experimental work, using state of the art instrumentation, is integrated with lectures in a 'real life', learning by discovery approach, in the Ion-Solid Interactions graduate/undergraduate course offered by the Department of Physics of University of Central Florida. The lecture component of the course covers the underlying physical principles, and related scientific and technological applications, associated with the interaction of energetic ions with matter. In the experimental section the students form small groups and perform a variety of projects, experimental and computational, as part of a participative, inquiry oriented, learning process. In the most recent offering of the class, the students deposited a compound semiconductor thin film by dual-gun sputtering deposition, where each group aimed at a different stoichiometry of the same compound (Zn 1-x S x O y ). Then they analyzed the composition using Rutherford backscattering spectrometry, measured electrical transport properties using Hall effect and conductivity measurements, and determined the band gap using spectrophotometry. Finally the groups shared their results and each wrote a 'journal-like' technical article describing the entire work. In a different assignment, each group also developed a Monte Carlo computer program ('TRIM-like') to simulate the penetration of ions into a solid, in ion implantation, calculating the stopping cross-sections with approximate models, taught in class, which can be analytically solved. The combination of classroom/laboratory activities is very well received by the students. They gain real life experience operating state of the art equipment, and working in teams, while performing research-like projects, and simultaneously they learn the theoretical foundations of the discipline

  11. Vicarious learning during simulations: is it more effective than hands-on training? (United States)

    Stegmann, Karsten; Pilz, Florian; Siebeck, Matthias; Fischer, Frank


    Doctor-patient communication skills are often fostered by using simulations with standardised patients (SPs). The efficiency of such experiences is greater if student observers learn at least as much from the simulation as do students who actually interact with the patient. This study aimed to investigate whether the type of simulation-based learning (learning by doing versus vicarious learning) and the order in which these activities are carried out (learning by doing → vicarious learning versus vicarious learninglearning by doing) have any effect on the acquisition of knowledge on effective doctor-patient communication strategies. In addition, we wished to examine the extent to which an observation script and a feedback formulation script affect knowledge acquisition in this domain. The sample consisted of 200 undergraduate medical students (126 female, 74 male). They participated in two separate simulation sessions, each of which was 30 minutes long and was followed by a collaborative peer feedback phase. Half of the students first performed (learning by doing) and then observed (vicarious learning) the simulation, and the other half participated in the reverse order. Knowledge of doctor-patient communication was measured before, between and after the simulations. Vicarious learning led to greater knowledge of doctor-patient communication scores than learning by doing. The order in which vicarious learning was experienced had no influence. The inclusion of an observation script also enabled significantly greater learning in students to whom this script was given compared with students who were not supported in this way, but the presence of a feedback script had no effect. Students appear to learn at least as much, if not more, about doctor-patient communication by observing their peers interact with SPs as they do from interacting with SPs themselves. Instructional support for observing simulations in the form of observation scripts facilitates both

  12. Lab Safety and Bioterrorism Readiness Curricula Using Active Learning and Hands-on Strategies as Continuing Education for Medical Technologists

    Directory of Open Access Journals (Sweden)

    Steven Fiester


    Full Text Available Frequent reports of laboratory- (and hospital- acquired infection suggest a deficiency in safety training or lack of compliance. To assess the need for continuing education (CE addressing this problem, an original education needs assessment survey was designed and administered to medical technologists (med-techs in Northeast Ohio. Survey results were used to design a learner-centered training curriculum (for example, Lab Safety and Bioterrorism Readiness trainings that engaged med-techs in active learning, integrative peer-to-peer teaching, and hands-on exercises in order to improve microbiology safety knowledge and associated laboratory techniques. The Lab Safety training was delivered six times and the Bioterrorism Readiness training was delivered five times. Pre/posttesting revealed significant gains in knowledge and techniques specific to laboratory safety, security, risk assessment, and bioterrorism readiness amongst the majority of med-techs completing the CE trainings. The majority of participants felt that the hands-on exercises met their needs and that their personal laboratory practices would change as a result of the training course, as measured by attitudinal surveys. We conclude that active learning techniques and peer education significantly enhance microbiology learning amongst participating med-techs.

  13. Evaluation of hands-on seminar for reduced port surgery using fresh porcine cadaver model

    Directory of Open Access Journals (Sweden)

    Saseem Poudel


    Full Text Available Background: The use of various biological and non-biological simulators is playing an important role in training modern surgeons with laparoscopic skills. However, there have been few reports of the use of a fresh porcine cadaver model for training in laparoscopic surgical skills. The purpose of this study was to report on a surgical training seminar on reduced port surgery using a fresh cadaver porcine model and to assess its feasibility and efficacy. Materials and Methods: The hands-on seminar had 10 fresh porcine cadaver models and two dry boxes. Each table was provided with a unique access port and devices used in reduced port surgery. Each group of 2 surgeons spent 30 min at each station, performing different tasks assisted by the instructor. The questionnaire survey was done immediately after the seminar and 8 months after the seminar. Results: All the tasks were completed as planned. Both instructors and participants were highly satisfied with the seminar. There was a concern about the time allocated for the seminar. In the post-seminar survey, the participants felt that the number of reduced port surgeries performed by them had increased. Conclusion: The fresh cadaver porcine model requires no special animal facility and can be used for training in laparoscopic procedures.

  14. Evaluation of hands-on seminar for reduced port surgery using fresh porcine cadaver model. (United States)

    Poudel, Saseem; Kurashima, Yo; Shichinohe, Toshiaki; Kitashiro, Shuji; Kanehira, Eiji; Hirano, Satoshi


    The use of various biological and non-biological simulators is playing an important role in training modern surgeons with laparoscopic skills. However, there have been few reports of the use of a fresh porcine cadaver model for training in laparoscopic surgical skills. The purpose of this study was to report on a surgical training seminar on reduced port surgery using a fresh cadaver porcine model and to assess its feasibility and efficacy. The hands-on seminar had 10 fresh porcine cadaver models and two dry boxes. Each table was provided with a unique access port and devices used in reduced port surgery. Each group of 2 surgeons spent 30 min at each station, performing different tasks assisted by the instructor. The questionnaire survey was done immediately after the seminar and 8 months after the seminar. All the tasks were completed as planned. Both instructors and participants were highly satisfied with the seminar. There was a concern about the time allocated for the seminar. In the post-seminar survey, the participants felt that the number of reduced port surgeries performed by them had increased. The fresh cadaver porcine model requires no special animal facility and can be used for training in laparoscopic procedures.

  15. Providing Hands on Experiences to Museum Visitors to Explore and Learn about Earthquakes and their Impacts in the Pacific Northwest (United States)

    Olds, S. E.; Schiffman, C. R.; Butler, R. F.; Farley, M.; Frankel, S.; Hunter, N.; Lillie, R. J.


    Over the past ten years, UNAVCO has developed a suite of learning materials for formal undergraduate and grades 6-12 classroom environments, integrating GPS data from the EarthScope Plate Boundary Observatory (PBO) to explore Earth science processes. To make complex Earth processes accessible to general audiences, UNAVCO has designed a multi-component visiting museum exhibit that explores the tectonic setting of the United States Pacific Northwest, hazards of living on a plate boundary, and the technologies being used to study the plate motion and in the future, help communities become more resilient to the impacts of earthquakes. This exhibit was installed in Fall 2013 at the Oregon State University (OSU) Hatfield Marine Science Center (HMSC) in Newport, Oregon. Through multiple hands-on elements, visitors to the HMSC exhibit explore and experience the build up and release of strain in the region, along with some of the technologies used to measure these changes. In one component, visitors compress a model of the Pacific Northwest to feel the build up of strain in the landscape and observe the movement of land over time. Supporting panels connect this movement to the measurements currently being observed by the network of PBO and other GPS stations in the Pacific Northwest. In another component, visitors learn about the recurrence interval for earthquakes at the Juan De Fuca - North America plate boundary by turning a handle to slowly move and compress plates until a simulated earthquake occurs. A related component explores how an earthquake early warning system (EEWS) of the future might combine seismic data collected by both seismometers and real time GPS to allow people and communities time to prepare for oncoming ground shaking and tsunami after an earthquake. Several technologies are also highlighted throughout the exhibit, including information panels that compare the accuracy of high precision GPS with smartphone technologies. Additionally, models of a full

  16. Law and Justice CTE Program Offers a Hands-On Approach to Learning (United States)

    Klein, Jennifer


    Tom Washburn, founder of the Law and Justice Program in Fulton County Schools in Atlanta, Georgia, sees career and technical education (CTE) as a framework for gains in reading comprehension, public speaking, math and science. "It's a holistic approach to learning, framed by law and justice. Behind the scenes we're reading novels, improving…

  17. More "Hands-On" Particle Physics: Learning with ATLAS at CERN (United States)

    Long, Lynne


    This article introduces teachers and students to a new portal of resources called Learning with ATLAS at CERN (, which has been developed by a European consortium of academic researchers and schools' liaison and outreach providers from countries across Europe. It includes the use of some of the mind-boggling…

  18. Wireless Sensor Networks--A Hands-On Modular Experiments Platform for Enhanced Pedagogical Learning (United States)

    Taslidere, E.; Cohen, F. S.; Reisman, F. K.


    This paper presents the use of wireless sensor networks (WSNs) in educational research as a platform for enhanced pedagogical learning. The aim here with the use of a WSN platform was to go beyond the implementation stage to the real-life application stage, i.e., linking the implementation to real-life applications, where abstract theory and…

  19. Does ERP Hands-On Experience Help Students Learning Business Process Concepts? (United States)

    Rienzo, Thomas; Han, Bernard


    Over the past decade, more and more business schools are attempting to teach business processes (BPs) by using enterprise resource planning (ERP) software in their curricula. Currently, most studies involving ERP software in the academy have concentrated on learning and teaching via self-assessment surveys or curriculum integration. This research…

  20. "Who Dunnit?": Learning Chemistry and Critical Thinking through Hands-On Forensic Science. (United States)

    Demetry, Chrysanthe; Nicoletti, Denise; Mix, Kimberlee; O'Connor, Kerri; Martin, Andrea


    Demonstrates how forensic science can be used as a framework for generating student interest and learning in chemistry and promoting critical thinking. The "Who Dunnit?" forensic science workshop was developed by undergraduate students and is one element of a two-week residential summer outreach program that seeks to develop interest in…

  1. Blender master class a hands-on guide to modeling, sculpting, materials, and rendering

    CERN Document Server

    Simonds, Ben


    Blender is a powerful and free 3D graphics tool used by artists and designers worldwide. But even experienced designers can find it challenging to turn an idea into a polished piece.For those who have struggled to create professional-quality projects in Blender, author Ben Simonds offers this peek inside his studio. You'll learn how to create 3D models as you explore the creative process that he uses to model three example projects: a muscular bat creature, a futuristic robotic spider, and ancient temple ruins. Along the way, you'll master the Blender interface and learn how to create and refi

  2. Hands-On Calculus (United States)

    Sutherland, Melissa


    In this paper we discuss manipulatives and hands-on investigations for Calculus involving volume, arc length, and surface area to motivate and develop formulae which can then be verified using techniques of integration. Pre-service teachers in calculus courses using these activities experience a classroom in which active learning is encouraged and…

  3. A Case Study for Comparing the Effectiveness of a Computer Simulation and a Hands-on Activity on Learning Electric Circuits (United States)

    Ekmekci, Adem; Gulacar, Ozcan


    Science education reform emphasizes innovative and constructivist views of science teaching and learning that promotes active learning environments, dynamic instructions, and authentic science experiments. Technology-based and hands-on instructional designs are among innovative science teaching and learning methods. Research shows that these two…

  4. Effects of lips and hands on auditory learning of second-language speech sounds. (United States)

    Hirata, Yukari; Kelly, Spencer D


    Previous research has found that auditory training helps native English speakers to perceive phonemic vowel length contrasts in Japanese, but their performance did not reach native levels after training. Given that multimodal information, such as lip movement and hand gesture, influences many aspects of native language processing, the authors examined whether multimodal input helps to improve native English speakers' ability to perceive Japanese vowel length contrasts. Sixty native English speakers participated in 1 of 4 types of training: (a) audio-only; (b) audio-mouth; (c) audio-hands; and (d) audio-mouth-hands. Before and after training, participants were given phoneme perception tests that measured their ability to identify short and long vowels in Japanese (e.g., /kato/ vs. /kato/). Although all 4 groups improved from pre- to posttest (replicating previous research), the participants in the audio-mouth condition improved more than those in the audio-only condition, whereas the 2 conditions involving hand gestures did not. Seeing lip movements during training significantly helps learners to perceive difficult second-language phonemic contrasts, but seeing hand gestures does not. The authors discuss possible benefits and limitations of using multimodal information in second-language phoneme learning.

  5. Product training for the technical expert the art of developing and delivering hands-on learning

    CERN Document Server

    Bixby, Daniel W


    I was pleased to review Dan's new book - pleased because he addresses an old topic in a new way. He is making no assumptions for trainers who are not fully experienced and seasoned. He takes them step-by-step through practical and realistic methods to set up training graduates to actually be on-the-job performers. Enjoy, learn and be inspired. Jim Kirkpatrick, PhD Senior Consultant, Kirkpatrick Partners, USA Daniel Bixby's approach to Product Training for technical experts is practical, relevant and exactly what anyone who is required to train others on technical content really needs. He writes with candor and with a sense of ease, making the reader feel as though he is right there with you helping to develop your training competency. A must read for anyone on your team required to provide technical training to others! Jennifer Alfaro Chief Human Resources Officer, USA An expert guide to developing and delivering technical product training programs While there are many books on talent developmen...

  6. Introducing Hands-on, Experiential Learning Experiences in an Urban Environmental Science Program at a Minority Serving Institution (United States)

    Duzgoren-Aydin, N. S.; Freile, D.


    STEM education at New Jersey City University increasingly focuses on experiential, student-centered learning. The Department of Geoscience/Geography plays a significant role in developing and implementing a new Urban Environmental Science Program. The program aims at graduating highly skilled, demographically diverse students (14 % African-American and 18% Hispanic) to be employed in high-growth Earth and Environmental Science career paths, both at a technical (e.g. B.S.) as well as an educational (K-12 grade) (e.g. B.A) level. The core program, including the Earth and Environmental Science curricula is guided by partners (e.g. USDA-NRCS). The program is highly interdisciplinary and 'hands-on', focusing upon the high-tech practical skills and knowledge demanded of science professionals in the 21st century. The focus of the curriculum is on improving environmental quality in northern NJ, centering upon our urban community in Jersey City and Hudson County. Our Department is moving towards a more earth system science approach to learning. Most of our courses (e.g., Earth Surface Processes, Sedimentology/Stratigraphy, Earth Materials, Essential Methods, Historical Geology) have hands-on laboratory and/or field components. Although some of our other courses do not have formal laboratory components, research modules of many such courses (Geochemistry, Urban Environmental Issues and Policy and Environmental Geology) involve strong field or laboratory studies. The department has a wide range of analytical and laboratory capacities including a portable XRF, bench-top XRD and ICP-MS. In spring 2013, Dr. Duzgoren-Aydin was awarded $277K in Higher Education Equipment Leasing Fund monies from the University in order to establish an Environmental Teaching and Research Laboratory. The addition of these funds will make it possible for the department to increase its instrumentation capacity by adding a mercury analyzer, Ion Chromatography and C-N-S analyzer, as well as updating

  7. The Use of Molecular Modeling as "Pseudoexperimental" Data for Teaching VSEPR as a Hands-On General Chemistry Activity (United States)

    Martin, Christopher B.; Vandehoef, Crissie; Cook, Allison


    A hands-on activity appropriate for first-semester general chemistry students is presented that combines traditional VSEPR methods of predicting molecular geometries with introductory use of molecular modeling. Students analyze a series of previously calculated output files consisting of several molecules each in various geometries. Each structure…

  8. The OpenPicoAmp: an open-source planar lipid bilayer amplifier for hands-on learning of neuroscience. (United States)

    Shlyonsky, Vadim; Dupuis, Freddy; Gall, David


    Understanding the electrical biophysical properties of the cell membrane can be difficult for neuroscience students as it relies solely on lectures of theoretical models without practical hands on experiments. To address this issue, we developed an open-source lipid bilayer amplifier, the OpenPicoAmp, which is appropriate for use in introductory courses in biophysics or neurosciences at the undergraduate level, dealing with the electrical properties of the cell membrane. The amplifier is designed using the common lithographic printed circuit board fabrication process and off-the-shelf electronic components. In addition, we propose a specific design for experimental chambers allowing the insertion of a commercially available polytetrafluoroethylene film. We provide a complete documentation allowing to build the amplifier and the experimental chamber. The students hand-out giving step-by step instructions to perform a recording is also included. Our experimental setup can be used in basic experiments in which students monitor the bilayer formation by capacitance measurement and record unitary currents produced by ionic channels like gramicidin A dimers. Used in combination with a low-cost data acquisition board this system provides a complete solution for hands-on lessons, therefore improving the effectiveness in teaching basic neurosciences or biophysics.

  9. The Interplay of Students' Motivational Orientations, Their Chemistry Achievements and Their Perception of Learning within the Hands-On Approach to Visible Spectrometry (United States)

    Jurisevic, Mojca; Vrtacnik, Margareta; Kwiatkowski, Marek; Gros, Natasa


    The purpose of the study was to determine the relationship between students' motivational orientations and their chemistry achievements and perception of learning within the original case of the hands-on approach to visible spectrometry. A total of 295 students from Polish and Slovenian vocational and technical high schools participated in the…

  10. A MEDL Collection Showcase: A Collection of Hands-on Physical Analog Models and Demonstrations From the Department of Geosciences MEDL at Virginia Tech (United States)

    Glesener, G. B.


    The Geosciences Modeling and Educational Demonstrations Laboratory (MEDL) will present a suite of hands-on physical analog models from our curriculum materials collection used to teach about a wide range of geoscience processes. Many of the models will be equipped with Vernier data collection sensors, which visitors will be encouraged to explore on-site. Our goal is to spark interest and discussion around the affordances of these kinds of curriculum materials. Important topics to discuss will include: (1) How can having a collection of hands-on physical analog models be used to effectively produce successful broader impacts activities for research proposals? (2) What kinds of learning outcomes have instructors observed when teaching about temporally and spatially challenging concepts using physical analog models? (3) What does it take for an institution to develop their own MEDL collection? and (4) How can we develop a community of individuals who provide on-the-ground support for instructors who use physical analog models in their classroom.

  11. Three Big Hands-On Noncomputer Models for the Biology Classroom. (United States)

    Miller, James E.


    Proposes models for the lichen symbiosis, genomic, and plasmid DNA and fluid mosaic membrane structure. The models operate at the classroom level with the classroom becoming the cell in a DNA exercise with students as interactive components. (DDR)

  12. A hands-on approach for fitting long-term survival models under the GAMLSS framework. (United States)

    de Castro, Mário; Cancho, Vicente G; Rodrigues, Josemar


    In many data sets from clinical studies there are patients insusceptible to the occurrence of the event of interest. Survival models which ignore this fact are generally inadequate. The main goal of this paper is to describe an application of the generalized additive models for location, scale, and shape (GAMLSS) framework to the fitting of long-term survival models. In this work the number of competing causes of the event of interest follows the negative binomial distribution. In this way, some well known models found in the literature are characterized as particular cases of our proposal. The model is conveniently parameterized in terms of the cured fraction, which is then linked to covariates. We explore the use of the gamlss package in R as a powerful tool for inference in long-term survival models. The procedure is illustrated with a numerical example. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  13. Linear models in matrix form a hands-on approach for the behavioral sciences

    CERN Document Server

    Brown, Jonathon D


    This textbook is an approachable introduction to statistical analysis using matrix algebra. Prior knowledge of matrix algebra is not necessary. Advanced topics are easy to follow through analyses that were performed on an open-source spreadsheet using a few built-in functions. These topics include ordinary linear regression, as well as maximum likelihood estimation, matrix decompositions, nonparametric smoothers and penalized cubic splines. Each data set (1) contains a limited number of observations to encourage readers to do the calculations themselves, and (2) tells a coherent story based on statistical significance and confidence intervals. In this way, students will learn how the numbers were generated and how they can be used to make cogent arguments about everyday matters. This textbook is designed for use in upper level undergraduate courses or first year graduate courses. The first chapter introduces students to linear equations, then covers matrix algebra, focusing on three essential operations: sum ...

  14. Student Responses to a Hands-On Kinesthetic Lecture Activity for Learning about the Oxygen Carrying Capacity of Blood (United States)

    Breckler, Jennifer; Yu, Justin R.


    This article describes a new hands-on, or "kinesthetic," activity for use in a physiology lecture hall to help students comprehend an important concept in cardiopulmonary physiology known as oxygen carrying capacity. One impetus for designing this activity was to address the needs of students who have a preference for kinesthetic…

  15. How Science Texts and Hands-on Explorations Facilitate Meaning Making: Learning from Latina/o Third Graders (United States)

    Varelas, Maria; Pieper, Lynne; Arsenault, Amy; Pappas, Christine C.; Keblawe-Shamah, Neveen


    In this study, we examined opportunities for reasoning and meaning making that read-alouds of children's literature science information books and related hands-on explorations offered to young Latina/o students in an urban public school. Using a qualitative, interpretative framework, we analyzed classroom discourse and children's writing…

  16. The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities (United States)

    Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex


    A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…

  17. Hands-On Nuclear Physics (United States)

    Whittaker, Jeff


    Nuclear science is an important topic in terms of its application to power generation, medical diagnostics and treatment, and national defense. Unfortunately, the subatomic domain is far removed from daily experience, and few learning aids are available to teachers. What follows describes a low-tech, hands-on method to teach important concepts in…

  18. Interlocking Toy Building Blocks as Hands-On Learning Modules for Blind and Visually Impaired Chemistry Students (United States)

    Melaku, Samuel; Schreck, James O.; Griffin, Kameron; Dabke, Rajeev B.


    Interlocking toy building blocks (e.g., Lego) as chemistry learning modules for blind and visually impaired (BVI) students in high school and undergraduate introductory or general chemistry courses are presented. Building blocks were assembled on a baseplate to depict the relative changes in the periodic properties of elements. Modules depicting…

  19. The Alaska Lake Ice and Snow Observatory Network (ALISON): Hands-on Experiential K- 12 Learning in the North (United States)

    Morris, K.; Jeffries, M.


    The Alaska Lake Ice and Snow Observatory Network (ALISON) was initiated by Martin Jeffries (UAF polar scientist), Delena Norris-Tull (UAF education professor) and Ron Reihl (middle school science teacher, Fairbanks North Star Borough School District). The snow and ice measurement protocols were developed in 1999-2000 at the Poker Flat Research Range (PFRR) by Geophysical Institute, University of Alaska scientists and tested by home school teacher/students in winter 2001-2002 in Fairbanks, AK. The project was launched in 2002 with seven sites around the state (PFRR, Fairbanks, Barrow, Mystic Lake, Nome, Shageluk and Wasilla). The project reached its broadest distribution in 2005-2006 with 22 sites. The schools range from urban (Wasilla) to primarily Alaska native villages (Shageluk). They include public schools, charter schools, home schooled students and parents, informal educators and citizen scientists. The grade levels range from upper elementary to high school. Well over a thousand students have participated in ALISON since its inception. Equipment is provided to the observers at each site. Measurements include ice thickness (with a hot wire ice thickness gauge), snow depth and snow temperature (surface and base). Snow samples are taken and snow density derived. Snow variables are used to calculate the conductive heat flux through the ice and snow cover to the atmosphere. All data are available on the Web site. The students and teachers are scientific partners in the study of lake ice processes, contributing to new scientific knowledge and understanding while also learning science by doing science with familiar and abundant materials. Each autumn, scientists visit each location to work with the teachers and students, helping them to set up the study site, showing them how to make the measurements and enter the data into the computer, and discussing snow, ice and polar environmental change. A number of 'veteran' teachers are now setting up the study sites on

  20. How Do Learning Outcomes, Assessments and Student Engagement in a Fully Online Geoscience Laboratory Compare to Those Of The Original Hands-on Exercise? (United States)

    Jones, F. M.


    In a third year geoscience elective for BSc majors, we adapted several active f2f learning strategies for an equivalent fully online version of the course. In particular, we converted a hands-on laboratory including analysis and interpretation of hand-specimens, sketching results and peer-to-peer discussion of scientific implications. This study compares learning outcomes in both formats and describes resources that make engaging, effective and efficient learning experiences for large classes in an asynchronous online environment. Our two hypotheses are: 1) a hands-on geology lab exercise can be converted for efficient fully online use without sacrificing feedback and assessment opportunities; 2) students find either the f2f or DE versions equally effective and enjoyable as learning experiences. Key components are an authentic context, interactive resources including sketching, strategies that enable efficient assessment and feedback on solo and group work, and asynchronous yet productive interaction with peers. Students in the f2f class handle real rock and fossil specimens, work with peers in the lab and classroom, and deliver most results including annotated figures on paper. DE students complete identical tasks using interactive high resolution figures and videos of specimens. Solo work is first delivered for automated assessment and feedback, then students engage asynchronously in small groups to improve results and discuss implications. Chronostratigraphy and other interpretations are sketched on prepared template images using a simple open-source sketching app that ensures equal access and consistent results that are efficient to assess by peers and instructors. Learning outcomes based on subsequent quizzes, sketches, and lab results (paper for f2f students and automated data entry for DE students), show that f2f and online students demonstrate knowledge and scientific interpretations of comparable quality. Effective engagement and group work are

  1. Effectiveness of hands-on tutoring and guided self-directed learning versus self-directed learning alone to educate critical care fellows on mechanical ventilation - a pilot project. (United States)

    Ramar, Kannan; De Moraes, Alice Gallo; Selim, Bernardo; Holets, Steven; Oeckler, Richard


    Physicians require extensive training to achieve proficiency in mechanical ventilator (MV) management of the critically ill patients. Guided self-directed learning (GSDL) is usually the method used to learn. However, it is unclear if this is the most proficient approach to teaching mechanical ventilation to critical care fellows. We, therefore, investigated whether critical care fellows achieve higher scores on standardized testing and report higher satisfaction after participating in a hands-on tutorial combined with GSDL compared to self-directed learning alone. First-year Pulmonary and Critical Care Medicine (PCCM) fellows ( n =6) and Critical Care Internal Medicine (CCIM) ( n =8) fellows participated. Satisfaction was assessed using the Likert scale. MV knowledge assessment was performed by administering a standardized 25-question multiple choice pre- and posttest. For 2 weeks the CCIM fellows were exposed to GSDL, while the PCCM fellows received hands-on tutoring combined with GSDL. Ninety-three percentage (6 PCCM and 7 CCIM fellows, total of 13 fellows) completed all evaluations and were included in the final analysis. CCIM and PCCM fellows scored similarly in the pretest (64% vs. 52%, p =0.13). Following interventions, the posttest scores increased in both groups. However, no significant difference was observed based on the interventions (74% vs. 77%, p =0.39). The absolute improvement with the hands-on-tutoring and GSDL group was higher than GSDL alone (25% vs. 10%, p =0.07). Improved satisfaction scores were noted with hands-on tutoring. Hands-on tutoring combined with GSDL and GSDL alone were both associated with an improvement in posttest scores. Absolute improvement in test and satisfaction scores both trended higher in the hands-on tutorial group combined with GSDL group.

  2. Effectiveness of hands-on tutoring and guided self-directed learning versus self-directed learning alone to educate critical care fellows on mechanical ventilation – a pilot project

    Directory of Open Access Journals (Sweden)

    Kannan Ramar


    Full Text Available Background: Physicians require extensive training to achieve proficiency in mechanical ventilator (MV management of the critically ill patients. Guided self-directed learning (GSDL is usually the method used to learn. However, it is unclear if this is the most proficient approach to teaching mechanical ventilation to critical care fellows. We, therefore, investigated whether critical care fellows achieve higher scores on standardized testing and report higher satisfaction after participating in a hands-on tutorial combined with GSDL compared to self-directed learning alone. Methods: First-year Pulmonary and Critical Care Medicine (PCCM fellows (n=6 and Critical Care Internal Medicine (CCIM (n=8 fellows participated. Satisfaction was assessed using the Likert scale. MV knowledge assessment was performed by administering a standardized 25-question multiple choice pre- and posttest. For 2 weeks the CCIM fellows were exposed to GSDL, while the PCCM fellows received hands-on tutoring combined with GSDL. Results: Ninety-three percentage (6 PCCM and 7 CCIM fellows, total of 13 fellows completed all evaluations and were included in the final analysis. CCIM and PCCM fellows scored similarly in the pretest (64% vs. 52%, p=0.13. Following interventions, the posttest scores increased in both groups. However, no significant difference was observed based on the interventions (74% vs. 77%, p=0.39. The absolute improvement with the hands-on-tutoring and GSDL group was higher than GSDL alone (25% vs. 10%, p=0.07. Improved satisfaction scores were noted with hands-on tutoring. Conclusions: Hands-on tutoring combined with GSDL and GSDL alone were both associated with an improvement in posttest scores. Absolute improvement in test and satisfaction scores both trended higher in the hands-on tutorial group combined with GSDL group.

  3. Hands-on Humidity. (United States)

    Pankiewicz, Philip R.


    Presents five hands-on activities that allow students to detect, measure, reduce, and eliminate moisture. Students make a humidity detector and a hygrometer, examine the effects of moisture on different substances, calculate the percent of water in a given food, and examine the absorption potential of different desiccants. (MDH)

  4. Hands-On Hydrology (United States)

    Mathews, Catherine E.; Monroe, Louise Nelson


    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  5. Learning Specific Content in Technology Education: Learning Study as a Collaborative Method in Swedish Preschool Class Using Hands-On Material (United States)

    Kilbrink, Nina; Bjurulf, Veronica; Blomberg, Ingela; Heidkamp, Anja; Hollsten, Ann-Christin


    This article describes the process of a learning study conducted in technology education in a Swedish preschool class. The learning study method used in this study is a collaborative method, where researchers and teachers work together as a team concerning teaching and learning about a specific learning object. The object of learning in this study…

  6. Learning a specific content in technology education : Learning Study as collaborative method in Swedish preschool class using hands-on material 


    Kilbrink, Nina; Bjurulf, Veronica; Blomberg, Ingela; Heidkamp, Anja; Hollsten, Ann-Christin


    This article describes the process of a learning study conducted in technology education in a Swedish preschool class. The learning study method used in this study is a collaborative method, where researchers and teachers work together as a team concerning teaching and learning about a specific learning object. The object of learning in this study concerns strong constructions and framed structures. This article describes how this learning study was conducted and discusses reflections made du...

  7. Teaching chemistry and other sciences to blind and low-vision students through hands-on learning experiences in high school science laboratories (United States)

    Supalo, Cary Alan


    Students with blindness and low vision (BLV) have traditionally been underrepresented in the sciences as a result of technological and attitudinal barriers to equal access in science laboratory classrooms. The Independent Laboratory Access for the Blind (ILAB) project developed and evaluated a suite of talking and audible hardware/software tools to empower students with BLV to have multisensory, hands-on laboratory learning experiences. This dissertation focuses on the first year of ILAB tool testing in mainstream science laboratory classrooms, and comprises a detailed multi-case study of four students with BLV who were enrolled in high school science classes during 2007--08 alongside sighted students. Participants attended different schools; curricula included chemistry, AP chemistry, and AP physics. The ILAB tools were designed to provide multisensory means for students with BLV to make observations and collect data during standard laboratory lessons on an equivalent basis with their sighted peers. Various qualitative and quantitative data collection instruments were used to determine whether the hands-on experiences facilitated by the ILAB tools had led to increased involvement in laboratory-goal-directed actions, greater peer acceptance in the students' lab groups, improved attitudes toward science, and increased interest in science. Premier among the ILAB tools was the JAWS/Logger Pro software interface, which made audible all information gathered through standard Vernier laboratory probes and visually displayed through Logger Pro. ILAB tools also included a talking balance, a submersible audible light sensor, a scientific talking stopwatch, and a variety of other high-tech and low-tech devices and techniques. While results were mixed, all four participating BLV students seemed to have experienced at least some benefit, with the effect being stronger for some than for others. Not all of the data collection instruments were found to reveal improvements for all

  8. Hands-on Approach to Prepare Specialists in Climate Changes Modeling and Analysis Using an Information-Computational Web-GIS Portal "Climate" (United States)

    Shulgina, T. M.; Gordova, Y. E.; Martynova, Y. V.


    A problem of making education relevant to the workplace tasks is a key problem of higher education in the professional field of environmental sciences. To answer this challenge several new courses for students of "Climatology" and "Meteorology" specialties were developed and implemented at the Tomsk State University, which comprises theoretical knowledge from up-to-date environmental sciences with computational tasks. To organize the educational process we use an open-source course management system Moodle ( It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational web GIS platform "Climate" ( The platform has a set of tools and data bases allowing a researcher to perform climate changes analysis on the selected territory. The tools are also used for students' trainings, which contain practical tasks on climate modeling and climate changes assessment and analysis. Laboratory exercises are covering three topics: "Analysis of regional climate changes"; "Analysis of climate extreme indices on the regional scale"; and "Analysis of future climate". They designed to consolidate students' knowledge of discipline, to instill in them the skills to work independently with large amounts of geophysical data using modern processing and analysis tools of web-GIS platform "Climate" and to train them to present results obtained on laboratory work as reports with the statement of the problem, the results of calculations and logically justified conclusion. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern

  9. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE), Version 5.0: Models and Results Database (MAR-D) reference manual. Volume 8

    International Nuclear Information System (INIS)

    Russell, K.D.; Skinner, N.L.


    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. The primary function of MAR-D is to create a data repository for completed PRAs and Individual Plant Examinations (IPEs) by providing input, conversion, and output capabilities for data used by IRRAS, SARA, SETS, and FRANTIC software. As probabilistic risk assessments and individual plant examinations are submitted to the NRC for review, MAR-D can be used to convert the models and results from the study for use with IRRAS and SARA. Then, these data can be easily accessed by future studies and will be in a form that will enhance the analysis process. This reference manual provides an overview of the functions available within MAR-D and step-by-step operating instructions

  10. The Citizen Science Program "H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change" teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. This is a continuation of the Program presented last year at the Poster Session. (United States)

    Weiss, N. K.; Wood, J. H.


    TThe Citizen Science Program H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to Ocean Quest where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by Ocean Quest.

  11. Human Driving Forces and Their Impacts on Land Use/Land Cover. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change. (United States)

    Moser, Susanne

    This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module explains that land use/cover change has occurred at all times in all…

  12. Parts of the Whole: Hands On Statistics

    Directory of Open Access Journals (Sweden)

    Dorothy Wallace


    Full Text Available In this column we describe a hands-on data collection lab for an introductory statistics course. The exercise elicits issues of normality, sampling, and sample mean comparisons. Based on volcanology models of tephra dispersion, this lab leads students to question the accuracy of some assumptions made in the model, particularly regarding the normality of the dispersal of tephra of identical size in a given atmospheric layer.

  13. Hess Deep Interactive Lab: Exploring the Structure and Formation of the Oceanic Crust through Hands-On Models and Online Tools (United States)

    Kurtz, N.; Marks, N.; Cooper, S. K.


    Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.

  14. At-risk children's use of reflection and revision in hands-on experimental activities (United States)

    Petrosino, Anthony J., Jr.

    The goal of this study was to investigate the effects of incorporating opportunities for reflection and revision in hands-on science instruction which emphasized experimentation using model rockets. The participants were low achieving sixth grade summer school students (n = 23) designated as at-risk for school failure by their district. The group was asked a series of interview questions based on work by Schauble et al. (1995) relating to experimentation. The interviews took place over three distinct time points corresponding to a "hands-on only" condition, a "hands-on with reflection and revision" condition and a "hands-on with repeated reflection and revision" condition. A Friedman's Two-Way Analysis of Variance by Ranks indicate students score low at first with traditional hands-on instruction but improve significantly with opportunities to reflect and revise their experiments. In addition, a sociocultural analysis was conducted during the summer school session to assess the model rocket activity as an apprenticeship, as guided participation and as participatory appropriation using a framework established by Rogoff (1994). Finally, a survey (the Classroom Environment Survey) was administered to the students measuring five constructs consistent with a constructivist classroom: participation, autonomy, relevance, commitment to learning and disruptions to learning. Analysis indicate students in the summer school model rocket intervention experienced a greater sense of constructivist principles during the activity than a similar comparison group utilizing reform minded instruction but not including opportunities for reflection and revision cycles. This research provides important evidence that, like scientists, students in school can learn effectively from extended practice in a varied context. Importantly, the data indicate that hands-on instruction is best utilized when opportunities for reflection and revision are made explicit. Implications are discussed related

  15. 1st Hands-on Science Science Fair


    Costa, Manuel F. M.; Esteves. Z.


    In school learning of science through investigative hands-on experiments is in the core of the Hands-on Science Network vision. However informal and non-formal contexts may also provide valuable paths for implementing this strategy aiming a better e!ective science education. In May 2011, a "rst country wide “Hands-on Science’ Science Fair” was organized in Portugal with the participation of 131 students that presented 38 projects in all "elds of Science. In this communication we will pr...

  16. Getting Our Hands on History (United States)

    Hindle, Rob


    Adult learning enhances, sometimes changes lives. It is therefore vital that educators do whatever it takes to enable more people from under-represented groups to get involved in learning. This is central to the Workers' Educational Association's (WEA) vision and values. Yet among its range of programmes, some subject areas remain the preserve of…

  17. Hands-on physics displays for undergraduates (United States)

    Akerlof, Carl W.


    Initiated by Frank Oppenheimer in 1969, the Exploratorium in San Francisco has been the model for hands-on science museums throughout the world. The key idea has been to bring people with all levels of scientific background in contact with interesting and attractive exhibits that require the active participation of the visitor. Unfortunately, many science museums are now forced to cater primarily to very young audiences, often 8 years old or less, with predictable constraints on the intellectual depth of their exhibits. To counter this trend, the author has constructed several hands-on displays for the University of Michigan Physics Department that demonstrate: (1) magnetic levitation of pyrolytic graphite, (2) the varied magnetic induction effects in aluminum, copper and air, (3) chaotic motion of a double pendulum, (4) conservation of energy and momentum in a steel ball magnetic accelerator, (5) the diffraction pattern of red and green laser pointer beams created by CDs and DVDs, (6) a magnetic analog of the refraction of light at a dielectric boundary and (7) optical rotation of light in an aqueous fructose solution. Each of these exhibits can be constructed for something like $1000 or less and are robust enough to withstand unsupervised public use. The dynamic behavior of these exhibits will be shown in accompanying video sequences. The following story has a history that goes back quite a few years. In the late 70's, I was spending time at the Stanford Linear Accelerator Center accompanied by my family that included our two grade school children. Needless to say, we much enjoyed weekend excursions to all sorts of interesting sites in the Bay Area, especially the Exploratorium, an unusual science museum created by Frank Oppenheimer that opened in 1969. The notion that exhibits would be designed specifically for "hands-on" interactions was at that time quite revolutionary. This idea captivated a number of people everywhere including a friend in Ann Arbor, Cynthia

  18. Hands-On Mathematics: Two Cases from Ancient Chinese Mathematics (United States)

    Wang, Youjun


    In modern mathematical teaching, it has become increasingly emphasized that mathematical knowledge should be taught by problem-solving, hands-on activities, and interactive learning experiences. Comparing the ideas of modern mathematical education with the development of ancient Chinese mathematics, we find that the history of mathematics in…

  19. A Hands-On Approach To Teaching Microcontroller

    Directory of Open Access Journals (Sweden)

    Che Fai Yeong


    Full Text Available Practice and application-oriented approach in education is important, and some research on active learning and cooperative problem-solving have shown that a student will learn faster and develop communication skill, leadership and team work through these methods. This paper presents a study of student preference and performance while learning the microcontroller subject with a 2-day curriculum that emphasized on hands-on approach. The curriculum uses the PIC16F877A microcontroller and participants learned to develop basic circuits and several other applications. Programming was completed on the MPLAB platform. Results show that participants had better understanding in this subject after attending the hands-on course.

  20. Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years (United States)

    Dart, Lyn; Vanbeber, Anne; Smith-Barbaro, Peggy; Costilla, Vanessa; Samuel, Charlotte; Terregino, Carol A.; Abali, Emine Ercikan; Dollinger, Beth; Baumgartner, Nicole; Kramer, Nicholas; Seelochan, Alex; Taher, Sabira; Deutchman, Mark; Evans, Meredith; Ellis, Robert B.; Oyola, Sonia; Maker-Clark, Geeta; Budnick, Isadore; Tran, David; DeValle, Nicole; Shepard, Rachel; Chow, Erika; Petrin, Christine; Razavi, Alexander; McGowan, Casey; Grant, Austin; Bird, Mackenzie; Carry, Connor; McGowan, Glynis; McCullough, Colleen; Berman, Casey M.; Dotson, Kerri; Sarris, Leah; Harlan, Timothy S.; Co-investigators, on behalf of the CHOP


    Background Cardiovascular disease (CVD) annually claims more lives and costs more dollars than any other disease globally amid widening health disparities, despite the known significant reductions in this burden by low cost dietary changes. The world's first medical school-based teaching kitchen therefore launched CHOP-Medical Students as the largest known multisite cohort study of hands-on cooking and nutrition education versus traditional curriculum for medical students. Methods This analysis provides a novel integration of artificial intelligence-based machine learning (ML) with causal inference statistics. 43 ML automated algorithms were tested, with the top performer compared to triply robust propensity score-adjusted multilevel mixed effects regression panel analysis of longitudinal data. Inverse-variance weighted fixed effects meta-analysis pooled the individual estimates for competencies. Results 3,248 unique medical trainees met study criteria from 20 medical schools nationally from August 1, 2012, to June 26, 2017, generating 4,026 completed validated surveys. ML analysis produced similar results to the causal inference statistics based on root mean squared error and accuracy. Hands-on cooking and nutrition education compared to traditional medical school curriculum significantly improved student competencies (OR 2.14, 95% CI 2.00–2.28, p < 0.001) and MedDiet adherence (OR 1.40, 95% CI 1.07–1.84, p = 0.015), while reducing trainees' soft drink consumption (OR 0.56, 95% CI 0.37–0.85, p = 0.007). Overall improved competencies were demonstrated from the initial study site through the scale-up of the intervention to 10 sites nationally (p < 0.001). Discussion This study provides the first machine learning-augmented causal inference analysis of a multisite cohort showing hands-on cooking and nutrition education for medical trainees improves their competencies counseling patients on nutrition, while improving students' own diets. This study suggests that

  1. Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years. (United States)

    Monlezun, Dominique J; Dart, Lyn; Vanbeber, Anne; Smith-Barbaro, Peggy; Costilla, Vanessa; Samuel, Charlotte; Terregino, Carol A; Abali, Emine Ercikan; Dollinger, Beth; Baumgartner, Nicole; Kramer, Nicholas; Seelochan, Alex; Taher, Sabira; Deutchman, Mark; Evans, Meredith; Ellis, Robert B; Oyola, Sonia; Maker-Clark, Geeta; Dreibelbis, Tomi; Budnick, Isadore; Tran, David; DeValle, Nicole; Shepard, Rachel; Chow, Erika; Petrin, Christine; Razavi, Alexander; McGowan, Casey; Grant, Austin; Bird, Mackenzie; Carry, Connor; McGowan, Glynis; McCullough, Colleen; Berman, Casey M; Dotson, Kerri; Niu, Tianhua; Sarris, Leah; Harlan, Timothy S; Co-Investigators, On Behalf Of The Chop


    Cardiovascular disease (CVD) annually claims more lives and costs more dollars than any other disease globally amid widening health disparities, despite the known significant reductions in this burden by low cost dietary changes. The world's first medical school-based teaching kitchen therefore launched CHOP-Medical Students as the largest known multisite cohort study of hands-on cooking and nutrition education versus traditional curriculum for medical students. This analysis provides a novel integration of artificial intelligence-based machine learning (ML) with causal inference statistics. 43 ML automated algorithms were tested, with the top performer compared to triply robust propensity score-adjusted multilevel mixed effects regression panel analysis of longitudinal data. Inverse-variance weighted fixed effects meta-analysis pooled the individual estimates for competencies. 3,248 unique medical trainees met study criteria from 20 medical schools nationally from August 1, 2012, to June 26, 2017, generating 4,026 completed validated surveys. ML analysis produced similar results to the causal inference statistics based on root mean squared error and accuracy. Hands-on cooking and nutrition education compared to traditional medical school curriculum significantly improved student competencies (OR 2.14, 95% CI 2.00-2.28, p < 0.001) and MedDiet adherence (OR 1.40, 95% CI 1.07-1.84, p = 0.015), while reducing trainees' soft drink consumption (OR 0.56, 95% CI 0.37-0.85, p = 0.007). Overall improved competencies were demonstrated from the initial study site through the scale-up of the intervention to 10 sites nationally ( p < 0.001). This study provides the first machine learning-augmented causal inference analysis of a multisite cohort showing hands-on cooking and nutrition education for medical trainees improves their competencies counseling patients on nutrition, while improving students' own diets. This study suggests that the public health and medical sectors can

  2. Machine Learning-Augmented Propensity Score-Adjusted Multilevel Mixed Effects Panel Analysis of Hands-On Cooking and Nutrition Education versus Traditional Curriculum for Medical Students as Preventive Cardiology: Multisite Cohort Study of 3,248 Trainees over 5 Years

    Directory of Open Access Journals (Sweden)

    Dominique J. Monlezun


    Full Text Available Background. Cardiovascular disease (CVD annually claims more lives and costs more dollars than any other disease globally amid widening health disparities, despite the known significant reductions in this burden by low cost dietary changes. The world’s first medical school-based teaching kitchen therefore launched CHOP-Medical Students as the largest known multisite cohort study of hands-on cooking and nutrition education versus traditional curriculum for medical students. Methods. This analysis provides a novel integration of artificial intelligence-based machine learning (ML with causal inference statistics. 43 ML automated algorithms were tested, with the top performer compared to triply robust propensity score-adjusted multilevel mixed effects regression panel analysis of longitudinal data. Inverse-variance weighted fixed effects meta-analysis pooled the individual estimates for competencies. Results. 3,248 unique medical trainees met study criteria from 20 medical schools nationally from August 1, 2012, to June 26, 2017, generating 4,026 completed validated surveys. ML analysis produced similar results to the causal inference statistics based on root mean squared error and accuracy. Hands-on cooking and nutrition education compared to traditional medical school curriculum significantly improved student competencies (OR 2.14, 95% CI 2.00–2.28, p<0.001 and MedDiet adherence (OR 1.40, 95% CI 1.07–1.84, p=0.015, while reducing trainees’ soft drink consumption (OR 0.56, 95% CI 0.37–0.85, p=0.007. Overall improved competencies were demonstrated from the initial study site through the scale-up of the intervention to 10 sites nationally (p<0.001. Discussion. This study provides the first machine learning-augmented causal inference analysis of a multisite cohort showing hands-on cooking and nutrition education for medical trainees improves their competencies counseling patients on nutrition, while improving students’ own diets. This

  3. Student Modeling and Machine Learning


    Sison , Raymund; Shimura , Masamichi


    After identifying essential student modeling issues and machine learning approaches, this paper examines how machine learning techniques have been used to automate the construction of student models as well as the background knowledge necessary for student modeling. In the process, the paper sheds light on the difficulty, suitability and potential of using machine learning for student modeling processes, and, to a lesser extent, the potential of using student modeling techniques in machine le...

  4. Visual Perceptual Learning and Models. (United States)

    Dosher, Barbara; Lu, Zhong-Lin


    Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.

  5. The Interaction Model in iLearning Environments and its Use in the Smart Lab Concept

    Directory of Open Access Journals (Sweden)

    Yuliya Lyalina


    Full Text Available This paper identifies and discusses current trends and challenges, offers an overview of state-of-the-art technologies in the development of remote and smart laboratories, and introduces the iLearning interaction model. The use of the model allows reconstructing already- existing iLearning environments. The smart lab model is described for face-to-face, Mobile and Blended Learning. As a result, this allows offering new information technology that organizes the educational process according to learning type (face-to-face, hands-on learning, Life Long Learning, E-Learning, M-Learning, Blended learning, Game-based learning, etc.. The remote access Architecture and Interface for the multifunctional Smart Lab will be developed.

  6. Hands-On Skills for Caregivers (United States)

    ... A + A You are here Home Hands-On Skills for Caregivers Printer-friendly version When you’re ... therapist who can help you develop your transferring skills. Allow for their reality Remember to accept your ...

  7. Active Learning with Statistical Models. (United States)


    Active Learning with Statistical Models ASC-9217041, NSF CDA-9309300 6. AUTHOR(S) David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan 7. PERFORMING...TERMS 15. NUMBER OF PAGES Al, MIT, Artificial Intelligence, active learning , queries, locally weighted 6 regression, LOESS, mixtures of gaussians...COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES A.I. Memo No. 1522 January 9. 1995 C.B.C.L. Paper No. 110 Active Learning with

  8. The Game Enhanced Learning Model

    DEFF Research Database (Denmark)

    Reng, Lars; Schoenau-Fog, Henrik


    will describe the levels of the model, which is based on our experience in teaching professional game development at university level. Furthermore, we have been using the model to inspire numerous educators to improve their students’ motivation and skills. The model presents various game-based learning...... activities, and depicts their required planning and expected outcome through eight levels. At its lower levels, the model contains the possibilities of using stand-alone analogue and digital games as teachers, utilizing games as a facilitator of learning activities, exploiting gamification and motivating......In this paper, we will introduce the Game Enhanced learning Model (GEM), which describes a range of gameoriented learning activities. The model is intended to give an overview of the possibilities of game-based learning in general and all the way up to purposive game productions. In the paper, we...

  9. Faculty Workshops for Teaching Information Assurance through Hands-On Exercises and Case Studies (United States)

    Yuan, Xiaohong; Williams, Kenneth; Yu, Huiming; Rorrer, Audrey; Chu, Bei-Tseng; Yang, Li; Winters, Kathy; Kizza, Joseph


    Though many Information Assurance (IA) educators agree that hands-on exercises and case studies improve student learning, hands-on exercises and case studies are not widely adopted due to the time needed to develop them and integrate them into curricula. Under the support of the National Science Foundation (NSF) Scholarship for Service program, we…

  10. Model-based machine learning. (United States)

    Bishop, Christopher M


    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications.

  11. Hands-on-Entropy, Energy Balance with Biological Relevance (United States)

    Reeves, Mark


    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory

  12. Learning to Model in Engineering (United States)

    Gainsburg, Julie


    Policymakers and education scholars recommend incorporating mathematical modeling into mathematics education. Limited implementation of modeling instruction in schools, however, has constrained research on how students learn to model, leaving unresolved debates about whether modeling should be reified and explicitly taught as a competence, whether…

  13. Development of the ultrasonography learning model for undergraduate medical students: A case study of the Faculty of Medicine, Burapha University

    Directory of Open Access Journals (Sweden)

    Sornsupha Limchareon


    Conclusion: By adding hands-on ultrasound experience using live patients proctored by radiologists for final year medical students, in the space of 2 weeks, an effective ultrasound learning model for undergraduate medical students can be provided. This model should be considered in the curricular design.

  14. Discovering SQL A Hands-On Guide for Beginners

    CERN Document Server

    Kriegel, Alex


    Teaching the SQL skills that businesses demand when hiring programmers If you're a SQL beginner, you don't just want to learn SQL basics, you also want to get some practical SQL skills you can use in the job market. This book gives you both. Covering the basics through intermediate topics with clear explanations, hands-on exercises, and helpful solutions, this book is the perfect introduction to SQL. Topics include both the current SQL:2008 standards, the upcoming SQL:2011 standards, and also how to use SQL against current releases of the most popular commercial SQL databases, such as Oracle,

  15. Active Learning for Player Modeling

    DEFF Research Database (Denmark)

    Shaker, Noor; Abou-Zleikha, Mohamed; Shaker, Mohammad


    Learning models of player behavior has been the focus of several studies. This work is motivated by better understanding of player behavior, a knowledge that can ultimately be employed to provide player-adapted or personalized content. In this paper, we propose the use of active learning for player...... experience modeling. We use a dataset from hundreds of players playing Infinite Mario Bros. as a case study and we employ the random forest method to learn mod- els of player experience through the active learning approach. The results obtained suggest that only part of the dataset (up to half the size...... that the method can be used online during the content generation process where the mod- els can improve and better content can be presented as the game is being played....

  16. Engaging Citizens In Discussions of Coastal Climate ChangeTwo examples of place-based research that engaged community members will be presented. Lessons learned in how to engage community members and working with high school students and hands-on learning across generations can provide insights into social and ecosystem change will be shared. (United States)

    Kruger, L. E.; Johnson, A. C.


    By engaging community members as research partners, people become not just the subject of the story, they become storytellers as well. Participatory community-based research that engages community residents in gathering and sharing their lived experiences is instrumental in connecting people to each other and their forests and forest science and helpful when confronted by change. Two examples of place-based research that engaged community members as researchers will be presented. What factors led to collaborative outcomes that integrated citizen-informed knowledge with scientific knowledge? What lessons were learned in how best to engage community members? How did working with high school students draw even hesitant members of the community to participate? By strengthening bonds between students and their communities, both natural and social environments, we can provide young people with opportunities to better understand how they fit into the greater community and their natural environment. Hands-on learning that explores experiences in nature across generations can benefit communities, especially youth, and can provide insights into social and ecosystem change.

  17. A Visual Detection Learning Model (United States)

    Beard, Bettina L.; Ahumada, Albert J., Jr.; Trejo, Leonard (Technical Monitor)


    Our learning model has memory templates representing the target-plus-noise and noise-alone stimulus sets. The best correlating template determines the response. The correlations and the feedback participate in the additive template updating rule. The model can predict the relative thresholds for detection in random, fixed and twin noise.

  18. Using mockups for hands-on training

    International Nuclear Information System (INIS)

    Morris, A.R.


    The presentation of Using Mockups for Hands-on Training will be a slide presentation showing slides of mockups that are used by the Westinghouse Hanford Company in Maintenance Training activities. This presentation will compare mockups to actual plant equipment. It will explain the advantages and disadvantages of using mockups. The presentation will show students using the mockups in the classroom environment and slides of the actual plant equipment. The presentation will discuss performance-based training. This part of the presentation will show slides of students doing hands-on training on aerial lifts, fork trucks, and crane and rigging applications. Also shown are mockups that are used for basic hydraulics; hydraulic torquing; refrigeration and air conditioning; valve seat repair; safety relief valve training; and others. The presentation will discuss functional duplicate equipment and simulated nonfunctional equipment. The presentation will discuss the acquisition of mockups from spare parts inventory or from excess parts inventory. The presentation will show attendees how the mockups are used to enhance the training of the Hanford Site employees and how similar mockups could be used throughout the nuclear industry

  19. Hands-On Math and Art Exhibition Promoting Science Attitudes and Educational Plans

    Directory of Open Access Journals (Sweden)

    Helena Thuneberg


    Full Text Available The current science, technology, engineering, art, math education (STEAM approach emphasizes integration of abstract science and mathematical ideas for concrete solutions by art. The main aim was to find out how experience of learning mathematics differed between the contexts of school and an informal Math and Art Exhibition. The study participants (N=256 were 12-13 years old from Finland. Several valid questionnaires and tests were applied (e.g., SRQ-A, RAVEN in pre- and postdesign showing a good reliability. The results based on General Linear Modeling and Structural Equation Path Modeling underline the motivational effects. The experience of the effectiveness of hands-on learning at school and at the exhibition was not consistent across the subgroups. The lowest achieving group appreciated the exhibition alternative for math learning compared to learning math at school. The boys considered the exhibition to be more useful than the girls as it fostered their science and technology attitudes. However, for the girls, the attractiveness of the exhibition, the experienced situation motivation, was much more strongly connected to the attitudes on science and technology and the worthiness of mathematics. Interestingly, the pupils experienced that even this short informal learning intervention affected their science and technology attitudes and educational plans.

  20. Computational modeling of epiphany learning. (United States)

    Chen, Wei James; Krajbich, Ian


    Models of reinforcement learning (RL) are prevalent in the decision-making literature, but not all behavior seems to conform to the gradual convergence that is a central feature of RL. In some cases learning seems to happen all at once. Limited prior research on these "epiphanies" has shown evidence of sudden changes in behavior, but it remains unclear how such epiphanies occur. We propose a sequential-sampling model of epiphany learning (EL) and test it using an eye-tracking experiment. In the experiment, subjects repeatedly play a strategic game that has an optimal strategy. Subjects can learn over time from feedback but are also allowed to commit to a strategy at any time, eliminating all other options and opportunities to learn. We find that the EL model is consistent with the choices, eye movements, and pupillary responses of subjects who commit to the optimal strategy (correct epiphany) but not always of those who commit to a suboptimal strategy or who do not commit at all. Our findings suggest that EL is driven by a latent evidence accumulation process that can be revealed with eye-tracking data.

  1. Learning Analytics for Networked Learning Models (United States)

    Joksimovic, Srecko; Hatala, Marek; Gaševic, Dragan


    Teaching and learning in networked settings has attracted significant attention recently. The central topic of networked learning research is human-human and human-information interactions occurring within a networked learning environment. The nature of these interactions is highly complex and usually requires a multi-dimensional approach to…

  2. A New Mobile Learning Adaptation Model


    Mohamd Hassan Hassan; Jehad Al-Sadi


    This paper introduces a new model for m- Learning context adaptation due to the need of utilizing mobile technology in education. Mobile learning; m-Learning for short; in considered to be one of the hottest topics in the educational community, many researches had been done to conceptualize this new form of learning. We are presenting a promising design for a model to adapt the learning content in mobile learning applications in order to match the learner context, preferences and the educatio...

  3. Individual Learning Accounts and Other Models of Financing Lifelong Learning (United States)

    Schuetze, Hans G.


    To answer the question "Financing what?" this article distinguishes several models of lifelong learning as well as a variety of lifelong learning activities. Several financing methods are briefly reviewed, however the principal focus is on Individual Learning Accounts (ILAs) which were seen by some analysts as a promising model for…

  4. Urban Studies: A Learning Model. (United States)

    Cooper, Terry L.; Sundeen, Richard


    The urban studies learning model described in this article was found to increase students' self-esteem, imbue a more flexible and open perspective, contribute to the capacity for self-direction, produce increases on the feeling reactivity, spontaneity, and acceptance of aggression scales, and expand interpersonal competence. (Author/WI)

  5. A Low-Tech, Hands-On Approach To Teaching Sorting Algorithms to Working Students. (United States)

    Dios, R.; Geller, J.


    Focuses on identifying the educational effects of "activity oriented" instructional techniques. Examines which instructional methods produce enhanced learning and comprehension. Discusses the problem of learning "sorting algorithms," a major topic in every Computer Science curriculum. Presents a low-tech, hands-on teaching method for sorting…

  6. Of Heart & Kidneys: Hands-On Activities for Demonstrating Organ Function & Repair (United States)

    Kao, Robert M.


    A major challenge in teaching organ development and disease is deconstructing a complex choreography of molecular and cellular changes over time into a linear stepwise process for students. As an entry toward learning developmental concepts, I propose two inexpensive hands-on activities to help facilitate learning of (1) how to identify defects in…

  7. Hands on with ASP.NET MVC covering MVC 6

    CERN Document Server

    Sahay, Rahul


    MVC (Model-View-Controller) is the popular Microsoft technology which enables you to build dynamic, data-driven, mobile websites, TDD site. Hands-On with ASP.NET MVC is not only written for those who are going to have affair with MVC for the 1st time, rather it is written in such a way that even experienced professional will love reading this book. This book covers all the tiny steps on using MVC at its best. With complete practical tutorials to illustrate the concepts, you will step by step build one End to End application which covers below mentioned techniques - Controllers, Views, Models,

  8. Teaching Economics: A Cooperative Learning Model. (United States)

    Caropreso, Edward J.; Haggerty, Mark


    Describes an alternative approach to introductory economics based on a cooperative learning model, "Learning Together." Discussion of issues in economics education and cooperative learning in higher education leads to explanation of how to adapt the Learning Together Model to lesson planning in economics. A flow chart illustrates the process for a…

  9. Learning from erroneous models using SCYDynamics

    NARCIS (Netherlands)

    Mulder, Y.G.; Bollen, Lars; de Jong, Anthonius J.M.


    Dynamic phenomena are common in science education. Students can learn about such system dynamic processes through model based learning activities. This paper describes a study on the effects of a learning from erroneous models approach using the learning environment SCYDynamics. The study compared

  10. From Learning Object to Learning Cell: A Resource Organization Model for Ubiquitous Learning (United States)

    Yu, Shengquan; Yang, Xianmin; Cheng, Gang; Wang, Minjuan


    This paper presents a new model for organizing learning resources: Learning Cell. This model is open, evolving, cohesive, social, and context-aware. By introducing a time dimension into the organization of learning resources, Learning Cell supports the dynamic evolution of learning resources while they are being used. In addition, by introducing a…

  11. ADAM, a hands-on patient simulator for teaching principles of drug disposition and compartmental pharmacokinetics. (United States)

    Zuna, Ines; Holt, Andrew


    To design, construct and validate a pharmacokinetics simulator that offers students hands-on opportunities to participate in the design, administration and analysis of oral and intravenous dosing regimens. The Alberta Drug Administration Modeller (ADAM) is a mechanical patient in which peristaltic circulation of water through a network of silicone tubing and glass bottles creates a representation of the outcomes of drug absorption, distribution, metabolism and elimination. Changing peristaltic pump rates and volumes in bottles allows values for pharmacokinetic constants to be varied, thereby simulating differences in drug properties and in patient physiologies and pathologies. Following administration of methylene blue dye by oral or intravenous routes, plasma and/or urine samples are collected and drug concentrations are determined spectrophotometrically. The effectiveness of the simulator in enhancing student competence and confidence was assessed in two undergraduate laboratory classes. The simulator effectively models one- and two-compartment drug behaviour in a mathematically-robust and realistic manner. Data allow calculation of numerous pharmacokinetic constants, by traditional graphing methods or with curve-fitting software. Students' competence in solving pharmacokinetic problems involving calculations and graphing improved significantly, while an increase in confidence and understanding was reported. The ADAM is relatively inexpensive and straightforward to construct, and offers a realistic, hands-on pharmacokinetics learning opportunity for students that effectively complements didactic lectures. © 2017 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  12. A Coterminous Collaborative Learning Model: Interconnectivity of Leadership and Learning

    Directory of Open Access Journals (Sweden)

    Ilana Margolin


    Full Text Available This qualitative ethnographic study examines a collaborative leadership model focused on learning and socially just practices within a change context of a wide educational partnership. The study analyzes a range of perspectives of novice teachers, mentor teachers, teacher educators and district superintendents on leadership and learning. The findings reveal the emergence of a coalition of leaders crossing borders at all levels of the educational system: local school level, district level and teacher education level who were involved in coterminous collaborative learning. Four categories of learning were identified as critical to leading a change in the educational system: learning in professional communities, learning from practice, learning through theory and research and learning from and with leaders. The implications of the study for policy makers as well as for practitioners are to adopt a holistic approach to the educational environment and plan a collaborative learning continuum from initial pre-service programs through professional development learning at all levels.

  13. Vicarious Learning from Human Models in Monkeys


    Falcone, Rossella; Brunamonti, Emiliano; Genovesio, Aldo


    We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object-reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was app...

  14. Hands-on courses in petroleum engineering improve performance

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H.; Islam, M.R. [Regina Univ., Regina, SK (Canada)


    A hands-on methodology was employed to teach eight lecture-based courses in the United Arab Emirates University in which initially two petroleum engineering courses were used to test the methodology. The courses are considered to be basic to petroleum engineering. Although the courses did not have any impact on the overall student grades, the courses stimulated independent thought among students who were not previously used to this mode of thinking. Students were exposed to laboratory experiments and project works that were considered previously to be too-difficult-to-handle by undergraduate students. The course methodology was more acceptable to the female than the male population. The course methodology centered on creative thinking, questioning the establishment methods and critiquing conventional modes of thinking. Despite the differences between male and female students, overall the student population recognized that their ability to think independently and critically improved after taking the course. An appendix contains examples of learning modules. 18 refs.

  15. Towards a semantic learning model fostering learning object reusability


    Fernandes , Emmanuel; Madhour , Hend; Wentland Forte , Maia; Miniaoui , Sami


    We try in this paper to propose a domain model for both author's and learner's needs concerning learning objects reuse. First of all, we present four key criteria for an efficient authoring tool: adaptive level of granularity, flexibility, integration and interoperability. Secondly, we introduce and describe our six-level Semantic Learning Model (SLM) designed to facilitate multi-level reuse of learning materials and search by defining a multi-layer model for metadata. Finally, after mapping ...

  16. Model United Nations and Deep Learning: Theoretical and Professional Learning (United States)

    Engel, Susan; Pallas, Josh; Lambert, Sarah


    This article demonstrates that the purposeful subject design, incorporating a Model United Nations (MUN), facilitated deep learning and professional skills attainment in the field of International Relations. Deep learning was promoted in subject design by linking learning objectives to Anderson and Krathwohl's (2001) four levels of knowledge or…

  17. Learning Graphical Models With Hubs. (United States)

    Tan, Kean Ming; London, Palma; Mohan, Karthik; Lee, Su-In; Fazel, Maryam; Witten, Daniela


    We consider the problem of learning a high-dimensional graphical model in which there are a few hub nodes that are densely-connected to many other nodes. Many authors have studied the use of an ℓ 1 penalty in order to learn a sparse graph in the high-dimensional setting. However, the ℓ 1 penalty implicitly assumes that each edge is equally likely and independent of all other edges. We propose a general framework to accommodate more realistic networks with hub nodes, using a convex formulation that involves a row-column overlap norm penalty. We apply this general framework to three widely-used probabilistic graphical models: the Gaussian graphical model, the covariance graph model, and the binary Ising model. An alternating direction method of multipliers algorithm is used to solve the corresponding convex optimization problems. On synthetic data, we demonstrate that our proposed framework outperforms competitors that do not explicitly model hub nodes. We illustrate our proposal on a webpage data set and a gene expression data set.

  18. Embedding Hands-On Mini Laboratory Experiences in a Core Undergraduate Fluid Mechanics Course: A Pilot Study (United States)

    Han, Duanduan; Ugaz, Victor


    Three self-contained mini-labs were integrated into a core undergraduate fluid mechanics course, with the goal of delivering hands-on content in a manner scalable to large class sizes. These mini-labs supported learning objectives involving friction loss in pipes, flow measurement, and centrifugal pump analysis. The hands-on experiments were…

  19. Comparison of online, hands-on, and a combined approach for teaching cautery disbudding technique to dairy producers. (United States)

    Winder, Charlotte B; LeBlanc, Stephen J; Haley, Derek B; Lissemore, Kerry D; Godkin, M Ann; Duffield, Todd F


    The use of pain control for disbudding and dehorning is important from both an animal and industry perspective. Best practices include the use of local anesthetic, commonly given as a cornual nerve block (CNB), and a nonsteroidal anti-inflammatory drug. The proportion is decreasing, but many dairy producers do not use local anesthesia, perhaps in part due to lack of knowledge of the CNB technique. Although this skill is typically learned in person from a veterinarian, alternative methods may be useful. The objective of this trial was to determine if there were differences in the efficacy of online training (n = 23), hands-on training (n = 20), and a combined approach (n = 23) for teaching producers to successfully administer a CNB and disbud a calf. The primary outcome was block efficacy, defined as a lack of established pain behaviors during iron application. Secondary outcomes were background knowledge (assessed by a written quiz), CNB and disbudding technique (evaluated by rubric scoring), time taken, and self-confidence before and after evaluation. Associations between training group and outcome were assessed with logistic regression, ordered logistic regression, and Cox-proportional hazard models, with a random effect for workshop. Block efficacy was not different between training groups, with 91% successful in both combined and online groups, and 75% in the hands-on trained group. Online learners had poorer technical scores than hands-on trainees. The combined group was not different from hands-on. Time to block completion tended to be longer for the online group (62 ± 11 s), whereas time to disbudding completion was not different between hands-on (41 ± 5 s) or combined trainees (41 ± 5 s). The combined group had the highest pre-evaluation confidence score, and remained higher after evaluation than online but was not different than hands-on. Although we saw some statistical differences between groups, absolute differences were small and block efficacy was

  20. Vicarious learning from human models in monkeys. (United States)

    Falcone, Rossella; Brunamonti, Emiliano; Genovesio, Aldo


    We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object-reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was apparent from the first trial of the test phase, confirming the ability of monkeys to learn by vicarious observation of human models.

  1. Vicarious learning from human models in monkeys.

    Directory of Open Access Journals (Sweden)

    Rossella Falcone

    Full Text Available We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object-reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was apparent from the first trial of the test phase, confirming the ability of monkeys to learn by vicarious observation of human models.

  2. Learning to Act: Qualitative Learning of Deterministic Action Models

    DEFF Research Database (Denmark)

    Bolander, Thomas; Gierasimczuk, Nina


    In this article we study learnability of fully observable, universally applicable action models of dynamic epistemic logic. We introduce a framework for actions seen as sets of transitions between propositional states and we relate them to their dynamic epistemic logic representations as action...... in the limit (inconclusive convergence to the right action model). We show that deterministic actions are finitely identifiable, while arbitrary (non-deterministic) actions require more learning power—they are identifiable in the limit. We then move on to a particular learning method, i.e. learning via update......, which proceeds via restriction of a space of events within a learning-specific action model. We show how this method can be adapted to learn conditional and unconditional deterministic action models. We propose update learning mechanisms for the afore mentioned classes of actions and analyse...

  3. Learning with hierarchical-deep models. (United States)

    Salakhutdinov, Ruslan; Tenenbaum, Joshua B; Torralba, Antonio


    We introduce HD (or “Hierarchical-Deep”) models, a new compositional learning architecture that integrates deep learning models with structured hierarchical Bayesian (HB) models. Specifically, we show how we can learn a hierarchical Dirichlet process (HDP) prior over the activities of the top-level features in a deep Boltzmann machine (DBM). This compound HDP-DBM model learns to learn novel concepts from very few training example by learning low-level generic features, high-level features that capture correlations among low-level features, and a category hierarchy for sharing priors over the high-level features that are typical of different kinds of concepts. We present efficient learning and inference algorithms for the HDP-DBM model and show that it is able to learn new concepts from very few examples on CIFAR-100 object recognition, handwritten character recognition, and human motion capture datasets.

  4. Students’ mathematical learning in modelling activities

    DEFF Research Database (Denmark)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten


    Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts i...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....

  5. Peer-to-Peer Learning and the Army Learning Model (United States)


    education will be delivered to the current and future force. This thesis examined the salient areas proposed by the ALM and its impact on P2P learning ...The Army Learning Model is the new educational model that develops adaptive leaders in an era of persistent conflict. Life-long, individual

  6. Inquiry based learning as didactic model in distant learning

    NARCIS (Netherlands)

    Rothkrantz, L.J.M.


    Recent years many universities are involved in development of Massive Open Online Courses (MOOCs). Unfortunately an appropriate didactic model for cooperated network learning is lacking. In this paper we introduce inquiry based learning as didactic model. Students are assumed to ask themselves

  7. Developing Research Competence in Undergraduate Students through Hands on Learning

    Directory of Open Access Journals (Sweden)

    Zoe E. Davidson


    Full Text Available Evidence-based practice is the foundation of nutrition and dietetics. To effectively apply evidence-based practice, health professionals must understand the basis of research. Previous work has identified the lack of involvement of dietitians in research. As part of a curriculum redevelopment in undergraduate nutrition and dietetics courses, research skill teaching was enhanced. This study evaluated the effect of a new, year two level nutrition research methods unit on the perceived research skills of students. The unit consisted of two key components: a student-led class research project and a small group systematic literature review. Prior to commencement and on completion of the course, students completed a modified version of the Research Skills Questionnaire. Results demonstrated that self-perceived competence increased by a small degree in a set of specific research skills as well as in broader skills such as information gathering and handling, information evaluation, ability to work independently, and critical thinking. The new research unit was also evaluated highly on a student satisfaction survey. Despite these positive findings, students indicated that their general feelings towards research or a career in research were unchanged. In summary, this unit enhanced students’ perceived research skills. Further exploration of students’ attitude towards research is warranted.

  8. Thinking with Spinoza about 'Hands-On' Learning (United States)

    Roth, Wolff-Michael


    Despite its advanced age of about 375 years, the mind--body (psychophysical) problem is alive and well, in part because it is anchored so well institutionally in schools and in research (scientific vs. interpretive psychology). This continued presence is astonishing in the light of the fact that the seed for its solution, sown in Spinoza's…

  9. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics (United States)

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.


    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  10. Choices of Pre-Service Science Teachers Laboratory Environments: Hands-on or Hands-off? (United States)

    Kapici, Hasan Ozgur; Akcay, Hakan


    Learning in laboratories for students is not only crucial for conceptual understanding, but also contributes to gaining scientific reasoning skills. Following fast developments in technology, online laboratory environments have been improved considerably and nowadays form an attractive alternative for hands-on laboratories. The study was done in…

  11. Withholding answers during hands-on scientific investigations? Comparing effects on developing students' scientific knowledge, reasoning, and application (United States)

    Zhang, Lin


    As more concerns have been raised about withholding answers during science teaching, this article argues for a need to detach 'withholding answers' from 'hands-on' investigation tasks. The present study examined students' learning of light-related content through three conditions: 'hands-on' + no 'withholding' (hands-on only: HO), 'hands-on' + 'withholding' (hands-on investigation with answers withheld: HOW), and no 'hands-on' + no 'withholding' (direction instruction: DI). Students were assessed in terms of how well they (1) knew the content taught in class; (2) reasoned with the learned content; and (3) applied the learned content to real-life situations. Nine classes of students at 4th and 5th grades, N = 136 in total, were randomly assigned to one of the three conditions. ANCOVA results showed that students in the hands-on only condition reasoned significantly better than those in the other two conditions. Students in this condition also seemed to know the content fairly better although the advance was not significant. Students in all three conditions did not show a statistically significant difference in their ability to apply the learned content to real-life situations. The findings from this study provide important contributions regarding issues relating to withholding answers during guided scientific inquiry.

  12. A Model for Learning Development (United States)

    Kilfoil, W. R.


    This article looks at the way in which people perceive learning and the impact of these perceptions on teaching methods within the context of learning development in distance education. The context could, in fact, be any type of teaching and learning environment. The point is to balance approaches to teaching and learning depending on student…

  13. A Low Cost Implementation of an Existing Hands-on Laboratory Experiment in Electronic Engineering

    Directory of Open Access Journals (Sweden)

    Clement Onime


    Full Text Available In engineering the pedagogical content of most formative programmes includes a significant amount of practical laboratory hands-on activity designed to deliver knowledge acquisition from actual experience alongside traditional face-to-face classroom based lectures and tutorials; this hands-on aspect is not always adequately addressed by current e-learning platforms. An innovative approach to e-learning in engineering, named computer aided engineering education (CAEE is about the use of computer aids for the enhanced, interactive delivery of educational materials in different fields of engineering through two separate but related components; one for classroom and another for practical hands-on laboratory work. The component for hands-on laboratory practical work focuses on the use of mixed reality (video-based augmented reality tools on mobile devices/platforms. This paper presents the computer aided engineering education (CAEE implementation of a laboratory experiment in micro-electronics that highlights some features such as the ability to closely implement an existing laboratory based hands-on experiment with lower associated costs and the ability to conduct the experiment off-line while maintaining existing pedagogical contents and standards.

  14. Hierarchical Bayesian Models of Subtask Learning (United States)

    Anglim, Jeromy; Wynton, Sarah K. A.


    The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…

  15. Learning Markov Decision Processes for Model Checking

    DEFF Research Database (Denmark)

    Mao, Hua; Chen, Yingke; Jaeger, Manfred


    . The proposed learning algorithm is adapted from algorithms for learning deterministic probabilistic finite automata, and extended to include both probabilistic and nondeterministic transitions. The algorithm is empirically analyzed and evaluated by learning system models of slot machines. The evaluation......Constructing an accurate system model for formal model verification can be both resource demanding and time-consuming. To alleviate this shortcoming, algorithms have been proposed for automatically learning system models based on observed system behaviors. In this paper we extend the algorithm...... on learning probabilistic automata to reactive systems, where the observed system behavior is in the form of alternating sequences of inputs and outputs. We propose an algorithm for automatically learning a deterministic labeled Markov decision process model from the observed behavior of a reactive system...

  16. Caka E-Learning Model (United States)

    Gorsev, Gonca; Turkmen, Ugur; Askin, Cihat


    In today's world, in order to obtain the information in education, various approaches, methods and devices have been developed. Like many developing countries, e-learning and distance learning (internet based learning) are used today in many areas of education in Turkey. This research aims to contribute to education systems and develop a…

  17. Learning Bayesian Dependence Model for Student Modelling

    Directory of Open Access Journals (Sweden)

    Adina COCU


    Full Text Available Learning a Bayesian network from a numeric set of data is a challenging task because of dual nature of learning process: initial need to learn network structure, and then to find out the distribution probability tables. In this paper, we propose a machine-learning algorithm based on hill climbing search combined with Tabu list. The aim of learning process is to discover the best network that represents dependences between nodes. Another issue in machine learning procedure is handling numeric attributes. In order to do that, we must perform an attribute discretization pre-processes. This discretization operation can influence the results of learning network structure. Therefore, we make a comparative study to find out the most suitable combination between discretization method and learning algorithm, for a specific data set.

  18. Hands-on optics: an informal science education initiative (United States)

    Johnson, Anthony M.; Pompea, Stephen M.; Arthurs, Eugene G.; Walker, Constance E.; Sparks, Robert T.


    The project is collaboration between two scientific societies, the Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering and the National Optical Astronomy Observatory (NOAO). The program is designed to bring science education enrichment to thousands of underrepresented middle school students in more than ten states, including female and minority students, who typically have not been the beneficiaries of science and engineering resources and investments. HOO provides each teacher with up to six activity modules, each containing enough materials for up to 30 students to participate in 6-8 hours of hands-on optics-related activities. Sample activities, developed by education specialists at NOAO, include building kaleidoscopes and telescopes, communicating with a beam of light, and a hit-the-target laser beam challenge. Teachers engage in two days of training and, where possible, are partnered with a local optics professional (drawn from the local rosters of SPIE and OSA members) who volunteers to spend time with the teacher and students as they explore the module activities. Through these activities, students gain experience and understanding of optics principles, as well as learning the basics of inquiry, critical thinking, and problem solving skills involving optics, and how optics interfaces with other disciplines. While the modules were designed for use in informal after- school or weekend sessions, the number of venues has expanded to large and small science centers, Boys and Girls Clubs, Girl Scouts, summer camps, family workshops, and use in the classroom.

  19. Integrated Model for E-Learning Acceptance (United States)

    Ramadiani; Rodziah, A.; Hasan, S. M.; Rusli, A.; Noraini, C.


    E-learning is not going to work if the system is not used in accordance with user needs. User Interface is very important to encourage using the application. Many theories had discuss about user interface usability evaluation and technology acceptance separately, actually why we do not make it correlation between interface usability evaluation and user acceptance to enhance e-learning process. Therefore, the evaluation model for e-learning interface acceptance is considered important to investigate. The aim of this study is to propose the integrated e-learning user interface acceptance evaluation model. This model was combined some theories of e-learning interface measurement such as, user learning style, usability evaluation, and the user benefit. We formulated in constructive questionnaires which were shared at 125 English Language School (ELS) students. This research statistics used Structural Equation Model using LISREL v8.80 and MANOVA analysis.

  20. A community sharing hands-on centers in engineer's training

    Directory of Open Access Journals (Sweden)

    jean-pierre jpt Taboy


    Full Text Available As teachers in Technical Universities, we must think about the engineer's training. We need good applicants, up to date hardware and software for hand-on. Each university don't have enough money and technical people to cover the new needs. A community sharing remote hand-on centers could be a solution.

  1. Math in Action. Hands-On, Minds-On Math. (United States)

    Waite-Stupiansky, Sandra; Stupiansky, Nicholas G.


    Hands-on math must also involve students' minds in creative thinking. Math manipulatives must be used for uncovering, not just discovering. This paper presents guidelines for planning hands-on, minds-on math for elementary students. Suggestions include dialoging, questioning, integrating manipulatives and other tools, writing, and evaluating. (SM)


    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye

    In this article I wish to introduce an innovative use of hands-on-materials, developed by Peter Müller, a Danish elementary school teacher. The hands-on material itself consists of a collection of small plastic bears in different colors and sizes, which can be used for many different purposes among...

  3. Hands-on creativity in Vocational Education

    DEFF Research Database (Denmark)

    Tanggaard, Lene

    and therefore not well suited for VET comprising production, handcraft and industry. In Europe, vocational education schemes are considered the solid base on which almost all kinds of industry and craft depend. If Europe is to retain its innovative capacity, then vocational education, especially the capacity......This presentation poses the question: what conception of the phenomenon of creativity is best suited to the field of vocational education? VET (Vocational Education and Training) aims to prepare people for employment in craft and industry. In this field, there is an ever-growing requirement...... for creativity and innovation. In response, it is my concern that an understanding of creativity be developed with vocational education and training in mind. It is not enough to import models from other areas, where the distinction between ideas and production or creativity and execution is often relatively hazy...

  4. Learning the Cell Structures with Three-Dimensional Models: Students' Achievement by Methods, Type of School and Questions' Cognitive Level (United States)

    Lazarowitz, Reuven; Naim, Raphael


    The cell topic was taught to 9th-grade students in three modes of instruction: (a) students "hands-on," who constructed three-dimensional cell organelles and macromolecules during the learning process; (b) teacher demonstration of the three-dimensional model of the cell structures; and (c) teaching the cell topic with the regular…

  5. SUSTAIN: a network model of category learning. (United States)

    Love, Bradley C; Medin, Douglas L; Gureckis, Todd M


    SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a model of how humans learn categories from examples. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g., it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly recruited clusters are available to explain future events and can themselves evolve into prototypes-attractors-rules. SUSTAIN's discovery of category substructure is affected not only by the structure of the world but by the nature of the learning task and the learner's goals. SUSTAIN successfully extends category learning models to studies of inference learning, unsupervised learning, category construction, and contexts in which identification learning is faster than classification learning.

  6. Digital Competence Model of Distance Learning Students (United States)

    da Silva, Ketia Kellen A.; Behar, Patricia A.


    This article presents the development of a digital competency model of Distance Learning (DL) students in Brazil called CompDigAl_EAD. The following topics were addressed in this study: Educational Competences, Digital Competences, and Distance Learning students. The model was developed between 2015 and 2016 and is being validated in 2017. It was…

  7. Team learning: building shared mental models

    NARCIS (Netherlands)

    Bossche, van den P.; Gijselaers, W.; Segers, M.; Woltjer, G.B.; Kirschner, P.


    To gain insight in the social processes that underlie knowledge sharing in teams, this article questions which team learning behaviors lead to the construction of a shared mental model. Additionally, it explores how the development of shared mental models mediates the relation between team learning

  8. Learning models of activities involving interacting objects

    DEFF Research Database (Denmark)

    Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.


    We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were t...

  9. Modelling and Optimizing Mathematics Learning in Children (United States)

    Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus


    This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…



    Hayati .; Retno Dwi Suyanti


    The objective in this research: (1) Determine a better learning model to improve learning outcomes physics students among learning model Inquiry Training based multimedia and Inquiry Training learning model. (2) Determine the level of motivation to learn in affects physics student learning outcomes. (3) Knowing the interactions between the model of learning and motivation in influencing student learning outcomes. This research is a quasi experimental. The population in this research was all s...

  11. Communicate science: an example of food related hands-on laboratory approach (United States)

    D'Addezio, Giuliana; Marsili, Antonella; Vallocchia, Massimiliano


    The Laboratorio Didattica e Divulgazione Scientifica of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Educational and Outreach Laboratory) organized activity with kids to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. The combination of games and learning in educational activity can be a valuable tool for study of complex phenomena. Hands-on activity may help in engage kids in a learning process through direct participation that significantly improves the learning performance of children. Making learning fun motivate audience to pay attention on and stay focused on the subject. We present the experience of the hand-on laboratory "Laboratorio goloso per bambini curiosi di scienza (a delicious hands-on laboratory for kids curious about science)", performed in Frascati during the 2013 European Researchers' Night, promoted by the European Commission, as part of the program organized by the Laboratorio Didattica e Divulgazione Scientifica in the framework of Associazione Frascati Scienza ( The hand-on activity were designed for primary schools to create enjoyable and unusual tools for learning Earth Science. During this activity kids are involved with something related to everyday life, such as food, through manipulation, construction and implementation of simple experiments related to Earth dynamics. Children become familiar with scientific concepts such as composition of the Earth, plates tectonic, earthquakes and seismic waves propagation and experience the effect of earthquakes on buildings, exploring their important implications for seismic hazard. During the activity, composed of several steps, participants were able to learn about Earth inner structure, fragile lithosphere, waves propagations, impact of waves on building ecc.., dealing with eggs, cookies, honey, sugar, polenta, flour, chocolate, candies, liquorice sticks, bread, pudding and sweets. The

  12. Model-Agnostic Interpretability of Machine Learning


    Ribeiro, Marco Tulio; Singh, Sameer; Guestrin, Carlos


    Understanding why machine learning models behave the way they do empowers both system designers and end-users in many ways: in model selection, feature engineering, in order to trust and act upon the predictions, and in more intuitive user interfaces. Thus, interpretability has become a vital concern in machine learning, and work in the area of interpretable models has found renewed interest. In some applications, such models are as accurate as non-interpretable ones, and thus are preferred f...

  13. Learning About Climate and Atmospheric Models Through Machine Learning (United States)

    Lucas, D. D.


    From the analysis of ensemble variability to improving simulation performance, machine learning algorithms can play a powerful role in understanding the behavior of atmospheric and climate models. To learn about model behavior, we create training and testing data sets through ensemble techniques that sample different model configurations and values of input parameters, and then use supervised machine learning to map the relationships between the inputs and outputs. Following this procedure, we have used support vector machines, random forests, gradient boosting and other methods to investigate a variety of atmospheric and climate model phenomena. We have used machine learning to predict simulation crashes, estimate the probability density function of climate sensitivity, optimize simulations of the Madden Julian oscillation, assess the impacts of weather and emissions uncertainty on atmospheric dispersion, and quantify the effects of model resolution changes on precipitation. This presentation highlights recent examples of our applications of machine learning to improve the understanding of climate and atmospheric models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Enhanced democratic learning within the Aalborg Model

    DEFF Research Database (Denmark)

    Qvist, Palle


    The Aalborg PBL Model [Kjersdam & Enemark, 1997; Kolmos et al., 2004] is an example of a democratic learning system [Qvist, 2008]. Writing one project each semester in teams is an important element in the model. Medicine with Industrial Specialisation - a study at the Faculties of Engineering......, Science and Medicine at Aalborg University - has combined the Aalborg Model with solving cases as used by other models. A questionnaire survey related to democratic learning indicates that the democratic learning has been enhanced. This paper presents the results....

  15. Online Learning of Industrial Manipulators' Dynamics Models

    DEFF Research Database (Denmark)

    Polydoros, Athanasios


    , it was compared with multiple other state-of-the-art machine learning algorithms. Moreover, the thesis presents the application of the proposed learning method on robot control for achieving trajectory execution while learning the inverse dynamics models  on-the-fly . Also it is presented the application...... of the dynamics models. Those mainly derive from physics-based methods and thus they are based on physical properties which are hard to be calculated.  In this thesis, is presented, a novel online machine learning approach  which is able to model both inverse and forward dynamics models of industrial manipulators....... The proposed method belongs to the class of deep learning and exploits the concepts of self-organization, recurrent neural networks and iterative multivariate Bayesian regression. It has been evaluated on multiple datasets captured from industrial robots while they were performing various tasks. Also...

  16. Learning Markov models for stationary system behaviors

    DEFF Research Database (Denmark)

    Chen, Yingke; Mao, Hua; Jaeger, Manfred


    to a single long observation sequence, and in these situations existing automatic learning methods cannot be applied. In this paper, we adapt algorithms for learning variable order Markov chains from a single observation sequence of a target system, so that stationary system properties can be verified using......Establishing an accurate model for formal verification of an existing hardware or software system is often a manual process that is both time consuming and resource demanding. In order to ease the model construction phase, methods have recently been proposed for automatically learning accurate...... the learned model. Experiments demonstrate that system properties (formulated as stationary probabilities of LTL formulas) can be reliably identified using the learned model....

  17. A Hybrid Teaching and Learning Model (United States)

    Juhary, Jowati Binti

    This paper aims at analysing the needs for a specific teaching and learning model for the National Defence University of Malaysia (NDUM). The main argument is that whether there are differences between teaching and learning for academic component versus military component at the university. It is further argued that in order to achieve excellence, there should be one teaching and learning culture. Data were collected through interviews with military cadets. It is found that there are variations of teaching and learning strategies for academic courses, in comparison to a dominant teaching and learning style for military courses. Thus, in the interest of delivering quality education and training for students at the university, the paper argues that possibly a hybrid model for teaching and learning is fundamental in order to generate a one culture of academic and military excellence for the NDUM.

  18. Study on modeling of operator's learning mechanism

    International Nuclear Information System (INIS)

    Yoshimura, Seichi; Hasegawa, Naoko


    One effective method to analyze the causes of human errors is to model the behavior of human and to simulate it. The Central Research Institute of Electric Power Industry (CRIEPI) has developed an operator team behavior simulation system called SYBORG (Simulation System for the Behavior of an Operating Group) to analyze the human errors and to establish the countermeasures for them. As an operator behavior model which composes SYBORG has no learning mechanism and the knowledge of a plant is fixed, it cannot take suitable actions when unknown situations occur nor learn anything from the experience. However, considering actual operators, learning is an essential human factor to enhance their abilities to diagnose plant anomalies. In this paper, Q learning with 1/f fluctuation was proposed as a learning mechanism of an operator and simulation using the mechanism was conducted. The results showed the effectiveness of the learning mechanism. (author)

  19. The Effect of Cooperative Learning Model and Kolb Learning Styles on Learning Result of the Basics of Politics (United States)



    The aims of this research were to determine the effect of cooperative learning model and learning styles on learning result. This quasi-experimental study employed a 2x2 treatment by level, involved independent variables, i.e. cooperative learning model and learning styles, and learning result as the dependent variable. Findings signify that: (1)…

  20. The effectiveness of flipped classroom learning model in secondary physics classroom setting (United States)

    Prasetyo, B. D.; Suprapto, N.; Pudyastomo, R. N.


    The research aimed to describe the effectiveness of flipped classroom learning model on secondary physics classroom setting during Fall semester of 2017. The research object was Secondary 3 Physics group of Singapore School Kelapa Gading. This research was initiated by giving a pre-test, followed by treatment setting of the flipped classroom learning model. By the end of the learning process, the pupils were given a post-test and questionnaire to figure out pupils' response to the flipped classroom learning model. Based on the data analysis, 89% of pupils had passed the minimum criteria of standardization. The increment level in the students' mark was analysed by normalized n-gain formula, obtaining a normalized n-gain score of 0.4 which fulfil medium category range. Obtains from the questionnaire distributed to the students that 93% of students become more motivated to study physics and 89% of students were very happy to carry on hands-on activity based on the flipped classroom learning model. Those three aspects were used to generate a conclusion that applying flipped classroom learning model in Secondary Physics Classroom setting is effectively applicable.

  1. Learning sparse generative models of audiovisual signals


    Monaci, Gianluca; Sommer, Friedrich T.; Vandergheynst, Pierre


    This paper presents a novel framework to learn sparse represen- tations for audiovisual signals. An audiovisual signal is modeled as a sparse sum of audiovisual kernels. The kernels are bimodal functions made of synchronous audio and video components that can be positioned independently and arbitrarily in space and time. We design an algorithm capable of learning sets of such audiovi- sual, synchronous, shift-invariant functions by alternatingly solving a coding and a learning pr...

  2. Mosaic model for sensorimotor learning and control. (United States)

    Haruno, M; Wolpert, D M; Kawato, M


    Humans demonstrate a remarkable ability to generate accurate and appropriate motor behavior under many different and often uncertain environmental conditions. We previously proposed a new modular architecture, the modular selection and identification for control (MOSAIC) model, for motor learning and control based on multiple pairs of forward (predictor) and inverse (controller) models. The architecture simultaneously learns the multiple inverse models necessary for control as well as how to select the set of inverse models appropriate for a given environment. It combines both feedforward and feedback sensorimotor information so that the controllers can be selected both prior to movement and subsequently during movement. This article extends and evaluates the MOSAIC architecture in the following respects. The learning in the architecture was implemented by both the original gradient-descent method and the expectation-maximization (EM) algorithm. Unlike gradient descent, the newly derived EM algorithm is robust to the initial starting conditions and learning parameters. Second, simulations of an object manipulation task prove that the architecture can learn to manipulate multiple objects and switch between them appropriately. Moreover, after learning, the model shows generalization to novel objects whose dynamics lie within the polyhedra of already learned dynamics. Finally, when each of the dynamics is associated with a particular object shape, the model is able to select the appropriate controller before movement execution. When presented with a novel shape-dynamic pairing, inappropriate activation of modules is observed followed by on-line correction.

  3. Inference in models with adaptive learning

    NARCIS (Netherlands)

    Chevillon, G.; Massmann, M.; Mavroeidis, S.


    Identification of structural parameters in models with adaptive learning can be weak, causing standard inference procedures to become unreliable. Learning also induces persistent dynamics, and this makes the distribution of estimators and test statistics non-standard. Valid inference can be

  4. Learning curves in energy planning models

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, L; Kypreos, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    This study describes the endogenous representation of investment cost learning curves into the MARKAL energy planning model. A piece-wise representation of the learning curves is implemented using Mixed Integer Programming. The approach is briefly described and some results are presented. (author) 3 figs., 5 refs.

  5. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    Varela, M.


    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  6. Democratic learning in the Aalborg Model

    DEFF Research Database (Denmark)

    Qvist, Palle

    A democratic learning system can be defined as a system where decisions, processes and behaviour related to learning are established through argumentation (discussion) or negotiation (dialog), voting or consensus (alone or in combination) between those affected by the decision simultaneously...... reaching the learning outcomes, the technical and professional knowledge and insight. In principle the participants must be equal with equal rights and feel committed to the values of rationality and impartiality. The Aalborg Model is an example of a democratic learning system although not 100% democratic......, processes and behaviour related to learning can be established through argumentation (discussion) or negotiation (dialog), voting or consensus (alone or in combination) within the group simultaneously reaching the learning outcomes, the technical and professional knowledge and insight. This article...

  7. MO-AB-210-02: Ultrasound Imaging and Therapy-Hands On Workshop

    International Nuclear Information System (INIS)

    Sammet, S.


    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  8. MO-AB-210-01: Ultrasound Imaging and Therapy-Hands On Workshop

    International Nuclear Information System (INIS)

    Lu, Z.


    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  9. MO-AB-210-02: Ultrasound Imaging and Therapy-Hands On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sammet, S. [University of Chicago Medical Center (United States)


    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  10. MO-AB-210-01: Ultrasound Imaging and Therapy-Hands On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z. [University of Chicago (United States)


    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  11. Kolb's Experiential Learning Model: Critique from a Modeling Perspective (United States)

    Bergsteiner, Harald; Avery, Gayle C.; Neumann, Ruth


    Kolb's experiential learning theory has been widely influential in adult learning. The theory and associated instruments continue to be criticized, but rarely is the graphical model itself examined. This is significant because models can aid scientific understanding and progress, as well as theory development and research. Applying accepted…

  12. Learning strategies: a synthesis and conceptual model (United States)

    Hattie, John A. C.; Donoghue, Gregory M.


    The purpose of this article is to explore a model of learning that proposes that various learning strategies are powerful at certain stages in the learning cycle. The model describes three inputs and outcomes (skill, will and thrill), success criteria, three phases of learning (surface, deep and transfer) and an acquiring and consolidation phase within each of the surface and deep phases. A synthesis of 228 meta-analyses led to the identification of the most effective strategies. The results indicate that there is a subset of strategies that are effective, but this effectiveness depends on the phase of the model in which they are implemented. Further, it is best not to run separate sessions on learning strategies but to embed the various strategies within the content of the subject, to be clearer about developing both surface and deep learning, and promoting their associated optimal strategies and to teach the skills of transfer of learning. The article concludes with a discussion of questions raised by the model that need further research.

  13. Problem Solving Model for Science Learning (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.


    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  14. Learning Probabilistic Logic Models from Probabilistic Examples. (United States)

    Chen, Jianzhong; Muggleton, Stephen; Santos, José


    We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.

  15. A Concept Transformation Learning Model for Architectural Design Learning Process (United States)

    Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming


    Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…

  16. Learning, Learning Analytics, Activity Visualisation and Open learner Model

    DEFF Research Database (Denmark)

    Bull, Susan; Kickmeier-Rust, Michael; Vatrapu, Ravi


    This paper draws on visualisation approaches in learning analytics, considering how classroom visualisations can come together in practice. We suggest an open learner model in situations where many tools and activity visualisations produce more visual information than can be readily interpreted....

  17. Learning situation models in a smart home. (United States)

    Brdiczka, Oliver; Crowley, James L; Reignier, Patrick


    This paper addresses the problem of learning situation models for providing context-aware services. Context for modeling human behavior in a smart environment is represented by a situation model describing environment, users, and their activities. A framework for acquiring and evolving different layers of a situation model in a smart environment is proposed. Different learning methods are presented as part of this framework: role detection per entity, unsupervised extraction of situations from multimodal data, supervised learning of situation representations, and evolution of a predefined situation model with feedback. The situation model serves as frame and support for the different methods, permitting to stay in an intuitive declarative framework. The proposed methods have been integrated into a whole system for smart home environment. The implementation is detailed, and two evaluations are conducted in the smart home environment. The obtained results validate the proposed approach.

  18. Collaborative Inquiry Learning: Models, tools, and challenges (United States)

    Bell, Thorsten; Urhahne, Detlef; Schanze, Sascha; Ploetzner, Rolf


    Collaborative inquiry learning is one of the most challenging and exciting ventures for today's schools. It aims at bringing a new and promising culture of teaching and learning into the classroom where students in groups engage in self-regulated learning activities supported by the teacher. It is expected that this way of learning fosters students' motivation and interest in science, that they learn to perform steps of inquiry similar to scientists and that they gain knowledge on scientific processes. Starting from general pedagogical reflections and science standards, the article reviews some prominent models of inquiry learning. This comparison results in a set of inquiry processes being the basis for cooperation in the scientific network NetCoIL. Inquiry learning is conceived in several ways with emphasis on different processes. For an illustration of the spectrum, some main conceptions of inquiry and their focuses are described. In the next step, the article describes exemplary computer tools and environments from within and outside the NetCoIL network that were designed to support processes of collaborative inquiry learning. These tools are analysed by describing their functionalities as well as effects on student learning known from the literature. The article closes with challenges for further developments elaborated by the NetCoIL network.

  19. A comparison of hands-on inquiry instruction to lectureinstruction with special needs high school biology students (United States)

    Jensen-Ruopp, Helga Spitko

    A comparison of hands-on inquiry instruction with lecture instruction was presented to 134 Patterns and Process Biology students. Students participated in seven biology lessons that were selected from Biology Survey of Living Things (1992). A pre and post paper and pencil assessment was used as the data collecting instrument. The treatment group was taught using hands-on inquiry strategies while the non-treatment group was taught in the lecture method of instruction. The team teaching model was used as the mode of presentation to the treatment group and the non-treatment group. Achievement levels using specific criterion; novice (0% to 50%), developing proficiency (51% to 69%), accomplished (70% to 84) and exceptional or mastery level (85% to 100%) were used as a guideline to tabulate the results of the pre and post assessment. Rubric tabulation was done to interpret the testing results. The raw data was plotted using percentage change in test score totals versus reading level score by gender as well as percentage change in test score totals versus auditory vocabulary score by gender. Box Whisker plot comparative descriptive of individual pre and post test scores for the treatment and non-treatment group was performed. Analysis of covariance (ANCOVA) using MINITAB Statistical Software version 14.11 was run on data of the seven lessons, as well as on gender (male results individual and combined, and female results individual and combined) results. Normal Probability Plots for total scores as well as individual test scores were performed. The results suggest that hands-on inquiry based instruction when presented to special needs students including; at-risk; English as a second language limited, English proficiency and special education inclusive students' learning may enhance individual student achievement.

  20. [Mathematical models of decision making and learning]. (United States)

    Ito, Makoto; Doya, Kenji


    Computational models of reinforcement learning have recently been applied to analysis of brain imaging and neural recording data to identity neural correlates of specific processes of decision making, such as valuation of action candidates and parameters of value learning. However, for such model-based analysis paradigms, selecting an appropriate model is crucial. In this study we analyze the process of choice learning in rats using stochastic rewards. We show that "Q-learning," which is a standard reinforcement learning algorithm, does not adequately reflect the features of choice behaviors. Thus, we propose a generalized reinforcement learning (GRL) algorithm that incorporates the negative reward effect of reward loss and forgetting of values of actions not chosen. Using the Bayesian estimation method for time-varying parameters, we demonstrated that the GRL algorithm can predict an animal's choice behaviors as efficiently as the best Markov model. The results suggest the usefulness of the GRL for the model-based analysis of neural processes involved in decision making.

  1. Improving chemical education from high school to college using a more hands-on approach (United States)

    Ruddick, Kristie Winfield

    In this work, various alternative teaching methods and activities for chemical education are developed, presented, and evaluated. In the first study, an original hands-on activity using LEGO® blocks to model ionic chemical formulas is presented together with quantitative and qualitative data regarding its educational effectiveness. Students explore cation to anion ratios using LEGO® blocks to represent trivalent, divalent and monovalent cations and anions. High school chemistry students who participated in the LEGO® lab showed significantly higher post-test scores than other students. The second study grows out of the creation of a computational lab module that is shown to significantly increase student learning in the subject of molecular orbital theory in first semester college General Chemistry. The third and final study presented is a course redesign project for college CHEM 1100, Preparation for General Chemistry. In this project the classroom is “flipped”. Students watch video lectures at home, and spend class time working with peers and the instructor on problem solving activities. The results presented here are one of the first quantitative studies showing the effectiveness of “flipping the classroom”. Students who were taught using the Reverse-Instruction (RI) method had significantly higher success in both the Preparation for General Chemistry course and traditionally taught General Chemistry I the following semester.

  2. HSCI2014: booklet of the 11th International Conference on Hands-on Science


    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.; International Conference on Hands-on Science, 11, Aveiro, 2014


    The core topic of the 11th Hands-on Science Conference is "Science Education with and for Society" As we all know it is the Society that sets the requirements rules and procedures of Education. It is Society that defines what citizens must learn in what concern either concepts and or competencies, and how this learning can, must in fact…, take place. Society is the ensemble of all of us citizens and of all the structures tangible and intangible we create and created along the y...

  3. Exploring quantum physics through hands-on projects

    CERN Document Server

    Prutchi, David


    Build an intuitive understanding of the principles behind quantum mechanics through practical construction and replication of original experiments With easy-to-acquire, low-cost materials and basic knowledge of algebra and trigonometry, Exploring Quantum Physics through Hands-on Projects takes readers step by step through the process of re-creating scientific experiments that played an essential role in the creation and development of quantum mechanics. From simple measurements of Planck's constant to testing violations of Bell's inequalities using entangled photons, Exploring Quantum Physics through Hands-on Projects not only immerses readers in the process of quantum mechanics, it provides insight into the history of the field--how the theories and discoveries apply to our world not only today, but also tomorrow. By immersing readers in groundbreaking experiments that can be performed at home, school, or in the lab, this first-ever, hands-on book successfully demystifies the world of quantum physics for...

  4. Pre-Service Physics Teachers’ Perception toward Hands-on Lab Activity and 21st Century Skills (United States)

    Putri, D. H.; Risdianto, E.; Sutarno, S.


    This study aimed to describe the hands-on lab activities and 21st century skills of pre-service physics teachers at a university in Bengkulu. The respondents of this study were 113 students who have been finished and were following the laboratory course. The research instrument was questionnaire. The explored aspects of laboratory activities were motivation, the importance of laboratory activities, equipment, laboratory activities process, suitability of curriculum, assessment, laboratory design, and the 21st century skills training. The 21st century skills explored consist of learning and innovation skills, life and careers skills, and media, information and technology skills. The data obtained will be analyzed descriptively. Based on the results of data analysis was obtained that they have a good perception toward the aspect of motivation, the importance of hands-on lab activities, and laboratory activities process; and the perception was fair for other aspects. The lowest perception score was obtained in the aspects of the 21st century skills training. This result was in accordance with the 21st century skills of pre-service physics teachers which were still in moderate category. So it is necessary to develop a model of laboratory activities design that can training and enhancing the 21st century skills for pre-service physics teachers.

  5. Multidimensional Learner Model In Intelligent Learning System (United States)

    Deliyska, B.; Rozeva, A.


    The learner model in an intelligent learning system (ILS) has to ensure the personalization (individualization) and the adaptability of e-learning in an online learner-centered environment. ILS is a distributed e-learning system whose modules can be independent and located in different nodes (servers) on the Web. This kind of e-learning is achieved through the resources of the Semantic Web and is designed and developed around a course, group of courses or specialty. An essential part of ILS is learner model database which contains structured data about learner profile and temporal status in the learning process of one or more courses. In the paper a learner model position in ILS is considered and a relational database is designed from learner's domain ontology. Multidimensional modeling agent for the source database is designed and resultant learner data cube is presented. Agent's modules are proposed with corresponding algorithms and procedures. Multidimensional (OLAP) analysis guidelines on the resultant learner module for designing dynamic learning strategy have been highlighted.

  6. Network attacks and defenses a hands-on approach

    CERN Document Server

    Trabelsi, Zouheir; Al Braiki, Arwa; Mathew, Sujith Samuel


    The attacks on computers and business networks are growing daily, and the need for security professionals who understand how malfeasants perform attacks and compromise networks is a growing requirement to counter the threat. Network security education generally lacks appropriate textbooks with detailed, hands-on exercises that include both offensive and defensive techniques. Using step-by-step processes to build and generate attacks using offensive techniques, Network Attacks and Defenses: A Hands-on Approach enables students to implement appropriate network security solutions within a laborat

  7. A Hands-on Physical Analog Demonstration of Real-Time Volcano Deformation Monitoring with GNSS/GPS (United States)

    Jones, J. R.; Schobelock, J.; Nguyen, T. T.; Rajaonarison, T. A.; Malloy, S.; Njinju, E. A.; Guerra, L.; Stamps, D. S.; Glesener, G. B.


    Teaching about volcano deformation and how scientists study these processes using GNSS/GPS may present some challenge since the volcanoes and/or GNSS/GPS equipment are not quite accessible to most teachers. Educators and curriculum materials specialists have developed and shared a number of activities and demonstrations to help students visualize volcanic processes and ways scientist use GNSS/GPS in their research. From resources provided by MEDL (the Modeling and Educational Demonstrations Laboratory) in the Department of Geosciences at Virginia Tech, we combined multiple materials and techniques from these previous works to produce a hands-on physical analog model from which students can learn about GNSS/GPS studies of volcano deformation. The model functions as both a qualitative and quantitative learning tool with good analogical affordances. In our presentation, we will describe multiple ways of teaching with the model, what kinds of materials can be used to build it, and ways we think the model could be enhanced with the addition of Vernier sensors for data collection.

  8. Building a Model of Successful Collaborative Learning for Company Innovativeness

    Directory of Open Access Journals (Sweden)

    Agata Sudolska


    Full Text Available The aim of the paper is to develop a model of successful collaborative learning for company innovativeness. First of all, the paper explores the issue of inter-firm learning, focusing its attention on collaborative learning. Secondly, inter-firm learning relationships are considered. Thirdly, the ex ante conditions of collaborative learning and the intra-organizational enhancers of inter-firm learning processes are studied. Finally, a model of the critical success factors for collaborative learning is developed.

  9. Student tutors for hands-on training in focused emergency echocardiography – a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Kühl Matthias


    Full Text Available Abstract Background Focused emergency echocardiography performed by non-cardiologists has been shown to be feasible and effective in emergency situations. During resuscitation a short focused emergency echocardiography has been shown to narrow down potential differential diagnoses and to improve patient survival. Quite a large proportion of physicians are eligible to learn focused emergency echocardiography. Training in focused emergency echocardiography usually comprises a lecture, hands-on trainings in very small groups, and a practice phase. There is a shortage of experienced echocardiographers who can supervise the second step, the hands-on training. We thus investigated whether student tutors can perform the hands-on training for focused emergency echocardiography. Methods A total of 30 volunteer 4th and 5th year students were randomly assigned to a twelve-hour basic echocardiography course comprising a lecture followed by a hands-on training in small groups taught either by an expert cardiographer (EC or by a student tutor (ST. Using a pre-post-design, the students were evaluated by an OSCE. The students had to generate two still frames with the apical five-chamber view and the parasternal long axis in five minutes and to correctly mark twelve anatomical cardiac structures. Two blinded expert cardiographers rated the students’ performance using a standardized checklist. Students could achieve a maximum of 25 points. Results Both groups showed significant improvement after the training (p Conclusions Hands-on training by student tutors led to a significant gain in echocardiography skills, although inferior to teaching by an expert cardiographer.

  10. Self Modeling: Expanding the Theories of Learning (United States)

    Dowrick, Peter W.


    Self modeling (SM) offers a unique expansion of learning theory. For several decades, a steady trickle of empirical studies has reported consistent evidence for the efficacy of SM as a procedure for positive behavior change across physical, social, educational, and diagnostic variations. SM became accepted as an extreme case of model similarity;…

  11. Modeling human learning involved in car driving

    NARCIS (Netherlands)

    Wewerinke, P.H.


    In this paper, car driving is considered at the level of human tracking and maneuvering in the context of other traffic. A model analysis revealed the most salient features determining driving performance and safety. Learning car driving is modelled based on a system theoretical approach and based

  12. Learning in AN Oscillatory Cortical Model (United States)

    Scarpetta, Silvia; Li, Zhaoping; Hertz, John

    We study a model of generalized-Hebbian learning in asymmetric oscillatory neural networks modeling cortical areas such as hippocampus and olfactory cortex. The learning rule is based on the synaptic plasticity observed experimentally, in particular long-term potentiation and long-term depression of the synaptic efficacies depending on the relative timing of the pre- and postsynaptic activities during learning. The learned memory or representational states can be encoded by both the amplitude and the phase patterns of the oscillating neural populations, enabling more efficient and robust information coding than in conventional models of associative memory or input representation. Depending on the class of nonlinearity of the activation function, the model can function as an associative memory for oscillatory patterns (nonlinearity of class II) or can generalize from or interpolate between the learned states, appropriate for the function of input representation (nonlinearity of class I). In the former case, simulations of the model exhibits a first order transition between the "disordered state" and the "ordered" memory state.

  13. Learning Actions Models: Qualitative Approach

    DEFF Research Database (Denmark)

    Bolander, Thomas; Gierasimczuk, Nina


    In dynamic epistemic logic, actions are described using action models. In this paper we introduce a framework for studying learnability of action models from observations. We present first results concerning propositional action models. First we check two basic learnability criteria: finite ident...

  14. Hands-on experience with active appearance models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik


    by an exhaustive filtering method. A series of AAMs for smaller groups of bones are used. It is found that AAM successful reconstructs 99% of metacarpals, proximal and medial phalanges and the distal 3 cm of radius and ulna. The rms accuracy is better than 240 microns (point-to-curve). The generative property...... as a biometrics to check the identity of patients in a longitudinal study. The conclusion is that AAM provides a highly efficient and unified framework for various tasks in diagnosis and assessment of bone related disorders....

  15. A multiplicative reinforcement learning model capturing learning dynamics and interindividual variability in mice


    Bathellier, Brice; Tee, Sui Poh; Hrovat, Christina; Rumpel, Simon


    Learning speed can strongly differ across individuals. This is seen in humans and animals. Here, we measured learning speed in mice performing a discrimination task and developed a theoretical model based on the reinforcement learning framework to account for differences between individual mice. We found that, when using a multiplicative learning rule, the starting connectivity values of the model strongly determine the shape of learning curves. This is in contrast to current learning models ...

  16. Teaching Hands-On Linux Host Computer Security (United States)

    Shumba, Rose


    In the summer of 2003, a project to augment and improve the teaching of information assurance courses was started at IUP. Thus far, ten hands-on exercises have been developed. The exercises described in this article, and presented in the appendix, are based on actions required to secure a Linux host. Publicly available resources were used to…

  17. Hands on CERN: A Well-Used Physics Education Project (United States)

    Johansson, K. E.


    The "Hands on CERN" education project makes it possible for students and teachers to get close to the forefront of scientific research. The project confronts the students with contemporary physics at its most fundamental level with the help of particle collisions from the DELPHI particle physics experiment at CERN. It now exists in 14 languages…

  18. Teaching DNA Fingerprinting using a Hands-on Simulation. (United States)

    Schug, Thatcher


    Presents an inexpensive hands-on lesson in DNA fingerprinting that can be completed in a single class period. Involves students in solving a murder in which a drop of blood is fingerprinted and matched with the blood of the murderer. (DDR)

  19. A Hands-On Approach to Maglev for Gifted Students. (United States)

    Budd, Raymond T.


    This article discusses how Magnetic Levitation (Maglev) can be taught to gifted students in grades 4-9 using hands-on activities that align to the National Science Standards. Principles of magnetic levitation, advantages of magnetic levitation, construction of a Maglev project, testing and evaluation of vehicles, and presentation of the unit are…

  20. Google Earth for Landowners: Insights from Hands-on Workshops (United States)

    Huff, Tristan


    Google Earth is an accessible, user-friendly GIS that can help landowners in their management planning. I offered hands-on Google Earth workshops to landowners to teach skills, including mapmaking, length and area measurement, and database management. Workshop participants were surveyed at least 6 months following workshop completion, and learning…

  1. E-Model for Online Learning Communities. (United States)

    Rogo, Ellen J; Portillo, Karen M


    The purpose of this study was to explore the students' perspectives on the phenomenon of online learning communities while enrolled in a graduate dental hygiene program. A qualitative case study method was designed to investigate the learners' experiences with communities in an online environment. A cross-sectional purposive sampling method was used. Interviews were the data collection method. As the original data were being analyzed, the researchers noted a pattern evolved indicating the phenomenon developed in stages. The data were re-analyzed and validated by 2 member checks. The participants' experiences revealed an e-model consisting of 3 stages of formal learning community development as core courses in the curriculum were completed and 1 stage related to transmuting the community to an informal entity as students experienced the independent coursework in the program. The development of the formal learning communities followed 3 stages: Building a Foundation for the Learning Community, Building a Supportive Network within the Learning Community and Investing in the Community to Enhance Learning. The last stage, Transforming the Learning Community, signaled a transition to an informal network of learners. The e-model was represented by 3 key elements: metamorphosis of relationships, metamorphosis through the affective domain and metamorphosis through the cognitive domain, with the most influential element being the affective development. The e-model describes a 4 stage process through which learners experience a metamorphosis in their affective, relationship and cognitive development. Synergistic learning was possible based on the interaction between synergistic relationships and affective actions. Copyright © 2015 The American Dental Hygienists’ Association.

  2. Evaluation of a blended learning model in geriatric medicine: a successful learning experience for medical students. (United States)

    Duque, Gustavo; Demontiero, Oddom; Whereat, Sarah; Gunawardene, Piumali; Leung, Oliver; Webster, Peter; Sardinha, Luis; Boersma, Derek; Sharma, Anita


    Despite the increasingly ageing population, teaching geriatric medicine at medical schools is a challenge due to the particularities of this subspecialty and the lack of student interest in this subject. We assessed a blended system that combines e-learning and person-to-person interaction. Our program offered the students a hands-on learning experience based on self-reflection, access to technology, interactive learning, frequent interaction with the multidisciplinary team, more exposure to patients, and regular feedback. Our results indicate that the students appreciate this system as a rich and effective learning experience demonstrated by their positive feedback and by their significant improvement in knowledge assessed at the end of their rotation. Implementing an interactive blended system is a beneficial approach to teaching geriatric medicine in medical schools and to motivating medical students' interest in this important medical subspecialty. © 2012 The Authors. Australasian Journal on Ageing © 2012 ACOTA.

  3. Two Undergraduate Process Modeling Courses Taught Using Inductive Learning Methods (United States)

    Soroush, Masoud; Weinberger, Charles B.


    This manuscript presents a successful application of inductive learning in process modeling. It describes two process modeling courses that use inductive learning methods such as inquiry learning and problem-based learning, among others. The courses include a novel collection of multi-disciplinary complementary process modeling examples. They were…

  4. Development of a Model for Whole Brain Learning of Physiology (United States)

    Eagleton, Saramarie; Muller, Anton


    In this report, a model was developed for whole brain learning based on Curry's onion model. Curry described the effect of personality traits as the inner layer of learning, information-processing styles as the middle layer of learning, and environmental and instructional preferences as the outer layer of learning. The model that was developed…

  5. Prototype-based models in machine learning. (United States)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas


    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of potentially high-dimensional, complex datasets. We discuss basic schemes of competitive vector quantization as well as the so-called neural gas approach and Kohonen's topology-preserving self-organizing map. Supervised learning in prototype systems is exemplified in terms of learning vector quantization. Most frequently, the familiar Euclidean distance serves as a dissimilarity measure. We present extensions of the framework to nonstandard measures and give an introduction to the use of adaptive distances in relevance learning. © 2016 Wiley Periodicals, Inc.

  6. Culture in Transition: A learning model

    DEFF Research Database (Denmark)

    Baca, Susan


    of organizational transition, and 3) demonstrating the efficacy of the model by using it to explain empirical research findings. It is argued that learning new cultural currency involves the use of active intelligence to locate and answer relevant questions, and further that this process requires the interplay......This paper addresses the problem of resistance to attempted changes in organizational culture, particularly those involving diversity, by 1) identifying precisely what is meant by organizational as opposed to societal culture, 2) developing a theoretical model of learning useful in contexts...... is useful for both management and labor in regulating transition processes, thus making a contribution to industrial relations....


    Directory of Open Access Journals (Sweden)

    Hayati .


    Full Text Available The objective in this research: (1 Determine a better learning model to improve learning outcomes physics students among learning model Inquiry Training based multimedia and Inquiry Training learning model. (2 Determine the level of motivation to learn in affects physics student learning outcomes. (3 Knowing the interactions between the model of learning and motivation in influencing student learning outcomes. This research is a quasi experimental. The population in this research was all students in class XI SMA Negeri 1 T.P Sunggal Semester I 2012/2013. The sample of this research was consisted of two classes with a sample of 70 peoples who are determined by purposive sampling, the IPA XI-2 as a class experiment using a model-based multimedia learning Training Inquiry as many as 35 peoples and XI IPA-3 as a control class using learning model Inquiry Training 35 peoples. Hypotheses were analyzed using the GLM at significant level of 0.05 using SPSS 17.0 for Windows. Based on data analysis and hypothesis testing conducted found that: (1 Training Inquiry-based multimedia learning model in improving student learning outcomes rather than learning model physics Inquiry Training. (2 The results of studying physics students who have high motivation to learn better than students who have a low learning motivation. (3 From this research there was an interaction between learning model inquiry-based multimedia training and motivation to study on learning outcomes of students.

  8. The 8 Learning Events Model: a Pedagogic Conceptual Tool Supporting Diversification of Learning Methods

    NARCIS (Netherlands)

    Verpoorten, Dominique; Poumay, M; Leclercq, D


    Please, cite this publication as: Verpoorten, D., Poumay, M., & Leclercq, D. (2006). The 8 Learning Events Model: a Pedagogic Conceptual Tool Supporting Diversification of Learning Methods. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence

  9. Learning Adversary Modeling from Games

    National Research Council Canada - National Science Library

    Avellino, Paul


    .... In the computer age, highly accurate models and simulations of the enemy can be created. However, including the effects of motivations, capabilities, and weaknesses of adversaries in current wars is still extremely difficult...

  10. Comparison of Flipped Model to Traditional Classroom Learning in a Professional Pharmacy Course

    Directory of Open Access Journals (Sweden)

    Colleen McCabe


    Full Text Available The flipped classroom is an approach to incorporate active learning that is being used in secondary education, higher education, and professional schools. This study investigates its impact on student learning and confidence in a professional degree program course. A quasi-experimental study was conducted to evaluate pharmacy students enrolled in a semester-long didactic traditional classroom course compared to students learning the same material using a flipped model through online self-study modules in a hands-on experiential learning course. Before and after each learning experience, students of each group completed a 16-item knowledge assessment on four topic areas and rated their level of confidence with each topic area on a Likert scale. There was a significant difference in knowledge with students in the traditional course scoring higher than students using flipped approach in the experiential course. Furthermore, the flipped experiential course students did not improve assessment scores from pre-test to post-test. For confidence rating, the traditional course group ranked confidence higher than the flipped experiential group for all topics. These findings challenge the notion that the flipped model using self-study in an experiential setting can be a substitution for didactic delivery of pharmacy education.

  11. Blended Inquiry with Hands-On and Virtual Laboratories: The Role of Perceptual Features during Knowledge Construction (United States)

    Toth, Eva Erdosne; Ludvico, Lisa R.; Morrow, Becky L.


    This study examined the characteristics of virtual and hands-on inquiry environments for the development of blended learning in a popular domain of bio-nanotechnology: the separation of different-sized DNA fragments using gel-electrophoresis, also known as DNA-fingerprinting. Since the latest scientific developments in nano- and micro-scale tools…

  12. Effects of In-Class Hands-On Laboratories in a Large Enrollment, Multiple Section Blended Linear Circuits Course (United States)

    Ferri, Bonni H.; Ferri, Aldo A.; Majerich, David M.; Madden, Amanda G.


    This paper examines the effects of hands-on learning in an undergraduate circuits class that is taught to non-majors; i.e., students outside of electrical and computing engineering. The course, ECE3710, is taught in a blended format facilitated by the video lectures prepared for two Massive Open Online Courses developed for the Coursera Platform.…

  13. A model of positive and negative learning : Learning demands and resources, learning engagement, critical thinking, and fake news detection

    NARCIS (Netherlands)

    Dormann, Christian; Demerouti, Eva; Bakker, Arnold; Zlatkin-Troitschanskaia, O.; Wittum, G.; Dengel, A.


    This chapter proposes a model of positive and negative learning (PNL model). We use the term negative learning when stress among students occurs, and when knowledge and abilities are not properly developed. We use the term positive learning if motivation is high and active learning occurs. The PNL

  14. Conducting Original, Hands-On Astronomical Research in the Classroom (United States)

    Corneau, M. J.


    teachers to convey moderately complex computer science, optical, geographic, mathematical, informational and physical principles through hands-on telescope operations. In addition to the general studies aspects of classroom internet-based astronomy, Tzec Maun supports real science by enabling operators precisely point telescopes and acquire extremely faint, magnitude 19+ CCD images. Thanks to the creative Team of Photometrica (, my teams now have the ability to process and analyze images online and produce results in short order. Normally, astronomical data analysis packages cost greater than thousands of dollars for single license operations. Free to my team members, Photometrica allows students to upload their data to a cloud computing server and read precise photometric and/or astrometric results. I’m indebted to Michael and Geir for their support. The efficacy of student-based research is well documented. The Council on Undergraduate Research defines student research as, "an inquiry or investigation conducted by an undergraduate that makes an original intellectual or creative contribution to the discipline." ( Teaching from Tzec Maun in the classroom is the most original teaching research I can imagine. I very much look forward to presenting this program to the convened body.

  15. Organizational Learning Supported by Reference Architecture Models

    DEFF Research Database (Denmark)

    Nardello, Marco; Møller, Charles; Gøtze, John


    of an emerging technical standard specific for the manufacturing industry. Global manufacturing experts consider the Reference Architecture Model Industry 4.0 (RAMI4.0) as one of the corner stones for the implementation of Industry 4.0. The instantiation contributed to organizational learning in the laboratory...

  16. Prototype-based models in machine learning

    NARCIS (Netherlands)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas


    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of

  17. School Improvement Model to Foster Student Learning (United States)

    Rulloda, Rudolfo Barcena


    Many classroom teachers are still using the traditional teaching methods. The traditional teaching methods are one-way learning process, where teachers would introduce subject contents such as language arts, English, mathematics, science, and reading separately. However, the school improvement model takes into account that all students have…

  18. IT release management a hands-on guide

    CERN Document Server

    Howard, Dave


    When implemented correctly, release management can help ensure that quality is integrated throughout the development, implementation, and delivery of services, applications, and infrastructure. This holistic, total cost of ownership approach allows for higher levels of system availability, is more cost effective to maintain, and increases overall stability, maintainability, and reliability. Filled with practical insights, IT Release Management: A Hands-on Guide clearly illustrates the effective implementation of a release process in the real world. It examines the similarities and differences

  19. Developing an Innovative and Creative Hands-on Lean Six Sigma Manufacturing Experiments for Engineering Education

    Directory of Open Access Journals (Sweden)

    I. Badawi


    Full Text Available The goal of this study was to develop an innovative and creative hands-on project based on Lean Six Sigma experiments for engineering education at the College of Engineering at the University of Hail. The exercises were designed using junction box assembly to meet the following learning outcomes: 1-to provide students with solid experience on waste elimination and variation reduction and 2-to engage students in exercises related to assembly line mass production and motion study. To achieve these objectives, students were introduced to the principles of Lean manufacturing and Six Sigma through various pedagogical activities such as classroom instruction, laboratory experiments, hands-on exercises, and interactive group work. In addition, Minitab 17 statistical package and Quality Companion 3 software were used to facilitate The Lean Six Sigma exercises. The software application and hands-on manufacturing assembly were found to be extremely valuable in giving students the chance to identify which variables to control in order to minimize variation and eliminate waste. This research was funded by a grant from the Deanship of Academic Research at University of Hail for project number E-26-IC, and under the umbrella of Ministry of Education within the framework of the National Initiative on Creativity and Innovation in Saudi Universities at University of Hail.

  20. Constructing Pedagogical Models For E-learning


    Patricia Alejandra Behar


    This article brings forth an overview of the paradigmatic crisis and the introduction of new pedagogical practices. It also discusses the relationship between paradigm and pedagogical model, presenting a theoretical discussion on the concepts of pedagogical model for E-learning and its pedagogical architecture. To do so, the elements that are part of it such as organizational aspects, content, methodological and technological aspects are discussed. This theoretical discussion underlies the co...

  1. Hands-on earth science with students at schools for the Deaf (United States)

    Cooke, M. L.


    Earth science teachers at schools for the Deaf face a variety of challenges. This community of students has a wide range of language skills, teaching resources can be limited and often teachers are not trained in geosciences. An NSF CAREER grant provided an opportunity to make a difference to this community and foster earth science learning at 8 schools for the Deaf around the country. We designed hands-on deformational sandboxes for the teachers and provided accompanying curriculum materials. The sandbox is a physical model of crustal deformation that students can manipulate to test hypotheses. The visual nature of the sandbox was well-suited for the spatial grammar of American Sign Language used by these students. Furthermore, language skills were enhanced by scaffolded observation, sketch, annotation, discussion, interpretation assignments. Geoscience training of teachers was strengthened with workshops and three 5-day field trips for teachers and selected students to Utah, western New England and southern California. The field trips provided opportunity for students to work as geoscientists observing, interpreting, discussing and presenting their investigations. Between field trips, we set up videoconferences from the UMass experimental lab with the high school earth science classrooms. These sessions facilitated dialog between students and researchers at UMass. While the project set out to provide geoscience learning opportunities for students at Schools for the Deaf, the long lasting impact was the improved geoscience training of teachers, most of whom had limited post-secondary earth science training. The success of the project also rested on the dedication of the teachers to their students and their willingness to try new approaches and experiences. By tapping into a community of 6 teachers, who already shared curriculum and had fantastic leadership, the project was able to have significant impact and exceed the initial goals. The project has led to a

  2. Correlation Between Blended Learning Model With The Perspective Of Learning Effectiveness For Nursing Student

    Directory of Open Access Journals (Sweden)

    Susila Sumartiningsih


    Full Text Available ABSTRACT The learning model is one of the enabling factors that influence the achievement of students. That students have a good learning outcomes the lecturer must choose appropriate learning models. But in fact not all lecturers choose the most appropriate learning model with the demands of learning outcomes and student characteristics.The study design was descriptive quantitative correlation. Total population of 785 the number of samples are 202 were taken by purposive sampling. Techniques of data collection is done by cross-sectional and then processed through the Spearman test. The results showed no significant relationship between classroom lecture method in the context of blended learning models to study the effectiveness perspective the p value of 0.001. There is a significant relationship between e-learning methods in the context of blended learning models with perspective of activities study of nursing students the p value of 0.028. There is a significant relationship between learning model of blended learning with the perspective of nursing students learning effectiveness p value 0.167. Researchers recommend to future researchers conduct more research on the comparison between the effectiveness of the learning model based on student learning centers with the e-learning models and its impact on student achievement of learning competencies as well as to the implications for other dimensions of learning outcomes and others.

  3. Effect Of Inquiry Learning Model And Motivation On Physics Outcomes Learning Students


    Pardede, Dahlia Megawati; Manurung, Sondang Rina


    The purposes of the research are: (a) to determine differences in learning outcomes of students with Inquiry Training models and conventional models, (b) to determine differences in physics learning outcomes of students who have high motivation and low motivation, (c) to determine the interaction between learning models with the level of motivation in improving student Physics learning outcomes. The results were found: (a) there are differences in physical students learning outcomes are taugh...

  4. Learning topic models by belief propagation. (United States)

    Zeng, Jia; Cheung, William K; Liu, Jiming


    Latent Dirichlet allocation (LDA) is an important hierarchical Bayesian model for probabilistic topic modeling, which attracts worldwide interest and touches on many important applications in text mining, computer vision and computational biology. This paper represents the collapsed LDA as a factor graph, which enables the classic loopy belief propagation (BP) algorithm for approximate inference and parameter estimation. Although two commonly used approximate inference methods, such as variational Bayes (VB) and collapsed Gibbs sampling (GS), have gained great success in learning LDA, the proposed BP is competitive in both speed and accuracy, as validated by encouraging experimental results on four large-scale document datasets. Furthermore, the BP algorithm has the potential to become a generic scheme for learning variants of LDA-based topic models in the collapsed space. To this end, we show how to learn two typical variants of LDA-based topic models, such as author-topic models (ATM) and relational topic models (RTM), using BP based on the factor graph representations.

  5. The Aalborg Model and participant directed learning

    DEFF Research Database (Denmark)

    Qvist, Palle


    Preparing students for a life as active citizens in a democratic society is one of the aims within the Bologna process. The Council of Europe has also stressed the importance of focus on democracy in Higher Education. Higher Education is seen as important to develop a democratic culture among...... students. Teaching democracy should be promoted in lessons and curricula. Creating democratic learning systems in institutions of higher education could be the answer to reaching the aim related to democracy. The Aalborg Model practised at Aalborg University is a learning system which has collaborative...

  6. Getting started with Oracle SOA B2B Integration a hands-on tutorial

    CERN Document Server

    Bhatia, Krishnaprem; Perlovsky, Alan


    This hands on tutorial gives you the best possible start you could hope for with Oracle B2B. Learn using real life scenarios and examples to give you a solid footing of B2B.This book is for B2B architects, consultants and developers who would like to design and develop B2B integrations using Oracle B2B. This book assumes no prior knowledge of Oracle B2B and explains all concepts from scratch using illustrations, real world examples and step-by-step instructions. The book covers enough depth and details to be useful for both beginner and advanced B2B users.

  7. A model of olfactory associative learning (United States)

    Tavoni, Gaia; Balasubramanian, Vijay

    We propose a mechanism, rooted in the known anatomy and physiology of the vertebrate olfactory system, by which presentations of rewarded and unrewarded odors lead to formation of odor-valence associations between piriform cortex (PC) and anterior olfactory nucleus (AON) which, in concert with neuromodulators release in the bulb, entrains a direct feedback from the AON representation of valence to a group of mitral cells (MCs). The model makes several predictions concerning MC activity during and after associative learning: (a) AON feedback produces synchronous divergent responses in a localized subset of MCs; (b) such divergence propagates to other MCs by lateral inhibition; (c) after learning, MC responses reconverge; (d) recall of the newly formed associations in the PC increases feedback inhibition in the MCs. These predictions have been confirmed in disparate experiments which we now explain in a unified framework. For cortex, our model further predicts that the response divergence developed during learning reshapes odor representations in the PC, with the effects of (a) decorrelating PC representations of odors with different valences, (b) increasing the size and reliability of those representations, and enabling recall correction and redundancy reduction after learning. Simons Foundation for Mathematical Modeling of Living Systems.


    Directory of Open Access Journals (Sweden)

    Dahlia Megawati Pardede


    Full Text Available The purposes of the research are: (a to determine differences in learning outcomes of students with Inquiry Training models and conventional models, (b to determine differences in physics learning outcomes of students who have high motivation and low motivation, (c to determine the interaction between learning models with the level of motivation in improving student Physics learning outcomes. The results were found: (a there are differences in physical students learning outcomes are taught by Inquiry Training models and conventional models. (b learning outcomes of students who are taught by Inquiry Learning Model Training better than student learning outcomes are taught with conventional model. (c there is a difference in student's learning outcomes that have high motivation and low motivation. (d Student learning outcomes that have a high motivation better than student learning outcomes than have a low motivation. (e there is interaction between learning and motivation to student learning outcomes. Learning outcomes of students who are taught by the model is influenced also by the motivation, while learning outcomes of students who are taught with conventional models are not affected by motivation.

  9. Temporal-pattern learning in neural models

    CERN Document Server

    Genís, Carme Torras


    While the ability of animals to learn rhythms is an unquestionable fact, the underlying neurophysiological mechanisms are still no more than conjectures. This monograph explores the requirements of such mechanisms, reviews those previously proposed and postulates a new one based on a direct electric coding of stimulation frequencies. Experi­ mental support for the option taken is provided both at the single neuron and neural network levels. More specifically, the material presented divides naturally into four parts: a description of the experimental and theoretical framework where this work becomes meaningful (Chapter 2), a detailed specifica­ tion of the pacemaker neuron model proposed together with its valida­ tion through simulation (Chapter 3), an analytic study of the behavior of this model when submitted to rhythmic stimulation (Chapter 4) and a description of the neural network model proposed for learning, together with an analysis of the simulation results obtained when varying seve­ ral factors r...

  10. Design, implementation, and outcome of a hands-on arthrocentesis workshop. (United States)

    Barilla-Labarca, Maria-Louise; Tsang, James C; Goldsmith, Melissa; Furie, Richard


    During a 4-week rheumatology elective at our institution, opportunities for internal medicine residents to perform arthrocentesis were limited, particularly for sites other than the knee. Consequently, residents were inadequately prepared and had less self-confidence to perform such procedures. To overcome these educational deficiencies, an arthrocentesis workshop was developed. We report our quality improvement data that was collected during the first year of workshop implementation. We devised a structured half-day arthrocentesis workshop for rheumatology fellows as well as rotating internal medicine residents. This program consisted of a one hour lecture immediately followed by a hands-on workshop that used mannequin models for 5 anatomic sites. A self-assessment questionnaire and medical knowledge test were administered before and after each session. The accuracy of the self-assessment questionnaire was analyzed by comparing responses to an external objective measure of knowledge in the same content area. Finally, an optional postworkshop survey addressed resident satisfaction. Thirty-eight trainees participated in the workshop between July 2006 and June 2007. There were statistically significant improvements in self-confidence in 9 content areas (P knowledge test during the preworkshop analysis. In contrast, the postworkshop analysis displayed modestly higher concordance. All residents completing a postworkshop survey believed that it was a useful exercise, and 96% stated that they would change their practice habits. The arthrocentesis workshop provided a solid foundation from which trainees can learn key concepts of joint injection, increase their self-confidence and refine their motor skills. The accuracy of resident self-reported confidence is poor and should therefore be used only to complement other means of competency assessment and medical knowledge acquisition.

  11. Coaching Model + Clinical Playbook = Transformative Learning. (United States)

    Fletcher, Katherine A; Meyer, Mary


    Health care employers demand that workers be skilled in clinical reasoning, able to work within complex interprofessional teams to provide safe, quality patient-centered care in a complex evolving system. To this end, there have been calls for radical transformation of nursing education including the development of a baccalaureate generalist nurse. Based on recommendations from the American Association of Colleges of Nursing, faculty concluded that clinical education must change moving beyond direct patient care by applying the concepts associated with designer, manager, and coordinator of care and being a member of a profession. To accomplish this, the faculty utilized a system of focused learning assignments (FLAs) that present transformative learning opportunities that expose students to "disorienting dilemmas," alternative perspectives, and repeated opportunities to reflect and challenge their own beliefs. The FLAs collected in a "Playbook" were scaffolded to build the student's competencies over the course of the clinical experience. The FLAs were centered on the 6 Quality and Safety Education for Nurses competencies, with 2 additional concepts of professionalism and systems-based practice. The FLAs were competency-based exercises that students performed when not assigned to direct patient care or had free clinical time. Each FLA had a lesson plan that allowed the student and faculty member to see the competency addressed by the lesson, resources, time on task, student instructions, guide for reflection, grading rubric, and recommendations for clinical instructor. The major advantages of the model included (a) consistent implementation of structured learning experiences by a diverse teaching staff using a coaching model of instruction; (b) more systematic approach to present learning activities that build upon each other; (c) increased time for faculty to interact with students providing direct patient care; (d) guaranteed capture of selected transformative

  12. Learning versus correct models: influence of model type on the learning of a free-weight squat lift. (United States)

    McCullagh, P; Meyer, K N


    It has been assumed that demonstrating the correct movement is the best way to impart task-relevant information. However, empirical verification with simple laboratory skills has shown that using a learning model (showing an individual in the process of acquiring the skill to be learned) may accelerate skill acquisition and increase retention more than using a correct model. The purpose of the present study was to compare the effectiveness of viewing correct versus learning models on the acquisition of a sport skill (free-weight squat lift). Forty female participants were assigned to four learning conditions: physical practice receiving feedback, learning model with model feedback, correct model with model feedback, and learning model without model feedback. Results indicated that viewing either a correct or learning model was equally effective in learning correct form in the squat lift.


    Directory of Open Access Journals (Sweden)



    Full Text Available The present research aims at presenting a conceptual model for effective distance learning in higher education. Findings of this research shows that an understanding of the technological capabilities and learning theories especially constructive theory and independent learning theory and communicative and interaction theory in Distance learning is an efficient factor in the planning of effective Distance learning in higher education. Considering the theoretical foundations of the present research, in the effective distance learning model, the learner is situated at the center of learning environment. For this purpose, the learner needs to be ready for successful learning and the teacher has to be ready to design the teaching- learning activities when they initially enter the environment. In the present model, group and individual active teaching-learning approach, timely feedback, using IT and eight types of interactions have been designed with respect to theoretical foundations and current university missions. From among the issues emphasized in this model, one can refer to the Initial, Formative and Summative evaluations. In an effective distance learning environment, evaluation should be part of the learning process and the feedback resulting from it should be used to improve learning. For validating the specified features, the opinions of Distance learning experts in Payame Noor, Shiraz, Science and Technology and Amirkabir Universities have been used which verified a high percentage of the statistical sample of the above mentioned features.

  14. Modellus: Learning Physics with Mathematical Modelling (United States)

    Teodoro, Vitor

    Computers are now a major tool in research and development in almost all scientific and technological fields. Despite recent developments, this is far from true for learning environments in schools and most undergraduate studies. This thesis proposes a framework for designing curricula where computers, and computer modelling in particular, are a major tool for learning. The framework, based on research on learning science and mathematics and on computer user interface, assumes that: 1) learning is an active process of creating meaning from representations; 2) learning takes place in a community of practice where students learn both from their own effort and from external guidance; 3) learning is a process of becoming familiar with concepts, with links between concepts, and with representations; 4) direct manipulation user interfaces allow students to explore concrete-abstract objects such as those of physics and can be used by students with minimal computer knowledge. Physics is the science of constructing models and explanations about the physical world. And mathematical models are an important type of models that are difficult for many students. These difficulties can be rooted in the fact that most students do not have an environment where they can explore functions, differential equations and iterations as primary objects that model physical phenomena--as objects-to-think-with, reifying the formal objects of physics. The framework proposes that students should be introduced to modelling in a very early stage of learning physics and mathematics, two scientific areas that must be taught in very closely related way, as they were developed since Galileo and Newton until the beginning of our century, before the rise of overspecialisation in science. At an early stage, functions are the main type of objects used to model real phenomena, such as motions. At a later stage, rates of change and equations with rates of change play an important role. This type of equations

  15. Using IMS Learning Design to model collaborative learning activities

    NARCIS (Netherlands)

    Tattersall, Colin


    IMS Learning Design provides a counter to the trend towards designing for lone-learners reading from screens. It guides staff and educational developers to start not with content, but with learning activities and the achievement of learning objectives. It recognises that learning can happen without

  16. Service Learning In Physics: The Consultant Model (United States)

    Guerra, David


    Each year thousands of students across the country and across the academic disciplines participate in service learning. Unfortunately, with no clear model for integrating community service into the physics curriculum, there are very few physics students engaged in service learning. To overcome this shortfall, a consultant based service-learning program has been developed and successfully implemented at Saint Anselm College (SAC). As consultants, students in upper level physics courses apply their problem solving skills in the service of others. Most recently, SAC students provided technical and managerial support to a group from Girl's Inc., a national empowerment program for girls in high-risk, underserved areas, who were participating in the national FIRST Lego League Robotics competition. In their role as consultants the SAC students provided technical information through brainstorming sessions and helped the girls stay on task with project management techniques, like milestone charting. This consultant model of service-learning, provides technical support to groups that may not have a great deal of resources and gives physics students a way to improve their interpersonal skills, test their technical expertise, and better define the marketable skill set they are developing through the physics curriculum.

  17. Representing adaptive and adaptable Units of Learning. How to model personalized eLearning in IMS Learning Design


    Burgos, Daniel; Tattersall, Colin; Koper, Rob


    Burgos, D., Tattersall, C., & Koper, E. J. R. (2007). Representing adaptive and adaptable Units of Learning. How to model personalized eLearning in IMS Learning Design. In B. Fernández Manjon, J. M. Sanchez Perez, J. A. Gómez Pulido, M. A. Vega Rodriguez & J. Bravo (Eds.), Computers and Education: E-learning - from theory to practice. Germany: Kluwer.

  18. Teaching radio astrophysics the hand-on way (United States)

    Joshi, Bhal Chandra

    Astronomy and space sciences have always been instrumental in attracting young students to physical sciences. While the lectures/demonstrations and exhibitions pertaining to space sci-ences capture the imagination of young students, these alone are not sufficient to induce them to join scientific research. In countries like India, where a large number of students take to physical sciences for under-graduate education, complex sociological factors are key issues in translating this large body of students to potential researchers. While lectures and exhibition lead to an increase in scientific awareness for these students, these do not give a feel for scien-tific research and bridge the gap between high school/college science education and high end research. In this context, a hands-on approach to astronomy education, in science research environments or closely connected to scientific institutions, offers a promising alternative. This approach has been used in optical astronomy, where inexpensive small telescopes are available, often coupling a vast network of amateur astronomy clubs to leading astronomy institutes. The non-visual and relatively more technical nature of radio astronomy has limited a similar approach in past for connecting students to space sciences using radio waveband. The tech-nological explosion in communication industry and radio connectivity in the last decade along with an expansion in engineering education makes this possible now using a hands-on approach in teaching radio astrophysics. In this presentation, the sociological factors affecting the student choice are discussed followed by a review of the efforts to bridge the above mentioned gap by various groups in the world in the last decade with a view to enumerate the best practices in a hands-on approach. A program using this approach at National Center for Radio Astrophysics is described, where the students are exposed to simple hands-on radio astronomy experiments such as spectral line

  19. Online constrained model-based reinforcement learning

    CSIR Research Space (South Africa)

    Van Niekerk, B


    Full Text Available Constrained Model-based Reinforcement Learning Benjamin van Niekerk School of Computer Science University of the Witwatersrand South Africa Andreas Damianou∗ Cambridge, UK Benjamin Rosman Council for Scientific and Industrial Research, and School... MULTIPLE SHOOTING Using direct multiple shooting (Bock and Plitt, 1984), problem (1) can be transformed into a structured non- linear program (NLP). First, the time horizon [t0, t0 + T ] is partitioned into N equal subintervals [tk, tk+1] for k = 0...

  20. Hands-on-Science: Using Education Research to Construct Learner-Centered Classes (United States)

    Ludwig, R. R.; Chimonidou, A.; Kopp, S.


    Research into the process of learning, and learning astronomy, can be informative for the development of a course. Students are better able to incorporate and make sense of new ideas when they are aware of their own prior knowledge (Resnick et al. 1989; Confrey 1990), have the opportunity to develop explanations from their own experience in their own words (McDermott 1991; Prather et al. 2004), and benefit from peer instruction (Mazur 1997; Green 2003). Students in astronomy courses often have difficulty understanding many different concepts as a result of difficulties with spatial reasoning and a sense of scale. The Hands-on-Science program at UT Austin incorporates these research-based results into four guided-inquiry, integrated science courses (50 students each). They are aimed at pre-service K-5 teachers but are open to other majors as well. We find that Hands-on-Science students not only attain more favorable changes in attitude towards science, but they also outperform students in traditional lecture courses in content gains. Workshop Outcomes: Participants experienced a research-based, guided-inquiry lesson about the motion of objects in the sky and discussed the research methodology for assessing students in such a course.

  1. Action Research Using Entomological Research to Promote Hands-On Science Inquiry in a High-Poverty, Midwest Urban High School (United States)

    Stockmann, Dustin

    The purpose of this mixed-methods action research study was to examine to what extent entomological research can promote students' hands-on learning in a high-poverty, urban, secondary setting. In reviewing the literature, the researcher was not able to find a specific study that investigated how entomological research could promote the hands-on learning of students. The researcher did find evidence that research on learning in a secondary setting was important to student growth. It should also be noted that support was established for the implementation of hands-on science inquiry in the classroom setting. The study's purpose was to aid educators in their instruction by combining research-based strategies and hands-on science inquiry. The surveys asked 30 students to rate their understanding of three basic ideas. These core ideas were entomological research, hands-on science inquiry, and urban studies. These core ideas provided the foundation for the study. The questionnaires were based on follow-up ideas from the surveys. Two interview sessions were used to facilitate this one-on-one focus. Because the study included only 30 student participants, its findings may not be totally replicable. Further study investigating the links between entomological research and hands-on science learning in an urban environment is needed.

  2. Hands-on approach to teaching Earth system sciences using a information-computational web-GIS portal "Climate" (United States)

    Gordova, Yulia; Gorbatenko, Valentina; Martynova, Yulia; Shulgina, Tamara


    A problem of making education relevant to the workplace tasks is a key problem of higher education because old-school training programs are not keeping pace with the rapidly changing situation in the professional field of environmental sciences. A joint group of specialists from Tomsk State University and Siberian center for Environmental research and Training/IMCES SB RAS developed several new courses for students of "Climatology" and "Meteorology" specialties, which comprises theoretical knowledge from up-to-date environmental sciences with practical tasks. To organize the educational process we use an open-source course management system Moodle ( It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational platform "Climate" ( using web GIS tools. These trainings contain practical tasks on climate modeling and climate changes assessment and analysis and should be performed using typical tools which are usually used by scientists performing such kind of research. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The hands-on approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. The courses are implemented at Tomsk State University and help forming modern curriculum in Earth system science area. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants numbers 13-05-12034 and 14-05-00502.


    Directory of Open Access Journals (Sweden)

    Ahmad Purwanto


    Full Text Available This research aims to implement the model learning cycle "5E" accompanied by worksheets to increase activity, science process skills and student learning outcomes. This model provides student involvement and hands-on experience for students, develop a collaborative manner with the group and share your knowledge with other students. Conclusions of this study is the implementation model of learning cycle "5E" with worksheets may enhance the activity, science process skills, and student learning outcomes of  X8 in the second semester  at senior high school 4th Metro on academic year 2011/2012. The increase can be observed as follows: the activity of reading the literature by 23%, experiment activity (drawing objects of observation by 25%, in a group discussion activity by 23%, the activity of asking questions by 17%, and argues activity by 10%. In the process skills of science students on aspects of the skill increased by 25% using the tool, the object classifies 30%, the cooperation within the group by 22%, delivering the acquisition of 23%. Learning outcomes of students has increased by 4% which is in cycle I of 71% to 75% in cycle II. As for the improvement of pre-survey to cycle II by 56% which is 19% in pre-survey become to 75% in Cycle II.   Kata kunci: model learning cycle "5E" disertai LKS, aktivitas belajar, keterampilan proses sains, hasil belajar

  4. A hands-on course in sensors using the Arduino and Raspberry Pi

    CERN Document Server

    Ziemann, Volker


    A Hands-On Course in Sensors using the Arduino and Raspberry Pi is the first book to give a practical and wide-ranging account of how to interface sensors and actuators with micro-controllers, Raspberry Pi and other control systems. The author describes the progression of raw signals through conditioning stages, digitization, data storage and presentation. The collection, processing, and understanding of sensor data plays a central role in industrial and scientific activities. This book builds simplified models of large industrial or scientific installations that contain hardware and other building blocks, including services for databases, web servers, control systems, and messaging brokers. A range of case studies are included within the book, including a weather station, geophones, a water-colour monitor, capacitance measurement, the profile of laser beam, and a remote-controlled and fire-seeking robot This book is suitable for advanced undergraduate and graduate students taking hands-on laboratory course...


    Directory of Open Access Journals (Sweden)

    Amalia Febri Aristi


    Full Text Available This study aimed to determine: (1 Is there a difference in student's learning outcomes with the application of learning models Investigation Group and Direct Instruction teaching model. (2 Is there a difference in students' motivation with the application of learning models Investigation Group and Direct Instruction teaching model, (3 Is there an interaction between learning models Investigation Group and Direct Instruction to improve students' motivation in learning outcomes Physics. This research is a quasi experimental. The study population was a student of class XII Tanjung Balai MAN. Random sample selection is done by randomizing the class. The instrument used consisted of: (1 achievement test (2 students' motivation questionnaire. The tests are used to obtain the data is shaped essay. The data in this study were analyzed using ANOVA analysis of two paths. The results showed that: (1 there were differences in learning outcomes between students who used the physics model of Group Investigation learning compared with students who used the Direct Instruction teaching model. (2 There was a difference in student's learning outcomes that had a low learning motivation and high motivation to learn both in the classroom and in the classroom Investigation Group Direct Instruction. (3 There was interaction between learning models Instruction Direct Group Investigation and motivation to learn in improving learning outcomes Physics.

  6. Bio-Inspired Neural Model for Learning Dynamic Models (United States)

    Duong, Tuan; Duong, Vu; Suri, Ronald


    A neural-network mathematical model that, relative to prior such models, places greater emphasis on some of the temporal aspects of real neural physical processes, has been proposed as a basis for massively parallel, distributed algorithms that learn dynamic models of possibly complex external processes by means of learning rules that are local in space and time. The algorithms could be made to perform such functions as recognition and prediction of words in speech and of objects depicted in video images. The approach embodied in this model is said to be "hardware-friendly" in the following sense: The algorithms would be amenable to execution by special-purpose computers implemented as very-large-scale integrated (VLSI) circuits that would operate at relatively high speeds and low power demands.

  7. A Multiobjective Sparse Feature Learning Model for Deep Neural Networks. (United States)

    Gong, Maoguo; Liu, Jia; Li, Hao; Cai, Qing; Su, Linzhi


    Hierarchical deep neural networks are currently popular learning models for imitating the hierarchical architecture of human brain. Single-layer feature extractors are the bricks to build deep networks. Sparse feature learning models are popular models that can learn useful representations. But most of those models need a user-defined constant to control the sparsity of representations. In this paper, we propose a multiobjective sparse feature learning model based on the autoencoder. The parameters of the model are learnt by optimizing two objectives, reconstruction error and the sparsity of hidden units simultaneously to find a reasonable compromise between them automatically. We design a multiobjective induced learning procedure for this model based on a multiobjective evolutionary algorithm. In the experiments, we demonstrate that the learning procedure is effective, and the proposed multiobjective model can learn useful sparse features.

  8. An entropy model for artificial grammar learning

    Directory of Open Access Journals (Sweden)

    Emmanuel Pothos


    Full Text Available A model is proposed to characterize the type of knowledge acquired in Artificial Grammar Learning (AGL. In particular, Shannon entropy is employed to compute the complexity of different test items in an AGL task, relative to the training items. According to this model, the more predictable a test item is from the training items, the more likely it is that this item should be selected as compatible with the training items. The predictions of the entropy model are explored in relation to the results from several previous AGL datasets and compared to other AGL measures. This particular approach in AGL resonates well with similar models in categorization and reasoning which also postulate that cognitive processing is geared towards the reduction of entropy.

  9. Organizational Learning Supported by Reference Architecture Models

    DEFF Research Database (Denmark)

    Nardello, Marco; Møller, Charles; Gøtze, John


    The wave of the fourth industrial revolution (Industry 4.0) is bringing a new vision of the manufacturing industry. In manufacturing, one of the buzzwords of the moment is “Smart production”. Smart production involves manufacturing equipment with many sensors that can generate and transmit large...... amounts of data. These data and information from manufacturing operations are however not shared in the organization. Therefore the organization is not using them to learn and improve their operations. To address this problem, the authors implemented in an Industry 4.0 laboratory an instance...... of an emerging technical standard specific for the manufacturing industry. Global manufacturing experts consider the Reference Architecture Model Industry 4.0 (RAMI4.0) as one of the corner stones for the implementation of Industry 4.0. The instantiation contributed to organizational learning in the laboratory...

  10. Cognitive components underpinning the development of model-based learning. (United States)

    Potter, Tracey C S; Bryce, Nessa V; Hartley, Catherine A


    Reinforcement learning theory distinguishes "model-free" learning, which fosters reflexive repetition of previously rewarded actions, from "model-based" learning, which recruits a mental model of the environment to flexibly select goal-directed actions. Whereas model-free learning is evident across development, recruitment of model-based learning appears to increase with age. However, the cognitive processes underlying the development of model-based learning remain poorly characterized. Here, we examined whether age-related differences in cognitive processes underlying the construction and flexible recruitment of mental models predict developmental increases in model-based choice. In a cohort of participants aged 9-25, we examined whether the abilities to infer sequential regularities in the environment ("statistical learning"), maintain information in an active state ("working memory") and integrate distant concepts to solve problems ("fluid reasoning") predicted age-related improvements in model-based choice. We found that age-related improvements in statistical learning performance did not mediate the relationship between age and model-based choice. Ceiling performance on our working memory assay prevented examination of its contribution to model-based learning. However, age-related improvements in fluid reasoning statistically mediated the developmental increase in the recruitment of a model-based strategy. These findings suggest that gradual development of fluid reasoning may be a critical component process underlying the emergence of model-based learning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Hands on versus remote techniques in waste management and decommissioning

    International Nuclear Information System (INIS)

    Asquith, J.D.


    The nuclear industry has many requirements for planned and uplanned physical interactions with radioactive materials or their environment. In each case a choice must be made as to whether the interaction should be made directly by the operator using a 'hands on' technique, wearing any necessary protective clothing, or by entirely remote techniques. In facilities where remote handling equipment has already been provided and planned for, remote techniques are usually the obvious choice. However in radioactive waste management and decommissioning there are many cases where unexpected requirements emerge, often for relatively short term activities, where the choice is more complex. This paper takes a look at the various factors which should be considered in order to make these decisions, an overview of the types of remote equipment available in the UK and some examples of the benefits which have resulted when remote techniques have been adopted in Britain

  12. Geneva University: Experiments in Physics: Hands-on Creative Processes

    CERN Multimedia

    Université de Genève


    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92   Lundi 3 octobre 2011, 17h00 Ecole de Physique, Auditoire Stueckelberg «Experiments in Physics : Hands-on Creative Processes» Prof. Manfred Euler Leibniz-Institute for Mathematics and Science Education (IPN) University of Kiel, Deutschland Experiments play a variety of different roles in knowledge generation. The lecture will focus on the function of experiments as engines of intuition that foster insights into complex processes. The experimental presentations consider self-organization phenomena in various domains that range from the nanomechanics of biomolecules to perception and cognition. The inherent universality contributes to elucidating the enigmatic phenomenon of creativity. Une verrée en compagnie du conférencier sera offerte après le colloque.       &...

  13. Designing a hands-on brain computer interface laboratory course. (United States)

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima


    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.

  14. A strategy learning model for autonomous agents based on classification

    Directory of Open Access Journals (Sweden)

    Śnieżyński Bartłomiej


    Full Text Available In this paper we propose a strategy learning model for autonomous agents based on classification. In the literature, the most commonly used learning method in agent-based systems is reinforcement learning. In our opinion, classification can be considered a good alternative. This type of supervised learning can be used to generate a classifier that allows the agent to choose an appropriate action for execution. Experimental results show that this model can be successfully applied for strategy generation even if rewards are delayed. We compare the efficiency of the proposed model and reinforcement learning using the farmer-pest domain and configurations of various complexity. In complex environments, supervised learning can improve the performance of agents much faster that reinforcement learning. If an appropriate knowledge representation is used, the learned knowledge may be analyzed by humans, which allows tracking the learning process

  15. Personal Coaching: Reflection on a Model for Effective Learning (United States)

    Griffiths, Kerryn


    The article "Personal Coaching: A Model for Effective Learning" (Griffiths, 2006) appeared in the "Journal of Learning Design" Volume 1, Issue 2 in 2006. Almost ten years on, Kerryn Griffiths reflects upon her original article. Specifically, Griffiths looks back at the combined coaching-learning model she suggested in her…

  16. Validating a Technology Enhanced Student-Centered Learning Model (United States)

    Kang, Myunghee; Hahn, Jungsun; Chung, Warren


    The Technology Enhanced Student Centered Learning (TESCL) Model in this study presents the core factors that ensure the quality of learning in a technology-supported environment. Although the model was conceptually constructed using a student-centered learning framework and drawing upon previous studies, it should be validated through real-world…

  17. A Judgement-Based Model of Workplace Learning (United States)

    Athanasou, James A.


    The purpose of this paper is to outline a judgement-based model of adult learning. This approach is set out as a Perceptual-Judgemental-Reinforcement approach to social learning under conditions of complexity and where there is no single, clearly identified correct response. The model builds upon the Hager-Halliday thesis of workplace learning and…

  18. Car-following Behavior Model Learning Using Timed Automata

    NARCIS (Netherlands)

    Zhang, Yihuan; Lin, Q.; Wang, Jun; Verwer, S.E.; Dochain, D.; Henrion, D.; Peaucelle, D.

    Learning driving behavior is fundamental for autonomous vehicles to “understand” traffic situations. This paper proposes a novel method for learning a behavioral model of car-following using automata learning algorithms. The model is interpretable for car-following behavior analysis. Frequent common

  19. Competition-Based Learning: A Model for the Integration of Competitions with Project-Based Learning Using Open Source LMS (United States)

    Issa, Ghassan; Hussain, Shakir M.; Al-Bahadili, Hussein


    In an effort to enhance the learning process in higher education, a new model for Competition-Based Learning (CBL) is presented. The new model utilizes two well-known learning models, namely, the Project-Based Learning (PBL) and competitions. The new model is also applied in a networked environment with emphasis on collective learning as well as…

  20. College English Students’ Autonomous Learning Motivation and Cultivation Model Research

    Institute of Scientific and Technical Information of China (English)

    王艳荣; 李娥


    Studying the autonomous learning motivation and excitation model can stimulate intrinsic motivation of foreign language learners,develop students self-management strategy evaluation are very necessary.The purpose of this paper is to give students the skills of listening and speaking for their autonomous learning.Then study the cultivation and motivation of college English students autonomous learning,hoping to make students to learn autonomous learning and stimulate their motivation fully.

  1. The layered learning practice model: Lessons learned from implementation. (United States)

    Pinelli, Nicole R; Eckel, Stephen F; Vu, Maihan B; Weinberger, Morris; Roth, Mary T


    Pharmacists' views about the implementation, benefits, and attributes of a layered learning practice model (LLPM) were examined. Eligible and willing attending pharmacists at the same institution that had implemented an LLPM completed an individual, 90-minute, face-to-face interview using a structured interview guide developed by the interdisciplinary study team. Interviews were digitally recorded and transcribed verbatim without personal identifiers. Three researchers independently reviewed preliminary findings to reach consensus on emerging themes. In cases where thematic coding diverged, the researchers discussed their analyses until consensus was reached. Of 25 eligible attending pharmacists, 24 (96%) agreed to participate. The sample was drawn from both acute and ambulatory care practice settings and all clinical specialty areas. Attending pharmacists described several experiences implementing the LLPM and perceived benefits of the model. Attending pharmacists identified seven key attributes for hospital and health-system pharmacy departments that are needed to design and implement effective LLPMs: shared leadership, a systematic approach, good communication, flexibility for attending pharmacists, adequate resources, commitment, and evaluation. Participants also highlighted several potential challenges and obstacles for organizations to consider before implementing an LLPM. According to attending pharmacists involved in an LLPM, successful implementation of an LLPM required shared leadership, a systematic approach, communication, flexibility, resources, commitment, and a process for evaluation. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  2. The development of learning material using learning cycle 5E model based stem to improve students’ learning outcomes in Thermochemistry (United States)

    sugiarti, A. C.; suyatno, S.; Sanjaya, I. G. M.


    The objective of this study is describing the feasibility of Learning Cycle 5E STEM (Science, Technology, Engineering, and Mathematics) based learning material which is appropriate to improve students’ learning achievement in Thermochemistry. The study design used 4-D models and one group pretest-posttest design to obtain the information about the improvement of sudents’ learning outcomes. The subject was learning cycle 5E based STEM learning materials which the data were collected from 30 students of Science class at 11th Grade. The techniques used in this study were validation, observation, test, and questionnaire. Some result attain: (1) all the learning materials contents were valid, (2) the practicality and the effectiveness of all the learning materials contents were classified as good. The conclution of this study based on those three condition, the Learnig Cycle 5E based STEM learning materials is appropriate to improve students’ learning outcomes in studying Thermochemistry.

  3. Educational Modelling Language and Learning Design: new challenges for instructional re-usability and personalized learning

    NARCIS (Netherlands)

    Hummel, Hans; Manderveld, Jocelyn; Tattersall, Colin; Koper, Rob


    Published: Hummel, H. G. K., Manderveld, J. M., Tattersall, C.,& Koper, E. J. R. (2004). Educational Modelling Language: new challenges for instructional re-usability and personalized learning. International Journal of Learning Technology, 1, 1, 110-111.

  4. Game Based Learning (GBL) adoption model for universities: cesim ...

    African Journals Online (AJOL)

    Game Based Learning (GBL) adoption model for universities: cesim simulation. ... The global market has escalated the need of Game Based Learning (GBL) to offer a wide range of courses since there is a ... AJOL African Journals Online.

  5. Cognitive Models for Learning to Control Dynamic Systems

    National Research Council Canada - National Science Library

    Eberhart, Russ; Hu, Xiaohui; Chen, Yaobin


    Report developed under STTR contract for topic "Cognitive models for learning to control dynamic systems" demonstrated a swarm intelligence learning algorithm and its application in unmanned aerial vehicle (UAV) mission planning...

  6. The Game Object Model and expansive learning: Creation ...

    African Journals Online (AJOL)

    The Game Object Model and expansive learning: Creation, instantiation, ... The aim of the paper is to develop insights into the design, integration, evaluation and use of video games in learning and teaching. ... AJOL African Journals Online.

  7. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science (United States)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  8. Learning classification models with soft-label information. (United States)

    Nguyen, Quang; Valizadegan, Hamed; Hauskrecht, Milos


    Learning of classification models in medicine often relies on data labeled by a human expert. Since labeling of clinical data may be time-consuming, finding ways of alleviating the labeling costs is critical for our ability to automatically learn such models. In this paper we propose a new machine learning approach that is able to learn improved binary classification models more efficiently by refining the binary class information in the training phase with soft labels that reflect how strongly the human expert feels about the original class labels. Two types of methods that can learn improved binary classification models from soft labels are proposed. The first relies on probabilistic/numeric labels, the other on ordinal categorical labels. We study and demonstrate the benefits of these methods for learning an alerting model for heparin induced thrombocytopenia. The experiments are conducted on the data of 377 patient instances labeled by three different human experts. The methods are compared using the area under the receiver operating characteristic curve (AUC) score. Our AUC results show that the new approach is capable of learning classification models more efficiently compared to traditional learning methods. The improvement in AUC is most remarkable when the number of examples we learn from is small. A new classification learning framework that lets us learn from auxiliary soft-label information provided by a human expert is a promising new direction for learning classification models from expert labels, reducing the time and cost needed to label data.

  9. What’s about Peer Tutoring Learning Model? (United States)

    Muthma'innah, M.


    Mathematics learning outcomes in Indonesia in general is still far from satisfactory. One effort that could be expected to solve the problem is to apply the model of peer tutoring learning in mathematics. This study aims to determine whether the results of students’ mathematics learning can be enhanced through peer tutoring learning models. This type of research is the study of literature, so that the method used is to summarize and analyze the results of relevant research that has been done. Peer tutoring learning model is a model of learning in which students learn in small groups that are grouped with different ability levels, all group members to work together and help each other to understand the material. By paying attention to the syntax of the learning, then learning will be invaluable peer tutoring for students who served as teachers and students are taught. In mathematics, the implementation of this learning model can make students understand each other mathematical concepts and help students in solving mathematical problems that are poorly understood, due to the interaction between students in learning. Then it will be able to improve learning outcomes in mathematics. The impact, it can be applied in mathematics learning.

  10. The Answering Process for Multiple-Choice Questions in Collaborative Learning: A Mathematical Learning Model Analysis (United States)

    Nakamura, Yasuyuki; Nishi, Shinnosuke; Muramatsu, Yuta; Yasutake, Koichi; Yamakawa, Osamu; Tagawa, Takahiro


    In this paper, we introduce a mathematical model for collaborative learning and the answering process for multiple-choice questions. The collaborative learning model is inspired by the Ising spin model and the model for answering multiple-choice questions is based on their difficulty level. An intensive simulation study predicts the possibility of…

  11. Learning from video modeling examples: Does gender matter?

    NARCIS (Netherlands)

    Hoogerheide, V.; Loyens, S.M.M.; van Gog, T.


    Online learning from video modeling examples, in which a human model demonstrates and explains how to perform a learning task, is an effective instructional method that is increasingly used nowadays. However, model characteristics such as gender tend to differ across videos, and the model-observer

  12. Learning from Video Modeling Examples: Does Gender Matter? (United States)

    Hoogerheide, Vincent; Loyens, Sofie M. M.; van Gog, Tamara


    Online learning from video modeling examples, in which a human model demonstrates and explains how to perform a learning task, is an effective instructional method that is increasingly used nowadays. However, model characteristics such as gender tend to differ across videos, and the model-observer similarity hypothesis suggests that such…



    Rustan, Edhy


    The objectives of the study are to determine: (1) condition on learning creative writing at high school students in Makassar, (2) requirement of learning model in creative writing, (3) program planning and design model in ideal creative writing, (4) feasibility of model study based on creative writing in neurolinguistic programming, and (5) the effectiveness of the learning model based on creative writing in neurolinguisticprogramming.The method of this research uses research development of L...

  14. Electronic learning and constructivism: a model for nursing education. (United States)

    Kala, Sasikarn; Isaramalai, Sang-Arun; Pohthong, Amnart


    Nurse educators are challenged to teach nursing students to become competent professionals, who have both in-depth knowledge and decision-making skills. The use of electronic learning methods has been found to facilitate the teaching-learning process in nursing education. Although learning theories are acknowledged as useful guides to design strategies and activities of learning, integration of these theories into technology-based courses appears limited. Constructivism is a theoretical paradigm that could prove to be effective in guiding the design of electronic learning experiences for the purpose of providing positive outcomes, such as the acquisition of knowledge and decision-making skills. Therefore, the purposes of this paper are to: describe electronic learning, present a brief overview of what is known about the outcomes of electronic learning, discuss constructivism theory, present a model for electronic learning using constructivism, and describe educators' roles emphasizing the utilization of the model in developing electronic learning experiences in nursing education.

  15. Designing for Learning and Play - The Smiley Model as Framework

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke


    digital games. The Smiley Model inspired and provided a scaffold or a heuristic for the overall gamified learning design –- as well as for the students’ learning game design processes when creating small games turning the learning situation into an engaging experience. The audience for the experiments......This paper presents a framework for designing engaging learning experiences in games – the Smiley Model. In this Design-Based Research project, student-game-designers were learning inside a gamified learning design - while designing and implementing learning goals from curriculum into the small...... was adult upper secondary general students as well as 7th grade primary school students. The intention with this article is to inspire future learning designers that would like to experiment with integrating learning and play....

  16. Learner Open Modeling in Adaptive Mobile Learning System for Supporting Student to Learn English

    Directory of Open Access Journals (Sweden)

    Van Cong Pham


    Full Text Available This paper represents a personalized context-aware mobile learning architecture for supporting student to learn English as foreign language in order to prepare for TOEFL test. We consider how to apply open learner modeling techniques to adapt contents for different learners based on context, which includes location, amount of time to learn, the manner as well as learner's knowledge in learning progress. Through negotiation with system, the editable learner model will be updated to support adaptive engine to select adaptive contents meeting learner's demands. Empirical testing results for students who used application prototype indicate that interaction user modeling is helpful in supporting learner to learn adaptive materials.

  17. Development of a model for whole brain learning of physiology. (United States)

    Eagleton, Saramarie; Muller, Anton


    In this report, a model was developed for whole brain learning based on Curry's onion model. Curry described the effect of personality traits as the inner layer of learning, information-processing styles as the middle layer of learning, and environmental and instructional preferences as the outer layer of learning. The model that was developed elaborates on these layers by relating the personality traits central to learning to the different quadrants of brain preference, as described by Neethling's brain profile, as the inner layer of the onion. This layer is encircled by the learning styles that describe different information-processing preferences for each brain quadrant. For the middle layer, the different stages of Kolb's learning cycle are classified into the four brain quadrants associated with the different brain processing strategies within the information processing circle. Each of the stages of Kolb's learning cycle is also associated with a specific cognitive learning strategy. These two inner circles are enclosed by the circle representing the role of the environment and instruction on learning. It relates environmental factors that affect learning and distinguishes between face-to-face and technology-assisted learning. This model informs on the design of instructional interventions for physiology to encourage whole brain learning.

  18. Effect of quantum learning model in improving creativity and memory (United States)

    Sujatmika, S.; Hasanah, D.; Hakim, L. L.


    Quantum learning is a combination of many interactions that exist during learning. This model can be applied by current interesting topic, contextual, repetitive, and give opportunities to students to demonstrate their abilities. The basis of the quantum learning model are left brain theory, right brain theory, triune, visual, auditorial, kinesthetic, game, symbol, holistic, and experiential learning theory. Creativity plays an important role to be success in the working world. Creativity shows alternatives way to problem-solving or creates something. Good memory plays a role in the success of learning. Through quantum learning, students will use all of their abilities, interested in learning and create their own ways of memorizing concepts of the material being studied. From this idea, researchers assume that quantum learning models can improve creativity and memory of the students.

  19. Hands-on Physics Education of Residents in Diagnostic Radiology. (United States)

    Zhang, Jie; Hardy, Peter A; DiSantis, David J; Oates, M Elizabeth


    The American Board of Radiology Core Examination integrates assessment of physics knowledge into its overall testing of clinical radiology, with an emphasis on understanding image quality and artifacts, radiation dose, and patient safety for each modality or subspecialty organ system. Accordingly, achieving a holistic approach to physics education of radiology residents is a huge challenge. The traditional teaching of radiological physics-simply through didactic lectures-was not designed for such a holistic approach. Admittedly, time constraints and clinical demands can make incorporation of physics teaching into clinical practice problematic. We created and implemented a week-long, intensive physics rotation for fledgling radiology residents and evaluated its effectiveness. The dedicated physics rotation is held for 1 week during the first month of radiology residency. It comprises three components: introductory lectures, hands-on practical clinical physics operations, and observation of clinical image production. A brief introduction of the physics pertinent to each modality is given at the beginning of each session. Hands-on experimental demonstrations are emphasized, receiving the greatest allotment of time. The residents perform experiments such as measuring radiation dose, studying the relationship between patient dose and clinical practice (eg, fluoroscopy technique), investigating the influence of acquisition parameters (kV, mAs) on radiographs, and evaluating image quality using computed tomography, magnetic resonance imaging, ultrasound, and gamma camera/single-photon emission computed tomography/positron emission tomography phantoms. Quantitative assessment of the effectiveness of the rotation is based on an examination that tests the residents' grasp of basic medical physics concepts along with written course evaluations provided by each resident. The pre- and post-rotation tests show that after the physics rotation, the average correct score of 25

  20. Representing adaptive and adaptable Units of Learning. How to model personalized eLearning in IMS Learning Design

    NARCIS (Netherlands)

    Burgos, Daniel; Tattersall, Colin; Koper, Rob


    Burgos, D., Tattersall, C., & Koper, E. J. R. (2007). Representing adaptive and adaptable Units of Learning. How to model personalized eLearning in IMS Learning Design. In B. Fernández Manjon, J. M. Sanchez Perez, J. A. Gómez Pulido, M. A. Vega Rodriguez & J. Bravo (Eds.), Computers and Education:

  1. Group Modeling in Social Learning Environments (United States)

    Stankov, Slavomir; Glavinic, Vlado; Krpan, Divna


    Students' collaboration while learning could provide better learning environments. Collaboration assumes social interactions which occur in student groups. Social theories emphasize positive influence of such interactions on learning. In order to create an appropriate learning environment that enables social interactions, it is important to…

  2. Hands-on science: science education with and for society


    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.


    The decisive importance of Science on the development of modern societies gives Science Education a role of special impact. Society sets the requirements rules and procedures of Education defining what concepts and competencies citizens must learn and how this learning should take place. Educational policies set by governments, elected and or imposed, not always reflects the will and ruling of Society. The School as pivotal element of our modern educational system must look ...

  3. Business Models for E-Learning


    Hoppe, Gabriela; Breitner, Michael H.


    E(Electronic)-learning becomes more and more important. Reasons are the paramount importance of knowledge, life-time learning, globalization and mobility. Not all providers of e-learning products succeed in closing the gap between production costs and revenues. Especially in the academic sector e-learning projects suffer more and more from decreasing funding. For many currently active research groups it is essential to market their research results, e. g. e-learning applications, in order to ...

  4. Telescope Construction: A Hands-On Approach to Astronomy Education (United States)

    Sarrazine, Angela R.; Albin, E.


    We report on a popular semester-long telescope making course offered at Fernbank Science Center in Atlanta, GA. The program is tailored for junior / senior level high school students and incorporates the current educational performance standards for the state of Georgia. This course steps out of the traditional classroom environment and allows students to explore optics and astronomical concepts by constructing their own telescopes. Student telescopes follow the classic six-inch f/8 Newtonian reflector design, which has proven to be a good compromise between portability and aperture. Participants meet for a few hours, twice weekly, to build their telescopes. Over the course of the semester, raw one-inch thick Pyrex mirror blanks are ground, polished, and figured by hand into precision telescope objectives. Along the way, students are introduced to the Ronchi and Foucault methods for testing optics and once figured, completed mirrors are then chemically silvered. A plywood Dobsonian-style base is built and eventually mated with an optical tube made from a standard eight-inch concrete form tube or sonotube. An evening of star testing the optics and observation is planned at the end of the semester to insure the proper operation of each telescope. In summary, we believe that a hands-on approach to the understanding and use of optical telescopes is a great way not only to instill enthusiasm among students for the night sky, but may perhaps inspire the next generation of professional telescope makers.

  5. The Effect of Learning Based on Technology Model and Assessment Technique toward Thermodynamic Learning Achievement (United States)

    Makahinda, T.


    The purpose of this research is to find out the effect of learning model based on technology and assessment technique toward thermodynamic achievement by controlling students intelligence. This research is an experimental research. The sample is taken through cluster random sampling with the total respondent of 80 students. The result of the research shows that the result of learning of thermodynamics of students who taught the learning model of environmental utilization is higher than the learning result of student thermodynamics taught by simulation animation, after controlling student intelligence. There is influence of student interaction, and the subject between models of technology-based learning with assessment technique to student learning result of Thermodynamics, after controlling student intelligence. Based on the finding in the lecture then should be used a thermodynamic model of the learning environment with the use of project assessment technique.

  6. Efficient model learning methods for actor-critic control. (United States)

    Grondman, Ivo; Vaandrager, Maarten; Buşoniu, Lucian; Babuska, Robert; Schuitema, Erik


    We propose two new actor-critic algorithms for reinforcement learning. Both algorithms use local linear regression (LLR) to learn approximations of the functions involved. A crucial feature of the algorithms is that they also learn a process model, and this, in combination with LLR, provides an efficient policy update for faster learning. The first algorithm uses a novel model-based update rule for the actor parameters. The second algorithm does not use an explicit actor but learns a reference model which represents a desired behavior, from which desired control actions can be calculated using the inverse of the learned process model. The two novel methods and a standard actor-critic algorithm are applied to the pendulum swing-up problem, in which the novel methods achieve faster learning than the standard algorithm.

  7. Exploring the Solar System in the Classroom: A Hands-On Approach (United States)

    Coombs, Cassandra R.


    This final report discusses the development and implementation of several educational products for K-16 teachers and students. Specifically, I received support for: (A) three K-12 Teacher workshops, Exploring the Solar System in the Classroom: A Hands-On Approach, and minimal Support to finish two computer-based tutorials. (B) Contact Light: An Interactive CD-ROM, and (C) Another Look at Taurus Littrow: An Interactive GIS Database. Each of these projects directly supports NASA's Strategic Plan to: "Involve the education community in our endeavors to inspire America's students, create learning opportunities, enlighten inquisitive minds", and, to "communicate widely the content, relevancy, and excitement of NASA's missions and discoveries to inspire and to increase understanding and the broad application of science and technology." Attachment: Appendix A. And also article: "Aristarchus plateau: as potential lunar base site."

  8. Structural Equation Modeling towards Online Learning Readiness, Academic Motivations, and Perceived Learning (United States)

    Horzum, Mehmet Baris; Kaymak, Zeliha Demir; Gungoren, Ozlem Canan


    The relationship between online learning readiness, academic motivations, and perceived learning was investigated via structural equation modeling in the research. The population of the research consisted of 750 students who studied using the online learning programs of Sakarya University. 420 of the students who volunteered for the research and…

  9. The Effects of ePortfolio-Based Learning Model on Student Self-Regulated Learning (United States)

    Nguyen, Lap Trung; Ikeda, Mitsuru


    Self-regulated learners are aware of their knowledge and skills and proactive in learning. They view learning as a controllable process and accept more responsibility for the results of this process. The research described in this article proposes, implements, and evaluates an ePortfolio-based self-regulated learning model. An ePortfolio system…

  10. Engaging Students in Mathematical Modeling through Service-Learning (United States)

    Carducci, Olivia M.


    I have included a service-learning project in my mathematical modeling course for the last 6 years. This article describes my experience with service-learning in this course. The article includes a description of the course and the service-learning projects. There is a discussion of how to connect with community partners and identify…

  11. Stochastic Online Learning in Dynamic Networks under Unknown Models (United States)


    The key is to develop online learning strategies at each individual node. Specifically, through local information exchange with its neighbors, each...infinitely repeated game with incomplete information and developed a dynamic pricing strategy referred to as Competitive and Cooperative Demand Learning...Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for

  12. Research on Model of Student Engagement in Online Learning (United States)

    Peng, Wang


    In this study, online learning refers students under the guidance of teachers through the online learning platform for organized learning. Based on the analysis of related research results, considering the existing problems, the main contents of this paper include the following aspects: (1) Analyze and study the current student engagement model.…

  13. Stochastic collusion and the power law of learning: a general reinforcement learning model of cooperation

    NARCIS (Netherlands)

    Flache, A.


    Concerns about models of cultural adaptation as analogs of genetic selection have led cognitive game theorists to explore learning-theoretic specifications. Two prominent examples, the Bush-Mosteller stochastic learning model and the Roth-Erev payoff-matching model, are aligned and integrated as

  14. Knowledge transfer for learning robot models via local procrustes analysis

    CSIR Research Space (South Africa)

    Makondo, N


    Full Text Available Learning of robot kinematic and dynamic models from data has attracted much interest recently as an alternative to manually defined models. However, the amount of data required to learn these models becomes large when the number of degrees...

  15. A 3D Geometry Model Search Engine to Support Learning (United States)

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin


    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  16. An extended dual search space model of scientific discovery learning

    NARCIS (Netherlands)

    van Joolingen, Wouter; de Jong, Anthonius J.M.


    This article describes a theory of scientific discovery learning which is an extension of Klahr and Dunbar''s model of Scientific Discovery as Dual Search (SDDS) model. We present a model capable of describing and understanding scientific discovery learning in complex domains in terms of the SDDS

  17. Learning from video modeling examples: does gender matter?

    NARCIS (Netherlands)

    V. Hoogerheide (Vincent); S.M.M. Loyens (Sofie); T.A.J.M. van Gog (Tamara)


    textabstractOnline learning from video modeling examples, in which a human model demonstrates and explains how to perform a learning task, is an effective instructional method that is increasingly used nowadays. However, model characteristics such as gender tend to differ across videos, and the

  18. Blast a Biofilm: A Hands-On Activity for School Children and Members of the Public

    Directory of Open Access Journals (Sweden)

    Victoria L. Marlow


    Full Text Available Microbial biofilms are very common in nature and have both detrimental and beneficial effects on everyday life. Practical and hands-on activities have been shown to achieve greater learning and engagement with science by young people (1, 4, 5. We describe an interactive activity, developed to introduce microbes and biofilms to school age children and members of the public. Biofilms are common in nature and, as the favored mode of growth for microbes, biofilms affect many parts ofeveryday life. This hands-on activity highlights the key  concepts of biofilms by allowing participants to first build, then attempt to ‘blast,’ a biofilm, thus enabling the robust nature of biofilms to become apparent. We developed the blast-a-biofilm activity as part of our two-day Magnificent Microbes event, which took place at the Dundee Science Centre-Sensation in May 2010 (6. This public engagement event was run by scientists from the Division of Molecular Microbiology at the University of Dundee. The purpose of the event was to use fun and interesting activities to make both children and adults think about how fascinating microbes are. Additionally, we aimed to develop interactive resources that could be used in future events and learning environments, of which the blast-a-biofilm activity is one such resource. Scientists and policy makers in the UK believe engaging the public with research ensures that the work of universities and research institutes is relevant to society and wider social concerns and can also help scientists actively contribute to positive social change (2. The activity is aimed at junior school age children (9–11 years and adults with little or no knowledge of microbiology. The activity is suitable for use at science festivals, science clubs, and also in the classroom, where it can serve as a tool to enrich and enhance the school curriculum.

  19. How can the curation of hands-on STEM activities power successful mobile apps and websites? (United States)

    Porcello, D.; Peticolas, L. M.; Schwerin, T. G.


    The Lawrence Hall of Science (LHS) is University of California, Berkeley's public science center. Over the last decade, the Center for Technology Innovation at LHS has partnered with many institutions to establish a strong track record of developing successful technology solutions to support STEM teaching and learning within informal environments. Curation by subject-matter experts has been at the heart of many educational technology products from LHS and its partners that are directed at educators and families. This work includes: (1) popular digital libraries for inquiry-based activities at (NSF DRL #0735007) and NASA Earth and Space science education resources at; and novel mobile apps like DIY Sun Science (NASA NNX10AE05G) and DIY Human Body (NIH 5R25OD010543) designed to scaffold exploration of STEM phenomena at home. Both NASA Wavelength and DIY Sun Science arose out of long-term collaborations with the Space Sciences Laboratory at UC Berkeley, Institute for Global Environmental Strategies (IGES), and other NASA-funded organizations, in partnership with NASA through cooperative agreements. This session will review the development, formative evaluation, and usage metrics for these two Earth and Space science-themed educational technology products directly relevant to the AGU community. Questions reviewed by presenters will include: What makes a good hands-on activity, and what essential information do educators depend on when searching for programming additions? What content and connections do families need to explore hands-on activities? How can technology help incorporate educational standards into the discovery process for learning experiences online? How do all these components drive the design and user experience of websites and apps that showcase STEM content?

  20. Exploring the Dimensions of E-learning Maturity Model

    Directory of Open Access Journals (Sweden)

    George Maher Iskander


    Full Text Available Despite the highlighting on e-learning, it was obvious that models for successful deployment have not yet been recognized. Even with the huge quantities of money being spent, it is not clear that any enhancement in student learning outcomes has been recognized. To address this issue, this qualitative research aimed to explore and understand dimensions of E-learning Maturity Model (ELMM. An inductive approach, using qualitative methods, was used in this research. Fifty interviewees suggested five dimensions: Students' Attitudes, University attitudes from students’ perspectives, E-learning features, E-learning implementation and Effects of E-learning on students. Students from different majors and levels participated in this study. Findings of this study show that, there are significant five factors which formulate ELMM. Moreover, the study demonstrates that e-learning features have significant effects on student. It also highlights the relevance of using qualitative research in exploring maturity concept in e- learning.

  1. Spectral Learning for Supervised Topic Models. (United States)

    Ren, Yong; Wang, Yining; Zhu, Jun


    Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.

  2. Implications of Multimodal Learning Models for foreign language teaching and learning

    Directory of Open Access Journals (Sweden)

    Miguel Farías


    Full Text Available This literature review article approaches the topic of information and communications technologies from the perspective of their impact on the language learning process, with particular emphasis on the most appropriate designs of multimodal texts as informed by models of multimodal learning. The first part contextualizes multimodality within the fields of discourse studies, the psychology of learning and CALL; the second, deals with multimodal conceptions of reading and writing by discussing hypertextuality and literacy. A final section outlines the possible implications of multimodal learning models for foreign language teaching and learning.

  3. A model for hypermedia learning environments based on electronic books

    Directory of Open Access Journals (Sweden)

    Ignacio Aedo


    Full Text Available Current hypermedia learning environments do not have a common development basis. Their designers have often used ad-hoc solutions to solve the learning problems they have encountered. However, hypermedia technology can take advantage of employing a theoretical scheme - a model - which takes into account various kinds of learning activities, and solves some of the problems associated with its use in the learning process. The model can provide designers with the tools for creating a hypermedia learning system, by allowing the elements and functions involved in the definition of a specific application to be formally represented.

  4. Windows 7 A quick, hands-on introduction

    CERN Document Server

    Lee, Wei-Meng


    This compact book offers the quickest path for Windows users to get started with Microsoft's Windows 7 operating system. You get the essential information you need to upgrade or install the system and configure it to fit your activities, along with a tour of Windows 7's features and built-in applications. Microsoft has learned from the mistakes of Windows Vista, and Windows 7 shows it-this new OS is much faster and more stable. With Windows 7: Up and Running, you'll learn what's new and what's changed from XP and Vista, and get advice on ways to use this system for work, entertainment, inst

  5. TH-E-201-02: Hands-On Physics Teaching of Residents in Diagnostic Radiology

    International Nuclear Information System (INIS)

    Zhang, J.


    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program. The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant

  6. TH-E-201-02: Hands-On Physics Teaching of Residents in Diagnostic Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [University of Kentucky (United States)


    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program. The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.

  7. The Implementation of Discovery Learning Model with Scientific Learning Approach to Improve Students’ Critical Thinking in Learning History

    Directory of Open Access Journals (Sweden)

    Edi Nurcahyo


    Full Text Available Historical learning has not reached optimal in the learning process. It is caused by the history teachers’ learning model has not used the innovative learning models. Furthermore, it supported by the perception of students to the history subject because it does not become final exam (UN subject so it makes less improvement and builds less critical thinking in students’ daily learning. This is due to the lack of awareness of historical events and the availability of history books for students and teachers in the library are still lacking. Discovery learning with scientific approach encourages students to solve problems actively and able to improve students' critical thinking skills with scientific approach so student can build scientific thinking include observing, asking, reasoning, trying, and networking   Keywords: discovery learning, scientific, critical thinking

  8. Statistical Learning Theory: Models, Concepts, and Results


    von Luxburg, Ulrike; Schoelkopf, Bernhard


    Statistical learning theory provides the theoretical basis for many of today's machine learning algorithms. In this article we attempt to give a gentle, non-technical overview over the key ideas and insights of statistical learning theory. We target at a broad audience, not necessarily machine learning researchers. This paper can serve as a starting point for people who want to get an overview on the field before diving into technical details.

  9. A Collaborative Model for Ubiquitous Learning Environments (United States)

    Barbosa, Jorge; Barbosa, Debora; Rabello, Solon


    Use of mobile devices and widespread adoption of wireless networks have enabled the emergence of Ubiquitous Computing. Application of this technology to improving education strategies gave rise to Ubiquitous e-Learning, also known as Ubiquitous Learning. There are several approaches to organizing ubiquitous learning environments, but most of them…

  10. Toward A Dual-Learning Systems Model of Speech Category Learning

    Directory of Open Access Journals (Sweden)

    Bharath eChandrasekaran


    Full Text Available More than two decades of work in vision posits the existence of dual-learning systems of category learning. The reflective system uses working memory to develop and test rules for classifying in an explicit fashion, while the reflexive system operates by implicitly associating perception with actions that lead to reinforcement. Dual-learning systems models hypothesize that in learning natural categories, learners initially use the reflective system and, with practice, transfer control to the reflexive system. The role of reflective and reflexive systems in auditory category learning and more specifically in speech category learning has not been systematically examined. In this article we describe a neurobiologically-constrained dual-learning systems theoretical framework that is currently being developed in speech category learning and review recent applications of this framework. Using behavioral and computational modeling approaches, we provide evidence that speech category learning is predominantly mediated by the reflexive learning system. In one application, we explore the effects of normal aging on non-speech and speech category learning. We find an age related deficit in reflective-optimal but not reflexive-optimal auditory category learning. Prominently, we find a large age-related deficit in speech learning. The computational modeling suggests that older adults are less likely to transition from simple, reflective, uni-dimensional rules to more complex, reflexive, multi-dimensional rules. In a second application we summarize a recent study examining auditory category learning in individuals with elevated depressive symptoms. We find a deficit in reflective-optimal and an enhancement in reflexive-optimal auditory category learning. Interestingly, individuals with elevated depressive symptoms also show an advantage in learning speech categories. We end with a brief summary and description of a number of future directions.

  11. Hands-on lessons in ergonomics for youth

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C; Alexandre, M; Jacobs, K


    Ergonomics risk factors apply to everybody. Numerous adults have experienced disabling injuries related to use of computers and other forms of technology. Now children are using technology even more than adults. Increasingly ergonomics risk factors are being recognized as present in the world of children. Outreach to schools and the surrounding community by employers may help protect the future work force. A growing body of researchers believe that children can benefit from the early introduction of ergonomics awareness and preventative measures. While individual representatives of the educational system may embrace the concept of introducing ergonomics into the classroom, a number of barriers can prevent implementation of integrated programs. Some of the barriers to introducing ergonomics in schools have been absence of a tie to educational standards, the existing demands on teaching hours, and the absence of easily executable lesson plans. Ergonomics is rarely included in teacher training and professional ergonomics expertise is needed for the development of a class-based program. As part of Strategic Vision plan for 2025, a National Laboratory identified community outreach and the future workforces as key areas for initiatives. A series of hands-on interactive modules have been developed by professional ergonomics specialists. They are being tested with elementary, middle and high school students. Where possible, the content has been tied to the educational standards in the State of California in the USA. Currently the modules include grip strength, effective breathing, optimal keyboard and mouse positions, optimizing chairs, posture and movement, backpack safety and safe lifting. Each module takes the students through a related activity or experience. An individual worksheet asks them questions about the experience and guides them to consider implications in their activities of daily living. A module on hearing is under development. The goal is to have a



    Ana Ana; Lutfhiyah Nurlaela


    The study aims to find a model of patisserie project-based learning with production approach that can improve effectiveness of patisserie learning. Delphi Technique, Cohen's Kappa and percentages of agreements were used to assess model of patisserie project based learning. Data collection techniques employed in the study were questionnaire, check list worksheet, observation, and interview sheets. Subjects were 13 lectures of expertise food and nutrition and 91 students of Food and Nutrition ...

  13. Teaching Computer Security with a Hands-On Component


    Murthy , Narayan


    Part 2: WISE 7; International audience; To address national needs for computer security education, many universities have incorporated computer and security courses into their undergraduate and graduate curricula. Our department has introduced computer security courses at both the undergraduate and the graduate level. This paper describes our approach, our experiences, and lessons learned in teaching a Computer Security Overview course.There are two key elements in the course: Studying comput...


    Directory of Open Access Journals (Sweden)

    Jusep Saputra


    Full Text Available Self-regulated learning of learners can be achieved, if in the process of learning mathematics provides an open opportunity for students to learn independently. This research is a mixed method type embedded design, which aims to do studies focused on the use of the Problem Based Learning (PBL model assisted e-learning to student self-regulated learning. Sample selection is done on the purposive sampling and was taken 2 class contracting courses of school math III. Class A numbered 50 members, 24 the superior group and 26 the low group, given the treatment with PBL models assisted e-learning and class B numbered 50, 27 the superior group and 23 the low group, with expository. Instruments used in this research is self-regulated learning questionnaire with Likert scale. Based on data analysis we concluded that (1 Self-regulated learning of superior and low student who obtains aided PBL models assisted e-learning is better than self-regulated learning of superior and low superior students who obtain expository.

  15. A Constructionist Learning Environment for Teachers to Model Learning Designs (United States)

    Laurillard, D.; Charlton, P.; Craft, B.; Dimakopoulos, D.; Ljubojevic, D.; Magoulas, G.; Masterman, E.; Pujadas, R.; Whitley, E.A.; Whittlestone, K.


    The use of digital technologies is now widespread and increasing, but is not always optimized for effective learning. Teachers in higher education have little time or support to work on innovation and improvement of their teaching, which often means they simply replicate their current practice in a digital medium. This paper makes the case for a…

  16. A Model for Discussing the Quality of Technology-Enhanced Learning in Blended Learning Programmes (United States)

    Casanova, Diogo; Moreira, António


    This paper presents a comprehensive model for supporting informed and critical discussions concerning the quality of Technology-Enhanced Learning in Blended Learning programmes. The model aims to support discussions around domains such as how institutions are prepared, the participants' background and expectations, the course design, and the…

  17. Building entity models through observation and learning (United States)

    Garcia, Richard; Kania, Robert; Fields, MaryAnne; Barnes, Laura


    To support the missions and tasks of mixed robotic/human teams, future robotic systems will need to adapt to the dynamic behavior of both teammates and opponents. One of the basic elements of this adaptation is the ability to exploit both long and short-term temporal data. This adaptation allows robotic systems to predict/anticipate, as well as influence, future behavior for both opponents and teammates and will afford the system the ability to adjust its own behavior in order to optimize its ability to achieve the mission goals. This work is a preliminary step in the effort to develop online entity behavior models through a combination of learning techniques and observations. As knowledge is extracted from the system through sensor and temporal feedback, agents within the multi-agent system attempt to develop and exploit a basic movement model of an opponent. For the purpose of this work, extraction and exploitation is performed through the use of a discretized two-dimensional game. The game consists of a predetermined number of sentries attempting to keep an unknown intruder agent from penetrating their territory. The sentries utilize temporal data coupled with past opponent observations to hypothesize the probable locations of the opponent and thus optimize their guarding locations.

  18. Learning to Apply Models of Materials While Explaining Their Properties (United States)

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari


    Background: Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose: This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials.…

  19. Integrating Collaborative and Decentralized Models to Support Ubiquitous Learning (United States)

    Barbosa, Jorge Luis Victória; Barbosa, Débora Nice Ferrari; Rigo, Sandro José; de Oliveira, Jezer Machado; Rabello, Solon Andrade, Jr.


    The application of ubiquitous technologies in the improvement of education strategies is called Ubiquitous Learning. This article proposes the integration between two models dedicated to support ubiquitous learning environments, called Global and CoolEdu. CoolEdu is a generic collaboration model for decentralized environments. Global is an…

  20. Refreshing Information Literacy: Learning from Recent British Information Literacy Models (United States)

    Martin, Justine


    Models play an important role in helping practitioners implement and promote information literacy. Over time models can lose relevance with the advances in technology, society, and learning theory. Practitioners and scholars often call for adaptations or transformations of these frameworks to articulate the learning needs in information literacy…

  1. Modelling unsupervised online-learning of artificial grammars: linking implicit and statistical learning. (United States)

    Rohrmeier, Martin A; Cross, Ian


    Humans rapidly learn complex structures in various domains. Findings of above-chance performance of some untrained control groups in artificial grammar learning studies raise questions about the extent to which learning can occur in an untrained, unsupervised testing situation with both correct and incorrect structures. The plausibility of unsupervised online-learning effects was modelled with n-gram, chunking and simple recurrent network models. A novel evaluation framework was applied, which alternates forced binary grammaticality judgments and subsequent learning of the same stimulus. Our results indicate a strong online learning effect for n-gram and chunking models and a weaker effect for simple recurrent network models. Such findings suggest that online learning is a plausible effect of statistical chunk learning that is possible when ungrammatical sequences contain a large proportion of grammatical chunks. Such common effects of continuous statistical learning may underlie statistical and implicit learning paradigms and raise implications for study design and testing methodologies. Copyright © 2014 Elsevier Inc. All rights reserved.


    Directory of Open Access Journals (Sweden)

    Oleksandra Bezverkha


    Full Text Available In the article, the acute problem of implementation of pedagogical innovations and online technologies into the educational process is analyzed. The article explores the advantages of blended learning as a latter-day educational program in comparison with traditional campus learning. Blended learning is regarded worldwide as the combination of classroom face-to-face sessions with interactive learning opportunities created online. The purpose of the article is to identify blended learning transformational potential impacting students and teachers by ensuring a more personalized learning experience. The concept of blended learning, as a means to enhance foreign language teaching and learning in the classroom during the traditional face-to-face interaction between a teacher and a student, combined with computer-mediated activities, is examined. In the article, the main classification of blended learning models is established. There are four main blended learning models which include both face-to-face instruction time and online learning: Rotation Model, Flex Model, A La Carte Model, and Enriched Virtual Model. Once implemented successfully, a blended model can take advantage of both brick-and-mortar and digital worlds, providing significant benefits for the educational establishments and learners. To integrate any of the blended learning models, a teacher can create online activities that enable learners to explore the topic online at home, and then develop face-to-face interactions to dig deeper into the subject matter at the lesson. The use of blended learning models in order to expand educational opportunities for students while the foreign language acquisition, by increasing the availability and flexibility of education, taking into account student individual learning needs, with some element of student control over time, place and pace, is explored. The realization of blended learning models in regards to age and physiological peculiarities of

  3. Intensitas Perilaku Pengguna E-learning System dengan Model Utaut


    Sari, Fatma; Purnamasari, Susan Dian


    This study aims to determine behavioral intention in the use of e-learning system using models UTAUT. The phenomenon underlying the research is: It is not yet optimal use of e-learning by students information systems in the learning process, not yet optimal socialization of the existence of e-learning, so that is not maximized and yet utilization measurability of the impact of using e-learning for lecturers.This study is limited in its scope: analysis of the influence of performance expectanc...

  4. A model of using social media for collaborative learning to enhance learners’ performance on learning

    Directory of Open Access Journals (Sweden)

    Waleed Mugahed Al-Rahmi


    Full Text Available Social media has been always described as the channel through which knowledge is transmitted between communities and learners. This social media has been utilized by colleges in a way to encourage collaborative learning and social interaction. This study explores the use of social media in the process of collaborative learning through learning Quran and Hadith. Through this investigation, different factors enhancing collaborative learning in learning Quran and Hadith in the context of using social media are going to be examined. 340 respondents participated in this study. The structural equation modeling (SEM was used to analyze the data obtained. Upon analysis and structural model validities, the study resulted in a model used for measuring the influences of the different variables. The study reported direct and indirect significant impacts of these variables on collaborative learning through the use of social media which might lead to a better performance by learners.

  5. Can model-free reinforcement learning explain deontological moral judgments? (United States)

    Ayars, Alisabeth


    Dual-systems frameworks propose that moral judgments are derived from both an immediate emotional response, and controlled/rational cognition. Recently Cushman (2013) proposed a new dual-system theory based on model-free and model-based reinforcement learning. Model-free learning attaches values to actions based on their history of reward and punishment, and explains some deontological, non-utilitarian judgments. Model-based learning involves the construction of a causal model of the world and allows for far-sighted planning; this form of learning fits well with utilitarian considerations that seek to maximize certain kinds of outcomes. I present three concerns regarding the use of model-free reinforcement learning to explain deontological moral judgment. First, many actions that humans find aversive from model-free learning are not judged to be morally wrong. Moral judgment must require something in addition to model-free learning. Second, there is a dearth of evidence for central predictions of the reinforcement account-e.g., that people with different reinforcement histories will, all else equal, make different moral judgments. Finally, to account for the effect of intention within the framework requires certain assumptions which lack support. These challenges are reasonable foci for future empirical/theoretical work on the model-free/model-based framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Learning general phonological rules from distributional information: a computational model. (United States)

    Calamaro, Shira; Jarosz, Gaja


    Phonological rules create alternations in the phonetic realizations of related words. These rules must be learned by infants in order to identify the phonological inventory, the morphological structure, and the lexicon of a language. Recent work proposes a computational model for the learning of one kind of phonological alternation, allophony (Peperkamp, Le Calvez, Nadal, & Dupoux, 2006). This paper extends the model to account for learning of a broader set of phonological alternations and the formalization of these alternations as general rules. In Experiment 1, we apply the original model to new data in Dutch and demonstrate its limitations in learning nonallophonic rules. In Experiment 2, we extend the model to allow it to learn general rules for alternations that apply to a class of segments. In Experiment 3, the model is further extended to allow for generalization by context; we argue that this generalization must be constrained by linguistic principles. Copyright © 2014 Cognitive Science Society, Inc.

  7. The Effect of Cooperative Learning Model of Teams Games Tournament (TGT) and Students' Motivation toward Physics Learning Outcome (United States)

    Nadrah; Tolla, Ismail; Ali, Muhammad Sidin; Muris


    This research aims at describing the effect of cooperative learning model of Teams Games Tournament (TGT) and motivation toward physics learning outcome. This research was a quasi-experimental research with a factorial design conducted at SMAN 2 Makassar. Independent variables were learning models. They were cooperative learning model of TGT and…

  8. The Role of Hands-On Science Labs in Engaging the Next Generation of Space Explorers (United States)

    Williams, Teresa A. J.


    Each country participating on the International Space Station (ISS) recognizes the importance of educating the coming generation about space and its opportunities. In 2001 the St. James School in downtown Houston, Texas was approached with a proposal to renovate an unused classroom and become involved with the "GLOBE" Program and other Internet based international learning resources. This inner-city school willingly agreed to the program based on "hands-on" learning. One month after room conversion and ten computer terminals donated by area businesses connectivity established to the internet the students immediately began using the "Global Learning and Observations to Benefit the Environment (GLOBE)" program and the International Space Station (ISS) Program educational resources. The "GLOBE" program involves numerous scientific and technical agencies studying the Earth, who make it their goal to provide educational resources to an international community of K-12 scientist. This project was conceived as a successor to the "Interactive Elementary Space Museum for the New Millennium" a space museum in a school corridor without the same type of budget. The laboratory is a collaboration, which involved area businesses, volunteers from the NASA/Johnson Space Center ISS Outreach Program, and students. This paper will outline planning and operation of the school science laboratory project from the point of view of the schools interest and involvement and assess its success to date. It will consider the lessons learned by the participating school administrations in the management of the process and discuss some of the issues that can both promote and discourage school participation in such projects.

  9. Model brain based learning (BBL and whole brain teaching (WBT in learning

    Directory of Open Access Journals (Sweden)

    Baiq Sri Handayani


    Full Text Available The learning process is a process of change in behavior as a form of the result of learning. The learning model is a crucial component of the success of the learning process. The learning model is growing fastly, and each model has different characteristics. Teachers are required to be able to understand each model to teach the students optimally by matching the materials and the learning model. The best of the learning model is the model that based on the brain system in learning that are the model of Brain Based Learning (BBL and the model of Whole Brain Teaching (WBT. The purposes of this article are to obtain information related to (1 the brain’s natural learning system, (2 analyze the characteristics of the model BBL and WBT based on theory, brain sections that play a role associated with syntax, similarities, and differences, (3 explain the distinctive characteristics of both models in comparison to other models. The results of this study are: (1 the brain’s natural learning system are: (a the nerves in each hemisphere do not work independently, (b doing more activities can connect more brain nerves, (c the right hemisphere controls the left side motoric sensor of the body, and vice versa; (2 the characteristics of BBL and WBT are: (a BBL is based on the brain’s structure and function, while the model WBT is based on the instructional approach, neurolinguistic, and body language, (b the parts of the brain that work in BBL are: cerebellum, cerebral cortex, frontal lobe, limbic system, and prefrontal cortex; whereas the parts that work WBT are: prefrontal cortex, visual cortex, motor cortex, limbic system, and amygdala, (c the similarities between them are that they both rely on the brain’s system and they both promote gesture in learning, whereas the differences are on the view of the purposes of gestures and the learning theory that they rely on. BBL relies on cognitive theory while WBT relies on social theory; (3 the typical

  10. Use of the 5E learning cycle model combined with problem-based learning for a fundamentals of nursing course. (United States)

    Jun, Won Hee; Lee, Eun Ju; Park, Han Jong; Chang, Ae Kyung; Kim, Mi Ja


    The 5E learning cycle model has shown a positive effect on student learning in science education, particularly in courses with theory and practice components. Combining problem-based learning (PBL) with the 5E learning cycle was suggested as a better option for students' learning of theory and practice. The purpose of this study was to compare the effects of the traditional learning method with the 5E learning cycle model with PBL. The control group (n = 78) was subjected to a learning method that consisted of lecture and practice. The experimental group (n = 83) learned by using the 5E learning cycle model with PBL. The results showed that the experimental group had significantly improved self-efficacy, critical thinking, learning attitude, and learning satisfaction. Such an approach could be used in other countries to enhance students' learning of fundamental nursing. Copyright 2013, SLACK Incorporated.

  11. Interactive and Hands-on Methods for Professional Development of Undergraduate Researchers (United States)

    Pressley, S. N.; LeBeau, J. E.


    Professional development workshops for undergraduate research programs can range from communicating science (i.e. oral, technical writing, poster presentations), applying for fellowships and scholarships, applying to graduate school, and learning about careers, among others. Novel methods of presenting the information on the above topics can result in positive outcomes beyond the obvious of transferring knowledge. Examples of innovative methods to present professional development information include 1) An interactive session on how to write an abstract where students are given an opportunity to draft an abstract from a short technical article, followed by discussion amongst a group of peers, and comparison with the "published" abstract. 2) Using the Process Oriented Guided Inquiry Learning (POGIL) method to evaluate and critique a research poster. 3) Inviting "experts" such as a Fulbright scholar graduate student to present on applying for fellowships and scholarships. These innovative methods of delivery provide more hands-on activities that engage the students, and in some cases (abstract writing) provide practice for the student. The methods also require that students develop team work skills, communicate amongst their peers, and develop networks with their cohort. All of these are essential non-technical skills needed for success in any career. Feedback from students on these sessions are positive and most importantly, the students walk out of the session with a smile on their face saying how much fun it was. Evaluating the impact of these sessions is more challenging and under investigation currently.

  12. A hands-on activity for teaching product-process matrix: roadmap and application

    Directory of Open Access Journals (Sweden)

    Luciano Costa Santos


    Full Text Available The product-process matrix is a well-known framework proposed by Hayes and Wheelwright (1979 that is commonly used to identify processes types and to analyze the alignment of these processes with the products of a company. For didactic purposes, the matrix helps undergraduates beginners from Production Engineering to understand the logic of production systems, providing knowledge that will be essential for various course subjects. Considering the high level of abstraction of the concepts underlying the product-process matrix, this paper presents a way to facilitate the learning of them through the application of a hands-on activity which relies on the active learning philosophy. The proposed dynamic uses colored plastic sheets and PVC pipes as main materials, differing from the original proposal of Penlesky and Treleven (2005 . In addition to presenting an extremely simple exercise, which encourages its application in the classroom, another contribution of this paper is to define a complete roadmap for conducting the activity. This roadmap describes the assembly of fictitious products in customization and standardization scenarios for the comparison of two processes types of product-process matrix, job shop and assembly line. The activity revealed very successful after its application to two groups of Production Engineering undergraduates, confirmed with positive feedback from the students surveyed.

  13. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept. (United States)

    Zsuga, Judit; Biro, Klara; Papp, Csaba; Tajti, Gabor; Gesztelyi, Rudolf


    Reinforcement learning (RL) is a powerful concept underlying forms of associative learning governed by the use of a scalar reward signal, with learning taking place if expectations are violated. RL may be assessed using model-based and model-free approaches. Model-based reinforcement learning involves the amygdala, the hippocampus, and the orbitofrontal cortex (OFC). The model-free system involves the pedunculopontine-tegmental nucleus (PPTgN), the ventral tegmental area (VTA) and the ventral striatum (VS). Based on the functional connectivity of VS, model-free and model based RL systems center on the VS that by integrating model-free signals (received as reward prediction error) and model-based reward related input computes value. Using the concept of reinforcement learning agent we propose that the VS serves as the value function component of the RL agent. Regarding the model utilized for model-based computations we turned to the proactive brain concept, which offers an ubiquitous function for the default network based on its great functional overlap with contextual associative areas. Hence, by means of the default network the brain continuously organizes its environment into context frames enabling the formulation of analogy-based association that are turned into predictions of what to expect. The OFC integrates reward-related information into context frames upon computing reward expectation by compiling stimulus-reward and context-reward information offered by the amygdala and hippocampus, respectively. Furthermore we suggest that the integration of model-based expectations regarding reward into the value signal is further supported by the efferent of the OFC that reach structures canonical for model-free learning (e.g., the PPTgN, VTA, and VS). (c) 2016 APA, all rights reserved).


    Directory of Open Access Journals (Sweden)

    Vasyl I. Kovalchuk


    Full Text Available The article presents three models of the use of elements of distance learning at school. All models partially or fully implement the training, interaction and collaboration of the participants in the educational process. The first model is determined by the use of open cloud services and Web 2.0 for the implementation of certain educational and managerial tasks of the school. The second model uses support for learning management and content creation. The introduction of the second model is possible with the development of the IT infrastructure of the school, the training of teachers for the use of distance learning technologies, the creation of electronic educational resources. The third model combines the use of Web 2.0 technologies and training and content management systems. Models of the use of elements of distance learning are presented of the results of regional research experimental work of schools.

  15. Providing open-access online materials and hands-on sessions for GIS exercises (United States)

    Oguchi, T.; Yamauchi, H.; Hayakawa, Y. S.


    Researchers of GIS (Geographical Information Systems/Sciences) in Japan have collaborated to provide materials for GIS lecture classes in universities for the last 20 years. The major outcomes include 1) a GIS core curriculum, 2) a GIS "body of knowledge" explaining the details of the curriculum, 3) a series of PowerPoint presentations, and 4) a comprehensive GIS textbook. However, materials for GIS exercises at university classes using GIS software have been limited in Japan. Therefore, we launched a project to provide such materials which will be available online and accessible by anybody. The materials cover broad basic aspects of GIS including geoscientific applications such as terrain analysis using digital elevation models. The materials utilize public-domain and open-source software packages such as QGIS and GRASS. The data used are also freely available ones such as those from the Geospatial Information Authority of Japan. The use of the GitHub platform to distribute the materials allow easier online interactions by both material producers and users. Selected sets of the materials have been utilized for hands-on activities including both official university classes and public instructions. We have been updating the materials based on the opinions of people who took the hands-on courses for better GIS education. The current materials are in Japanese, but we plan to translate some of them into English.

  16. A Conceptual Model of eLearning Adoption

    Directory of Open Access Journals (Sweden)

    Muneer Abbad


    Full Text Available Internet-based learning systems are being used in many universities and firms but their adoption requires a solid understanding of the user acceptance processes. The technology acceptance model (TAM has been used to test the acceptance of various technologies and software within an e-learning context. This research aims to discuss the main factors of a successful e-learning adoption by students. A conceptual research framework of e-learning adoption is proposed based on the TAM model.

  17. Semantic Modelling for Learning Styles and Learning Material in an E-Learning Environment (United States)

    Alhasan, Khawla; Chen, Liming; Chen, Feng


    Various learners with various requirements have led to the raise of a crucial concern in the area of e-learning. A new technology for propagating learning to learners worldwide, has led to an evolution in the e-learning industry that takes into account all the requirements of the learning process. In spite of the wide growing, the e-learning…

  18. The effect of learning models and emotional intelligence toward students learning outcomes on reaction rate (United States)

    Sutiani, Ani; Silitonga, Mei Y.


    This research focused on the effect of learning models and emotional intelligence in students' chemistry learning outcomes on reaction rate teaching topic. In order to achieve the objectives of the research, with 2x2 factorial research design was used. There were two factors tested, namely: the learning models (factor A), and emotional intelligence (factor B) factors. Then, two learning models were used; problem-based learning/PBL (A1), and project-based learning/PjBL (A2). While, the emotional intelligence was divided into higher and lower types. The number of population was six classes containing 243 grade X students of SMAN 10 Medan, Indonesia. There were 15 students of each class were chosen as the sample of the research by applying purposive sampling technique. The data were analyzed by applying two-ways analysis of variance (2X2) at the level of significant α = 0.05. Based on hypothesis testing, there was the interaction between learning models and emotional intelligence in students' chemistry learning outcomes. Then, the finding of the research showed that students' learning outcomes in reaction rate taught by using PBL with higher emotional intelligence is higher than those who were taught by using PjBL. There was no significant effect between students with lower emotional intelligence taught by using both PBL and PjBL in reaction rate topic. Based on the finding, the students with lower emotional intelligence were quite hard to get in touch with other students in group discussion.

  19. Effectiveness of discovery learning model on mathematical problem solving (United States)

    Herdiana, Yunita; Wahyudin, Sispiyati, Ririn


    This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.

  20. Modeling learning technology systems as business systems

    NARCIS (Netherlands)

    Avgeriou, Paris; Retalis, Symeon; Papaspyrou, Nikolaos


    The design of Learning Technology Systems, and the Software Systems that support them, is largely conducted on an intuitive, ad hoc basis, thus resulting in inefficient systems that defectively support the learning process. There is now justifiable, increasing effort in formalizing the engineering


    Directory of Open Access Journals (Sweden)

    Mikhailova Elena Konstantinovna


    Full Text Available The paper is devoted to the problem of assessment of the school students’ learning success achievements. The problem is investigated from the viewpoint of assessing the students’ learning outcomes that is aimed to ensure the teachers and students with the means and conditions to improve the educational process and results.

  2. A pedagogical model for simulation-based learning in healthcare

    Directory of Open Access Journals (Sweden)

    Tuulikki Keskitalo


    Full Text Available The aim of this study was to design a pedagogical model for a simulation-based learning environment (SBLE in healthcare. Currently, simulation and virtual reality are a major focus in healthcare education. However, when and how these learning environments should be applied is not well-known. The present study tries to fill that gap. We pose the following research question: What kind of pedagogical model supports and facilitates students’ meaningful learning in SBLEs? The study used design-based research (DBR and case study approaches. We report the results from our second case study and how the pedagogical model was developed based on the lessons learned. The study involved nine facilitators and 25 students. Data were collected and analysed using mixed methods. The main result of this study is the refined pedagogical model. The model is based on the socio-cultural theory of learning and characteristics of meaningful learning as well as previous pedagogical models. The model will provide a more holistic and meaningful approach to teaching and learning in SBLEs. However, the model requires evidence and further development.

  3. A Hands-on Approach to Evolutionary Simulation

    DEFF Research Database (Denmark)

    Valente, Marco; Andersen, Esben Sloth


    in an industry (or an economy). To abbreviate we call such models NelWin models. The new system for the programming and simulation of such models is called the Laboratory for simulation development - abbreviated as Lsd. The paper is meant to allow readers to use the Lsd version of a basic NelWin model: observe...... the model content, run the simulation, interpret the results, modify the parameterisation, etc. Since the paper deals with the implementation of a fairly complex set of models in a fairly complex programming and simulation system, it does not contain full documentation of NelWin and Lsd. Instead we hope...... to give the reader a first introduction to NelWin and Lsd and inspire a further exploration of them....


    Directory of Open Access Journals (Sweden)

    Felisa Irawani Hutabarat


    Full Text Available This research aims to know the effect of learning model of inquiry learning results students training material measurement. This type of research is quasi experiment. Sampling done by cluster random sampling by taking 2 classes from grade 9 i.e. class X SCIENCE experiments as a class-B that add up to 35 people and class X SCIENCE-C as control classes that add up to 35 people. The instruments used to find out the results of student learning is the learning outcomes tests have been validated in multiple choice form numbered 15 reserved and activity sheets students. The results of the value obtained 37.71 pretes and postest 70.11. The t-test analysis retrieved thitung greater than ttabel so that it can be concluded no difference due to the influence of the learning model of inquiry learning results students training material measurement.

  5. A Hands-on Guide to Video Podcasting (United States)

    Christensen, L. L.; Hurt, R.


    Video podcasting, or vodcasting, is the latest evolution of the podcast revolution. The market for on demand multimedia content spans the gamut, ranging from portable media players to computers, and increasingly to televisions through home media centres. This new mode of accessing content is rapidly growing in popularity, particularly among younger audiences. Vodcasting allows a direct link between consumer and content producer, bypassing traditional media networks, making it ideal for EPO efforts. Even modest budgets can yield compelling astronomy vodcasts that will appeal to a large audience. Gateways like the iTunes Store and video community websites such as Veoh and YouTube have created new content markets where none existed before. This paper highlights the key steps for producing a vodcast and shows some statistics from two leading astronomy vodcasts. The reader will see how to make (or improve) a science video podcast and learn about some of the latest developments in this rapidly-evolving field.

  6. Hands on Education Through Student-Industry Partnerships (United States)

    Brown, J.; Wolfson, M.; Morris, K.


    Lockheed Martin Space Systems Company has invested in the future generation of engineers by partially funding and mentoring CubeSat projects around the country. One CubeSat in particular, ALL-STAR, has shown how this industry/university partnership benefits both the students and their mentors. Students gain valuable insight into aspects of spacecraft design that aren't taught in classes. They also start learning about industry processes for designing, building, and testing satellites before ever working in that environment. Because of this experience, industry is getting more qualified engineers starting fresh out of college. In addition Lockheed Martin's partnership with the university will allow them to use the students to help build affordable CubeSats for internal and customer's research and development projects. The mentoring also challenges the engineers to think differently about similar problems they face every day with their larger programs in order to make the solution simple and affordable.

  7. Group-Based Active Learning of Classification Models. (United States)

    Luo, Zhipeng; Hauskrecht, Milos


    Learning of classification models from real-world data often requires additional human expert effort to annotate the data. However, this process can be rather costly and finding ways of reducing the human annotation effort is critical for this task. The objective of this paper is to develop and study new ways of providing human feedback for efficient learning of classification models by labeling groups of examples. Briefly, unlike traditional active learning methods that seek feedback on individual examples, we develop a new group-based active learning framework that solicits label information on groups of multiple examples. In order to describe groups in a user-friendly way, conjunctive patterns are used to compactly represent groups. Our empirical study on 12 UCI data sets demonstrates the advantages and superiority of our approach over both classic instance-based active learning work, as well as existing group-based active-learning methods.

  8. General informatics teaching with B-Learning teaching model

    Directory of Open Access Journals (Sweden)

    Nguyen The Dung


    Full Text Available Blended learning (B-learning, a combination of face-to-face teaching and E-learning-supported-teaching in an online course, and Information and Communication Technology (ICT tools have been studied in recent years. In addition, the use of this teaching model is effective in teaching and learning conditions in which some certain subjects are appropriate for the specific teaching context. As it has been a matter of concern of the universities in Vietnam today, deep studies related to this topic is crucial to be conducted. In this article, the process of developing online courses and organizing teaching for the General Informatics subject for first-year students at the Hue University of Education with B-learning teaching model will be presented. The combination of 60% face-to-face and 40% online learning.

  9. Learning Behavior Models for Interpreting and Predicting Traffic Situations


    Gindele, Tobias


    In this thesis, we present Bayesian state estimation and machine learning methods for predicting traffic situations. The cognitive ability to assess situations and behaviors of traffic participants, and to anticipate possible developments is an essential requirement for several applications in the traffic domain, especially for self-driving cars. We present a method for learning behavior models from unlabeled traffic observations and develop improved learning methods for decision trees.

  10. Safe robot execution in model-based reinforcement learning


    Martínez Martínez, David; Alenyà Ribas, Guillem; Torras, Carme


    Task learning in robotics requires repeatedly executing the same actions in different states to learn the model of the task. However, in real-world domains, there are usually sequences of actions that, if executed, may produce unrecoverable errors (e.g. breaking an object). Robots should avoid repeating such errors when learning, and thus explore the state space in a more intelligent way. This requires identifying dangerous action effects to avoid including such actions in the generated plans...

  11. Hybrid Model for e-Learning Quality Evaluation

    Directory of Open Access Journals (Sweden)

    Suzana M. Savic


    Full Text Available E-learning is becoming increasingly important for the competitive advantage of economic organizations and higher education institutions. Therefore, it is becoming a significant aspect of quality which has to be integrated into the management system of every organization or institution. The paper examines e-learning quality characteristics, standards, criteria and indicators and presents a multi-criteria hybrid model for e-learning quality evaluation based on the method of Analytic Hierarchy Process, trend analysis, and data comparison.

  12. Distributional Language Learning: Mechanisms and Models of ategory Formation. (United States)

    Aslin, Richard N; Newport, Elissa L


    In the past 15 years, a substantial body of evidence has confirmed that a powerful distributional learning mechanism is present in infants, children, adults and (at least to some degree) in nonhuman animals as well. The present article briefly reviews this literature and then examines some of the fundamental questions that must be addressed for any distributional learning mechanism to operate effectively within the linguistic domain. In particular, how does a naive learner determine the number of categories that are present in a corpus of linguistic input and what distributional cues enable the learner to assign individual lexical items to those categories? Contrary to the hypothesis that distributional learning and category (or rule) learning are separate mechanisms, the present article argues that these two seemingly different processes---acquiring specific structure from linguistic input and generalizing beyond that input to novel exemplars---actually represent a single mechanism. Evidence in support of this single-mechanism hypothesis comes from a series of artificial grammar-learning studies that not only demonstrate that adults can learn grammatical categories from distributional information alone, but that the specific patterning of distributional information among attested utterances in the learning corpus enables adults to generalize to novel utterances or to restrict generalization when unattested utterances are consistently absent from the learning corpus. Finally, a computational model of distributional learning that accounts for the presence or absence of generalization is reviewed and the implications of this model for linguistic-category learning are summarized.

  13. Measuring organizational learning. Model testing in two Romanian universities


    Alexandra Luciana Guţă


    The scientific literature associates organizational learning with superior organization performance. If we refer to the academic environment, we appreciate that it can develop and reach better levels of performance through changes driven from the inside. Thus, through this paper we elaborate on a conceptual model of organizational learning and we test the model on a sample of employees (university teachers and researchers) from two Romanian universities. The model comprises the process of org...

  14. Statistical and Machine Learning Models to Predict Programming Performance


    Bergin, Susan


    This thesis details a longitudinal study on factors that influence introductory programming success and on the development of machine learning models to predict incoming student performance. Although numerous studies have developed models to predict programming success, the models struggled to achieve high accuracy in predicting the likely performance of incoming students. Our approach overcomes this by providing a machine learning technique, using a set of three significant...

  15. Performance Accuracy of Hand-on-needle versus Hand-onsyringe Technique for Ultrasound-guided Regional Anesthesia Simulation for Emergency Medicine Residents

    Directory of Open Access Journals (Sweden)

    Brian Johnson


    Full Text Available Introduction: Ultrasound-guided nerve blocks (UGNB are increasingly used in emergency care. The hand-on-syringe (HS needle technique is ideally suited to the emergency department setting because it allows a single operator to perform the block without assistance. The HS technique is assumed to provide less exact needle control than the alternative two-operator hand-on-needle (HN technique; however this assumption has never been directly tested. The primary objective of this study was to compare accuracy of needle targeting under ultrasound guidance by emergency medicine (EM residents using HN and HS techniques on a standardized gelatinous simulation model. Methods: This prospective, randomized study evaluated task performance. We compared needle targeting accuracy using the HN and HS techniques. Each participant performed a set of structured needling maneuvers (both simple and difficult on a standardized partial-task simulator. We evaluated time to task completion, needle visualization during advancement, and accuracy of needle tip at targeting. Resident technique preference was assessed using a post-task survey. Results: We evaluated 60 tasks performed by 10 EM residents. There was no significant difference in time to complete the simple model (HN vs. HS, 18 seconds vs. 18 seconds, p=0.93, time to complete the difficult model (HN vs. HS, 56 seconds vs. 50 seconds, p=0.63, needle visualization, or needle tip targeting accuracy. Most residents (60% preferred the HS technique. Conclusion: For EM residents learning UGNBs, the HN technique was not associated with superior needle control. Our results suggest that the single-operator HS technique provides equivalent needle control when compared to the two-operator HN technique. [West J Emerg Med. 2014;15(6:641–646

  16. Personalised learning object based on multi-agent model and learners’ learning styles

    Directory of Open Access Journals (Sweden)

    Noppamas Pukkhem


    Full Text Available A multi-agent model is proposed in which learning styles and a word analysis technique to create a learning object recommendation system are used. On the basis of a learning style-based design, a concept map combination model is proposed to filter out unsuitable learning concepts from a given course. Our learner model classifies learners into eight styles and implements compatible computational methods consisting of three recommendations: i non-personalised, ii preferred feature-based, and iii neighbour-based collaborative filtering. The analysis of preference error (PE was performed by comparing the actual preferred learning object with the predicted one. In our experiments, the feature-based recommendation algorithm has the fewest PE.


    Directory of Open Access Journals (Sweden)

    Ratna Malawati


    Full Text Available This study aims to improve the physics Science Process Skills Students on cognitive and psychomotor aspects by using model based Project Based Learning training.The object of this study is the Project Based Learning model used in the learning process of Computationa Physics.The method used is classroom action research through two learning cycles, each cycle consisting of the stages of planning, implementation, observation and reflection. In the first cycle of treatment with their emphasis given training in the first phase up to third in the model Project Based Learning, while the second cycle is given additional treatment with emphasis discussion is collaboration in achieving the best results for each group of products. The results of data analysis showed increased ability to think Students on cognitive and Science Process Skills in the psychomotor.

  18. Learning to Learn: towards a Relational and Transformational Model of Learning for Improved Integrated Care Delivery

    Directory of Open Access Journals (Sweden)

    John Diamond


    Full Text Available Health and social care systems are implementing fundamental changes to organizational structures and work practices in an effort to achieve integrated care. While some integration initiatives have produced positive outcomes, many have not. We reframe the concept of integration as a learning process fueled by knowledge exchange across diverse professional and organizational communities. We thus focus on the cognitive and social dynamics of learning in complex adaptive systems, and on learning behaviours and conditions that foster collective learning and improved collaboration. We suggest that the capacity to learn how to learn shapes the extent to which diverse professional groups effectively exchange knowledge and self-organize for integrated care delivery.

  19. A Technology Enhanced Learning Model for Quality Education (United States)

    Sherly, Elizabeth; Uddin, Md. Meraj

    Technology Enhanced Learning and Teaching (TELT) Model provides learning through collaborations and interactions with a framework for content development and collaborative knowledge sharing system as a supplementary for learning to improve the quality of education system. TELT deals with a unique pedagogy model for Technology Enhanced Learning System which includes course management system, digital library, multimedia enriched contents and video lectures, open content management system and collaboration and knowledge sharing systems. Open sources like Moodle and Wiki for content development, video on demand solution with a low cost mid range system, an exhaustive digital library are provided in a portal system. The paper depicts a case study of e-learning initiatives with TELT model at IIITM-K and how effectively implemented.

  20. Learning Methods for Dynamic Topic Modeling in Automated Behavior Analysis. (United States)

    Isupova, Olga; Kuzin, Danil; Mihaylova, Lyudmila


    Semisupervised and unsupervised systems provide operators with invaluable support and can tremendously reduce the operators' load. In the light of the necessity to process large volumes of video data and provide autonomous decisions, this paper proposes new learning algorithms for activity analysis in video. The activities and behaviors are described by a dynamic topic model. Two novel learning algorithms based on the expectation maximization approach and variational Bayes inference are proposed. Theoretical derivations of the posterior estimates of model parameters are given. The designed learning algorithms are compared with the Gibbs sampling inference scheme introduced earlier in the literature. A detailed comparison of the learning algorithms is presented on real video data. We also propose an anomaly localization procedure, elegantly embedded in the topic modeling framework. It is shown that the developed learning algorithms can achieve 95% success rate. The proposed framework can be applied to a number of areas, including transportation systems, security, and surveillance.

  1. Learning and evolution in games and oligopoly models

    NARCIS (Netherlands)

    Possajennikov, A.


    Dynamic models of adjustment, as well as static models of equilibrium, are important to understand economic reality. This thesis considers such dynamic models applied to economic games. The models can broadly be divided into two categories: learning and evolution. This thesis analyzes reinforcement

  2. Learning of Chemical Equilibrium through Modelling-Based Teaching (United States)

    Maia, Poliana Flavia; Justi, Rosaria


    This paper presents and discusses students' learning process of chemical equilibrium from a modelling-based approach developed from the use of the "Model of Modelling" diagram. The investigation was conducted in a regular classroom (students 14-15 years old) and aimed at discussing how modelling-based teaching can contribute to students…

  3. A hands-on introduction to quantum mechanics (United States)

    Jackson, David


    At Dickinson College, we have implemented a series of experiments that are designed to expose students to the strange and fascinating world of quantum mechanics. These experiments are employed in our sophomore-level course titled Introduction to Relativistic and Quantum Physics, our version of the traditional Modern Physics course. The experiments make use of a correlated light source produced via the process of Spontaneous Parametric Down Conversion (SPDC). Using such a light source, students can experimentally verify that when a single photon is incident on a beam splitter, the photon is either transmitted or reflected--it never goes both ways. If instead the photons are directed into a Mach-Zehnder interferometer, students then observe an interference pattern, suggesting that each photon must somehow take both paths in the interferometer (in apparent contradiction of the first experiment). Finally, the interference pattern is observed to disappear if the photons are ``tagged'' to distinguish which path they take, only to mysteriously reappear if that path information is ``erased'' after emerging from the interferometer. In this talk, I will provide an overview of these experiments and the accompanying theory that students learn in this course. This work was supported, in part, by NSF Grant 0737230.

  4. Support for hands-on optics immersions (Conference Presentation) (United States)

    Spalding, Gabriel C.; McCann, Lowell I.


    The Advanced Laboratory Physics Association (ALPhA) is an official affiliate organization of the AAPT, supporting upper-level undergraduate instructional lab education in physics. The ALPhA Immersions program is intended to be an efficient use of an instructor's time: with expert colleague-mentors on hand they spend 2.5 days learning a key new instructional experiment (of their choice) well enough to confidently teach it to the students at their home institutions. At an ALPhA Immersion, participants work in groups of no more than three per experimental setup. Our follow-up surveys support the notion that this individualized, concentrated focus directly results in significant updating and improvement of undergraduate laboratory instruction in physics across the country. Such programs have the effect of encouraging investment, on the part of individual institutions. For example, we have disseminated ideas, training, and equipment for contemporary single-photon-based instructional labs dealing with core, contemporary issues in Quantum Mechanics. By the time this paper is presented, ALPhA will have delivered at least 420 single-photon detectors to a wide variety of educational institutions. We have also partnered with the non-profit Jonathan F. Reichert Foundation to support equipment acquisition by institutions participating in our wide variety of training programs.

  5. Computational Modeling of Statistical Learning: Effects of Transitional Probability versus Frequency and Links to Word Learning (United States)

    Mirman, Daniel; Estes, Katharine Graf; Magnuson, James S.


    Statistical learning mechanisms play an important role in theories of language acquisition and processing. Recurrent neural network models have provided important insights into how these mechanisms might operate. We examined whether such networks capture two key findings in human statistical learning. In Simulation 1, a simple recurrent network…

  6. Grasping the Dynamic Complexity of Team Learning: An Integrative Model for Effective Team Learning in Organisations (United States)

    Decuyper, Stefan; Dochy, Filip; Van den Bossche, Piet


    In this article we present an integrative model of team learning. Literature shows that effective team learning requires the establishment of a dialogical space amongst team members, in which communicative behaviours such as "sharing", "co-construction" and "constructive conflict" are balanced. However, finding this balance is not enough.…

  7. Computer-Mediated Intersensory Learning Model for Students with Learning Disabilities (United States)

    Seok, Soonhwa; DaCosta, Boaventura; Kinsell, Carolyn; Poggio, John C.; Meyen, Edward L.


    This article proposes a computer-mediated intersensory learning model as an alternative to traditional instructional approaches for students with learning disabilities (LDs) in the inclusive classroom. Predominant practices of classroom inclusion today reflect the six principles of zero reject, nondiscriminatory evaluation, appropriate education,…

  8. Semi-supervised Learning with Deep Generative Models

    NARCIS (Netherlands)

    Kingma, D.P.; Rezende, D.J.; Mohamed, S.; Welling, M.


    The ever-increasing size of modern data sets combined with the difficulty of obtaining label information has made semi-supervised learning one of the problems of significant practical importance in modern data analysis. We revisit the approach to semi-supervised learning with generative models and

  9. A Rotational Blended Learning Model: Enhancement and Quality Assurance (United States)

    Ghoul, Said


    Research on blended learning theory and practice is growing nowadays with a focus on the development, evaluation, and quality assurance of case studies. However, the enhancement of blended learning existing models, the specification of their online parts, and the quality assurance related specifically to them have not received enough attention.…

  10. Towards a Social Networks Model for Online Learning & Performance (United States)

    Chung, Kon Shing Kenneth; Paredes, Walter Christian


    In this study, we develop a theoretical model to investigate the association between social network properties, "content richness" (CR) in academic learning discourse, and performance. CR is the extent to which one contributes content that is meaningful, insightful and constructive to aid learning and by social network properties we…

  11. A Computer Model of Simple Forms of Learning. (United States)

    Jones, Thomas L.

    A basic unsolved problem in science is that of understanding learning, the process by which people and machines use their experience in a situation to guide future action in similar situations. The ideas of Piaget, Pavlov, Hull, and other learning theorists, as well as previous heuristic programing models of human intelligence, stimulated this…

  12. Service learning in teacher education: an institutional model for an ...

    African Journals Online (AJOL)

    Interest in service learning is growing at a time of curriculum change in teacher education and institutional change in higher education in South Africa. This raises the question ";What models are available to guide institutions to develop service learning?"; This article outlines Pollack's typology of institutional responses to ...

  13. A Pedagogical Model for Science Education through Blended Learning

    NARCIS (Netherlands)

    Bidarra, José; Rusman, Ellen


    This paper proposes a framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called Science Learning Activities Model (SLAM). The study constitutes a work in progress and started as a response to complex


    Directory of Open Access Journals (Sweden)

    Mar’atus Sholihah


    Full Text Available The purpose of this study was to determine the effect of Experiential Learning models developed by Kolb's theory of the critical thinking skills of high school students. This study uses a quasi experiment conducted in SMA Assa'adah Gresik. The population of students of class X IS second semester of academic year 2015/2016. Samples are 2 classes that are homogeneous. Methods of data collection using test questions and the ability to think critically using observation sheet. Data were analyzed by comparing the average acquisition value of critical thinking skills with experimental class control class. Average value of the critical thinking skills using model Experiential Learning higher at 80.9 while the control class is 71.2. Based on the average it can be concluded that the learning model of Experiential Learning can improve students' critical thinking skills. This study is expected to provide information on the application and benefits of the model Experiential Learning in teaching geography and make it more meaningful for students. Tujuan dari penelitian ini adalah mengetahui pengaruh model Experiential Learning yang dikembangkan oleh teori Kolb terhadap kemampuan berpikir kritis siswa SMA. Penelitian ini menggunakan metode quasi experimen yang dilakukan di SMA Assa’adah Gresik. Populasi siswa kelas X IS semester genap tahun pelajaran 2015/2016. Sampel yang digunakan sebanyak 2 kelas yang bersifat homogen. Metode pengumpulan data menggunakan soal tes kemampuan berpikir kritis serta menggunakan lembar observasi. Data yang diperoleh kemudian dianalisis dengan membandingkan rata-rata perolehan nilai kemampuan berpikir kritis kelas kontrol dengan kelas eksperimen. Nilai rata rata kemampuan berpikir kritis yang menggunakan model pembelajaran Experiential Learning lebih tinggi, yaitu sebesar 80,9, sedangkan kelas kontrol sebesar 71,2. Berdasarkan nilai rata-rata tersebut dapat disimpulkan bahwa model pembelajaran Experiential Learning dapat

  15. On the Conditioning of Machine-Learning-Assisted Turbulence Modeling (United States)

    Wu, Jinlong; Sun, Rui; Wang, Qiqi; Xiao, Heng


    Recently, several researchers have demonstrated that machine learning techniques can be used to improve the RANS modeled Reynolds stress by training on available database of high fidelity simulations. However, obtaining improved mean velocity field remains an unsolved challenge, restricting the predictive capability of current machine-learning-assisted turbulence modeling approaches. In this work we define a condition number to evaluate the model conditioning of data-driven turbulence modeling approaches, and propose a stability-oriented machine learning framework to model Reynolds stress. Two canonical flows, the flow in a square duct and the flow over periodic hills, are investigated to demonstrate the predictive capability of the proposed framework. The satisfactory prediction performance of mean velocity field for both flows demonstrates the predictive capability of the proposed framework for machine-learning-assisted turbulence modeling. With showing the capability of improving the prediction of mean flow field, the proposed stability-oriented machine learning framework bridges the gap between the existing machine-learning-assisted turbulence modeling approaches and the demand of predictive capability of turbulence models in real applications.

  16. Inclusion Community Model: Learning from Bali

    Directory of Open Access Journals (Sweden)

    David Samiyono


    Full Text Available AbstrakKonflik sering muncul ketika manusia bertindak secara ekslusif dengan hanya melihat diri sendiri dan kelompoknya. Beberapa tokoh pluralisme membuat konsep mengenai masyarakat inklusif dengan tujuan mengurangi terjadinya konflik. Nagara Indonesia memiliki potensi besar terjadinya konflik, hal ini disebabkan karena negara Indonesia terdiri dari berbagai suku, budaya dan agama. Apabila konflik tidak dikelola, maka potensi terjadinya dis-integrasi bangsa sangat besar. Meskipun hal ini dapat juga dilihat sebagai kekayaan bangsa, model masyarakat inklusif diperlukan bagi bangsa Indonesiasebagai alat pemersatu yang harus dipahami dan diajarkan dari generasi satu kepada generasi berikutnya.Dalam penelitian ini menggunakan pendekatan diskriptif-kualitatif yang sesuai dengan kondisi lokasi penelitian yaitu Bali dan Lampung. Analisis dilakukan melalui narasi dengan menggunakan informasi yang diperoleh dari informan atau partisipan. Hasil penelitian menunjukkan adanya nilai-nilai inklusif dalam budaya masyarakat Bali yang tinggal di Pulau Bali. Masyarakat Bali yang sudah bergaul dengan berbagaibudaya, agama, politik dan ekonomi. Oleh karena itu model masyarakat inklusif dari kasus masyarakat Bali perlu dilakukan dalam usaha untuk bisa diuji-cobakan pada masyarakat yang berbeda, terutama pada wailayah negara Indonesia yang majemuk.Kata kunci: Bali, Inclussion community, menyama braya. AbstractConflict often occurs when people behave closed and exclusive by looking at himself and his group. Some authors propose the concept of inclusion community to reduce the conflict and towards a harmonious society. Indonesia has a huge potential for conflict to happendue to the number of tribe, religion, race and class, but on the other hand it has had a noble wealth in society, which needs to be exposed and arranged to become a teaching material  for future generations. That is why this research is done. This research uses descriptive qualitative

  17. Vanishing hands? On the link between product and organization architecture


    Press, Kerstin; Geipel, Markus M.


    The present article investigates whether modular product architectures deliver better and more differentiated products, given their production in disintegrated and integrated settings. A theoretic model benchmarks the performance of disintegration and integration for different degrees of product modularity by measuring both product quality and differentiation. In line with conventional wisdom, (nearly) modular products befit disintegration insofar as disintegration increases quality. However,...

  18. mLearning Scaffolding Model for Undergraduate English Language Learning: Bridging Formal and Informal Learning (United States)

    Abdullah, Muhammad Ridhuan Tony Lim; Hussin, Zaharah; Asra; Zakaria, Abd Razak


    Learning using mobile devices also known as mLearning is the current buzz word in the present debates over the use of technology in education. Although mLearning has a high prospect for future education, it is yet to be

  19. Social Learning Network Analysis Model to Identify Learning Patterns Using Ontology Clustering Techniques and Meaningful Learning (United States)

    Firdausiah Mansur, Andi Besse; Yusof, Norazah


    Clustering on Social Learning Network still not explored widely, especially when the network focuses on e-learning system. Any conventional methods are not really suitable for the e-learning data. SNA requires content analysis, which involves human intervention and need to be carried out manually. Some of the previous clustering techniques need…

  20. Modeling learning and memory using verbal learning tests: results from ACTIVE. (United States)

    Gross, Alden L; Rebok, George W; Brandt, Jason; Tommet, Doug; Marsiske, Michael; Jones, Richard N


    To investigate the influence of memory training on initial recall and learning. The Advanced Cognitive Training for Independent and Vital Elderly study of community-dwelling adults older than age 65 (n = 1,401). We decomposed trial-level recall in the Auditory Verbal Learning Test (AVLT) and Hopkins Verbal Learning Test (HVLT) into initial recall and learning across trials using latent growth models. Trial-level increases in words recalled in the AVLT and HVLT at each follow-up visit followed an approximately logarithmic shape. Over the 5-year study period, memory training was associated with slower decline in Trial 1 AVLT recall (Cohen's d = 0.35, p = .03) and steep pre- and posttraining acceleration in learning (d = 1.56, p learning, d = 3.10, p memory-trained group had a higher level of recall than the control group through the end of the 5-year study period despite faster decline in learning. This study contributes to the understanding of the mechanisms by which training benefits memory and expands current knowledge by reporting long-term changes in initial recall and learning, as measured from growth models and by characterization of the impact of memory training on these components. Results reveal that memory training delays the worsening of memory span and boosts learning.

  1. The structure of observed learning outcome (SOLO) taxonomy: a model to promote dental students' learning. (United States)

    Lucander, H; Bondemark, L; Brown, G; Knutsson, K


    Selective memorising of isolated facts or reproducing what is thought to be required - the surface approach to learning - is not the desired outcome for a dental student or a dentist in practice. The preferred outcome is a deep approach as defined by an intention to seek understanding, develop expertise and relate information and knowledge into a coherent whole. The aim of this study was to investigate whether the structure of observed learning outcome (SOLO) taxonomy could be used as a model to assist and promote the dental students to develop a deep approach to learning assessed as learning outcomes in a summative assessment. Thirty-two students, participating in course eight in 2007 at the Faculty of Odontology at Malmö University, were introduced to the SOLO taxonomy and constituted the test group. The control group consisted of 35 students participating in course eight in 2006. The effect of the introduction was measured by evaluating responses to a question in the summative assessment by using the SOLO taxonomy. The evaluators consisted of two teachers who performed the assessment of learning outcomes independently and separately on the coded material. The SOLO taxonomy as a model for learning was found to improve the quality of learning. Compared to the control group significantly more strings and structured relations between these strings were present in the test group after the SOLO taxonomy had been introduced (P SOLO taxonomy is recommended as a model for promoting and developing a deeper approach to learning in dentistry.

  2. Benchmarking Deep Learning Models on Large Healthcare Datasets. (United States)

    Purushotham, Sanjay; Meng, Chuizheng; Che, Zhengping; Liu, Yan


    Deep learning models (aka Deep Neural Networks) have revolutionized many fields including computer vision, natural language processing, speech recognition, and is being increasingly used in clinical healthcare applications. However, few works exist which have benchmarked the performance of the deep learning models with respect to the state-of-the-art machine learning models and prognostic scoring systems on publicly available healthcare datasets. In this paper, we present the benchmarking results for several clinical prediction tasks such as mortality prediction, length of stay prediction, and ICD-9 code group prediction using Deep Learning models, ensemble of machine learning models (Super Learner algorithm), SAPS II and SOFA scores. We used the Medical Information Mart for Intensive Care III (MIMIC-III) (v1.4) publicly available dataset, which includes all patients admitted to an ICU at the Beth Israel Deaconess Medical Center from 2001 to 2012, for the benchmarking tasks. Our results show that deep learning models consistently outperform all the other approaches especially when the 'raw' clinical time series data is used as input features to the models. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Predicting Market Impact Costs Using Nonparametric Machine Learning Models.

    Directory of Open Access Journals (Sweden)

    Saerom Park

    Full Text Available Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.

  4. Predicting Market Impact Costs Using Nonparametric Machine Learning Models. (United States)

    Park, Saerom; Lee, Jaewook; Son, Youngdoo


    Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.

  5. Flipped classroom model for learning evidence-based medicine. (United States)

    Rucker, Sydney Y; Ozdogan, Zulfukar; Al Achkar, Morhaf


    Journal club (JC), as a pedagogical strategy, has long been used in graduate medical education (GME). As evidence-based medicine (EBM) becomes a mainstay in GME, traditional models of JC present a number of insufficiencies and call for novel models of instruction. A flipped classroom model appears to be an ideal strategy to meet the demands to connect evidence to practice while creating engaged, culturally competent, and technologically literate physicians. In this article, we describe a novel model of flipped classroom in JC. We present the flow of learning activities during the online and face-to-face instruction, and then we highlight specific considerations for implementing a flipped classroom model. We show that implementing a flipped classroom model to teach EBM in a residency program not only is possible but also may constitute improved learning opportunity for residents. Follow-up work is needed to evaluate the effectiveness of this model on both learning and clinical practice.

  6. Knowledge Management through the Equilibrium Pattern Model for Learning (United States)

    Sarirete, Akila; Noble, Elizabeth; Chikh, Azeddine

    Contemporary students are characterized by having very applied learning styles and methods of acquiring knowledge. This behavior is consistent with the constructivist models where students are co-partners in the learning process. In the present work the authors developed a new model of learning based on the constructivist theory coupled with the cognitive development theory of Piaget. The model considers the level of learning based on several stages and the move from one stage to another requires learners' challenge. At each time a new concept is introduced creates a disequilibrium that needs to be worked out to return back to its equilibrium stage. This process of "disequilibrium/equilibrium" has been analyzed and validated using a course in computer networking as part of Cisco Networking Academy Program at Effat College, a women college in Saudi Arabia. The model provides a theoretical foundation for teaching especially in a complex knowledge domain such as engineering and can be used in a knowledge economy.

  7. Probabilistic models and machine learning in structural bioinformatics

    DEFF Research Database (Denmark)

    Hamelryck, Thomas


    . Recently, probabilistic models and machine learning methods based on Bayesian principles are providing efficient and rigorous solutions to challenging problems that were long regarded as intractable. In this review, I will highlight some important recent developments in the prediction, analysis...

  8. Ontology Update in the Cognitive Model of Ontology Learning

    Directory of Open Access Journals (Sweden)

    Zhang De-Hai


    Full Text Available Ontology has been used in many hot-spot fields, but most ontology construction methods are semiautomatic, and the construction process of ontology is still a tedious and painstaking task. In this paper, a kind of cognitive models is presented for ontology learning which can simulate human being’s learning from world. In this model, the cognitive strategies are applied with the constrained axioms. Ontology update is a key step when the new knowledge adds into the existing ontology and conflict with old knowledge in the process of ontology learning. This proposal designs and validates the method of ontology update based on the axiomatic cognitive model, which include the ontology update postulates, axioms and operations of the learning model. It is proved that these operators subject to the established axiom system.

  9. The behavioural motivation model in open distance learning

    DEFF Research Database (Denmark)

    Zaikin, Oleg; Malinowska, Magdalena; Kofoed, Lise B.


    The article contains the concept of developing a motivation model aimed at supporting activity of both students and teachers in the process of implementing and using an open and distance learning system. Proposed motivation model is focused on the task of filling the knowledge repository with high...... quality didactic material. Open and distance learning system assures a computer space for the teaching/learning process in open environment. The structure of the motivation model and formal assumptions are described. Additionally, there is presented a structure of the linguistic database, helping...... the teacher to assess the student's motivation and the basic simulation model to analysis the teaching/learning process constrains. The proposed approach is based on the games theory and simulation approach....

  10. Game Based Learning (GBL) Adoption Model for Universities ...

    African Journals Online (AJOL)



    Mar 5, 2018 ... faced while adopting Game Based Learning (GBL) model, its benefits and ... preferred traditional lectures styles, 7% online class and. 34% preferred .... students in developing problem-solving skills which in return may help ...

  11. Semantic modelling for learning styles and learning material in an e-learning environment


    Alhasan, K.; Chen, Liming; Chen, Feng


    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the URI link. Various learners with various requirements have led to the raise of a crucial concern in the area of e-learning. A new technology for propagating learning to learners worldwide, has led to an evolution in the e-learning industry that takes into account all the requirements of the learning process. In spite of the wide growing, the e-learning te...

  12. A machine learning model with human cognitive biases capable of learning from small and biased datasets. (United States)

    Taniguchi, Hidetaka; Sato, Hiroshi; Shirakawa, Tomohiro


    Human learners can generalize a new concept from a small number of samples. In contrast, conventional machine learning methods require large amounts of data to address the same types of problems. Humans have cognitive biases that promote fast learning. Here, we developed a method to reduce the gap between human beings and machines in this type of inference by utilizing cognitive biases. We implemented a human cognitive model into machine learning algorithms and compared their performance with the currently most popular methods, naïve Bayes, support vector machine, neural networks, logistic regression and random forests. We focused on the task of spam classification, which has been studied for a long time in the field of machine learning and often requires a large amount of data to obtain high accuracy. Our models achieved superior performance with small and biased samples in comparison with other representative machine learning methods.

  13. The Influence Of Learning Model Guided Findings Of Student Learning Outcomes

    Directory of Open Access Journals (Sweden)

    A. SaefulBahri


    Full Text Available Abstract This study examines the influence of the learning model guided findings on student learning outcomes in subjects PAI eighth grade students of SMP Plus al Masoem. The research method used in this study is a quantitative method in the form of quasi-experiment Quasi-Experimental Design. The findings of the study are expected to demonstrate 1 the difference significant increase in learning outcomes between the experimental class using guided discovery method that uses the control class discussion of learning models 2 Constraints in the method of guided discovery activities and the limited ability of educators in the experimental class in implements the method of guided discovery and constraints faced by students while digging the information they need so we need special strategies to motivate students in the experimental class in order for them creatively find the right way to gather information that supports learning PAI.

  14. Active Learning of Classification Models with Likert-Scale Feedback. (United States)

    Xue, Yanbing; Hauskrecht, Milos


    Annotation of classification data by humans can be a time-consuming and tedious process. Finding ways of reducing the annotation effort is critical for building the classification models in practice and for applying them to a variety of classification tasks. In this paper, we develop a new active learning framework that combines two strategies to reduce the annotation effort. First, it relies on label uncertainty information obtained from the human in terms of the Likert-scale feedback. Second, it uses active learning to annotate examples with the greatest expected change. We propose a Bayesian approach to calculate the expectation and an incremental SVM solver to reduce the time complexity of the solvers. We show the combination of our active learning strategy and the Likert-scale feedback can learn classification models more rapidly and with a smaller number of labeled instances than methods that rely on either Likert-scale labels or active learning alone.

  15. Knowledge models as agents of meaninful learning and knowledge creation.


    Fermín María González García; Jorge Fernando Veloz Ortiz; Iovanna Alejandra Rodríguez Moreno; Luis Efrén Velos Ortiz; Beatriz Guardián Soto; Antoni Ballester Valori


    The educational change that pushes the current context requires a shift in the unfortunately predominant positivist-behaviourist model that favours mechanical      memoristic learning, ideal breeding ground for the existence and maintenance of conceptual errors, to another cognitive-constructivist that stimulates meaningful learning to allow students to build and master knowledge, therefore to be more creative and critical. We present here a model of knowledge where students construct new...

  16. Collaborative learning model inquiring based on digital game (United States)

    Yuan, Jiugen; Xing, Ruonan


    With the development of computer education software, digital educational game has become an important part in our life, entertainment and education. Therefore how to make full use of digital game's teaching functions and educate through entertainment has become the focus of current research. The thesis make a connection between educational game and collaborative learning, the current popular teaching model, and concludes digital game-based collaborative learning model combined with teaching practice.

  17. Continuous Online Sequence Learning with an Unsupervised Neural Network Model. (United States)

    Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff


    The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.

  18. Motivation to Improve Work through Learning: A Conceptual Model

    Directory of Open Access Journals (Sweden)

    Kueh Hua Ng


    Full Text Available This study aims to enhance our current understanding of the transfer of training by proposing a conceptual model that supports the mediating role of motivation to improve work through learning about the relationship between social support and the transfer of training. The examination of motivation to improve work through motivation to improve work through a learning construct offers a holistic view pertaining to a learner's profile in a workplace setting, which emphasizes learning for the improvement of work performance. The proposed conceptual model is expected to benefit human resource development theory building, as well as field practitioners by emphasizing the motivational aspects crucial for successful transfer of training.

  19. The Hands-On Optics Project: a demonstration of module 3-magnificent magnifications (United States)

    Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.


    The Hands-On Optics project offers an example of a set of instructional modules that foster active prolonged engagement. Developed by SPIE, OSA, and NOAO through funding from the U.S. National Science Foundation, the modules were originally designed for afterschool settings and museums. However, because they were based on national standards in mathematics, science, and technology, they were easily adapted for use in classrooms. The philosophy and implementation strategies of the six modules will be described as well as lessons learned in training educators. The modules were implementing with the help of optics industry professionals who served as expert volunteers to assist educators. A key element of the modules was that they were developed around an understanding of optics misconceptions and used culminating activities in each module as a form of authentic assessment. Thus student achievement could be measured by evaluating the actual product created by each student in applying key concepts, tools, and applications together at the end of each module. The program used a progression of disciplinary core concepts to build an integrated sequence and crosscutting ideas and practices to infuse the principles of the modern electro-optical field into the modules. Whenever possible, students were encouraged to experiment and to create, and to pursue inquiry-based approaches. The result was a program that had high appeal to regular as well as gifted students.

  20. A theoretical design for learning model addressing the networked society

    DEFF Research Database (Denmark)

    Levinsen, Karin; Nielsen, Janni; Sørensen, Birgitte Holm


    The transition from the industrial to the networked society produces contradictions that challenges the educational system and force it to adapt to new conditions. In a Danish virtual Master in Information and Communication Technologies and Learning (MIL) these contradictions appear as a field of...... which enables students to develop Networked Society competencies and maintain progression in the learning process also during the online periods. Additionally we suggest that our model contributes to the innovation of a networked society's design for learning....... is continuously decreasing. We teach for deep learning but are confronted by students' cost-benefit strategies when they navigate through the study programme under time pressure. To meet these challenges a Design for Learning Model has been developed. The aim is to provide a scaffold that ensures students......' acquisition of the subject matter within a time limit and at a learning quality that support their deep learning process during a subsequent period of on-line study work. In the process of moving from theory to application the model passes through three stages: 1) Conceptual modelling; 2) Orchestration, and 3...

  1. Technological learning in energy-environment-economy modelling: A survey

    International Nuclear Information System (INIS)

    Kahouli-Brahmi, Sondes


    This paper aims at providing an overview and a critical analysis of the technological learning concept and its incorporation in energy-environment-economy models. A special emphasis is put on surveying and discussing, through the so-called learning curve, both studies estimating learning rates in the energy field and studies incorporating endogenous technological learning in bottom-up and top-down models. The survey of learning rate estimations gives special attention to interpreting and explaining the sources of variability of estimated rates, which is shown to be mainly inherent in R and D expenditures, the problem of omitted variable bias, the endogeneity relationship and the role of spillovers. Large-scale models survey show that, despite some methodological and computational complexity related to the non-linearity and the non-convexity associated with the learning curve incorporation, results of the numerous modelling experiments give several new insights with regard to the analysis of the prospects of specific technological options and their cost decrease potential (bottom-up models), and with regard to the analysis of strategic considerations, especially inherent in the innovation and energy diffusion process, in particular the energy sector's endogenous responses to environment policy instruments (top-down models)

  2. Effects of Problem-Based Learning Model versus Expository Model and Motivation to Achieve for Student's Physic Learning Result of Senior High School at Class XI (United States)



    "Problem-based learning" (PBL) is one of an innovative learning model which can provide an active learning to student, include the motivation to achieve showed by student when the learning is in progress. This research is aimed to know: (1) differences of physic learning result for student group which taught by PBL versus expository…

  3. Student Content Knowledge Increases after Participation in a Hands-on Biotechnology Intervention (United States)

    Bigler, Amber M.; Hanegan, Nikki L.


    Implementing biotechnology education through hands-on teaching methods should be considered by secondary biology teachers. This study is an experimental research design to examine increased student content knowledge in biotechnology after a hands-on biotechnology intervention. The teachers from both school groups participated in, Project Crawfish,…

  4. Shape Memory Polymers: A Joint Chemical and Materials Engineering Hands-On Experience (United States)

    Seif, Mujan; Beck, Matthew


    Hands-on experiences are excellent tools for increasing retention of first year engineering students. They also encourage interdisciplinary collaboration, a critical skill for modern engineers. In this paper, we describe and evaluate a joint Chemical and Materials Engineering hands-on lab that explores cross-linking and glass transition in…

  5. Expert Systems as a Mindtool To Facilitate Mental Model Learning. (United States)

    Mason-Mason, Susan Dale; Tessmer, Martin A.


    This exploratory study investigated whether the process of constructing an expert system model promotes the formation of expert-like mental models. Discusses expert systems as mindtools, expert systems as learning tools, the assessment of mental models, results of pretests and posttests, and future research. (Contains 56 references.) (Author/LRW)

  6. Proof of Economic Viability of Blended Learning Business Models (United States)

    Druhmann, Carsten; Hohenberg, Gregor


    The discussion on economically sustainable business models with respect to information technology is lacking in many aspects of proven approaches. In the following contribution the economic viability is valued based on a procedural model for design and evaluation of e-learning business models in the form of a case study. As a case study object a…

  7. Toward a Generative Model of the Teaching-Learning Process. (United States)

    McMullen, David W.

    Until the rise of cognitive psychology, models of the teaching-learning process (TLP) stressed external rather than internal variables. Models remained general descriptions until control theory introduced explicit system analyses. Cybernetic models emphasize feedback and adaptivity but give little attention to creativity. Research on artificial…

  8. Probability Modeling and Thinking: What Can We Learn from Practice? (United States)

    Pfannkuch, Maxine; Budgett, Stephanie; Fewster, Rachel; Fitch, Marie; Pattenwise, Simeon; Wild, Chris; Ziedins, Ilze


    Because new learning technologies are enabling students to build and explore probability models, we believe that there is a need to determine the big enduring ideas that underpin probabilistic thinking and modeling. By uncovering the elements of the thinking modes of expert users of probability models we aim to provide a base for the setting of…

  9. Learning from video modeling examples : Effects of seeing the human model's face

    NARCIS (Netherlands)

    Van Gog, Tamara; Verveer, Ilse; Verveer, Lise


    Video modeling examples in which a human(-like) model shows learners how to perform a task are increasingly used in education, as they have become very easy to create and distribute in e-learning environments. However, little is known about design guidelines to optimize learning from video modeling

  10. Barrier Island Activity to Illustrate Hands-On Science (United States)

    Griffin, Suzanne H.

    ), which was significantly lower for females than for males. Special attention in this work was given to the problem of university Physics laboratory practice. Possibilities to improve students' attitudes towards laboratory work were discussed. This could be done through introduction of pre-lab (aimed to consolidate students' grasp of the necessary background for performing the experiment) and post-lab (aimed to provide students with opportunity to apply the theory they have learned and skills they have obtained from doing laboratory work to solve everyday problems). Examples of pre- and post-labs that were designed for the first term of the level 1 university Physics laboratory practice are given in the Appendix T. The project was extended from the university to the school area where cross-age analyses (measurements at one time with pupils of different age) of pupils' attitudes towards Science/Physics lessons were performed. Pupils from upper Primary P6/P7 up to Higher S5/S6 were involved in the research. These analyses have shown that patterns of Scottish pupils' attitudes towards Science/Physics lessons are not linear with age: attitudes of pupils who were self-selected towards the subject were not always more positive than attitudes of lower level pupils: primary school pupils' attitudes towards science lessons were significantly more positive than attitudes of secondary S2 pupils; pupils doing Standard Grade Physics course were similar in their evaluations of Physics lessons at both S3 and S4 levels; at Higher Grade Physics pupils' attitudes towards science lessons were significantly less positive than attitudes of Standard Grade Physics pupils. Pupils' attitudes towards Science/Physics lessons can be considered as a good indicator of pupils' reactions towards existing syllabuses in Science and Physics. Special attention in this study was devoted to the so-called "problem of girls in Physics". Separate analyses of boys' and girls' interests towards Physics topics

  11. Modeling Time Series Data for Supervised Learning (United States)

    Baydogan, Mustafa Gokce


    Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning…

  12. The Learning Leader: Reflecting, Modeling, and Sharing (United States)

    Jacobs, Jacqueline E.; O'Gorman, Kevin L.


    With this book, principals, principals-in-training, and other school leaders get practical, easy-to-implement strategies for professional growth, strengthening relationships with faculty and staff, and making the necessary changes to improve K-12 learning environments. Grounded in specific, real-world examples and personal experiences, "The…

  13. Fundamentals of endoscopic surgery: creation and validation of the hands-on test. (United States)

    Vassiliou, Melina C; Dunkin, Brian J; Fried, Gerald M; Mellinger, John D; Trus, Thadeus; Kaneva, Pepa; Lyons, Calvin; Korndorffer, James R; Ujiki, Michael; Velanovich, Vic; Kochman, Michael L; Tsuda, Shawn; Martinez, Jose; Scott, Daniel J; Korus, Gary; Park, Adrian; Marks, Jeffrey M


    The Fundamentals of Endoscopic Surgery™ (FES) program consists of online materials and didactic and skills-based tests. All components were designed to measure the skills and knowledge required to perform safe flexible endoscopy. The purpose of this multicenter study was to evaluate the reliability and validity of the hands-on component of the FES examination, and to establish the pass score. Expert endoscopists identified the critical skill set required for flexible endoscopy. They were then modeled in a virtual reality simulator (GI Mentor™ II, Simbionix™ Ltd., Airport City, Israel) to create five tasks and metrics. Scores were designed to measure both speed and precision. Validity evidence was assessed by correlating performance with self-reported endoscopic experience (surgeons and gastroenterologists [GIs]). Internal consistency of each test task was assessed using Cronbach's alpha. Test-retest reliability was determined by having the same participant perform the test a second time and comparing their scores. Passing scores were determined by a contrasting groups methodology and use of receiver operating characteristic curves. A total of 160 participants (17 % GIs) performed the simulator test. Scores on the five tasks showed good internal consistency reliability and all had significant correlations with endoscopic experience. Total FES scores correlated 0.73, with participants' level of endoscopic experience providing evidence of their validity, and their internal consistency reliability (Cronbach's alpha) was 0.82. Test-retest reliability was assessed in 11 participants, and the intraclass correlation was 0.85. The passing score was determined and is estimated to have a sensitivity (true positive rate) of 0.81 and a 1-specificity (false positive rate) of 0.21. The FES hands-on skills test examines the basic procedural components required to perform safe flexible endoscopy. It meets rigorous standards of reliability and validity required for high

  14. The Model of Strategic e-Learning: Understanding and Evaluating Student e-Learning from Metacognitive Perspectives (United States)

    Tsai, Meng-Jung


    This paper presents the Model of Strategic e-Learning to explain and evaluate student e-learning from metacognitive perspectives. An in-depth interview, pilot study and main study are employed to construct the model and develop an instrument--the Online Learning Strategies Scale (OLSS). The model framework is constructed and illustrated by four…

  15. The Kinematic Learning Model using Video and Interfaces Analysis (United States)

    Firdaus, T.; Setiawan, W.; Hamidah, I.


    An educator currently in demand to apply the learning to not be separated from the development of technology. Educators often experience difficulties when explaining kinematics material, this is because kinematics is one of the lessons that often relate the concept to real life. Kinematics is one of the courses of physics that explains the cause of motion of an object, Therefore it takes the thinking skills and analytical skills in understanding these symptoms. Technology is one that can bridge between conceptual relationship with real life. A framework of technology-based learning models has been developed using video and interfaces analysis on kinematics concept. By using this learning model, learners will be better able to understand the concept that is taught by the teacher. This learning model is able to improve the ability of creative thinking, analytical skills, and problem-solving skills on the concept of kinematics.

  16. A developmental approach to learning causal models for cyber security (United States)

    Mugan, Jonathan


    To keep pace with our adversaries, we must expand the scope of machine learning and reasoning to address the breadth of possible attacks. One approach is to employ an algorithm to learn a set of causal models that describes the entire cyber network and each host end node. Such a learning algorithm would run continuously on the system and monitor activity in real time. With a set of causal models, the algorithm could anticipate novel attacks, take actions to thwart them, and predict the second-order effects flood of information, and the algorithm would have to determine which streams of that flood were relevant in which situations. This paper will present the results of efforts toward the application of a developmental learning algorithm to the problem of cyber security. The algorithm is modeled on the principles of human developmental learning and is designed to allow an agent to learn about the computer system in which it resides through active exploration. Children are flexible learners who acquire knowledge by actively exploring their environment and making predictions about what they will find,1, 2 and our algorithm is inspired by the work of the developmental psychologist Jean Piaget.3 Piaget described how children construct knowledge in stages and learn new concepts on top of those they already know. Developmental learning allows our algorithm to focus on subsets of the environment that are most helpful for learning given its current knowledge. In experiments, the algorithm was able to learn the conditions for file exfiltration and use that knowledge to protect sensitive files.

  17. Crash simulation: an immersive learning model. (United States)

    Wenham, John; Bennett, Paul; Gleeson, Wendy


    Far West New South Wales Local Emergency Management Committee runs an annual crash simulation exercise to assess the operational readiness of all local emergency services to coordinate and manage a multi-casualty exercise. Since 2009, the Broken Hill University Department of Rural Health (BHUDRH) has collaborated with the committee, enabling the inclusion of health students in this exercise. It is an immersive interprofessional learning experience that evaluates teamwork, communication and safe effective clinical trauma management outside the hospital setting. After 7 years of modifying and developing the exercise, we set out to evaluate its impact on the students' learning, and sought ethics approval from the University of Sydney for this study. At the start of this year's crash simulation, students were given information sheets and consent forms with regards to the research. Once formal debriefing had finished, the researchers conducted a semi-structured focus-group interview with the health students to gain insight into their experience and their perceived value of the training. Students also completed short-answer questionnaires, and the anonymised responses were analysed. Crash simulation … evaluates teamwork, communication and safe effective clinical trauma management IMPLICATIONS: Participants identified that this multidisciplinary learning opportunity in a pre-hospital mass casualty situation was of value to them. It has taken them outside of their usually protected hospital or primary care setting and tested their critical thinking and communication skills. We recommend this learning concept to other educational institutions. Further research will assess the learning value of the simulated event to the other agencies involved. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  18. Modeling Meaningful Learning in Chemistry Using Structural Equation Modeling (United States)

    Brandriet, Alexandra R.; Ward, Rose Marie; Bretz, Stacey Lowery


    Ausubel and Novak's construct of "meaningful learning" stipulates that substantive connections between new knowledge and what is already known requires the integration of thinking, feeling, and performance (Novak J. D., (2010), "Learning, creating, and using knowledge: concept maps as facilitative tools in schools and…

  19. The Effect of Group Investigation Learning Model with Brainstroming Technique on Students Learning Outcomes

    Directory of Open Access Journals (Sweden)

    Astiti Kade kAyu


    Full Text Available This study aims to determine the effect of group investigation (GI learning model with brainstorming technique on student physics learning outcomes (PLO compared to jigsaw learning model with brainstroming technique. The learning outcome in this research are the results of learning in the cognitive domain. The method used in this research is experiment with Randomised Postest Only Control Group Design. Population in this research is all students of class XI IPA SMA Negeri 9 Kupang year lesson 2015/2016. The selected sample are 40 students of class XI IPA 1 as the experimental class and 38 students of class XI IPA 2 as the control class using simple random sampling technique. The instrument used is 13 items description test. The first hypothesis was tested by using two tailed t-test. From that, it is obtained that H0 rejected which means there are differences of students physics learning outcome. The second hypothesis was tested using one tailed t-test. It is obtained that H0 rejected which means the students PLO in experiment class were higher than control class. Based on the results of this study, researchers recommend the use of GI learning models with brainstorming techniques to improve PLO, especially in the cognitive domain.

  20. All in: expansion of the acquisition of data for outcomes and procedure transfer (ADOPT) program to an entire SAGES annual meeting hands-on hernia course. (United States)

    Dort, Jonathan; Trickey, Amber; Paige, John; Schwarz, Erin; Cecil, Tom; Coleman, Mark; Dunkin, Brian


    Continuing professional development (CPD) for the surgeon has been challenging because of a lack of standardized approaches of hands-on courses, resulting in poor post-course outcomes. To remedy this situation, SAGES has introduced the ADOPT program, implementing a standardized, long-term mentoring program as part of its hernia hands-on course. Previous work evaluating the pilot program showed increased adoption of learned procedures as well as increased confidence of the mentored surgeons. This manuscript describes the impact of such a program when it is instituted across an entire hands-on course. Following collection of pre-course benchmark data, all participants in the 2016 SAGES hands-on hernia course underwent structured, learner-focused instruction during the cadaveric lab. All faculty had completed a standardized teaching course in the Lapco TT format. Subsequently, course participants were enrolled in a year-long program involving longitudinal mentorship, webinars, conference calls, and coaching. Information about participant demographics, training, experience, self-reported case volumes, and confidence levels related to procedures were collected via survey 3 months prior to 9 months after the course. Twenty surgeons participated in the SAGES ADOPT 2016 hands-on hernia program. Of these, seventeen completed pre-course questionnaires (85%), ten completed the 3-month questionnaire (50%), and four completed the 9-month questionnaire (20%). Nine of ten respondents of the 3-month survey (90%) reported changes in their practice. In the 9-month survey, significant increases in the annualized procedural volumes were reported for open primary ventral hernia repair, open components separation, and mesh insertion for ventral hernia repair (p ADOPT program to an entire hands-on hernia course is both feasible and beneficial, with evidence of Kirkpatrick Levels 1-4a training effectiveness. This expanded success suggests that it is a useful blueprint for the CPD of

  1. Systems analysis programs for Hands-on integrated reliability evaluations (SAPHIRE) Version 5.0: Verification and validation (V ampersand V) manual. Volume 9

    International Nuclear Information System (INIS)

    Jones, J.L.; Calley, M.B.; Capps, E.L.; Zeigler, S.L.; Galyean, W.J.; Novack, S.D.; Smith, C.L.; Wolfram, L.M.


    A verification and validation (V ampersand V) process has been performed for the System Analysis Programs for Hands-on Integrated Reliability Evaluation (SAPHIRE) Version 5.0. SAPHIRE is a set of four computer programs that NRC developed for performing probabilistic risk assessments. They allow an analyst to perform many of the functions necessary to create, quantify, and evaluate the risk associated with a facility or process being analyzed. The programs are Integrated Reliability and Risk Analysis System (IRRAS) System Analysis and Risk Assessment (SARA), Models And Results Database (MAR-D), and Fault tree, Event tree, and Piping and instrumentation diagram (FEP) graphical editor. Intent of this program is to perform a V ampersand V of successive versions of SAPHIRE. Previous efforts have been the V ampersand V of SAPHIRE Version 4.0. The SAPHIRE 5.0 V ampersand V plan is based on the SAPHIRE 4.0 V ampersand V plan with revisions to incorporate lessons learned from the previous effort. Also, the SAPHIRE 5.0 vital and nonvital test procedures are based on the test procedures from SAPHIRE 4.0 with revisions to include the new SAPHIRE 5.0 features as well as to incorporate lessons learned from the previous effort. Most results from the testing were acceptable; however, some discrepancies between expected code operation and actual code operation were identified. Modifications made to SAPHIRE are identified

  2. Student Modelling in Adaptive E-Learning Systems

    Directory of Open Access Journals (Sweden)

    Clemens Bechter


    Full Text Available Most e-Learning systems provide web-based learning so that students can access the same online courses via the Internet without adaptation, based on each student's profile and behavior. In an e-Learning system, one size does not fit all. Therefore, it is a challenge to make e-Learning systems that are suitably “adaptive”. The aim of adaptive e-Learning is to provide the students the appropriate content at the right time, means that the system is able to determine the knowledge level, keep track of usage, and arrange content automatically for each student for the best learning result. This study presents a proposed system which includes major adaptive features based on a student model. The proposed system is able to initialize the student model for determining the knowledge level of a student when the student registers for the course. After a student starts learning the lessons and doing many activities, the system can track information of the student until he/she takes a test. The student’s knowledge level, based on the test scores, is updated into the system for use in the adaptation process, which combines the student model with the domain model in order to deliver suitable course contents to the students. In this study, the proposed adaptive e-Learning system is implemented on an “Introduction to Java Programming Language” course, using LearnSquare software. After the system was tested, the results showed positive feedback towards the proposed system, especially in its adaptive capability.

  3. Gender-related model for mobile-based learning (United States)

    Simanjuntak, R. R.; Dewi, U. P.; Rifai, I.


    The study investigates gender influence on mobile-based learning. This case study of university students in Jakarta involved 235 students (128 male, 97 female). Results of this qualitative study showed 96% preference for mobile-based learning. A further 94% showed the needs for collaboration and authenticity for 92%. Hofstede’s cultural dimensions were used to identify the gender aspects of MALL. Preference for Masculinity (65%) was showed rather than Femininity (35%), even among the female respondents (70% of the population). Professions and professionalism received strongest preference (70%) while Individuality and Collectivism had equal preferences among students. Both female and male respondents requested Indulgence (84%) for mobile-based learning with more male respondents opted for Indulgence. The study provided a model for this gender sensitive mobile-based learning. Implications of implementing mobile-based learning as an ideal alternative for well-accommodated education are is also discussed.

  4. Introducing computational thinking through hands-on projects using R with applications to calculus, probability and data analysis (United States)

    Benakli, Nadia; Kostadinov, Boyan; Satyanarayana, Ashwin; Singh, Satyanand


    The goal of this paper is to promote computational thinking among mathematics, engineering, science and technology students, through hands-on computer experiments. These activities have the potential to empower students to learn, create and invent with technology, and they engage computational thinking through simulations, visualizations and data analysis. We present nine computer experiments and suggest a few more, with applications to calculus, probability and data analysis, which engage computational thinking through simulations, visualizations and data analysis. We are using the free (open-source) statistical programming language R. Our goal is to give a taste of what R offers rather than to present a comprehensive tutorial on the R language. In our experience, these kinds of interactive computer activities can be easily integrated into a smart classroom. Furthermore, these activities do tend to keep students motivated and actively engaged in the process of learning, problem solving and developing a better intuition for understanding complex mathematical concepts.

  5. Using Active Learning for Speeding up Calibration in Simulation Models. (United States)

    Cevik, Mucahit; Ergun, Mehmet Ali; Stout, Natasha K; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan


    Most cancer simulation models include unobservable parameters that determine disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality, and their values are typically estimated via a lengthy calibration procedure, which involves evaluating a large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We developed an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs and therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using the previously developed University of Wisconsin breast cancer simulation model (UWBCS). In a recent study, calibration of the UWBCS required the evaluation of 378 000 input parameter combinations to build a race-specific model, and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378 000 combinations. Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. © The Author(s) 2015.

  6. Toxin-Induced Experimental Models of Learning and Memory Impairment. (United States)

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug


    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.

  7. What's statistical about learning? Insights from modelling statistical learning as a set of memory processes. (United States)

    Thiessen, Erik D


    Statistical learning has been studied in a variety of different tasks, including word segmentation, object identification, category learning, artificial grammar learning and serial reaction time tasks (e.g. Saffran et al. 1996 Science 274: , 1926-1928; Orban et al. 2008 Proceedings of the National Academy of Sciences 105: , 2745-2750; Thiessen & Yee 2010 Child Development 81: , 1287-1303; Saffran 2002 Journal of Memory and Language 47: , 172-196; Misyak & Christiansen 2012 Language Learning 62: , 302-331). The difference among these tasks raises questions about whether they all depend on the same kinds of underlying processes and computations, or whether they are tapping into different underlying mechanisms. Prior theoretical approaches to statistical learning have often tried to explain or model learning in a single task. However, in many cases these approaches appear inadequate to explain performance in multiple tasks. For example, explaining word segmentation via the computation of sequential statistics (such as transitional probability) provides little insight into the nature of sensitivity to regularities among simultaneously presented features. In this article, we will present a formal computational approach that we believe is a good candidate to provide a unifying framework to explore and explain learning in a wide variety of statistical learning tasks. This framework suggests that statistical learning arises from a set of processes that are inherent in memory systems, including activation, interference, integration of information and forgetting (e.g. Perruchet & Vinter 1998 Journal of Memory and Language 39: , 246-263; Thiessen et al. 2013 Psychological Bulletin 139: , 792-814). From this perspective, statistical learning does not involve explicit computation of statistics, but rather the extraction of elements of the input into memory traces, and subsequent integration across those memory traces that emphasize consistent information (Thiessen and Pavlik

  8. Perbandingan antara Keefektifan Model Guided Discovery Learning dan Project-Based Learning pada Matakuliah Geometri

    Directory of Open Access Journals (Sweden)

    Okky Riswandha Imawan


    Abstract This research aims to describe the effectiveness and effectiveness differences of the Guided Discovery Learning (GDL Model and the Project Based Learning (PjBL Model in terms of achievement, self-confidence, and critical thinking skills of students on the Solid Geometry subjects. This research was quasi experimental. The research subjects were two undergraduate classes of Mathematics Education Program, Ahmad Dahlan University, in their second semester, established at random. The data analysis to test the effectiveness of the GDL and PjBL Models in terms of each of the dependent variables used the t-test. The data analysis to test differences between effectiveness of the GDL and that of the PjBL Model used the MANOVA test. The results of this research show that viewed from achievement, self confidence, and critical thinking skills of the students are the application of the GDL Model on Solid Geometry subject is effective, the application of the PjBL Model on Solid Geometry subject is effective, and there is no difference in the effectiveness of GDL and PjBL Models on Solid Geometry subject in terms of achievement, self confidence, and critical thinking skills of the students. Keywords: guided discovery learning model, project-based learning model, achievement, self-confidence, critical thinking skills

  9. Concept Model For Designing Engaging And Motivating Games For Learning - The Smiley-Model

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke; Ørngreen, Rikke


    The desire to use learning games in education is increasing, but the development of games for learning is still a growing field. Research shows that it remains difficult to develop learning games that are both instructive and engaging, although it is precisely the presence of these two elements...... that is believed to be an advantage when using learning games in education. In this paper the Smiley-model is presented (figure 1). The model describes which parameters and elements are important when designing a learning game. The present research is a result of a case-based action research study for designing...... a music learning game that teaches children to play piano using sheet music, and at the same time is fun and engaging. Although the model was originally developed for and through music, it has a more generic nature, and may be relevant for other fields as well. The Smiley-model is a condensed version...

  10. The Self-Regulated Learning Model and Music Education

    Directory of Open Access Journals (Sweden)

    Maja Marijan


    Full Text Available Self-regulation and self-regulated learning (SRL are important features in music education. In this research self-regulated learning model is presented as a complex, multidimensional structure. SRL starts with the self-regulation. Self-regulation is formed through interaction with the environment, thus self-learning, self-analysis, self-judgment, self-instruction, and self-monitoring are the main functions in self-regulatory structure. Co-regulation is needed, and helps self-regulation to be activated and monitored. In music education, co-regulation refers to the instructions that teacher introduces in the lessons. These instructions have to enhance learning and develop regulation over emotions, cognitive, auditor, and motor skills in students. Learning techniques and learning strategies are core components in music education. Adapting those, students become aware of their learning processes, actions, thoughts, feelings and behaviors that are involved in learning. It is suggested that every teaching methodology has to develop learning techniques, as well as metamemory and metacognition in students, in order to gain expertise. The author has emphasized her attention to every aspect that is believed to belong to SRL. There are not many articles on the SRL in music education, written by musicians, in compare with those written by psychologists and neurologists,. Therefore, the author has suggested that this paper would encourage music teachers and performers to take an advantage in the research of SRL. These researches would help music educational systems and teachers to develop and promote learning techniques and strategies. The results would show improvement in student’s learning and self-regulation.

  11. A Bayesian Approach for Structural Learning with Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Cen Li


    Full Text Available Hidden Markov Models(HMM have proved to be a successful modeling paradigm for dynamic and spatial processes in many domains, such as speech recognition, genomics, and general sequence alignment. Typically, in these applications, the model structures are predefined by domain experts. Therefore, the HMM learning problem focuses on the learning of the parameter values of the model to fit the given data sequences. However, when one considers other domains, such as, economics and physiology, model structure capturing the system dynamic behavior is not available. In order to successfully apply the HMM methodology in these domains, it is important that a mechanism is available for automatically deriving the model structure from the data. This paper presents a HMM learning procedure that simultaneously learns the model structure and the maximum likelihood parameter values of a HMM from data. The HMM model structures are derived based on the Bayesian model selection methodology. In addition, we introduce a new initialization procedure for HMM parameter value estimation based on the K-means clustering method. Experimental results with artificially generated data show the effectiveness of the approach.

  12. Representative Model of the Learning Process in Virtual Spaces Supported by ICT (United States)

    Capacho, José


    This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning). The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating…

  13. Cross-Situational Learning with Bayesian Generative Models for Multimodal Category and Word Learning in Robots

    Directory of Open Access Journals (Sweden)

    Akira Taniguchi


    Full Text Available In this paper, we propose a Bayesian generative model that can form multiple categories based on each sensory-channel and can associate words with any of the four sensory-channels (action, position, object, and color. This paper focuses on cross-situational learning using the co-occurrence between words and information of sensory-channels in complex situations rather than conventional situations of cross-situational learning. We conducted a learning scenario using a simulator and a real humanoid iCub robot. In the scenario, a human tutor provided a sentence that describes an object of visual attention and an accompanying action to the robot. The scenario was set as follows: the number of words per sensory-channel was three or four, and the number of trials for learning was 20 and 40 for the simulator and 25 and 40 for the real robot. The experimental results showed that the proposed method was able to estimate the multiple categorizations and to learn the relationships between multiple sensory-channels and words accurately. In addition, we conducted an action generation task and an action description task based on word meanings learned in the cross-situational learning scenario. The experimental results showed that the robot could successfully use the word meanings learned by using the proposed method.


    Directory of Open Access Journals (Sweden)

    Miguel Ángel Montero


    Full Text Available The experience which we count with in the university education, the development of the ICT (Information and Communications Technology, the integration in the ESSE, the new qualifications (or Grades and mainly the desire to improve push us to innovate and to put into practice new methodologies in the teaching and learning of the subjects of Mathematics and Statistic assigned to our department. These methods totally renovate the lecturer’s roll and the traditional teaching, introducing multimedia tools, support platforms and new resources that provide students an autonomy which before they did not have, modifying the organization of time and space, increasing modalities and strategies of teaching-learning-tutorization and therefore developing more flexible models. It is tried to facilitate the learning of these subjects, providing a model b-learning, a comple- ment or alternative to the attendance classes, reinforcing the student’s active self-training.

  15. Blended learning in anesthesia education: current state and future model. (United States)

    Kannan, Jaya; Kurup, Viji


    Educators in anesthesia residency programs across the country are facing a number of challenges as they attempt to integrate blended learning techniques in their curriculum. Compared with the rest of higher education, which has made advances to varying degrees in the adoption of online learning anesthesiology education has been sporadic in the active integration of blended learning. The purpose of this review is to discuss the challenges in anesthesiology education and relevance of the Universal Design for Learning framework in addressing them. There is a wide chasm between student demand for online education and the availability of trained faculty to teach. The design of the learning interface is important and will significantly affect the learning experience for the student. This review examines recent literature pertaining to this field, both in the realm of higher education in general and medical education in particular, and proposes the application of a comprehensive learning model that is new to anesthesiology education and relevant to its goals of promoting self-directed learning.

  16. Bidirectional Nonnegative Deep Model and Its Optimization in Learning

    Directory of Open Access Journals (Sweden)

    Xianhua Zeng


    Full Text Available Nonnegative matrix factorization (NMF has been successfully applied in signal processing as a simple two-layer nonnegative neural network. Projective NMF (PNMF with fewer parameters was proposed, which projects a high-dimensional nonnegative data onto a lower-dimensional nonnegative subspace. Although PNMF overcomes the problem of out-of-sample of NMF, it does not consider the nonlinear characteristic of data and is only a kind of narrow signal decomposition method. In this paper, we combine the PNMF with deep learning and nonlinear fitting to propose a bidirectional nonnegative deep learning (BNDL model and its optimization learning algorithm, which can obtain nonlinear multilayer deep nonnegative feature representation. Experiments show that the proposed model can not only solve the problem of out-of-sample of NMF but also learn hierarchical nonnegative feature representations with better clustering performance than classical NMF, PNMF, and Deep Semi-NMF algorithms.

  17. Polarimetric SAR image classification based on discriminative dictionary learning model (United States)

    Sang, Cheng Wei; Sun, Hong


    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  18. Model Transport: Towards Scalable Transfer Learning on Manifolds

    DEFF Research Database (Denmark)

    Freifeld, Oren; Hauberg, Søren; Black, Michael J.


    We consider the intersection of two research fields: transfer learning and statistics on manifolds. In particular, we consider, for manifold-valued data, transfer learning of tangent-space models such as Gaussians distributions, PCA, regression, or classifiers. Though one would hope to simply use...... ordinary Rn-transfer learning ideas, the manifold structure prevents it. We overcome this by basing our method on inner-product-preserving parallel transport, a well-known tool widely used in other problems of statistics on manifolds in computer vision. At first, this straightforward idea seems to suffer...... “commutes” with learning. Consequently, our compact framework, applicable to a large class of manifolds, is not restricted by the size of either the training or test sets. We demonstrate the approach by transferring PCA and logistic-regression models of real-world data involving 3D shapes and image...

  19. Improving Student Learning Outcomes Marketing Strategy Lesson By Applying SFAE Learning Model

    Directory of Open Access Journals (Sweden)

    Winda Nur Rohmawati


    Full Text Available Research objectives for improving student learning outcomes on the subjects of marketing strategy through the implementation of model learning SFAE. This type of research this is a class action research using a qualitative approach which consists of two cycles with the subject Marketing X grade SMK YPI Darussalam 2 Cerme Gresik Regency. This research consists of four stages: (1 the Planning Act, (2 the implementation of the action, (3 observations (observation, and (4 Reflection. The result of the research shows that cognitive and affective learning outcomes of students have increased significantly.


    Directory of Open Access Journals (Sweden)

    Dmytro S. Morozov


    Full Text Available The research paper outlines the problem of organization collaboration of users group on creation distance learning courses. The article contains analysis of the courses data structure. According to proposed structure the model of developer’s collaboration on creating distance learning courses based on basic principles of source code management was proposed. The article also provides result of research on necessary tools for collaborative development of courses in distance learning platforms. According to the requirements of flexibility and simplicity of access to system for any level educational institutions, technological decisions on granting permissions on performing basic operations on course elements and providing to user moderation’s privileges were proposed.

  1. The Self-Regulated Learning Model and Music Education


    Maja Marijan


    Self-regulation and self-regulated learning (SRL) are important features in music education. In this research self-regulated learning model is presented as a complex, multidimensional structure. SRL starts with the self-regulation. Self-regulation is formed through interaction with the environment, thus self-learning, self-analysis, self-judgment, self-instruction, and self-monitoring are the main functions in self-regulatory structure. Co-regulation is needed, and helps self-regulation to be...

  2. Theory-based Bayesian models of inductive learning and reasoning. (United States)

    Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles


    Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.

  3. Models in Science Education: Applications of Models in Learning and Teaching Science (United States)

    Ornek, Funda


    In this paper, I discuss different types of models in science education and applications of them in learning and teaching science, in particular physics. Based on the literature, I categorize models as conceptual and mental models according to their characteristics. In addition to these models, there is another model called "physics model" by the…

  4. Learning of couplings for random asymmetric kinetic Ising models revisited: random correlation matrices and learning curves

    International Nuclear Information System (INIS)

    Bachschmid-Romano, Ludovica; Opper, Manfred


    We study analytically the performance of a recently proposed algorithm for learning the couplings of a random asymmetric kinetic Ising model from finite length trajectories of the spin dynamics. Our analysis shows the importance of the nontrivial equal time correlations between spins induced by the dynamics for the speed of learning. These correlations become more important as the spin’s stochasticity is decreased. We also analyse the deviation of the estimation error (paper)

  5. Time representation in reinforcement learning models of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Samuel Joseph Gershman


    Full Text Available Reinforcement learning models have been influential in understanding many aspects of basal ganglia function, from reward prediction to action selection. Time plays an important role in these models, but there is still no theoretical consensus about what kind of time representation is used by the basal ganglia. We review several theoretical accounts and their supporting evidence. We then discuss the relationship between reinforcement learning models and the timing mechanisms that have been attributed to the basal ganglia. We hypothesize that a single computational system may underlie both reinforcement learning and interval timing—the perception of duration in the range of seconds to hours. This hypothesis, which extends earlier models by incorporating a time-sensitive action selection mechanism, may have important implications for understanding disorders like Parkinson's disease in which both decision making and timing are impaired.

  6. Occam factors and model independent Bayesian learning of continuous distributions

    International Nuclear Information System (INIS)

    Nemenman, Ilya; Bialek, William


    Learning of a smooth but nonparametric probability density can be regularized using methods of quantum field theory. We implement a field theoretic prior numerically, test its efficacy, and show that the data and the phase space factors arising from the integration over the model space determine the free parameter of the theory ('smoothness scale') self-consistently. This persists even for distributions that are atypical in the prior and is a step towards a model independent theory for learning continuous distributions. Finally, we point out that a wrong parametrization of a model family may sometimes be advantageous for small data sets

  7. Model-observer similarity, error modeling and social learning in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Elisabetta Monfardini

    Full Text Available Monkeys readily learn to discriminate between rewarded and unrewarded items or actions by observing their conspecifics. However, they do not systematically learn from humans. Understanding what makes human-to-monkey transmission of knowledge work or fail could help identify mediators and moderators of social learning that operate regardless of language or culture, and transcend inter-species differences. Do monkeys fail to learn when human models show a behavior too dissimilar from the animals' own, or when they show a faultless performance devoid of error? To address this question, six rhesus macaques trained to find which object within a pair concealed a food reward were successively tested with three models: a familiar conspecific, a 'stimulus-enhancing' human actively drawing the animal's attention to one object of the pair without actually performing the task, and a 'monkey-like' human performing the task in the same way as the monkey model did. Reward was manipulated to ensure that all models showed equal proportions of errors and successes. The 'monkey-like' human model improved the animals' subsequent object discrimination learning as much as a conspecific did, whereas the 'stimulus-enhancing' human model tended on the contrary to retard learning. Modeling errors rather than successes optimized learning from the monkey and 'monkey-like' models, while exacerbating the adverse effect of the 'stimulus-enhancing' model. These findings identify error modeling as a moderator of social learning in monkeys that amplifies the models' influence, whether beneficial or detrimental. By contrast, model-observer similarity in behavior emerged as a mediator of social learning, that is, a prerequisite for a model to work in the first place. The latter finding suggests that, as preverbal infants, macaques need to perceive the model as 'like-me' and that, once this condition is fulfilled, any agent can become an effective model.

  8. Identification of Chemistry Learning Problems Viewed From Conceptual Change Model


    Redhana, I. W; Sudria, I. B. N; Hidayat, I; Merta, L. M


    This study aimed at describing and explaining chemistry learning problems viewed from conceptual change model and misconceptions of students. The study was qualitative research of case study type conducted in one class of SMAN 1 Singaraja. Subjects of the study were a chemistry teacher and students. Data were obtained through classroom observation, interviews, and conception tests. The chemistry learning problems were grouped based on aspects of necessity, intelligibility, plausibility, and f...

  9. Modeling the learning of the English past tense with memory-based learning

    NARCIS (Netherlands)

    van Noord, Rik; Spenader, Jennifer K.


    Modeling the acquisition and final state of English past tense inflection has been an ongoing challenge since the mid-eighties. A number of rule-based and connectionist models have been proposed over the years, but the former usually have no explanation of how the rules are learned and the latter

  10. The Use of Problem-Based Learning Model to Improve Quality Learning Students Morals (United States)



    Model of moral cultivation in MTsN Bangunharja done using three methods, classical cultivation methods, extra-curricular activities in the form of religious activities, scouting, sports, and Islamic art, and habituation of morals. Problem base learning models in MTsN Bangunharja applied using the following steps: find the problem, define the…

  11. Computational neurorehabilitation: modeling plasticity and learning to predict recovery. (United States)

    Reinkensmeyer, David J; Burdet, Etienne; Casadio, Maura; Krakauer, John W; Kwakkel, Gert; Lang, Catherine E; Swinnen, Stephan P; Ward, Nick S; Schweighofer, Nicolas


    Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling - regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity.

  12. Runtime Optimizations for Tree-Based Machine Learning Models

    NARCIS (Netherlands)

    N. Asadi; J.J.P. Lin (Jimmy); A.P. de Vries (Arjen)


    htmlabstractTree-based models have proven to be an effective solution for web ranking as well as other machine learning problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, specifically using gradient-boosted regression

  13. Learning of Cross-Sectional Anatomy Using Clay Models (United States)

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon


    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  14. Modeling individuals’ cognitive and affective responses in spatial learning behavior

    NARCIS (Netherlands)

    Han, Q.; Arentze, T.A.; Timmermans, H.J.P.; Janssens, D.; Wets, G.; Lo, H.P.; Leung, Stephen C.H.; Tan, Susanna M.L.


    Activity-based analysis has slowly shifted gear from analysis of daily activity patterns to analysis and modeling of dynamic activity-travel patterns. In this paper, we describe a dynamic model that is concerned with simulating cognitive and affective responses in spatial learning behavior for a

  15. Scalable learning of probabilistic latent models for collaborative filtering

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre


    variational Bayes learning and inference algorithm for these types of models. Empirical results show that the proposed algorithm achieves significantly better accuracy results than other straw-men models evaluated on a collection of well-known data sets. We also demonstrate that the algorithm has a highly...

  16. An Active Learning Exercise for Introducing Agent-Based Modeling (United States)

    Pinder, Jonathan P.


    Recent developments in agent-based modeling as a method of systems analysis and optimization indicate that students in business analytics need an introduction to the terminology, concepts, and framework of agent-based modeling. This article presents an active learning exercise for MBA students in business analytics that demonstrates agent-based…

  17. VISIONS2 Learning for Life Initiative. Workplace Literacy Implementation Model. (United States)

    Walsh, Chris L.; Ferguson, Susan E.; Taylor, Mary Lou

    This document presents a model for implementing workplace literacy education that focuses on giving front-line workers or first-line workers basic skills instruction and an appreciation for lifelong learning. The introduction presents background information on the model, which was developed during a partnership between a technical college and an…

  18. Mathematical Models of Elementary Mathematics Learning and Performance. Final Report. (United States)

    Suppes, Patrick

    This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…

  19. The Gain-Loss Model: A Probabilistic Skill Multimap Model for Assessing Learning Processes (United States)

    Robusto, Egidio; Stefanutti, Luca; Anselmi, Pasquale


    Within the theoretical framework of knowledge space theory, a probabilistic skill multimap model for assessing learning processes is proposed. The learning process of a student is modeled as a function of the student's knowledge and of an educational intervention on the attainment of specific skills required to solve problems in a knowledge…

  20. Models for Validation of Prior Learning (VPL)

    DEFF Research Database (Denmark)

    Ehlers, Søren

    The national policies for the education/training of adults are in the 21st century highly influenced by proposals which are formulated and promoted by The European Union (EU) as well as other transnational players and this shift in policy making has consequences. One is that ideas which in the past...... would have been categorized as utopian can become realpolitik. Validation of Prior Learning (VPL) was in Europe mainly regarded as utopian while universities in the United States of America (USA) were developing ways to obtain credits to those students which was coming with experiences from working life....

  1. Credit Risk Analysis Using Machine and Deep Learning Models

    Directory of Open Access Journals (Sweden)

    Peter Martey Addo


    Full Text Available Due to the advanced technology associated with Big Data, data availability and computing power, most banks or lending institutions are renewing their business models. Credit risk predictions, monitoring, model reliability and effective loan processing are key to decision-making and transparency. In this work, we build binary classifiers based on machine and deep learning models on real data in predicting loan default probability. The top 10 important features from these models are selected and then used in the modeling process to test the stability of binary classifiers by comparing their performance on separate data. We observe that the tree-based models are more stable than the models based on multilayer artificial neural networks. This opens several questions relative to the intensive use of deep learning systems in enterprises.

  2. A Model for Learning Over Time: The Big Picture (United States)

    Amato, Herbert K.; Konin, Jeff G.; Brader, Holly


    Objective: To present a method of describing the concept of “learning over time” with respect to its implementation into an athletic training education program curriculum. Background: The formal process of learning over time has recently been introduced as a required way for athletic training educational competencies and clinical proficiencies to be delivered and mastered. Learning over time incorporates the documented cognitive, psychomotor, and affective skills associated with the acquisition, progression, and reflection of information. This method of academic preparation represents a move away from a quantitative-based learning module toward a proficiency-based mastery of learning. Little research or documentation can be found demonstrating either the specificity of this concept or suggestions for its application. Description: We present a model for learning over time that encompasses multiple indicators for assessment in a successive format. Based on a continuum approach, cognitive, psychomotor, and affective characteristics are assessed at different levels in classroom and clinical environments. Clinical proficiencies are a common set of entry-level skills that need to be integrated into the athletic training educational domains. Objective documentation is presented, including the skill breakdown of a task and a matrix to identify a timeline of competency and proficiency delivery. Clinical Advantages: The advantages of learning over time pertain to the integration of cognitive knowledge into clinical skill acquisition. Given the fact that learning over time has been implemented as a required concept for athletic training education programs, this model may serve to assist those program faculty who have not yet developed, or are in the process of developing, a method of administering this approach to learning. PMID:12937551

  3. Implementation of Reseptive Esteemy Approach Model in Learning Reading Literature

    Directory of Open Access Journals (Sweden)

    Titin Nurhayatin


    Full Text Available Research on the implementation of aesthetic model of receptive aesthetic approach in learning to read the literature on the background of the low quality of results and learning process of Indonesian language, especially the study of literature. Students as prospective teachers of Indonesian language are expected to have the ability to speak, have literature, and their learning in a balanced manner in accordance with the curriculum demands. This study examines the effectiveness, quality, acceptability, and sustainability of the aesthetic approach of receptions in improving students' literary skills. Based on these problems, this study is expected to produce a learning model that contributes high in improving the quality of results and the process of learning literature. This research was conducted on the students of Language Education Program, Indonesian Literature and Regional FKIP Pasundan University. The research method used is experiment with randomized type pretest-posttest control group design. Based on preliminary and final test data obtained in the experimental class the average preliminary test was 55.86 and the average final test was 76.75. From the preliminary test data in the control class the average score was 55.07 and the average final test was 68.76. These data suggest that there is a greater increase in grades in the experimental class using the aesthetic approach of the reception compared with the increase in values in the control class using a conventional approach. The results show that the aesthetic approach of receptions is more effective than the conventional approach in literary reading. Based on observations, acceptance, and views of sustainability, the aesthetic approach of receptions in literary learning is expected to be an alternative and solution in overcoming the problems of literary learning and improving the quality of Indonesian learning outcomes and learning process.

  4. Organizational Learning, Strategic Flexibility and Business Model Innovation: An Empirical Research Based on Logistics Enterprises (United States)

    Bao, Yaodong; Cheng, Lin; Zhang, Jian

    Using the data of 237 Jiangsu logistics firms, this paper empirically studies the relationship among organizational learning capability, business model innovation, strategic flexibility. The results show as follows; organizational learning capability has positive impacts on business model innovation performance; strategic flexibility plays mediating roles on the relationship between organizational learning capability and business model innovation; interaction among strategic flexibility, explorative learning and exploitative learning play significant roles in radical business model innovation and incremental business model innovation.

  5. Blended learning models for directing the self-learning activity of “Software Engineering” specialty students

    Directory of Open Access Journals (Sweden)

    Vera V. Lyubchenko


    Full Text Available The adoption of Law of Ukraine “On Higher Education” (2014 involves the increase in students’ self-learning activity part in the curriculum. Therefore the self-learning activities’ arrangement in a way augmenting the result quality becomes a top priority task. This research objective consists in elaborating the scenario for organization of the students’ qualitative self-study, based on blended learning models. The author analyzes four blended learning models: the rotation model, flex-model, self-blend model and online driver model, and gives examples of their use. It is shown that first two models are the most suitable for full-time students. A general scenario for the use of blended learning models is described. Although the use of blended learning models causes several difficulties, it also essentially contributes into students’ self-study monitoring and control support.

  6. The Emergence of the Open Networked ``i-Learning'' Model (United States)

    Elia, Gianluca

    The most significant forces that are changing the business world and the society behaviors in this beginning of the twenty-first century can be identified into the globalization of the economy, technological evolution and convergence, change of the workers' expectations, workplace diversity and mobility, and mostly, knowledge and learning as major organizational assets. But which type of ­learning dynamics must be nurtured and pursued within the organizations, today, in order to generate valuable knowledge and its effective applications? After a brief discussion on the main changes observable in management, ICT and society/workplace in the last years, this chapter aims to answer to this question, through the proposition of the “Π-shaped” profile (a new professional archetype for leading change), and through the discussion of the open networked “i-Learning” model (a new framework to “incubate” innovation in learning processes). Actually, the “i” stands for “innovation” (to highlight the nature of the impact on traditional ­learning model), but also it stands for “incubation” (to underline the urgency to have new environments in which incubating new professional profiles). Specifically, the main key characteristics at the basis of the innovation of the learning processes will be ­presented and described, by highlighting the managerial, technological and societal aspects of their nature. A set of operational guidelines will be also ­provided to ­activate and sustain the innovation process, so implementing changes in the strategic dimensions of the model. Finally, the “i-Learning Radar” is presented as an operational tool to design, communicate and control an “i-Learning experience”. This tool is represented by a radar diagram with six strategic dimensions of a ­learning initiative.

  7. A workflow learning model to improve geovisual analytics utility. (United States)

    Roth, Robert E; Maceachren, Alan M; McCabe, Craig A


    INTRODUCTION: This paper describes the design and implementation of the G-EX Portal Learn Module, a web-based, geocollaborative application for organizing and distributing digital learning artifacts. G-EX falls into the broader context of geovisual analytics, a new research area with the goal of supporting visually-mediated reasoning about large, multivariate, spatiotemporal information. Because this information is unprecedented in amount and complexity, GIScientists are tasked with the development of new tools and techniques to make sense of it. Our research addresses the challenge of implementing these geovisual analytics tools and techniques in a useful manner. OBJECTIVES: The objective of this paper is to develop and implement a method for improving the utility of geovisual analytics software. The success of software is measured by its usability (i.e., how easy the software is to use?) and utility (i.e., how useful the software is). The usability and utility of software can be improved by refining the software, increasing user knowledge about the software, or both. It is difficult to achieve transparent usability (i.e., software that is immediately usable without training) of geovisual analytics software because of the inherent complexity of the included tools and techniques. In these situations, improving user knowledge about the software through the provision of learning artifacts is as important, if not more so, than iterative refinement of the software itself. Therefore, our approach to improving utility is focused on educating the user. METHODOLOGY: The research reported here was completed in two steps. First, we developed a model for learning about geovisual analytics software. Many existing digital learning models assist only with use of the software to complete a specific task and provide limited assistance with its actual application. To move beyond task-oriented learning about software use, we propose a process-oriented approach to learning based on

  8. Systems analysis programs for hands-on integrated reliability evaluations (SAPHIRE), Version 5.0

    International Nuclear Information System (INIS)

    Russell, K.D.; Kvarfordt, K.J.; Hoffman, C.L.


    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. The Graphical Evaluation Module (GEM) is a special application tool designed for evaluation of operational occurrences using the Accident Sequence Precursor (ASP) program methods. GEM provides the capability for an analyst to quickly and easily perform conditional core damage probability (CCDP) calculations. The analyst can then use the CCDP calculations to determine if the occurrence of an initiating event or a condition adversely impacts safety. It uses models and data developed in the SAPHIRE specially for the ASP program. GEM requires more data than that normally provided in SAPHIRE and will not perform properly with other models or data bases. This is the first release of GEM and the developers of GEM welcome user comments and feedback that will generate ideas for improvements to future versions. GEM is designated as version 5.0 to track GEM codes along with the other SAPHIRE codes as the GEM relies on the same, shared database structure

  9. A New Profile Learning Model for Recommendation System based on Machine Learning Technique

    Directory of Open Access Journals (Sweden)

    Shereen H. Ali


    Full Text Available Recommender systems (RSs have been used to successfully address the information overload problem by providing personalized and targeted recommendations to the end users. RSs are software tools and techniques providing suggestions for items to be of use to a user, hence, they typically apply techniques and methodologies from Data Mining. The main contribution of this paper is to introduce a new user profile learning model to promote the recommendation accuracy of vertical recommendation systems. The proposed profile learning model employs the vertical classifier that has been used in multi classification module of the Intelligent Adaptive Vertical Recommendation (IAVR system to discover the user’s area of interest, and then build the user’s profile accordingly. Experimental results have proven the effectiveness of the proposed profile learning model, which accordingly will promote the recommendation accuracy.

  10. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning (United States)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.


    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  11. Integrating Learning Styles and Personality Traits into an Affective Model to Support Learner's Learning (United States)

    Leontidis, Makis; Halatsis, Constantin

    The aim of this paper is to present a model in order to integrate the learning style and the personality traits of a learner into an enhanced Affective Style which is stored in the learner’s model. This model which can deal with the cognitive abilities as well as the affective preferences of the learner is called Learner Affective Model (LAM). The LAM is used to retain learner’s knowledge and activities during his interaction with a Web-based learning environment and also to provide him with the appropriate pedagogical guidance. The proposed model makes use of an ontological approach in combination with the Bayesian Network model and contributes to the efficient management of the LAM in an Affective Module.

  12. Using videos, apps and hands-on experience in undergraduate hydrology teaching (United States)

    Van Loon, Anne


    Hydrological sciences teaching always needs to make a link between the classroom and the outside world. This can be done with fieldwork and excursions, but the increasing availability of open educational resources gives more-and-more other options to make theory more understandable and applicable. In the undergraduate teaching of hydrology at the University of Birmingham we make use of a number of tools to enhance the hydrology 'experience' of students. Firstly, we add hydrological science videos available in the public domain to our explanations of theory. These are both visualisations of concepts and recorded demonstrations in the field or the lab. One example is the concept of catchments and travel times which has been excellently visualised by MetEd. Secondly, we use a number of mobile phone apps, which provide virtual reality information and real-time monitoring information. We use the MySoil App (by Natural Environment Research Council (NERC), British Geological Survey (BGS) and Centre for Ecology & Hydrology (CEH)) and iGeology / iGeology3D (by BGS) to let students explore soil properties and hydrogeology of an area of interest. And we use the River Levels App (by OGL based on Environment Agency real time data) for exploring real time river levels and investigating spatial variability. Finally, we developed small hands-on projects for students to apply the theory outside the classroom. We for instance let them do simple infiltration experiments and ask them to them design a measurement plan. Evaluations have shown that students enjoy these activities and that it helps their learning. In this presentation we hope to share our experience so that the options for using open (educational) resources for hydrology teaching become more used in linking the classroom to the outside world.

  13. Hands-On ERP Learning: Using OpenERP[R], an Alternative to SAP[R (United States)

    Ayyagari, Ramakrishna


    Recent struggles with ERP systems (Kanaracus, 2010) highlight that teaching ERP skills is still very relevant today. Previous research suggests that knowledge of ERP concepts is more important than skills with any particular ERP package (Strong et al., 2006). However, a review of published studies in "JISE" shows a bias towards commercial ERP…

  14. Hands-on at a Distance: Evaluation of a Temperature and Heat Distance Learning Course (United States)

    Krall, Rebecca McNall; Straley, Joseph P.; Shafer, Sally A.; Osborn, Jeffrey L.


    The No Child Left Behind Act requires that all teachers be certified within the content areas that they teach. However, attracting and retaining highly qualified science teachers in rural school districts is particularly difficult due to limited resources and geographic and professional isolation. Science professional development programs could…

  15. Hands-On Learning: A Problem-Based Approach to Teaching Microsoft Excel (United States)

    Slayter, Erik; Higgins, Lindsey M.


    The development of a student's ability to make data-driven decisions has become a focus in higher education (Schield 1999; Stephenson and Caravello 2007). Data literacy, the ability to understand and use data to effectively inform decisions, is a fundamental component of information competence (Mandinach and Gummer 2013; Stephenson and Caravello,…

  16. Learning the art of electronics a hands-on lab course

    CERN Document Server

    Hayes, Thomas C


    This introduction to circuit design is unusual in several respects. First, it offers not just explanations, but a full course. Each of the twenty-five sessions begins with a discussion of a particular sort of circuit followed by the chance to try it out and see how it actually behaves. Accordingly, students understand the circuit's operation in a way that is deeper and much more satisfying than the manipulation of formulas. Second, it describes circuits that more traditional engineering introductions would postpone: on the third day, we build a radio receiver; on the fifth day, we build an operational amplifier from an array of transistors. The digital half of the course centers on applying microcontrollers, but gives exposure to Verilog, a powerful Hardware Description Language. Third, it proceeds at a rapid pace but requires no prior knowledge of electronics. Students gain intuitive understanding through immersion in good circuit design.

  17. Screening for Prediabetes Using Machine Learning Models

    Directory of Open Access Journals (Sweden)

    Soo Beom Choi


    Full Text Available The global prevalence of diabetes is rapidly increasing. Studies support the necessity of screening and interventions for prediabetes, which could result in serious complications and diabetes. This study aimed at developing an intelligence-based screening model for prediabetes. Data from the Korean National Health and Nutrition Examination Survey (KNHANES were used, excluding subjects with diabetes. The KNHANES 2010 data (n=4685 were used for training and internal validation, while data from KNHANES 2011 (n=4566 were used for external validation. We developed two models to screen for prediabetes using an artificial neural network (ANN and support vector machine (SVM and performed a systematic evaluation of the models using internal and external validation. We compared the performance of our models with that of a screening score model based on logistic regression analysis for prediabetes that had been developed previously. The SVM model showed the areas under the curve of 0.731 in the external datasets, which is higher than those of the ANN model (0.729 and the screening score model (0.712, respectively. The prescreening methods developed in this study performed better than the screening score model that had been developed previously and may be more effective method for prediabetes screening.

  18. Sensorimotor learning biases choice behavior: a learning neural field model for decision making.

    Directory of Open Access Journals (Sweden)

    Christian Klaes

    Full Text Available According to a prominent view of sensorimotor processing in primates, selection and specification of possible actions are not sequential operations. Rather, a decision for an action emerges from competition between different movement plans, which are specified and selected in parallel. For action choices which are based on ambiguous sensory input, the frontoparietal sensorimotor areas are considered part of the common underlying neural substrate for selection and specification of action. These areas have been shown capable of encoding alternative spatial motor goals in parallel during movement planning, and show signatures of competitive value-based selection among these goals. Since the same network is also involved in learning sensorimotor associations, competitive action selection (decision making should not only be driven by the sensory evidence and expected reward in favor of either action, but also by the subject's learning history of different sensorimotor associations. Previous computational models of competitive neural decision making used predefined associations between sensory input and corresponding motor output. Such hard-wiring does not allow modeling of how decisions are influenced by sensorimotor learning or by changing reward contingencies. We present a dynamic neural field model which learns arbitrary sensorimotor associations with a reward-driven Hebbian learning algorithm. We show that the model accurately simulates the dynamics of action selection with different reward contingencies, as observed in monkey cortical recordings, and that it correctly predicted the pattern of choice errors in a control experiment. With our adaptive model we demonstrate how network plasticity, which is required for association learning and adaptation to new reward contingencies, can influence choice behavior. The field model provides an integrated and dynamic account for the operations of sensorimotor integration, working memory and action

  19. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models (United States)

    Lee, Chuen-Chien


    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  20. A Technology-based Model for Learning

    Directory of Open Access Journals (Sweden)

    Michael Williams


    Full Text Available The Math Emporium, opened in 1997, is an open 7000-squaremeter facility with 550+ workstations arranged in an array of widely spaced hexagonal "pods", designed to support group work at the same time maintaining an academic air. We operate it 24/7 with math support personnel in attendance 12 hours per day. Students have access to online course resources at all times, from anywhere. We have used this unique asset to transform traditional classroom-based courses into technology based learning programs that have no class meetings at all. The structure of the program is very different from the conventional one, having a new set of expectations and motivations. The results include: more effective students, substantial cost savings, economies of scale and scope and a stream-lined process for creating new on-line courses.

  1. A Convergent Participation Model for Evaluation of Learning Objects

    Directory of Open Access Journals (Sweden)

    John Nesbit


    Full Text Available The properties that distinguish learning objects from other forms of educational software - global accessibility, metadata standards, finer granularity and reusability - have implications for evaluation. This article proposes a convergent participation model for learning object evaluation in which representatives from stakeholder groups (e.g., students, instructors, subject matter experts, instructional designers, and media developers converge toward more similar descriptions and ratings through a two-stage process supported by online collaboration tools. The article reviews evaluation models that have been applied to educational software and media, considers models for gathering and meta-evaluating individual user reviews that have recently emerged on the Web, and describes the peer review model adopted for the MERLOT repository. The convergent participation model is assessed in relation to other models and with respect to its support for eight goals of learning object evaluation: (1 aid for searching and selecting, (2 guidance for use, (3 formative evaluation, (4 influence on design practices, (5 professional development and student learning, (6 community building, (7 social recognition, and (8 economic exchange.

  2. Application of Learning Curves for Didactic Model Evaluation: Case Studies

    Directory of Open Access Journals (Sweden)

    Felix Mödritscher


    Full Text Available The success of (online courses depends, among other factors, on the underlying didactical models which have always been evaluated with qualitative and quantitative research methods. Several new evaluation techniques have been developed and established in the last years. One of them is ‘learning curves’, which aim at measuring error rates of users when they interact with adaptive educational systems, thereby enabling the underlying models to be evaluated and improved. In this paper, we report how we have applied this new method to two case studies to show that learning curves are useful to evaluate didactical models and their implementation in educational platforms. Results show that the error rates follow a power law distribution with each additional attempt if the didactical model of an instructional unit is valid. Furthermore, the initial error rate, the slope of the curve and the goodness of fit of the curve are valid indicators for the difficulty level of a course and the quality of its didactical model. As a conclusion, the idea of applying learning curves for evaluating didactical model on the basis of usage data is considered to be valuable for supporting teachers and learning content providers in improving their online courses.

  3. The Integration of Environmental Education in Science Materials by Using "MOTORIC" Learning Model (United States)

    Sukarjita, I. Wayan; Ardi, Muhammad; Rachman, Abdul; Supu, Amiruddin; Dirawan, Gufran Darma


    The research of the integration of Environmental Education in science subject matter by application of "MOTORIC" Learning models has carried out on Junior High School Kupang Nusa Tenggara Timur Indonesia. "MOTORIC" learning model is an Environmental Education (EE) learning model that collaborate three learning approach i.e.…

  4. Development of the ultrasonography learning model for undergraduate medical students: A case study of the Faculty of Medicine, Burapha University. (United States)

    Limchareon, Sornsupha; Asawaworarit, Nattawat; Klinwichit, Wethaka; Dinchuthai, Pakaphun


    Ultrasound technology is generally considered to be reliable and widely used by physicians today. Therefore, given the efficacy and popularity of the technology, the need for quality ultrasound education is evident. Ultrasound training for undergraduate medical students has been increasingly incorporated into school curriculums, but the teaching methods can vary significantly among medical schools. Among many different choices, one effective teaching model was proposed which added hands-on ultrasound experience on live patients that was supervised by radiologists in the last clinical year. A 2-week radiology elective course was offered for 6(th)-year medical students at Burapha University Hospital, Chonburi, Thailand in the academic year 2014. Fourteen medical students participated in the elective course. Additionally, students who chose radiology as their elective were provided an ultrasound experience on live patients in real-life clinical settings. All 6(th)-year medical students then completed a 25-ultrasound image quiz, and completed a questionnaire at the end of the academic year. The ultrasound test scores were compared between the elective and nonelective students. The students' background characteristics were determined by a grade point average and the ultrasound experience was determined by the number of scans. These were collected, and analyzed to establish their relationship with the ultrasound test scores. The students' opinions were also surveyed. Fourteen medical students participated in the elective course. The ultrasound test scores in the elective group were significantly higher than those in the nonelective group (p=0.013). The students' background characteristics and ultrasound experience had no significant relationship with the ultrasound test scores. By adding hands-on ultrasound experience using live patients proctored by radiologists for final year medical students, in the space of 2 weeks, an effective ultrasound learning model for

  5. Startle reduces recall of a recently learned internal model. (United States)

    Wright, Zachary; Patton, James L; Ravichandran, Venn


    Recent work has shown that preplanned motor programs are released early from subcortical areas by the using a startling acoustic stimulus (SAS). Our question is whether this response might also contain a recently learned internal model, which draws on experience to predict and compensate for expected perturbations in a feedforward manner. Studies of adaptation to robotic forces have shown some evidence of this, but were potentially confounded by cocontraction caused by startle. We performed a new adaptation experiment using a visually distorted field that could not be confounded by cocontraction. We found that in all subjects that exhibited startle, the startle stimulus (1) reduced performance of the recently learned task (2) reduced after-effect magnitudes. Because startle reduced but did not eliminate the recall of learned control, we suggest that multiple neural centers (cortical and subcortical) are involved in such learning and adaptation, which can impact training areas such as piloting, teleoperation, sports, and rehabilitation. © 2011 IEEE

  6. Modeling Geomagnetic Variations using a Machine Learning Framework (United States)

    Cheung, C. M. M.; Handmer, C.; Kosar, B.; Gerules, G.; Poduval, B.; Mackintosh, G.; Munoz-Jaramillo, A.; Bobra, M.; Hernandez, T.; McGranaghan, R. M.


    We present a framework for data-driven modeling of Heliophysics time series data. The Solar Terrestrial Interaction Neural net Generator (STING) is an open source python module built on top of state-of-the-art statistical learning frameworks (traditional machine learning methods as well as deep learning). To showcase the capability of STING, we deploy it for the problem of predicting the temporal variation of geomagnetic fields. The data used includes solar wind measurements from the OMNI database and geomagnetic field data taken by magnetometers at US Geological Survey observatories. We examine the predictive capability of different machine learning techniques (recurrent neural networks, support vector machines) for a range of forecasting times (minutes to 12 hours). STING is designed to be extensible to other types of data. We show how STING can be used on large sets of data from different sensors/observatories and adapted to tackle other problems in Heliophysics.

  7. Revising process models through inductive learning

    NARCIS (Netherlands)

    Maggi, F.M.; Corapi, D.; Russo, A.; Lupu, E.; Visaggio, G.; Muehlen, zur M.; Su, J.


    Discovering the Business Process (BP) model underpinning existing practices through analysis of event logs, allows users to understand, analyse and modify the process. But, to be useful, the BP model must be kept in line with practice throughout its lifetime, as changes occur to the business

  8. Trustless Machine Learning Contracts; Evaluating and Exchanging Machine Learning Models on the Ethereum Blockchain


    Kurtulmus, A. Besir; Daniel, Kenny


    Using blockchain technology, it is possible to create contracts that offer a reward in exchange for a trained machine learning model for a particular data set. This would allow users to train machine learning models for a reward in a trustless manner. The smart contract will use the blockchain to automatically validate the solution, so there would be no debate about whether the solution was correct or not. Users who submit the solutions won't have counterparty risk that they won't get paid fo...

  9. The Effectiveness of Hands-on Health Informatics Skills Exercises in the Multidisciplinary Smart Home Healthcare and Health Informatics Training Laboratories. (United States)

    Sapci, A H; Sapci, H A


    This article aimed to evaluate the effectiveness of newly established innovative smart home healthcare and health informatics laboratories, and a novel laboratory course that focuses on experiential health informatics training, and determine students' self-confidence to operate wireless home health monitoring devices before and after the hands-on laboratory course. Two web-based pretraining and posttraining questionnaires were sent to 64 students who received hands-on training with wireless remote patient monitoring devices in smart home healthcare and health informatics laboratories. All 64 students completed the pretraining survey (100% response rate), and 49 students completed the posttraining survey (76% response rate). The quantitative data analysis showed that 95% of students had an interest in taking more hands-on laboratory courses. Sixty-seven percent of students had no prior experience with medical image, physiological data acquisition, storage, and transmission protocols. After the hands-on training session, 75.51% of students expressed improved confidence about training patients to measure blood pressure monitor using wireless devices. Ninety percent of students preferred to use a similar experiential approach in their future learning experience. Additionally, the qualitative data analysis demonstrated that students were expecting to have more courses with hands-on exercises and integration of technology-enabled delivery and patient monitoring concepts into the curriculum. This study demonstrated that the multidisciplinary smart home healthcare and health informatics training laboratories and the hands-on exercises improved students' technology adoption rates and their self-confidence in using wireless patient monitoring devices. Schattauer GmbH Stuttgart.

  10. A phenomenological memristor model for synaptic memory and learning behaviors

    Institute of Scientific and Technical Information of China (English)

    Nan Shao; Sheng-Bing Zhang; Shu-Yuan Shao


    Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials.These properties include the forgetting effect,the transition from short-term memory (STM) to long-term memory (LTM),learning-experience behavior,etc.The mathematical model of this kind of memristor would be very important for its theoretical analysis and application design.In our analysis of the existing memristor model with these properties,we find that some behaviors of the model are inconsistent with the reported experimental observations.A phenomenological memristor model is proposed for this kind of memristor.The model design is based on the forgetting effect and STM-to-LTM transition since these behaviors are two typical properties of these memristors.Further analyses of this model show that this model can also be used directly or modified to describe other experimentally observed behaviors.Simulations show that the proposed model can give a better description of the reported memory and learning behaviors of this kind of memristor than the existing model.

  11. Development of Learning Models Based on Problem Solving and Meaningful Learning Standards by Expert Validity for Animal Development Course (United States)

    Lufri, L.; Fitri, R.; Yogica, R.


    The purpose of this study is to produce a learning model based on problem solving and meaningful learning standards by expert assessment or validation for the course of Animal Development. This research is a development research that produce the product in the form of learning model, which consist of sub product, namely: the syntax of learning model and student worksheets. All of these products are standardized through expert validation. The research data is the level of validity of all sub products obtained using questionnaire, filled by validators from various field of expertise (field of study, learning strategy, Bahasa). Data were analysed using descriptive statistics. The result of the research shows that the problem solving and meaningful learning model has been produced. Sub products declared appropriate by expert include the syntax of learning model and student worksheet.

  12. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    International Nuclear Information System (INIS)


    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  13. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    Energy Technology Data Exchange (ETDEWEB)



    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  14. Gamification in online education: proposal for a participatory learning model

    Directory of Open Access Journals (Sweden)

    Fabiana Bigão Silva


    Full Text Available Empirical studies have suggested limitations on the form of application of gamification mechanics in the context of online education. These mechanics have been applied without reference to a theoretical model dedicated to this type of education. The objective of the paper is to propose a model for a gamified platform for online education that contributes to a more participatory learning, taking into account the different student profiles. Based on literature review about approaches to gamification systems design, a set of steps was followed in order to develop a generic model for a framework dedicated to online education. The model proposed is based on the Educational Gamification Design Principles proposed by Dicheva et al. (2015. The model may contribute to the promotion of participatory learning, taking into account the different student profiles. The results of such evaluation will be published in the future.

  15. Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children (United States)

    Klahr, David; Triona, Lara M.; Williams, Cameron


    Hands-on activities play an important, but controversial, role in early science education. In this study we attempt to clarify some of the issues surrounding the controversy by calling attention to distinctions between: (a) type of instruction (direct or discovery); (b) type of knowledge to be acquired (domain-general or domain-specific); and (c) type of materials that are used (physical or virtual). We then describe an empirical study that investigates the relative effectiveness of the physical-virtual dimension. In the present study, seventh and eighth grade students assembled and tested mousetrap cars with the goal of designing a car that would go the farthest. Children were assigned to four different conditions, depending on whether they manipulated physical or virtual materials, and whether they had a fixed number of cars they could construct or a fixed amount of time in which to construct them. All four conditions were equally effective in producing significant gains in learners' knowledge about causal factors, in their ability to design optimal cars, and in their confidence in their knowledge. Girls' performance, knowledge, and effort were equal to boys' in all conditions, but girls' confidence remained below boys' throughout. Given the fact that, on several different measures, children were able to learn as well with virtual as with physical materials, the inherent pragmatic advantages of virtual materials in science may make them the preferred instructional medium in many hands-on contexts.

  16. Biology learning evaluation model in Senior High Schools

    Directory of Open Access Journals (Sweden)

    Sri Utari


    Full Text Available The study was to develop a Biology learning evaluation model in senior high schools that referred to the research and development model by Borg & Gall and the logic model. The evaluation model included the components of input, activities, output and outcomes. The developing procedures involved a preliminary study in the form of observation and theoretical review regarding the Biology learning evaluation in senior high schools. The product development was carried out by designing an evaluation model, designing an instrument, performing instrument experiment and performing implementation. The instrument experiment involved teachers and Students from Grade XII in senior high schools located in the City of Yogyakarta. For the data gathering technique and instrument, the researchers implemented observation sheet, questionnaire and test. The questionnaire was applied in order to attain information regarding teacher performance, learning performance, classroom atmosphere and scientific attitude; on the other hand, test was applied in order to attain information regarding Biology concept mastery. Then, for the analysis of instrument construct, the researchers performed confirmatory factor analysis by means of Lisrel 0.80 software and the results of this analysis showed that the evaluation instrument valid and reliable. The construct validity was between 0.43-0.79 while the reliability of measurement model was between 0.88-0.94. Last but not the least, the model feasibility test showed that the theoretical model had been supported by the empirical data.

  17. Using Deep Learning Model for Meteorological Satellite Cloud Image Prediction (United States)

    Su, X.


    A satellite cloud image contains much weather information such as precipitation information. Short-time cloud movement forecast is important for precipitation forecast and is the primary means for typhoon monitoring. The traditional methods are mostly using the cloud feature matching and linear extrapolation to predict the cloud movement, which makes that the nonstationary process such as inversion and deformation during the movement of the cloud is basically not considered. It is still a hard task to predict cloud movement timely and correctly. As deep learning model could perform well in learning spatiotemporal features, to meet this challenge, we could regard cloud image prediction as a spatiotemporal sequence forecasting problem and introduce deep learning model to solve this problem. In this research, we use a variant of Gated-Recurrent-Unit(GRU) that has convolutional structures to deal with spatiotemporal features and build an end-to-end model to solve this forecast problem. In this model, both the input and output are spatiotemporal sequences. Compared to Convolutional LSTM(ConvLSTM) model, this model has lower amount of parameters. We imply this model on GOES satellite data and the model perform well.

  18. Simulation modelling: educational development roles for learning technologists

    Directory of Open Access Journals (Sweden)

    David Riley


    Full Text Available Simulation modelling was in the mainstream of CAL development in the 1980s when the late David Squires introduced this author to the Dynamic Modelling System. Since those early days, it seems that simulation modelling has drifted into a learning technology backwater to become a member of Laurillard's underutilized, 'adaptive and productive' media. Referring to her Conversational Framework, Laurillard constructs a pedagogic case for modelling as a productive student activity but provides few references to current practice and available resources. This paper seeks to complement her account by highlighting the pioneering initiatives of the Computers in the Curriculum Project and more recent developments in systems modelling within geographic and business education. The latter include improvements to system dynamics modelling programs such as STELLA®, the publication of introductory textbooks, and the emergence of online resources. The paper indicates several ways in which modelling activities may be approached and identifies some educational development roles for learning technologists. The paper concludes by advocating simulation modelling as an exemplary use of learning technologies - one that realizes their creative-transformative potential.

  19. A Theoretical Model for Meaning Construction through Constructivist Concept Learning

    DEFF Research Database (Denmark)

    Badie, Farshad

    The central focus of this Ph.D. research is on ‘Logic and Cognition’ and, more specifically, this research covers the quintuple (Logic and Logical Philosophy, Philosophy of Education, Educational Psychology, Cognitive Science, Computer Science). The most significant contributions of this Ph.D. di...... of ‘learning’, ‘mentoring’, and ‘knowledge’ within learning and knowledge acquisition systems. Constructivism as an epistemology and as a model of knowing and, respectively as a theoretical model of learning builds up the central framework of this research........D. dissertation are conceptual, logical, terminological, and semantic analysis of Constructivist Concept Learning (specifically, in the context of humans’ interactions with their environment and with other agents). This dissertation is concerned with the specification of the conceptualisation of the phenomena...

  20. Intelligent Cloud Learning Model for Online Overseas Chinese Education

    Directory of Open Access Journals (Sweden)

    Yidong Chen


    Full Text Available With the development of Chinese economy, oversea Chinese education has been paid more and more attention. However, the overseas Chinese education resource is relatively lack because of historical reasons, which hindered further development . How to better share the Chinese education resources and provide intelligent personalized information service for overseas student is a key problem to be solved. In recent years, the rise of cloud computing provides us an opportunity to realize intelligent learning mode. Cloud computing offers some advantages by allowing users to use infrastructure, platforms and software . In this paper we proposed an intelligent cloud learning model based on cloud computing. The learning model can utilize network resources sufficiently to implement resource sharing according to the personal needs of students, and provide a good practicability for online overseas Chinese education.