WorldWideScience

Sample records for hands-on inquiry-based science

  1. Adapting a successful inquiry-based immersion program to create an Authentic, Hands- on, Field based Curriculum in Environmental Science at Barnard College

    Science.gov (United States)

    Kenna, T. C.; Pfirman, S.; Mailloux, B. J.; Martin, S.; Kelsey, R.; Bower, P.

    2008-12-01

    Adapting a successful inquiry-based immersion program to create an Authentic, Hands-on, Field based Curriculum in Environmental Science at Barnard College T. C. Kenna, S. Pfirman, B. J. Mailloux, M. Stute, R. Kelsey, and P. Bower By adapting a successful inquiry-based immersion program (SEA semester) to the typical college format of classes, we are improving the technical and quantitative skills of undergraduate women and minorities in environmental science and improving their critical thinking and problem-solving by exposing our students to open-ended real-world environmental issues. Our approach uses the Hudson River Estuary as a natural laboratory. In a series of hands-on inquiry-based activities, students use advanced equipment to collect data and samples. Each class session introduces new analytical and data analysis techniques. All classes have the connecting theme of the river. Working with real data is open-ended. Our major findings as indicated by surveys as well as journaling throughout the semester are that the field- based experience significantly contributed to student learning and engagement. Journaling responses indicated that nearly all students discussed the importance and excitement of an authentic research experience. Some students were frustrated with data irregularities, uncertainty in methods and data, and the general challenge of a curriculum with inherent ambiguity. The majority were satisfied with the aims of the course to provide an integrative experience. All students demonstrated transfer of learned skills. This project has had a significant impact on our undergraduate female students: several students have pursued senior thesis projects stemming from grant activities, stating that the field activities were the highlight of their semester. Some students love the experience and want more. Others decide that they want to pursue a different career. All learn how science is conducted and have a better foundation to understand concepts such

  2. Inquiry-based science education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino; Sillasen, Martin Krabbe; Hagelskjær, Jens

    2010-01-01

    Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret naturfagsundervisnings......Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret...

  3. Teaching genetics using hands-on models, problem solving, and inquiry-based methods

    Science.gov (United States)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  4. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  5. Inquiry-Based Learning in China: Lesson Learned for School Science Practices

    Science.gov (United States)

    Nuangchalerm, Prasart

    2014-01-01

    Inquiry-based learning is widely considered for science education in this era. This study aims to explore inquiry-based learning in teacher preparation program and the findings will help us to understanding what inquiry-based classroom is and how inquiry-based learning are. Data were collected by qualitative methods; classroom observation,…

  6. Facilitating Elementary Science Teachers' Implementation of Inquiry-Based Science Teaching

    Science.gov (United States)

    Qablan, Ahmad M.; DeBaz, Theodora

    2015-01-01

    Preservice science teachers generally feel that the implementation of inquiry-based science teaching is very difficult to manage. This research project aimed at facilitating the implementation of inquiry-based science teaching through the use of several classroom strategies. The evaluation of 15 classroom strategies from 80 preservice elementary…

  7. Collaborative CPD and inquiry-based science in the classroom

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    on the teaching of science and on collaboration. Qualitative data obtained by following the same teacher teaching Science & Technology from 4th to 6th grade are used to discuss changes in her classroom practice; in particular concerning inquiry-based methods shown in earlier QUEST-research to be understood......Continuous Professional Development (CPD) is crucial for reforming science teaching, but more knowledge is needed about how to embed CPD in teachers’ daily work. The Danish QUEST-project is a long-term collaborative CPD-project designed informed by research and with activities changing rhythmically...... between seminars, individual trials in own classroom, and collaborative activities in the science-team at local schools. The QUEST research is aimed at understanding the relation between individual and social changes. In this study, quantitative data are used to compare the perceived effect from QUEST...

  8. Investigation of Inquiry-based Science Pedagogy among Middle Level Science Teachers: A Qualitative Study

    Science.gov (United States)

    Weiland, Sunny Minelli

    This study implemented a qualitative approach to examine the phenomenon of "inquiry-based science pedagogy or inquiry instruction" as it has been experienced by individuals. Data was collected through online open-ended surveys, focus groups, and teacher reported self-reflections to answer the research questions: 1) How do middle level science teachers conceptualize "inquiry-based instruction?" 2) What are preferred instructional strategies for implementation in middle level science classrooms? And 3) How do middle level science teachers perceive the connection between science instruction and student learning? The participants within this research study represent 33 percent of teachers in grades 5 through 9 within six school districts in northeastern Pennsylvania. Of the 12 consent forms originally obtained, 10 teachers completed all three phases of the data collection, including the online survey, participation in focus groups, and teacher self-reflection. 60 percent of the participants taught only science, and 40 percent taught all content areas. Of the ten participants, 50 percent were certified teachers of science and 50 percent were certified as teachers of elementary education. 70 percent of the research participants reflected having obtained a master's, with 60 percent of these degrees being received in areas of education, and 10 percent in the area of science. The research participants have a total of 85 collective years of experience as professional educators, with the average years of experience being 8.5 years. Analysis of data revealed three themes related to research question #1) How do middle-level science teachers conceptualize inquiry-based instruction? and sub-question #1) How do middle-level science teachers characterize effective instruction? The themes that capture the essence of teachers' formulation of inquiry-based instruction that emerged in this study were student centered, problem solving, and hands-on . Analysis of data revealed one theme

  9. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    Science.gov (United States)

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  10. Assessment for Learning in Inquiry Based Science Education

    DEFF Research Database (Denmark)

    Fornaguera, Cristina Carulla

    The study looks at assessment for learning and Inquiry Based Science Education —IBSE— as concepts established in a diversity of geographical areas, where the traditional summative assessment shapes what most individuals share as being experienced as assessment. Based on Leontiev and Radford...... the analytical process. The main contribution was the analysis and the results of researcher movement from a view of assessment considering learning as a psychological process in the mind, independent of the everyday life of individuals, towards one considering the inseparability of collective and individual...... as identifying and differentiating forms of researching assessment, changing the researcher’s perspective on research, and imagining a new theoretical approach to assessment for learning....

  11. The science experience: The relationship between an inquiry-based science program and student outcomes

    Science.gov (United States)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  12. Demonstrating Inquiry-Based Teaching Competencies in the Life Sciences--Part 2

    Science.gov (United States)

    Thompson, Stephen

    2007-01-01

    This set of botany demonstrations is a continuation of the inquiry-based lecture activities that provide realistic connections to the history and nature of science and employ technology in data collection. The demonstrations also provide examples of inquiry-based teaching practices in the life sciences. (Contains 5 figures.) [For Part 1, see…

  13. Calculator-Controlled Robots: Hands-On Mathematics and Science Discovery

    Science.gov (United States)

    Tuchscherer, Tyson

    2010-01-01

    The Calculator Controlled Robots activities are designed to engage students in hands-on inquiry-based missions. These activities address National science and technology standards, as well as specifically focusing on mathematics content and process standards. There are ten missions and three exploration extensions that provide activities for up to…

  14. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    Science.gov (United States)

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  15. Kuwaiti Science Teachers' Beliefs and Intentions Regarding the Use of Inquiry-Based Instruction

    Science.gov (United States)

    Alhendal, Dalal; Marshman, Margaret; Grootenboer, Peter

    2016-01-01

    To improve the quality of education, the Kuwaiti Ministry of Education has encouraged schools to implement inquiry-based instruction. This study identifies psychosocial factors that predict teachers' intention to use inquiry-based instruction in their science classrooms. An adapted model of Ajzen's (1985) theory of planned behaviour--the Science…

  16. Using Inquiry-Based Instruction for Teaching Science to Students with Learning Disabilities

    Science.gov (United States)

    Aydeniz, Mehmet; Cihak, David F.; Graham, Shannon C.; Retinger, Larryn

    2012-01-01

    The purpose of this study was to examine the effects of inquiry-based science instruction for five elementary students with learning disabilities (LD). Students participated in a series of inquiry-based activities targeting conceptual and application-based understanding of simple electric circuits, conductors and insulators, parallel circuits, and…

  17. Inquiry-based science teasching competence of pre-service primary teachers

    NARCIS (Netherlands)

    Alake-Tuenter, E.

    2014-01-01

    In recent years, improving primary science education has received considerable attention. In particular, researchers and policymakers advocate the use of inquiry-based science teaching and learning, believing that pupils learn best through direct personal experience and by incorporating new

  18. The Utilization of Inquiry-Based Science Instruction in Connecticut

    Science.gov (United States)

    Bozzuto, David M.

    The purpose of this study was to explore the perspectives of practitioners of inquiry-based instruction from 35 Connecticut school districts. The source of the participants, Connecticut State Science Assessment Advisory Committee members, and their involvement in science education acted to bound the research. Using a multiple case study design, data were gathered from 28 participants: teachers n = 21, curriculum leaders n = 4, professional development experts n = 2, and state education advisor/ teacher preparation expert n = 1 involved with Connecticut schools. Each participant was asked to complete an online demographic and inquiry utilization questionnaire. From the results of the questionnaires, a cadre of 11 participants was selected to participate in semi-structured interviews. A round of follow-up interviews of five key participants was conducted to further clarify the phenomenon. Two of the follow up interviewees were observed using the EQUIP rubric to assess inquiry implementation. Artifacts such as minutes, PowerPoint presentations, and a reflexive journal were collected throughout the study. An inductive approach to content analysis of data from the survey and interviews was used to explore constructs, themes, and patterns. After segmentation took place, the data were categorized to allow patterns and constructs to emerge. The data were reduced based on the emergent design and those reductions, or themes, were informed by ongoing data collection using constant comparison as different levels of codes emerge. Data collection further informed data analysis and future data collection. Initial coding of patterns was reduced until theoretical saturation occurred and the data allowed five thematic findings to emerge from the data. The five themes were: teach, process, impasse, develop, and support. The significance of each theme and its implication for practitioners and researchers were discussed and offered, respectively.

  19. Exploring the Relations of Inquiry-Based Teaching to Science Achievement and Dispositions in 54 Countries

    Science.gov (United States)

    Cairns, Dean; Areepattamannil, Shaljan

    2017-06-01

    This study, drawing on data from the third cycle of the Program for International Student Assessment (PISA) and employing three-level hierarchical linear modeling (HLM) as an analytic strategy, examined the relations of inquiry-based science teaching to science achievement and dispositions toward science among 170,474 15-year-old students from 4780 schools in 54 countries across the globe. The results of the HLM analyses, after accounting for student-, school-, and country-level demographic characteristics and students' dispositions toward science, revealed that inquiry-based science teaching was significantly negatively related to science achievement. In contrast, inquiry-based science teaching was significantly positively associated with dispositions toward science, such as interest in and enjoyment of science learning, instrumental and future-oriented science motivation, and science self-concept and self-efficacy. Implications of the findings for policy and practice are discussed.

  20. Inquiry-based science: Preparing human capital for the 21 st century and beyond

    Science.gov (United States)

    Boyd, Yolanda F.

    High school students need to graduate with 21st century skills to be college and career ready and to be competitive in a global marketplace. A positive trend exists favoring inquiry-based instructional practices that purportedly not only increase science content knowledge, but also 21 st century skill development. A suburban school district, Areal Township (pseudonym), implemented an inquiry-based science program based on this trend; however, the degree to which the program has been meeting students' needs for science content knowledge and 21st century skills development has not been explored. If we were to understand the process by which an inquiry-based science program contributes to attainment of science content and 21st century skill development, then we might be able to improve the delivery of the program and provide a model to be adopted by other schools. Therefore, the purpose of this descriptive case study was to engage with multiple stakeholders to formatively assess the successes and obstacles for helping students to achieve science content and 21st century skills through an inquiry-based curriculum. Using constructivist theory, this study aimed to address the following central research question: How does the implementation of an inquiry-based program within the Areal Township School District (ATSD) support the acquisition of science content knowledge and the development of 21st century skills? This study found that 21st century skill development is embedded in inquiry-based instructional practices. These practices engage students in meaningful learning that spirals in content and is measured using diverse assessments. Time to do inquiry-based science and adequate time for collegial collaboration were obstacles for educators in grades K-5. Other obstacles were turnkey professional development and a lack of ongoing program monitoring, as a result of imposed extrinsic factors from state and federal mandates. Lastly, it was discovered that not all parts of

  1. Play with Science in Inquiry Based Science Education

    OpenAIRE

    Andrée, Maria; Lager-Nyqvist, Lotta; Wickman, Per-Olof

    2011-01-01

    In science education students sometimes engage in imaginary science-oriented play where ideas about science and scientists are put to use. Through play, children interpret their experiences, dramatize, give life to and transform what they know into a lived narrative. In this paper we build on the work of Vygotsky on imagination and creativity. Previous research on play in primary and secondary school has focused on play as a method for formal instruction rather than students’ spontaneous info...

  2. Science teachers understanding of inquiry-based science teaching ...

    African Journals Online (AJOL)

    owner

    This paper aims at finding out Rwandan lower secondary school science teachers' ... enterprise, which in the context of the present study has a focus on inquiry. .... methods was adopted and both quantitative and qualitative data collected.

  3. Symposium 20 - PABMB: Teaching biochemistry in a connected world: Hands-on inquiry-based biochemistry courses for improving scientific literacy of school teachers and students

    Directory of Open Access Journals (Sweden)

    Andrea T. da Poian

    2015-08-01

    Full Text Available Wednesday – August 26th, 2015 - 3:30 to 5:30 pm – Room: Iguaçu II – 5th floorSymposium 20 - PABMB: Teaching biochemistry in a connected world Chair: Miguel Castanho, Universidade de Lisboa, PortugalAbstract:In the last decades, Brazil has reached a prominent position in the world rank of scientific production. Despite this progress, the establishment of a scientific culture in Brazilian society is still challenging. Our group has been offering hands-on inquiry-based courses to primary and secondary students, which aim to introduce them to the scientific method and improve their interest in science. More recently, we started new initiatives focused on the improvement of the scientific literacy of school science teachers. Here we describe two intensive short-term courses designed in different formats. One consists in a discipline offered to a Master Program to school science teachers, in which the main objective was to work with core disciplinary concepts through an active teachers engagement in “doing science”. The discipline, named “Energy transformation in the living organisms”, intends to deal with the main Biochemistry subjects that take part of the high-school science curriculum, namely, fermentation, photosynthesis and cellular respiration processes. The other initiative was developed in Urucureá, a small community with about 600 residents, located on the banks of the River Arapiuns, in Amazonia region. We trained the local school teachers to act as tutors in the course offered to 40 students of the community, ages 10 to 17. The theme we chose to address was the properties and effects of snakes´ poisons, since poisoning events are a problem with which the local community frequently deal with. Another important point was that we adapted a number of experiments to make them feasible with very limited laboratory resources. Our results show that the activities that we have developed offer real opportunity of scientific training

  4. Girls on Ice: An Inquiry-Based Wilderness Science Education Program

    Science.gov (United States)

    Pettit, E. C.; Koppes, M. N.

    2001-12-01

    We developed a wilderness science education program for high school girls. The program offers opportunities for students to explore and learn about mountain glaciers and the alpine landscape through scientific field studies with geologists and glaciologists. Our purpose is to give students a feeling for the natural processes that create the alpine world and provide an environment that fosters the critical thinking necessary to all scientific inquiry. The program is currently being offered through the North Cascades Institute, a non-profit organization offering outdoor education programs for the general public. We lead eight girls for a weeklong expedition to the remote USGS South Cascade Glacier Research Station in Washington's North Cascades. For four days, we explore the glacier and the nearby alpine valleys. We encourage the girls to observe and think like scientists through making observations and inferences. They develop their own experiments to test ideas about glacier dynamics and geomorphology. In addition to scientific exploration, we engage the students in discussions about the philosophy of science and its role in our everyday lives. Our program exemplifies the success of hands-on, inquiry-based teaching in small groups for science education in the outdoors. The wilderness setting and single gender field team inspires young women's interest in science and provides a challenging environment that increases their physical and intellectual self-confidence.

  5. CAREER Educational Outreach: Inquiry-based Atmospheric Science Lessons for K-12 students

    Science.gov (United States)

    Courville, Z.; Carbaugh, S.; Defrancis, G.; Donegan, R.; Brown, C.; Perovich, D. K.; Richter-Menge, J.

    2011-12-01

    Climate Comics is a collaborative outreach effort between the Montshire Museum of Science, in Norwich, VT, the Cold Regions Research and Engineering Laboratory (CRREL) research staff, and freelance artist and recent graduate of the Center for Cartoon Studies in White River Junction, VT, Sam Carbaugh. The project involves the cartoonist, the education staff from the museum, and researchers from CRREL creating a series of comic books with polar science and research themes, including sea ice monitoring, sea ice albedo, ice cores, extreme microbial activity, and stories and the process of fieldwork. The aim of the comic series is to provide meaningful science information in a comic-format that is both informative and fun, while highlighting current polar research work done at the lab. The education staff at the Montshire Museum develops and provides a series of hands-on, inquiry-based activity descriptions to complement each comic book, and CRREL researchers provide science background information and reiterative feedback about the comic books as they are being developed. Here, we present the motivation for using the comic-book medium to present polar research topics, the process involved in creating the comics, some unique features of the series, and the finished comic books themselves. Cartoon illustrating ways snow pack can be used to determine past climate information.

  6. Inquiry and Groups: Student Interactions in Cooperative Inquiry-Based Science

    Science.gov (United States)

    Woods-McConney, Amanda; Wosnitza, Marold; Sturrock, Keryn L.

    2016-01-01

    Science education research has recommended cooperative inquiry based science in the primary science context for more than two decades but after more than 20 years, student achievement in science has not substantially improved. This study, through direct observation and analysis, investigated content-related student interactions in an authentic…

  7. INQUIRY-BASED SCIENCE COMIC PHYSICS SERIES INTEGRATED WITH CHARACTER EDUCATION

    Directory of Open Access Journals (Sweden)

    D Yulianti

    2016-04-01

    Full Text Available This study aimed to test the level of readability and feasibility of science comic, to knowcharacter development through a small test in some schools. The research design was Research & Development, trials were using quasi-experimental pre-test-post-test experimental design. The instruments to measure attitudes were: a questionnaire and observation sheet, a test used to measure comprehension of the material. The results showed that learning science by inquiry-based science comic can improvecharacters and cognitive achievement of primary school students. Results in the form of inquiry-based science comic can be utilized in learning science as a companion teaching materials.

  8. An Analysis of Pre-Service Elementary Teachers' Understanding of Inquiry-Based Science Teaching

    Science.gov (United States)

    Lee, Carole K.; Shea, Marilyn

    2016-01-01

    This study examines how pre-service elementary teachers (PSETs) view inquiry-based science learning and teaching, and how the science methods course builds their confidence to teach inquiry science. Most PSETs think that inquiry is asking students questions rather than a formal set of pedagogical tools. In the present study, three groups of PSETs…

  9. The 5E Instructional Model: A Learning Cycle Approach for Inquiry-Based Science Teaching

    Science.gov (United States)

    Duran, Lena Ballone; Duran, Emilio

    2004-01-01

    The implementation of inquiry-based teaching is a major theme in national science education reform documents such as "Project 2061: Science for All Americans" (Rutherford & Alhgren, 1990) and the "National Science Education Standards" (NRC, 1996). These reports argue that inquiry needs to be a central strategy of all…

  10. Inquiry-Based Science and Technology Enrichment Program for Middle School-Aged Female Students

    Science.gov (United States)

    Kim, Hanna

    2016-01-01

    This study investigates the effects of an intensive 1-week Inquiry-Based Science and Technology Enrichment Program (InSTEP) designed for middle school-aged female students. InSTEP uses a guided/open inquiry approach that is deepened and redefined as eight sciences and engineering practices in the Next Generation Science Standards, which aimed at…

  11. Effects of Inquiry-Based Science Instruction on Science Achievement and Interest in Science: Evidence from Qatar

    Science.gov (United States)

    Areepattamannil, Shaljan

    2012-01-01

    The author sought to investigate the effects of inquiry-based science instruction on science achievement and interest in science of 5,120 adolescents from 85 schools in Qatar. Results of hierarchical linear modeling analyses revealed the substantial positive effects of science teaching and learning with a focus on model or applications and…

  12. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    Science.gov (United States)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  13. Inquiry-based Science Education Competence of Primary School Teachers: A Delphi Study

    NARCIS (Netherlands)

    Alake-Tuenter, E.; Biemans, H.J.A.; Tobi, H.; Mulder, M.

    2013-01-01

    Earlier, extracted inquiry-based science teaching competency elements and domains from the international literature were compared to the United States' National Science Teaching Standards. The present Delphi study aimed to validate the findings for the Netherlands, where such standards are lacking.

  14. 1st Hands-on Science Science Fair

    OpenAIRE

    Costa, Manuel F. M.; Esteves. Z.

    2017-01-01

    In school learning of science through investigative hands-on experiments is in the core of the Hands-on Science Network vision. However informal and non-formal contexts may also provide valuable paths for implementing this strategy aiming a better e!ective science education. In May 2011, a "rst country wide “Hands-on Science’ Science Fair” was organized in Portugal with the participation of 131 students that presented 38 projects in all "elds of Science. In this communication we will pr...

  15. The Effectiveness of Guided Inquiry-based Learning Material on Students’ Science Literacy Skills

    Science.gov (United States)

    Aulia, E. V.; Poedjiastoeti, S.; Agustini, R.

    2018-01-01

    The purpose of this research is to describe the effectiveness of guided inquiry-based learning material to improve students’ science literacy skills on solubility and solubility product concepts. This study used Research and Development (R&D) design and was implemented to the 11th graders of Muhammadiyah 4 Senior High School Surabaya in 2016/2017 academic year with one group pre-test and post-test design. The data collection techniques used were validation, observation, test, and questionnaire. The results of this research showed that the students’ science literacy skills are different after implementation of guided inquiry-based learning material. The guided inquiry-based learning material is effective to improve students’ science literacy skills on solubility and solubility product concepts by getting N-gain score with medium and high category. This improvement caused by the developed learning material such as lesson plan, student worksheet, and science literacy skill tests were categorized as valid and very valid. In addition, each of the learning phases in lesson plan has been well implemented. Therefore, it can be concluded that the guided inquiry-based learning material are effective to improve students’ science literacy skills on solubility and solubility product concepts in senior high school.

  16. The Effect of Inquiry-Based Learning Method on Students' Academic Achievement in Science Course

    Science.gov (United States)

    Abdi, Ali

    2014-01-01

    The purpose of this study was to investigate the effects of inquiry-based learning method on students' academic achievement in sciences lesson. A total of 40 fifth grade students from two different classes were involved in the study. They were selected through purposive sampling method. The group which was assigned as experimental group was…

  17. An Inquiry-Based Science Activity Centred on the Effects of Climate Change on Ocean Ecosystems

    Science.gov (United States)

    Boaventura, Diana; Guilherme, Elsa; Faria, Cláudia

    2016-01-01

    We propose an inquiry-based science activity centred on the effects of climate change on ocean ecosystems. This activity can be used to improve acquisition of knowledge on the effects of climate change and to promote inquiry skills, such as researching, reading and selecting relevant information, identifying a problem, focusing on a research…

  18. The Use of Wikis in a Science Inquiry-Based Project in a Primary School

    Science.gov (United States)

    Lau, Wilfred W. F.; Lui, Vicky; Chu, Samuel K. W.

    2017-01-01

    This study explored the use of wikis in a science inquiry-based project conducted with Primary 6 students (aged 11-12). It used an online wiki-based platform called PBworks and addressed the following research questions: (1) What are students' attitudes toward learning with wikis? (2) What are students' interactions in online group collaboration…

  19. Collaborating to Improve Inquiry-Based Teaching in Elementary Science and Mathematics Methods Courses

    Science.gov (United States)

    Magee, Paula A.; Flessner, Ryan

    2012-01-01

    This study examines the effect of promoting inquiry-based teaching (IBT) through collaboration between a science methods course and mathematics methods course in an elementary teacher education program. During the collaboration, preservice elementary teacher (PST) candidates experienced 3 different types of inquiry as a way to foster increased…

  20. A well-started beginning elementary teacher's beliefs and practices in relation to reform recommendations about inquiry-based science

    NARCIS (Netherlands)

    Avraamidou, Lucy

    2017-01-01

    Given reform recommendations emphasizing scientific inquiry and empirical evidence pointing to the difficulties beginning teachers face in enacting inquiry-based science, this study explores a well-started beginning elementary teacher's (Sofia) beliefs about inquiry-based science and related

  1. Barriers Inhibiting Inquiry-Based Science Teaching and Potential Solutions: Perceptions of Positively Inclined Early Adopters

    Science.gov (United States)

    Fitzgerald, Michael; Danaia, Lena; McKinnon, David H.

    2017-07-01

    In recent years, calls for the adoption of inquiry-based pedagogies in the science classroom have formed a part of the recommendations for large-scale high school science reforms. However, these pedagogies have been problematic to implement at scale. This research explores the perceptions of 34 positively inclined early-adopter teachers in relation to their implementation of inquiry-based pedagogies. The teachers were part of a large-scale Australian high school intervention project based around astronomy. In a series of semi-structured interviews, the teachers identified a number of common barriers that prevented them from implementing inquiry-based approaches. The most important barriers identified include the extreme time restrictions on all scales, the poverty of their common professional development experiences, their lack of good models and definitions for what inquiry-based teaching actually is, and the lack of good resources enabling the capacity for change. Implications for expectations of teachers and their professional learning during educational reform and curriculum change are discussed.

  2. IS THE INQUIRY-BASED SCIENCE EDUCATION THE BEST?

    Directory of Open Access Journals (Sweden)

    Milan Kubiatko

    2016-10-01

    Full Text Available The science education is fighting with a relatively big problem. Many academicians, teachers and also laic society are still perceiving difficulty in understanding of concepts from science subject and lack of interest about this group of subjects. In the past the teaching process was very formal focused on the memorizing of the facts without any deeper understanding of the processes in the nature. Pupils and students knew all definitions about concepts in the science subjects, but practical application was on the low level. The academicians, teachers and other people interested in the science education were eager to change system of education.

  3. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    Science.gov (United States)

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  4. A rights-based approach to science literacy using local languages: Contextualising inquiry-based learning in Africa

    Science.gov (United States)

    Babaci-Wilhite, Zehlia

    2017-06-01

    This article addresses the importance of teaching and learning science in local languages. The author argues that acknowledging local knowledge and using local languages in science education while emphasising inquiry-based learning improve teaching and learning science. She frames her arguments with the theory of inquiry, which draws on perspectives of both dominant and non-dominant cultures with a focus on science literacy as a human right. She first examines key assumptions about knowledge which inform mainstream educational research and practice. She then argues for an emphasis on contextualised learning as a right in education. This means accounting for contextualised knowledge and resisting the current trend towards de-contextualisation of curricula. This trend is reflected in Zanzibar's recent curriculum reform, in which English replaced Kiswahili as the language of instruction (LOI) in the last two years of primary school. The author's own research during the initial stage of the change (2010-2015) revealed that the effect has in fact proven to be counterproductive, with educational quality deteriorating further rather than improving. Arguing that language is essential to inquiry-based learning, she introduces a new didactic model which integrates alternative assumptions about the value of local knowledge and local languages in the teaching and learning of science subjects. In practical terms, the model is designed to address key science concepts through multiple modalities - "do it, say it, read it, write it" - a "hands-on" experiential combination which, she posits, may form a new platform for innovation based on a unique mix of local and global knowledge, and facilitate genuine science literacy. She provides examples from cutting-edge educational research and practice that illustrate this new model of teaching and learning science. This model has the potential to improve learning while supporting local languages and culture, giving local languages their

  5. Science Teacher Attitudes toward Inquiry-Based Teaching and Learning

    Science.gov (United States)

    DiBiase, Warren; McDonald, Judith R.

    2015-01-01

    The purpose of this study was to determine teachers' attitudes, values, and beliefs about inquiry. The participants of this study were 275 middle grade and secondary science teachers from four districts in North Carolina. Issues such as class size, accountability, curricular demands, and administrative support are perceived as constraints,…

  6. The Effect of a Collaborative Mentoring Program on Beginning Science Teachers' Inquiry-based Teaching Practice

    Science.gov (United States)

    Nam, Jeonghee; Seung, Eulsun; Go, MunSuk

    2013-03-01

    This study investigated how a collaborative mentoring program influenced beginning science teachers' inquiry-based teaching and their reflection on practice. The one-year program consisted of five one-on-one mentoring meetings, weekly science education seminars, weekly mentoring group discussions, and self-evaluation activities. The participants were three beginning science teachers and three mentors at the middle school level (7-9th grades) in an urban area of South Korea. For each beginning teacher, five lessons were evaluated in terms of lesson design/implementation, procedural knowledge, and classroom culture by using the Reformed Teaching Observation Protocol. Five aspects of the beginning teachers' reflections were identified. This study showed that a collaborative mentoring program focusing on inquiry-based science teaching encouraged the beginning teachers to reflect on their own perceptions and teaching practice in terms of inquiry-based science teaching, which led to changes in their teaching practice. This study also highlighted the importance of collaborative interactions between the mentors and the beginning teachers during the mentoring process.

  7. Analyzing students' attitudes towards science during inquiry-based lessons

    Science.gov (United States)

    Kostenbader, Tracy C.

    Due to the logistics of guided-inquiry lesson, students learn to problem solve and develop critical thinking skills. This mixed-methods study analyzed the students' attitudes towards science during inquiry lessons. My quantitative results from a repeated measures survey showed no significant difference between student attitudes when taught with either structured-inquiry or guided-inquiry lessons. The qualitative results analyzed through a constant-comparative method did show that students generate positive interest, critical thinking and low level stress during guided-inquiry lessons. The qualitative research also gave insight into a teacher's transition to guided-inquiry. This study showed that with my students, their attitudes did not change during this transition according to the qualitative data however, the qualitative data did how high levels of excitement. The results imply that students like guided-inquiry laboratories, even though they require more work, just as much as they like traditional laboratories with less work and less opportunity for creativity.

  8. The effect of guided inquiry-based instruction in secondary science for students with learning disabilities

    Science.gov (United States)

    Eliot, Michael H.

    Students with learning disabilities (SWLDs) need to attain academic rigor to graduate from high school and college, as well as achieve success in life. Constructivist theories suggest that guided inquiry may provide the impetus for their success, yet little research has been done to support this premise. This study was designed to fill that gap. This quasi-experimental study compared didactic and guided inquiry-based teaching of science concepts to secondary SWLDs in SDC science classes. The study examined 38 students in four classes at two diverse, urban high schools. Participants were taught two science concepts using both teaching methods and posttested after each using paper-and-pencil tests and performance tasks. Data were compared to determine increases in conceptual understanding by teaching method, order of teaching method, and exposure one or both teaching methods. A survey examined participants' perceived self-efficacy under each method. Also, qualitative comparison of the two test formats examined appropriate use with SWLDs. Results showed significantly higher scores after the guided inquiry method on concept of volume, suggesting that guided inquiry does improve conceptual understanding over didactic instruction in some cases. Didactic teaching followed by guided inquiry resulted in higher scores than the reverse order, indicating that SWLDs may require direct instruction in basic facts and procedures related to a topic prior to engaging in guided inquiry. Also application of both teaching methods resulted in significantly higher scores than a single method on the concept of density, suggesting that SWLDs may require more in depth instruction found using both methods. No differences in perceived self-efficacy were shown. Qualitative analysis both assessments and participants' behaviors during testing support the use of performance tasks over paper-and-pencil tests with SWLDs. Implications for education include the use of guided inquiry to increase SWLDs

  9. Inquiry-based laboratory investigations and student performance on standardized tests in biological science

    Science.gov (United States)

    Patke, Usha

    Achievement data from the 3rd International Mathematics and Sciences Study and Program for International Student Assessment in science have indicated that Black students from economically disadvantaged families underachieve at alarming rates in comparison to White and economically advantaged peer groups. The study site was a predominately Black, urban school district experiencing underachievement. The purpose of this correlational study was to examine the relationship between students' use of inquiry-based laboratory investigations and their performance on the Biology End of Course Test, as well as to examine the relationship while partialling out the effects of student gender. Constructivist theory formed the theoretical foundation of the study. Students' perceived levels of experience with inquiry-based laboratory investigations were measured using the Laboratory Program Variable Inventory (LPVI) survey. LPVI scores of 256 students were correlated with test scores and were examined by student gender. The Pearson correlation coefficient revealed a small direct correlation between students' experience in inquiry-based laboratory investigation classes and standardized test scores on the Biology EOCT. A partial correlational analysis indicated that the correlation remained after controlling for gender. This study may prompt a change from teacher-centered to student-centered pedagogy at the local site in order to increase academic achievement for all students. The results of this study may also influence administrators and policy makers to initiate local, state, or nationwide curricular development. A change in curriculum may promote social change as students become more competent, and more able, to succeed in life beyond secondary school.

  10. Kindergarten Teachers' Understanding of the Elements of Implementing Inquiry-Based Science Instruction

    Science.gov (United States)

    Blevins, Kathryn

    The purpose of this basic qualitative research study was to identify the extent to which kindergarten teachers understand and implement inquiry-based instruction in their science classrooms. This study was conducted in response to the indication that traditional didactic teaching methods were not enough to adequately prepare American students to compete in the global economy. Inquiry is a teaching method that could prepare students for the critical thinking skills needed to enter society in the 21st century. It is vital that teachers be sufficiently trained in teaching using the necessary components of inquiry-based instruction. This study could be used to inform leaders in educational administration of the gaps in teachers' understanding as it pertains to inquiry, thus allowing for the delivery of professional development that will address teachers' needs. Existing literature on inquiry-based instruction provides minimal information on kindergarten teachers' understanding and usage of inquiry to teach science content, and this information would be necessary to inform administrators in their response to supporting teachers in the implementation of inquiry. The primary research question for this study was "To what extent do kindergarten teachers understand the elements of implementing inquiry-based lessons in science instruction?" The 10 participants in this study were all kindergarten teachers in a midsized school district in the Mid-Atlantic region of the United States. Data were collected using face-to-face semistructured interviews, observations of the teachers implementing what they perceived to be inquiry-based instruction, and the analysis of lesson plans to indicate the components used to plan for inquiry-instruction. The findings of this study indicated that while teachers believed inquiry to be a beneficial method for teaching science, they did not understand the components of inquiry and tended to implement lesson plans created at the district level. By

  11. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    Science.gov (United States)

    Kim, Hanna

    2011-12-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were entering eighth grade attended an intensive, 1-week Inquiry-Based Science and Technology Enrichment Program which used a main theme, "Green Earth Enhanced with Inquiry and Technology." We used pre- and post-attitude surveys, pre- and post-science content knowledge tests, and selective interviews to collect data and measure changes in students' attitudes and content knowledge. The study results indicated that at the post-intervention measures, participants significantly improved their attitudes toward science and science-related careers and increased their content knowledge of selected science concepts ( p < .05).

  12. Development of inquiry-based planetary science resources for Canadian schools

    Science.gov (United States)

    Osinski, G. R.; Gilbert, A.; Brown, P.

    2011-12-01

    The Centre for Planetary Science and Exploration (CPSX - http://cpsx.uwo.ca) at The University of Western Ontario has initiated a comprehensive outreach and education program focusing on planetary science and exploration. The goal is to use planetary science to raise general interest in science. Currently, the activities being preformed by the centre can be divided into three broad categories: (1) educational/curriculum based activities, (2) outreach/community based activities, and (3) training. The first is where the push for an increase in interest for science is really critical and is the focus here. In partnership with the Thames Valley District School Board and by using inquiry-based teaching methods, students study various topics under the guidance of a CPSX graduate students and faculty. The educational activities that have taken place are all based on the Ontario curriculum and have been developed with the support of the local school board and teachers. An annual teacher workshop provides a hands-on opportunity for the teachers to interact with CPSX members. The first activity to be developed was on meteorite impact craters. The CPSX web page also contains the lesson plans and activity work sheets for this Cratering Activity, as well as additional activities. As the Cratering Activity is available online, teachers can perform the experiment independently or request the support from a CPSX outreach member. The activity is designed with the following structure: (1) The teacher gives a background presentation (provided by CPSX) which describes crater processes throughout our solar system (specifically comparing Earth to other planets), the consequences of impacts on Earth, the origins of impactors (small bodies) in our solar system, and the mechanical process of an impact. (2) The teacher demonstrates an impact event. Students are to make observations in their lab handout, and sketch what they see. (3) Students (either individually or as a group, based on

  13. Sustaining inquiry-based teaching methods in the middle school science classroom

    Science.gov (United States)

    Murphy, Amy Fowler

    This dissertation used a combination of case study and phenomenological research methods to investigate how individual teachers of middle school science in the Alabama Math, Science, and Technology Initiative (AMSTI) program sustain their use of inquiry-based methods of teaching and learning. While the overall context for the cases was the AMSTI program, each of the four teacher participants in this study had a unique, individual context as well. The researcher collected data through a series of interviews, multiple-day observations, and curricular materials. The interview data was analyzed to develop a textural, structural, and composite description of the phenomenon. The Reformed Teaching Observation Protocol (RTOP) was used along with the Assesing Inquiry Potential (AIP) questionnaire to determine the level of inquiry-based instruction occuring in the participants classrooms. Analysis of the RTOP data and AIP data indicated all of the participants utilized inquiry-based methods in their classrooms during their observed lessons. The AIP data also indicated the level of inquiry in the AMSTI curricular materials utilized by the participants during the observations was structured inquiry. The findings from the interview data suggested the ability of the participants to sustain their use of structured inquiry was influenced by their experiences with, beliefs about, and understandings of inquiry. This study contributed to the literature by supporting existing studies regarding the influence of teachers' experiences, beliefs, and understandings of inquiry on their classroom practices. The inquiry approach stressed in current reforms in science education targets content knowledge, skills, and processes needed in a future scientifically literate citizenry.

  14. Inquiry-Based Science Education Competencies of Primary School Teachers: A Literature Study and Critical Review of the American National Science Education Standards

    Science.gov (United States)

    Alake-Tuenter, Ester; Biemans, Harm J. A.; Tobi, Hilde; Wals, Arjen E. J.; Oosterheert, Ida; Mulder, Martin

    2012-01-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils' application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach inquiry-based science. Our purpose is to develop a…

  15. Preparing pre-service teachers to integrate technology into inquiry-based science education: Three case studies in The Netherlands

    International Nuclear Information System (INIS)

    Tran, Trinh-Ba; Ed van den Berg, Ed; Beishuizen, Jos; Ellermeijer, Ton

    2015-01-01

    Integration of technology (e.g. measuring with sensors, video measurement, and modeling) into secondary-school science teaching is a need globally recognized. A central issue of incorporating these technologies in teaching is how to turn manipulations of equipment and software into manipulations of ideas. Therefore, preparation for pre-service teachers to apply ICT tools should be combined with the issues of minds-on inquiring and meaning-making. From this perspective, we developed a course within the post-graduate teacher-education program in the Netherlands. During the course, pre-service teachers learnt not only to master ICT skills but also to design, teach, and evaluate an inquiry-based lesson in which the ICT tool was integrated. Besides three life sessions, teachers’ learning scenario also consisted of individual tasks which teachers could carry out mostly in the school or at home with support materials and online assistance. We taught three iterations of the course within a design-research framework in 2013, 2014 and collected data on the teacher learning processes and outcomes. The analyses of these data from observation, interviews, questionnaires, and documents were to evaluate implementation of the course, then suggest for revisions of the course set-up, which was executed and then assessed again in a subsequent case study. Main outcomes of the three case studies can be summarized as follows: within a limited time (3 life sessions spread over 2–3 months), the heterogeneous groups of pre-service teachers achieved a reasonable level of competence regarding the use of ICT tools in inquiry-based lessons. The blended set-up with support materials, especially the Coach activities and the lesson-plan form for an ICT-integrated inquiry-based lesson, contributed to this result under the condition that the course participants really spent considerable time outside the life sessions. There was a need for more time for hands-on, in-group activities in life

  16. Preparing pre-service teachers to integrate technology into inquiry-based science education: Three case studies in The Netherlands

    Science.gov (United States)

    Tran, Trinh-Ba; van den Berg, Ed; Ellermeijer, Ton; Beishuizen, Jos

    2016-05-01

    Integration of technology ( e.g. measuring with sensors, video measurement, and modeling) into secondary-school science teaching is a need globally recognized. A central issue of incorporating these technologies in teaching is how to turn manipulations of equipment and software into manipulations of ideas. Therefore, preparation for pre-service teachers to apply ICT tools should be combined with the issues of minds-on inquiring and meaning-making. From this perspective, we developed a course within the post-graduate teacher-education program in the Netherlands. During the course, pre-service teachers learnt not only to master ICT skills but also to design, teach, and evaluate an inquiry-based lesson in which the ICT tool was integrated. Besides three life sessions, teachers' learning scenario also consisted of individual tasks which teachers could carry out mostly in the school or at home with support materials and online assistance. We taught three iterations of the course within a design-research framework in 2013, 2014 and collected data on the teacher learning processes and outcomes. The analyses of these data from observation, interviews, questionnaires, and documents were to evaluate implementation of the course, then suggest for revisions of the course set-up, which was executed and then assessed again in a subsequent case study. Main outcomes of the three case studies can be summarized as follows: within a limited time (3 life sessions spread over 2-3 months), the heterogeneous groups of pre-service teachers achieved a reasonable level of competence regarding the use of ICT tools in inquiry-based lessons. The blended set-up with support materials, especially the Coach activities and the lesson-plan form for an ICT-integrated inquiry-based lesson, contributed to this result under the condition that the course participants really spent considerable time outside the life sessions. There was a need for more time for hands-on, in-group activities in life

  17. Teaching neuroscience to science teachers: facilitating the translation of inquiry-based teaching instruction to the classroom.

    Science.gov (United States)

    Roehrig, G H; Michlin, M; Schmitt, L; MacNabb, C; Dubinsky, J M

    2012-01-01

    In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers' inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms.

  18. Relationship between teacher preparedness and inquiry-based instructional practices to students' science achievement: Evidence from TIMSS 2007

    Science.gov (United States)

    Martin, Lynn A.

    The purpose of this study was to examine the relationship between teachers' self-reported preparedness for teaching science content and their instructional practices to the science achievement of eighth grade science students in the United States as demonstrated by TIMSS 2007. Six hundred eighty-seven eighth grade science teachers in the United States representing 7,377 students responded to the TIMSS 2007 questionnaire about their instructional preparedness and their instructional practices. Quantitative data were reported. Through correlation analysis, the researcher found statistically significant positive relationships emerge between eighth grade science teachers' main area of study and their self-reported beliefs about their preparedness to teach that same content area. Another correlation analysis found a statistically significant negative relationship existed between teachers' self-reported use of inquiry-based instruction and preparedness to teach chemistry, physics and earth science. Another correlation analysis discovered a statistically significant positive relationship existed between physics preparedness and student science achievement. Finally, a correlation analysis found a statistically significant positive relationship existed between science teachers' self-reported implementation of inquiry-based instructional practices and student achievement. The data findings support the conclusion that teachers who have feelings of preparedness to teach science content and implement more inquiry-based instruction and less didactic instruction produce high achieving science students. As science teachers obtain the appropriate knowledge in science content and pedagogy, science teachers will feel prepared and will implement inquiry-based instruction in science classrooms.

  19. Inquiry Based Science Education og den sociokulturelt forankrede dialog i naturfagsundervisningen

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino

    2012-01-01

    Through study, investigation and discussion of the concept Best Practice in science education (Ellebæk & Østergaard, 2009) it was shown, that the dialogue in the teaching sequences was an important factor for the children’s understanding, engagement and interest for the science subjects......). The method is central in the action research project NatSats, where focus is on chidren’s hypothesizing and the way teacher’s use dialogue in their teaching or guiding of children in kindergarten and primary school. Results from the project indicate that an open and interrogative dialogue based...... and phenomena. In this article we will discuss dialogue in the light of sociocultural learning theories, and relate it to Inquiry Based Science Education (IBSE), as the pedagogical and didactical method, which are promoted most strongly these years (e.g. in the inter-European Pollen and Fibonacci projects...

  20. Engagerande samtal i det naturvetenskapliga klassrummetInquiry based dialouge in science classroom

    Directory of Open Access Journals (Sweden)

    Ragnhild Löfgren

    2014-10-01

    Full Text Available This study focuses on classroom communication within an inquiry-based science education (IBSE program, called NTA (Naturvetenskap och Teknik för Alla. The overall aim of the study is to highlight the ways in which productive and engaging conversations are conducted in the classroom. We have analysed the work within the unit ”The Chemistry of food” and the theme testing of fat in food in grade five and six in a Swedish and a Danish science classroom. We have used video cameras and mp3-players to follow the classroom interaction. Our findings indicate that the classroom communication was focused on everyday science content and that the introduction and the summary of the theme were very important for the pupils’ possibilities to productive disciplinary engagement.

  1. Inquiry-based laboratory and History of Science: a report about an activity using Oersted’s experiment

    Directory of Open Access Journals (Sweden)

    José Antonio Ferreira Pinto

    2017-05-01

    Full Text Available This work presents an example of how to explore an historical experiment as a problem to be investigated in an inquiry-based laboratory model. The elaborated and executed purpose is one of the possibilities to insert History of Science in Science classroom. The inquiry-based experimental activity, the texts with historical approach based on modern historiography of science and teacher’s pedagogical knowledge allowed the development of argumentative skills and the comprehension of electromagnetism concepts. This study was developed with 3rd grade high school students from a public school of State of Paraiba.

  2. Empowering Rural Appalachian Youth Through Integrated Inquiry-based Earth Science

    Science.gov (United States)

    Cartwright, T. J.; Hogsett, M.

    2009-05-01

    Science education must be relevant and inspiring to keep students engaged and receptive to learning. Reports suggest that science education reform can be advanced by involving students in active research (NSF 1996). Through a 2-year Geoscience Education award from the National Science Foundation, a program called IDGE (Integrated Design for Geoscience Education) has targeted low-income, under-represented, and minority high school students in rural Appalachia in inquiry-based projects, international collaboration, and an international environmental expedition incorporating the GLOBE program protocols. This program targeted Upward Bound students at Marshall University in Huntington, West Virginia. The Upward Bound is a federally-supported program targeting low-income, under-represented, and minority students for inclusion in a summer academic- enrichment program. IDGE builds on the mission of Upward Bound by encouraging underprivileged students to investigate science and scientific careers. This outreach has proven to be successful in enhancing positive attitudes and understanding about science and increasing the number of students considering science careers. IDGE has found that students must be challenged to observe the world around them and to consider how their decisions affect the future of our planet, thus making geoscience relevant and interesting to the students. By making the geoscience course inquiry-based and incorporating field research that is relevant to local environmental issues, it becomes possible for students to bridge the gap between science in theory and science in practice while remaining engaged. Participants were able to broaden environmental connections through an ecological expedition experience to Costa Rica, serving as an opportunity to broaden the vision of students as members of an international community of learners and scientists through their experiences with a diverse natural environment. This trip, in coordination with the inclusion

  3. Deepening Inquiry: What Processes of Making Music Can Teach Us about Creativity and Ontology for Inquiry Based Science Education

    Science.gov (United States)

    Gershon, Walter S.; Oded, Ben-Horin

    2014-01-01

    Drawing from their respective work at the intersection of music and science, the coauthors argue that engaging in processes of making music can help students more deeply engage in the kinds of creativity associated with inquiry based science education (IBSE) and scientists better convey their ideas to others. Of equal importance, the processes of…

  4. The Inquiry Based Science and Technology Education Program (IN-STEP): The Evaluation of the First Year

    Science.gov (United States)

    Corcoran, Thomas B.

    2008-01-01

    This is the first report on the evaluation of the Inquiry Based Science and Technology Education Program (IN-STEP), an innovative and ambitious science education initiative for lower secondary schools being undertaken by a public-private partnership in Thailand funded by MSD-Thailand, an affiliate of Merck & Co. IN-STEP is a public-private…

  5. Implementation of inquiry-based science education in different countries: some reflections

    Science.gov (United States)

    Rundgren, Carl-Johan

    2017-03-01

    In this forum article, I reflect on issues related to the implementation of inquiry-based science education (IBSE) in different countries. Regarding education within the European Union (EU), the Bologna system has in later years provided extended coordination and comparability at an organizational level. However, the possibility of the EU to influence the member countries regarding the actual teaching and learning in the classrooms is more limited. In later years, several EU-projects focusing on IBSE have been funded in order to make science education in Europe better, and more motivating for students. Highlighting what Heinz and her colleagues call the policy of `soft governance' of the EU regarding how to improve science education in Europe, I discuss the focus on IBSE in the seventh framework projects, and how it is possible to maintain more long-lasting results in schools through well-designed teacher professional development programs. Another aspect highlighted by Heinz and her colleagues is how global pressures on convergence in education interact with educational structures and traditions in the individual countries. The rise of science and science education as a global culture, encompassing contributions from all around the world, is a phenomenon of great potential and value to humankind. However, it is important to bear in mind that if science and science education is going to become a truly global culture, local variation and differences regarding foci and applications of science in different cultures must be acknowledged.

  6. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  7. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    Science.gov (United States)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  8. Differential Performance by English Language Learners on an Inquiry-Based Science Assessment

    Science.gov (United States)

    Turkan, Sultan; Liu, Ou Lydia

    2012-10-01

    The performance of English language learners (ELLs) has been a concern given the rapidly changing demographics in US K-12 education. This study aimed to examine whether students' English language status has an impact on their inquiry science performance. Differential item functioning (DIF) analysis was conducted with regard to ELL status on an inquiry-based science assessment, using a multifaceted Rasch DIF model. A total of 1,396 seventh- and eighth-grade students took the science test, including 313 ELL students. The results showed that, overall, non-ELLs significantly outperformed ELLs. Of the four items that showed DIF, three favored non-ELLs while one favored ELLs. The item that favored ELLs provided a graphic representation of a science concept within a family context. There is some evidence that constructed-response items may help ELLs articulate scientific reasoning using their own words. Assessment developers and teachers should pay attention to the possible interaction between linguistic challenges and science content when designing assessment for and providing instruction to ELLs.

  9. Working with mathematics and science teachers on Inquiry Based Learning (IBL) approaches : teacher belief. [VISIONS 2011: Teacher Education

    NARCIS (Netherlands)

    Sikko, S.A.; Lyngved, R.; Pepin, B.

    2012-01-01

    This paper reports on mathematics and science teachers’ beliefs concerning the use of inquiry-based teaching strategies. Two different surveys were conducted: one with 24 teachers who were to become future instructional leaders; and one with 75 teachers as part of an international baseline study. We

  10. Development of a pre-service teacher training course on integration of ICT into inquiry based science education.

    NARCIS (Netherlands)

    Tran, Trinh-Ba; van den Berg, Ed; Ellermeijer, Ton; Beishuizen, Jos; Dvořák, Leoš; Koudelková, Věra

    In order to be able to integrate ICT into Inquiry Based Science Education (IBSE), teachers need much time and support for mastering ICT tools, learning the basis of IBSE, and getting experience in applying these tools in pupil investigations. For this purpose, we have developed a course within the

  11. Sweet Science for ALL! Supporting Inquiry-Based Learning through M&Ms Investigation for English Language Learners

    Science.gov (United States)

    Song, Youngjin; Higgins, Teresa; Harding-DeKam, Jenni

    2014-01-01

    This article describes a series of inquiry-based lessons that provide English language learners (ELLs) with opportunities to experience science and engineering practices with conceptual understanding as well as to develop their language proficiency in elementary classrooms. The four-lesson sequence models how various types of instructional…

  12. Inquiry-based science education: towards a pedagogical framework for primary school teachers

    Science.gov (United States)

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2016-02-01

    Inquiry-based science education (IBSE) has been promoted as an inspiring way of learning science by engaging pupils in designing and conducting their own scientific investigations. For primary school teachers, the open nature of IBSE poses challenges as they often lack experience in supporting their pupils during the different phases of an open IBSE project, such as formulating a research question and designing and conducting an investigation. The current study aims to meet these challenges by presenting a pedagogical framework in which four domains of scientific knowledge are addressed in seven phases of inquiry. The framework is based on video analyses of pedagogical interventions by primary school teachers participating in open IBSE projects. Our results show that teachers can guide their pupils successfully through the process of open inquiry by explicitly addressing the conceptual, epistemic, social and/or procedural domain of scientific knowledge in the subsequent phases of inquiry. The paper concludes by suggesting further research to validate our framework and to develop a pedagogy for primary school teachers to guide their pupils through the different phases of open inquiry.

  13. Inquiry based learning in science education and mathematics for developing bilinguals

    Directory of Open Access Journals (Sweden)

    Nataliya H. Pavlova

    2015-09-01

    Full Text Available This article studies the problem of teaching bilingual children. A definition of “developing bilingual” is proposed. The article presents an example of the application of inquiry based learning through which students develop not only math skills but also lexical capabilities. This study offers levels of differentiation in different groups of students. The paper determines advantages and disadvantages of the use of Inquiry Based Learning in developing bilingual groups.

  14. What Is a Scientific Experiment? The Impact of a Professional Development Course on Teachers' Ability to Design an Inquiry-Based Science Curriculum

    Science.gov (United States)

    Pérez, María del Carmen B.; Furman, Melina

    2016-01-01

    Designing inquiry-based science lessons can be a challenge for secondary school teachers. In this study we evaluated the development of in-service teachers' lesson plans as they took part in a 10-month professional development course in Peru which engaged teachers in the design of inquiry-based lessons. At the beginning, most teachers designed…

  15. The influence inquiry-based science has on elementary teachers' perception of instruction and self-efficacy

    Science.gov (United States)

    Lewis, Felecia J.

    The nature and purpose of this study was to examine the self-efficacy of teachers who use an inquiry-based science program to provide authentic experiences within the elementary school setting. It is essential to explore necessary improvements to bring about effective science education. Using a mixed methods study, the researcher conducted interviews with elementary teachers from five elementary schools within the same school district. The interviews focused on the teachers' experiences with inquiry-based science and their perceptions of quality science instruction. The Teachers' Sense of Efficacy Scale was used to collect quantitative data regarding the teachers' perception of instructional practice and student engagement. The study revealed that limited science content knowledge, inadequate professional development, and a low sense of self-efficacy have a substantial effect on teacher outcomes, instructional planning, and ability to motivate students to participate in inquiry-based learning. It will take a collective effort from administrators, teachers, parents, and students to discover ways to improve elementary science education.

  16. Teacher enactment of an inquiry-based science curriculum and its relationship to student interest and achievement in science

    Science.gov (United States)

    Dimichino, Daniela C.

    This mixed-methods case study, influenced by aspects of grounded theory, aims to explore the relationships among a teacher's attitude toward inquiry-based middle school reform, their enactment of such a curriculum, and student interest and achievement in science. A solid theoretical basis was constructed from the literature on the benefits of inquiry-based science over traditional science education, the benefits of using constructivist learning techniques in the classroom, the importance of motivating teachers to change their teaching practices to be more constructive, and the importance of motivating and exciting students in order to boost achievement in science. Data was collected using qualitative documents such as teacher and student interviews, classroom observations, and curriculum development meetings, in addition to quantitative documents such as student science interest surveys and science skills tests. The qualitative analysis focused on examining teacher attitudes toward curricular reform efforts, and the enactments of three science teachers during the initial year of an inquiry-based middle school curriculum adoption using a fidelity of implementation tool constructed from themes that emerged from the data documents utilized in this study. In addition, both qualitative and quantitative tools were used to measure an increase or decrease in student interest and student achievement over the study year, and their resulting relationships to their teachers' attitudes and enactments of the curriculum. Results from data analysis revealed a positive relationship between the teachers' attitude toward curricular change and their fidelity of implementation to the developers' intentions, or curricular enactment. In addition, strong positive relationships were also discovered among teacher attitude, student interest, and student achievement. Variations in teacher enactment also related to variations in student interest and achievement, with considerable positive

  17. Teaching science as inquiry in US and in Japan: A cross-cultural comparison of science teachers' understanding of, and attitudes toward inquiry-based teaching

    Science.gov (United States)

    Tosa, Sachiko

    Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.

  18. An Inquiry-Based Vision Science Activity for Graduate Students and Postdoctoral Research Scientists

    Science.gov (United States)

    Putnam, N. M.; Maness, H. L.; Rossi, E. A.; Hunter, J. J.

    2010-12-01

    The vision science activity was originally designed for the 2007 Center for Adaptive Optics (CfAO) Summer School. Participants were graduate students, postdoctoral researchers, and professionals studying the basics of adaptive optics. The majority were working in fields outside vision science, mainly astronomy and engineering. The primary goal of the activity was to give participants first-hand experience with the use of a wavefront sensor designed for clinical measurement of the aberrations of the human eye and to demonstrate how the resulting wavefront data generated from these measurements can be used to assess optical quality. A secondary goal was to examine the role wavefront measurements play in the investigation of vision-related scientific questions. In 2008, the activity was expanded to include a new section emphasizing defocus and astigmatism and vision testing/correction in a broad sense. As many of the participants were future post-secondary educators, a final goal of the activity was to highlight the inquiry-based approach as a distinct and effective alternative to traditional laboratory exercises. Participants worked in groups throughout the activity and formative assessment by a facilitator (instructor) was used to ensure that participants made progress toward the content goals. At the close of the activity, participants gave short presentations about their work to the whole group, the major points of which were referenced in a facilitator-led synthesis lecture. We discuss highlights and limitations of the vision science activity in its current format (2008 and 2009 summer schools) and make recommendations for its improvement and adaptation to different audiences.

  19. The meaning making about inquiry based teaching in a science teacher preparation program

    Directory of Open Access Journals (Sweden)

    Eliane Ferreira de Sá

    2011-09-01

    Full Text Available In this work we present an analysis of the effort that a group of tutors and professors have made to share a meaning of the notions “inquiry based teaching” and “inquiry based learning”. For this, we made an analysis of the data produced from notes elaborated in several meetings of this group for two years and in interviews that we did with tutors. We draw on the Theory of the Enunciation of Bakhtin to identify the meanings put into circulation by the participants, considering the positions of the participants and the specific conditions of enunciation. The results of our analysis point to some tensions among point of views of these persons about inquiry based teaching and learning. And addition, it point out the existence of some parameters that can help us to define a way to understand these notions conceived by this group.

  20. "Kindergarten, can I have your eyes and ears?" politeness and teacher directive choices in inquiry-based science classrooms

    Science.gov (United States)

    Oliveira, Alandeom Wanderlei

    2009-12-01

    This study explores elementary teachers' social understandings and employment of directives and politeness while facilitating inquiry science lessons prior and subsequent to their participation in a summer institute in which they were introduced to the scholarly literature on regulative discourse (directives used by teachers to regulate student behavior). A grounded theory analysis of the institute professional development activities revealed that teachers developed an increased awareness of the authoritative functions served by impolite or direct directives (i.e., pragmatic awareness). Furthermore, a comparative microethnographic analysis of participants' inquiry-based classroom practices revealed that after the institute teachers demonstrated an increased ability to share authority with students by strategically making directive choices that were more polite, indirect, inclusive, involvement-focused and creative. Such ability led to a reduced emphasis on teacher regulation of student compliance with classroom behavioral norms and an increased focus on the discursive organization of the inquiry-based science learning/teaching process. Despite teachers' increased pragmatic awareness, teacher-student linguistic relationships did not become entirely symmetrical subsequent to their participation in the summer institute (i.e., teacher authority was not completely relinquished or lost). Based on such findings, it is argued that teachers need to develop higher levels of pragmatic awareness to become effectively prepared to engage in language-mediated teacher-student interaction in the context of inquiry-based science classroom discourse.

  1. Student's social interaction in inquiry-based science education: how experiences of flow can increase motivation and achievement

    Science.gov (United States)

    Ellwood, Robin; Abrams, Eleanor

    2017-02-01

    This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants included eight eighth grade girls, aged 13-14 years old. Data sources included formal and informal participant interviews, participant journal reflections, curriculum artifacts including quizzes, worksheets, and student-generated research posters, digital video and audio recordings, photographs, and researcher field notes. Data were transcribed verbatim and coded, then collapsed into emergent themes using NVIVO 9. The results of this research illustrate how setting conditions that promote focused concentration and communicative interactions can be positively related to student motivation and achievement outcomes in inquiry-based science. Participants in the Off-Campus case experienced more frequent states of focused concentration and out performed their peers in the On-Campus case on 46 % of classroom assignments. Off-Campus participants also designed and implemented a more cognitively complex research project, provided more in-depth analyses of their research results, and expanded their perceptions of what it means to act like a scientist to a greater extent than participants in the On-Campus case. These results can be understood in relation to Flow Theory. Student interactions that promoted the criteria necessary for initiating flow, which included having clearly defined goals, receiving immediate feedback, and maintaining a balance between challenges and skills, fostered enhanced student motivation and achievement outcomes. Implications for science teaching and future research include shifting the current focus in inquiry-based science from a continuum that progresses from teacher-directed to open inquiry experiences to a

  2. Science Teachers' Understanding and Practice of Inquiry-Based Instruction in Uganda

    Science.gov (United States)

    Ssempala, Fredrick

    High school students in Uganda perform poorly in science subjects despite the Ugandan government's efforts to train science teachers and build modern science laboratories in many public high schools. The poor performance of students in science subjects has been largely blamed on the inability by many science teachers to teach science through Inquiry-Based Instruction (IBI) to motivate the students to learn science. However, there have been no empirical studies done to establish the factors that influence science teachers' understanding and practice of IBI in Uganda. Most of the published research on IBI has been conducted in developed countries, where the prevailing contexts are very different from the contexts in developing countries such as Uganda. Additionally, few studies have explored how professional development (PD) training workshops on inquiry and nature of science (NOS) affect chemistry teachers' understanding and practice of IBI. My purpose in this multi-case exploratory qualitative study was to explore the effect of a PD workshop on inquiry and NOS on chemistry teachers' understanding and practice of IBI in Kampala city public schools in Uganda. I also explored the relationship between chemistry teachers' NOS understanding and the nature of IBI implemented in their classrooms and the internal and external factors that influence teachers' understanding and practice of IBI. I used a purposive sampling procedure to identify two schools of similar standards from which I selected eight willing chemistry teachers (four from each school) to participate in the study. Half of the teachers (those from School A) attended the PD workshop on inquiry and NOS for six days, while the control group (those from School B) did not. I collected qualitative data through semi-structured interviews, classroom observation, and document analysis. I analyzed these data by structural, conceptual and theoretical coding approach. I established that all the participating chemistry

  3. The meaning making about inquiry based teaching in a science teacher preparation program

    OpenAIRE

    Eliane Ferreira de Sá; Maria Emília Caixeta de Castro Lima; Orlando Aguiar Jr.

    2011-01-01

    In this work we present an analysis of the effort that a group of tutors and professors have made to share a meaning of the notions “inquiry based teaching” and “inquiry based learning”. For this, we made an analysis of the data produced from notes elaborated in several meetings of this group for two years and in interviews that we did with tutors. We draw on the Theory of the Enunciation of Bakhtin to identify the meanings put into circulation by the participants, considering the positions o...

  4. The impact of inquiry-based learning on the critical thinking dispositions of pre-service science teachers

    Science.gov (United States)

    Arsal, Zeki

    2017-07-01

    In the study, the impact of inquiry-based learning on pre-service teachers' critical thinking dispositions was investigated. The sample of the study comprised of 56 pre-service teachers in the science education teacher education programme at the public university in the north of Turkey. In the study, quasi-experimental design with an experimental and a control group were applied to find out the impact of inquiry-based learning on the critical thinking dispositions of the pre-service teachers in the teacher education programme. The results showed that the pre-service teachers in the experimental group did not show statistically significant greater progress in terms of critical thinking dispositions than those in the control group. Teacher educators who are responsible for pedagogical courses in the teacher education programme should consider that the inquiry-based learning could not be effective method to improve pre-service teachers' critical thinking dispositions. The results are discussed in relation to potential impact on science teacher education and implications for future research.

  5. The effects of inquiry-based science on the social and communicative skills of students with low-incidence disabilities

    Science.gov (United States)

    D'Angelo, Heather Hopkins

    This research utilized inquiry based science as a vehicle to implement and maintain social skills training for secondary students, ages 14 to 20, with low-incidence disabilities in a self-contained classroom. This three year action research study examined the effects of an inquiry based science curriculum on the level and quantity of social skills used by students with one or more of the following challenges: significant learning disability (functioning more than two grade levels below grade level), emotional/social disability, mental retardation, Autism, and/or varying degrees of brain damage. Through the use of video recording, the students in the study were analyzed based on the level of social interaction and the amount of socialization that took place during inquiry based science. The skills sought were based on the social and communication skills earmarked in the students' weekly social skills training class and their Individualized Education Plans (IEP). Based on previous research in social skills training it has been determined that where social skills training is lacking are in the areas of transfer and maintenance of skills. Due to the natural social behavior that must take place in inquiry based science this group of students were found to exhibit gains in (1) quantity of social interactions on topic; (2) developing higher levels of social interactions (sharing, taking other's suggestions, listening and responding appropriately, etc.); and (3) maintenance of social skills taught outside of formal social skills training. These gains were seen overall in the amount of student involvement during inquiry based science verses teacher involvement. Such increases are depicted through students' verbal exchanges, excerpts from field notes, and student reflections. The findings of this research is expected to guide special educators, administrators and directors of curriculum as to how to better create curriculum for this specific population where social skills

  6. A cognitive framework to inform the design of professional development supporting teachers' classroom assessment of inquiry-based science

    Science.gov (United States)

    Matese, Gabrielle

    Inquiry-based science places new demands on teachers for assessing students' growth, both of deep conceptual understanding as well as developing inquiry skills. In addition, new ideas about classroom assessment, such as the importance of formative assessment, are gaining currency. While we have ideas about what classroom assessment consistent with inquiry-based pedagogy might look like, and why it is necessary, we have little understanding of what it takes to implement it. That teachers face a challenge in doing so is well-documented. Researchers have noted that teachers attempting changes in classroom assessment often bring with them incompatible beliefs, knowledge, and practices. However, noting general incompatibility is insufficient to support addressing these issues through professional development. In response to this need, I initiated a research project to identify and describe in more detail the categories of beliefs, knowledge and skills that play an important role in inquiry-based science assessment practices. I created an assessment framework outlining specific categories of beliefs, knowledge, and skills affecting particular classroom assessment practices. I then used the framework to examine teachers' classroom assessment practices and to create comparative cases between three middle-school science teachers, highlighting how the different cognitive factors affect four particular assessment practices. The comparative cases demonstrate the framework's utility for analyzing and explicating teacher assessment practices. As a tool for analyzing and understanding teacher practice, the framework supports the design of professional development. To demonstrate the value of the framework, I draw on the comparative cases to identify implications for the design of professional development to support teachers' classroom assessment of inquiry-based science. In this dissertation I provide a brief overview of the framework and its rationale, present an example of the

  7. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A Call for Scientist-Science Teacher Partnerships to Promote Inquiry-Based Learning

    Science.gov (United States)

    Mansour, Nasser

    2015-01-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better…

  8. The development of guided inquiry-based learning devices on photosynthesis and respiration matter to train science literacy skills

    Science.gov (United States)

    Choirunnisak; Ibrahim, M.; Yuliani

    2018-01-01

    The purpose of this research was to develop a guided inquiry-based learning devices on photosynthesis and respiration matter that are feasible (valid, practical, and effective) to train students’ science literacy. This research used 4D development model and tested on 15 students of biology education 2016 the State University of Surabaya with using one group pretest-posttest design. Learning devices developed include (a) Semester Lesson Plan (b) Lecture Schedule, (c) Student Activity Sheet, (d) Student Textbook, and (e) testability of science literacy. Research data obtained through validation method, observation, test, and questionnaire. The results were analyzed descriptively quantitative and qualitative. The ability of science literacy was analyzed by n-gain. The results of this research showed that (a) learning devices that developed was categorically very valid, (b) learning activities performed very well, (c) student’s science literacy skills improved that was a category as moderate, and (d) students responses were very positively to the learning that already held. Based on the results of the analysis and discussion, it is concluded that the development of guided inquiry-based learning devices on photosynthesis and respiration matter was feasible to train students literacy science skills.

  9. The Role of Content in Inquiry-Based Elementary Science Lessons: An Analysis of Teacher Beliefs and Enactment

    Science.gov (United States)

    Furtak, Erin Marie; Alonzo, Alicia C.

    2010-05-01

    The Trends in International Mathematics and Science Study (TIMSS) Video Study explored instructional practices in the United States (US) in comparison with other countries that ranked higher on the 1999 TIMSS assessment, and revealed that 8th grade science teachers in the US emphasize activities over content during lessons (Roth et al. 2006). This study applies the content framework from the TIMSS Video Study to a sample of 28 3rd grade teachers enacting an inquiry-based unit on floating and sinking, and seeks a deeper understanding of teachers’ practices through analysis of interviews with those teachers. Transcripts of observed lessons were coded according to the TIMSS framework for types of content, and transcripts of teacher interviews were coded to capture the ways in which teachers described their role in and purposes for teaching science, particularly with respect to the floating and sinking unit. Results indicate that teachers focused more on canonical, procedural and experimental knowledge during lessons than on real-world connections and the nature of science; however, none of the types of content received major emphasis in a majority of the classrooms in the sample. During interviews, teachers described their practice in ways that prioritized helping students to like science over specific content outcomes. The study suggests that elementary school teachers’ emphasis on doing and feeling during inquiry-based lessons may interfere with teaching of content.

  10. Inquiry-Based Science Education Competencies of Primary School Teachers: A literature study and critical review of the American National Science Education Standards

    NARCIS (Netherlands)

    Alake - Tuenter, E.; Biemans, H.J.A.; Tobi, H.; Wals, A.E.J.; Oosterheert, I.; Mulder, M.

    2012-01-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils’ application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach

  11. The Impact of Inquiry Based Instruction on Science Process Skills and Self-Efficacy Perceptions of Pre-Service Science Teachers at a University Level Biology Laboratory

    Science.gov (United States)

    Sen, Ceylan; Sezen Vekli, Gülsah

    2016-01-01

    The aim of this study is to determine the influence of inquiry-based teaching approach on pre-service science teachers' laboratory self-efficacy perceptions and scientific process skills. The quasi experimental model with pre-test-post-test control group design was used as an experimental design in this research. The sample of this study included…

  12. A well-started beginning elementary teacher's beliefs and practices in relation to reform recommendations about inquiry-based science

    Science.gov (United States)

    Avraamidou, Lucy

    2017-06-01

    Given reform recommendations emphasizing scientific inquiry and empirical evidence pointing to the difficulties beginning teachers face in enacting inquiry-based science, this study explores a well-started beginning elementary teacher's (Sofia) beliefs about inquiry-based science and related instructional practices. In order to explore Sofia's beliefs and instructional practices, several kinds of data were collected in a period of 9 months: a self-portrait and an accompanying narrative, a personal philosophy assignment, three interviews, three journal entries, ten lesson plans, and ten videotaped classroom observations. The analysis of these data showed that Sofia's beliefs and instructional practices were reform-minded. She articulated contemporary beliefs about scientific inquiry and how children learn science and was able to translate these beliefs into practice. Central to Sofia's beliefs about science teaching were scientific inquiry and engaging students in investigations with authentic data, with a prevalent emphasis on the role of evidence in the construction of scientific claims. These findings are important to research aiming at supporting teachers, especially beginning ones, to embrace reform recommendations.

  13. Hands-on science: science education with and for society

    OpenAIRE

    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.

    2014-01-01

    The decisive importance of Science on the development of modern societies gives Science Education a role of special impact. Society sets the requirements rules and procedures of Education defining what concepts and competencies citizens must learn and how this learning should take place. Educational policies set by governments, elected and or imposed, not always reflects the will and ruling of Society. The School as pivotal element of our modern educational system must look ...

  14. Engaging Non-Science Majors Through Citizen Science Projects In Inquiry-Based Introductory Geoscience Laboratory Courses

    Science.gov (United States)

    Humphreys, R. R.; Hall, C.; Colgan, M. W.; Rhodes, E.

    2010-12-01

    Although inquiry-based/problem-based methods have been successfully incorporated in undergraduate lecture classes, a survey of commonly used laboratory manuals indicates that few non-major geoscience laboratory classes use these strategies. The Department of Geology and Environmental Geosciences faculty members have developed a successful introductory Environmental Geology Laboratory course for undergraduate non-majors that challenges traditional teaching methodology as illustrated in most laboratory manuals. The Environmental Geology lab activities employ active learning methods to engage and challenge students. Crucial to establishing an open learning environment is capturing the attention of non-science majors from the moment they enter the classroom. We use catastrophic ‘gloom and doom’ current events to pique the imagination with images, news stories, and videos. Once our students are hooked, we can further the learning process with use of other teaching methods: an inquiry-based approach that requires students take control of their own learning, a cooperative learning approach that requires the participation of all team members in peer learning, and a problem/case study learning approach that primarily relies on activities distilled from current events. The final outcome is focused on creating innovative methods to communicate the findings to the general public. With the general public being the audience for their communiqué, students are less intimated, more focused, and more involved in solving the problem. During lab sessions, teams of students actively engage in mastering course content and develop essential communication skills while exploring real-world scenarios. These activities allow students to use scientific reasoning and concepts to develop solutions for scenarios such as volcanic eruptions, coastal erosion/sea level rise, flooding or landslide hazards, and then creatively communicate their solutions to the public. For example, during a two

  15. Using inquiry-based instruction to meet the standards of No Child Left Behind for middle school earth science

    Science.gov (United States)

    Harris, Michael W.

    This study examined the effectiveness of a specific instructional strategy employed to improve performance on the end-of-the-year Criterion-Referenced Competency Test (CRCT) as mandated by the No Child Left Behind (NCLB) Act of 2001. A growing body of evidence suggests that the perceived pressure to produce adequate aggregated scores on the CRCT causes teachers to neglect other relevant aspects of teaching and attend less to individualized instruction. Rooted in constructivist theory, inquiry-based programs provide a o developmental plan of instruction that affords the opportunity for each student to understand their academic needs and strengths. However, the utility of inquiry-based instruction is largely unknown due to the lack of evaluation studies. To address this problem, this quantitative evaluation measured the impact of the Audet and Jordan inquiry-based instructional model on CRCT test scores of 102 students in a sixth-grade science classroom in one north Georgia school. A series of binomial tests of proportions tested differences between CRCT scores of the program participants and those of a matched control sample selected from other district schools that did not adopt the program. The study found no significant differences on CRCT test scores between the treatment and control groups. The study also found no significant performance differences among genders in the sample using inquiry instruction. This implies that the utility of inquiry education might exist outside the domain of test scores. This study can contribute to social change by informing a reevaluation of the instructional strategies that ideally will serve NCLB high-stakes assessment mandates, while also affording students the individual-level skills needed to become productive members of society.

  16. Hands-on optics: an informal science education initiative

    Science.gov (United States)

    Johnson, Anthony M.; Pompea, Stephen M.; Arthurs, Eugene G.; Walker, Constance E.; Sparks, Robert T.

    2007-09-01

    The project is collaboration between two scientific societies, the Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering and the National Optical Astronomy Observatory (NOAO). The program is designed to bring science education enrichment to thousands of underrepresented middle school students in more than ten states, including female and minority students, who typically have not been the beneficiaries of science and engineering resources and investments. HOO provides each teacher with up to six activity modules, each containing enough materials for up to 30 students to participate in 6-8 hours of hands-on optics-related activities. Sample activities, developed by education specialists at NOAO, include building kaleidoscopes and telescopes, communicating with a beam of light, and a hit-the-target laser beam challenge. Teachers engage in two days of training and, where possible, are partnered with a local optics professional (drawn from the local rosters of SPIE and OSA members) who volunteers to spend time with the teacher and students as they explore the module activities. Through these activities, students gain experience and understanding of optics principles, as well as learning the basics of inquiry, critical thinking, and problem solving skills involving optics, and how optics interfaces with other disciplines. While the modules were designed for use in informal after- school or weekend sessions, the number of venues has expanded to large and small science centers, Boys and Girls Clubs, Girl Scouts, summer camps, family workshops, and use in the classroom.

  17. Understanding the Development of a Hybrid Practice of Inquiry-Based Science Instruction and Language Development: A Case Study of One Teacher's Journey Through Reflections on Classroom Practice

    Science.gov (United States)

    Capitelli, Sarah; Hooper, Paula; Rankin, Lynn; Austin, Marilyn; Caven, Gennifer

    2016-04-01

    This qualitative case study looks closely at an elementary teacher who participated in professional development experiences that helped her develop a hybrid practice of using inquiry-based science to teach both science content and English language development (ELD) to her students, many of whom are English language learners (ELLs). This case study examines the teacher's reflections on her teaching and her students' learning as she engaged her students in science learning and supported their developing language skills. It explicates the professional learning experiences that supported the development of this hybrid practice. Closely examining the pedagogical practice and reflections of a teacher who is developing an inquiry-based approach to both science learning and language development can provide insights into how teachers come to integrate their professional development experiences with their classroom expertise in order to create a hybrid inquiry-based science ELD practice. This qualitative case study contributes to the emerging scholarship on the development of teacher practice of inquiry-based science instruction as a vehicle for both science instruction and ELD for ELLs. This study demonstrates how an effective teaching practice that supports both the science and language learning of students can develop from ongoing professional learning experiences that are grounded in current perspectives about language development and that immerse teachers in an inquiry-based approach to learning and instruction. Additionally, this case study also underscores the important role that professional learning opportunities can play in supporting teachers in developing a deeper understanding of the affordances that inquiry-based science can provide for language development.

  18. Inquiry-Based Science Education Competencies of Primary School Teachers: A literature study and critical review of the American National Science Education Standards

    Science.gov (United States)

    Alake-Tuenter, Ester; Biemans, Harm J. A.; Tobi, Hilde; Wals, Arjen E. J.; Oosterheert, Ida; Mulder, Martin

    2012-11-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils' application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach inquiry-based science. Our purpose is to develop a profile of professional competence, required for effective inquiry-based science teaching in primary schools in the Netherlands. This article reviews literature and compares the outcomes to the American National Science Education Standards (NSES). In so doing, it seeks to answer the following research questions: What elements of competencies required by primary school teachers who teach inquiry-based science are mentioned, discussed and researched in recent literature? To what extent are the American NSES (introduced 15 years ago) consistent with elements of competencies found in recent literature? A comprehensive literature review was conducted using Educational Resources Information Centre and Google Scholar databases. Fifty-seven peer-reviewed scientific journal articles from 2004 to 2011 were found using keyword combinations. Analysis of these articles resulted in the identification and classification of 22 elements of competencies. This outcome was compared to the American NSES, revealing gaps in the standards with respect to a lack of focus on how teachers view science teaching and themselves as teachers. We also found that elements of competencies are connected and poor mastery of one may affect a teacher's mastery of another. Therefore, we propose that standards for the Netherlands should be presented in a non-linear, holistic, competence-based model.

  19. Closing the science achievement gap for ninth grade English learners through standards- and inquiry-based science instruction

    Science.gov (United States)

    Estrada, Myrna Hipol

    In light of the need to close the achievement gap among our culturally and linguistically diverse students, more specifically the Hispanics and the Hispanic English Learners (ELs), the effects of teacher professional development (2 year PD vs. 1 Year PD vs. no PD) on the implementation of a standards-aligned and inquiry-based science curriculum program---the Integrated Coordinated Science for the 21st Century published by It's About Time, Inc. (ICS-IAT)---on the LAUSD ninth graders science scores were examined. Participants included 8,937 9th grade students (7,356 Hispanics). The primary outcome measurement was scaled scores from the California Standard Test (CST) in Integrated Coordinated Science (CST_ICS1). Correlations between California English Language Development Test (CELDT) component subscores (reading, listening and speaking) and CST scores were also examined. Results indicated that the science scores of the students of teachers who participated in two year PD were significantly higher compared to the scores of students of the one year PD group and the control group. The results show that all ethnic groups benefited from two years of teacher PD, except the African American group. Among Hispanics, students classified as IFEP, RFEP and EO gained from the teachers having two years of professional development. But the target population, ELs did not benefit from two years of teacher PD. The correlations between the CELDT and CST_ELA were much higher than the CELDT and CST_ICS1 correlations. This finding validates Abedi's claim (2004) that EL students are disadvantaged because of their language handicap on tests that have a greater language load. Two year PD participation significantly enhanced the accessibility of science to the ninth graders. The essential features in the PD were classroom simulation of all the activities identified in the storyboard with the actual and correct use of needed equipment and materials; creation and presentation of sample or model

  20. Inquiry based Teacher Professional development from a multidisciplinary perspective: The NEOGEO Lake Erie Earth Science Field Trip

    Science.gov (United States)

    Ortiz, J. D.; Munro-Stasiuk, M. J.; Hart, B. I.; Mokaren, D. M.; Arnold, B.; Chermansky, J. V.; Vlack, Y. A.

    2006-12-01

    State and national educational standards stress the need to incorporate inquiry-based approaches into the K- 12 science curriculum. However, many teachers either lack training in these pedagogical techniques or science content mastery. Both of these are needed to confidently approach science teaching in the less structured framework associated with a real world exploration of the natural environment. To overcome these barriers to implementation, we have developed an intensive, field-based professional development workshop which explores the connections between the bedrock geology, glacial geomorphology, ecology, and geography of the Lake Erie Islands and the shore of its western basin. This workshop is part of a series of three workshops that form the professional development activities of our NSF funded Graduate Teaching Fellows in K-12 Education (GK-12) project, the Northeast Ohio Geoscience Education Outreach (NEOGEO) Program which seeks to improve the quality of Earth Science education at the middle and high school levels in Northeast Ohio. During the workshop students explored the ecology and geomorphology of a series of coastal wetlands, collecting instrumental data and field observations to evaluate water quality and the forces that created these surface features. Exceptional exposure of glacial scours and striations at Kelleys Island and along the Marblehead Peninsula allowed the participants to reconstruct evolving ice flow paths to see how recent geological history shaped the landscape. Finally, stratigraphic observations in a local quarry enabled the students to understand why the observed glacial features varied as a function of bedrock type. Response to the workshop was overwhelming positive with participants commenting positively on quality and quantity of the material presented and the manner in which inquiry based teaching was modeled. End of term projects which included the conceptualization of a teaching plan to incorporate the approaches learned

  1. Understanding the Development of a Hybrid Practice of Inquiry-Based Science Instruction and Language Development: A Case Study of One Teacher's Journey through Reflections on Classroom Practice

    Science.gov (United States)

    Capitelli, Sarah; Hooper, Paula; Rankin, Lynn; Austin, Marilyn; Caven, Gennifer

    2016-01-01

    This qualitative case study looks closely at an elementary teacher who participated in professional development experiences that helped her develop a hybrid practice of using inquiry-based science to teach both science content and English language development (ELD) to her students, many of whom are English language learners (ELLs). This case study…

  2. Project HEAT: Temperature as an Organizing Theme for Inquiry-Based Learning in the Environmental Sciences

    Science.gov (United States)

    Albright, T. P.; Howard, K. L.; Ewing-Taylor, J.

    2014-12-01

    Professionals in science, technology, engineering, and mathematics (STEM) fields do not reflect the diversity of the US population. Among the most effective ways to attract and retain underrepresented students in STEM disciplines is to provide opportunities for participation in the scientific process and interaction with practicing scientists. Project HEAT (Hot Environments, Animals, & Temperature) is "boot-camp"-style workshop aimed at increasing interest in STEM topics among underrepresented, first-generation, college-bound middle school students. Linking to our NASA-funded research project "Desert Birds in a Warming World", we focused on how surprisingly variable temperature is in space and time, why temperature is important to plants, animals, and people, and how we measure temperature in the field and from space. Perhaps more importantly, this theme was a vehicle for students to experience science as a process: field observations, brainstorming questions and hypotheses, designing experiments to test them, and analyzing and reporting their data. The centerpiece was a set of experiments with small temperature sensors and radiation shields that teams of students designed, executed at a local park, analyzed, and reported. Two years of pre and post assessments revealed that Project HEAT participants increased understanding in content areas and showed slight increases in STEM interest. Year two results were markedly stronger than year one in both assessments as well as our perception. We attribute this to earlier summer timing of the workshop, a change from two half-day weeks to one full-day week, and a more age-homogeneous selection of students. In comments, participants expressed their special enjoyment of the hands-on nature of the program and the outdoor learning. Though providing such opportunities can be challenging, our experience here suggests that it can be worth while. Project HEAT also benefited our cadre of graduate student mentors by providing exposure

  3. The Development of Scientific Literacy through Nature of Science (NoS) within Inquiry Based Learning Approach

    Science.gov (United States)

    Widowati, A.; Widodo, E.; Anjarsari, P.; Setuju

    2017-11-01

    Understanding of science instructional leading to the formation of student scientific literacy, seems not yet fully understood well by science teachers. Because of this, certainly needs to be reformed because science literacy is a major goal in science education for science education reform. Efforts of development science literacy can be done by help students develop an information conception of the Nature of Science (NoS) and apply inquiry approach. It is expected that students’ science literacy can develop more optimal by combining NoS within inquiry approach. The purpose of this research is to produce scientific literacy development model of NoS within inquiry-based learning. The preparation of learning tools will be maked through Research and Development (R & D) following the 4-D model (Define, Design, Develop, and Disseminate) and Borg & Gall. This study is a follow-up of preliminary research results about the inquiry profile of junior high school students indicating that most categories are quite good. The design of the model NoS within inquiry approach for developing scientific literacy is using MER Model in development educational reconstruction. This research will still proceed to the next stage that is Develop.

  4. An Investigation of Primary School Teachers’ PCK towards Science Subjects Using an Inquiry-Based Approach

    Directory of Open Access Journals (Sweden)

    Menşure ALKIŞ KÜÇÜKAYDIN

    2016-09-01

    Full Text Available In this study, the pedagogical content knowledge (PCK of four experienced primary school teachers was investigated within the “Let’s Solve the Riddle of Our Body Unit”. The PCK investigation adopted a learning approach based on inquiry, content representation and pedagogical and professional-experience repertoires (PaP-eRs, and interview forms were used as data collection tools. During the course of the research, the findings obtained from observations made during a total of 18 course hours formed the basic data source of the study. According to the results of the study, in which descriptive and content analysis were used concurrently, primary school teachers lack subject matter knowledge, do not interrogate the pre-knowledge of students and some misconceptions exist regarding about blood moves and exercise with pulse. Additionally, some deficiencies were detected in the curriculum, i.e., it offers non-inquisitional knowledge. Furthermore, teachers employee assessment methods with traditional teaching methods and techniques. In the context of an inquiry-based learning approach, teachers appeared to believe that classroom activities were adversely affected by the physical conditions (class size, lack of laboratory etc., students’ cognitive levels and parent profiles. The result of this study revealed that PCK components affect one another. The PCK findings pertaining to primary school teachers as it concerns the unit are briefly discussed and some suggestions about the development of PCK are submitted.

  5. Connecting Educators with Inter-Disciplinary Inquiry-Based Science and Students with STEM Careers with Real-World Experiences

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2016-10-01

    Full Text Available Our professional development workshops have provided participating teachers (inservice and pre-service with interdisciplinary experiences in earth and environmental science that have built their content into real-world problem based research initiatives (STEM, Science Technology, Engineering and Mathematics. One of our real-world issues has been the detection of phenol since it has been a concern in the real-world coal mining industry. Coal tars are a complex of variable mixtures of phenols. Phenol and phenol derivative compounds are widely used in the production of polymers, drugs, dyes, explosives, pesticides, stabilizers and antioxidants. These phenolic compounds are discharged into the environment and can represent a serious hazard, mainly by the contamination of superficial and underground waters. The toxic effect of phenol can cause comas, convulsions, cyanosis, liver damage, kidney damage, lung damage and death. The mining industry for coal is an alternative source of energy and used in thermoelectric power plants. However, the pollutant phenol that can be found in coal has high need to be detected and is an important aspect to keep an eye on due to these harmful chemicals such as phenol discharging into the environment. Our inquiry-based labs have engaged our inservice and pre-service students by visiting a mine and learning the positive and negative aspects of mining and the importance of water quality. Thus, this inquiry-based module will illustrate the use of an electrochemistry modified carbon nanotube poly-3-hexylthiophene electrode to detect such harmful chemicals as phenol by unique electrochemistry techniques such as Differential Pulse Voltammetry (DPV.

  6. Mobile Inquiry Based Learning

    NARCIS (Netherlands)

    Specht, Marcus

    2012-01-01

    Specht, M. (2012, 8 November). Mobile Inquiry Based Learning. Presentation given at the Workshop "Mobile inquiry-based learning" at the Mobile Learning Day 2012 at the Fernuniversität Hagen, Hagen, Germany.

  7. The Utility of Inquiry-Based Exercises in Mexican Science Classrooms: Reports from a Professional Development Workshop for Science Teachers in Quintana Roo, Mexico

    Science.gov (United States)

    Racelis, A. E.; Brovold, A. A.

    2010-12-01

    The quality of science teaching is of growing importance in Mexico. Mexican students score well below the world mean in math and science. Although the government has recognized these deficiencies and has implemented new policies aimed to improve student achievement in the sciences, teachers are still encountering in-class barriers to effective teaching, especially in public colleges. This paper reports on the utility of inquiry based exercises in Mexican classrooms. In particular, it describes a two-day professional development workshop with science teachers at the Instituto Tecnologico Superior in Felipe Carrillo Puerto in the Mexican state of Quintana Roo. Felipe Carrillo Puerto is an indigenous municipality where a significant majority of the population speak Maya as their first language. This alone presents a unique barrier to teaching science in the municipality, but accompanied with other factors such as student apathy, insufficient prior training of both students and teachers, and pressure to deliver specific science curriculum, science teachers have formidable challenges for effective science teaching. The goals of the workshop were to (1) have a directed discussion regarding science as both content and process, (2) introduce inquiry based learning as one tool of teaching science, and (3) get teachers to think about how they can apply these techniques in their classes.

  8. The Impact of High School Science Teachers' Beliefs, Curricular Enactments and Experience on Student Learning during an Inquiry-Based Urban Ecology Curriculum

    Science.gov (United States)

    McNeill, Katherine L.; Pimentel, Diane Silva; Strauss, Eric G.

    2013-01-01

    Inquiry-based curricula are an essential tool for reforming science education yet the role of the teacher is often overlooked in terms of the impact of the curriculum on student achievement. Our research focuses on 22 teachers' use of a year-long high school urban ecology curriculum and how teachers' self-efficacy, instructional practices,…

  9. Integrating Various Apps on BYOD (Bring Your Own Device) into Seamless Inquiry-Based Learning to Enhance Primary Students' Science Learning

    Science.gov (United States)

    Song, Yanjie; Wen, Yun

    2018-01-01

    Despite that BYOD (Bring Your Own Device) technology model has been increasingly adopted in education, few studies have been reported on how to integrate various apps on BYOD into inquiry-based pedagogical practices in primary schools. This article reports a case study, examining what apps on BYOD can help students enhance their science learning,…

  10. Making sense of shared sense-making in an inquiry-based science classroom: Toward a sociocultural theory of mind

    Science.gov (United States)

    Ladewski, Barbara G.

    Despite considerable exploration of inquiry and reflection in the literatures of science education and teacher education/teacher professional development over the past century, few theoretical or analytical tools exist to characterize these processes within a naturalistic classroom context. In addition, little is known regarding possible developmental trajectories for inquiry or reflection---for teachers or students---as these processes develop within a classroom context over time. In the dissertation, I use a sociocultural lens to explore these issues with an eye to the ways in which teachers and students develop shared sense-making, rather than from the more traditional perspective of individual teacher activity or student learning. The study includes both theoretical and empirical components. Theoretically, I explore the elaborations of sociocultural theory needed to characterize teacher-student shared sense-making as it develops within a classroom context, and, in particular, the role of inquiry and reflection in that sense-making. I develop a sociocultural model of shared sense-making that attempts to represent the dialectic between the individual and the social, through an elaboration of existing sociocultural and psychological constructs, including Vygotsky's zone of proximal development and theory of mind. Using this model as an interpretive framework, I develop a case study that explores teacher-student shared sense-making within a middle-school science classroom across a year of scaffolded introduction to inquiry-based science instruction. The empirical study serves not only as a test case for the theoretical model, but also informs our understanding regarding possible developmental trajectories and important mechanisms supporting and constraining shared sense-making within inquiry-based science classrooms. Theoretical and empirical findings provide support for the idea that perspectival shifts---that is, shifts of point-of-view that alter relationships

  11. Promoting Female Students' Learning Motivation towards Science by Exercising Hands-On Activities

    Science.gov (United States)

    Wen-jin, Kuo; Chia-ju, Liu; Shi-an, Leou

    2012-01-01

    The purpose of this study is to design different hands-on science activities and investigate which activities could better promote female students' learning motivation towards science. This study conducted three types of science activities which contains nine hands-on activities, an experience scale and a learning motivation scale for data…

  12. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    Science.gov (United States)

    Kim, Hanna

    2011-01-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were…

  13. We Look More, Listen More, Notice More: Impact of Sustained Professional Development on Head Start Teachers' Inquiry-Based and Culturally-Relevant Science Teaching Practices

    Science.gov (United States)

    Roehrig, Gillian H.; Dubosarsky, Mia; Mason, Annie; Carlson, Stephan; Murphy, Barbara

    2011-10-01

    Despite many scholars' recommendations, science is often avoided during early childhood education. Among the reasons provided by early childhood teachers for the exclusion of science from their daily routines included science anxiety, low self-efficacy with respect to teaching science, lack of experience participating in science activities as students, or the notion that literacy and language are more important during the early years. In minority populations the problem is even greater due to identification of science with the `culture of. This article presents results from Ah Neen Dush, a sustained and transformative professional development program for Head Start teachers on an American Indian Reservation. The goal of the program is to support early childhood teachers in developing inquiry-based and culturally-relevant teaching practices. Through analysis of teachers' classroom practices, surveys and interviews, we explore changes in teachers' attitudes toward science and inquiry-based practices. Classroom observations were conducted using CLASS (Classroom assessment Scoring System), a tool used to evaluate the quality of classroom interactions. After 1 year of professional development teachers' attitudes were found to improve and after 2 years teachers classroom practices were more inquiry-based with statistically significant increases in CLASS observation scores.

  14. Integrating Various Apps on BYOD (Bring Your Own Device) into Seamless Inquiry-Based Learning to Enhance Primary Students' Science Learning

    Science.gov (United States)

    Song, Yanjie; Wen, Yun

    2018-04-01

    Despite that BYOD (Bring Your Own Device) technology model has been increasingly adopted in education, few studies have been reported on how to integrate various apps on BYOD into inquiry-based pedagogical practices in primary schools. This article reports a case study, examining what apps on BYOD can help students enhance their science learning, and how students develop their science knowledge in a seamless inquiry-based learning environment supported by these apps. A variety of qualitative data were collected and analyzed. The findings show that the affordances of the apps on BYOD could help students improve their science knowledge without time and place constraints and gain a better sense of ownership in learning.

  15. Employing Inquiry-Based Computer Simulations and Embedded Scientist Videos To Teach Challenging Climate Change and Nature of Science Concepts

    Science.gov (United States)

    Cohen, E.

    2013-12-01

    Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known as Web-based Inquiry Science Environment (WISE). For this research, students from a suburban, diverse, middle school setting use the simulations as part of a two week-long class unit on climate change. A pilot study was conducted during phase one of the research that informed phase two, which encompasses the dissertation. During the pilot study, as students worked through the simulation, evidence of shifts in student motivation, understanding of science content, and ideas about the nature of science became present using a combination of student interviews, focus groups, and students' conversations. Outcomes of the pilot study included improvements to the pedagogical approach. Allowing students to do 'Extreme Testing' (e.g., making the world as hot or cold as possible) and increasing the time for free exploration of the simulation are improvements made as a result of the findings of the pilot study. In the dissertation (phase two of the research design) these findings were implemented in a new curriculum scaled for 85 new students from the same school during the next school year. The modifications included new components implementing simulations as an assessment tool for all students and embedded modeling tools. All students were asked to build pre and post models, however due to technological constraints these were not an effective tool. A non-video group of 44 students was established and another group of 41 video students had a WISE curriculum which included twelve minutes of scientists' conversational videos referencing explicit aspects on the nature of science, specifically the use of models and simulations in science

  16. Effect of Robotics-Enhanced Inquiry-Based Learning in Elementary Science Education in South Korea

    Science.gov (United States)

    Park, Jungho

    2015-01-01

    Much research has been conducted in educational robotics, a new instructional technology, for K-12 education. However, there are arguments on the effect of robotics and limited empirical evidence to investigate the impact of robotics in science learning. Also most robotics studies were carried in an informal educational setting. This study…

  17. Best Practices for Implementing Inquiry-Based Science Instruction for English Language Learners

    Science.gov (United States)

    Williams, Erica

    This applied dissertation was designed to provide better access to current information to link literacy and science. Students frequently used literacy skills to gather information and communicate understanding of scientific concepts to others. Science became applicable through the tools associated with literacy. There was a need for instruction that integrated language development with science content. This research focused on revealing the instructional trends of English language learners science teachers in the United Arab Emirates. The researcher introduced the questionnaire surveys in the form of a professional development session. The participants were asked to complete the questionnaire concurrently with the descriptive presentation of each component of the sheltered instruction observation protocol (SIOP) model. Completing the SIOP Checklist Survey provided data on the type of constructivist strategies (best practices) teachers were utilizing and to what degree of fidelity the strategies were being implemented. Teachers were encouraged to continue to use these services for curriculum enrichment and as an additional source for future lesson plans. An analysis of the data revealed authentic learning as the most common best practice used with the most fidelity by teachers. The demographic subgroup, teaching location, was the only subgroup to show statistical evidence of an association between teaching location and the use of problem-based learning techniques in the classroom. Among factors that influenced the degree of teacher fidelity, teachers' expectation for student achievement had a moderate degree of association between the use of scaffolding techniques and co-operative learning.

  18. Sims for Science: Powerful Tools to Support Inquiry-Based Teaching

    Science.gov (United States)

    Perkins, Katherine K.; Loeblein, Patricia J.; Dessau, Kathryn L.

    2010-01-01

    Since 2002, the PhET Interactive Simulations project at the University of Colorado has been working to provide learning tools for students and teachers. The project has developed over 85 interactive simulations--or sims--for teaching and learning science. Although these sims can be used in a variety of ways, they are specifically designed to make…

  19. Inquiry Based Science Education and Getting Immediate Students’ Feedback about Their Motivation

    Directory of Open Access Journals (Sweden)

    Martina Kekule

    2017-04-01

    Full Text Available The paper is based on collecting evidence of the Establish project impact on students. For the purpose two questionnaires based on the existing tools have been used. Questionnaire 1 is a part of Intrinsic Motivation Inventory (IMI based on the Self-determination theory. It is aimed at assessing students’ interests, their perceived choice and usefulness of implemented learning units and should be answered after each learning unit/several IBSE activities. Several items of CLES questionnaire are included there as well. Questionnaire 2 assesses the impact on students’ attitudes towards science and technology and on their knowledge about nature of building up science knowledge. Both questionnaires exist in the lower and upper secondary school versions. The paper presents selected data and results which were obtained by addressing the Questionnaire 1, so that the focus is on getting students’ feedback about their intrinsic motivation. Our assumption is that active learning is associated with positive intrinsic motivation of students. That is why we find as very important that educators have a possibility to understand the phenomenon more deeply. We aim to present the reliable tool for getting the feedback and to present a way of data processing which does not need advanced statistical methods, so that teachers (as well as science education researchers can use and analyze data obtained by the tool. Means and standard deviations for items of the subscales Interest/Enjoyment, Perceived choice and Value/Usefulness were computed. To determine the consistency of results, the Standard Pearson correlation cofficient was computed for all items within the subscales. Based on the findings, we can conclude that participants’ answers (questionnaire results were consistent (not responded mechanically.

  20. The effects of hands-on-science instruction on the science achievement of middle school students

    Science.gov (United States)

    Wiggins, Felita

    Student achievement in the Twenty First Century demands a new rigor in student science knowledge, since advances in science and technology require students to think and act like scientists. As a result, students must acquire proficient levels of knowledge and skills to support a knowledge base that is expanding exponentially with new scientific advances. This study examined the effects of hands-on-science instruction on the science achievement of middle school students. More specifically, this study was concerned with the influence of hands-on science instruction versus traditional science instruction on the science test scores of middle school students. The subjects in this study were one hundred and twenty sixth-grade students in six classes. Instruction involved lecture/discussion and hands-on activities carried out for a three week period. Specifically, the study ascertained the influence of the variables gender, ethnicity, and socioeconomic status on the science test scores of middle school students. Additionally, this study assessed the effect of the variables gender, ethnicity, and socioeconomic status on the attitudes of sixth grade students toward science. The two instruments used to collect data for this study were the Prentice Hall unit ecosystem test and the Scientific Work Experience Programs for Teachers Study (SWEPT) student's attitude survey. Moreover, the data for the study was treated using the One-Way Analysis of Covariance and the One-Way Analysis of Variance. The following findings were made based on the results: (1) A statistically significant difference existed in the science performance of middle school students exposed to hands-on science instruction. These students had significantly higher scores than the science performance of middle school students exposed to traditional instruction. (2) A statistically significant difference did not exist between the science scores of male and female middle school students. (3) A statistically

  1. "I am a scientist": How setting conditions that enhance focused concentration positively relate to student motivation and achievement outcomes in inquiry-based science

    Science.gov (United States)

    Ellwood, Robin B.

    This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants included eight eighth grade girls, aged thirteen to fourteen years old. Data sources included formal and informal participant interviews, participant journal reflections, curriculum artifacts including quizzes, worksheets, and student-generated research posters, digital video and audio recordings, photographs, and researcher field notes. Data were transcribed verbatim and coded, then collapsed into emergent themes using NVIVO 9. The results of this research illustrate how setting conditions that promote focused concentration and communicative interactions can be positively related to student motivation and achievement outcomes in inquiry-based science. Participants in the Off-Campus case experienced more frequent states of focused concentration and out performed their peers in the On-Campus case on forty-six percent of classroom assignments. Off-Campus participants also designed and implemented a more cognitively complex research project, provided more in-depth analyses of their research results, and expanded their perceptions of what it means to act like a scientist to a greater extent than participants in the On-Campus case. These results can be understood in relation to Flow Theory. Student interactions that promoted the criteria necessary for initiating flow, which included having clearly defined goals, receiving immediate feedback, and maintaining a balance between challenges and skills, fostered enhanced student motivation and achievement outcomes. This research also illustrates the positive gains in motivation and achievement outcomes that emerge from student experiences with extended time in isolated areas referred to

  2. Integrating Hands-On Undergraduate Research in an Applied Spatial Science Senior Level Capstone Course

    Science.gov (United States)

    Kulhavy, David L.; Unger, Daniel R.; Hung, I-Kuai; Douglass, David

    2015-01-01

    A senior within a spatial science Ecological Planning capstone course designed an undergraduate research project to increase his spatial science expertise and to assess the hands-on instruction methodology employed within the Bachelor of Science in Spatial Science program at Stephen F Austin State University. The height of 30 building features…

  3. Science &Language Teaching in Hands-on Education

    Science.gov (United States)

    Gehlert, Sylvia

    2002-01-01

    As announced in the paper presented in Toulouse, a trinational teacher training program addressing school teachers from France, Germany and Italy on teaching foreign languages together with science and history through Space related projects has been implemented and launched successfully. Supported by the French Ministry of Education (Académie de Nice), the bigovernmental French-German Youth Office (Office franco- allemand pour la Jeunesse) and the European Space Agency the first session was held in Cannes in October 2001 and brought together 36 language, science and history teachers, 12 from each country. Through different workshops, presentations and visits this five-day training encounter initiated the participants with Space activities and exploration as well as offering them back-up information on astronomy. It gave them furthermore the opportunity of improving their linguistic skills and of exchanging their teaching experience. The program was highly welcomed by all the participants who will meet this year in Germany for the second session devoted to establishing together bi- or trinational projects for future class encounters based on the same subjects. My paper will deal with the results of the program which have been beyond expectation and will encourage us to continue this pluridisciplinary approach of language &science teaching and extend it to other language combinations.

  4. "Me? Teach Science?" Exploring EC-4 Pre-Service Teachers' Self Efficacy in an Inquiry-Based Constructivist Physics Classroom

    Science.gov (United States)

    Narayan, Ratna; Lamp, David

    2010-01-01

    In this qualitative and interpretive study, we investigated factors that influenced elementary preservice teachers' self-efficacy in a constructivist, inquiry-based physics class. Bandura's (1977) theory of social learning was used as a basis to examine preservice teacher's self-efficacy. Participants included 70 female EC-4 preservice teachers…

  5. Barrier Island Activity to Illustrate Hands-On Science

    Science.gov (United States)

    Griffin, Suzanne H.

    The department of Physics of the University of Glasgow was concerned about losing students after the end of the level 1 Physics course. The current research project started as an attempt to find out the reasons for this, but moved to investigate attitudes towards Physics at several stages during secondary school and attitudes towards science with primary pupils. Analyses of factors, which influence students' intentions towards studying Physics, were performed against the background of the Theory of Planned Behaviour, which interprets people's behaviour by considering three factors: attitude towards behaviour (advantages or disadvantages of being involved in the behaviour, e.g. studying Physics for Honours); subjective norm (approval or disapproval of important people towards engaging in the behaviour, e.g. parents, teacher, general norms of the society); perceived behavioural control (skills, knowledge, cooperation of others, abilities, efforts required to perform the behaviour). Analysis of these factors revealed some reasons for students' withdrawal from Physics after level 1 and pointed to factors which may facilitate students' persistence in the subject. A general analysis of level 1 and level 2 students' attitudes towards different aspects of the university Physics course revealed that the level 1 students' attitudes towards their university course of lectures and course of laboratories tended to be negatively polarised. Recommendations were suggested on the basis of the gathered evidence about how to make students' experience in university Physics more satisfactory for them. The data obtained from the separate analyses of females' and males' attitudes towards university Physics course have showed that attitudes of females and males were similar. The only significant difference between level 1 females and males was found to be the perceived behavioural control factor (students' attitudes towards course difficulty, attitudes towards work load in the course

  6. Enhancing Hispanic Minority Undergraduates' Botany Laboratory Experiences: Implementation of an Inquiry-Based Plant Tissue Culture Module Exercise

    Science.gov (United States)

    Siritunga, Dimuth; Navas, Vivian; Diffoot, Nanette

    2012-01-01

    Early involvement of students in hands-on research experiences are known to demystify research and promote the pursuit of careers in science. But in large enrollment departments such opportunities for undergraduates to participate in research are rare. To counteract such lack of opportunities, inquiry-based laboratory module in plant tissue…

  7. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics

    Science.gov (United States)

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.

    2015-01-01

    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  8. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    Science.gov (United States)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  9. Three Simple Hands-On Soil Exercises Extension Professionals Can Incorporate into Natural Sciences Curriculum

    Science.gov (United States)

    Kleinschmidt, Andy

    2011-01-01

    The importance of healthy soil and of conveying the importance of soils starts by conveying a few basic concepts of soil science cannot be overstated. This article provides three hands-on exercises Extension professionals can add to natural resources or Master Gardener education curricula. These natural sciences exercises are easy to prepare for…

  10. Increasing Bellevue School District's elementary teachers' capacity for teaching inquiry-based science: Using ideas from contemporary learning theory to inform professional development

    Science.gov (United States)

    Maury, Tracy Anne

    This Capstone project examined how leaders in the Bellevue School District can increase elementary teachers' capacity for teaching inquiry-based science through the use of professional learning activities that are grounded in ideas from human learning theory. A framework for professional development was constructed and from that framework, a set of professional learning activities were developed as a means to support teacher learning while project participants piloted new curriculum called the Isopod Habitat Challenge. Teachers in the project increased their understanding of the learning theory principles of preconceptions and metacognition. Teachers did not increase their understanding of the principle of learning with understanding, although they did articulate the significance of engaging children in student-led inquiry cycles. Data from the curriculum revision and professional development project coupled with ideas from learning theory, cognition and policy implementation, and learning community literatures suggest Bellevue's leaders can encourage peer-to-peer interaction, link professional development to teachers' daily practice, and capitalize on technology as ways to increase elementary teachers' capacity for teaching inquiry-based science. These lessons also have significance for supporting teacher learning and efficacy in other subject areas and at other levels in the system.

  11. Introducing Hands-on, Experiential Learning Experiences in an Urban Environmental Science Program at a Minority Serving Institution

    Science.gov (United States)

    Duzgoren-Aydin, N. S.; Freile, D.

    2013-12-01

    several laboratory facilities. Furthermore, authors have applied to the NSF-TUES grant program to purchase a particle size analyzer. Currently, the grant is pending. We have defined 4 curricular goals to enhance student learning by providing hands-on, inquiry-based learning and research experiences. 1- Develop technical/analytical knowledge and skills by using advanced analytical instrumentation; 2- Improve quantitative reasoning skills to assess the quality of data; 3- Have comprehensive educational training to improve problem solving skills; and 4- use their quantitative reasoning (Goal # 2) and problem solving skills (Goal #3) to evaluate real-world geological and environmental problems. We also give special emphasis to expected measurable outcomes for individual courses. An external evaluator will assess the effectiveness of integrating advance instrumentation into the Earth and Environmental Science curricula. We will work closely with the evaluator to ensure successful implementation of the learning objectives. Examples from the impacted courses will be presented.

  12. Levels of use of an elementary school inquiry-based instructional innovation among a selected group of teacher participants in the Delaware Elementary Science Initiative

    Science.gov (United States)

    Bouchelle, Henry Ellsworth Wirt, III

    Science education in Delaware's public elementary and middle schools has experienced much change in recent years as a result of the adoption of state standards and, in particular, the adoption by school districts of the Smithsonian/National Science Resources Council-sponsored inquiry-based instruction modules as part of the "Elementary Science Initiative." As part of this adoption process, each participating elementary teacher and middle school science teacher receives extensive training in the use of several discrete science kits. The trainings include reinforcement and development of content knowledge, in addition to the modeling of and practice with complementary pedagogy. One measure of the effectiveness of the science kit training process (and perhaps the Initiative itself) is the teachers' levels of use of the Initiative. The purpose of this study was to determine the participating teachers' use of the science kit innovation through the use of the Concerns-based Adoption Model Levels of Use Questionnaire. Eight K--5 elementary classroom teachers who had completed at least three science kit trainings participated. The results of this study indicate that on the Overall Level of Use Rating Scale, teachers who had completed training in at least three science kits generally scored at the Routine (IVA) level. All of the teachers, regardless of the wide range in the number of years of experience, had achieved the Mechanical Use level in Overall (III) LoU, and 6 of the 8 participants (75%) were operating at no less than the Refinement (IVA) Overall LoU level.

  13. Inquiry-Based Examination of Chemical Disruption of Bacterial Biofilms

    Science.gov (United States)

    Redelman, Carly V.; Hawkins, Misty A. W.; Drumwright, Franklin R.; Ransdell, Beverly; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    Inquiry-based instruction in the sciences has been demonstrated as a successful educational strategy to use for both high school and college science classrooms. As participants in the NSF Graduate STEM Fellows in K-12 Education (GK-12) Program, we were tasked with creating novel inquiry-based activities for high school classrooms. As a way to…

  14. Preparing Historically Underserved Students for STEM Careers: The Role of an Inquiry-based High School Science Sequence Beginning with Physics

    Science.gov (United States)

    Bridges, Jon P.

    Improving the STEM readiness of students from historically underserved groups is a moral and economic imperative requiring greater attention and effort than has been shown to date. The current literature suggests a high school science sequence beginning with physics and centered on developing conceptual understanding, using inquiry labs and modeling to allow students to explore new ideas, and addressing and correcting student misconceptions can increase student interest in and preparation for STEM careers. The purpose of this study was to determine if the science college readiness of historically underserved students can be improved by implementing an inquiry-based high school science sequence comprised of coursework in physics, chemistry, and biology for every student. The study used a retrospective cohort observational design to address the primary research question: are there differences between historically underserved students completing a Physics First science sequence and their peers completing a traditional science sequence in 1) science college-readiness test scores, 2) rates of science college-and career-readiness, and 3) interest in STEM? Small positive effects were found for all three outcomes for historically underserved students in the Physics First sequence.

  15. Investigating engagement, thinking, and learning among culturally diverse, urban sixth graders experiencing an inquiry-based science curriculum, contextualized in the local environment

    Science.gov (United States)

    Kelley, Sybil Schantz

    This mixed-methods study combined pragmatism, sociocultural perspectives, and systems thinking concepts to investigate students' engagement, thinking, and learning in science in an urban, K-8 arts, science, and technology magnet school. A grant-funded school-university partnership supported the implementation of an inquiry-based science curriculum, contextualized in the local environment through field experiences. The researcher worked as co-teacher of 3 sixth-grade science classes and was deeply involved in the daily routines of the school. The purposes of the study were to build a deeper understanding of the complex interactions that take place in an urban science classroom, including challenges related to implementing culturally-relevant instruction; and to offer insight into the role educational systems play in supporting teaching and learning. The central hypothesis was that connecting learning to meaningful experiences in the local environment can provide culturally accessible points of engagement from which to build science learning. Descriptive measures provided an assessment of students' engagement in science activities, as well as their levels of thinking and learning throughout the school year. Combined with analyses of students' work files and focus group responses, these findings provided strong evidence of engagement attributable to the inquiry-based curriculum. In some instances, degree of engagement was found to be affected by student "reluctance" and "resistance," terms defined but needing further examination. A confounding result showed marked increases in thinking levels coupled with stasis or decrease in learning. Congruent with past studies, data indicated the presence of tension between the diverse cultures of students and the mainstream cultures of school and science. Findings were synthesized with existing literature to generate the study's principal product, a grounded theory model representing the complex, interacting factors involved in

  16. Chemistry Science Investigation: Dognapping Workshop, an Outreach Program Designed to Introduce Students to Science through a Hands-On Mystery

    Science.gov (United States)

    Boyle, Timothy J.; Sears, Jeremiah M.; Hernandez-Sanchez, Bernadette A.; Casillas, Maddison R.; Nguyen, Thao H.

    2017-01-01

    The Chemistry Science Investigation: Dognapping Workshop was designed to (i) target and inspire fourth grade students to view themselves as "Junior Scientists" before their career decisions are solidified; (ii) enable hands-on experience in fundamental scientific concepts; (iii) increase public interaction with science, technology,…

  17. Communicate science: an example of food related hands-on laboratory approach

    Science.gov (United States)

    D'Addezio, Giuliana; Marsili, Antonella; Vallocchia, Massimiliano

    2014-05-01

    The Laboratorio Didattica e Divulgazione Scientifica of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Educational and Outreach Laboratory) organized activity with kids to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. The combination of games and learning in educational activity can be a valuable tool for study of complex phenomena. Hands-on activity may help in engage kids in a learning process through direct participation that significantly improves the learning performance of children. Making learning fun motivate audience to pay attention on and stay focused on the subject. We present the experience of the hand-on laboratory "Laboratorio goloso per bambini curiosi di scienza (a delicious hands-on laboratory for kids curious about science)", performed in Frascati during the 2013 European Researchers' Night, promoted by the European Commission, as part of the program organized by the Laboratorio Didattica e Divulgazione Scientifica in the framework of Associazione Frascati Scienza (http://www.frascatiscienza.it/). The hand-on activity were designed for primary schools to create enjoyable and unusual tools for learning Earth Science. During this activity kids are involved with something related to everyday life, such as food, through manipulation, construction and implementation of simple experiments related to Earth dynamics. Children become familiar with scientific concepts such as composition of the Earth, plates tectonic, earthquakes and seismic waves propagation and experience the effect of earthquakes on buildings, exploring their important implications for seismic hazard. During the activity, composed of several steps, participants were able to learn about Earth inner structure, fragile lithosphere, waves propagations, impact of waves on building ecc.., dealing with eggs, cookies, honey, sugar, polenta, flour, chocolate, candies, liquorice sticks, bread, pudding and sweets. The

  18. HSCI2014: booklet of the 11th International Conference on Hands-on Science

    OpenAIRE

    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.; International Conference on Hands-on Science, 11, Aveiro, 2014

    2014-01-01

    The core topic of the 11th Hands-on Science Conference is "Science Education with and for Society" As we all know it is the Society that sets the requirements rules and procedures of Education. It is Society that defines what citizens must learn in what concern either concepts and or competencies, and how this learning can, must in fact…, take place. Society is the ensemble of all of us citizens and of all the structures tangible and intangible we create and created along the y...

  19. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    Science.gov (United States)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  20. Impact of backwards faded scaffolding approach to inquiry-based astronomy laboratory experiences on undergraduate non-science majors' views of scientific inquiry

    Science.gov (United States)

    Lyons, Daniel J.

    This study explored the impact of a novel inquiry-based astronomy laboratory curriculum designed using the Backwards Faded Scaffolding inquiry teaching framework on non-science majoring undergraduate students' views of the nature of scientific inquiry (NOSI). The study focused on two aspects of NOSI: The Distinction between Data and Evidence (DvE), and The Multiple Methods of Science (MMS). Participants were 220 predominately non-science majoring undergraduate students at a small, doctoral granting, research-extensive university in the Rocky Mountain region of the United States. The student participants were enrolled in an introductory astronomy survey course with an associated laboratory section and were selected in two samples over consecutive fall and spring semesters. The participants also included four of the graduate student instructors who taught the laboratory courses using the intervention curriculum. In the first stage, student participant views of NOSI were measured using the VOSI-4 research instrument before and after the intervention curriculum was administered. The responses were quantified, and the distributions of pre and posttest scores of both samples were separately analyzed to determine if there was a significant improvement in understanding of either of the two aspects of NOSI. The results from both samples were compared to evaluate the consistency of the results. In the second stage, the quantitative results were used to strategically design a qualitative investigation, in which the four lab instructors were interviewed about their observations of how the student participants interacted with the intervention curriculum as compared to traditional lab activities, as well as their suggestions as to how the curriculum may or may not have contributed to the results of the first stage. These interviews were summarized and analyzed for common themes as to how the intervention curriculum influenced the students' understandings of the two aspect of

  1. How to Support Primary Teachers' Implementation of Inquiry: Teachers' Reflections on Teaching Cooperative Inquiry-Based Science

    Science.gov (United States)

    Gillies, Robyn M.; Nichols, Kim

    2015-01-01

    Many primary teachers face challenges in teaching inquiry science, often because they believe that they do not have the content knowledge or pedagogical skills to do so. This is a concern given the emphasis attached to teaching science through inquiry where students do not simply learn about science but also do science. This study reports on the…

  2. Hands-on-Science: Using Education Research to Construct Learner-Centered Classes

    Science.gov (United States)

    Ludwig, R. R.; Chimonidou, A.; Kopp, S.

    2014-07-01

    Research into the process of learning, and learning astronomy, can be informative for the development of a course. Students are better able to incorporate and make sense of new ideas when they are aware of their own prior knowledge (Resnick et al. 1989; Confrey 1990), have the opportunity to develop explanations from their own experience in their own words (McDermott 1991; Prather et al. 2004), and benefit from peer instruction (Mazur 1997; Green 2003). Students in astronomy courses often have difficulty understanding many different concepts as a result of difficulties with spatial reasoning and a sense of scale. The Hands-on-Science program at UT Austin incorporates these research-based results into four guided-inquiry, integrated science courses (50 students each). They are aimed at pre-service K-5 teachers but are open to other majors as well. We find that Hands-on-Science students not only attain more favorable changes in attitude towards science, but they also outperform students in traditional lecture courses in content gains. Workshop Outcomes: Participants experienced a research-based, guided-inquiry lesson about the motion of objects in the sky and discussed the research methodology for assessing students in such a course.

  3. Physiology Should Be Taught as Science Is Practiced: An Inquiry-Based Activity to Investigate the "Alkaline Tide"

    Science.gov (United States)

    Lujan, Heidi L.; DiCarlo, Stephen E.

    2015-01-01

    The American Association for the Advancement of Science (AAAS) strongly recommends that "science be taught as science is practiced." This means that the teaching approach must be consistent with the nature of scientific inquiry. In this article, the authors describe how they added scientific inquiry to a large lecture-based physiology…

  4. A Study on The Effectiveness of a Pilot Inquiry-Based Middle School Science Program on Non- Cognitive Outcomes and Academic Achievement

    Science.gov (United States)

    Dionisio, Rui Meira

    The randomized research study assessed the effect of an inquiry-based science (IBS) program on non-cognitive outcomes and academic achievement. The study was the result of a grant that was awarded by Professional Resources in Science and Mathematics (PRISM), a program affiliated with Montclair State University in conjunction with Bristol-Myers Squibb, and part of the New Jersey Statewide Systemic Initiative (NJSSI). The NJSSI is a partnership of schools, districts, colleges and universities, science centers, businesses, and museums dedicated to improving the teaching and learning of science, mathematics, and technology in New Jersey. The quantitative research study utilized an IBS instructional program titled Science and Technology Concepts for Middle Schools (STC/MS) and was implemented in two middle schools within the same suburban school district. This study examined the effect of IBS classrooms on learning outcomes specifically related to gender and special education. Evaluation of student learning outcomes was conducted through the administration of three instruments: the Academic Self-Concept (ASC) scale, unit assessments, and NJASK 8 Science. The ASC scale and unit assessments were administered as a pretest and posttest in IBS classrooms. NJASK 8 Science scale scores were obtained through reporting of student performance data from the New Jersey Department of Education to the district. The quantitative analysis in this study provided evidence that IBS classrooms had a positive effect on academic achievement. Overall, students in IBS classrooms performed better than students in traditional classrooms on unit assessments. Additionally, male students and special education students in IBS classrooms outperformed students in traditional classrooms on unit assessments.

  5. Assessing Conceptual Understanding via Literacy-Infused, Inquiry-Based Science among Middle School English Learners and Economically-Challenged Students

    Directory of Open Access Journals (Sweden)

    Rafael Lara-Alecio

    2018-02-01

    Full Text Available The overarching purpose of our study was to compare performances of treatment and control condition students who completed a literacy-infused, inquiry-based science intervention through sixth grade as measured by a big idea assessment tool which we refer to as the Big Ideas in Science Assessment (BISA. First, we determine the concurrent validity of the BISA; second, we investigate the differences in the post-test of the BISA between treatment and control English Learners (ELs, controlling for their performance in the pre-test; third, we analyze the differences in the post-test of the BISA between treatment and control non-ELs, controlling for their performance in the pre-test; and fourth, we examine the relationship between students’ English language proficiency as measured by standardized assessment, and their performance in the BISA among ELs and non-ELs, respectively. Our findings indicate: (a literacy-infused science lessons with big ideas, implemented through the tested intervention, improved students’ language acquisition and science concept understanding for ELs and economically challenged students (ECs; (b there was a positive relationship between language and content for both ELs and non-ELs, with a similar magnitude, suggesting that students with a higher level of English proficiency score higher in science assessment; and (c the lesson plans prepared were successful for promoting a literacy-infused science curriculum via a 5E Model (Engage, Explore, Explain, Elaborate, and Evaluate that includes three to five of the Es used daily. A pedagogical approach for a literacy-infused science model with big ideas is proposed.

  6. Explore the concept of “light” and its interaction with matter: an inquiry-based science education project in primary school

    Science.gov (United States)

    Varela, P.; Costa, M. F.

    2015-04-01

    The exploration process leading to the understanding of physical phenomena, such as light and its interaction with matter, raises great interest and curiosity in children. However, in most primary schools, children rarely have the opportunity to conduct science activities in which they can engage in an enquiry process even if by the action of the teacher. In this context, we have organised several in-service teacher training courses and carried out several pedagogic interventions in Portuguese primary schools, with the aim of promoting inquiry- based science education. This article describes one of those projects, developed with a class of the third grade, which explored the curricular topic “Light Experiments”. Various activities were planned and implemented, during a total of ten hours spread over five lessons. The specific objectives of this paper are: to illustrate and analyse the teaching and learning process promoted in the classroom during the exploration of one of these lessons, and to assess children's learning three weeks after the lessons. The results suggest that children made significant learning which persisted. We conclude discussing some processes that stimulated children’ learning, including the importance of teacher questioning in scaffolding children's learning and some didactic implications for teacher training.

  7. Investigating the Role of an Inquiry-Based Biology Lab Course on Student Attitudes and Views toward Science

    Science.gov (United States)

    Jeffery, Erica; Nomme, Kathy; Deane, Thomas; Pollock, Carol; Birol, Gülnur

    2016-01-01

    Students' academic experiences can influence their conceptualization of science. In contrast experts hold particular beliefs, perceptions, opinions, and attitudes about science that are often absent in first-year undergraduate students. Shifts toward more expert-like attitudes and views have been linked to improved student engagement,…

  8. Learning Environment, Attitudes and Achievement among Middle-School Science Students Using Inquiry-Based Laboratory Activities

    Science.gov (United States)

    Wolf, Stephen J.; Fraser, Barry J.

    2008-01-01

    This study compared inquiry and non-inquiry laboratory teaching in terms of students' perceptions of the classroom learning environment, attitudes toward science, and achievement among middle-school physical science students. Learning environment and attitude scales were found to be valid and related to each other for a sample of 1,434 students in…

  9. From Words to Concepts: Focusing on Word Knowledge When Teaching for Conceptual Understanding within an Inquiry-Based Science Setting

    Science.gov (United States)

    Haug, Berit S.; Ødegaard, Marianne

    2014-01-01

    This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the…

  10. Inquiry-Based Integrated Science Education: Implementation of Local Content “Soil Washing” Project To Improve Junior High School Students’ Environmental Literacy

    Science.gov (United States)

    Syifahayu

    2017-02-01

    The study was conducted based on teaching and learning problems led by conventional method that had been done in the process of learning science. It gave students lack opportunities to develop their competence and thinking skills. Consequently, the process of learning science was neglected. Students did not have opportunity to improve their critical attitude and creative thinking skills. To cope this problem, the study was conducted using Project-Based Learning model through inquiry-based science education about environment. The study also used an approach called Sains Lingkungan and Teknologi masyarakat - “Saling Temas” (Environmental science and Technology in Society) which promoted the local content in Lampung as a theme in integrated science teaching and learning. The study was a quasi-experimental with pretest-posttest control group design. Initially, the subjects were given a pre-test. The experimental group was given inquiry learning method while the control group was given conventional learning. After the learning process, the subjects of both groups were given post-test. Quantitative analysis was performed using the Mann-Whitney U-test and also a qualitative descriptive. Based on the result, environmental literacy skills of students who get inquiry learning strategy, with project-based learning model on the theme soil washing, showed significant differences. The experimental group is better than the control group. Data analysis showed the p-value or sig. (2-tailed) is 0.000 <α = 0.05 with the average N-gain of experimental group is 34.72 and control group is 16.40. Besides, the learning process becomes more meaningful.

  11. The I-Cleen Project (Inquiring on CLimate & ENergy). Research Meets Education in AN Inquiry-Based Approach to Earth System Science in Italian Classrooms

    Science.gov (United States)

    Cattadori, M.; Editorial Staff of the I-CLEN Project

    2011-12-01

    Italian citizens' perception of the seriousness of the issue of climate change is one of the lowest in Europe (Eurobarometer survey, 2008), running next to last among the 28 EU Nations. This has recently driven many national science institutions to take action in order to connect society with the complexities and consequences of climate change. These connection initiatives have encountered a certain deal of opposition in Italian schools. A fact most likely due both to a further weakening of the use of inquiry-based educational practices adopted by teachers and to their reluctance to cooperate on a professional level, which hinders the diffusion of educational practices. I-CLEEN (Inquiring on CLimate and Energy, www.icleen.museum) is a service that offers a new type of link between schools and the complexity of climate change. The project took off in 2008 thanks to the Trento Science Museum (former Tridentine Museum of Natural Science), one of the major Italian science museums that includes both research and science education and dissemination departments. The main aim is to create, using the tools of professional cooperation, a free repository of educational resources that can support teachers in preparing inquiry-based lessons on climate change and earth system science topics, making the task less of a burden. I-CLEEN is inspired by many models, which include: the ARISE (Andrill Research Immersion for Science Educators), the OER (Open Educational Resources) models and those of other projects that have developed similar information gateways such as LRE (Learning Resource Exchange) and DLESE (Digital Library on Earth Science Education). One of the strategies devised by I-CLEEN is to rely upon an editorial team made up of a highly selected group of teachers that interacts with the researchers of the museum and of other Earth system science research centres like the National Institute of Geophysics and Volcanology (INGV). Resource selection, production, revision and

  12. Using the Science Writing Heuristic To Move toward an Inquiry-Based Laboratory Curriculum: An Example from Physical Equilibrium.

    Science.gov (United States)

    Rudd, James A., II; Greenbowe, Thomas J.; Hand, Brian M.; Legg, Margaret J.

    2001-01-01

    Investigates the effects of the Science Writing Heuristic (SWH) format on student's achievement, thinking abilities and motivation. Focuses on distribution equilibrium and assesses student understanding by studying metacognitive and practical factors. (Contains 17 references.) (Author/YDS)

  13. Hands-On Math and Art Exhibition Promoting Science Attitudes and Educational Plans

    Directory of Open Access Journals (Sweden)

    Helena Thuneberg

    2017-01-01

    Full Text Available The current science, technology, engineering, art, math education (STEAM approach emphasizes integration of abstract science and mathematical ideas for concrete solutions by art. The main aim was to find out how experience of learning mathematics differed between the contexts of school and an informal Math and Art Exhibition. The study participants (N=256 were 12-13 years old from Finland. Several valid questionnaires and tests were applied (e.g., SRQ-A, RAVEN in pre- and postdesign showing a good reliability. The results based on General Linear Modeling and Structural Equation Path Modeling underline the motivational effects. The experience of the effectiveness of hands-on learning at school and at the exhibition was not consistent across the subgroups. The lowest achieving group appreciated the exhibition alternative for math learning compared to learning math at school. The boys considered the exhibition to be more useful than the girls as it fostered their science and technology attitudes. However, for the girls, the attractiveness of the exhibition, the experienced situation motivation, was much more strongly connected to the attitudes on science and technology and the worthiness of mathematics. Interestingly, the pupils experienced that even this short informal learning intervention affected their science and technology attitudes and educational plans.

  14. ASSESSMENT OF THE INQUIRY-BASED PROJECT IMPLEMENTATION PROCESS IN SCIENCE EDUCATION UPON STUDENTS’ POINTS OF VIEWS

    Directory of Open Access Journals (Sweden)

    Orhan AKINOGLU

    2008-01-01

    Full Text Available Aim of the study is to assess how students in 6th, 7th and 8th grades of primary education see the project works made in science education and their implementation processes. The study was fulfilled upon the descriptive survey model to collect data. Participants of the research were 100 students who had project implementation experiences in science education, and they were from 24 primary schools in 7 districts randomly chosen in the city of Istanbul in Turkey. Data of the study were collected by using a semi-constructed interview form offered to students during the 2005-2006 teaching year. In the research, following items were examined: The extent to which students are inspired from the previously made projects during their own project selection process, the level of scientific document survey and the effects of contemporary events, science and technology class topics and students’ interest areas. It was seen that internet is the mostly used source to obtain information. For students, one of the most problematic issues faced during the project implementation is the time limits set out by teacher. It was found that the most obvious benefit obtained by students from the project works is their increasing interest towards science and technology class. The most significant change seen by students regarding project preparation is their increasing grades in exams during and following the project works.

  15. Mars Rover Model Celebration: Developing Inquiry Based Lesson Plans to Teach Planetary Science In Elementary And Middle School

    Science.gov (United States)

    Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.; Dominey, W.; Ramsey, J.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2012-12-01

    The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the development of a detailed set of new 5E lesson plans to

  16. How an inquiry-based classroom lesson intervenes in science efficacy, career-orientation and self-determination

    Science.gov (United States)

    Schmid, S.; Bogner, F. X.

    2017-11-01

    Three subscales of the 'Science Motivation Questionnaire II' (SMQII; motivational components: career motivation, self-efficacy and self-determination), with 4 items each, were applied to a sample of 209 secondary school students to monitor the impact of a 3-hour structured inquiry lesson. Four testing points (before, immediately after, 6 and 12 weeks after) were applied. The modified SMQII was factor-analyzed at each testing cycle and the structure confirmed. Only self-determination was shown to be influenced by an inquiry course, while self-efficacy and career motivation did not. Only self-efficacy and career motivation were intercorrelated and also correlated with science subject grades and subsequent achievement. Implications for using the modified SMQII subscales for research and teaching in secondary school are discussed.

  17. Back to the future with hands-on science: students' perceptions of learning anatomy and physiology.

    Science.gov (United States)

    Johnston, Amy Nicole Burne; McAllister, Margaret

    2008-09-01

    This article examines student perceptions of learning related to anatomy and physiology in a bachelor of nursing program. One strategy to teach the sciences is simulated learning, a technology that offers exciting potential. Virtual environments for laboratory learning may offer numerous benefits: teachers can convey information to a larger group of students, reducing the need for small laboratory classes; less equipment is required, thus containing ongoing costs; and students can learn in their own time and place. However, simulated learning may also diminish access to the teacher-student relationship and the opportunity for guided practice and guided linking of theory with practice. Without this hands-on experience, there is a risk that students will not engage as effectively, and thus conceptual learning and the development of critical thinking skills are diminished. However, student perceptions of these learning experiences are largely unknown. Thus, this study examined students' perceptions of anatomy and physiology laboratory experiences and the importance they placed on hands-on experience in laboratory settings.

  18. LIB LAB the Library Laboratory: hands-on multimedia science communication

    Science.gov (United States)

    Fillo, Aaron; Niemeyer, Kyle

    2017-11-01

    Teaching scientific research topics to K-12 audiences in an engaging and meaningful way does not need to be hard; with the right insight and techniques it can be fun to encourage self-guided STEAM (science, technology, engineering, arts, and mathematics) exploration. LIB LAB, short for Library Laboratory, is an educational video series produced by Aaron J. Fillo at Oregon State University in partnership with the Corvallis-Benton County Public Library targeted at K-12 students. Each episode explores a variety of scientific fundamentals with playful experiments and demonstrations. The video lessons are developed using evidence-based practices such as dispelling misconceptions, and language immersion. Each video includes directions for a related experiment that young viewers can conduct at home. In addition, science kits for these at-home experiments are distributed for free to students through the public library network in Benton County, Oregon. This talk will focus on the development of multimedia science education tools and several techniques that scientists can use to engage with a broad audience more effectively. Using examples from the LIB LAB YouTube Channel and collection of hands-on science demonstrations and take-home kits, this talk will present STEAM education in action. Corvallis-Benton County Public Library.

  19. 'Science in action': The politics of hands-on display at the New York Museum of Science and Industry.

    Science.gov (United States)

    Sastre-Juan, Jaume

    2018-06-01

    This article analyzes the changing politics of hands-on display at the New York Museum of Science and Industry by following its urban deambulation within Midtown Manhattan, which went hand in hand with sharp shifts in promoters, narrative, and exhibition techniques. The museum was inaugurated in 1927 as the Museum of the Peaceful Arts on the 7th and 8th floors of the Scientific American Building. It changed its name in 1930 to the New York Museum of Science and Industry while on the 4th floor of the Daily News Building, and it was close to being renamed the Science Center when it finally moved in 1936 to the ground floor of the Rockefeller Center. The analysis of how the political agenda of the different promoters of the New York Museum of Science and Industry was spatially and performatively inscribed in each of its sites suggests that the 1930s boom of visitor-operated exhibits had nothing to do with an Exploratorium-like rhetoric of democratic empowerment. The social paternalistic ideology of the vocational education movement, the ideas on innovation of the early sociology of invention, and the corporate behavioral approach to mass communications are more suitable contexts in which to understand the changing politics of hands-on display in interwar American museums of science and industry.

  20. Hands-on earth science with students at schools for the Deaf

    Science.gov (United States)

    Cooke, M. L.

    2011-12-01

    Earth science teachers at schools for the Deaf face a variety of challenges. This community of students has a wide range of language skills, teaching resources can be limited and often teachers are not trained in geosciences. An NSF CAREER grant provided an opportunity to make a difference to this community and foster earth science learning at 8 schools for the Deaf around the country. We designed hands-on deformational sandboxes for the teachers and provided accompanying curriculum materials. The sandbox is a physical model of crustal deformation that students can manipulate to test hypotheses. The visual nature of the sandbox was well-suited for the spatial grammar of American Sign Language used by these students. Furthermore, language skills were enhanced by scaffolded observation, sketch, annotation, discussion, interpretation assignments. Geoscience training of teachers was strengthened with workshops and three 5-day field trips for teachers and selected students to Utah, western New England and southern California. The field trips provided opportunity for students to work as geoscientists observing, interpreting, discussing and presenting their investigations. Between field trips, we set up videoconferences from the UMass experimental lab with the high school earth science classrooms. These sessions facilitated dialog between students and researchers at UMass. While the project set out to provide geoscience learning opportunities for students at Schools for the Deaf, the long lasting impact was the improved geoscience training of teachers, most of whom had limited post-secondary earth science training. The success of the project also rested on the dedication of the teachers to their students and their willingness to try new approaches and experiences. By tapping into a community of 6 teachers, who already shared curriculum and had fantastic leadership, the project was able to have significant impact and exceed the initial goals. The project has led to a

  1. Adsorption of Arsenic by Iron Oxide Nanoparticles: A Versatile, Inquiry-Based Laboratory for a High School or College Science Course

    Science.gov (United States)

    VanDorn, Daniel; Ravalli, Matthew T.; Small, Mary Margaret; Hillery, Barbara; Andreescu, Silvana

    2011-01-01

    There has been much interest in magnetite (Fe[subscript 3]O[subscript 4]) due to its utility in adsorbing high concentrations of arsenic in contaminated water. The magnetic properties of the material allow for simple dispersion and removal from an aqueous system. An inquiry-based laboratory has been developed that illustrates these unique…

  2. The Role of Hands-On Science Labs in Engaging the Next Generation of Space Explorers

    Science.gov (United States)

    Williams, Teresa A. J.

    2002-01-01

    Each country participating on the International Space Station (ISS) recognizes the importance of educating the coming generation about space and its opportunities. In 2001 the St. James School in downtown Houston, Texas was approached with a proposal to renovate an unused classroom and become involved with the "GLOBE" Program and other Internet based international learning resources. This inner-city school willingly agreed to the program based on "hands-on" learning. One month after room conversion and ten computer terminals donated by area businesses connectivity established to the internet the students immediately began using the "Global Learning and Observations to Benefit the Environment (GLOBE)" program and the International Space Station (ISS) Program educational resources. The "GLOBE" program involves numerous scientific and technical agencies studying the Earth, who make it their goal to provide educational resources to an international community of K-12 scientist. This project was conceived as a successor to the "Interactive Elementary Space Museum for the New Millennium" a space museum in a school corridor without the same type of budget. The laboratory is a collaboration, which involved area businesses, volunteers from the NASA/Johnson Space Center ISS Outreach Program, and students. This paper will outline planning and operation of the school science laboratory project from the point of view of the schools interest and involvement and assess its success to date. It will consider the lessons learned by the participating school administrations in the management of the process and discuss some of the issues that can both promote and discourage school participation in such projects.

  3. The Healthy Heart Race: A Short-Duration, Hands-on Activity in Cardiovascular Physiology for Museums and Science Festivals

    Science.gov (United States)

    Pressley, Thomas A.; Limson, Melvin; Byse, Miranda; Matyas, Marsha Lakes

    2011-01-01

    The "Healthy Heart Race" activity provides a hands-on demonstration of cardiovascular function suitable for lay audiences. It was field tested during the United States of America Science and Engineering Festival held in Washington, DC, in October 2010. The basic equipment for the activity consisted of lengths of plastic tubing, a hand…

  4. A Study on Using Hands-On Science Inquiries to Promote the Geology Learning of Preservice Teachers

    Science.gov (United States)

    Lai, Ching-San

    2015-01-01

    This study aims to investigate the geology learning performance of preservice teachers. A total of 31 sophomores (including 11 preservice teachers) from an educational university in Taiwan participated in this study. The course arrangements include class teaching and hands-on science inquiry activities. The study searches both quantitative and…

  5. How Science Texts and Hands-on Explorations Facilitate Meaning Making: Learning from Latina/o Third Graders

    Science.gov (United States)

    Varelas, Maria; Pieper, Lynne; Arsenault, Amy; Pappas, Christine C.; Keblawe-Shamah, Neveen

    2014-01-01

    In this study, we examined opportunities for reasoning and meaning making that read-alouds of children's literature science information books and related hands-on explorations offered to young Latina/o students in an urban public school. Using a qualitative, interpretative framework, we analyzed classroom discourse and children's writing…

  6. Collaborative Inquiry-based Learning

    NARCIS (Netherlands)

    Suarez, Angel

    2017-01-01

    This thesis presents the results of the conducted research and development of applications to support collaborative inquiry-based learning, with a special focus on leveraging learners’ agency. The reported results are structured into three parts: the theoretical foundations, the design and

  7. Conceptualising inquiry based education in mathematics

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Artigue, Michéle

    2013-01-01

    of inquiry as a pedagogical concept in the work of Dewey (e.g. 1916, 1938) to analyse and discuss its migration to science and mathematics education. For conceptualizing inquiry-based mathematics education (IBME) it is important to analyse how this concept resonates with already well-established theoretical...... frameworks in mathematics education. Six such frameworks are analysed from the perspective of inquiry: the problem-solving tradition, the Theory of Didactical Situations, the Realistic Mathematics Education programme, the mathematical modelling perspective, the Anthropological Theory of Didactics...

  8. Choices of Pre-Service Science Teachers Laboratory Environments: Hands-on or Hands-off?

    Science.gov (United States)

    Kapici, Hasan Ozgur; Akcay, Hakan

    2018-01-01

    Learning in laboratories for students is not only crucial for conceptual understanding, but also contributes to gaining scientific reasoning skills. Following fast developments in technology, online laboratory environments have been improved considerably and nowadays form an attractive alternative for hands-on laboratories. The study was done in…

  9. Chemistry Teachers' Perceived Benefits and Challenges of Inquiry-Based Instruction in Inclusive Chemistry Classrooms

    Science.gov (United States)

    Mumba, F.; Banda, A.; Chabalengula, V. M.

    2015-01-01

    Studies on inquiry-based instruction in inclusive science teaching have mainly focused on elementary and middle school levels. Little is known about inquiry-based instruction in high school inclusive science classes. Yet, such classes have become the norm in high schools, fulfilling the instructional needs of students with mild disabilities. This…

  10. Inquiry-Based Instruction and High Stakes Testing

    Science.gov (United States)

    Cothern, Rebecca L.

    Science education is a key to economic success for a country in terms of promoting advances in national industry and technology and maximizing competitive advantage in a global marketplace. The December 2010 Program for International Student Assessment (PISA) ranked the United States 23rd of 65 countries in science. That dismal standing in science proficiency impedes the ability of American school graduates to compete in the global market place. Furthermore, the implementation of high stakes testing in science mandated by the 2007 No Child Left Behind (NCLB) Act has created an additional need for educators to find effective science pedagogy. Research has shown that inquiry-based science instruction is one of the predominant science instructional methods. Inquiry-based instruction is a multifaceted teaching method with its theoretical foundation in constructivism. A correlational survey research design was used to determine the relationship between levels of inquiry-based science instruction and student performance on a standardized state science test. A self-report survey, using a Likert-type scale, was completed by 26 fifth grade teachers. Participants' responses were analyzed and grouped as high, medium, or low level inquiry instruction. The unit of analysis for the achievement variable was the student scale score average from the state science test. Spearman's Rho correlation data showed a positive relationship between the level of inquiry-based instruction and student achievement on the state assessment. The findings can assist teachers and administrators by providing additional research on the benefits of the inquiry-based instructional method. Implications for positive social change include increases in student proficiency and decision-making skills related to science policy issues which can help make them more competitive in the global marketplace.

  11. THE STERN PROJECT–HANDS ON ROCKETS SCIENCE FOR UNIVERSITY STUDENT

    OpenAIRE

    Schüttauf, Katharina; Stamminger, Andreas; Lappöhn, Karsten

    2017-01-01

    In April 2012, the German Aerospace Center DLR initiated a sponsorship program for university students to develop, build and launch their own rockets over a period of three years. The program designation STERN was abbreviated from the German “STudentische Experimental-RaketeN”, which translates to Student- Experimental-Rockets. The primary goal of the STERN program is to inspire students in the subject of space transportation through hands-on activities within a pro...

  12. Curriculum-Dependent and Curriculum-Independent Factors in Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Science

    Science.gov (United States)

    Forbes, Cory T.

    2013-01-01

    In this nested mixed methods study I investigate factors influencing preservice elementary teachers' adaptation of science curriculum materials to better support students' engagement in science as inquiry. Analyses focus on two "reflective teaching assignments" completed by 46 preservice elementary teachers in an undergraduate elementary science…

  13. Communicating Climate Science to Kids and Adults Through Citizen Science, Hands-On Demonstrations, and a Personal Approach

    Science.gov (United States)

    Cherry, L.; Braasch, G.

    2008-12-01

    There is a demonstrated need to increase the amount of formal and non-formal science education and to raise the level of climate literacy for children and adults. Scientists and technical leaders are more and more being called on to speak in non-academic settings ranging from grade schools to assemblies and seminars for the general public. This abstract describes some effective ways to teach and talk about climate change science in a way that engenders hope and empowerment while explaining scientific facts and research methods to non-scientists. Citizen participation in Science People's interest and learning increases when offered chances to do what scientists do. Relating science to their daily lives and showing the adventure of science can greatly increase communication. Citizen participation in science works because data collection stimulates experiential and cognitive ways of learning. Learn what programs for citizen science are available in your area. For instance, GLOBE and Budburst tie into the research of Smithsonian scientists who determined that the cherry blossoms and 40 other species of plants were blooming earlier due to climate warming. Hands-on Outdoor Activities Information enters the human brain through many different neural pathways and the more avenues that information comes in on, the more likely people are to retain that knowledge for their lifetimes. For instance, kids knowledge of how ice cores tell us about the earth's ancient history will be reinforced through making ice cores in the classroom. Gary Braasch's photographs from the children's book How We Know What We Know About Our Changing Climate: Scientists and Kids Explore Global Warming and from his adult book Earth Under Fire: How Global Warming is Changing the World will illustrate the presentation. . Making the Message Personal to the Audience. Reaching people through things they care about, their family lives, work or school and telling personal stories helps reach people. The videos

  14. Scientific evaluation of an intra-curricular educational kit to foster inquiry-based learning (IBL)

    Science.gov (United States)

    Debaes, Nathalie; Cords, Nina; Prasad, Amrita; Fischer, Robert; Euler, Manfred; Thienpont, Hugo

    2014-07-01

    Society becomes increasingly dependent on photonics technologies; however there is an alarming lack of technological awareness among secondary school students. They associate photonics with experiments and components in the class room that seem to bear little relevance to their daily life. The Rocard Report [5] highlights the need for fostering students' scientific skills and technological awareness and identifies inquiry based learning (IBL) as a means to achieve this. Students need to actively do science rather than be silent spectators. The `Photonics Explorer' kit was developed as an EU funded project to equip teachers, free-of-charge, with educational material designed to excite, engage and educate European secondary school students using guided inquiry based learning techniques. Students put together their own experiments using up-to-date versatile components, critically interpret results and relate the conclusions to relevant applications in their daily life. They work hands-on with the material, thus developing and honing their scientific and analytical skills that are otherwise latent in a typical class room situation. A qualitative and quantitative study of the impact of the kit in the classroom was undertaken with 50 kits tested in 7 EU countries with over 1500 students in the local language. This paper reports on the results of the EU wide field tests that show the positive impact of the kit in raising the self-efficacy, scientific skills and interest in science among students and the effectiveness of the kit in implementing IBL strategies in classrooms across EU.

  15. Hands-on science methods class for pre-service elementary teachers

    Energy Technology Data Exchange (ETDEWEB)

    Manner, B.M. [Univ. of Pittsburgh, PA (United States)

    1994-12-31

    If elementary teachers are to be comfortable teaching science, they must have positive pre-service experiences. A science methods class that is activity-based and student-centered, rather than lecture-based and teacher-centered, peaks their interest in science and alleviates their fears. Activities conducted by the students illustrate science concepts or integrate science with children`s literature books such as The Grouchy Ladybug. These activities are conducted by each student with the rest of the class and the professor acting as an elementary class. Each activity is then evaluated as to the science concept, what was done well, and how it could be improved. The students also relate how the activity would be integrated with other subjects such as social studies, art, math, and language arts. Student feedback indicates this method is enjoyable, educational, and valuable in preparing them to teach science. The {open_quotes}oohs{close_quotes} and {open_quotes}I didn`t know that!{close_quotes} during activities are positives, but students have also learned some science, lost most of their science anxiety, and will teach science with the confidence and enthusiasm that was lacking at the beginning of the course.

  16. A Simple Inquiry-Based Lab for Teaching Osmosis

    Science.gov (United States)

    Taylor, John R.

    2014-01-01

    This simple inquiry-based lab was designed to teach the principle of osmosis while also providing an experience for students to use the skills and practices commonly found in science. Students first design their own experiment using very basic equipment and supplies, which generally results in mixed, but mostly poor, outcomes. Classroom "talk…

  17. Effect of the inquiry-based teaching approach on students ...

    African Journals Online (AJOL)

    kofi.mereku

    mathematics as a vital tool for the understanding and application of science and .... In view of senior high school students' poor performance in circle theorems and their ..... taught using the inquiry-based approach on the other hand perceive their .... visualization and spatial reasoning to middle school mathematics students.

  18. "Who Dunnit?": Learning Chemistry and Critical Thinking through Hands-On Forensic Science.

    Science.gov (United States)

    Demetry, Chrysanthe; Nicoletti, Denise; Mix, Kimberlee; O'Connor, Kerri; Martin, Andrea

    2002-01-01

    Demonstrates how forensic science can be used as a framework for generating student interest and learning in chemistry and promoting critical thinking. The "Who Dunnit?" forensic science workshop was developed by undergraduate students and is one element of a two-week residential summer outreach program that seeks to develop interest in…

  19. Neuroscience in middle schools: a professional development and resource program that models inquiry-based strategies and engages teachers in classroom implementation.

    Science.gov (United States)

    MacNabb, Carrie; Schmitt, Lee; Michlin, Michael; Harris, Ilene; Thomas, Larry; Chittendon, David; Ebner, Timothy J; Dubinsky, Janet M

    2006-01-01

    The Department of Neuroscience at the University of Minnesota and the Science Museum of Minnesota have developed and implemented a successful program for middle school (grades 5-8) science teachers and their students, called Brain Science on the Move. The overall goals have been to bring neuroscience education to underserved schools, excite students about science, improve their understanding of neuroscience, and foster partnerships between scientists and educators. The program includes BrainU, a teacher professional development institute; Explain Your Brain Assembly and Exhibit Stations, multimedia large-group presentation and hands-on activities designed to stimulate student thinking about the brain; Class Activities, in-depth inquiry-based investigations; and Brain Trunks, materials and resources related to class activities. Formal evaluation of the program indicated that teacher neuroscience knowledge, self-confidence, and use of inquiry-based strategies and neuroscience in their classrooms have increased. Participating teachers increased the time spent teaching neuroscience and devoted more time to "inquiry-based" teaching versus "lecture-based teaching." Teachers appreciated in-depth discussions of pedagogy and science and opportunities for collegial interactions with world-class researchers. Student interest in the brain and in science increased. Since attending BrainU, participating teachers have reported increased enthusiasm about teaching and have become local neuroscience experts within their school communities.

  20. Exciting middle and high school students about immunology: an easy, inquiry-based lesson.

    Science.gov (United States)

    Lukin, Kara

    2013-03-01

    High school students in the United States are apathetic about science, technology, engineering and mathematics (STEM), and the workforce pipeline in these areas is collapsing. The lack of understanding of basic principles of biology means that students are unable to make educated decisions concerning their personal health. To address these issues, we have developed a simple, inquiry-based outreach lesson centered on a mouse dissection. Students learn key concepts in immunology and enhance their understanding of human organ systems. The experiment highlights aspects of the scientific method and authentic data collection and analysis. This hands-on activity stimulates interest in biology, personal health and careers in STEM fields. Here, we present all the information necessary to execute the lesson effectively with middle and high school students.

  1. A Year of Hands-on Science: Exciting Theme Units with More Than 100 Activities, Projects, and Experiments To Make Science Come Alive.

    Science.gov (United States)

    Kepler, Lynne; Novelli, Joan, Ed.

    This book contains 18 themed teaching units with 2 themes per chapter, organized seasonally around the traditional school year. Each theme includes natural connections and hands-on science activities that correspond to what children are already observing in their world. Each chapter begins with highlights of the month and a reproducible "Science…

  2. Potentials in Udeskole: Inquiry-Based Teaching Outside the Classroom

    Directory of Open Access Journals (Sweden)

    Karen S. Barfod

    2018-05-01

    Full Text Available Most research on outdoor education, including the Scandinavian concept udeskole (regular curriculum-based teaching outside the classroom, has focused on pupils' outcomes, whereas less has focused on teachers' practices. In this article, we described the occurrence of inquiry-based teaching in udeskole. To analyze practice, we extended the notion of inquiry-based education. Within science and mathematics education, a strong stepwise teaching approach formerly was established, called Inquiry Based Science and Mathematics Education (IBSME, emphasizing pupils' hypothesis testing, data validation and systematic experimentation. In this study, we broadened the IBSME-concept of inquiry in order to include a more holistic, non-linear teaching approach, but excluding teacher-instructed inquiry. Using this idea, we observed and documented by field notes how five experienced teachers practiced mathematics and science teaching in udeskole at primary level in Denmark. Twenty-eight outdoor days were observed. Each day was divided into separate teaching incidents with a distinct start and end. The level of teacher interference and possible choices in each teaching incidents formed the analytic background. We analyzed each of the 71 teaching incidents, and categorized each of them into one of five categories numbered 4–0. The categories designated numbers 4–2 contained the inquiry-based teaching incidents, and the categories designated 1 and 0 were categorized as “non-inquiry-based.” They contained teaching incidents where the teacher was instructing the pupils (category 1, and outdoor teaching activities with no sign of inquiry, called training activities (category 0. Our results showed that about half of the analyzed outdoor teaching practice seemed to be inquiry-based, emphasizing pupils' choice and presenting cognitive challenge. This indicates that the analyzed udeskole had the potential to support an explorative and multifaceted inquiry-based

  3. Hands on, mobiles on The use of a digital narrative as a scaffolding remedy in a classical science centre

    Directory of Open Access Journals (Sweden)

    Anne Kahr-Højland

    2010-12-01

    Full Text Available This article examines an educational design experiment which aimed to support young people’s involvement and reflection in the exhibition at a Danish science centre. The experiment consisted in the examination of the design and implementation of a mobile phone facilitated narrative, which was planned as a so-called scaffolding remedy in the hands-on based exhibition. The digital narrative, called EGO-TRAP, was developed using Design-Based Research as the overall methodological framework. The study of students’ interactions in the exhibition suggests, among other things, that because of its quality as a digital narrative, EGO-TRAP scaffolds pleasurable engagement and counteracts the tendency of "random button pressing" that often occurs in classical science centre exhibitions. In this connection, the mobile phone plays an essential role due to the fact that it, as the favoured media by the young students, offers an experience which they describe as both personal and flexible.

  4. An Inquiry-Based Linear Algebra Class

    Science.gov (United States)

    Wang, Haohao; Posey, Lisa

    2011-01-01

    Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…

  5. Inquiry-based Learning in Mathematics Education

    DEFF Research Database (Denmark)

    Dreyøe, Jonas; Larsen, Dorte Moeskær; Hjelmborg, Mette Dreier

    From a grading list of 28 of the highest ranked mathematics education journals, the six highest ranked journals were chosen, and a systematic search for inquiry-based mathematics education and related keywords was conducted. This led to five important theme/issues for inquiry-based learning...

  6. Hands-on approach to teaching Earth system sciences using a information-computational web-GIS portal "Climate"

    Science.gov (United States)

    Gordova, Yulia; Gorbatenko, Valentina; Martynova, Yulia; Shulgina, Tamara

    2014-05-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education because old-school training programs are not keeping pace with the rapidly changing situation in the professional field of environmental sciences. A joint group of specialists from Tomsk State University and Siberian center for Environmental research and Training/IMCES SB RAS developed several new courses for students of "Climatology" and "Meteorology" specialties, which comprises theoretical knowledge from up-to-date environmental sciences with practical tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational platform "Climate" (http://climate.scert.ru/) using web GIS tools. These trainings contain practical tasks on climate modeling and climate changes assessment and analysis and should be performed using typical tools which are usually used by scientists performing such kind of research. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The hands-on approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. The courses are implemented at Tomsk State University and help forming modern curriculum in Earth system science area. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants numbers 13-05-12034 and 14-05-00502.

  7. Could hands-on activities and smartphone in science CLIL teaching foster motivation and positive attitudes in students?

    Science.gov (United States)

    Ercolino, Immacolata; Maraffi, Sabina; Sacerdoti, Francesco M.

    2016-04-01

    Motivating students is one of the most challenging things we do as educators. We know that students need to be engaged to fully appreciate and learn what has been taught; the secret consists in nurturing student engagement. One of the newer ways to involve students and foster motivation in their Science learning consists in focusing on their usage and on applying knowledge and skills in their real-life. Students usually are engaged in authentic teaching pathway. Learning focusing on the experience helps teachers to improve classroom management by gathering students around a common organized activity. Hands-on activities support problem-based approaches to learning by focusing on the experience and process of investigating, proposing and creating solutions developing critical thinking skills and enlarge student's scientific glossary. We utilized in our classroom some lab activities that we learned at an ESA/GTTP Teacher training Workshop 2014 program at the Lorentz Center Leiden, Netherlands. "Cooking a comet - Ingredients for life" "Demonstration of the second Kepler's law using marbles" New media equipment, as student's own smartphones, can increase the teaching impact speaking the same language used by the students every day. They can measure magnetic fields, their GPS coordinates (longitude and latitude), and so on. In this way we can measure distances as parallax using mobile devices and simulating distance measurements in the classroom, on the school campus. The smartphone is the device with which the students answer questions, take decisions, and solve quests. Students infact can observe the Universe from their classroom and scientifically they can watch the Sun with "Google sky map" or "Star walk" are excellent tools to learn your way around the night sky .As teachers we used these apps in the classroom when Sun goes through the constellations so our students don't believe in horoscopes. This paper is focused on hands on activities and the effects of the

  8. Engaging Students in the Pacific and beyond Using an Inquiry-Based Lesson in Ocean Acidification

    Science.gov (United States)

    Gorospe, Kelvin D.; Fox, Bradley K.; Haverkort-Yeh, Roxanne D.; Tamaru, Clyde S.; Rivera, Malia Ana J.

    2013-01-01

    We present a hands-on, inquiry-based activity exploring how CO[subscript 2] input to seawater affects the skeletons of several species of reef-building corals and other marine organisms by testing for changes in pH and calcium ion concentrations. Originally developed to inspire and recruit high school students in the state of Hawai'i into the…

  9. Action Research Using Entomological Research to Promote Hands-On Science Inquiry in a High-Poverty, Midwest Urban High School

    Science.gov (United States)

    Stockmann, Dustin

    The purpose of this mixed-methods action research study was to examine to what extent entomological research can promote students' hands-on learning in a high-poverty, urban, secondary setting. In reviewing the literature, the researcher was not able to find a specific study that investigated how entomological research could promote the hands-on learning of students. The researcher did find evidence that research on learning in a secondary setting was important to student growth. It should also be noted that support was established for the implementation of hands-on science inquiry in the classroom setting. The study's purpose was to aid educators in their instruction by combining research-based strategies and hands-on science inquiry. The surveys asked 30 students to rate their understanding of three basic ideas. These core ideas were entomological research, hands-on science inquiry, and urban studies. These core ideas provided the foundation for the study. The questionnaires were based on follow-up ideas from the surveys. Two interview sessions were used to facilitate this one-on-one focus. Because the study included only 30 student participants, its findings may not be totally replicable. Further study investigating the links between entomological research and hands-on science learning in an urban environment is needed.

  10. Science Engagement Through Hands-On Activities that Promote Scientific Thinking and Generate Excitement and Awareness of NASA Assets, Missions, and Science

    Science.gov (United States)

    Graff, P. V.; Foxworth, S.; Miller, R.; Runco, S.; Luckey, M. K.; Maudlin, E.

    2018-01-01

    The public with hands-on activities that infuse content related to NASA assets, missions, and science and reflect authentic scientific practices promotes understanding and generates excitement about NASA science, research, and exploration. These types of activities expose our next generation of explorers to science they may be inspired to pursue as a future STEM career and expose people of all ages to unique, exciting, and authentic aspects of NASA exploration. The activities discussed here (Blue Marble Matches, Lunar Geologist Practice, Let's Discover New Frontiers, Target Asteroid, and Meteorite Bingo) have been developed by Astromaterials Research and Exploration Science (ARES) Science Engagement Specialists in conjunction with ARES Scientists at the NASA Johnson Space Center. Activities are designed to be usable across a variety of educational environments (formal and informal) and reflect authentic scientific content and practices.

  11. Changing Practice: An Evaluation of the Impact of a Nature of Science Inquiry-Based Professional Development Programme on Primary Teachers

    Science.gov (United States)

    Murphy, Clíona; Smith, Greg; Varley, Janet; Razi, Özge

    2015-01-01

    This study investigates how a two-year continuing professional development (CPD) programme, with an emphasis on teaching about science through inquiry, impacted the experiences of, approaches to and attitudes towards teaching science of 17 primary teachers in Dublin. Data sources included interview, questionnaire and reflective journal strategies.…

  12. Seafloor Science and Remotely Operated Vehicle (SSROV) Day Camp: A Week-Long, Hands-On STEM Summer Camp

    Science.gov (United States)

    Wheat, C. G.; Fournier, T.; Monahan, K.; Paul, C.

    2015-12-01

    RETINA (Robotic Exploration Technologies IN Astrobiology) has developed a program geared towards stimulating our youth with innovative and relevant hands-on learning modules under a STEM umbrella. Given the breadth of potential science and engineering topics that excite children, the RETINA Program focuses on interactive participation in the design and development of simple robotic and sensor systems, providing a range of challenges to engage students through project-based learning (PBL). Thus, young students experience scientific discovery through the use and understanding of technology. This groundwork serves as the foundation for SSROV Camp, a week-long, summer day camp for 6th-8th grade students. The camp is centered on the sensors and platforms that guide seafloor exploration and discovery and builds upon the notion that transformative discoveries in the deep sea result from either sampling new environments or making new measurements with sensors adapted to this extreme environment. These technical and scientific needs are folded into the curriculum. Each of the first four days of the camp includes four team-based, hands-on technical challenges, communication among peer groups, and competition. The fifth day includes additional activities, culminating in camper-led presentations to describe a planned mission based on a given geologic setting. Presentations include hypotheses, operational requirements and expected data products. SSROV Camp was initiated last summer for three sessions, two in Monterey, CA and one in Oxford, MS. Campers from both regions grasped key elements of the program, based on written responses to questions before and after the camp. On average, 32% of the pre-test questions were answered correctly compared with 80% of the post-test questions. Additional confirmation of gains in campers' knowledge, skills, and critical thinking on environmental issues and engineering problems were apparent during the "jeopardy" competition, nightly homework

  13. Epistemic Purposes to Prompt Argumentation in inquiry-based classes

    Directory of Open Access Journals (Sweden)

    Arthur Tadeu Ferraz

    2017-04-01

    Full Text Available Considering the growth in interest on argumentation in research on science education, in this paper our goal is to propose an overview of actions taken by a teacher that made possible to establish and mediate production of arguments by the students in classroom. For this purpose, we analyze a physics lesson where discussions were about light duality, through a planned inquiry-based sequence teaching. We developed a set of codes called Epistemic Purposes for Promotion of Argumentation that allow understanding teacher's purposes as well his actions to promote argumentation among students during inquiry-based lessons. According to theoretical proposition and empirical analysis, it was revealed that the construction of arguments by students has a high dependence on how ideas are problematized by teacher. The construction of understanding  by students requires teacher actions that result in contributions of different kinds.

  14. "Does a Spider Have Fur"?: A Teacher's Journey in Building the Confidence to Blend the English Language Learning of ESL Students with Inquiry-Based Science

    Science.gov (United States)

    Zeegers, Yvonne; McKinnon, Heather

    2012-01-01

    This paper describes one aspect of an ESL teacher's journey, in which her voluntary involvement in a series of science-based professional learning events inspired her to use language-based objectives to develop and teach an integrated unit of work with ESL students. Her willingness to modify her usual pedagogical practice and the inspiration she…

  15. The Incorporation of the USA "Science Made Sensible" Programme in South African Primary Schools: A Cross-Cultural Approach to Science Education

    Science.gov (United States)

    de Villiers, Rian; Plantan, Tiffany; Gaines, Michael

    2016-01-01

    The Science Made Sensible (SMS) programme began as a partnership between the University of Miami (UM), Florida, USA, and some public schools in Miami. In this programme, postgraduate students from UM work with primary school science teachers to engage learners in science through the use of inquiry-based, hands-on activities. Due to the success of…

  16. The Application of Science in Box on Inquiry Based Learning at Junior High School to Increase The Mastery Concept of Statics Fluid

    Directory of Open Access Journals (Sweden)

    Abdurrahman Abdurrahman

    2016-10-01

    Tujuan dari penelitian ini ialah untuk menjelaskan efektifitas keterikatan ilmu sains dengan kegiatan pengajaran dan pembelajaran sains menggunakan konsep Fluida Statis berbasis inkuiri. Metode action research digunakan untuk memecahkan masalah kurangnya pelaksanaan praktik pada siswa sains. Analisis data menggunakan pendekatan kuantitatif yang meliputi statistik deskriptif dan inferensial untuk menguji karakteristik dan efektifitas SBFS yang dikembangkan. Hasil penelitian menunjukkan bahwa ada pengaruh yang signifikan dari pembelajran dan kpengajaran inkuiri menggunakan Science in Box terhadap penguasaan konsep fluida statis siswa. Hasilnya menunjukkan bahwa strategi Pengajaran yang secara aktif melibatkan siswa dalam proses pembelajaran melalui penyelidikan ilmiah menggunakan kerja praktek lebih mungkin untuk meningkatkan penguasaan konseptual siswa dibandingkan strategi yang mengandalkan teknik yang lebih konvensional. Kata kunci: Science in Box, Statics Fluid, Inquiry learning.

  17. A case study of an experienced teacher's beliefs and practice during implementation of an inquiry-based approach in her elementary science classroom

    Science.gov (United States)

    Martin, Anita Marie Benna

    The purpose of this study was to examine the relationship between one teacher's beliefs and her practices. This study examined this relationship during the implementation of reform by the teacher in the area of science as recommended by the National Science Education Standards (NRC, 1996). This study was a single case study of one experienced elementary teacher who was implementing the Science Writing Heuristic (SWH) approach in her science classroom. The study's focus was on the relationship between the teacher's beliefs and her practice during this innovation, as well as the factors that influenced that relationship. Data were collected from multiple sources such as routinely scheduled interviews, classroom observations, researcher's fieldnotes, teacher's written reflections, professional development liaison reflections, student responses, video-tape analysis, think-aloud protocol, audio-tapes of student discourse, metaphor analysis, and Reformed Teacher Observation Protocol (RTOP) scores. Data analysis was conducted using two different approaches: constant comparative method and RTOP scores. Results indicate that a central belief of this teacher was her beliefs about how students learn. This belief was entangled with other more peripheral beliefs such as beliefs about the focus of instruction and beliefs about student voice. As the teacher shifted her central belief from a traditional view of learning to one that is more closely aligned with a constructivist' view, these peripheral beliefs also shifted. This study also shows that the teacher's beliefs and her practice were consistent and entwined throughout the study. As her beliefs shifted, so did her practice and it supports Thompson's (1992) notion of a dialectic relationship between teacher beliefs and practice. Additionally, this study provides implications for teacher education and professional development. As teachers implement reform efforts related to inquiry in their science classrooms, professional

  18. Exploring the Effects of Specific, Hands-On Interventions, on Environmental Science Topics in Teacher Education Programs

    Science.gov (United States)

    Bullock, S. M.; Hayhoe, D.

    2012-12-01

    With increased concern over the environment, all Ontario students now study soils, energy conservation, water systems, and climate change & the greenhouse effect in Grades 3, 5, 7, 8 and 10. Unfortunately, many prospective teachers at the elementary and intermediate levels come to teacher education programs with little or no formal science education beyond their own experiences as students in the K-12 system. We devised a series of concept tests (some binary choice, some multiple choice) designed to assess teacher candidates' conceptual understandings of soils, energy, water systems, and climate change and the greenhouse effect - the very content they are expected to teach their future students in the school system. We administered a pre-test to our students at two institutions to establish a baseline of their understanding. Then, we specifically devoted class time to exploring each of these themes in our science curriculum methods courses in order using research-based principles of teaching devoted to promoting conceptual change through the use of hands-on, inquiry approaches in science. After a few months had passed, we again administered the same tests to teacher candidates to measure candidates' conceptual gain. Some teacher candidates also participated in follow-up focus group interviews so that they could have the opportunity to articulate their understandings of concepts in environmental science using their own words. In this poster we will report on data collected for this project over the past two academic years. We have reached two broad conclusions. First, teacher candidates know a considerable amount about the four environmental topics that were selected, despite the fact that most participants in the research did not have post-secondary training in science. For example, participants tended to know that planting different crops on the soil in different years helps to maintain fertile soils and that warmer oceans will cause an increase in the severity of

  19. Assimilation or transformation? An analysis of change in ten secondary science teachers following an inquiry-based research experience for teachers

    Science.gov (United States)

    Blanchard, Margaret R.

    2006-12-01

    It is argued that teachers must experience inquiry in order to be able to translate it to their classrooms. The National Science Foundation's (NSF's) Research Experiences for Teachers (RETs) offer promising programs, yet scant empirical support documents the effectiveness of these programs. In this study, ten experienced, secondary science teachers were followed back to the classroom after a five-week, marine ecology RET, addressing the questions: How do teachers' conceptions and enactment of classroom inquiry change after the program?; What are the program's goals?; What accounts for these differences?; and What do these findings imply for future RETs? Data collected includes pre and post program questionnaires, audiotapes and videotapes of pre and post program teaching, post program STIR instrument responses, interviews, and field notes. The study found that an extensive, reflective program model, conducted by scientists who are teacher-centered, successfully conveyed the program model of inquiry. Post program, teachers' conceptions of inquiry were more student centered, focused less on assessment and classroom management and more on authentic content, questions, and presentations, and incorporated program language. Question patterns during enactment shifted to fewer teacher questions, more student questions, and increased higher order questions by students and teachers. More procedural questions indicated role shifts. The STIR instrument fostered understanding of enactment and, with critical incidents analyses, highlighted underlying teacher value structures. Teachers with more theoretical sophistication and who had Rationalistic and Egalitarian value structures applied inquiry throughout their teaching and moved beyond contextual constraints. Implications suggest that those who develop and implement RETs need to be masterful "bridge builders" to help transition teachers and their learning back to the classroom. Reflection holds promise for illuminating teachers

  20. Guided-inquiry based laboratory instruction: Investigation of critical thinking skills, problem solving skills, and implementing student roles in chemistry

    Science.gov (United States)

    Gupta, Tanya

    Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with peers and in facilitation by the instructor. A student-centered active learning approach may be an effective way to enhance student understanding of concepts in the laboratory. The dissertation research work explores the impact of laboratory instruction and its relevance for college-level chemistry. Each chapter is different from the preceding chapter in terms of the purpose of the study and the research questions asked. However, the overarching idea is to address the importance of guided-inquiry based laboratory instruction in chemistry and its relevance in helping students to make connections with the chemistry content and in imparting skills to students. Such skills include problem solving, collaborative group work and critical thinking. The first research study (Chapter 2) concerns the impact of first year co-requisite general chemistry laboratory instruction on the problem-solving skills of students. The second research study (Chapter 3) examines the impact of implementing student roles also known as Student-Led Instructor Facilitated Guided-Inquiry based Laboratories, SLIFGIL) by modifying the Science Writing Heuristic approach of laboratory instruction. In the third research study (Chapter 4), critical thinking skills of first semester general chemistry laboratory students were compared to advanced (third or fourth year) chemistry laboratory students based on the analysis of their laboratory reports.

  1. Teaching chemistry and other sciences to blind and low-vision students through hands-on learning experiences in high school science laboratories

    Science.gov (United States)

    Supalo, Cary Alan

    2010-11-01

    Students with blindness and low vision (BLV) have traditionally been underrepresented in the sciences as a result of technological and attitudinal barriers to equal access in science laboratory classrooms. The Independent Laboratory Access for the Blind (ILAB) project developed and evaluated a suite of talking and audible hardware/software tools to empower students with BLV to have multisensory, hands-on laboratory learning experiences. This dissertation focuses on the first year of ILAB tool testing in mainstream science laboratory classrooms, and comprises a detailed multi-case study of four students with BLV who were enrolled in high school science classes during 2007--08 alongside sighted students. Participants attended different schools; curricula included chemistry, AP chemistry, and AP physics. The ILAB tools were designed to provide multisensory means for students with BLV to make observations and collect data during standard laboratory lessons on an equivalent basis with their sighted peers. Various qualitative and quantitative data collection instruments were used to determine whether the hands-on experiences facilitated by the ILAB tools had led to increased involvement in laboratory-goal-directed actions, greater peer acceptance in the students' lab groups, improved attitudes toward science, and increased interest in science. Premier among the ILAB tools was the JAWS/Logger Pro software interface, which made audible all information gathered through standard Vernier laboratory probes and visually displayed through Logger Pro. ILAB tools also included a talking balance, a submersible audible light sensor, a scientific talking stopwatch, and a variety of other high-tech and low-tech devices and techniques. While results were mixed, all four participating BLV students seemed to have experienced at least some benefit, with the effect being stronger for some than for others. Not all of the data collection instruments were found to reveal improvements for all

  2. Cultural Earth Science in Hawai`i: Hands-on Place-Based Investigations that Merge Traditional Knowledge with Earth Science Inquiry

    Science.gov (United States)

    Moxey, L.; Dias, R. K.; Legaspi, E.

    2011-12-01

    During the summer of 2011, the Mālama Ke Ahupua`a (to care of our watershed) GEARUP summer program provided 25 under-served and under-represented minority public high school students (Hawaiian, part-Hawaiian, Filipino, Pacific Islanders) from Farrington High School (Kalihi, Honolulu) with a hands-on place-based multidiscipline course located within Manoa Valley (Ahupua`a O Kona) with the objective of engaging participants in scientific environmental investigations while exploring Hawaii's linkages between traditional knowledge, culture and science. The 4-week field program enabled students to collect samples along the perennial Manoa Stream and conduct water quality assessments throughout the Manoa watershed. Students collected science quality data from eight different sampling stations by means of field- and laboratory-based quantitative water quality testing equipment and GPS/GIS technology. While earning Hawaii DOE academic credits, students were able to document changes along the stream as related to pollution and urbanization. While conducting the various scientific investigations, students also participated in cultural fieldtrips and activities that highlighted the linkages between historical sustainable watershed uses by native Hawaiian communities, and their connections with natural earth processes. Additionally, students also participated in environmental service-learning projects that highlight the Hawaiian values of laulima (teamwork), mālama (to care for), and imi `ike (to seek knowledge). By contextualizing and merging hands-on place-based earth science inquiry with native Hawaiian traditional knowledge, students experienced the natural-cultural significance of their ahupua`a (watershed). This highlighted the advantages for promoting environmental literacy and geoscience education to under-served and under-represented minority populations in Hawaii from a rich native Hawaiian cultural framework.

  3. The Art-Science Connection: Students Create Art Inspired by Extracurricular Lab Investigations

    Science.gov (United States)

    Hegedus, Tess; Segarra, Verónica A.; Allen, Tawannah G.; Wilson, Hillary; Garr, Casey; Budzinski, Christina

    2016-01-01

    The authors developed an integrated science-and-art program to engage science students from a performing arts high school in hands-on, inquiry based lab experiences. The students participated in eight biology-focused investigations at a local university with undergraduate mentors. After the laboratory phase of the project, the high school students…

  4. Time on Text and Science Achievement for High School Biology Students

    Science.gov (United States)

    Wyss, Vanessa L.; Dolenc, Nathan; Kong, Xiaoqing; Tai, Robert H.

    2013-01-01

    The conflict between the amount of material to be addressed in high school science classes, the need to prepare students for standardized tests, and the amount of time available forces science educators to make difficult pedagogical decisions on a daily basis. Hands-on and inquiry-based learning offer students more authentic learning experiences…

  5. Inquiry based learning in physical education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino

    2014-01-01

    The present project is a case study founded on the decreasing motivation and engagement in physical education. The project suggests inquiry based learning (IBL) as an educational methodology. This may help to turn the trend as IBL has shown to engage and motivate students at different educational...... levels and within different subjects. In this pilot research project performed at a physical education teacher education program, qualitative methods were chosen to investigate students’ motivation and engagement within an IBL-unit in physical education and to accentuate challenges, advantages...... and disadvantages within the IBL-methodology in relation to students’ motivation. Instructed in guided inquiry, 32 students of physical education in a teacher training college worked with inquiry based learning in physical education over a four week period. During the IBL-unit, qualitative data such as the students...

  6. The Effects of Hands-On Learning Stations on Building American Elementary Teachers' Understanding about Earth and Space Science Concepts

    Science.gov (United States)

    Bulunuz, Nermin; Jarrett, Olga S.

    2010-01-01

    Research on conceptual change indicates that not only children, but also teachers have incomplete understanding or misconceptions on science concepts. This mixed methods study was concerned with in-service teachers' understanding of four earth and space science concepts taught in elementary school: reason for seasons, phases of the moon, rock…

  7. Peter Fensham--Head, Heart and Hands (on) in the Service of Science Education and Social Equity and Justice

    Science.gov (United States)

    Gunstone, Richard

    2009-01-01

    When Peter Fensham was appointed to the new Chair of Science Education at Monash University in 1967 he was the first Professor of Science Education in Australia, and, we think, may well have been the first such professor anywhere in the world outside USA. Over the subsequent 40+ years he has made/still makes remarkable and diverse contributions to…

  8. Cognitive Achievement and Motivation in Hands-on and Teacher-Centred Science Classes: Does an additional hands-on consolidation phase (concept mapping) optimise cognitive learning at work stations?

    Science.gov (United States)

    Gerstner, Sabine; Bogner, Franz X.

    2010-05-01

    Our study monitored the cognitive and motivational effects within different educational instruction schemes: On the one hand, teacher-centred versus hands-on instruction; on the other hand, hands-on instruction with and without a knowledge consolidation phase (concept mapping). All the instructions dealt with the same content. For all participants, the hands-on approach as well as the concept mapping adaptation were totally new. Our hands-on approach followed instruction based on "learning at work stations". A total of 397 high-achieving fifth graders participated in our study. We used a pre-test, post-test, retention test design both to detect students' short-term learning success and long-term learning success, and to document their decrease rates of newly acquired knowledge. Additionally, we monitored intrinsic motivation. Although the teacher-centred approach provided higher short-term learning success, hands-on instruction resulted in relatively lower decrease rates. However, after six weeks, all students reached similar levels of newly acquired knowledge. Nevertheless, concept mapping as a knowledge consolidation phase positively affected short-term increase in knowledge. Regularly placed in instruction, it might increase long-term retention rates. Scores of interest, perceived competence and perceived choice were very high in all the instructional schemes.

  9. The Hands-On Guide For Science Communicators A Step-By-Step Approach to Public Outreach

    CERN Document Server

    Christensen, Lars Lindberg

    2007-01-01

    Lars Lindberg Christensen is a science communication specialist and works in Munich, Germany, as head of communication for the NASA/ESA Hubble Space Telescope in Europe. Many people know something about communication – it is after all an innate human ability – but a full comprehension of how to do science communication effectively is not acquired easily. This Guide touches upon all aspects of science communication, revealing a tightly interwoven fabric of issues: product types, target groups, written communication, visual communication, validation processes, practices of efficient workflow, distribution, promotion, advertising and much more. New science communicators will find this Guide both helpful and inspirational. "I am overwhelmed at how thorough and how well thought-through this book is. Even with my regular relationships with popular communication and with public relations officers, I hadn’t realized how well documented the field could be until I saw it done here." -Jay M. Pasachoff, Williams Co...

  10. VR Biology, an interdisciplinary and international student project towards an inquiry-based pedagogy

    NARCIS (Netherlands)

    Gomes, Teresa Dias Pedro; Goei, Sui Lin; Van Joolingen, Wouter; Cai, Yiyu

    2016-01-01

    Education in Science, Technology, Engineering, and Mathematics (STEM) is moving towards a more inquiry-based, and creativity stimulating pedagogy. Part of a curriculum based on such pedagogies should be challenging learning activities that engage students in investigation. At the same time, it is

  11. Learning How to Design a Technology Supported Inquiry-Based Learning Environment

    Science.gov (United States)

    Hakverdi-Can, Meral; Sonmez, Duygu

    2012-01-01

    This paper describes a study focusing on pre-service teachers' experience of learning how to design a technology supported inquiry-based learning environment using the Internet. As part of their elective course, pre-service science teachers were asked to develop a WebQuest environment targeting middle school students. A WebQuest is an…

  12. Inquiry-Based Learning in Teacher Education: A Primary Humanities Example

    Science.gov (United States)

    Preston, Lou; Harvie, Kate; Wallace, Heather

    2015-01-01

    Inquiry-based learning features strongly in the new Australian Humanities and Social Sciences curriculum and increasingly in primary school practice. Yet, there is little research into, and few exemplars of, inquiry approaches in the primary humanities context. In this article, we outline and explain the implementation of a place-based simulation…

  13. Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project

    Science.gov (United States)

    Thiet, Rachel K.

    2014-01-01

    The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…

  14. Working environment with social and personal open tools for inquiry based learning: Pedagogic and diagnostic frameworks

    NARCIS (Netherlands)

    Protopsaltis, Aristos; Seitlinger, Paul; Chaimala, Foteini; Firssova, Olga; Hetzner, Sonja; Kikis-Papadakis, Kitty; Boytchev, Pavel

    2014-01-01

    The weSPOT project aims at propagating scientific inquiry as the approach for science learning and teaching in combination with today’s curricula and teaching practices The project focuses on inquiry-based learning with a theoretically sound and technology supported personal inquiry approach and it

  15. Using Inquiry-Based Strategies for Enhancing Students' STEM Education Learning

    Science.gov (United States)

    Lai, Ching-San

    2018-01-01

    The major purpose of this study was to investigate whether or not the inquiry-based method is effective in improving students' learning in STEM (Science, Technology, Engineering, and Mathematics) education. Both quantitative and qualitative methods were used. A total of 73 college students studying Information Technology (IT) were chosen as…

  16. Using Inquiry-Based Instructional Strategies to Increase Student Achievement in 3rd Grade Social Studies

    Science.gov (United States)

    McRae-Jones, Wanda Joycelyn

    2017-01-01

    21st Century skills such as critical-thinking and problem-solving skills are very important when it comes to Science Technology Engineering and Mathematics or STEM. But those same skills should be integrated in social studies. The impact of students' learning in social studies as a result of implementing inquiry-based instructional strategies was…

  17. The Effect of the Inquiry-Based Learning Approach on Student's Critical-Thinking Skills

    Science.gov (United States)

    Duran, Meltem; Dökme, Ilbilge

    2016-01-01

    The purpose of this study is to determine the effect of an activity set developed according to the inquiry-based learning (IBL) approach in the unit "Particulate Structure of Matter" on students' critical-thinking skills in science and technology courses. The study was conducted with 90 students from the 6th grade attending four, 6th…

  18. Phases of inquiry-based learning: Definitions and the inquiry cycle

    NARCIS (Netherlands)

    Pedaste, Margus; Mäeots, Mario; Siiman, Leo A.; de Jong, Anthonius J.M.; van Riesen, Siswa; Kamp, E.T.; Kamp, E.T.; Manoli, Constantinos C.; Zacharia, Zacharias C.; Tsourlidaki, Eleftheria

    2015-01-01

    Inquiry-based learning is gaining popularity in science curricula, international research and development projects as well as teaching. One of the underlying reasons is that its success can be significantly improved due to the recent technical developments that allow the inquiry process to be

  19. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  20. Spectral Feature Analysis of Minerals and Planetary Surfaces in an Introductory Planetary Science Course

    Science.gov (United States)

    Urban, Michael J.

    2013-01-01

    Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…

  1. Hands on Stem Cells: How to Make the Elusive Science of Stem Cells Tangible for the Classroom

    Science.gov (United States)

    Sanderson, Aimee

    2010-01-01

    With new technologies developing so fast, it is difficult for students and teachers alike to keep up to date. Add into the mix skewed media reporting, some creative science fiction films and the unregulated world of the internet, and it becomes increasingly hard to separate fact from fiction. As Australia's largest funding body for stem cell…

  2. Who Is Watching and Who Is Playing: Parental Engagement with Children at a Hands-On Science Center

    Science.gov (United States)

    Nadelson, Louis S.

    2013-01-01

    Family interactions are common phenomenon at visits to science centers and natural history museums. Through interactions the family can support each other as the members individually and collectively learn from their visits. Interaction is particularly important between child(ren) and parent, which may be facilitated by media provided to parents.…

  3. Hands-On Nuclear Physics

    Science.gov (United States)

    Whittaker, Jeff

    2013-01-01

    Nuclear science is an important topic in terms of its application to power generation, medical diagnostics and treatment, and national defense. Unfortunately, the subatomic domain is far removed from daily experience, and few learning aids are available to teachers. What follows describes a low-tech, hands-on method to teach important concepts in…

  4. The Space Weather Monitor Project: Bringing Hands-on Science to Students of the Developing World for the IHY2007

    Science.gov (United States)

    Scherrer, D. K.; Rabello-Soares, M. C.; Morrow, C.

    2006-08-01

    Stanford's Solar Center, Electrical Engineering Department, and local educators have developed inexpensive Space Weather Monitors that students around the world can use to track solar-induced changes to the Earth's ionosphere. Through the United Nations Basic Space Science Initiative (UNBSSI) and the IHY Education and Public Outreach Program, our Monitors are being deployed to 191 countries for the International Heliophysical Year, 2007. In partnership with Chabot Space and Science Center, we are designing and developing classroom and educator support materials to accompany the distribution. Materials will be culturally sensitive and will be translated into the six official languages of the United Nations (Arabic, Chinese, English, French, Russian, and Spanish). Monitors will be provided free of charge to developing nations and can be set up anywhere there is access to power.

  5. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    Directory of Open Access Journals (Sweden)

    Chris N Bayer

    Full Text Available Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  6. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    Science.gov (United States)

    Bayer, Chris N; Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  7. The Importance of a Laboratory Section on Student Learning Outcomes in a University Introductory Earth Science Course

    Science.gov (United States)

    Forcino, Frank L.

    2013-01-01

    Laboratory sections of university Earth science courses provide hands-on, inquiry-based activities for students in support of lecture and discussion. Here, I compare student conceptual knowledge outcomes of laboratory sections by administering an independent concept inventory at the beginning and end of two courses: one that had a lecture and a…

  8. Active Science as a Contribution to the Trauma Recovery Process: Preliminary Indications with Orphans from the 1994 Genocide in Rwanda

    Science.gov (United States)

    Perrier, Frederic; Nsengiyumva, Jean-Baptiste

    2003-01-01

    Constructivist, hands-on, inquiry-based, science activities may have a curative potential that could be valuable in a psychological assistance programme for child victims of violence and war. To investigate this idea, pilot sessions were performed in an orphanage located in Ruhengeri, Rwanda, with seven young adults and two groups of 11 children…

  9. Red Seaweed Enzyme-Catalyzed Bromination of Bromophenol Red: An Inquiry-Based Kinetics Laboratory Experiment for Undergraduates

    Science.gov (United States)

    Jittam, Piyachat; Boonsiri, Patcharee; Promptmas, Chamras; Sriwattanarothai, Namkang; Archavarungson, Nattinee; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    Haloperoxidase enzymes are of interest for basic and applied bioscientists because of their increasing importance in pharmaceutical industry and environmental cleanups. In a guided inquiry-based laboratory experiment for life-science, agricultural science, and health science undergraduates, the bromoperoxidase from a red seaweed was used to…

  10. Inquiry-based problem solving in introductory physics

    Science.gov (United States)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  11. The AIA Solar Learning Center: Taking Inquiry-based EPO Online

    Science.gov (United States)

    Wills-Davey, Meredith; Attrill, G. D. R.; Engell, A.

    2009-05-01

    The observations of the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory (SDO-AIA) are expected to be groundbreaking within the field of heliophysics. To properly promote and explain the data produced by AIA, it is important that an innovative EPO effort be put forth. This has led to the development of "The AIA Solar Learning Center” (SLC), an inquiry-based educational website geared towards teaching about AIA and the Sun in general. The goal of the SLC is to provide K-12 students, teachers, parents, and homeschoolers with information and education about the Sun, primarily through hands-on activity modules that explain different aspects of our nearest star and the methods of observing it. While each module ultimately aims to impart information about the Sun or some related physical process, the activities also range across a host of different disciplines, including geology, chemistry, history, music, and art. In order to make the content applicable and accessible, activities are tailored to multiple difficulty levels, catering to different age groups. There is also a strong push towards facilitating teachers; activities are designed to fulfill specific teaching standards, and a host of additional teaching material is provided, including lesson plans and powerpoint presentations. Ultimately, the SLC aims to make science and the Sun inviting and accessible. The "Meet the Scientists” page will provide pictures and personal bios of participating scientists. Students will have the opportunity to interactively ask solar-related questions. There is even a host of lighter fare, such as a solar music playlist and links to relevant Facebook pages.

  12. Comparing the Pre- and Posttest Scores in Relations to the Emporium and the Hands-on Instructional Approaches of Teaching Science in Prekindergarten

    Science.gov (United States)

    Headen, Patricia Ann

    This quantitative, quasi-experimental research investigated if two instructional approaches, the Emporium Computer-Based (Group 2) versus the hands-on approach (Group 1), resulted any difference in student achievement in science for four-year-old prekindergarten students at a private childcare facility in North Carolina. Three research questions hypothesized these relationships: (a) Group 2 versus Group 1 assessed student achievement as theoretically based on Piaget and Vygotsky's perspectives of child development, (b) the instructional approaches related to gender, and (c) the instructional approaches interrelated to ethnicity. Using a two-factor ANOVA and ANCOVA techniques, involved a convenience sample of 126 four-year-old prekindergarten students of which a convenience sample of 126 participated. The Assessment of Measurements for Pre-K (AMP-K), pretest and posttest scores of each group of 63 students measured student achievement. The t tests determined if a significant difference in student achievement existed (dependent variable) with the Emporium Computer-Based versus hands-on instructional approaches (independent variables). The posttest scores of Group 2 (p = 0.00), indicated a significant difference in student achievement. However, gender and ethnicity variables had no effect on student achievement, male (M = 36.14, SD = 19.61) and female (M = 42.91, SD = 18.99) with (p = 0.49), and ethnicity resulted, F (1,125) = 1.65, (p = 0.20). These results suggested that further research on the Emporium Computer-Based instructional approach could improve students' intellectual abilities through more innovative practices.

  13. An Inquiry-Based Biochemistry Laboratory Structure Emphasizing Competency in the Scientific Process: A Guided Approach with an Electronic Notebook Format

    Science.gov (United States)

    Hall, Mona L.; Vardar-Ulu, Didem

    2014-01-01

    The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students…

  14. Hands-On Calculus

    Science.gov (United States)

    Sutherland, Melissa

    2006-01-01

    In this paper we discuss manipulatives and hands-on investigations for Calculus involving volume, arc length, and surface area to motivate and develop formulae which can then be verified using techniques of integration. Pre-service teachers in calculus courses using these activities experience a classroom in which active learning is encouraged and…

  15. Hands-on Humidity.

    Science.gov (United States)

    Pankiewicz, Philip R.

    1992-01-01

    Presents five hands-on activities that allow students to detect, measure, reduce, and eliminate moisture. Students make a humidity detector and a hygrometer, examine the effects of moisture on different substances, calculate the percent of water in a given food, and examine the absorption potential of different desiccants. (MDH)

  16. Hands-On Hydrology

    Science.gov (United States)

    Mathews, Catherine E.; Monroe, Louise Nelson

    2004-01-01

    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  17. Educational Experiences in Oceanography through Hands-On Involvement with Surface Drifters: an Introduction to Ocean Currents, Engineering, Data Collection, and Computer Science

    Science.gov (United States)

    Anderson, T.

    2015-12-01

    The Northeast Fisheries Science Center's (NEFSC) Student Drifters Program is providing education opportunities for students of all ages. Using GPS-tracked ocean drifters, various educational institutions can provide students with hands-on experience in physical oceanography, engineering, and computer science. In building drifters many high school and undergraduate students may focus on drifter construction, sometimes designing their own drifter or attempting to improve current NEFSC models. While learning basic oceanography younger students can build drifters with the help of an educator and directions available on the studentdrifters.org website. Once drifters are deployed, often by a local mariner or oceanographic partner, drifter tracks can be visualised on maps provided at http://nefsc.noaa.gov/drifter. With the lesson plans available for those interested in computer science, students may download, process, and plot the drifter position data with basic Python code provided. Drifter tracks help students to visualize ocean currents, and also allow them to understand real particle tracking applications such as in search and rescue, oil spill dispersion, larval transport, and the movement of injured sea animals. Additionally, ocean circulation modelers can use student drifter paths to validate their models. The Student Drifters Program has worked with over 100 schools, several of them having deployed drifters on the West Coast. Funding for the program often comes from individual schools and small grants but in the future will preferably come from larger government grants. NSF, Sea-Grant, NOAA, and EPA are all possible sources of funding, especially with the support of multiple schools and large marine education associations. The Student Drifters Program is a unique resource for educators, students, and scientists alike.

  18. Implementing inquiry-based kits within a professional development school model

    Science.gov (United States)

    Jones, Mark Thomas

    2005-07-01

    Implementation of guided inquiry teaching for the first time carries inherent problems for science teachers. Reform efforts on inquiry-based science teaching are often unsustainable and are not sensitive to teachers' needs and abilities as professionals. Professional development schools are meant to provide a research-based partnership between a public school and a university. These collaborations can provide support for the professional development of teachers. This dissertation reports a study focused on the implementation of inquiry-based science kits within the support of one of these collaborations. The researcher describes the difficulties and successful adaptations experienced by science teachers and how a coteaching model provided support. These types of data are needed in order to develop a bottom-up, sustainable process that will allow teachers to implement inquiry-based science. A qualitative methodology with "researcher as participant" was used in this study of two science teachers during 2002--2003. These two teachers were supported by a coteaching model, which included preservice teachers for each teacher as well as a supervising professor. Data were collected from the researcher's direct observations of coteachers' practice. Data were also collected from interviews and reflective pieces from the coteachers. Triangulation of the data on each teacher's case supported the validity of the findings. Case reports were prepared from these data for each classroom teacher. These case reports were used and cross-case analysis was conducted to search for major themes and findings in the study. Major findings described the hurdles teachers encounter, examples of adaptations observed in the teachers' cases and the supportive interactions with their coteachers while implementing the inquiry-based kits. In addition, the data were used to make recommendations for future training and use of the kits and the coteaching model. Results from this study showed that the

  19. Characterising Extrinsic Challenges Linked to the Design and Implementation of Inquiry-Based Practical Work

    Science.gov (United States)

    Akuma, Fru Vitalis; Callaghan, Ronel

    2017-11-01

    Inquiry-based science education has been incorporated in science curricula internationally. In this regard, however, many teachers encounter challenges. The challenges have been characterised into those linked to the personal characteristics of these teachers (intrinsic challenges) and others associated with contextual factors (extrinsic challenges). However, this level of characterisation is inadequate in terms of appreciating the complexity of the challenges, tracking of their development, and discovering knowledge within specific categories. Against this background, the purpose of the research presented here was to characterise extrinsic challenges linked to the design and implementation of inquiry-based practical work. In order to do so, we used a conceptual framework of teaching challenges based on Bronfenbrenner's ecological theory of human development. The data gathered using a multi-method case study of practical work in two South African high schools, was analysed by combining the data-driven inductive approach and the deductive a priori template of codes approach in thematic analysis. On this basis, the extrinsic challenges linked to the design and implementation of inquiry-based practical work that participants are confronted with, were found to consist of macrosystem challenges (such as a restrictive curriculum) and microsystem challenges. At the latter level, the challenges are material-related (e.g., lack of science education equipment and materials) or non-material-related (such as time constraints and the lack of access to interactive computer simulations). We have discussed the theory-, practice- and research-based implications of these results in relation to the design and implementation of inquiry-based practical work in South Africa and internationally.

  20. How can the curation of hands-on STEM activities power successful mobile apps and websites?

    Science.gov (United States)

    Porcello, D.; Peticolas, L. M.; Schwerin, T. G.

    2015-12-01

    The Lawrence Hall of Science (LHS) is University of California, Berkeley's public science center. Over the last decade, the Center for Technology Innovation at LHS has partnered with many institutions to establish a strong track record of developing successful technology solutions to support STEM teaching and learning within informal environments. Curation by subject-matter experts has been at the heart of many educational technology products from LHS and its partners that are directed at educators and families. This work includes: (1) popular digital libraries for inquiry-based activities at Howtosmile.org (NSF DRL #0735007) and NASA Earth and Space science education resources at NASAwavelength.org; and novel mobile apps like DIY Sun Science (NASA NNX10AE05G) and DIY Human Body (NIH 5R25OD010543) designed to scaffold exploration of STEM phenomena at home. Both NASA Wavelength and DIY Sun Science arose out of long-term collaborations with the Space Sciences Laboratory at UC Berkeley, Institute for Global Environmental Strategies (IGES), and other NASA-funded organizations, in partnership with NASA through cooperative agreements. This session will review the development, formative evaluation, and usage metrics for these two Earth and Space science-themed educational technology products directly relevant to the AGU community. Questions reviewed by presenters will include: What makes a good hands-on activity, and what essential information do educators depend on when searching for programming additions? What content and connections do families need to explore hands-on activities? How can technology help incorporate educational standards into the discovery process for learning experiences online? How do all these components drive the design and user experience of websites and apps that showcase STEM content?

  1. Teaching numerical methods with IPython notebooks and inquiry-based learning

    KAUST Repository

    Ketcheson, David I.

    2014-01-01

    A course in numerical methods should teach both the mathematical theory of numerical analysis and the craft of implementing numerical algorithms. The IPython notebook provides a single medium in which mathematics, explanations, executable code, and visualizations can be combined, and with which the student can interact in order to learn both the theory and the craft of numerical methods. The use of notebooks also lends itself naturally to inquiry-based learning methods. I discuss the motivation and practice of teaching a course based on the use of IPython notebooks and inquiry-based learning, including some specific practical aspects. The discussion is based on my experience teaching a Masters-level course in numerical analysis at King Abdullah University of Science and Technology (KAUST), but is intended to be useful for those who teach at other levels or in industry.

  2. Inquiry-based training improves teaching effectiveness of biology teaching assistants

    Science.gov (United States)

    Hughes, P. William; Ellefson, Michelle R.

    2013-01-01

    Graduate teaching assistants (GTAs) are used extensively as undergraduate science lab instructors at universities, yet they often have having minimal instructional training and little is known about effective training methods. This blind randomized control trial study assessed the impact of two training regimens on GTA teaching effectiveness. GTAs teaching undergraduate biology labs (n = 52) completed five hours of training in either inquiry-based learning pedagogy or general instructional “best practices”. GTA teaching effectiveness was evaluated using: (1) a nine-factor student evaluation of educational quality; (2) a six-factor questionnaire for student learning; and (3) course grades. Ratings from both GTAs and undergraduates indicated that indicated that the inquiry-based learning pedagogy training has a positive effect on GTA teaching effectiveness. PMID:24147138

  3. Enhancing Teacher Beliefs through an Inquiry-Based Professional Development Program.

    Science.gov (United States)

    McKeown, Tammy R; Abrams, Lisa M; Slattum, Patricia W; Kirk, Suzanne V

    2016-01-01

    Inquiry-based instructional approaches are an effective means to actively engage students with science content and skills. This article examines the effects of an ongoing professional development program on middle and high school teachers' efficacy beliefs, confidence to teach research concepts and skills, and science content knowledge. Professional development activities included participation in a week long summer academy, designing and implementing inquiry-based lessons within the classroom, examining and reflecting upon practices, and documenting ways in which instruction was modified. Teacher beliefs were assessed at three time points, pre- post- and six months following the summer academy. Results indicate significant gains in reported teaching efficacy, confidence, and content knowledge from pre- to post-test. These gains were maintained at the six month follow-up. Findings across the three different time points suggest that participation in the professional development program strongly influenced participants' fundamental beliefs about their capacity to provide effective instruction in ways that are closely connected to the features of inquiry-based instruction.

  4. From field schools and the lecture hall to online: Hands-on teaching based on the real science experience worldwide for MOOCs ?

    Science.gov (United States)

    Huettmann, F.

    2015-12-01

    University-teaching is among the most difficult teaching tasks. That's because it involves to present front-line research schemes to students with complex backgrounds as a precious human resource of the future using, latest teaching styles, and many institutional fallacies to handle well. Here I present 15 years of experience from teaching in field schools, in the class room, and with pedagogical methods such as traditional top-down teaching, inquiry-based learning, eLearning, and flipped classrooms. I contrast those with teaching Massive Open Access Online Classes (MOOC) style. Here I review pros and cons of all these teaching methods and provide and outlook taking class evaluations, cost models and satisfaction of students, teachers, the university and the wider good into account.

  5. Investigating the Effectiveness of Inquiry-Based Instruction on Students with Different Prior Knowledge and Reading Abilities

    Science.gov (United States)

    Wang, Jing-Ru; Wang, Yuh-Chao; Tai, Hsin-Jung; Chen, Wen-Ju

    2010-01-01

    This study examined the differential impacts of an inquiry-based instruction on conceptual changes across levels of prior knowledge and reading ability. The instrument emphasized four simultaneously important components: conceptual knowledge, reading ability, attitude toward science, and learning environment. Although the learning patterns and…

  6. Using educational data from teaching and learning to inform teachers' reflective educational design in inquiry-based STEM education

    NARCIS (Netherlands)

    Sergis, Stylianos; Sampson, Demetrios G.; Rodríguez-Triana, María Jesús; Gillet, Denis; Pelliccione, Lina; de Jong, Ton

    2017-01-01

    Science, Technology, Engineering and Mathematics (STEM) education is recognized as a top school education priority worldwide and Inquiry-based teaching and learning is identified as a promising approach. To effectively engage students in Inquiry tasks, appropriate guidance should be provided,

  7. Self-Efficacy of Students with Visual Impairments before and after Participation in an Inquiry-Based Camp

    Science.gov (United States)

    Farrand, Kathleen; Wild, Tiffany A.; Hilson, Margilee P.

    2016-01-01

    The purpose of this pilot study was to determine students' self-efficacy level prior to participation and after participation in an inquiry-based science camp to determine if self-efficacy levels changed as a result of participation. A validated instrument, the 30 item Morgan-Jinks Student Self-Efficacy Scale (MJSES) (Jinks & Morgan, 1996) was…

  8. Using place-based concepts, multicultural lenses, and hands-on experience to broaden participation in the sciences for native youth

    Science.gov (United States)

    Flick, K. C.; Keepseagle, L.

    2013-12-01

    . Through field trips to broaden perspective, self-directed action research projects, and formal and informal classroom settings, the SLC serves as a stepping stone for students to discover Science/Math/ Technology-related careers and interact with people and professionals of all ages who pursue these careers. SLC participation empowers young students so they may one day serve as leaders and roles models to positively influence their classmates, schools, and communities for future generations. Through this collaborative education design process we have used place-based concepts, multicultural lenses, and hands-on experiences to explore reciprocal learning relationships which broaden participation of native students in geosciences and geoscientists' participation in cultural teachings.

  9. Development of guided inquiry-based laboratory worksheet on topic of heat of combustion

    Science.gov (United States)

    Sofiani, D.; Nurhayati; Sunarya, Y.; Suryatna, A.

    2018-03-01

    Chemistry curriculum reform shows an explicit shift from traditional approach to scientific inquiry. This study aims to develop a guided inquiry-based laboratory worksheet on topic of heat of combustion. Implementation of this topic in high school laboratory is new because previously some teachers only focused the experiment on determining the heat of neutralization. The method used in this study was development research consisted of three stages: define, design, and develop. In the define stage, curriculum analysis and material analysis were performed. In the design stage, laboratory optimization and product preparation were conducted. In the development stage, the product was evaluated by the experts and tested to a total of 20 eleventh-grade students. The instruments used in this study were assessment sheet and students’ response questionnaire. The assessment results showed that the guided inquiry-based laboratory worksheet has very good quality based on the aspects of content, linguistic, and graphics. The students reacted positively to the use of this guided inquiry-based worksheet as demonstrated by the results from questionnaire. The implications of this study is the laboratory activity should be directed to development of scientific inquiry skills in order to enhance students’ competences as well as the quality of science education.

  10. An Exploration of Students' Science Learning Interest Related to Their Cognitive Anxiety, Cognitive Load, Self-Confidence and Learning Progress Using Inquiry-Based Learning with an iPad

    Science.gov (United States)

    Hong, Jon-Chao; Hwang, Ming-Yueh; Tai, Kai-Hsin; Tsai, Chi-Ruei

    2017-01-01

    Based on the cognitive-affective theory, the present study designed a science inquiry learning model, "predict-observe-explain" (POE), and implemented it in an app called "WhyWhy" to examine the effectiveness of students' science inquiry learning practice. To understand how POE can affect the cognitive-affective learning…

  11. The experiment editor: supporting inquiry-based learning with virtual labs

    Science.gov (United States)

    Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.

    2017-05-01

    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.

  12. An Exploration of Students' Science Learning Interest Related to Their Cognitive Anxiety, Cognitive Load, Self-Confidence and Learning Progress Using Inquiry-Based Learning With an iPad

    Science.gov (United States)

    Hong, Jon-Chao; Hwang, Ming-Yueh; Tai, Kai-Hsin; Tsai, Chi-Ruei

    2017-12-01

    Based on the cognitive-affective theory, the present study designed a science inquiry learning model, predict-observe-explain (POE), and implemented it in an app called "WhyWhy" to examine the effectiveness of students' science inquiry learning practice. To understand how POE can affect the cognitive-affective learning process, as well as the learning progress, a pretest and a posttest were given to 152 grade 5 elementary school students. The students practiced WhyWhy during six sessions over 6 weeks, and data related to interest in learning science (ILS), cognitive anxiety (CA), and extraneous cognitive load (ECL) were collected and analyzed through confirmatory factor analysis with structure equation modeling. The results showed that students with high ILS have low CA and ECL. In addition, the results also indicated that students with a high level of self-confidence enhancement showed significant improvement in the posttest. The implications of this study suggest that by using technology-enhanced science learning, the POE model is a practical approach to motivate students to learn.

  13. An Inquiry-Based Laboratory Design for Microbial Ecology

    Science.gov (United States)

    Tessier, Jack T.; Penniman, Clayton A.

    2006-01-01

    There is a collective need to increase the use of inquiry-based instruction at the college level. This paper provides of an example of how inquiry was successfully used in the laboratory component of an undergraduate course in microbial ecology. Students were offered a collection of field and laboratory methods to choose from, and they developed a…

  14. Inquiry-Based Approach to Understanding Common Descent

    Science.gov (United States)

    Parker, Monica

    2010-01-01

    In this inquiry-based activity, students catalog external and internal characteristics of four different classes of animals during dissection exercises. On the basis of their accumulated data, students compare and contrast the animals, devise a phylogenetic tree, and provide reasonable characteristics for extinct transitional organisms. (Contains…

  15. Effect of the inquiry-based teaching approach on students ...

    African Journals Online (AJOL)

    The experimental group was treated with a teaching approach that integrated inquiry-based teaching into classroom discourse. Tests (pre- and post-), for assessing students' understanding of circle theorems and a questionnaire for measuring the students' perception of motivation to learn were given to the two groups ...

  16. Supporting Inquiry-based Learning with Google Glass (GPIM)

    NARCIS (Netherlands)

    Suarez, Angel; Ternier, Stefaan; Kalz, Marco; Specht, Marcus

    2015-01-01

    Wearable technology is a new genre of technology that is appearing to enhance learning in context. This manuscript introduces a Google Glass application to support Inquiry-based Learning (IBL). Applying Google Glass to IBL, we aim to transform the learning process into a more seamless, personal and

  17. Inquiry based learning as didactic model in distant learning

    NARCIS (Netherlands)

    Rothkrantz, L.J.M.

    2015-01-01

    Recent years many universities are involved in development of Massive Open Online Courses (MOOCs). Unfortunately an appropriate didactic model for cooperated network learning is lacking. In this paper we introduce inquiry based learning as didactic model. Students are assumed to ask themselves

  18. Discovering Biofilms: Inquiry-Based Activities for the Classroom

    Science.gov (United States)

    Redelman, Carly V.; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    In nature, bacteria exist in and adapt to different environments by forming microbial communities called "biofilms." We propose simple, inquiry-based laboratory exercises utilizing a biofilm formation assay, which allows controlled biofilm growth. Students will be able to qualitatively assess biofilm growth via staining. Recently, we developed a…

  19. Sustainable inquiry based learning with ICT. Projectrapportage. SURFInnovatieregeling Duurzaamheid & ICT

    NARCIS (Netherlands)

    Firssova, Olga; Börner, Dirk; Rusman, Ellen; Kalz, Marco; Ternier, Stefaan; Pannekeet, Kees; Specht, Marcus; Van der Klink, Marcel

    2018-01-01

    This report summarizes the results of the project “Sustainable inquiry based learning with ICT / Duurzaam onderzoekend leren met ICT” funded by the SURFnet Innovation grant for sustainable ICT solutions. This project was conducted from May 2013 to November 2013 by researchers of CELSTEC, OU. This

  20. Assessing Student Openness to Inquiry-Based Learning in Precalculus

    Science.gov (United States)

    Cooper, Thomas; Bailey, Brad; Briggs, Karen; Holliday, John

    2017-01-01

    The authors have completed a 2-year quasi-experimental study on the use of inquiry-based learning (IBL) in precalculus. This study included six traditional lecture-style courses and seven modified Moore method courses taught by three instructors. Both quantitative and qualitative analyses were used to investigate the attitudes and beliefs of the…

  1. Qualitative Assessment of Inquiry-Based Teaching Methods

    Science.gov (United States)

    Briggs, Michael; Long, George; Owens, Katrina

    2011-01-01

    A new approach to teaching method assessment using student focused qualitative studies and the theoretical framework of mental models is proposed. The methodology is considered specifically for the advantages it offers when applied to the assessment of inquiry-based teaching methods. The theoretical foundation of mental models is discussed, and…

  2. The Hands-On Optics Project: a demonstration of module 3-magnificent magnifications

    Science.gov (United States)

    Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.

    2014-07-01

    The Hands-On Optics project offers an example of a set of instructional modules that foster active prolonged engagement. Developed by SPIE, OSA, and NOAO through funding from the U.S. National Science Foundation, the modules were originally designed for afterschool settings and museums. However, because they were based on national standards in mathematics, science, and technology, they were easily adapted for use in classrooms. The philosophy and implementation strategies of the six modules will be described as well as lessons learned in training educators. The modules were implementing with the help of optics industry professionals who served as expert volunteers to assist educators. A key element of the modules was that they were developed around an understanding of optics misconceptions and used culminating activities in each module as a form of authentic assessment. Thus student achievement could be measured by evaluating the actual product created by each student in applying key concepts, tools, and applications together at the end of each module. The program used a progression of disciplinary core concepts to build an integrated sequence and crosscutting ideas and practices to infuse the principles of the modern electro-optical field into the modules. Whenever possible, students were encouraged to experiment and to create, and to pursue inquiry-based approaches. The result was a program that had high appeal to regular as well as gifted students.

  3. Methods and Strategies: Beyond the Textbook--But Not Just "Hands On". Using High-Quality Informational Texts to Meet the "Next Generation Science Standards"

    Science.gov (United States)

    Vick, Matthew

    2016-01-01

    Science teaching continues to move away from teaching science as merely a body of facts and figures to be memorized to a process of exploring and drawing conclusions. The Next Generation Science Standards (NGSS) emphasize eight science and engineering practices that ask students to apply scientific and engineering reasoning and explanation. This…

  4. Inquiry-Based Instruction in the Social Studies: Successes and Challenges

    Science.gov (United States)

    Beshears, Crystal M.

    2012-01-01

    The purpose of this study was to investigate teachers' perceptions, understanding, and use of inquiry-based instruction in the social studies, to assess the impact of inquiry-based units on instruction, to detail implementation successes and challenges reported by teachers when implementing inquiry-based instruction, and to provide…

  5. Exercise in Inquiry: Critical Thinking in an Inquiry-Based Exercise Physiology Laboratory Course.

    Science.gov (United States)

    DiPasquale, Dana M.; Mason, Cheryl L.; Kolkhorst, Fred W.

    2003-01-01

    Describes an inquiry-based teaching method implemented in an undergraduate exercise physiology laboratory course. Indicates students' strong, positive feelings about the inquiry-based teaching method and shows that inquiry-based learning results in a higher order of learning not typically observed in traditional style classes. This teaching method…

  6. A Multi-Faceted Approach to Inquiry-Based Learning

    Science.gov (United States)

    Brudzinski, M. R.; Sikorski, J.

    2009-12-01

    In order to fully attain the benefits of inquiry-based learning, instructors who typically employ the traditional lecture format need to make several adjustments to their approach. This change in styles can be intimidating and logistically difficult to overcome. A stepwise approach to this transformation is likely to be more manageable for individual faculty or departments. In this session, we will describe several features that we are implementing in our introductory geology course with the ultimate goal of converting to an entirely inquiry-based approach. Our project is part of the Miami University initiative in the top 25 enrolled courses to move towards the “student as scholar” model for engaged learning. Some of the features we developed for our course include: student learning outcomes, student development outcomes, out-of-class content quizzes, in-class conceptests, pre-/post-course assessment, reflective knowledge surveys, and daily group activities.

  7. Meta-Analysis of Inquiry-Based Instruction Research

    Science.gov (United States)

    Hasanah, N.; Prasetyo, A. P. B.; Rudyatmi, E.

    2017-04-01

    Inquiry-based instruction in biology has been the focus of educational research conducted by Unnes biology department students in collaboration with their university supervisors. This study aimed to describe the methodological aspects, inquiry teaching methods critically, and to analyse the results claims, of the selected four student research reports, grounded in inquiry, based on the database of Unnes biology department 2014. Four experimental quantitative research of 16 were selected as research objects by purposive sampling technique. Data collected through documentation study was qualitatively analysed regarding methods used, quality of inquiry syntax, and finding claims. Findings showed that the student research was still the lack of relevant aspects of research methodology, namely in appropriate sampling procedures, limited validity tests of all research instruments, and the limited parametric statistic (t-test) not supported previously by data normality tests. Their consistent inquiry syntax supported the four mini-thesis claims that inquiry-based teaching influenced their dependent variables significantly. In other words, the findings indicated that positive claims of the research results were not fully supported by good research methods, and well-defined inquiry procedures implementation.

  8. The trend in inquiry-based learning (IBL) research from many perspectives: A systematic review

    Science.gov (United States)

    Anuar, Nor Syuhada Binti Saiful; Sani, Siti Shamsiah Binti; Ahmad, Che Nidzam Binti Che; Damanhuri, Muhd Ibrahim Bin Muhammad; Borhan, Mohamad Termizi Bin

    2017-05-01

    Inquiry-based learning (IBL) is one of the teaching approaches that has been suggested by the Kementerian Pelajaran Malaysia (KPM). Although IBL has been in existence for many years, the effect of this approach in terms of teacher's verbal interaction during teaching has not been considered to any great extent. For this reason, a systematic review was conducted to observe the pattern of the existing IBL research. This systematic review of quantitative and qualitative studies published between 2006 and 2016 was undertaken by using the following databases: Taylor & Francis Online (2012-2015), Wiley Online Library (2012-2015), ScienceDirect, SpringerLink, SAGE Journals, and EBSCOHOST. Research articles from trustworthy websites were also used. The main keywords used were teacher verbal interaction, inquiry-based learning (IBL), secondary school science and classroom interaction. Eleven studies were included in this review but only two out of the eleven selected papers discussed teacher verbal interaction. Hence, more research needs to be conducted in order to observe the effect of IBL towards teacher's verbal interaction during learning sessions.

  9. THE EFFECTIVENESS OF CTL MODEL GUIDED INQUIRI-BASED IN THE TOPIC OF CHEMICALS IN DAILY LIFE TO IMPROVE STUDENTS’ LEARNING OUTCOMES AND ACTIVENESS

    OpenAIRE

    N. R. Fitriani; A. Widiyatmoko; M. Khusniati

    2016-01-01

    Science learning in school can be applied by connecting the material in the learning with real life. However in fact science learning process in SMP Negeri 10 Magelang has not emphasized students’ activity to relate science to real life. Learning science using CTL guided inquiry-based model implement the learning in where teacher provides initial questions related issues or events in everyday life, then students do experiments to prove concepts of science guided by teacher.The purpose of this...

  10. Productive Academic Talk during Inquiry-Based Science

    Science.gov (United States)

    Gillies, Robyn M.

    2013-01-01

    This study reports on the types of academic talk that contribute to enhanced explanatory responses, reasoning, problem-solving and learning. The study involved 10 groups of 3-4 students who were provided with one of three linguistic tools (i.e. Cognitive Questioning, Philosophy for Children and Collaborative Strategic Reading (CSR)) to scaffold…

  11. EXAMINING FACTORS AFFECTING IMPLEMENTATION OF INQUIRY-BASED LEARNING IN FINLAND AND SOUTH KOREA

    Directory of Open Access Journals (Sweden)

    Jingoo Kang

    2016-12-01

    Full Text Available Using inquiry has become a universal factor in science education, but teachers often face challenges in implementing inquiry-based learning (IBL because of, for instance, teachers’ low confidence in conducting inquiry or insufficient school resources. Much research has been conducted to identify the barriers that impede inquiry practice. However, most studies have employed small-scale qualitative methods from a single-country sample, and, thus, the effects of each factor on conducting inquiry in different educational systems have yet to be measured in one statistical model. Accordingly, this research was aimed to explore the extent to which various teacher- and school-factors have respectively affected teachers’ implementation of inquiry-based learning at lower secondary schools. To examine this issue, samples of 496 Finnish teachers in 135 lower secondary schools and 184 Korean teachers in 147 lower secondary schools were selected from the TIMSS 2011 science data set. The findings reveal that teachers’ confidence in teaching science and their collaboration to improve science teaching were strongly associated with facilitating inquiry in both countries, and these two factors’ positive effects on the implementation were partially derived from inquiry-related professional development in the Finnish sample. In addition, class size and school resources were also significantly related to inquiry practice in Finland, and the teachers’ education levels were negatively correlated with the frequency of inquiry practice in Korea. However, in both countries, the teachers’ emphasis on exams was indicated as a non-significant factor in predicting inquiry frequency. The results have implications in respect of the roles of professional development and school environment in increasing IBL practice in school science.

  12. STAR Library Education Network: a hands-on learning program for libraries and their communities

    Science.gov (United States)

    Dusenbery, P.

    2010-12-01

    Science and technology are widely recognized as major drivers of innovation and industry (e.g. Rising above the Gathering Storm, 2006). While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement and public understanding of STEM disciplines. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. Designed spaces, like libraries, allow lifelong, life-wide, and life-deep learning to take place though the research basis for learning in libraries is not as developed as other informal settings like science centers. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national education project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. This project will deepen our knowledge of informal/lifelong learning that takes place in libraries and establish a learning model that can be compared to the more established free-choice learning model for science centers and museums. The project includes the development of two STEM hands-on exhibits on topics that are of interest to library staff and their patrons: Discover Earth and Discover Tech. In addition, the project will produce resources and inquiry-based activities that libraries can use to enrich the exhibit experience. Additional resources will be provided through partnerships with relevant

  13. The Connection Between Forms of Guidance for Inquiry-Based Learning and the Communicative Approaches Applied—a Case Study in the Context of Pre-service Teachers

    Science.gov (United States)

    Lehtinen, Antti; Lehesvuori, Sami; Viiri, Jouni

    2017-09-01

    Recent research has argued that inquiry-based science learning should be guided by providing the learners with support. The research on guidance for inquiry-based learning has concentrated on how providing guidance affects learning through inquiry. How guidance for inquiry-based learning could promote learning about inquiry (e.g. epistemic practices) is in need of exploration. A dialogic approach to classroom communication and pedagogical link-making offers possibilities for learners to acquire these practices. The focus of this paper is to analyse the role of different forms of guidance for inquiry-based learning on building the communicative approach applied in classrooms. The data for the study comes from an inquiry-based physics lesson implemented by a group of five pre-service primary science teachers to a class of sixth graders. The lesson was video recorded and the discussions were transcribed. The data was analysed by applying two existing frameworks—one for the forms of guidance provided and another for the communicative approaches applied. The findings illustrate that providing non-specific forms of guidance, such as prompts, caused the communicative approach to be dialogic. On the other hand, providing the learners with specific forms of guidance, such as explanations, shifted the communication to be more authoritative. These results imply that different forms of guidance provided by pre-service teachers can affect the communicative approach applied in inquiry-based science lessons, which affects the possibilities learners are given to connect their existing ideas to the scientific view. Future research should focus on validating these results by also analysing inservice teachers' lessons.

  14. Inquiry-based learning to improve student engagement in a large first year topic

    Directory of Open Access Journals (Sweden)

    Masha Smallhorn

    2015-08-01

    Full Text Available Increasing the opportunity for students to be involved in inquiry-based activities can improve engagement with content and assist in the development of analysis and critical thinking skills. The science laboratory has traditionally been used as a platform to apply the content gained through the lecture series. These activities have exposed students to experiments which test the concepts taught but which often result in a predicted outcome. To improve the engagement and learning outcomes of our large first year biology cohort, the laboratories were redeveloped. Superlabs were run with 100 students attending weekly sessions increasing the amount of contact time from previous years. Laboratories were redeveloped into guided-inquiry and educators facilitated teams of students to design and carry out an experiment. To analyse the impact of the redevelopment on student satisfaction and learning outcomes, students were surveyed and multiple choice exam data was compared before and after the redevelopment. Results suggest high levels of student satisfaction and a significant improvement in student learning outcomes. All disciplines should consider including inquiry-based activities as a methodology to improve student engagement and learning outcome as it fosters the development of independent learners. 

  15. Do individual differences in children's curiosity relate to their inquiry-based learning?

    Science.gov (United States)

    van Schijndel, Tessa J. P.; Jansen, Brenda R. J.; Raijmakers, Maartje E. J.

    2018-06-01

    This study investigates how individual differences in 7- to 9-year-olds' curiosity relate to the inquiry-learning process and outcomes in environments differing in structure. The focus on curiosity as individual differences variable was motivated by the importance of curiosity in science education, and uncertainty being central to both the definition of curiosity and the inquiry-learning environment. Curiosity was assessed with the Underwater Exploration game (Jirout, J., & Klahr, D. (2012). Children's scientific curiosity: In search of an operational definition of an elusive concept. Developmental Review, 32, 125-160. doi:10.1016/j.dr.2012.04.002), and inquiry-based learning with the newly developed Scientific Discovery task, which focuses on the principle of designing informative experiments. Structure of the inquiry-learning environment was manipulated by explaining this principle or not. As intelligence relates to learning and possibly curiosity, it was taken into account. Results showed that children's curiosity was positively related to their knowledge acquisition, but not to their quality of exploration. For low intelligent children, environment structure positively affected their quality of exploration, but not their knowledge acquisition. There was no interaction between curiosity and environment structure. These results support the existence of two distinct inquiry-based learning processes - the designing of experiments, on the one hand, and the reflection on performed experiments, on the other - and link children's curiosity to the latter process.

  16. The impact of inquiry-based instructional professional development upon instructional practice: An action research study

    Science.gov (United States)

    Broom, Frances A.

    This mixed method case study employs action research, conducted over a three month period with 11 elementary math and science practitioners. Inquiry as an instructional practice is a vital component of math and science instruction and STEM teaching. Teachers examined their beliefs and teaching practices with regard to those instructional factors that influence inquiry instruction. Video-taped lessons were compared to a rubric and pre and post questionnaires along with two interviews which informed the study. The results showed that while most beliefs were maintained, teachers implemented inquiry at a more advanced level after examining their teaching and reflecting on ways to increase inquiry practices. Because instructional practices provide only one component of inquiry-based instruction, other components need to be examined in a future study.

  17. Inquiry-based course in physics and chemistry for preservice K-8 teachers

    Directory of Open Access Journals (Sweden)

    Michael E. Loverude

    2011-05-01

    Full Text Available We describe an inquiry-based course in physics and chemistry for preservice K-8 teachers developed at California State University Fullerton. The course is one of three developed primarily to enhance the science content understanding of prospective teachers. The course incorporates a number of innovative instructional strategies and is somewhat unusual for its interdisciplinary focus. We describe the course structure in detail, providing examples of course materials and assessment strategies. Finally, we provide research data illustrating both the need for the course and the effectiveness of the course in developing student understanding of selected topics. Student responses to various questions reflect a lack of understanding of many relatively simple physical science concepts, and a level of performance that is usually lower than that in comparable courses serving a general education audience. Additional data suggest that course activities improve student understanding of selected topics, often dramatically.

  18. Information fluency for undergraduate biology majors: applications of inquiry-based learning in a developmental biology course.

    Science.gov (United States)

    Gehring, Kathleen M; Eastman, Deborah A

    2008-01-01

    Many initiatives for the improvement of undergraduate science education call for inquiry-based learning that emphasizes investigative projects and reading of the primary literature. These approaches give students an understanding of science as a process and help them integrate content presented in courses. At the same time, general initiatives to promote information fluency are being promoted on many college and university campuses. Information fluency refers to discipline-specific processing of information, and it involves integration of gathered information with specific ideas to form logical conclusions. We have implemented the use of inquiry-based learning to enhance and study discipline-specific information fluency skills in an upper-level undergraduate Developmental Biology course. In this study, an information literacy tutorial and a set of linked assignments using primary literature analysis were integrated with two inquiry-based laboratory research projects. Quantitative analysis of student responses suggests that the abilities of students to identify and apply valid sources of information were enhanced. Qualitative assessment revealed a set of patterns by which students gather and apply information. Self-assessment responses indicated that students recognized the impact of the assignments on their abilities to gather and apply information and that they were more confident about these abilities for future biology courses and beyond.

  19. The Influence of Inquiry-Based Teaching on Male and Female Students' Motivation and Engagement

    Science.gov (United States)

    Kuo, Yen-Ruey; Tuan, Hsiao-Lin; Chin, Chi-Chin

    2018-03-01

    This study aims to examine the influence of inquiry-based instruction on eighth-grade male and female students' motivation and engagement in science learning in two public junior high schools in central Taiwan. Mixed-methods methodology was adopted with 60 students (32 males and 28 females) in the experimental group and 56 students (28 males and 28 females) in the control group. The study lasted for one semester and six units using inquiry-based teaching (90-180 min each) were implemented in the experimental group. Questionnaires used for measuring students' motivation and engagement in science learning were administered as pre- and post-tests. In addition, eight to ten male and female students from both experimental and control groups, as well as two instructors were interviewed four times throughout the semester. Quantitative data were analyzed with t test and the interview data were fully transcribed and coded. Results show that male and female students under intervention expected to do more experiments because it improved their understanding. Male and female students under intervention also used more learning strategies. However, males benefited more than females from the intervention in regard to their motivation and engagement in learning science. Males improved more in motivational constructs, recognized the value of learning science, and increased their cognitive, behavioral, and emotional engagement because what they learned applied to real life. In contrast, females had higher exam anxiety and lower cognitive engagement due to mathematics fear, stronger sense of pride in class, and caring too much about the right answers.

  20. Changes in Teachers' Beliefs and Classroom Practices Concerning Inquiry-Based Instruction Following a Year-Long RET-PLC Program

    Science.gov (United States)

    Miranda, Rommel J.; Damico, Julie B.

    2015-01-01

    This mixed-methods study examines how engaging science teachers in a summer Research Experiences for Teachers (RET) followed by an academic-year Professional Learning Community (PLC) focused on translating teacher research experiences to inquiry-based classroom lessons might facilitate changes in their beliefs and classroom practices regarding…

  1. Effect of Inquiry-Based Computer Simulation Modeling on Pre-Service Teachers' Understanding of Homeostasis and Their Perceptions of Design Features

    Science.gov (United States)

    Chabalengula, Vivien; Fateen, Rasheta; Mumba, Frackson; Ochs, Laura Kathryn

    2016-01-01

    This study investigated the effect of an inquiry-based computer simulation modeling (ICoSM) instructional approach on pre-service science teachers' understanding of homeostasis and its related concepts, and their perceived design features of the ICoSM and simulation that enhanced their conceptual understanding of these concepts. Fifty pre-service…

  2. International Collaboration in Packaging Education: Hands-on System-on-Package (SOP) Graduate Level Courses at Indian Institute of Science and Georgia Tech PRC

    OpenAIRE

    Varadarajan, Mahesh; Bhattacharya, Swapan; Doraiswami, Ravi; Rao, Ananda G; Rao, NJ; May, Gary; Conrad, Leyla; Tummala, Rao

    2005-01-01

    System-on-Package (SOP) continues to revolutionize the realization of convergent systems in microelectronics packaging. The SOP concept which began at the Packaging Research Center (PRC) at Georgia Tech has benefited its international collaborative partners in education including the Indian Institute of Science (IISc). The academic program for electronics packaging currently in the Centre for Electronics Design and Technology (CEDT) at IISc is aimed at educating a new breed of globally-compet...

  3. NGSS aligned Earth science resources and professional development programs from the Exploratorium.

    Science.gov (United States)

    Muller, E.

    2016-12-01

    The Exploratorium is a museum of science, art and human perception located in San Francisco, CA. The Exploratorium has been offering resources and professional development to primary and secondary teachers since 1972. We focus on inquiry based, hands-on learning, with an emphasis on Next Generation Science Standards (NGSS) implementation. This brief, invited presentation will feature the programs and online resources developed by the Exploratorium's "Institute for Inquiry" and "Teacher Institute" that may help formal and informal educators engage, implement and promote three dimensional learning in the Earth Sciences.

  4. Inquiry-based leadership : The influence of affective attitude, experienced social pressure and self-efficacy

    NARCIS (Netherlands)

    Uiterwijk-Luijk, L.; Krüger, M.; Zijlstra, B.; Volman, M.

    2017-01-01

    Purpose The purpose of this paper is to improve the understanding of psychological factors that influence inquiry-based leadership. This study investigates how affective attitude, experienced social pressure, and self-efficacy relate to aspects of inquiry-based school leadership. A school leader’s

  5. Students Learn How Nonprofits Utilize Volunteers through Inquiry-Based Learning

    Science.gov (United States)

    Bolton, Elizabeth B.; Brennan, M. A.; Terry, Bryan D.

    2009-01-01

    This article highlights how undergraduate students implemented inquiry-based learning strategies to learn how nonprofit organizations utilize volunteers. In inquiry-based learning, students begin with a problem or question with some degree of focus or structure provided by the professor. The student inquiry showcased in this article was based on a…

  6. Inquiry-Based Leadership: The Influence of Affective Attitude, Experienced Social Pressure and Self-Efficacy

    Science.gov (United States)

    Uiterwijk-Luijk, Lisette; Krüger, Meta; Zijlstra, Bonne; Volman, Monique

    2017-01-01

    Purpose: The purpose of this paper is to improve the understanding of psychological factors that influence inquiry-based leadership. This study investigates how affective attitude, experienced social pressure, and self-efficacy relate to aspects of inquiry-based school leadership. A school leader's inquiry habit of mind, data literacy, and the…

  7. An Inquiry-Based Approach of Traditional "Step-by-Step" Experiments

    Science.gov (United States)

    Szalay, L.; Tóth, Z.

    2016-01-01

    This is the start of a road map for the effective introduction of inquiry-based learning in chemistry. Advantages of inquiry-based approaches to the development of scientific literacy are widely discussed in the literature. However, unless chemistry educators take account of teachers' reservations and identified disadvantages such approaches will…

  8. Principles of an inquiry-based approach to the teaching of litterature

    DEFF Research Database (Denmark)

    Hansen, Thomas Illum; Gissel, Stig Toke; Kaspersen, Peter

    and to what extent is the teaching of literature in Denmark currently inquiry-based? • How could such an approach inform interventions in practice in Danish secondary education and principles of inquiry-based course designs? General reading comprehension strategies are not suitable for aesthetic texts...

  9. When Science Soars.

    Science.gov (United States)

    Baird, Kate A.; And Others

    1997-01-01

    Describes an inquiry-based activity involving paper airplanes that has been used as a preservice training tool for instructors of a Native American summer science camp, and as an activity for demonstrating inquiry-based methods in a secondary science methods course. Focuses on Bernoulli's principle which describes how fluids move over and around…

  10. Hands-on physics displays for undergraduates

    Science.gov (United States)

    Akerlof, Carl W.

    2014-07-01

    Initiated by Frank Oppenheimer in 1969, the Exploratorium in San Francisco has been the model for hands-on science museums throughout the world. The key idea has been to bring people with all levels of scientific background in contact with interesting and attractive exhibits that require the active participation of the visitor. Unfortunately, many science museums are now forced to cater primarily to very young audiences, often 8 years old or less, with predictable constraints on the intellectual depth of their exhibits. To counter this trend, the author has constructed several hands-on displays for the University of Michigan Physics Department that demonstrate: (1) magnetic levitation of pyrolytic graphite, (2) the varied magnetic induction effects in aluminum, copper and air, (3) chaotic motion of a double pendulum, (4) conservation of energy and momentum in a steel ball magnetic accelerator, (5) the diffraction pattern of red and green laser pointer beams created by CDs and DVDs, (6) a magnetic analog of the refraction of light at a dielectric boundary and (7) optical rotation of light in an aqueous fructose solution. Each of these exhibits can be constructed for something like $1000 or less and are robust enough to withstand unsupervised public use. The dynamic behavior of these exhibits will be shown in accompanying video sequences. The following story has a history that goes back quite a few years. In the late 70's, I was spending time at the Stanford Linear Accelerator Center accompanied by my family that included our two grade school children. Needless to say, we much enjoyed weekend excursions to all sorts of interesting sites in the Bay Area, especially the Exploratorium, an unusual science museum created by Frank Oppenheimer that opened in 1969. The notion that exhibits would be designed specifically for "hands-on" interactions was at that time quite revolutionary. This idea captivated a number of people everywhere including a friend in Ann Arbor, Cynthia

  11. Flipped Science Inquiry@Crescent Girls' School

    Directory of Open Access Journals (Sweden)

    Peishi Goh

    2017-06-01

    Full Text Available This study shares the findings of a school-based Action Research project to explore how inquiry-based science practical lessons designed using the Flipped Science Inquiry@CGS classroom pedagogical model influence the way students learn scientific knowledge and also students' development of 21st century competencies, in particular, in the area of Knowledge Construction. Taking on a broader definition of the flipped classroom pedagogical model, the Flipped Science Inquiry@CGS framework adopts a structure that inverted the traditional science learning experience. Scientific knowledge is constructed through discussions with their peers, making use of their prior knowledge and their experiences while engaging in hands-on activities. Through the study, it is found that with the use of the Flipped Science Inquiry@CGS framework, learning experiences that are better aligned to the epistemology of science while developing 21st century competencies in students are created.

  12. Evaluation of a High School Fair Program for Promoting Successful Inquiry-based Learning

    Science.gov (United States)

    Betts, Julia Nykeah

    The success of inquiry-based learning (IBL) in supporting science literacy can be challenged when students encounter obstacles in the absence of proper support. This research is intended to evaluate the effectiveness of an Oregon public school district's regional science fair coaching program in promoting inquiry skills and positive attitudes toward science in participating high school students. The purpose of this study was to better understand students' perception of program support, obstacles or barriers faced by students, and potential benefits of IBL facilitated by the science fair program. Data included responses to informal and semi-structured interviews, an anonymous survey, a Skills assessment of final project displays, and an in-depth case study on three students' experiences. Results suggest that the science fair program can properly engage participants in authentic IBL. However, when assessing the participant's final project displays, I found that previous fair experience did not significantly increase mean scores as identified by the official Oregon Department of Education (ODE) scoring guides. Based on results from the case study, it is suggested that participants' low science self-concept, poor understanding of inquiry skills, and inability to engage in reflective discourse may reduce students' abilities to truly benefit. Recommendations to address this discrepancy include identifying specific needs of students through a pre--fair survey to develop more targeted support, and providing new opportunities to develop skills associated with science-self concept, understanding of inquiry and reflective discourse. In addition, results suggest that students would benefit from more financial support in the form of grants, and more connections with knowledgeable mentors.

  13. weSPOT: Working Environment with Social and Personal Open Tools for inquiry based learning

    NARCIS (Netherlands)

    Rusman, Ellen; Firssova, Olga; Prinsen, Fleur; Specht, Marcus; Ternier, Stefaan

    2014-01-01

    Presentation of the weSPOT model for Inquiry based learning developed by a EC-funded Research weSPOT project, held at a potential testbed - Sint-Jans College in Hoensbroek, Netherlands on May 20, 2014

  14. PENERAPAN INQUIRY BASED LEARNING UNTUK MENGETAHUI RESPON BELAJAR SISWA PADA MATERI KONSEP DAN PENGELOLAAN KOPERASI

    Directory of Open Access Journals (Sweden)

    Heru Kusmaryono

    2015-03-01

    Full Text Available The objective of the study was to know the students' learning responsestoward Inquiry Based Learning method on the materials of Cooperative Concept andManagement. It was a qualitative descriptive approach and the research subjects were32 students of class X IIS 1 at SMA 1 Bae Kudus. The data were collected byobservation, documentation and interview. The results showed that students gavepositive responses toward the application of Inquiry Based Learning method sincestudents’ responses were very high at 85.51%.

  15. EFFECTIVENESS IN USING INQUIRY-BASED TEXTBOOK OF PHYSICS FOR PHYSICS LEARNING IN VOCATIONAL HIGH SCHOOL.

    OpenAIRE

    Faiz Nour Rohmah; Indrawati; I Ketut Mahardika; Sutarto; Joko Waluyo; Nuriman.

    2018-01-01

    This research aimed to describe the effectiveness in using inquiry-based textbook of Physics for Physics Learning in Vocational High School. The effectiveness was reflected by student learning outcomes and responses after the implementation of inquiry-based textbook of Physics. The research method was quasi-experimental research with design of One Group Pre-test Post-test. The subjects of the research were students of X Multimedia odd semester, Vocational High School Al-Qodiri Jember. Data co...

  16. Inquiry-based leading and learning : Inquiry-based working by school boards, school leaders and teachers and students’ inquiry habit of mind

    NARCIS (Netherlands)

    Luijk, E.

    2017-01-01

    Inquiry-based working is assumed to contribute to improving educational quality and to stimulate professional learning. It involves having an inquiry habit of mind, being data literate and creating a culture of inquiry in schools (based on Earl & Katz, 2006). The general aim of this study was to

  17. Elementary Teachers' Comprehension of Flooding through Inquiry-based Professional Development and Use of Self-regulation Strategies

    Science.gov (United States)

    Lewis, Elizabeth B.; van der Hoeven Kraft, Katrien J.; Bueno Watts, Nievita; Baker, Dale R.; Wilson, Meredith J.; Lang, Michael

    2011-07-01

    This study focuses on elementary teachers' comprehension of flooding before and after inquiry-based professional development (PD). There was an improvement in teachers' understanding toward a normative view from pre- to post-test (n = 17, mean gain = 4.3, SD = 3.27). Several misunderstandings and a general lack of knowledge about flooding emerged from the geoscience content two-tier pre-test, some of which persisted throughout the PD seminar while other responses provided evidence of teachers' improved understanding. The concepts that teachers struggled with were also apparent upon examining teachers' reflections upon their learning and teaching practices throughout the seminar. Teachers were challenged as they attempted to add new academic language, such as storm surge and discharge, to their prior understandings. Flooding concepts that teachers showed the least improvement on included analyzing a topographic region, reading a map image, and hydrograph interpretation. Teachers' greatest areas of improved understanding occurred in understanding the probability and role of ground conditions in flooding events. Teachers demonstrated considerable growth in their understanding of some flooding concepts through scaffolded inquiry lessons modeled throughout the PD. Those teachers who had greater prior knowledge and demonstrated more use of self-regulated learning showed the most change toward a normative view of flooding. The explicit modeling and participation in inquiry-based science activities and written responses to self-regulatory learning prompts throughout the seminar supported teachers' learning.

  18. Evidencing the Value of Inquiry Based, Constructionist Learning for Student Coders

    Directory of Open Access Journals (Sweden)

    Matthew John Yee-King

    2017-09-01

    Full Text Available For the last decade, there has been growing interest in the STEAM approach (essentially combining methods and practices in arts, humanities and social sciences into STEM teaching and research to develop better research and education, and enable us to produce students who can work most effectively in the current and developing market-place. However, despite this interest, there seems to be little quantitative evidence of the true power of STEAM learning, especially describing how it compares and performs with respect to more established approaches. To address this, we present a comparative, quantitative study of two distinct approaches to teaching programming, one based on STEAM (with an open-ended inquiry-based approach, the other based on a more traditional, non-STEAM approach (where constrained problems are set and solved. Our key results evidence how students exhibit different styles of programming in different types of lessons and, crucially, that students who tend to exhibit more of the style of programming observed in our STEAM lessons also tend to achieve higher grades. We present our claims through a range of visualisations and statistical validations which clearly show the significance of the results, despite the small scale of the study. We believe that this work provides clear evidence for the advantages of STEAM over non-STEAM, and provides a strong theoretical and technological framework for future, larger studies.

  19. An inquiry-based approach to the Franck-Hertz experiment

    Science.gov (United States)

    Persano Adorno, Dominique; Pizzolato, Nicola

    2016-05-01

    The practice of scientists and engineers is today exerted within interdisciplinary contexts, placed at the intersections of different research fields, including nanoscale science. The development of the required competences is based on an effective science and engineering instruction, which should be able to drive the students towards a deeper understanding of quantum mechanics fundamental concepts and, at the same time, strengthen their reasoning skills and transversal abilities. In this study we report the results of an inquiry-driven learning path experienced by a sample of 12 electronic engineering undergraduates engaged to perform the Franck-Hertz experiment. Before being involved in this experimental activity, the students received a traditional lecture-based instruction on the fundamental concepts of quantum mechanics, but their answers to an open-ended questionnaire, administered at the beginning of the inquiry activity, demonstrated that the acquired knowledge was characterized by a strictly theoretical vision of quantum science, basically in terms of an artificial mathematical framework having very poor connections with the real world. The Franck Hertz experiment was introduced to the students by starting from the problem of finding an experimental confirmation of the Bohr's postulates asserting that atoms can absorb energy only in quantum portions. The whole activity has been videotaped and this allowed us to deeply analyse the student perception's change about the main concepts of quantum mechanics. We have found that the active participation to this learning experience favored the building of cognitive links among student theoretical perceptions of quantum mechanics and their vision of quantum phenomena, within an everyday context of knowledge. Furthermore, our findings confirm the benefits of integrating traditional lecture-based instruction on quantum mechanics with learning experiences driven by inquiry-based teaching strategies.

  20. An inquiry-based approach to the Franck-Hertz experiment

    International Nuclear Information System (INIS)

    Persano Adorno, Dominique; Pizzolato, Nicola

    2015-01-01

    The practice of scientists and engineers is today exerted within interdisciplinary contexts, placed at the intersections of different research fields, including nanoscale science. The development of the required competencies is based on an effective science and engineering instruction, which should be able to drive the students towards a deeper understanding of quantum mechanics fundamental concepts and, at the same time, strengthen their reasoning skills and transversal abilities. In this study we report the results of an inquiry-driven learning path experienced by a sample of 12 electronic engineering undergraduates engaged to perform the Franck-Hertz experiment. Before being involved in this experimental activity, the students received a traditional lecture-based instruction on the fundamental concepts of quantum mechanics, but their answers to an open-ended questionnaire, administered at the beginning of the inquiry activity, demonstrated that the acquired knowledge was characterized by a strictly theoretical vision of quantum science, basically in terms of an artificial mathematical framework having very poor connections with the real world. The Franck Hertz experiment was introduced to the students by starting from the problem of finding an experimental confirmation of the Bohr’s postulates asserting that atoms can absorb energy only in quantum portions. The whole activity has been videotaped and this allowed us to deeply analyse the student perception’s change about the main concepts of quantum mechanics. We have found that the active participation to this learning experience favored the building of cognitive links among student theoretical perceptions of quantum mechanics and their vision of quantum phenomena, within an everyday context of knowledge. Furthermore, our findings confirm the benefits of integrating traditional lecture-based instruction on quantum mechanics with learning experiences driven by inquiry-based teaching strategies.

  1. Inquiry-based physics education in French middle school.

    OpenAIRE

    Boilevin, Jean-Marie; Morge, Ludovic; Delserieys, Alice

    2010-01-01

    International audience; Developed countries are facing a long-standing phenomenon of students deserting science studies. In response, many international reports have been published to improve science education in compulsory schooling (High Level Group, 2007). They often encourage important evolutions regarding the final objectives for science education (Osborne & Dillon, 2008). Thus an unders tanding of the nature of science and its practices in classrooms holds a significant position, as doe...

  2. Think Scientifically: Science Hidden in a Storybook

    Science.gov (United States)

    Van Norden, W. M.

    2012-12-01

    The Solar Dynamics Observatory's Think Scientifically (TS) program links literacy and science in the elementary classroom through an engaging storybook format and hands-on, inquiry based activities. TS consists of three illustrated storybooks, each addressing a different solar science concept. Accompanying each book is a hands-on science lesson plan that emphasizes the concepts addressed in the book, as well as math, reading, and language arts activities. Written by teachers, the books are designed to be extremely user-friendly and easy to implement in classroom instruction. The objectives of the program are: (1) to increase time spent on science in elementary school classrooms, (2) to assist educators in implementing hands-on science activities that reinforce concepts from the book, (3) to increase teacher capacity and comfort in teaching solar concepts, (4) to increase student awareness and interest in solar topics, especially students in under-served and under-represented communities. Our program meets these objectives through the National Science Standards-based content delivered in each story, the activities provided in the books, and the accompanying training that teachers are offered through the program.; ;

  3. Hands-on Universe - Europe

    Science.gov (United States)

    Ferlet, R.

    2006-08-01

    The EU-HOU project aims at re-awakening the interest for science through astronomy and new technologies, by challenging middle and high schools pupils. It relies on real observations acquired through an internet-based network of robotic optical and radio telescopes or with didactical tools such as Webcam. Pupils manipulate and measure images in the classroom environment, using the specifically designed software SalsaJ, within pedagogical trans-disciplinary resources constructed in close collaboration between researchers and teachers. Gathering eight European countries coordinated in France, EU-HOU is partly funded by the European Union. All its outputs are freely available on the Web, in English and the other languages involved. A European network of teachers is being developed through training sessions.

  4. The Effects of Inquiry-Based Integrated Information Literacy Instruction: Four-Year Trends

    Directory of Open Access Journals (Sweden)

    Lin Ching Chen

    2014-07-01

    Full Text Available The purpose of this study was to examine the effects of four-year integrated information literacy instruction via a framework of inquiry-based learning on elementary students’ memory and comprehension. Moderating factors of students’ academic achievement was another focus of this study. The subjects were 72 students who have participated in this study since they entered an elementary school in Chiayi district. This elementary school adopted the integrated information literacy instruction, designed by the researchers and elementary school teachers, and integrated it into various subject matters via a framework of inquiry-based learning, such as Super 3 and Big6 models. A series of inquiry-based integrated information literacy instruction has been implemented since the second semester of the subjects’ first grade. A total of seven inquiry learning projects has been implemented from grade one through grade four. Fourteen instruments were used as pretests and posttests to assess students’ factual recall and conceptual understanding of subject contents in different projects. The results showed that inquiry-based integrated information literacy instruction couldhelp students memorize facts and comprehend concepts of subject contents. Regardless ofacademic achievements, if students would like to devote their efforts to inquiry processes, their memory and comprehension of subject contents improvedeffectively. However, students of low-academic achievement might need more time to be familiar with the inquiry-based learning strategy.

  5. A Hands-On Approach to Maglev for Gifted Students.

    Science.gov (United States)

    Budd, Raymond T.

    2003-01-01

    This article discusses how Magnetic Levitation (Maglev) can be taught to gifted students in grades 4-9 using hands-on activities that align to the National Science Standards. Principles of magnetic levitation, advantages of magnetic levitation, construction of a Maglev project, testing and evaluation of vehicles, and presentation of the unit are…

  6. Impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines

    Science.gov (United States)

    Marulcu, Ismail; Barnett, Michael

    2016-01-01

    Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic motivation of this study is to suggest a solution to both improving elementary science education and increasing exposure to engineering and technology in it. Purpose/Hypothesis: This mixed-method study examined the impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. We hypothesize that the LEGO-engineering design unit is as successful as the inquiry-based unit in terms of students' science content learning of simple machines. Design/Method: We used a mixed-methods approach to investigate our research questions; we compared the control and the experimental groups' scores from the tests and interviews by using Analysis of Covariance (ANCOVA) and compared each group's pre- and post-scores by using paired t-tests. Results: Our findings from the paired t-tests show that both the experimental and comparison groups significantly improved their scores from the pre-test to post-test on the multiple-choice, open-ended, and interview items. Moreover, ANCOVA results show that students in the experimental group, who learned simple machines with the design-based unit, performed significantly better on the interview questions. Conclusions: Our analyses revealed that the design-based Design a people mover: Simple machines unit was, if not better, as successful as the inquiry-based FOSS Levers and pulleys unit in terms of students' science content learning.

  7. Using Videoconferencing to Provide Mentorship in Inquiry-Based Urban and Rural Secondary Classrooms

    Directory of Open Access Journals (Sweden)

    Qing Li

    2010-07-01

    Full Text Available The main purpose of this design-based research study is to examine the effects of an inquiry-based learning environment, with the support of videoconferencing, on both rural and urban secondary students’ mathematics and science learning. An important aspect of this learning environment is the use of videoconferencing to connect classes with mathematicians/ scientists (as e-mentors. Specifically, the following two research questions guide this study: (1 In what ways, if any, does the inquiry-based learning environment impact student beliefs and learning outcomes? (2 What challenges emerge in the development of an inquiry-based learning environment with secondary students in both rural and urban schools? Using a mixed methods approach, this study focuses on two grade 9 classes in an urban school and three Grade 8 classes in a rural school. The results suggest positive effects of this learning environment on student learning of math and science. In particular, both urban and rural students showed significant gains in their achievement. In addition, students showed an increased interest and heightened confidence in math and science. As well, the results point to issues arising from the process, suggesting useful guidelines for the development of such environments. Résumé : L’objectif principal de cette étude de recherche axée sur la conception est d’examiner les effets d’un environnement d’apprentissage basé sur le processus d’enquête et utilisant le soutien de la vidéoconférence sur l’apprentissage des mathématiques et des sciences auprès d’élèves du secondaire en milieux ruraux et urbains. L’utilisation de la vidéoconférence pour mettre les classes en lien avec des mathématiciens et des scientifiques (en tant que cybermentors constitue un aspect important de cet environnement d’apprentissage. Plus précisément, les deux questions suivantes orientent la présente étude : (1 De quelle manière, le cas

  8. Inquiry-based Laboratory Activities on Drugs Analysis for High School Chemistry Learning

    Science.gov (United States)

    Rahmawati, I.; Sholichin, H.; Arifin, M.

    2017-09-01

    Laboratory activity is an important part of chemistry learning, but cookbook instructions is still commonly used. However, the activity with that way do not improve students thinking skill, especially students creativity. This study aims to improve high school students creativity through inquiry-based laboratory on drugs analysis activity. Acid-base titration is used to be method for drugs analysis involving a color changing indicator. The following tools were used to assess the activity achievement: creative thinking test on acid base titration, creative attitude and action observation sheets, questionnaire of inquiry-based lab activities, and interviews. The results showed that the inquiry-based laboratory activity improving students creative thinking, creative attitude and creative action. The students reacted positively to this teaching strategy as demonstrated by results from questionnaire responses and interviews. This result is expected to help teachers to overcome the shortcomings in other laboratory learning.

  9. Successful implementation of inquiry-based physiology laboratories in undergraduate major and nonmajor courses.

    Science.gov (United States)

    Casotti, G; Rieser-Danner, L; Knabb, M T

    2008-12-01

    Recent evidence has demonstrated that inquiry-based physiology laboratories improve students' critical- and analytical-thinking skills. We implemented inquiry-based learning into three physiology courses: Comparative Vertebrate Physiology (majors), Human Physiology (majors), and Human Anatomy and Physiology (nonmajors). The aims of our curricular modifications were to improve the teaching of physiological concepts, teach students the scientific approach, and promote creative and critical thinking. We assessed our modifications using formative (laboratory exams, oral presentations, and laboratory reports) and summative evaluations (surveys, laboratory notebook, and an end of semester project). Students appreciated the freedom offered by the new curriculum and the opportunity to engage in the inquiry process. Results from both forms of evaluation showed a marked improvement due to the curricular revisions. Our analyses indicate an increased confidence in students' ability to formulate questions and hypotheses, design experiments, collect and analyze data, and make conclusions. Thus, we have successfully incorporated inquiry-based laboratories in both major and nonmajor courses.

  10. Assessing the Effectiveness of Inquiry-based Learning Techniques Implemented in Large Classroom Settings

    Science.gov (United States)

    Steer, D. N.; McConnell, D. A.; Owens, K.

    2001-12-01

    Geoscience and education faculty at The University of Akron jointly developed a series of inquiry-based learning modules aimed at both non-major and major student populations enrolled in introductory geology courses. These courses typically serve 2500 students per year in four to six classes of 40-160 students each per section. Twelve modules were developed that contained common topics and assessments appropriate to Earth Science, Environmental Geology and Physical Geology classes. All modules were designed to meet four primary learning objectives agreed upon by Department of Geology faculty. These major objectives include: 1) Improvement of student understanding of the scientific method; 2) Incorporation of problem solving strategies involving analysis, synthesis, and interpretation; 3) Development of the ability to distinguish between inferences, data and observations; and 4) Obtaining an understanding of basic processes that operate on Earth. Additional objectives that may be addressed by selected modules include: 1) The societal relevance of science; 2) Use and interpretation of quantitative data to better understand the Earth; 3) Development of the students' ability to communicate scientific results; 4) Distinguishing differences between science, religion and pseudo-science; 5) Evaluation of scientific information found in the mass media; and 6) Building interpersonal relationships through in-class group work. Student pre- and post-instruction progress was evaluated by administering a test of logical thinking, an attitude toward science survey, and formative evaluations. Scores from the logical thinking instrument were used to form balanced four-person working groups based on the students' incoming cognitive level. Groups were required to complete a series of activities and/or exercises that targeted different cognitive domains based upon Bloom's taxonomy (knowledge, comprehension, application, analysis, synthesis and evaluation of information). Daily

  11. Implementation of Inquiry-Based Tutorials in AN Introductory Physics Course: the Role of the Graduate Teaching Assistant.

    Science.gov (United States)

    Thoresen, Carol Wiggins

    1994-01-01

    This study determined if the training provided physics teaching assistants was sufficient to accomplish the objectives of inquiry-based tutorials for an introductory physics course. Qualitative research methods were used: (1) to determine if the Physics by Inquiry method was modeled; (2) to describe the process from the teaching assistant perspective; (3) to determine TA opinions on training methods; (4) to develop a frame of reference to better understand the role of TA's as instructional support staff. The study determined that the teaching assistants verbalized appropriate instructional actions, but were observed to use a predominantly didactic teaching style. TA's held a variety of perceptions and beliefs about inquiry -based learning and how science is learned. They felt comfortable in the role of tutorial instructor. They were satisfied with the training methods provided and had few suggestions to change or improve training for future tutorial instructors. A concurrent theme of teacher action dependent on teacher beliefs was sustained throughout the study. The TA's actions, as tutorial instructors, reflected their educational beliefs, student background and learning experiences. TA's performance as tutorial instructors depended on what they think and believe about learning science. Practical implications exist for training teaching assistants to be tutorial instructors. Some recommendations may be appropriate for TA's required to use instructional methods that they have not experienced as students. Interview prospective teaching assistants to determine educational experience and beliefs. Employ inexperienced teaching assistants whose perspectives match the proposed instructional role and who might be more receptive to modeling. Incorporate training into staff meetings. Provide time for TA's to experience the instructional model with simulation or role play as students and as instructors, accompanied by conference discussion. Use strategies known to enhance

  12. A school and inquiry based project with Nordic student teachers

    DEFF Research Database (Denmark)

    Stougaard, Birgitte

    Álka is a framework involving teacher education institutions in the Nordic counties. This study describes the design of a module aiming at the establishment of a stronger nexus between research (theory) and teaching of science (practice) and to explore an issue relevant for the student teachers...... future professional life. The theme that was used for the research based project was: Nordic Children’s ideas about living things in the sea. Oral presentation at The 10th Nordic Research Symposium on Science Education (NFSUN), Linköbing, Sweden, June 2011....

  13. From traditional lab protocols to a Guided Inquiry Based approach: an experience for Biotechnology students at the European University of Madrid

    Directory of Open Access Journals (Sweden)

    Rocío González Soltero

    2013-11-01

    Full Text Available Current conventional laboratory sessions for science undergraduate students are currently reported to fail in developing research competences. However, authentic research experiences, in and out of the laboratory, are becoming more common in introductory undergraduate science programs after the implantation of The Bologna Process. Project-based learning (PBL experiences based on inquiry-based protocols could be used to help students to identify and analyze the information they need to move into complex problems. Inquiry-based courses have been described in the past, where students participate in semester-long guided research projects focused in specific learning objectives (Hatfull et al. 2006; Call et al., 2007; Lopatto et al., 2008. During this last academic year we have designed a PBL model that provides an active learning laboratory experience based on an inquiry-based protocol for 2nd year Biotechnology students. We have designed a modular molecular genetics course that includes bioinformatics and molecular biology lab sessions. In both modules, students had the opportunity to conduct in collaborative groups different research projects about a central theme in molecular biology: the cell cycle. As they were responsible of their own projects, they becoming practicing scientists by proposing and evaluating biological experiments of their own design mentored by teacher facilitation. Final assessments included a thorough literature review about the central topic of the project and a final written paper resembling established publishing criteria for science research international journals. Students were also encouraged to contact well-known scientists in their research area by email during their bibliography search. From the satisfaction surveys, we conclude that results were positive in terms of student satisfaction (as measured in questionnaires and written reflections. This experience helped students understand the strengths, limitations and

  14. Climate Proxies: An Inquiry-Based Approach to Discovering Climate Change on Antarctica

    Science.gov (United States)

    Wishart, D. N.

    2016-12-01

    An attractive way to advance climate literacy in higher education is to emphasize its relevance while teaching climate change across the curriculum to science majors and non-science majors. An inquiry-based pedagogical approach was used to engage five groups of students on a "Polar Discovery Project" aimed at interpreting the paleoclimate history of ice cores from Antarctica. Learning objectives and student learning outcomes were clearly defined. Students were assigned several exercises ranging from examination of Antarctic topography to the application of physical and chemical measurements as proxies for climate change. Required materials included base and topographic maps of Antarctica; graph sheets for construction of topographic cross-sectional profiles from profile lines of the Western Antarctica Ice Sheet (WAIS) Divide and East Antarctica; high-resolution photographs of Antarctic ice cores; stratigraphic columns of ice cores; borehole and glaciochemical data (i.e. anions, actions, δ18O, δD etc.); and isotope data on greenhouse gases (CH4, O2, N2) extracted from gas bubbles in ice cores. The methodology was to engage students in (2) construction of topographic profiles; (2) suggest directions for ice flow based on simple physics; (3) formulate decisions on suitable locations for drilling ice cores; (4) visual ice stratigraphy including ice layer counting; (5) observation of any insoluble particles (i.e. meteoritic and volcanic material); (6) analysis of borehole temperature profiles; and (7) the interpretation of several datasets to derive a paleoclimate history of these areas of the continent. The overall goal of the project was to improve the students analytical and quantitative skills; their ability to evaluate relationships between physical and chemical properties in ice cores, and to advance the understanding the impending consequences of climate change while engaging science, technology, engineering and mathematics (STEM). Student learning outcomes

  15. Life-Cycle Thinking in Inquiry-Based Sustainability Education--Effects on Students' Attitudes towards Chemistry and Environmental Literacy

    Science.gov (United States)

    Juntunen, Marianne; Aksela, Maija

    2013-01-01

    The aim of the present study is to improve the quality of students' environmental literacy and sustainability education in chemistry teaching by combining the socio-scientific issue of life-cycle thinking with inquiry-based learning approaches. This case study presents results from an inquiry-based life-cycle thinking project: an interdisciplinary…

  16. Inquiry-Based Learning and Technology: Designing and Exploring WebQuests

    Science.gov (United States)

    Lacina, Jan

    2007-01-01

    A WebQuest is an inquiry-based technology activity designed by Bernie Dodge and Tom March at San Diego State University in 1995. Dodge and March describe WebQuests as activities in which most, or all, of the information used by learners is drawn from the Web. WebQuests are a powerful instructional activity for teachers and students. Students will…

  17. Investigating the Use of a Digital Library in an Inquiry-Based Undergraduate Geology Course

    Science.gov (United States)

    Apedoe, Xornam S.

    2007-01-01

    This paper reports the findings of a qualitative research study designed to investigate the opportunities and obstacles presented by a digital library for supporting teaching and learning in an inquiry-based undergraduate geology course. Data for this study included classroom observations and field-notes of classroom practices, questionnaires, and…

  18. Repairing Student Misconceptions in Heat Transfer Using Inquiry-Based Activities

    Science.gov (United States)

    Prince, Michael; Vigeant, Margot; Nottis, Katharyn

    2016-01-01

    Eight inquiry-based activities, described here in sufficient detail for faculty to adopt in their own courses, were designed to teach students fundamental concepts in heat transfer. The concept areas chosen were (1) factors affecting the rate vs. amount of heat transfer, (2) temperature vs. perceptions of hot and cold, (3) temperature vs. energy…

  19. A Simple System for Observing Dynamic Phase Equilibrium via an Inquiry-Based Laboratory or Demonstration

    Science.gov (United States)

    Cloonan, Carrie A.; Andrew, Julie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    This article describes an activity that can be used as an inquiry-based laboratory or demonstration for either high school or undergraduate chemistry students to provide a basis for understanding both vapor pressure and the concept of dynamic phase equilibrium. The activity includes a simple setup to create a closed system of only water liquid and…

  20. Inquiry-Based Pre-Engineering Activities for K-4 Students

    Science.gov (United States)

    Perrin, Michele

    2004-01-01

    This paper uses inquiry-based learning to introduce primary students to the concepts and terminology found in four introductory engineering courses: Differential Equations, Circuit Analysis, Thermodynamics, and Dynamics. Simple electronic sensors coupled with everyday objects, such as a troll doll, demonstrate and reinforce the physical principles…

  1. An Epistemological Analysis of the Application of an Online Inquiry-Based Program in Tourism Education

    Science.gov (United States)

    Hsu, Liwei

    2014-01-01

    This paper was designed to investigate the application of an online inquiry-based program to European tourism from an epistemological perspective. Fifty tourism students (n = 50) participated in this study and their epistemological beliefs were measured with the Epistemological Belief Scale. A set of pre-, post-, and delayed tests were utilised to…

  2. Inquiry Based Teaching in Turkey: A Content Analysis of Research Reports

    Science.gov (United States)

    Kizilaslan, Aydin; Sozbilir, Mustafa; Yasar, M. Diyaddin

    2012-01-01

    Inquiry-based learning [IBL] enhances students' critical thinking abilities and help students to act as a scientist through using scientific method while learning. Specifically, inquiry as a teaching approach has been defined in many ways, the most important one is referred to nature of constructing knowledge while the individuals possess a…

  3. Can Graduate Teaching Assistants Teach Inquiry-Based Geology Labs Effectively?

    Science.gov (United States)

    Ryker, Katherine; McConnell, David

    2014-01-01

    This study examines the implementation of teaching strategies by graduate teaching assistants (GTAs) in inquiry-based introductory geology labs at a large research university. We assess the degree of inquiry present in each Physical Geology lab and compare and contrast the instructional practices of new and experienced GTAs teaching these labs. We…

  4. Developing and Supporting Students' Autonomy to Plan, Perform, and Interpret Inquiry-Based Biochemistry Experiments

    Science.gov (United States)

    Silva, Thanuci; Galembeck, Eduardo

    2017-01-01

    Laboratory sessions are designed to develop the experimental skills and the acquaintance with instruments that may contribute to a successful career in Biochemistry and associated fields. This study is a report on improving a traditional Biochemistry course by devising the laboratory sessions as an inquiry-based environment to develop the…

  5. Inquiry-based Investigation in Biology Laboratories: Does Neem Provide Bioprotection against Bean Beetles?

    Science.gov (United States)

    Pearce, Amy R.; Sale, Amanda Lovelace; Srivatsan, Malathi; Beck, Christopher W.; Blumer, Lawrence S.; Grippo, Anne A.

    2013-01-01

    We developed an inquiry-based biology laboratory exercise in which undergraduate students designed experiments addressing whether material from the neem tree ("Azadirachta indica") altered bean beetle ("Callosobruchus maculatus") movements and oviposition. Students were introduced to the bean beetle life cycle, experimental…

  6. A Web-Based Learning Support System for Inquiry-Based Learning

    Science.gov (United States)

    Kim, Dong Won; Yao, Jingtao

    The emergence of the Internet and Web technology makes it possible to implement the ideals of inquiry-based learning, in which students seek truth, information, or knowledge by questioning. Web-based learning support systems can provide a good framework for inquiry-based learning. This article presents a study on a Web-based learning support system called Online Treasure Hunt. The Web-based learning support system mainly consists of a teaching support subsystem, a learning support subsystem, and a treasure hunt game. The teaching support subsystem allows instructors to design their own inquiry-based learning environments. The learning support subsystem supports students' inquiry activities. The treasure hunt game enables students to investigate new knowledge, develop ideas, and review their findings. Online Treasure Hunt complies with a treasure hunt model. The treasure hunt model formalizes a general treasure hunt game to contain the learning strategies of inquiry-based learning. This Web-based learning support system empowered with the online-learning game and founded on the sound learning strategies furnishes students with the interactive and collaborative student-centered learning environment.

  7. Enhanced Learning of Biotechnology Students by an Inquiry-Based Cellulase Laboratory

    Science.gov (United States)

    Ketpichainarong, Watcharee; Panijpan, Bhinyo; Ruenwongsa, Pintip

    2010-01-01

    This study explored the effectiveness of an inquiry-based cellulase laboratory unit in promoting inquiry in undergraduate students in biotechnology. The following tools were used to assess the students' achievements and attitude: conceptual understanding test, concept mapping, students' documents, CLES questionnaire, students' self reflection, and…

  8. Phospholipids, Dietary Supplements, and Chicken Eggs: An Inquiry-Based Exercise Using Thin-Layer Chromatography

    Science.gov (United States)

    Potteiger, Sara E.; Belanger, Julie M.

    2015-01-01

    This inquiry-based experiment is designed for organic or biochemistry undergraduate students to deduce the identity of phospholipids extracted from chicken eggs and dietary supplements. This is achieved using thin-layer chromatography (TLC) data, a series of guided questions of increasing complexity, and provided relative retention factor (Rf)…

  9. Authority in an Agency-Centered, Inquiry-Based University Calculus Classroom

    Science.gov (United States)

    Gerson, Hope; Bateman, Elizabeth

    2010-01-01

    Authority roles among teachers and students have traditionally been hierarchal and centered with the expertise and power of the teacher limiting opportunities for students to act with autonomy to build and justify mathematics. In this paper we discuss authority roles for teachers and students that have been realized in an inquiry-based university,…

  10. A review of the types of mobile activities in mobile inquiry-based learning

    NARCIS (Netherlands)

    Suarez, Angel; Specht, Marcus; Prinsen, Fleur; Kalz, Marco; Ternier, Stefaan

    2017-01-01

    Inquiry-based Learning is increasingly suggested as an efficient approach for fostering learners’ curiosity and motivation. It helps learners to develop their ability to work in complex and unpredictable environments making them more critical thinkers and agentic learners. Although mobile technology

  11. Student Perceptions of a Mathematics Major for Prospective Elementary Teachers with an Inquiry-Based Philosophy

    Science.gov (United States)

    Cook, Samuel A.; Borkovitz, Debra K.

    2017-01-01

    In this paper we present data from one-on-one interviews conducted with students who have taken intermediate and advanced inquiry-based mathematics courses in a program that prepares future preK-8 teachers. Many of these students entered college with a fear of math, but then gained confidence from a required introductory math course and chose to…

  12. Use of Genomic Databases for Inquiry-Based Learning about Influenza

    Science.gov (United States)

    Ledley, Fred; Ndung'u, Eric

    2011-01-01

    The genome projects of the past decades have created extensive databases of biological information with applications in both research and education. We describe an inquiry-based exercise that uses one such database, the National Center for Biotechnology Information Influenza Virus Resource, to advance learning about influenza. This database…

  13. Effects of Inquiry-Based Agriscience Instruction on Student Scientific Reasoning

    Science.gov (United States)

    Thoron, Andrew C.; Myers, Brian E.

    2012-01-01

    The purpose of this study was to determine the effect of inquiry-based agriscience instruction on student scientific reasoning. Scientific reasoning is defined as the use of the scientific method, inductive, and deductive reasoning to develop and test hypothesis. Developing scientific reasoning skills can provide learners with a connection to the…

  14. Improving Achievement for Linguistically and Culturally Diverse Learners through an Inquiry-Based Earth Systems Curriculum

    Science.gov (United States)

    Lambert, Julie; Ariza, Eileen N. Whelan

    2008-01-01

    This report describes an inquiry-based Earth systems curriculum and strategies for teaching diverse students, which were embedded in the curriculum. The curriculum was implemented with 5th-grade students with varied linguistic, cultural, and socioeconomic backgrounds in five schools in a large, southeastern U.S., urban school district. At the end…

  15. Effectiveness of Inquiry-Based Learning in an Undergraduate Exercise Physiology Course

    Science.gov (United States)

    Nybo, Lars; May, Michael

    2015-01-01

    The present study was conducted to investigate the effects of changing a laboratory physiology course for undergraduate students from a traditional step-by-step guided structure to an inquiry-based approach. With this aim in mind, quantitative and qualitative evaluations of learning outcomes (individual subject-specific tests and group interviews)…

  16. Inquiry-Based Laboratory Activities in Electrochemistry: High School Students' Achievements and Attitudes

    Science.gov (United States)

    Sesen, Burcin Acar; Tarhan, Leman

    2013-01-01

    This study aimed to investigate the effects of inquiry-based laboratory activities on high school students' understanding of electrochemistry and attitudes towards chemistry and laboratory work. The participants were 62 high school students (average age 17 years) in an urban public high school in Turkey. Students were assigned to experimental (N =…

  17. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    Science.gov (United States)

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-01-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual…

  18. THE INCORPORATION OF THE USA ‘SCIENCE MADE SENSIBLE’ PROGRAM IN SOUTH AFRICAN PRIMARY SCHOOLS: A CROSS-CULTURAL APPROACH TO SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    Rian de Villiers

    2016-02-01

    Full Text Available The Science Made Sensible (SMS program began as a partnership between the University of Miami (UM, Florida, USA, and some public schools in Miami. In this program, postgraduate students from UM work with primary school science teachers to engage learners in science through the use of inquiry-based, hands-on activities. Due to the success of the SMS program in Miami, it was extended internationally. The SMS team (two Miami Grade 6/7 science teachers and two UM postgraduate students, 195 learners, and five South African teachers at two primary schools in Pretoria, South Africa, participated in this study. A quantitative research design was employed, and learners, teachers and UM postgraduate students used questionnaires to evaluate the SMS program. The results show that the SMS team was successful in reaching the SMS goals in these South African schools. More than 90% of the learners are of opinion that the SMS team from the USA made them more interested in the natural sciences and fostered an appreciation for the natural sciences. All the South African teachers plan to adopt and adapt some of the pedagogical strategies they learned from the SMS team. This article includes a discussion about the benefits of inquiry-based learning and the similarities and dissimilarities of USA and South Africa’s teaching methods in the science classrooms.

  19. Hands-On Skills for Caregivers

    Science.gov (United States)

    ... A + A You are here Home Hands-On Skills for Caregivers Printer-friendly version When you’re ... therapist who can help you develop your transferring skills. Allow for their reality Remember to accept your ...

  20. A set of vertically integrated inquiry-based practical curricula that develop scientific thinking skills for large cohorts of undergraduate students.

    Science.gov (United States)

    Zimbardi, Kirsten; Bugarcic, Andrea; Colthorpe, Kay; Good, Jonathan P; Lluka, Lesley J

    2013-12-01

    Science graduates require critical thinking skills to deal with the complex problems they will face in their 21st century workplaces. Inquiry-based curricula can provide students with the opportunities to develop such critical thinking skills; however, evidence suggests that an inappropriate level of autonomy provided to underprepared students may not only be daunting to students but also detrimental to their learning. After a major review of the Bachelor of Science, we developed, implemented, and evaluated a series of three vertically integrated courses with inquiry-style laboratory practicals for early-stage undergraduate students in biomedical science. These practical curricula were designed so that students would work with increasing autonomy and ownership of their research projects to develop increasingly advanced scientific thinking and communication skills. Students undertaking the first iteration of these three vertically integrated courses reported learning gains in course content as well as skills in scientific writing, hypothesis construction, experimental design, data analysis, and interpreting results. Students also demonstrated increasing skills in both hypothesis formulation and communication of findings as a result of participating in the inquiry-based curricula and completing the associated practical assessment tasks. Here, we report the specific aspects of the curricula that students reported as having the greatest impact on their learning and the particular elements of hypothesis formulation and communication of findings that were more challenging for students to master. These findings provide important implications for science educators concerned with designing curricula to promote scientific thinking and communication skills alongside content acquisition.

  1. Creating opportunities for science PhDs to pursue careers in high school education.

    Science.gov (United States)

    Doyle, Kari M H; Vale, Ronald D

    2013-11-01

    The United States is confronting important challenges at both the early and late stages of science education. At the level of K-12 education, a recent National Research Council report (Successful K-12 STEM Education) proposed a bold restructuring of how science is taught, moving away from memorizing facts and emphasizing hands-on, inquiry-based learning and a deeper understanding of the process of science. At higher levels of training, limited funding for science is leading PhDs to seek training and careers in areas other than research. Might science PhDs play a bigger role in the future of K-12 education, particularly at the high school level? We explore this question by discussing the roles that PhDs can play in high school education and the current and rather extensive barriers to PhDs entering the teaching profession and finally suggest ways to ease the entrance of qualified PhDs into high school education.

  2. Culturally Relevant Inquiry-Based Laboratory Module Implementations in Upper-Division Genetics and Cell Biology Teaching Laboratories

    Science.gov (United States)

    Siritunga, Dimuth; Montero-Rojas, Maria; Carrero, Katherine; Toro, Gladys; Velez, Ana; Carrero-Martinez, Franklin A.

    2011-01-01

    Today, more minority students are entering undergraduate programs than ever before, but they earn only 6% of all science or engineering PhDs awarded in the United States. Many studies suggest that hands-on research activities enhance students' interest in pursuing a research career. In this paper, we present a model for the implementation of…

  3. The Citizen Science Program "H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change" teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. This is a continuation of the Program presented last year at the Poster Session.

    Science.gov (United States)

    Weiss, N. K.; Wood, J. H.

    2017-12-01

    TThe Citizen Science Program H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to Ocean Quest where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by Ocean Quest.

  4. Do Inquiring Minds Have Positive Attitudes? The Science Education of Preservice Elementary Teachers

    Science.gov (United States)

    Riegle-Crumb, Catherine; Morton, Karisma; Moore, Chelsea; Chimonidou, Antonia; Labrake, Cynthia; Kopp, Sacha

    2016-01-01

    Due to their potential impact on students' cognitive and non-cognitive outcomes, the negative attitudes towards science held by many elementary teachers are a critical issue that needs to be addressed. This study focuses on the science education of pre-service elementary teachers with the goal of improving their attitudes before they begin their professional lives as classroom teachers. Specifically, this study builds on a small body of research to examine whether exposure to inquiry-based science content courses that actively involve students in the collaborative process of learning and discovery can promote a positive change in attitudes towards science across several different dimensions. To examine this issue, surveys and administrative data were collected from over 200 students enrolled in the Hands on Science (HoS) program for pre-service teachers at the University of Texas at Austin, as well as more than 200 students in a comparison group enrolled in traditional lecture-style classes. Quantitative analyses reveal that after participating in HoS courses, pre-service teachers significantly increased their scores on scales measuring confidence, enjoyment, anxiety, and perceptions of relevance, while those in the comparison group experienced a decline in favorable attitudes to science. These patterns offer empirical support for the attitudinal benefits of inquiry-based instruction and have implications for the future learning opportunities available to students at all education levels. PMID:27667862

  5. Faculty Workshops for Teaching Information Assurance through Hands-On Exercises and Case Studies

    Science.gov (United States)

    Yuan, Xiaohong; Williams, Kenneth; Yu, Huiming; Rorrer, Audrey; Chu, Bei-Tseng; Yang, Li; Winters, Kathy; Kizza, Joseph

    2017-01-01

    Though many Information Assurance (IA) educators agree that hands-on exercises and case studies improve student learning, hands-on exercises and case studies are not widely adopted due to the time needed to develop them and integrate them into curricula. Under the support of the National Science Foundation (NSF) Scholarship for Service program, we…

  6. Inquiry based learning: a student centered learning to develop mathematical habits of mind

    Science.gov (United States)

    Handayani, A. D.; Herman, T.; Fatimah, S.; Setyowidodo, I.; Katminingsih, Y.

    2018-05-01

    Inquiry based learning is learning that based on understanding constructivist mathematics learning. Learning based on constructivism is the Student centered learning. In constructivism, students are trained and guided to be able to construct their own knowledge on the basis of the initial knowledge that they have before. This paper explained that inquiry based learning can be used to developing student’s Mathematical habits of mind. There are sixteen criteria Mathematical Habits of mind, among which are diligent, able to manage time well, have metacognition ability, meticulous, etc. This research method is qualitative descriptive. The result of this research is that the instruments that have been developed to measure mathematical habits of mind are validated by the expert. The conclusion is the instrument of mathematical habits of mind are valid and it can be used to measure student’s mathematical habits of mind.

  7. DEVELOPMENT SCIENTIFIC INQUIRY BASED TEACHING MATERIALS ON DYNAMIC FLUIDS TO IMPROVE STUDENTS ACHIEVEMENT

    Directory of Open Access Journals (Sweden)

    Jeliana Veronika Sirait

    2016-06-01

    Full Text Available The study was conducted to investigate whether the developed scientific inquiry-based teaching materials can improve the students’ response, the students’ activity and the students’ achievement. This study is development which based on Borg & Gall product development. Samples were selected randomly by raffling 4 classes into one class, applied teaching materials based scientific inquiry. The instruments which are used in this study consisted of three namely quetionnaires used for validation of teaching material by the expert of the material and the expert of design, the evaluation of physics teacher and students’ response toward teaching materials and observation sheet of students’ activity used in learning process and also test for students’ achievement in the form of multiple choice consisted of 10 quetions provided for end of the learning. The results of this study showed that the developed scientific inquiry-based teaching materials can improve the students’ response, the students’ activity and the students’ achievement in every session.

  8. Independent Interactive Inquiry-Based Learning Modules Using Audio-Visual Instruction In Statistics

    OpenAIRE

    McDaniel, Scott N.; Green, Lisa

    2012-01-01

    Simulations can make complex ideas easier for students to visualize and understand. It has been shown that guidance in the use of these simulations enhances students’ learning. This paper describes the implementation and evaluation of the Independent Interactive Inquiry-based (I3) Learning Modules, which use existing open-source Java applets, combined with audio-visual instruction. Students are guided to discover and visualize important concepts in post-calculus and algebra-based courses in p...

  9. Gender Differences in Achievement in an Inquiry-Based Learning Precalculus Course

    OpenAIRE

    Thomas E. Cooper; Brad Bailey; Karen S. Briggs

    2015-01-01

    The authors conducted a two-semester quasi-experimental study in which each author taught a traditional lecture-based section of precalculus and a section using an inquiry-based approach called a Modified Moore Method in which the students worked through and presented the course material. A common final exam was used to compare student achievement. The results were compared for the overall population and by each instructor. Gender proved to be an important variable with the females performing...

  10. Teaching radio astrophysics the hand-on way

    Science.gov (United States)

    Joshi, Bhal Chandra

    Astronomy and space sciences have always been instrumental in attracting young students to physical sciences. While the lectures/demonstrations and exhibitions pertaining to space sci-ences capture the imagination of young students, these alone are not sufficient to induce them to join scientific research. In countries like India, where a large number of students take to physical sciences for under-graduate education, complex sociological factors are key issues in translating this large body of students to potential researchers. While lectures and exhibition lead to an increase in scientific awareness for these students, these do not give a feel for scien-tific research and bridge the gap between high school/college science education and high end research. In this context, a hands-on approach to astronomy education, in science research environments or closely connected to scientific institutions, offers a promising alternative. This approach has been used in optical astronomy, where inexpensive small telescopes are available, often coupling a vast network of amateur astronomy clubs to leading astronomy institutes. The non-visual and relatively more technical nature of radio astronomy has limited a similar approach in past for connecting students to space sciences using radio waveband. The tech-nological explosion in communication industry and radio connectivity in the last decade along with an expansion in engineering education makes this possible now using a hands-on approach in teaching radio astrophysics. In this presentation, the sociological factors affecting the student choice are discussed followed by a review of the efforts to bridge the above mentioned gap by various groups in the world in the last decade with a view to enumerate the best practices in a hands-on approach. A program using this approach at National Center for Radio Astrophysics is described, where the students are exposed to simple hands-on radio astronomy experiments such as spectral line

  11. A cross-cultural, multilevel study of inquiry-based instruction effects on conceptual understanding and motivation in physics

    Science.gov (United States)

    Negishi, Meiko

    Student achievement and motivation to learn physics is highly valued in many industrialized countries including the United States and Japan. Science education curricula in these countries emphasize the importance and encourage classroom teachers to use an inquiry approach. This dissertation investigated high school students' motivational orientations and their understanding of physics concepts in a context of inquiry-based instruction. The goals were to explore the patterns of instructional effects on motivation and learning in each country and to examine cultural differences and similarities. Participants consisted of 108 students (55 females, 53 males) and 9 physics teachers in the United States and 616 students (203 females and 413 males) and 11 physics teachers in Japan. Students were administered (a) Force Concept Inventory measuring physics conceptual understanding and (b) Attitudes about Science Questionnaire measuring student motivational orientations. Teachers were given a survey regarding their use of inquiry teaching practices and background information. Additionally, three teachers in each country were interviewed and observed in their classrooms. For the data analysis, two-level hierarchical linear modeling (HLM) methods were used to examine individual student differences (i.e., learning, motivation, and gender) within each classroom (i.e., inquiry-based teaching, teaching experience, and class size) in the U.S. and Japan, separately. Descriptive statistical analyses were also conducted. The results indicated that there was a cultural similarity in that current teaching practices had minimal influence on conceptual understanding as well as motivation of high school students between the U.S. and Japan. In contrast, cultural differences were observed in classroom structures and instructional approaches. Furthermore, this study revealed gender inequity in Japanese students' conceptual understanding and self-efficacy. Limitations of the study, as well as

  12. In Support of Access and Inclusion: Joint Professional Development for Science and Special Educators

    Directory of Open Access Journals (Sweden)

    Rita Brusca-Vega

    2014-11-01

    Full Text Available This article addresses the need for collaborative professional development of science and special educators to enhance access and inclusion for students with disabilities and improve science learning for all students. The purpose of the study was to examine changes in the teaching practices of science and special educators, grades 4 to 8, as they jointly completed an intense year-long professional development program designed to promote hands-on, inquiry-based science in their classrooms; expand their instructional repertoires to better serve students with disabilities and other learning problems; and facilitate communication between the groups. Quantitative and qualitative measures, including pre and post ratings of teacher classroom performance, action research projects, and teacher interviews, were used to determine changes in teacher instructional and collaborative practices.

  13. Inquiry-based learning with weSPOT in secondary education: “Colony on Mars” project

    NARCIS (Netherlands)

    Rusman, Ellen; Prinsen, Fleur; Janssen, Theo

    2014-01-01

    Presentation about the pilot 'Colony on Mars' within a secondary school context (Sint Jan college) with an inquiry based learning model and adapted assessment framework to integrate 21st century skills in learning activities of pupils.

  14. Effects of an Inquiry-Based Short Intervention on State Test Anxiety in Comparison to Alternative Coping Strategies

    Directory of Open Access Journals (Sweden)

    Ann Krispenz

    2018-02-01

    Full Text Available Background and Objectives: Test anxiety can have undesirable consequences for learning and academic achievement. The control-value theory of achievement emotions assumes that test anxiety is experienced if a student appraises an achievement situation as important (value appraisal, but feels that the situation and its outcome are not fully under his or her control (control appraisal. Accordingly, modification of cognitive appraisals is assumed to reduce test anxiety. One method aiming at the modification of appraisals is inquiry-based stress reduction. In the present study (N = 162, we assessed the effects of an inquiry-based short intervention on test anxiety.Design: Short-term longitudinal, randomized control trial.Methods: Focusing on an individual worry thought, 53 university students received an inquiry-based short intervention. Control participants reflected on their worry thought (n = 55 or were distracted (n = 52. Thought related test anxiety was assessed before, immediately after, and 2 days after the experimental treatment.Results: After the intervention as well as 2 days later, individuals who had received the inquiry-based intervention demonstrated significantly lower test anxiety than participants from the pooled control groups. Further analyses showed that the inquiry-based short intervention was more effective than reflecting on a worry thought but had no advantage over distraction.Conclusions: Our findings provide first experimental evidence for the effectiveness of an inquiry-based short intervention in reducing students’ test anxiety.

  15. Parts of the Whole: Hands On Statistics

    Directory of Open Access Journals (Sweden)

    Dorothy Wallace

    2018-01-01

    Full Text Available In this column we describe a hands-on data collection lab for an introductory statistics course. The exercise elicits issues of normality, sampling, and sample mean comparisons. Based on volcanology models of tephra dispersion, this lab leads students to question the accuracy of some assumptions made in the model, particularly regarding the normality of the dispersal of tephra of identical size in a given atmospheric layer.

  16. Open inquiry-based learning experiences: a case study in the context of energy exchange by thermal radiation

    International Nuclear Information System (INIS)

    PERG (University of Palermo, Physics Education Research Group) Dipartimento di Fisica e Chimica, Università di Palermo, Palermo (Italy))" data-affiliation=" (UOPPERG (University of Palermo, Physics Education Research Group) Dipartimento di Fisica e Chimica, Università di Palermo, Palermo (Italy))" >Pizzolato, Nicola; PERG (University of Palermo, Physics Education Research Group) Dipartimento di Fisica e Chimica, Università di Palermo, Palermo (Italy))" data-affiliation=" (UOPPERG (University of Palermo, Physics Education Research Group) Dipartimento di Fisica e Chimica, Università di Palermo, Palermo (Italy))" >Fazio, Claudio; PERG (University of Palermo, Physics Education Research Group) Dipartimento di Fisica e Chimica, Università di Palermo, Palermo (Italy))" data-affiliation=" (UOPPERG (University of Palermo, Physics Education Research Group) Dipartimento di Fisica e Chimica, Università di Palermo, Palermo (Italy))" >Battaglia, Onofrio Rosario

    2014-01-01

    An open inquiry (OI)-based teaching/learning experience, regarding a scientific investigation of the process of energy exchange by thermal radiation, is presented. A sample of upper secondary school physics teachers carried out this experience at the University of Palermo, Italy, in the framework of ESTABLISH, a FP7 European Project aimed at promoting and developing inquiry-based science education. The teachers had the opportunity to personally experience an OI-based learning activity, with the aim of exploring the pedagogical potentialities of this teaching approach to promote both the understanding of difficult concepts and a deeper view of scientific practices. The teachers were firstly engaged in discussions concerning real-life problematic situations, and then stimulated to design and carry out their own laboratory activities, aimed at investigating the process of energy exchange by thermal radiation. A scientific study on the energy exchange between a powered resistor and its surrounding environment, during the heating and cooling processes, was designed and performed. Here we report the phases of this experiment by following the teachers' perspective. A structured interview conducted both before and after the OI experience allowed us to analyze and point out the teachers' feedback from a pedagogical point of view. The advantages and limits of an OI-based approach to promote the development of more student-centred inquiry-oriented teaching strategies are finally discussed. (paper)

  17. Science teachers’ individual and social learning related to IBSE in the frames of a large-scale, long-term, collaborative TPD project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Sillasen, Martin

    of collaborative inquiries locally. A major theme in the first year has been Inquiry Based Science Education (IBSE) recommended as a focus to improve science education internationally. The research presented focuses on the participating teachers’ intertwined levels of individual and social learning. Data from...... repeated surveys and case studies reveal a positive attitude towards trying IBSE in the own classroom, however with the main part of the reflections focused on students’ hands-on experiences and fewer including students manipulating science ideas, like posing hypotheses. Teachers’ reflections indicate......It is acknowledged internationally that teachers’ Professional Development (TPD) is crucial for reforming science teaching. The Danish QUEST project (“Qualifying in-service Education of Science Teachers”) is designed using widely agreed criteria for effective TPD: content focus, active learning...

  18. Development of Guided Inquiry-Based Student Lab Worksheet on the Making of Pineapple Flavoring

    Science.gov (United States)

    Dwiyanti, G.; Suryatna, A.; Taibah, I.

    2017-02-01

    The aim of this research was to develop guided inquiry based student lab worksheet on making pineapple flavour and knowing the quality of worksheet that is being developed. Research methods that is being conducted is research and development that is limited by a preliminary studies (literature studies, field surveys, and preparation of the initial product) and development of the model (within limited testing). The results from analyze the books sources and fields survey showed that the characteristic of esterification lab worksheet that currently available still in the direct instruction form (cookbook). The optimization result of making pineapple flavour experiment that was conducted are the ethanol volume 3 mL, butyric acid volume 2 mL, sulfuric acid 5 drops, saturated NaHCO3 solution volume 9 mL, and temperature of heating was 80 °C. The characteristic of guided inquiry based student lab worksheet that was developed contained phenomenon and instructions that suitable with inquiry stages to guide the students in doing the experiment of making pineapple flavour. The evaluation of designated teachers and lecturers of the developed student worksheet were very good (96,08%). Lab-experiment feasibility achieved by using guided inquiry based student lab worksheets that is being developed based on the inquiry stages that conducted by student were found very good (97,50%) and accomplishment based on students’ answer of the tasks in the worksheet were found very good (83,84%). Students’ responses of the experiments using the developed worksheet are found very good (81,84%).

  19. Effectiveness of inquiry-based learning in an undergraduate exercise physiology course.

    Science.gov (United States)

    Nybo, Lars; May, Michael

    2015-06-01

    The present study was conducted to investigate the effects of changing a laboratory physiology course for undergraduate students from a traditional step-by-step guided structure to an inquiry-based approach. With this aim in mind, quantitative and qualitative evaluations of learning outcomes (individual subject-specific tests and group interviews) were performed for a laboratory course in cardiorespiratory exercise physiology that was conducted in one year with a traditional step-by-step guided manual (traditional course) and the next year completed with an inquiry-based structure (I-based course). The I-based course was a guided inquiry course where students had to design the experimental protocol and conduct their own study on the basis of certain predefined criteria (i.e., they should evaluate respiratory responses to submaximal and maximal exercise and provide indirect and direct measures of aerobic exercise capacity). The results indicated that the overall time spent on the experimental course as well as self-evaluated learning outcomes were similar across groups. However, students in the I-based course used more time in preparation (102 ± 5 min) than students in the traditional course (42 ± 3 min, P traditional course. Furthermore, students in the I-based course achieved a higher (P traditional course (31 ± 4%). Although students were unfamiliar with cardiorespiratory exercise physiology and the experimental methods before the course, it appears that an inquiry-based approach rather than one that provides students with step-by-step instructions may benefit learning outcomes in a laboratory physiology course. Copyright © 2015 The American Physiological Society.

  20. Inquiry-Based Laboratory Activity to Investigate Physical Growth Requirements of Microorganisms

    Directory of Open Access Journals (Sweden)

    Michelle Furlong

    2014-08-01

    Full Text Available Standard "cookbook" laboratory activities that are used to teach students the optimal physical growth conditions of microorganisms should be modified so that they more effectively foster student's higher order cognitive skills and attract student interest.  This paper describes a laboratory activity that engages students in an inquiry-based approach to studying the physical growth requirements of microorganisms.  In this activity, students design and implement an experiment to obtain pure cultures of specific microorganisms, with distinct growth properties, that are provided to them in a mixed culture.

  1. The Revolution in Earth and Space Science Education.

    Science.gov (United States)

    Barstow, Daniel; Geary, Ed; Yazijian, Harvey

    2002-01-01

    Explains the changing nature of earth and space science education such as using inquiry-based teaching, how technology allows students to use satellite images in inquiry-based investigations, the consideration of earth and space as a whole system rather than a sequence of topics, and increased student participation in learning opportunities. (YDS)

  2. Investigating the impact of a LEGO(TM)-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines

    Science.gov (United States)

    Marulcu, Ismail

    This mixed method study examined the impact of a LEGO-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. This study takes a social constructivist theoretical stance that science learning involves learning scientific concepts and their relations to each other. From this perspective, students are active participants, and they construct their conceptual understanding through the guidance of their teacher. With the goal of better understanding the use of engineering education materials in classrooms the National Academy of Engineering and National Research Council in the book "Engineering in K-12 Education" conducted an in-depth review of the potential benefits of including engineering in K--12 schools as (a) improved learning and achievement in science and mathematics, (b) increased awareness of engineering and the work of engineers, (c) understanding of and the ability to engage in engineering design, (d) interest in pursuing engineering as a career, and (e) increased technological literacy (Katehi, Pearson, & Feder, 2009). However, they also noted a lack of reliable data and rigorous research to support these assertions. Data sources included identical written tests and interviews, classroom observations and videos, teacher interviews, and classroom artifacts. To investigate the impact of the design-based simple machines curriculum compared to the scientific inquiry-based simple machines curriculum on student learning outcomes, I compared the control and the experimental groups' scores on the tests and interviews by using ANCOVA. To analyze and characterize the classroom observation videotapes, I used Jordan and Henderson's (1995) method and divide them into episodes. My analyses revealed that the design-based Design a People Mover: Simple Machines unit was, if not better, as successful as the inquiry-based FOSS Levers and Pulleys unit in terms of students' content learning. I also

  3. Using mockups for hands-on training

    International Nuclear Information System (INIS)

    Morris, A.R.

    1991-01-01

    The presentation of Using Mockups for Hands-on Training will be a slide presentation showing slides of mockups that are used by the Westinghouse Hanford Company in Maintenance Training activities. This presentation will compare mockups to actual plant equipment. It will explain the advantages and disadvantages of using mockups. The presentation will show students using the mockups in the classroom environment and slides of the actual plant equipment. The presentation will discuss performance-based training. This part of the presentation will show slides of students doing hands-on training on aerial lifts, fork trucks, and crane and rigging applications. Also shown are mockups that are used for basic hydraulics; hydraulic torquing; refrigeration and air conditioning; valve seat repair; safety relief valve training; and others. The presentation will discuss functional duplicate equipment and simulated nonfunctional equipment. The presentation will discuss the acquisition of mockups from spare parts inventory or from excess parts inventory. The presentation will show attendees how the mockups are used to enhance the training of the Hanford Site employees and how similar mockups could be used throughout the nuclear industry

  4. Implementing and Assessing Inquiry-Based Learning through the CAREER Award

    Science.gov (United States)

    Brudzinski, M. R.

    2011-12-01

    In order to fully attain the benefits of inquiry-based learning, instructors who typically employ the traditional lecture format need to make many adjustments to their approach. This change in styles can be intimidating and logistically difficult to overcome, both for instructors and students, such that a stepwise approach to this transformation is likely to be more manageable. In this session, I will describe a series of tools to promote inquiry-based learning that I am helping to implement and assess in classroom courses and student research projects. I will demonstrate the importance of integrating with existing institutional initiatives as well as recognizing how student development plays a key role in student engagement. Some of the features I will highlight include: defining both student learning outcomes and student development outcomes, converting content training to be self-directed and asynchronous, utilizing conceptests to help students practice thinking like scientists, and employing both objective pre/post assessment and student self-reflective assessment. Lastly, I will reflect on how the well-defined goal of teaching and research integration in the CAREER award solicitation resonated with me even as an undergraduate and helped inspire my early career.

  5. Active science as a contribution to the trauma recovery process: preliminary indications with orphans from the 1994 genocide in Rwanda

    Science.gov (United States)

    Perrier, Frédéric; Nsengiyumva, Jean-Baptiste

    2003-09-01

    Constructivist, hands-on, inquiry-based, science activities may have a curative potential that could be valuable in a psychological assistance programme for child victims of violence and war. To investigate this idea, pilot sessions were performed in an orphanage located in Ruhengeri, Rwanda, with seven young adults and two groups of 11 children aged from 9 to 16 years. Despite a number of imperfections in this attempt, significant observations have been made. First, a sound communication was established with all, even with the young adults who at the beginning were not as enthusiastic as the children. Furthermore, some children, originally isolated, silent and sad, displayed a high degree of happiness during the activities, and an overall increasing positive change of attitude. In addition, they appropriated well some principles of experimental science. This suggests that a joint development of science literacy and joy may be an interesting approach, both in education and therapy.

  6. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  7. Transitioning to Inquiry-Based Teaching: Exploring Science Teachers' Professional Development Experiences

    Science.gov (United States)

    Kazempour, Mahsa; Amirshokoohi, Aidin

    2014-01-01

    The literature on professional development is replete with studies that utilize survey, interview, and classroom observation data, primarily collected post professional development experience, to explore teachers' knowledge, beliefs, and actions; however, we lack a clear understanding of teachers' learning process and reflections during the…

  8. Salting the Oats: Using Inquiry-based Science To Engage Learners at Risk.

    Science.gov (United States)

    Lynch, Paddy

    2001-01-01

    Considers how due to the emphasis of reading, writing, and math, low-performing students are pulled from their regular classes for one-on-one tutorial sessions, restricting their exposure to group discussions and activities that encourage higher-order thinking skills. Suggests a reshaping of remedial curricula based on six guidelines. (SG)

  9. Effectiveness of inquiry-based learning in an undergraduate exercise physiology course

    DEFF Research Database (Denmark)

    Nybo, Lars; May, Michael

    2015-01-01

    (individual subject-specific tests and group interviews) were performed for a laboratory course in cardiorespiratory exercise physiology that was conducted in one year with a traditional step-by-step guided manual (traditional course) and the next year completed with an inquiry-based structure (I-based course......). The I-based course was a guided inquiry course where students had to design the experimental protocol and conduct their own study on the basis of certain predefined criteria (i.e., they should evaluate respiratory responses to submaximal and maximal exercise and provide indirect and direct measures...... of aerobic exercise capacity). The results indicated that the overall time spent on the experimental course as well as self-evaluated learning outcomes were similar across groups. However, students in the I-based course used more time in preparation (102 ± 5 min) than students in the traditional course (42...

  10. An Open Educational Resource Supports a Diversity of Inquiry-Based Learning

    Directory of Open Access Journals (Sweden)

    Catherine Anne Schmidt-Jones

    2012-01-01

    Full Text Available There have been numerous calls for research that demonstrates how open education resources (OERs are actually being used. This case study sought to shed light on the users of a well-visited set of modular music-education materials published at Connexions. Respondents to a voluntary survey included teachers, students, self-directed learners, music ensemble participants, and casual learners. Most reported accessing individual modules on their own initiative, as part of a specific, immediate inquiry, rather than responding to institutional directives or following entire online courses. This was supported by computer-log records, which showed that most visitors to a module arrived from an Internet search for terms specific to that module. The study suggests that, for teachers and students as well as self-directed learners, one function of OERs is as a resource for just-in-time, inquiry-based learning.

  11. Laboratory projects using inquiry-based learning: an application to a practical inorganic course

    Directory of Open Access Journals (Sweden)

    José G. Carriazo

    2011-01-01

    Full Text Available This paper reports how laboratory projects (LP coupled to inquiry-based learning (IBL were implemented in a practical inorganic chemistry course. Several coordination compounds have been successfully synthesised by students according to the proposed topics by the LP-IBL junction, and the chemistry of a number of metals has been studied. Qualitative data were collected from written reports, oral presentations, lab-notebook reviews and personal discussions with the students through an experimental course with undergraduate second-year students at the Universidad Nacional de Colombia during the last 5 years. Positive skills production was observed by combining LP and IBL. Conceptual, practical, interpretational, constructional (questions, explanations, hypotheses, communicational, environmental and application abilities were revealed by the students throughout the experimental course.

  12. Blended learning in dentistry: 3-D resources for inquiry-based learning

    Directory of Open Access Journals (Sweden)

    Susan Bridges

    2012-06-01

    Full Text Available Motivation is an important factor for inquiry-based learning, so creative design of learning resources and materials is critical to enhance students’ motivation and hence their cognition. Modern dentistry is moving towards “electronic patient records” for both clinical treatment and teaching. Study models have long been an essential part of dental records. Traditional plaster casts are, however, among the last type of clinical record in the dental field to be converted into digital media as virtual models. Advantages of virtual models include: simpler storage; reduced risk of damage, disappearance, or misplacement; simpler and effective measuring; and easy transferal to colleagues. In order to support student engagement with the rapidly changing world of digital dentistry, and in order to stimulate the students’ motivation and depth of inquiry, this project aims to introduce virtual models into a Bachelor and Dental Surgery (BDS curriculum. Under a “blended” e-learning philosophy, students are first introduced to the new software then 3-D models are incorporated into inquiry-based problems as stimulus materials. Face-to-face tutorials blend virtual model access via interactive whiteboards (IWBs. Students’ perceptions of virtual models including motivation and cognition as well as the virtual models’ functionality were rated after a workshop introducing virtual models and plaster models in parallel. Initial student feedback indicates that the 3-D models have been generally well accepted, which confirmed the functionality of the programme and the positive perception of virtual models for enhancing students’ learning motivation. Further investigation will be carried out to assess the impact of virtual models on students’ learning outcomes.

  13. Geneva University: Experiments in Physics: Hands-on Creative Processes

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92   Lundi 3 octobre 2011, 17h00 Ecole de Physique, Auditoire Stueckelberg «Experiments in Physics : Hands-on Creative Processes» Prof. Manfred Euler Leibniz-Institute for Mathematics and Science Education (IPN) University of Kiel, Deutschland Experiments play a variety of different roles in knowledge generation. The lecture will focus on the function of experiments as engines of intuition that foster insights into complex processes. The experimental presentations consider self-organization phenomena in various domains that range from the nanomechanics of biomolecules to perception and cognition. The inherent universality contributes to elucidating the enigmatic phenomenon of creativity. Une verrée en compagnie du conférencier sera offerte après le colloque.       &...

  14. Designing a hands-on brain computer interface laboratory course.

    Science.gov (United States)

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2016-08-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.

  15. The Inspiring Science Education project and the resources for HEP analysis by university students

    International Nuclear Information System (INIS)

    Fassouliotis, Dimitris; Kourkoumelis, Christine; Vourakis, Stylianos

    2016-01-01

    The Inspiring Science Education outreach project has been running for more than two years, creating a large number of inquiry based educational resources for high-school teachers and students. Its goal is the promotion of science education in schools though new methods built on the inquiry based education techniques, involving large consortia of European partners and implementation of large-scale pilots in schools. Recent hands-on activities, developing and testing the above mentioned innovative applications are reviewed. In general, there is a lack for educational scenaria and laboratory courses earmarked for more advanced, namely university, students. At the University of Athens for the last four years, the HYPATIA on-line event analysis tool has been used as a lab course for fourth year undergraduate physics students, majoring in HEP. Up to now, the course was limited to visual inspection of a few tens of ATLAS events. Recently the course was enriched with additional analysis exercises, which involve large samples of events. The students through a user friendly interface can analyse the samples and optimize the cut selection in order to search for new physics. The implementation of this analysis is described

  16. Self-Reported Student Confidence in Troubleshooting Ability Increases after Completion of an Inquiry-Based PCR Practical

    Science.gov (United States)

    Cook, Anthony L.; Snow, Elizabeth T.; Binns, Henrica; Cook, Peta S.

    2015-01-01

    Inquiry-based learning (IBL) activities are complementary to the processes of laboratory discovery, as both are focused on producing new findings through research and inquiry. Here, we describe the results of student surveys taken pre- and postpractical to an IBL undergraduate practical on PCR. Our analysis focuses primarily student perceptions of…

  17. Developing Students' Critical Thinking, Problem Solving, and Analysis Skills in an Inquiry-Based Synthetic Organic Laboratory Course

    Science.gov (United States)

    Weaver, Marisa G.; Samoshin, Andrey V.; Lewis, Robert B.; Gainer, Morgan J.

    2016-01-01

    A course is described where students are engaged in an inquiry-based quarter-long research project to synthesize a known pharmaceutical target. Students use literature search engines, such as Reaxys and SciFinder, and the primary chemical literature as resources to plan and perform the synthesis of their pharmaceutical target. Through this…

  18. Ordinary Least Squares and Quantile Regression: An Inquiry-Based Learning Approach to a Comparison of Regression Methods

    Science.gov (United States)

    Helmreich, James E.; Krog, K. Peter

    2018-01-01

    We present a short, inquiry-based learning course on concepts and methods underlying ordinary least squares (OLS), least absolute deviation (LAD), and quantile regression (QR). Students investigate squared, absolute, and weighted absolute distance functions (metrics) as location measures. Using differential calculus and properties of convex…

  19. An Inquiry-Based Project Focused on the X-Ray Powder Diffraction Analysis of Common Household Solids

    Science.gov (United States)

    Hulien, Molly L.; Lekse, Jonathan W.; Rosmus, Kimberly A.; Devlin, Kasey P.; Glenn, Jennifer R.; Wisneski, Stephen D.; Wildfong, Peter; Lake, Charles H.; MacNeil, Joseph H.; Aitken, Jennifer A.

    2015-01-01

    While X-ray powder diffraction (XRPD) is a fundamental analytical technique used by solid-state laboratories across a breadth of disciplines, it is still underrepresented in most undergraduate curricula. In this work, we incorporate XRPD analysis into an inquiry-based project that requires students to identify the crystalline component(s) of…

  20. Evaluating the Effectiveness of a Practical Inquiry-Based Learning Bioinformatics Module on Undergraduate Student Engagement and Applied Skills

    Science.gov (United States)

    Brown, James A. L.

    2016-01-01

    A pedagogic intervention, in the form of an inquiry-based peer-assisted learning project (as a practical student-led bioinformatics module), was assessed for its ability to increase students' engagement, practical bioinformatic skills and process-specific knowledge. Elements assessed were process-specific knowledge following module completion,…

  1. An Inquiry-Based Approach to Teaching the Spherical Earth Model to Preservice Teachers Using the Global Positioning System

    Science.gov (United States)

    Song, Youngjin; Schwenz, Richard

    2013-01-01

    This article describes an inquiry-based lesson to deepen preservice teachers' understanding of the spherical Earth model using the Global Positioning System. The lesson was designed with four learning goals: (1) to increase preservice teachers' conceptual knowledge of the spherical Earth model; (2) to develop preservice teachers'…

  2. Authenticating Children's Literature: Raising Cultural Awareness with an Inquiry-Based Project in a Teacher Education Course

    Science.gov (United States)

    Smith, Jane; Wiese, Patricia

    2006-01-01

    This article discusses the importance of authentic picture-storybook adaptations of multicultural folktales and describes an action research project through which a children's picture-book adaptation of a traditional tale can be authenticated using an inquiry-based process. In addition to modeling an actual authentication project using "The Golden…

  3. Elementary Teachers' Comprehension of Flooding through Inquiry-Based Professional Development and Use of Self-Regulation Strategies

    Science.gov (United States)

    Lewis, Elizabeth B.; van der Hoeven Kraft, Katrien J.; Watts, Nievita Bueno; Baker, Dale R.; Wilson, Meredith J.; Lang, Michael

    2011-01-01

    This study focuses on elementary teachers' comprehension of flooding before and after inquiry-based professional development (PD). There was an improvement in teachers' understanding toward a normative view from pre- to post-test (n = 17, mean gain = 4.3, SD = 3.27). Several misunderstandings and a general lack of knowledge about flooding emerged…

  4. Exploring Marine Ecosystems with Elementary School Portuguese Children: Inquiry-Based Project Activities Focused on "Real-Life" Contexts

    Science.gov (United States)

    Guilherme, Elsa; Faria, Cláudia; Boaventura, Diana

    2016-01-01

    The purpose of the study was to investigate how young students engage in an inquiry-based project driven by real-life contexts. Elementary school children were engaged in a small inquiry project centred on marine biodiversity and species adaptations. All activities included the exploration of an out-of-school setting as a learning context. A total…

  5. Teaching and Learning Numerical Analysis and Optimization: A Didactic Framework and Applications of Inquiry-Based Learning

    Science.gov (United States)

    Lappas, Pantelis Z.; Kritikos, Manolis N.

    2018-01-01

    The main objective of this paper is to propose a didactic framework for teaching Applied Mathematics in higher education. After describing the structure of the framework, several applications of inquiry-based learning in teaching numerical analysis and optimization are provided to illustrate the potential of the proposed framework. The framework…

  6. Characterizing Teaching Assistants' Knowledge and Beliefs Following Professional Development Activities within an Inquiry-Based General Chemistry Context

    Science.gov (United States)

    Wheeler, Lindsay B.; Maeng, Jennifer L.; Whitworth, Brooke A.

    2017-01-01

    The purpose of this investigation was to explore changes in undergraduate and graduate teaching assistants' (TAs') content knowledge and beliefs about teaching within the context of an inquiry-based laboratory course. TAs received professional development (PD), which was informed by the TA training literature base and was designed for TAs…

  7. Using Expectancy-Value Theory to Explore Aspects of Motivation and Engagement in Inquiry-Based Learning in Primary Mathematics

    Science.gov (United States)

    Fielding-Wells, Jill; O'Brien, Mia; Makar, Katie

    2017-01-01

    Inquiry-based learning (IBL) is a pedagogical approach in which students address complex, ill-structured problems set in authentic contexts. While IBL is gaining ground in Australia as an instructional practice, there has been little research that considers implications for student motivation and engagement. Expectancy-value theory (Eccles and…

  8. The Effect of Inquiry-Based Explorations in a Dynamic Geometry Environment on Sixth Grade Students' Achievements in Polygons

    Science.gov (United States)

    Erbas, Ayhan Kursat; Yenmez, Arzu Aydogan

    2011-01-01

    The purpose of this study was to investigate the effects of using a dynamic geometry environment (DGE) together with inquiry-based explorations on the sixth grade students' achievements in polygons and congruency and similarity of polygons. Two groups of sixth grade students were selected for this study: an experimental group composed of 66…

  9. Sherlock Holmes and the Case of the Raven and the Ambassador's Wife: An Inquiry-Based Murder Mystery

    Science.gov (United States)

    Grove, Nathaniel; Bretz, Stacey Lowery

    2005-01-01

    An inquiry-based experiment on Sherlock Holmes adventure stories used to actively involve students in a series of laboratory experiments to prove the guilt of the accused murderer is presented. The result from such experiments showed that students were able to distinguish between sugar and possible poison.

  10. Adding SPICE to Science

    Science.gov (United States)

    Levey, Douglas

    2005-01-01

    In this article, the author would like to raise awareness of GK?12 programs by sharing experiences from SPICE (Science Partners in Inquiry-based Collaborative Education), a partnership between the University of Florida and Alachua County Public Schools. SPICE pairs nine graduate student fellows with nine middle school science teachers. Each…

  11. Analyzing the Watershed Dynamics project as an example of successful science and education partnerships

    Science.gov (United States)

    Buzby, C. K.; Jona, K.

    2009-12-01

    The Watershed Dynamics project is a partnership between Northwestern University, the Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), and the GLOBE Program (Global Learning and Observations to Benefit the Environment). The goal of the project is to develop inquiry-based educational materials that use authentic scientific data and analysis techniques to teach students about the watershed. The relationship between Northwestern, CUAHSI, and GLOBE allows each partner to contribute to the development of the project in the area of their expertise. Science researchers from CUAHSI share science content knowledge and data access through the development of their Hydrologic Information System (HIS). Curriculum developers at Northwestern write inquiry-based curriculum using GIS technology to access and analyze live data. The GLOBE Program is a worldwide hands-on, primary and secondary school-based science education program that provides teacher training opportunities to a network of teachers around the world. This partnership allows each partner to bring their area of expertise to the project and make the best use of one another's resources. The Watershed Dynamics project can serve as a model for future partnerships between the science and education communities. The Office of Science, Technology, Engineering, and Math Education Partnerships (OSEP) at Northwestern is a service organization that supports Northwestern researchers in developing proposals and implementing research projects that incorporate K-12 educational components, particularly in the fields of science, technology, engineering and mathematics (STEM). OSEP assists faculty with the development of sound plans for education and outreach that reflect current research on learning and educational reform and provides expertise in STEM education materials development, learning technologies, and professional development for K-12 teachers and facilitators in informal education institutions

  12. Known structure, unknown function: An inquiry-based undergraduate biochemistry laboratory course.

    Science.gov (United States)

    Gray, Cynthia; Price, Carol W; Lee, Christopher T; Dewald, Alison H; Cline, Matthew A; McAnany, Charles E; Columbus, Linda; Mura, Cameron

    2015-01-01

    Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year-long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three-dimensional structure. The first half of the course is inquiry-based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org. © 2015 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  13. An Inquiry-Based Laboratory Module to Promote Understanding of the Scientific Method and Bacterial Conjugation

    Directory of Open Access Journals (Sweden)

    Melanie B. Berkmen

    2014-08-01

    Full Text Available Students are engaged and improve their critical thinking skills in laboratory courses when they have the opportunity to design and conduct inquiry-based experiments that generate novel results. A discovery-driven project for a microbiology, genetics, or multidisciplinary research laboratory course was developed to familiarize students with the scientific method. In this multi-lab module, students determine whether their chosen stress conditions induce conjugation and/or cell death of the model BSL-1 Gram-positive bacterium Bacillus subtilis. Through consultation of the primary literature, students identify conditions or chemicals that can elicit DNA damage, the SOS response, and/or cellular stress.  In groups, students discuss their selected conditions, develop their hypotheses and experimental plans, and formulate their positive and negative controls. Students then subject the B. subtilis donor cells to the stress conditions, mix donors with recipients to allow mating, and plate serial dilutions of the mixtures on selective plates to measure how the treatments affect conjugation frequency and donor cell viability.  Finally, students analyze and discuss their collective data in light of their controls. The goals of this module are to encourage students to be actively involved in the scientific process while contributing to our understanding of the conditions that stimulate horizontal gene transfer in bacteria.

  14. A Quantitative Reasoning Approach to Algebra Using Inquiry-Based Learning

    Directory of Open Access Journals (Sweden)

    Victor I. Piercey

    2017-07-01

    Full Text Available In this paper, I share a hybrid quantitative reasoning/algebra two-course sequence that challenges the common assumption that quantitative literacy and reasoning are less rigorous mathematics alternatives to algebra and illustrates that a quantitative reasoning framework can be used to teach traditional algebra. The presentation is made in two parts. In the first part, which is somewhat philosophical and theoretical, I explain my personal perspective of what I mean by “algebra” and “doing algebra.” I contend that algebra is a form of communication whose value is precision, which allows us to perform algebraic manipulations in the form of simplification and solving moves. A quantitative reasoning approach to traditional algebraic manipulations rests on intentional and purposeful use of simplification and solving moves within contextual situations. In part 2, I describe a 6-week instructional module intended for undergraduate business students that was delivered to students who had placed into beginning algebra. The perspective described in part 1 heavily informed the design of this module. The course materials, which involve the use of Excel in multiple authentic contexts, are built around the use of inquiry-based learning. Upon completion of this module, the percentage of students who successfully complete model problems in an assessment is in the same range as surveyed students in precalculus and calculus, approximately two “grade levels” ahead of their placement.

  15. A Low-Tech, Hands-On Approach To Teaching Sorting Algorithms to Working Students.

    Science.gov (United States)

    Dios, R.; Geller, J.

    1998-01-01

    Focuses on identifying the educational effects of "activity oriented" instructional techniques. Examines which instructional methods produce enhanced learning and comprehension. Discusses the problem of learning "sorting algorithms," a major topic in every Computer Science curriculum. Presents a low-tech, hands-on teaching method for sorting…

  16. PARRISE, Promoting Attainment of Responsible Research and Innovation in Science Education, FP7 : Rethinking science, rethinking education

    NARCIS (Netherlands)

    Knippels, M.C.P.J.; van Dam, F.W.

    The PARRISE (Promoting Attainment of Responsible Research & Innovation in Science Education) project aims at introducing the concept of Responsible Research and Innovation in primary and secondary education. It does so by combining inquiry-based learning and citizenship education with

  17. Teaching the Interior Composition and Rheology of the Earth to Undergraduate Students Using an Inquiry Based Approach

    Science.gov (United States)

    Hayden, T. G.; Callahan, C. N.; Sibert, R. J.; Ewald, S. K.

    2011-12-01

    Most introductory geology courses include a lesson on the internal layered structure of the Earth. Due to the abstract nature of the content, this topic is difficult to teach using an inquiry-based approach. The challenge is two-fold: first, students cannot directly see the layers from their perspective on the earth's surface, and second, students have trouble grasping the vast scale of the earth, which far exceeds their everyday experiences. In addition, the two separate classification systems for dividing the internal structure of the Earth are often a point of confusion and source of misconceptions. In response to this challenge, we developed an inquiry lesson that scaffolds students' understanding of the compositional and rheological properties of the Earth's interior. The intent is to build students' understanding of the Earth's layers by guiding their attention to the reasons for the separate classification systems and the individual layers. The investigation includes teacher- or material-driven components such as guiding questions and specific hand-samples for analogues as well as student-driven components like collecting data and constructing explanations. The lesson opens with a series of questions designed to elicit students' existing ideas about the Earth's interior. The students are then guided to make observations of hand samples meant to represent examples of the crust and mantle as well as physical materials meant to serve as analogues for the lithosphere and asthenosphere. The lesson concludes with students integrating their observations into a model of the Earth's internal structure that accounts for both the compositional and rheological properties. Although this lesson was originally developed as a roughly 60 minute lesson for a class of 24 students, we also note ways this lesson can be modified for use at a variety of course levels. The lesson was pilot-tested in an introductory Earth Science course for future elementary (K-8) teachers. Data

  18. THE EFFECT OF INQUIRY BASED LEARNING ON THE REASONING ABILITY OF GRADE VII STUDENTS ABOUT HEAT CONCEPT

    Directory of Open Access Journals (Sweden)

    N. A. C. Damawati

    2016-01-01

    Full Text Available This study aimed to analyze the effect of Inquiry Based Learningon the reasoning ability of grade 7 students about heat concept. This study is a quasi-experimental research design with non-equivalent post-test only controls group design. Two groups of seventh grade students were included as samples, which receive the experimental class of Inquiry Based Learning treatment while the other group acted as a control group who received the learning process in accordance with the applicable provisions of the curriculum. The data collected in this study is the students reasoning ability which obtained from the test of reasoning ability. Data were analyzed using descriptive statistics and statistical parametric t-test. Results of independet research shows that there are significant differences in reasoning abilities between the experimental class and control class. In this research, the experiment class perform more better reasoning skills than the control class.Penelitian ini bertujuan untuk menganalisis pengaruh Inquiry Based Learning terhadap kemampuan penalaran siswa kelas VII pada materi Kalor. Penelitian ini merupakan penelitian eksperimen semu dengan rancangan non-equivalent post-test only control group design.  Dua kelompok siswa kelas VII  dilibatkan sebagai sampel penelitian, dimana kelas eksperimen menerima perlakuan Inquiry Based Learning sementara kelompok lainnya bertindak sebagai kelas kontrol yang menerima proses pembelajaran sesuai dengan ketentuan kurikulum yang berlaku di sekolah tempat penelitian dilaksanakan. Data yang dikumpulkan dalam penelitian ini adalah kemampuan penalaran siswa yang diperoleh dari hasil tes kemampuan penalaran. Data dianalisis dengan menggunakan statistik deskriptif dan statistik parametrik Independent t-test. Hasil penelitian menunjukkan bahwa terdapat perbedaan kemampuan penalaran yang signifikan antara kelas eksperimen dan kelas kontrol Kelas eksperimen menunjukkan kemampuan penalaran yang lebih baik

  19. A community sharing hands-on centers in engineer's training

    Directory of Open Access Journals (Sweden)

    jean-pierre jpt Taboy

    2006-02-01

    Full Text Available As teachers in Technical Universities, we must think about the engineer's training. We need good applicants, up to date hardware and software for hand-on. Each university don't have enough money and technical people to cover the new needs. A community sharing remote hand-on centers could be a solution.

  20. Math in Action. Hands-On, Minds-On Math.

    Science.gov (United States)

    Waite-Stupiansky, Sandra; Stupiansky, Nicholas G.

    1998-01-01

    Hands-on math must also involve students' minds in creative thinking. Math manipulatives must be used for uncovering, not just discovering. This paper presents guidelines for planning hands-on, minds-on math for elementary students. Suggestions include dialoging, questioning, integrating manipulatives and other tools, writing, and evaluating. (SM)

  1. HANDS-ON MATERIALS AS INVITATION TO A FANTASY WORLD

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye

    In this article I wish to introduce an innovative use of hands-on-materials, developed by Peter Müller, a Danish elementary school teacher. The hands-on material itself consists of a collection of small plastic bears in different colors and sizes, which can be used for many different purposes among...

  2. A comparison of hands-on inquiry instruction to lectureinstruction with special needs high school biology students

    Science.gov (United States)

    Jensen-Ruopp, Helga Spitko

    A comparison of hands-on inquiry instruction with lecture instruction was presented to 134 Patterns and Process Biology students. Students participated in seven biology lessons that were selected from Biology Survey of Living Things (1992). A pre and post paper and pencil assessment was used as the data collecting instrument. The treatment group was taught using hands-on inquiry strategies while the non-treatment group was taught in the lecture method of instruction. The team teaching model was used as the mode of presentation to the treatment group and the non-treatment group. Achievement levels using specific criterion; novice (0% to 50%), developing proficiency (51% to 69%), accomplished (70% to 84) and exceptional or mastery level (85% to 100%) were used as a guideline to tabulate the results of the pre and post assessment. Rubric tabulation was done to interpret the testing results. The raw data was plotted using percentage change in test score totals versus reading level score by gender as well as percentage change in test score totals versus auditory vocabulary score by gender. Box Whisker plot comparative descriptive of individual pre and post test scores for the treatment and non-treatment group was performed. Analysis of covariance (ANCOVA) using MINITAB Statistical Software version 14.11 was run on data of the seven lessons, as well as on gender (male results individual and combined, and female results individual and combined) results. Normal Probability Plots for total scores as well as individual test scores were performed. The results suggest that hands-on inquiry based instruction when presented to special needs students including; at-risk; English as a second language limited, English proficiency and special education inclusive students' learning may enhance individual student achievement.

  3. Telescope Construction: A Hands-On Approach to Astronomy Education

    Science.gov (United States)

    Sarrazine, Angela R.; Albin, E.

    2009-01-01

    We report on a popular semester-long telescope making course offered at Fernbank Science Center in Atlanta, GA. The program is tailored for junior / senior level high school students and incorporates the current educational performance standards for the state of Georgia. This course steps out of the traditional classroom environment and allows students to explore optics and astronomical concepts by constructing their own telescopes. Student telescopes follow the classic six-inch f/8 Newtonian reflector design, which has proven to be a good compromise between portability and aperture. Participants meet for a few hours, twice weekly, to build their telescopes. Over the course of the semester, raw one-inch thick Pyrex mirror blanks are ground, polished, and figured by hand into precision telescope objectives. Along the way, students are introduced to the Ronchi and Foucault methods for testing optics and once figured, completed mirrors are then chemically silvered. A plywood Dobsonian-style base is built and eventually mated with an optical tube made from a standard eight-inch concrete form tube or sonotube. An evening of star testing the optics and observation is planned at the end of the semester to insure the proper operation of each telescope. In summary, we believe that a hands-on approach to the understanding and use of optical telescopes is a great way not only to instill enthusiasm among students for the night sky, but may perhaps inspire the next generation of professional telescope makers.

  4. An Educational Model for Hands-On Hydrology Education

    Science.gov (United States)

    AghaKouchak, A.; Nakhjiri, N.; Habib, E. H.

    2014-12-01

    This presentation provides an overview of a hands-on modeling tool developed for students in civil engineering and earth science disciplines to help them learn the fundamentals of hydrologic processes, model calibration, sensitivity analysis, uncertainty assessment, and practice conceptual thinking in solving engineering problems. The toolbox includes two simplified hydrologic models, namely HBV-EDU and HBV-Ensemble, designed as a complement to theoretical hydrology lectures. The models provide an interdisciplinary application-oriented learning environment that introduces the hydrologic phenomena through the use of a simplified conceptual hydrologic model. The toolbox can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching more advanced topics including uncertainty analysis, and ensemble simulation. Both models have been administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of hydrology.

  5. Investigating the use of a digital library in an inquiry-based undergraduate geology course

    Directory of Open Access Journals (Sweden)

    Xornam S. Apedoe

    2007-06-01

    Full Text Available This paper reports the findings of a qualitative research study designed to investigate the opportunities and obstacles presented by a digital library for supporting teaching and learning in an inquiry-based undergraduate geology course. Data for this study included classroom observations and field-notes of classroom practices, questionnaires, and audiotapes and transcripts of interviews conducted with student and instructor participants. The findings suggest that although both the instructor and students recognized a number of opportunities presented by the digital library to support teaching and learning (e.g., provides access to various types of data, they encountered a number of obstacles (e.g., difficulty with the search mechanism that discouraged them from taking advantage of the resources available. Recommendations are presented for (a developers of digital libraries, and (b instructors wishing to integrate use of a digital library for supporting their teaching and student learning in an inquiry-based course. Le présent article rend compte des conclusions d’une étude de recherche qualitative élaborée afin d’examiner les occasions et les obstacles que présente une bibliothèque numérique appuyant l’enseignement et l’apprentissage dans le cadre d’un cours de géologie de premier cycle axé sur la recherche. Les données pour cette étude comprenaient les observations effectuées en salle de classe et les notes d’excursion des pratiques en salle de classe, les questionnaires, les bandes audio ainsi que les transcriptions des entrevues menées auprès des étudiants et de l’instructeur participant. Les conclusions laissent entendre que bien que l’instructeur et les étudiants reconnaissent un certain nombre d’occasions que présente la bibliothèque numérique en appui à l’enseignement et à l’apprentissage (p. ex. accès à divers types de données, ils ont dû surmonter un certain nombre d’obstacles (p. ex

  6. Hands-on-Entropy, Energy Balance with Biological Relevance

    Science.gov (United States)

    Reeves, Mark

    2015-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory

  7. PBL, Hands-On/ Digital resources in Geology, (Teaching/ Learning)

    Science.gov (United States)

    Soares, Rosa; Santos, Cátia; Carvalho, Sara

    2015-04-01

    The present study reports the elaboration, application and evaluation of a problem-based learning (PBL) program that aims to evaluate the effectiveness in students learning the Rock Cycle theme. Prior research on both PBL and Rock Cycle was conducted within the context of science education so as to elaborate and construct the intervention program. Findings from these studies indicated both the PBL methodology and Rock Cycle as helpful for teachers and students. PBL methodology has been adopted in this study since it is logically incorporated in a constructivism philosophy application and it was expected that this approach would assist students towards achieving a specific set of competencies. PBL is a student-centered method based on the principle of using problems as the starting point for the acquisition of new knowledge. Problems are based on complex real-world situations. All information needed to solve the problem is initially not given. Students will identify, find, and use appropriate resources to complete the exercise. They work permanently in small groups, developing self-directed activities and increasing participation in discussions. Teacher based guidance allows students to be fully engaged in knowledge building. That way, the learning process is active, integrated, cumulative, and connected. Theme "Rock Cycle" was introduced using a problematic situation, which outlined the geological processes highlighted in "Foz do Douro" the next coastline of the school where the study was developed. The questions proposed by the students were solved, using strategies that involved the use of hands-on activities and virtual labs in Geology. The systematization of the selected theme was performed in a field excursion, implemented according to the organizational model of Nir Orion, to The "Foz do Douro" metamorphic complex. In the evaluation of the learning process, data were obtained on students' development of knowledge and competencies through the application of

  8. How do we interest students in science?

    Science.gov (United States)

    Murray, L.

    2016-02-01

    In today's world science literacy is now, more than ever, critical to society. However, today's technically savvy student tends to be bored by "cook-book" laboratory exercises and dated lecture style, which typifies the way that most science courses are taught. To enhance student interest in and understanding of the sciences, we developed two unique programs, in which teachers were provided with the tools and hands-on experience that enabled them to implement research- and inquiry-based projects with their students. The approach was based a framework that is student driven and enables active participation and innovation in the study of the environment. The framework involved selection of a theme and an activity that captured the interest of the participants, participant development of research or investigative questions based on the theme, experimentation to address the research questions, formulation of conclusions, and communication of these results. The projects consisted of two parts: a professional development institute for teachers and the classroom implementation of student research projects, both of which incorporated the framework process. The institutes focused on modeling the framework process, with teachers actively developing questions, researching the question, formulating results and conclusions. This method empowered teachers to be confident in the implementation of the process with their students. With support from project staff, teachers followed up by incorporating the method of teaching with their students. Evaluation results from the programs concluded that projects such as these can increase student interest in and understanding of the scientific process.

  9. Preparing Science Teachers for the future

    Science.gov (United States)

    Stein, Fredrick

    2002-04-01

    What will teachers need in the future to be successful? What will "successful" mean in the future? Are the teaching approaches learned 40 years ago still relevant for tomorrow's classrooms? Will technology really change the way physics is taught (K-16)? Will we close the performance gap between students of differing ethnicity? Are schools of education rising to the challenge to answer these questions? Can college and university physics departments rise to the challenge of presenting physics to all students in an engaging manner? What can the APS, in partnership with AAPT and AIP, do to find the answers and provide strategies to improve the science preparation of future teachers? PhysTEC aims to help physics and education faculty work together to provide an education for future teachers that emphasizes a student-centered, hands-on, inquiry-based approach to learning science. The compelling evidence produced from Physics Education Research warrants this approach. A National Science Foundation grant of 5.76 million and a 498 thousand grant from the Fund for the Improvement of Postsecondary Education support PhysTEC, its partners and activities. http://www.phystec.org/

  10. Sounds of Science

    Science.gov (United States)

    Lott, Kimberly; Lott, Alan; Ence, Hannah

    2018-01-01

    Inquiry-based active learning in science is helpful to all students but especially to those who have a hearing loss. For many deaf or hard of hearing students, the English language may be their second language, with American Sign Language (ASL) being their primary language. Therefore, many of the accommodations for the deaf are similar to those…

  11. Successfully Engaging Family and Student Audiences in Climate Science Workshops in an Informal Learning Venue

    Science.gov (United States)

    DeFrancis, G.; Haynes, R.; Schroer, K.

    2017-12-01

    The Montshire Museum of Science, a regional science center serving families, teachers, and students in rural Vermont and New Hampshire, has been actively engaged in in climate literacy initiatives for over 10 years. The Museum's visitor evaluation data shows that before audiences can be engaged in conversations around climate change, they need to be introduced to the underlying earth processes that drive climate, and to the nature of how climate science is done. Through this work, the Museum has developed a suite of climate science programs that can be incorporated in informal science programming at museums, science centers, and libraries, and in the formal K-8 classroom environment. Front-end and formative evaluation data was used in the program design, and summative evaluation showed an increase in concept understanding in the topic presented. Family science and student workshops developed focused on Albedo and the Earth's energy budget, properties and characteristics of sea ice, sediment cores and ice cores to study changes in the climate over time, and the geography of the polar regions. We found that successful climate literacy learning experiences require meaningful hands-on, inquiry-based activities focused on a single earth process, and leads to an increase in science talk and conversation about climate change between the program instructor and audience members as learners begin to understand how these processes interact in the Earth's climate system.

  12. Science Identity in Informal Education

    Science.gov (United States)

    Schon, Jennifer A.

    The national drive to increase the number of students pursuing Science Technology, Engineering, and Math (STEM) careers has brought science identity into focus for educators, with the need to determine what encourages students to pursue and persist in STEM careers. Science identity, the degree to which students think someone like them could be a scientist is a potential indicator of students pursuing and persisting in STEM related fields. Science identity, as defined by Carlone and Johnson (2007) consists of three constructs: competence, performance, and recognition. Students need to feel like they are good at science, can perform it well, and that others recognize them for these achievements in order to develop a science identity. These constructs can be bolstered by student visitation to informal education centers. Informal education centers, such as outdoor science schools, museums, and various learning centers can have a positive impact on how students view themselves as scientists by exposing them to novel and unique learning opportunities unavailable in their school. Specifically, the University of Idaho's McCall Outdoor Science School (MOSS) focuses on providing K-12 students with the opportunity to learn about science with a place-based, hands-on, inquiry-based curriculum that hopes to foster science identity development. To understand the constructs that lead to science identity formation and the impact the MOSS program has on science identity development, several questions were explored examining how students define the constructs and if the MOSS program impacted how they rate themselves within each construct. A mixed-method research approach was used consisting of focus group interviews with students and pre, post, one-month posttests for visiting students to look at change in science identity over time. Results from confirmatory factor analysis indicate that the instrument created is a good fit for examining science identity and the associated

  13. How to Incorporate Technology with Inquiry-Based Learning to Enhance the Understanding of Chemical Composition; How to Analyze Unknown Samples

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2017-02-01

    Full Text Available The use of technology in teaching offers numerous amounts of possibilities and can be challenging for physics, chemistry and geology content courses. When incorporating technology into a science content lab it is better to be driven by pedagogy than by technology in an inquiry-based lab setting. Students need to be introduced to real-world technology in the beginning of first year chemistry or physics course to ensure real-world technology concepts while assisting with content such as periodic trends on the periodic table. This article will describe the use of technology with Raman Spectroscopy and Energy Dispersive XRay Spectroscopy (EDS and Fourier Transform Infrared Spectroscopy (FTIR to research chemical compositions in the real world of unknown samples. Such unknown samples utilized in this lab were clamshell (parts of clams that look like shark teeth versus shark teeth. The data will be shared to show how the students (pre-service teachers and in-service teachers solved the problem using technology while learning important content that will assist in the next level of chemistry, physics and even geology.

  14. Development of inquiry-based learning activities integrated with the local learning resource to promote learning achievement and analytical thinking ability of Mathayomsuksa 3 student

    Science.gov (United States)

    Sukji, Paweena; Wichaidit, Pacharee Rompayom; Wichaidit, Sittichai

    2018-01-01

    The objectives of this study were to: 1) compare learning achievement and analytical thinking ability of Mathayomsuksa 3 students before and after learning through inquiry-based learning activities integrated with the local learning resource, and 2) compare average post-test score of learning achievement and analytical thinking ability to its cutting score. The target of this study was 23 Mathayomsuksa 3 students who were studying in the second semester of 2016 academic year from Banchatfang School, Chainat Province. Research instruments composed of: 1) 6 lesson plans of Environment and Natural Resources, 2) the learning achievement test, and 3) analytical thinking ability test. The results showed that 1) student' learning achievement and analytical thinking ability after learning were higher than that of before at the level of .05 statistical significance, and 2) average posttest score of student' learning achievement and analytical thinking ability were higher than its cutting score at the level of .05 statistical significance. The implication of this research is for science teachers and curriculum developers to design inquiry activities that relate to student's context.

  15. Using Eight Key Questions as an Inquiry-Based Framework for Ethical Reasoning Issues in a General Education Earth Systems and Climate Change Course

    Science.gov (United States)

    Johnson, E. A.; Ball, T. C.

    2014-12-01

    An important objective in general education geoscience courses is to help students evaluate social and ethical issues based upon scientific knowledge. It can be difficult for instructors trained in the physical sciences to design effective ways of including ethical issues in large lecture courses where whole-class discussions are not practical. The Quality Enhancement Plan for James Madison University, "The Madison Collaborative: Ethical Reasoning in Action," (http://www.jmu.edu/mc/index.shtml) has identified eight key questions to be used as a framework for developing ethical reasoning exercises and evaluating student learning. These eight questions are represented by the acronym FOR CLEAR and are represented by the concepts of Fairness, Outcomes, Responsibilities, Character, Liberty, Empathy, Authority, and Rights. In this study, we use the eight key questions as an inquiry-based framework for addressing ethical issues in a 100-student general education Earth systems and climate change course. Ethical reasoning exercises are presented throughout the course and range from questions of personal behavior to issues regarding potential future generations and global natural resources. In the first few exercises, key questions are identified for the students and calibrated responses are provided as examples. By the end of the semester, students are expected to identify key questions themselves and justify their own ethical and scientific reasoning. Evaluation rubrics are customized to this scaffolding approach to the exercises. Student feedback and course data will be presented to encourage discussion of this and other approaches to explicitly incorporating ethical reasoning in general education geoscience courses.

  16. Capturing the WUnder: Using weather stations and WeatherUnderground to increase middle school students' understanding and interest in science

    Science.gov (United States)

    Schild, K. M.; Dunne, P.

    2014-12-01

    New models of elementary- and middle-school level science education are emerging in response to the need for science literacy and the development of the Next Generation Science Standards. One of these models is fostered through the NSF's Graduate Teaching Fellows in K-12 Education (GK-12) program, which pairs a graduate fellow with a science teacher at a local school for an entire school year. In our project, a PhD Earth Sciences student was paired with a local middle school science teacher with the goal of installing a weather station, and incorporating the station data into the 8th grade science curriculum. Here we discuss how we were able to use a school weather station to introduce weather and climate material, engage and involve students in the creative process of science, and motivate students through inquiry-based lessons. In using a weather station as the starting point for material, we were able to make science tangible for students and provide an opportunity for each student to experience the entire process of scientific inquiry. This hands-on approach resulted in a more thorough understanding the system beyond a knowledge of the components, and was particularly effective in challenging prior weather and climate misconceptions. We were also able to expand the reach of the lessons by connecting with other weather stations in our region and even globally, enabling the students to become members of a larger system.

  17. Rocks, Landforms, and Landscapes vs. Words, Sentences, and Paragraphs: An Interdisciplinary Team Approach to Teaching the Tie Between Scientific Literacy and Inquiry-based Writing in a Community College's Geoscience Program and a University's' Geoscience Program

    Science.gov (United States)

    Thweatt, A. M.; Giardino, J. R.; Schroeder, C.

    2014-12-01

    Scientific literacy and inquiry-based writing go together like a hand and glove. Science literacy, defined by NRC in The NSF Standards, stresses the relationship between knowledge of science and skill in literacy so "a person can ask, find, or determine answers to questions derived from curiosity about everyday experiences. It means that a person has the ability to describe, explain, and predict natural phenomena. Scientific literacy entails being able to read with understanding articles about science in the popular press and to engage in social conversation about the validity of the conclusions. Scientific literacy implies that a person can identify scientific issues underlying national and local decisions and express positions that are scientifically and technologically informed." A growing body of research and practice in science instruction suggests language is essential in the practice of the geosciences. Writing and critical thinking are iterative processes. We use this approach to educate our geoscience students to learn, write, and think critically. One does not become an accomplished writer via one course. Proficiency is gained through continued exposure, guidance and tailored assignments. Inquiry-based geoscience makes students proficient in the tools of the geosciences and to develop explanations to questions about Earth events. We have scaffolded our courses from introductory geology, English composition, writing in the geosciences, introduction to field methods and report writing to do more critical thinking, research data gatherings, and in-depth analysis and synthesis. These learning experiences that encourage students to compare their reasoning models, communicate verbally, written and graphically. The English composition course sets the stage for creative assignments through formulation of original research questions, collection of primary data, analysis, and construction of written research papers. Proper use of language allows students to clarify

  18. Teaching Science as Science Is Practiced: Opportunities and Limits for Enhancing Preservice Elementary Teachers' Self-Efficacy for Science and Science Teaching

    Science.gov (United States)

    Avery, Leanne M.; Meyer, Daniel Z.

    2012-01-01

    Science teaching in elementary schools, or the lack thereof, continues to be an area of concern and criticism. Preservice elementary teachers' lack of confidence in teaching science is a major part of this problem. In this mixed-methods study, we report the impacts of an inquiry-based science course on preservice elementary teachers' self-efficacy…

  19. At-risk children's use of reflection and revision in hands-on experimental activities

    Science.gov (United States)

    Petrosino, Anthony J., Jr.

    The goal of this study was to investigate the effects of incorporating opportunities for reflection and revision in hands-on science instruction which emphasized experimentation using model rockets. The participants were low achieving sixth grade summer school students (n = 23) designated as at-risk for school failure by their district. The group was asked a series of interview questions based on work by Schauble et al. (1995) relating to experimentation. The interviews took place over three distinct time points corresponding to a "hands-on only" condition, a "hands-on with reflection and revision" condition and a "hands-on with repeated reflection and revision" condition. A Friedman's Two-Way Analysis of Variance by Ranks indicate students score low at first with traditional hands-on instruction but improve significantly with opportunities to reflect and revise their experiments. In addition, a sociocultural analysis was conducted during the summer school session to assess the model rocket activity as an apprenticeship, as guided participation and as participatory appropriation using a framework established by Rogoff (1994). Finally, a survey (the Classroom Environment Survey) was administered to the students measuring five constructs consistent with a constructivist classroom: participation, autonomy, relevance, commitment to learning and disruptions to learning. Analysis indicate students in the summer school model rocket intervention experienced a greater sense of constructivist principles during the activity than a similar comparison group utilizing reform minded instruction but not including opportunities for reflection and revision cycles. This research provides important evidence that, like scientists, students in school can learn effectively from extended practice in a varied context. Importantly, the data indicate that hands-on instruction is best utilized when opportunities for reflection and revision are made explicit. Implications are discussed related

  20. Conducting Original, Hands-On Astronomical Research in the Classroom

    Science.gov (United States)

    Corneau, M. J.

    2009-12-01

    teachers to convey moderately complex computer science, optical, geographic, mathematical, informational and physical principles through hands-on telescope operations. In addition to the general studies aspects of classroom internet-based astronomy, Tzec Maun supports real science by enabling operators precisely point telescopes and acquire extremely faint, magnitude 19+ CCD images. Thanks to the creative Team of Photometrica (photometrica.org), my teams now have the ability to process and analyze images online and produce results in short order. Normally, astronomical data analysis packages cost greater than thousands of dollars for single license operations. Free to my team members, Photometrica allows students to upload their data to a cloud computing server and read precise photometric and/or astrometric results. I’m indebted to Michael and Geir for their support. The efficacy of student-based research is well documented. The Council on Undergraduate Research defines student research as, "an inquiry or investigation conducted by an undergraduate that makes an original intellectual or creative contribution to the discipline." (http://serc.carleton.edu/introgeo/studentresearch/What. Teaching from Tzec Maun in the classroom is the most original teaching research I can imagine. I very much look forward to presenting this program to the convened body.

  1. Hands-on-Universe, Europe Bringing frontline interactive astronomy to the classroom

    Science.gov (United States)

    Ferlet, R.

    Hands-on-Universe, Europe (EU-HOU) aims at re-awakening the interest for science in the young generations through astronomy and new technologies. It relies on real observations acquired through a worldwide internet-based network of automatic telescopes or with didactical tools (webcam, radiotelescope). Pupils manipulate images in the classroom environment, using specific software within pedagogical resources constructed in close collaboration between researchers and teachers. EU-HOU is freely available on the web, and trains european teachers.

  2. Project LAUNCH: Bringing Space into Math and Science Classrooms

    Science.gov (United States)

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-01-01

    Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.

  3. Withholding answers during hands-on scientific investigations? Comparing effects on developing students' scientific knowledge, reasoning, and application

    Science.gov (United States)

    Zhang, Lin

    2018-03-01

    As more concerns have been raised about withholding answers during science teaching, this article argues for a need to detach 'withholding answers' from 'hands-on' investigation tasks. The present study examined students' learning of light-related content through three conditions: 'hands-on' + no 'withholding' (hands-on only: HO), 'hands-on' + 'withholding' (hands-on investigation with answers withheld: HOW), and no 'hands-on' + no 'withholding' (direction instruction: DI). Students were assessed in terms of how well they (1) knew the content taught in class; (2) reasoned with the learned content; and (3) applied the learned content to real-life situations. Nine classes of students at 4th and 5th grades, N = 136 in total, were randomly assigned to one of the three conditions. ANCOVA results showed that students in the hands-on only condition reasoned significantly better than those in the other two conditions. Students in this condition also seemed to know the content fairly better although the advance was not significant. Students in all three conditions did not show a statistically significant difference in their ability to apply the learned content to real-life situations. The findings from this study provide important contributions regarding issues relating to withholding answers during guided scientific inquiry.

  4. Unplugged Cybersecurity: An Approach for Bringing Computer Science into the Classroom

    Science.gov (United States)

    Fees, Rachel E.; da Rosa, Jennifer A.; Durkin, Sarah S.; Murray, Mark M.; Moran, Angela L.

    2018-01-01

    The United States Naval Academy (USNA) STEM Center for Education and Outreach addresses an urgent Navy and national need for more young people to pursue careers in STEM fields through world-wide outreach to 17,000 students and 900 teachers per year. To achieve this mission, the STEM Center has developed a hands-on and inquiry-based methodology to…

  5. Confronting Barriers to Teaching Elementary Science: After-School Science Teaching Experiences for Preservice Teachers

    Science.gov (United States)

    Cartwright, Tina; Smith, Suzanne; Hallar, Brittan

    2014-01-01

    This qualitative study examines the transition of eight elementary preservice teachers into student teaching after participating in a science methods course that included a significant amount of teaching after-school science to elementary grade students. These eight participants had a chance to practice teaching inquiry-based science and to reform…

  6. Living in a material world: Development and evaluation of a new materials science course for non-science majors

    Science.gov (United States)

    Brust, Gregory John

    This study was designed to discover if there is a difference in the scientific attitudes and process skills between a group of students who were instructed with Living in a Material World and groups of students in non-science majors sections of introductory biology, chemistry, and geology courses at the University of Southern Mississippi (USM). Each of the four courses utilized different instructional techniques. Students' scientific attitudes were measured with the Scientific Attitudes Inventory (SAI II) and their knowledge of science process skills were measured with the Test of Integrated Process Skills (TIPS II). The Group Assessment of Logical Thinking (GALT) was also administered to determine if the cognitive levels of students are comparable. A series of four questionnaires called Qualitative Course Assessments (QCA) were also administered to students in the experimental course to evaluate subtle changes in their understanding of the nature and processes of science and attitudes towards science. Student responses to the QCA questionnaires were triangulated with results of the qualitative instruments, and students' work on the final project. Results of the GALT found a significant difference in the cognitive levels of students in the experimental course (PSC 190) and in one of the control group, the introductory biology (BSC 107). Results of the SAI II and the TIPS II found no significant difference between the experimental group and the control groups. Qualitative analyses of students' responses to selected questions from the TIPS II, selected items on the SAI II, QCA questionnaires, and Materials that Fly project reports demonstrate an improvement in the understanding of the nature and processes of science and a change to positive attitude toward science of students in the experimental group. Students indicated that hands-on, inquiry-based labs and performance assessment were the most effective methods for their learning. These results indicate that science

  7. Exploring quantum physics through hands-on projects

    CERN Document Server

    Prutchi, David

    2012-01-01

    Build an intuitive understanding of the principles behind quantum mechanics through practical construction and replication of original experiments With easy-to-acquire, low-cost materials and basic knowledge of algebra and trigonometry, Exploring Quantum Physics through Hands-on Projects takes readers step by step through the process of re-creating scientific experiments that played an essential role in the creation and development of quantum mechanics. From simple measurements of Planck's constant to testing violations of Bell's inequalities using entangled photons, Exploring Quantum Physics through Hands-on Projects not only immerses readers in the process of quantum mechanics, it provides insight into the history of the field--how the theories and discoveries apply to our world not only today, but also tomorrow. By immersing readers in groundbreaking experiments that can be performed at home, school, or in the lab, this first-ever, hands-on book successfully demystifies the world of quantum physics for...

  8. Network attacks and defenses a hands-on approach

    CERN Document Server

    Trabelsi, Zouheir; Al Braiki, Arwa; Mathew, Sujith Samuel

    2012-01-01

    The attacks on computers and business networks are growing daily, and the need for security professionals who understand how malfeasants perform attacks and compromise networks is a growing requirement to counter the threat. Network security education generally lacks appropriate textbooks with detailed, hands-on exercises that include both offensive and defensive techniques. Using step-by-step processes to build and generate attacks using offensive techniques, Network Attacks and Defenses: A Hands-on Approach enables students to implement appropriate network security solutions within a laborat

  9. Connecting Indigenous Stories with Geology: Inquiry-Based Learning in a Middle Years Classroom

    Science.gov (United States)

    Larkin, Damian; King, Donna; Kidman, Gillian

    2012-01-01

    One way to integrate indigenous perspectives in junior science is through links between indigenous stories of the local area and science concepts. Using local indigenous stories about landforms, a teacher of Year 8 students designed a unit on geology that catered for the diverse student population in his class. This paper reports on the…

  10. The Heat Is on: An Inquiry-Based Investigation for Specific Heat

    Science.gov (United States)

    Herrington, Deborah G.

    2011-01-01

    A substantial number of upper-level science students and practicing physical science teachers demonstrate confusion about thermal equilibrium, heat transfer, heat capacity, and specific heat capacity. The traditional method of instruction, which involves learning the related definitions and equations, using equations to solve heat transfer…

  11. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  12. A Case Study for Comparing the Effectiveness of a Computer Simulation and a Hands-on Activity on Learning Electric Circuits

    Science.gov (United States)

    Ekmekci, Adem; Gulacar, Ozcan

    2015-01-01

    Science education reform emphasizes innovative and constructivist views of science teaching and learning that promotes active learning environments, dynamic instructions, and authentic science experiments. Technology-based and hands-on instructional designs are among innovative science teaching and learning methods. Research shows that these two…

  13. Teaching Hands-On Linux Host Computer Security

    Science.gov (United States)

    Shumba, Rose

    2006-01-01

    In the summer of 2003, a project to augment and improve the teaching of information assurance courses was started at IUP. Thus far, ten hands-on exercises have been developed. The exercises described in this article, and presented in the appendix, are based on actions required to secure a Linux host. Publicly available resources were used to…

  14. Hands-On Mathematics: Two Cases from Ancient Chinese Mathematics

    Science.gov (United States)

    Wang, Youjun

    2009-01-01

    In modern mathematical teaching, it has become increasingly emphasized that mathematical knowledge should be taught by problem-solving, hands-on activities, and interactive learning experiences. Comparing the ideas of modern mathematical education with the development of ancient Chinese mathematics, we find that the history of mathematics in…

  15. Hands on CERN: A Well-Used Physics Education Project

    Science.gov (United States)

    Johansson, K. E.

    2006-01-01

    The "Hands on CERN" education project makes it possible for students and teachers to get close to the forefront of scientific research. The project confronts the students with contemporary physics at its most fundamental level with the help of particle collisions from the DELPHI particle physics experiment at CERN. It now exists in 14 languages…

  16. Teaching DNA Fingerprinting using a Hands-on Simulation.

    Science.gov (United States)

    Schug, Thatcher

    1998-01-01

    Presents an inexpensive hands-on lesson in DNA fingerprinting that can be completed in a single class period. Involves students in solving a murder in which a drop of blood is fingerprinted and matched with the blood of the murderer. (DDR)

  17. Enhancing Lean Manufacturing Learning Experience through Hands-On Simulation

    Science.gov (United States)

    Elbadawi, Isam; McWilliams, Douglas L.; Tetteh, Edem G.

    2010-01-01

    Finding appropriate interactive exercises to increase students' learning in technical topic courses is always challenging to educators. In this study, several paper plane hands-on simulation exercises were developed, used, and tested in a lean manufacturing course for beginning college students. A pretest and posttest was used to assess the…

  18. Google Earth for Landowners: Insights from Hands-on Workshops

    Science.gov (United States)

    Huff, Tristan

    2014-01-01

    Google Earth is an accessible, user-friendly GIS that can help landowners in their management planning. I offered hands-on Google Earth workshops to landowners to teach skills, including mapmaking, length and area measurement, and database management. Workshop participants were surveyed at least 6 months following workshop completion, and learning…

  19. Using Art to Enhance the Learning of Math and Science: Developing an Educational Art-Science Kit about Fractal Patterns in Nature

    Science.gov (United States)

    Rao, Deepa

    This study documents the development of an educational art-science kit about natural fractals, whose aim is to unite artistic and scientific inquiry in the informal learning of science and math. Throughout this research, I argue that having an arts-integrated approach can enhance the learner of science and math concepts. A guiding metaphor in this thesis is the Enlightenment-era cabinet of curiosities that represents a time when art and science were unified in the process of inquiry about the natural world. Over time, increased specialization in the practice of arts and science led to a growing divergence between the disciplines in the educational system. Recently, initiatives like STEAM are underway at the national level to integrate "Arts and Design" into the Science, Technology, Engineering, and Math (STEM) formal education agenda. Learning artifacts like science kits present an opportunity to unite artistic and scientific inquiry in informal settings. Although science kits have been introduced to promote informal learning, presently, many science kits have a gap in their design, whereby the activities consist of recipe-like instructions that do not encourage further inquiry-based learning. In the spirit of the cabinet of curiosities, this study seeks to unify visual arts and science in the process of inquiry. Drawing from educational theories of Dewey, Piaget, and Papert, I developed a novel, prototype "art-science kit" that promotes experiential, hands-on, and active learning, and encourages inquiry, exploration, creativity, and reflection through a series of art-based activities to help users learn science and math concepts. In this study, I provide an overview of the design and development process of the arts-based educational activities. Furthermore, I present the results of a pilot usability study (n=10) conducted to receive user feedback on the designed materials for use in improving future iterations of the art-science fractal kit. The fractal kit

  20. Science Education at Riverside Middle School A Case Study

    Science.gov (United States)

    Smiley, Bettie Ann Pickens

    For more than thirty years the gender gap in science and related careers has been a key concern of researchers, teachers, professional organizations, and policy makers. Despite indicators of progress for women and girls on some measures of achievement, course enrollment patterns, and employment, fewer women than men pursue college degrees and careers in science, technology, engineering, and mathematics. According to the results of national assessments, the gender gap in science achievement begins to be evident in the middle school years. Gender and school science achievement involve a complex set of factors associated with schools and child/family systems that may include school leadership, institutional practices, curriculum content, teacher training programs, teacher expectations, student interests, parental involvement, and cultural values. This ethnographic case study was designed to explore the context for science education reform and the participation of middle school girls. The study analyzed and compared teaching strategies and female student engagement in sixth, seventh, and eighth grade science classrooms. The setting was a middle school situated in a district that was well-known for its achievement in reading, math, and technology. Findings from the study indicated that while classroom instruction was predominantly organized around traditional school science, the girls were more disciplined and outperformed the boys. The size of the classrooms, time to prepare for hands-on activities, and obtaining resources were identified as barriers to teaching science in ways that aligned with recent national science reform initiatives. Parents who participated in the study were very supportive of their daughters' academic progress and career goals. A few of the parents suggested that the school's science program include more hands-on activities; instruction designed for the advanced learner; and information related to future careers. Overall the teachers and

  1. Using inquiry-based instruction with Web-based data archives to facilitate conceptual change about tides among preservice teachers

    Science.gov (United States)

    Ucar, Sedat

    The purpose of this mixed methods study was to describe and understand preservice teachers' conceptions of tides and to explore an instructional strategy that might promote the learning of scientific concepts. The participants were preservice teachers in three initial licensure programs. A total of 80 graduate students, in secondary, middle, and early childhood education programs completed a multiple choice assessment of their knowledge of tides-related concepts. Thirty of the 80 participants were interviewed before the instruction. Nineteen of the 30 students who were interviewed also participated in the instruction and were interviewed after the instruction. These 19 students also completed both the pre-test and 18 of them completed the post-test on tides and related content. Data regarding the participants' conceptual understandings of tides were collected before and after the instruction using both qualitative and quantitative data collection methods. A multiple choice pre-test was developed by the researcher. The same test was used before and after the instructional intervention. Structured interviews were conducted with participants before and after instruction. In addition to interviews, participants were asked to write a short journal after instruction. The constant comparative method was used to analyze the qualitative data. Preservice teachers' conceptual understandings of tides were categorized under six different types of conceptual understandings. Before the instruction, all preservice teachers held alternative or alternative fragments as their types of conceptual understandings of tides, and these preservice teachers who held alternative conceptions about tides were likely to indicate that there is one tidal bulge on Earth. They tried to explain this one tidal bulge using various alternative conceptions. After completing an inquiry-based and technology-enhanced instruction of tides, preservice teachers were more likely to hold a scientific conceptual

  2. Talking Science: Developing a Discourse of Inquiry

    Science.gov (United States)

    Hackling, Mark; Smith, Pru; Murcia, Karen

    2010-01-01

    A key principle of inquiry-based science education is that the process of inquiry must include opportunities for the exploration of questions and ideas, as well as reasoning with ideas and evidence. Teaching and learning Science therefore involves teachers managing a discourse that supports inquiry and students engaging in talk that facilitates…

  3. The HSP, the QCN, and the Dragon: Developing inquiry-based QCN instructional modules in Taiwan

    Science.gov (United States)

    Chen, K. H.; Liang, W.; Chang, C.; Yen, E.; Lin, C.; Lin, G.

    2012-12-01

    High Scope Program (HSP) is a long-term project funded by NSC in Taiwan since 2006. It is designed to elevate the quality of science education by means of incorporating emerging science and technology into the traditional curricula in senior high schools. Quake-Catcher Network (QCN), a distributed computing project initiated by Stanford University and UC Riverside, encourages the volunteers to install the low-cost, novel sensors at home and school to build a seismic network. To meet both needs, we have developed a model curriculum that introduces QCN, earthquake science, and cloud computing into high school classrooms. Through professional development workshops, Taiwan cloud-based earthquake science learning platform, and QCN club on Facebook, we have worked closely with Lan-Yang Girl's Senior High School teachers' team to design workable teaching plans through a practical operation of seismic monitoring at home or school. However, some obstacles to learning appear including QCN installation/maintain problems, high self-noise of the sensor, difficulty of introducing earthquake sciences for high school teachers. The challenges of QCN outreach in Taiwan bring out our future plans: (1) development of easy, frequently updated, physics-based QCN-experiments for high school teachers, and (2) design of an interactive learning platform with social networking function for students.

  4. Computer Simulations to Support Science Instruction and Learning: A critical review of the literature

    Science.gov (United States)

    Smetana, Lara Kathleen; Bell, Randy L.

    2012-06-01

    Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.

  5. Creating opportunities for science PhDs to pursue careers in high school education

    Science.gov (United States)

    Doyle, Kari M. H.; Vale, Ronald D.

    2013-01-01

    The United States is confronting important challenges at both the early and late stages of science education. At the level of K–12 education, a recent National Research Council report (Successful K–12 STEM Education) proposed a bold restructuring of how science is taught, moving away from memorizing facts and emphasizing hands-on, inquiry-based learning and a deeper understanding of the process of science. At higher levels of training, limited funding for science is leading PhDs to seek training and careers in areas other than research. Might science PhDs play a bigger role in the future of K–12 education, particularly at the high school level? We explore this question by discussing the roles that PhDs can play in high school education and the current and rather extensive barriers to PhDs entering the teaching profession and finally suggest ways to ease the entrance of qualified PhDs into high school education. PMID:24174464

  6. Enhancing Students' Scientific and Quantitative Literacies through an Inquiry-Based Learning Project on Climate Change

    Science.gov (United States)

    McCright, Aaron M.

    2012-01-01

    Promoting sustainability and dealing with complex environmental problems like climate change demand a citizenry with considerable scientific and quantitative literacy. In particular, students in the STEM disciplines of (biophysical) science, technology, engineering, and mathematics need to develop interdisciplinary skills that help them understand…

  7. Inquiry Based Learning and Meaning Generation through Modelling on Geometrical Optics in a Constructionist Environment

    Science.gov (United States)

    Kotsari, Constantina; Smyrnaiou, Zacharoula

    2017-01-01

    The central roles that modelling plays in the processes of scientific enquiry and that models play as the outcomes of that enquiry are well established (Gilbert & Boulter, 1998). Besides, there are considerable similarities between the processes and outcomes of science and technology (Cinar, 2016). In this study, we discuss how the use of…

  8. Bustin' Bunnies: An Adaptable Inquiry-Based Approach Introducing Molecular Weight and Polymer Properties

    Science.gov (United States)

    Mc Ilrath, Sean P.; Robertson, Nicholas J.; Kuchta, Robert J.

    2012-01-01

    Plastics are more prevalent in our society than ever before, yet the general public has a limited understanding of why plastics have properties that are vastly different from other common materials such as glass and ceramics. This lab is designed to introduce students to several introductory principles of polymer science and their relation to the…

  9. Evaluating Learning Outcomes in Introductory Chemistry Using Virtual Laboratories to Support Inquiry Based Instruction

    Science.gov (United States)

    Mallory, Cecile R.

    2012-01-01

    In the U.S., future economic viability is being challenged by an increasing inability to replace retiring engineers and scientists through the year 2020 due to declines in learner motivation and proficiency in science. The expository laboratory appears to be linked with non-engagement and is one possible contributing factor to this problem…

  10. Towards an Online Lab Portal for Inquiry-Based STEM Learning at School

    NARCIS (Netherlands)

    Govaerts, Sten; Cao, Yiwei; Vozniuk, Andrii; Holzer, Adrian; Zutin, Danilo Garbi; San Cristobal Ruiz, Elio; Bollen, Lars; Manske, Sven; Faltin, Nils; Salzmann, Christophe; Wang, Jhing-Fa; Rynson, Lau

    2013-01-01

    Nowadays, the knowledge economy is growing rapidly. To sustain future growth, more well educated people in STEM (science, technology, engineering and mathematics) are needed. In the Go-Lab project we aim to motivate and orient students from an early age on to study STEM fields in their future

  11. An Inquiry-Based Course Using "Physics?" in Cartoons and Movies

    Science.gov (United States)

    Rogers, Michael

    2007-01-01

    Books, cartoons, movies, and video games provide engaging opportunities to get both science and nonscience students excited about physics. An easy way to use these media in one's classroom is to have students view clips and identify unusual events, odd physics, or list things that violate our understanding of the physics that governs our universe.…

  12. A Hands-On Approach To Teaching Microcontroller

    Directory of Open Access Journals (Sweden)

    Che Fai Yeong

    2013-02-01

    Full Text Available Practice and application-oriented approach in education is important, and some research on active learning and cooperative problem-solving have shown that a student will learn faster and develop communication skill, leadership and team work through these methods. This paper presents a study of student preference and performance while learning the microcontroller subject with a 2-day curriculum that emphasized on hands-on approach. The curriculum uses the PIC16F877A microcontroller and participants learned to develop basic circuits and several other applications. Programming was completed on the MPLAB platform. Results show that participants had better understanding in this subject after attending the hands-on course.

  13. Rethinking Difficulties of Teaching Inquiry-Based Practical Work: Stories from elementary pre-service teachers

    Science.gov (United States)

    Kim, Mijung; Tan, Aik-Ling

    2011-03-01

    To alleviate teachers' reluctance toward practical work, there has been much discussion on teachers' pedagogical content knowledge, teaching materials, and failsafe strategies for practical work. Despite these efforts, practical work is still regarded as a challenging task for many elementary science teachers. To understand the complexity of teachers' conflicts in practical work, this study examines teachers' ideas about teaching and learning that influence teachers' decision-making and action on teaching practical work. More important than knowing technical-rational aspects of practical work is to understand the internal contradictions that teachers have to resolve within themselves regarding their capabilities and beliefs about science teaching and practical work. Using stories and experiences of 38 third-year university students in a science method course in Korea, we seek to understand the conflicts and negotiations that they experience as they make decisions regarding practical work throughout their course. Reflective writings and group discussions on their lived experiences and concerns were used to probe participants' ideas on teaching using practical work. From written and verbal data, themes were saturated in terms of the aspects which could (dis)encourage their practice. Results suggest that there are multifactorial challenges in pre-service teachers' understandings and concerns in practical work. Besides time, materials, and curriculum, pedagogical assumptions and values also compositely challenge the minds of teachers. As the pre-service elementary teachers negotiated within themselves the importance of science in classroom and social levels, the question is raised about their identities as pre-service elementary teachers to appreciate the balance between science teaching and practical work.

  14. IT release management a hands-on guide

    CERN Document Server

    Howard, Dave

    2011-01-01

    When implemented correctly, release management can help ensure that quality is integrated throughout the development, implementation, and delivery of services, applications, and infrastructure. This holistic, total cost of ownership approach allows for higher levels of system availability, is more cost effective to maintain, and increases overall stability, maintainability, and reliability. Filled with practical insights, IT Release Management: A Hands-on Guide clearly illustrates the effective implementation of a release process in the real world. It examines the similarities and differences

  15. Experimental Comparison of Inquiry and Direct Instruction in Science

    Science.gov (United States)

    Cobern, William W.; Schuster, David; Adams, Betty; Applegate, Brooks; Skjold, Brandy; Undreiu, Adriana; Loving, Cathleen C.; Gobert, Janice D.

    2010-01-01

    There are continuing educational and political debates about "inquiry" versus "direct" teaching of science. Traditional science instruction has been largely direct but in the US, recent national and state science education standards advocate inquiry throughout K-12 education. While inquiry-based instruction has the advantage of modelling aspects…

  16. Integrating Science and Technology: Using Technological Pedagogical Content Knowledge as a Framework to Study the Practices of Science Teachers

    Science.gov (United States)

    Pringle, Rose M.; Dawson, Kara; Ritzhaupt, Albert D.

    2015-01-01

    In this study, we examined how teachers involved in a yearlong technology integration initiative planned to enact technological, pedagogical, and content practices in science lessons. These science teachers, engaged in an initiative to integrate educational technology in inquiry-based science lessons, provided a total of 525 lesson plans for this…

  17. Fundamental Research in Engineering Education. Development of Concept Questions and Inquiry-Based Activities in Thermodynamics and Heat Transfer: An Example for Equilibrium vs. Steady-State

    Science.gov (United States)

    Vigeant, Margot; Prince, Michael; Nottis, Katharyn

    2011-01-01

    This study examines the use of inquiry-based instruction to promote the understanding of critical concepts in thermodynamics and heat transfer. Significant research shows that students frequently enter our courses with tightly held misconceptions about the physical world that are not effectively addressed through traditional instruction. Students'…

  18. Investigating the Effectiveness of an Inquiry-Based Intervention on Human Reproduction in Relation to Students' Gender, Prior Knowledge and Motivation for Learning in Biology

    Science.gov (United States)

    Hadjichambis, Andreas Ch.; Georgiou, Yiannis; Paraskeva-Hadjichambi, Demetra; Kyza, Eleni A.; Mappouras, Demetrios

    2016-01-01

    Despite the importance of understanding how the human reproductive system works, adolescents worldwide exhibit weak conceptual understanding, which leads to serious risks, such as unwanted pregnancies and sexually transmitted diseases. Studies focusing on the development and evaluation of inquiry-based learning interventions, promoting the…

  19. Detergent-Based Isolation of Yeast Membrane Rafts: An Inquiry-Based Laboratory Series for the Undergraduate Cell Biology or Biochemistry Lab

    Science.gov (United States)

    Willhite, D. Grant; Wright, Stephen E.

    2009-01-01

    Lipid rafts have been implicated in numerous cellular processes including cell signaling, endocytosis, and even viral infection. Isolation of these lipid rafts often involves detergent treatment of the membrane to dissolve nonraft components followed by separation of raft regions in a density gradient. We present here an inquiry-based lab series…

  20. Developing and Implementing Inquiry-Based, Water Quality Laboratory Experiments for High School Students to Explore Real Environmental Issues Using Analytical Chemistry

    Science.gov (United States)

    Mandler, Daphna; Blonder, Ron; Yayon, Malka; Mamlok-Naaman, Rachel; Hofstein, Avi

    2014-01-01

    This paper describes the rationale and the implementation of five laboratory experiments; four of them, intended for high-school students, are inquiry-based activities that explore the quality of water. The context of water provides students with an opportunity to study the importance of analytical methods and how they influence our everyday…

  1. Preparing Digital Stories through the Inquiry-Based Learning Approach: Its Effect on Prospective Teachers' Resistive Behaviors toward Research and Technology-Based Instruction

    Science.gov (United States)

    Yavuz Konokman, Gamze; Yanpar Yelken, Tugba

    2016-01-01

    The purpose of the study was to determine the effect of preparing digital stories through an inquiry based learning approach on prospective teachers' resistive behaviors toward technology based instruction and conducting research. The research model was convergent parallel design. The sample consisted of 50 prospective teachers who had completed…

  2. Influences of an Inquiry-based Ubiquitous Gaming Design on Students' Learning Achievements, Motivation, Behavioral Patterns, and Tendency towards Critical Thinking and Problem Solving

    Science.gov (United States)

    Hwang, Gwo-Jen; Chen, Chih-Hung

    2017-01-01

    In this paper, an inquiry-based ubiquitous gaming approach was proposed. The objective of the study was to enhance students' performances in in-field learning activities. To show the advantages of the approach, an experiment was carried out to assess the effects of it on students' learning achievement, motivation, critical thinking, and problem…

  3. Evidencing the Value of Inquiry Based, Constructionist Learning for Student Coders

    OpenAIRE

    Matthew John Yee-King; Mick Grierson; Mark d'Inverno

    2017-01-01

    For the last decade, there has been growing interest in the STEAM approach (essentially combining methods and practices in arts, humanities and social sciences into STEM teaching and research) with its potential to deliver better research and education, and to enable us to produce students who can work more effectively in the current and developing marketplace. However, despite this interest, there seems to be little quantitative evidence of the true power of STEAM learning, especially descri...

  4. Mapping classroom experiences through the eyes of enlace students: The development of science literate identities

    Science.gov (United States)

    Oemig, Paulo Andreas

    The culture of a science classroom favors a particular speech community, thus membership requires students becoming bilingual and bicultural at the same time. The complexity of learning science rests in that it not only possesses a unique lexicon and discourse, but it ultimately entails a way of knowing. My dissertation examined the academic engagement and perceptions of a group (N=30) of high school students regarding their science literate practices. These students were participating in an Engaging Latino Communities for Education (ENLACE) program whose purpose is to increase Latino high school graduation rates and assist them with college entrance requirements. At the time of the study, 19 students were enrolled in different science classes to fulfill the science requirements for graduation. The primary research question: What kind of science classroom learning environment supports science literate identities for Latino/a students? was addressed through a convergent parallel mixed research design (Creswell & Plano Clark, 2011). Over the course of an academic semester I interviewed all 30 students arranged in focus groups and observed in their science classes. ENLACE students expressed interest in science when it was taught through hands-on activities or experiments. Students also stressed the importance of having teachers who made an effort to get to know them as persons and not just as students. Students felt more engaged in science when they perceived their teachers respected them for their experiences and knowledge. Findings strongly suggest students will be more interested in science when they have opportunities to learn through contextualized practices. Science literate identities can be promoted when inquiry serves as a vehicle for students to engage in the language of the discipline in all its modalities. Inquiry-based activities, when carefully planned and implemented, can provide meaningful spaces for students to construct knowledge, evaluate claims

  5. The Hands-On Universe: Making Sense of the Universe with All Your Senses

    Science.gov (United States)

    Trotta, R.

    2018-02-01

    For the past four years, the Hands-On Universe public engagement programme has explored unconventional, interactive and multi-sensorial ways of communicating complex ideas in cosmology and astrophysics to a wide variety of audiences. The programme lead, Roberto Trotta, has reached thousands of people through food-based workshops, art and science collaborations and a book written using only the 1000 most common words in the English language. In this article, Roberto reflects in first person on what has worked well in the programme, and what has not.

  6. Making Sense of Responsible Research and Innovation in Science Education through Inquiry-Based Learning. Examples from the Field

    Science.gov (United States)

    Bardone, Emanuele; Burget, Mirjam; Saage, Katrin; Taaler, Maarja

    2017-01-01

    Originally introduced in several policy documents issued by different institutions belonging to the European Union (EU), the term responsible research and innovation (hereafter RRI) has gained considerable attention in recent years among researchers coming from different backgrounds and disciplines. RRI constitutes an attempt to articulate a…

  7. ACTIVE STRATEGIES DURING INQUIRY-BASED SCIENCE TEACHER EDUCATION TO IMPROVE LONG-TERM TEACHER SELF-EFFICACY

    DEFF Research Database (Denmark)

    Evans, Robert Harry

    2012-01-01

    products, is the personal capacity belief of self- efficacy which has been shown to be important to personal behavioral change. The purpose of this research was to develop and test a model of teacher professional development (TPD) which adds specific elements for altering teacher self......-efficacies to existing FP7 IBST products. This model was tested for its usefulness in increasing participant self-efficacy as evidenced by short and long term quantitative measures as well as by evaluation of long terminquiry lessons. Workshops to promote IBST were conducted in five different countries. Each workshop...... months. The promotion of self-efficacy in TPD provides a consistent way of evaluating the impact of IBST workshops through the use of changes in self-efficacy....

  8. The Effects of Teacher and Teacher-librarian High-end Collaboration on Inquiry-based Project Reports and School Monthly Test Scores of Fifth-grade Students

    Directory of Open Access Journals (Sweden)

    Hai-Hon Chen

    2015-07-01

    Full Text Available The purpose of this study was twofold. The first purpose was to establish the high level collaboration of integrated instruction model between social studies teacher and teacher-librarian. The second purpose was to investigate the effects of high-end collaboration on the individual and groups’ inquiry-based project reports, as well as monthly test scores of fifth-grade students. A quasi-experimental method was adopted, two classes of elementary school fifth graders in Tainan Municipal city, Taiwan were used as samples. Students were randomly assigned to experimental conditions by class. Twenty eight students of the experimental group were taught by the collaboration of social studies teacher and teacher-librarian; while 27 students of the controlled group were taught separately by teacher in didactic teaching method. Inquiry-Based Project Record, Inquiry-Based Project Rubrics, and school monthly test scores were used as instruments for collecting data. A t-test and correlation were used to analyze the data. The results indicate that: (1 High-end collaboration model between social studies teacher and teacher-librarian was established and implemented well in the classroom. (2There was a significant difference between the experimental group and the controlled group in individual and groups’ inquiry-based project reports. Students that were taught by the collaborative teachers got both higher inquiry-based project reports’ scores than those that were taught separately by the teachers. Experimental group’s students got higher school monthly test scores than controlled groups. Suggestions for teachers’ high-end collaboration and future researcher are provided in this paper.

  9. An Inquiry-based Course Using ``Physics?'' in Cartoons and Movies

    Science.gov (United States)

    Rogers, Michael

    2007-01-01

    Books, cartoons, movies, and video games provide engaging opportunities to get both science and nonscience students excited about physics. An easy way to use these media in one's classroom is to have students view clips and identify unusual events, odd physics, or list things that violate our understanding of the physics that governs our universe.1,2 These activities provide a lesson or two of material, but how does one create an entire course on examining the physics in books, cartoons, movies, and video games? Other approaches attempt to reconcile events in various media with our understanding of physics3-8 or use cartoons themselves to help explain physics topics.9

  10. Watershed Watch: Using undergraduate student-driven inquiry-based research projects as a means of engaging undeclared students in the biogeosciences

    Science.gov (United States)

    Rock, B. N.; Hale, S.; Graham, K.; Hayden, L. B.

    2009-12-01

    Watershed Watch (NSF 0525433) engages early undergraduate students from two-year and four-year colleges in student-driven full inquiry-based instruction in the biogeosciences. Program goals for Watershed Watch are to test if inquiry-rich student-driven projects sufficiently engage undeclared students (or noncommittal STEM majors) to declare a STEM major (or remain with their STEM major). The program is a partnership between two four-year campuses - the University of New Hampshire (UNH), and Elizabeth City State University (ECSU, in North Carolina); and two two-year campuses - Great Bay Community College (GBCC, in New Hampshire) and the College of the Albemarle (COA, in North Carolina). The program focuses on two watersheds: the Merrimack Ricer Watershed in New Hampshire and Massachusetts, and the Pasquotank River Watershed in Virginia and North Carolina. Both the terrestrial and aquatic components of both watersheds are evaluated using the student-driven projects. A significant component of this program is an intensive two-week Summer Research Institute (SRI), in which undeclared freshmen and sophomores investigate various aspects of their local watershed. Two Summer Research Institutes have been held on the UNH campus (2006 and 2008) and two on the ECSU campus (2007 and 2009). Students develop their own research questions and study design, collect and analyze data, and produce a scientific oral or poster presentation on the last day of the SRI. The course objectives, curriculum and schedule are presented as a model for dissemination for other institutions and programs seeking to develop inquiry-rich programs or courses designed to attract students into biogeoscience disciplines. Data from self-reported student feedback indicate the most important factors explaining high-levels of student motivation and research excellence in the program are: 1) working with committed, energetic, and enthusiastic faculty mentors, and 2) faculty mentors demonstrating high degrees of

  11. Hands on with ASP.NET MVC covering MVC 6

    CERN Document Server

    Sahay, Rahul

    2014-01-01

    MVC (Model-View-Controller) is the popular Microsoft technology which enables you to build dynamic, data-driven, mobile websites, TDD site. Hands-On with ASP.NET MVC is not only written for those who are going to have affair with MVC for the 1st time, rather it is written in such a way that even experienced professional will love reading this book. This book covers all the tiny steps on using MVC at its best. With complete practical tutorials to illustrate the concepts, you will step by step build one End to End application which covers below mentioned techniques - Controllers, Views, Models,

  12. Circuits and electronics hands-on learning with analog discovery

    CERN Document Server

    Okyere Attia, John

    2018-01-01

    The book provides instructions on building circuits on breadboards, connecting the Analog Discovery wires to the circuit under test, and making electrical measurements. Various measurement techniques are described and used in this book, including: impedance measurements, complex power measurements, frequency response measurements, power spectrum measurements, current versus voltage characteristic measurements of diodes, bipolar junction transistors, and Mosfets. The book includes end-of-chapter problems for additional exercises geared towards hands-on learning, experimentation, comparisons between measured results and those obtained from theoretical calculations.

  13. Discovering SQL A Hands-On Guide for Beginners

    CERN Document Server

    Kriegel, Alex

    2011-01-01

    Teaching the SQL skills that businesses demand when hiring programmers If you're a SQL beginner, you don't just want to learn SQL basics, you also want to get some practical SQL skills you can use in the job market. This book gives you both. Covering the basics through intermediate topics with clear explanations, hands-on exercises, and helpful solutions, this book is the perfect introduction to SQL. Topics include both the current SQL:2008 standards, the upcoming SQL:2011 standards, and also how to use SQL against current releases of the most popular commercial SQL databases, such as Oracle,

  14. Learning to Become a More Effective Research or Inquiry-based Project Mentor

    Science.gov (United States)

    Hooper, E. J.; Pfund, C.; Mathieu, R.; Branchaw, J.

    2010-08-01

    How effective of a mentor are you? Have you thought much about this question? Have you participated in training to become a better mentor? For many academics, the typical three answers are "pretty good, I think ... why wouldn't I be?!"; "I am right now while reading this;" "Uh, no." The University of Wisconsin-Madison has developed a program called Research Mentor Training to help train scientists in myriad STEM (science, technology, engineering and mathematics) disciplines, including astronomy, for their crucial role of mentoring the next generation. Most of the field testing to date has focused on graduate students, post-docs, academic staff, and faculty mentoring undergraduate students who are participating in summer research experiences. The materials have proven quite effective in other areas as well, with only modest modifications. For example, several faculty cohorts concentrating on mentoring graduate students and post-docs have completed the training. In addition, the materials are used to prepare graduate students and undergraduates to mentor high school students. The preferred venue for the mentor training program is a seminar meeting one hour per week for 8 to 9 weeks, plus readings and outside activities, including mentoring a student. However, the structure is flexible, and some meaningful learning can occur in a single 90-minute interactive workshop like the one presented at the 2009 ASP annual meeting, "Science Education and Outreach: Forging a Path to the Future." All of the materials, including case studies, facilitator notes and guidelines, plus reading lists, are available online for no charge (http://researchmentortraining.org). Users can select pre-built curricula, or they can customize a package using a "shopping cart" interface.

  15. Implementing the Science Assessment Standards: Developing and validating a set of laboratory assessment tasks in high school biology

    Science.gov (United States)

    Saha, Gouranga Chandra

    Very often a number of factors, especially time, space and money, deter many science educators from using inquiry-based, hands-on, laboratory practical tasks as alternative assessment instruments in science. A shortage of valid inquiry-based laboratory tasks for high school biology has been cited. Driven by this need, this study addressed the following three research questions: (1) How can laboratory-based performance tasks be designed and developed that are doable by students for whom they are designed/written? (2) Do student responses to the laboratory-based performance tasks validly represent at least some of the intended process skills that new biology learning goals want students to acquire? (3) Are the laboratory-based performance tasks psychometrically consistent as individual tasks and as a set? To answer these questions, three tasks were used from the six biology tasks initially designed and developed by an iterative process of trial testing. Analyses of data from 224 students showed that performance-based laboratory tasks that are doable by all students require careful and iterative process of development. Although the students demonstrated more skill in performing than planning and reasoning, their performances at the item level were very poor for some items. Possible reasons for the poor performances have been discussed and suggestions on how to remediate the deficiencies have been made. Empirical evidences for validity and reliability of the instrument have been presented both from the classical and the modern validity criteria point of view. Limitations of the study have been identified. Finally implications of the study and directions for further research have been discussed.

  16. Research on teaching and learning processes in Earth Sciences education, particularly centred on the awareness on natural risks and hazards

    Science.gov (United States)

    Occhipinti, Susanna

    2013-04-01

    natural and physical parameters, the usage of the landscape in known territories and the human impact of the local community , and identify appropriate solutions. The effort is now directed to transform the traditional hands-on methods used to manage instruments and laboratories, in an innovative inquiry-based approach. A quantitative monitoring is now in place to check the results of comprehension, learning and acquiring skills and sensitivity in many classes, even comparing results obtained by traditional practices and by inquiry-based approach. All these data and all the materials are available to all interested parties, thanks to already existing networks, as Unicamearth, ANISN- National Associations of Science Teachers, and IGEO, International Geoscience Education Org- promoter of IESO.

  17. Optimizing students' motivation in inquiry-based learning environments: The role of instructional practices

    Science.gov (United States)

    Kempler, Toni M.

    The influence of inquiry science instruction on the motivation of 1360 minority inner-city seventh graders was examined. The project-based curriculum incorporates motivating features like real world questions, collaboration, technology, and lesson variety. Students design investigations, collect and analyze data, and create artifacts; challenging tasks require extensive use of learning and metacognitive strategies. Study 1 used Structural Equation Modeling to investigate student perceptions of the prevalence of project-based features, including real world connections, collaboration, academic press, and work norms, and their relation to interest, efficacy, cognitive engagement, and achievement. Perceptions of features related to different motivational outcomes, indicating the importance of using differentiated rather than single measures to study motivation in context. Cognitive engagement was enhanced by interest and efficacy but did not influence achievement, perhaps because students were not proficient strategy users and were new to inquiry. Study 2 examined the relationship between instructional practices and motivation. The 23 teachers in study 1 were observed six times during one unit. Observations focused on curriculum congruence, content accuracy, contextualization, sense making, and management and climate. A majority of teacher enactment was congruent with the curriculum, indicating that students experienced motivating features of project-based science. Hierarchical Linear Modeling showed that contextualization accounted for between-teacher variance in student interest, efficacy, and cognitive engagement; Teachers encouraged motivation through extended real world examples that related material to students' experiences. Cluster analysis was used to determine how patterns of practice affected motivation. Unexpectedly these patterns did not differentially relate to cognitive engagement. Findings showed that interest and efficacy were enhanced when teachers

  18. Implementation and outcomes of inquiry-based learning in mathematics content courses for pre-service teachers

    Science.gov (United States)

    Laursen, Sandra L.; Hassi, Marja-Liisa; Hough, Sarah

    2016-02-01

    This mixed-methods study describes classroom characteristics and student outcomes from university mathematics courses that are based in mathematics departments, targeted to future pre-tertiary teachers, and taught with inquiry-based learning (IBL) approaches. The study focused on three two-term sequences taught at two research universities, separately targeting elementary and secondary pre-service teachers. Classroom observation established that the courses were taught with student-centred methods that were comparable to those used in IBL courses for students in mathematics-intensive fields at the same institutions. To measure pre-service teachers' gains in mathematical knowledge for teaching, we administered the Learning Mathematics for Teaching (LMT) instrument developed by Hill, Ball and Schilling for in-service teacher professional development. Results from the LMT show that pre-service teachers made significant score gains from beginning to end of their course, while data from interviews and from surveys of learning gains show that pre-service teachers viewed their gains as relevant to their future teaching work. Measured changes on pre-/post-surveys of attitudes and beliefs were generally supportive of learning mathematics but modest in magnitude. The study is distinctive in applying the LMT to document pre-service teachers' growth in mathematical knowledge for teaching. The study also suggests IBL is an approach well suited to mathematics departments seeking to strengthen their pre-service teacher preparation offerings in ways consistent with research-based recommendations.

  19. Critical-Inquiry-Based-Learning: Model of Learning to Promote Critical Thinking Ability of Pre-service Teachers

    Science.gov (United States)

    Prayogi, S.; Yuanita, L.; Wasis

    2018-01-01

    This study aimed to develop Critical-Inquiry-Based-Learning (CIBL) learning model to promote critical thinking (CT) ability of preservice teachers. The CIBL learning model was developed by meeting the criteria of validity, practicality, and effectiveness. Validation of the model involves 4 expert validators through the mechanism of the focus group discussion (FGD). CIBL learning model declared valid to promote CT ability, with the validity level (Va) of 4.20 and reliability (r) of 90,1% (very reliable). The practicality of the model was evaluated when it was implemented that involving 17 of preservice teachers. The CIBL learning model had been declared practice, its measuring from learning feasibility (LF) with very good criteria (LF-score = 4.75). The effectiveness of the model was evaluated from the improvement CT ability after the implementation of the model. CT ability were evaluated using the scoring technique adapted from Ennis-Weir Critical Thinking Essay Test. The average score of CT ability on pretest is - 1.53 (uncritical criteria), whereas on posttest is 8.76 (critical criteria), with N-gain score of 0.76 (high criteria). Based on the results of this study, it can be concluded that developed CIBL learning model is feasible to promote CT ability of preservice teachers.

  20. Blast a Biofilm: A Hands-On Activity for School Children and Members of the Public

    Directory of Open Access Journals (Sweden)

    Victoria L. Marlow

    2013-08-01

    Full Text Available Microbial biofilms are very common in nature and have both detrimental and beneficial effects on everyday life. Practical and hands-on activities have been shown to achieve greater learning and engagement with science by young people (1, 4, 5. We describe an interactive activity, developed to introduce microbes and biofilms to school age children and members of the public. Biofilms are common in nature and, as the favored mode of growth for microbes, biofilms affect many parts ofeveryday life. This hands-on activity highlights the key  concepts of biofilms by allowing participants to first build, then attempt to ‘blast,’ a biofilm, thus enabling the robust nature of biofilms to become apparent. We developed the blast-a-biofilm activity as part of our two-day Magnificent Microbes event, which took place at the Dundee Science Centre-Sensation in May 2010 (6. This public engagement event was run by scientists from the Division of Molecular Microbiology at the University of Dundee. The purpose of the event was to use fun and interesting activities to make both children and adults think about how fascinating microbes are. Additionally, we aimed to develop interactive resources that could be used in future events and learning environments, of which the blast-a-biofilm activity is one such resource. Scientists and policy makers in the UK believe engaging the public with research ensures that the work of universities and research institutes is relevant to society and wider social concerns and can also help scientists actively contribute to positive social change (2. The activity is aimed at junior school age children (9–11 years and adults with little or no knowledge of microbiology. The activity is suitable for use at science festivals, science clubs, and also in the classroom, where it can serve as a tool to enrich and enhance the school curriculum.

  1. Minimizing student’s faults in determining the design of experiment through inquiry-based learning

    Science.gov (United States)

    Nilakusmawati, D. P. E.; Susilawati, M.

    2017-10-01

    The purpose of this study were to describe the used of inquiry method in an effort to minimize student’s fault in designing an experiment and to determine the effectiveness of the implementation of the inquiry method in minimizing student’s faults in designing experiments on subjects experimental design. This type of research is action research participants, with a model of action research design. The data source were students of the fifth semester who took a subject of experimental design at Mathematics Department, Faculty of Mathematics and Natural Sciences, Udayana University. Data was collected through tests, interviews, and observations. The hypothesis was tested by t-test. The result showed that the implementation of inquiry methods to minimize of students fault in designing experiments, analyzing experimental data, and interpret them in cycle 1 students can reduce fault by an average of 10.5%. While implementation in Cycle 2, students managed to reduce fault by an average of 8.78%. Based on t-test results can be concluded that the inquiry method effectively used to minimize of student’s fault in designing experiments, analyzing experimental data, and interpreting them. The nature of the teaching materials on subject of Experimental Design that demand the ability of students to think in a systematic, logical, and critical in analyzing the data and interpret the test cases makes the implementation of this inquiry become the proper method. In addition, utilization learning tool, in this case the teaching materials and the students worksheet is one of the factors that makes this inquiry method effectively minimizes of student’s fault when designing experiments.

  2. Hands on versus remote techniques in waste management and decommissioning

    International Nuclear Information System (INIS)

    Asquith, J.D.

    1994-01-01

    The nuclear industry has many requirements for planned and uplanned physical interactions with radioactive materials or their environment. In each case a choice must be made as to whether the interaction should be made directly by the operator using a 'hands on' technique, wearing any necessary protective clothing, or by entirely remote techniques. In facilities where remote handling equipment has already been provided and planned for, remote techniques are usually the obvious choice. However in radioactive waste management and decommissioning there are many cases where unexpected requirements emerge, often for relatively short term activities, where the choice is more complex. This paper takes a look at the various factors which should be considered in order to make these decisions, an overview of the types of remote equipment available in the UK and some examples of the benefits which have resulted when remote techniques have been adopted in Britain

  3. Hands-on courses in petroleum engineering improve performance

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H.; Islam, M.R. [Regina Univ., Regina, SK (Canada)

    1999-07-01

    A hands-on methodology was employed to teach eight lecture-based courses in the United Arab Emirates University in which initially two petroleum engineering courses were used to test the methodology. The courses are considered to be basic to petroleum engineering. Although the courses did not have any impact on the overall student grades, the courses stimulated independent thought among students who were not previously used to this mode of thinking. Students were exposed to laboratory experiments and project works that were considered previously to be too-difficult-to-handle by undergraduate students. The course methodology was more acceptable to the female than the male population. The course methodology centered on creative thinking, questioning the establishment methods and critiquing conventional modes of thinking. Despite the differences between male and female students, overall the student population recognized that their ability to think independently and critically improved after taking the course. An appendix contains examples of learning modules. 18 refs.

  4. Multidisciplinary Inquiry-Based Investigation Learning Using an Ex Ovo Chicken Culture Platform: Role of Vitamin A on Embryonic Morphogenesis

    Science.gov (United States)

    Buskohl, Philip R.; Gould, Russell A.; Curran, Susan; Archer, Shivaun D.; Butcher, Jonathan T.

    2012-01-01

    Embryonic development offers a unique perspective on the function of many biological processes because of embryos' heightened sensitivity to environmental factors. This hands-on lesson investigates the effects of elevated vitamin A on the morphogenesis of chicken embryos. The active form of vitamin A (retinoic acid) is applied to shell-less (ex…

  5. Evaluating the implementation and impacts of middle grades inquiry-based engineering design modules

    Science.gov (United States)

    Harlan, Jessica M.

    This dissertation uses a format where I present and discuss three articles that were written in conjunction with my work on a research and evaluation team. The articles are based on a multi-year project researching and evaluating the design, development, and implementation of a middle grades integrated Science, Technology, Engineering, and Mathematics (STEM) program. Each of the articles demonstrates the complexity in researching and evaluating curricular development in multifaceted, rapidly changing environments. While the focus of each article differs, they all examine research and evaluation in the context of the design and development of middle grades engineering-design modules. The selected articles address challenges associated with assessing program objectives and evaluating program quality in complex education programs.The first article, presented in Chapter 2, provides an overview of the nature of the EYE program and examines the extent to which participation in the EYE program resulted in the achievement of program objectives. There is evidence that EYE Module participation has a positive impact on participating students as well as teachers. This study also revealed challenges associated with determining the impact of program participation simultaneously with program revisions and assessment development. The second article, presented in Chapter 3, examined the evaluation of fidelity of implementation of inquiry-oriented educational programs. This article was intended to examine one way of triangulating information to determine fidelity while considering variation in implementation consistent with program theories of learning. When applying this model to implementation of the EYE program, we found many teachers were implementing the modules with low to moderate fidelity, especially math teachers. The third article, presented in Chapter 4, examined the factor structure of an occupational values scale intended to measure student interest in STEM careers

  6. Validity And Practicality of Experiment Integrated Guided Inquiry-Based Module on Topic of Colloidal Chemistry for Senior High School Learning

    Science.gov (United States)

    Andromeda, A.; Lufri; Festiyed; Ellizar, E.; Iryani, I.; Guspatni, G.; Fitri, L.

    2018-04-01

    This Research & Development study aims to produce a valid and practical experiment integrated guided inquiry based module on topic of colloidal chemistry. 4D instructional design model was selected in this study. Limited trial of the product was conducted at SMAN 7 Padang. Instruments used were validity and practicality questionnaires. Validity and practicality data were analyzed using Kappa moment. Analysis of the data shows that Kappa moment for validity was 0.88 indicating a very high degree of validity. Kappa moments for the practicality from students and teachers were 0.89 and 0.95 respectively indicating high degree of practicality. Analysis on the module filled in by students shows that 91.37% students could correctly answer critical thinking, exercise, prelab, postlab and worksheet questions asked in the module. These findings indicate that the integrated guided inquiry based module on topic of colloidal chemistry was valid and practical for chemistry learning in senior high school.

  7. Research Experiences for Science Teachers: The Impact On Their Students

    Science.gov (United States)

    Dubner, J.

    2005-12-01

    Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods

  8. The Effects of Teacher and Teacher-librarian High-end Collaboration on Inquiry-based Project Reports and School Monthly Test Scores of Fifth-grade Students

    OpenAIRE

    Hai-Hon Chen

    2015-01-01

    The purpose of this study was twofold. The first purpose was to establish the high level collaboration of integrated instruction model between social studies teacher and teacher-librarian. The second purpose was to investigate the effects of high-end collaboration on the individual and groups’ inquiry-based project reports, as well as monthly test scores of fifth-grade students. A quasi-experimental method was adopted, two classes of elementary school fifth graders in Tainan Municipal city, T...

  9. How the HYPATIA analysis tool is used as a hands-on experience to introduce HEP to high schools

    CERN Document Server

    Kourkoumelis, C

    2016-01-01

    HYPATIA'' is a tool for interactive analysis of data from the ATLAS experiment at the Large Hadron Collider of CERN. It has been created by the authors and has been evolving over a number of years. It is available in a dowloadable version, which is regularly used in the International Masterclasses, and an online version which now exists in the form of a webapp. Furthermore, the data from ATLAS, which are necessary for performing different educational analysis paths, are available online. Such examples of interactive analyses vary from the estimation of the magnetic field of the ATLAS solenoid magnet, to detecting \\textquotedblleft pseudo\\textquotedblright~ Higgs events. These applications have been used in recent years in a large number of schools in the form of a half-day mini local (or even remote) masterclass. These activities have been supported by various European Union outreach programs which give emphasis to promoting science education in schools through new methods based on the inquiry based technique...

  10. Improving creative thinking skills and scientific attitude through inquiry-based learning in basic biology lecture toward student of biology education

    Directory of Open Access Journals (Sweden)

    Bayu Sandika

    2018-03-01

    Full Text Available Inquiry-based learning is one of the learning methods which can provide an active and authentic scientific learning process in order students are able to improve the creative thinking skills and scientific attitude. This study aims at improving creative thinking skills and scientific attitude through inquiry-based learning in basic biology lecture toward students of biology education at the Institut Agama Islam Negeri (IAIN Jember, Indonesia. This study is included in a descriptive quantitative research. The research focused on the topic of cell transport which was taught toward 25 students of Biology 2 class from 2017 academic year of Biology Education Department at the IAIN Jember. The learning process was conducted in two meetings in November 2017. The enhancement of students' creative thinking skills was determined by one group pre-test and post-test research design using test instrument meanwhile the scientific attitude focused on curiosity and objectivity were observed using the non-test instrument. Research result showed that students' creative thinking skills enhanced highly and students' scientific attitude improved excellently through inquiry-based learning in basic biology lecture.

  11. Hands-on Physics Education of Residents in Diagnostic Radiology.

    Science.gov (United States)

    Zhang, Jie; Hardy, Peter A; DiSantis, David J; Oates, M Elizabeth

    2017-06-01

    The American Board of Radiology Core Examination integrates assessment of physics knowledge into its overall testing of clinical radiology, with an emphasis on understanding image quality and artifacts, radiation dose, and patient safety for each modality or subspecialty organ system. Accordingly, achieving a holistic approach to physics education of radiology residents is a huge challenge. The traditional teaching of radiological physics-simply through didactic lectures-was not designed for such a holistic approach. Admittedly, time constraints and clinical demands can make incorporation of physics teaching into clinical practice problematic. We created and implemented a week-long, intensive physics rotation for fledgling radiology residents and evaluated its effectiveness. The dedicated physics rotation is held for 1 week during the first month of radiology residency. It comprises three components: introductory lectures, hands-on practical clinical physics operations, and observation of clinical image production. A brief introduction of the physics pertinent to each modality is given at the beginning of each session. Hands-on experimental demonstrations are emphasized, receiving the greatest allotment of time. The residents perform experiments such as measuring radiation dose, studying the relationship between patient dose and clinical practice (eg, fluoroscopy technique), investigating the influence of acquisition parameters (kV, mAs) on radiographs, and evaluating image quality using computed tomography, magnetic resonance imaging, ultrasound, and gamma camera/single-photon emission computed tomography/positron emission tomography phantoms. Quantitative assessment of the effectiveness of the rotation is based on an examination that tests the residents' grasp of basic medical physics concepts along with written course evaluations provided by each resident. The pre- and post-rotation tests show that after the physics rotation, the average correct score of 25

  12. Providing open-access online materials and hands-on sessions for GIS exercises

    Science.gov (United States)

    Oguchi, T.; Yamauchi, H.; Hayakawa, Y. S.

    2017-12-01

    Researchers of GIS (Geographical Information Systems/Sciences) in Japan have collaborated to provide materials for GIS lecture classes in universities for the last 20 years. The major outcomes include 1) a GIS core curriculum, 2) a GIS "body of knowledge" explaining the details of the curriculum, 3) a series of PowerPoint presentations, and 4) a comprehensive GIS textbook. However, materials for GIS exercises at university classes using GIS software have been limited in Japan. Therefore, we launched a project to provide such materials which will be available online and accessible by anybody. The materials cover broad basic aspects of GIS including geoscientific applications such as terrain analysis using digital elevation models. The materials utilize public-domain and open-source software packages such as QGIS and GRASS. The data used are also freely available ones such as those from the Geospatial Information Authority of Japan. The use of the GitHub platform to distribute the materials allow easier online interactions by both material producers and users. Selected sets of the materials have been utilized for hands-on activities including both official university classes and public instructions. We have been updating the materials based on the opinions of people who took the hands-on courses for better GIS education. The current materials are in Japanese, but we plan to translate some of them into English.

  13. Students' Hands-on Experimental Work vs Lecture Demonstration in Teaching Elementary School Chemistry.

    Science.gov (United States)

    Logar, Ana; Ferk-Savec, Vesna

    2011-12-01

    Science educators have suggested many benefits that accrue from engaging students in experimental activities, therefore, experimental work has a long and distinctive role in chemistry curriculum since. The presented empirical study focuses on the valuation of effectiveness of different forms of experimental work - students' hands-on experimental work vs teacher's lecture demonstration - from the viewpoint of the quality of content knowledge acquisition and knowledge retention in teaching primary school chemistry. 106 primary school students (age 14-15 years) participated in the study. The data was collected via pre- and post- test protocol and two delayed post tests. Additionally 16 students selected from the sample were interviewed. The results indicate that students' content knowledge gained through teacher's demonstration of experiment is better and better knowledge retention takes place in comparison to students' knowledge gained through students' hands-on experimental work. However, most of the inteviewed students stated that they prefered conducting of experiments by themselves in comparison to observation of teacher's demonstration.

  14. Microteaching Lesson Study: An Approach to Prepare Teacher Candidates to Teach Science through Inquiry

    Science.gov (United States)

    Zhou, George; Xu, Judy

    2017-01-01

    Inquiry-based teaching has become the most recommended approach in science education for a few decades; however, it is not a common practice yet in k-12 school classrooms. In order to prepare future teachers to teach science through inquiry, a Microteaching Lesson Study (MLS) approach was employed in our science methods courses. Instead of asking…

  15. The Pedagogical Orientations of South African Physical Sciences Teachers towards Inquiry or Direct Instructional Approaches

    Science.gov (United States)

    Ramnarain, Umesh; Schuster, David

    2014-01-01

    In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school…

  16. To Customize or Not to Customize? Exploring Science Teacher Customization in an Online Lesson Portal

    Science.gov (United States)

    Littenberg-Tobias, Joshua; Beheshti, Elham; Staudt, Carolyn

    2016-01-01

    New technologies are increasingly giving science teachers the ability to access and customize science lessons. However, there is substantial debate in the literature about whether and under what conditions teacher customization benefit student learning. In this study, we examined teacher customization of inquiry-based science lessons from an…

  17. Exploring Sun-Earth Connections: A Physical Science Program for (K-8)Teachers

    Science.gov (United States)

    Michels, D. J.; Pickert, S. M.; Thompson, J. L.; Montrose, C. J.

    2003-12-01

    An experimental, inquiry-based physical science curriculum for undergraduate, pre-service K-8 teachers is under development at the Catholic University of America in collaboration with the Solar Physics Branch of the Naval Research Laboratory and NASA's Sun-Earth Connection missions. This is a progress report. The current, stunningly successful exploratory phase in Sun-Earth Connection (SEC) physics, sparked by SOHO, Yohkoh, TRACE, and other International Solar Terrestrial Physics (ISTP) and Living With a Star (LWS) programs, has provided dynamic, visually intuitive data that can be used for teaching basic physical concepts such as the properties of gravitational and electromagnetic fields which are manifest in beautiful imagery of the astrophysical plasmas of the solar atmosphere and Earth's auroras. Through a team approach capitalizing on the combined expertise of the Catholic University's departments of Education and Physics and of NRL solar researchers deeply involved in SEC missions we have laid out a program that will teach non-science-major undergraduates a very limited number of physical science concepts but in such a way as to develop for each one both a formal understanding and an intuitive grasp that will instill confidence, spark interest and scientific curiosity and, ideally, inspire a habit of lifetime inquiry and professional growth. A three-semester sequence is planned. The first semester will be required of incoming Education freshmen. The second and third semesters will be of such a level as to satisfy the one-year science requirement for non-science majors in the College of Arts and Sciences. The approach as adopted will integrate physics content and educational methods, with each concept introduced through inquiry-based, hands-on investigation using methods and materials directly applicable to K-8 teaching situations (Exploration Phase). The topic is further developed through discussion, demonstration and lecture, introducing such mathematical

  18. Exploring the Solar System in the Classroom: A Hands-On Approach

    Science.gov (United States)

    Coombs, Cassandra R.

    2000-01-01

    This final report discusses the development and implementation of several educational products for K-16 teachers and students. Specifically, I received support for: (A) three K-12 Teacher workshops, Exploring the Solar System in the Classroom: A Hands-On Approach, and minimal Support to finish two computer-based tutorials. (B) Contact Light: An Interactive CD-ROM, and (C) Another Look at Taurus Littrow: An Interactive GIS Database. Each of these projects directly supports NASA's Strategic Plan to: "Involve the education community in our endeavors to inspire America's students, create learning opportunities, enlighten inquisitive minds", and, to "communicate widely the content, relevancy, and excitement of NASA's missions and discoveries to inspire and to increase understanding and the broad application of science and technology." Attachment: Appendix A. And also article: "Aristarchus plateau: as potential lunar base site."

  19. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston

    Science.gov (United States)

    Chen, R. F.; Pelletier, P.; Dorsen, J.; Douglas, E. M.; Pringle, M. S.; Karp, J.

    2009-12-01

    Inquiry-based, hands-on, graduate content courses have been developed specifically for Boston Public School middle school teachers of Earth Science. Earth Science I: Weather and Water and Earth Science II: The Solid Earth--Earth History and Planetary Systems have been taught a total of seven times to over 120 teachers. Several key attributes to these successful courses have been identified, including co-instruction by a university professor and a high school and a middle school teacher that are familiar with the Boston curriculum, use of hands-on activities that are closed related to those used in the Boston curriculum, pre- and post-course local field trips, and identification of key learning objectives for each day. This model of professional development was developed over several years in all disciplines (Earth Science, Physics, Biology, Chemistry) by the Boston Science Partnership (BSP), an NSF-funded Math Science Partnership program. One of the core strategies of the BSP is these Contextualized Content Courses (CCC), graduate level, lab-based courses taught at either UMass Boston or Northeastern University during summer intensive or semester formats. Two of the eleven courses developed under the grant are Earth Science I & II. This presentation shares the model of the CCC, the impact on teacher participants, the value of these courses for the professor, and lessons learned for successful professional development. Findings about the courses’ impact and effectiveness come from our external evaluation by the Program Evaluation Research Group (PERG). The combination of content and modeling good instructional practices have many positive outcomes for teachers, including increased self-efficacy in science understanding and teaching, positive impacts on student achievement, and teacher shifts from more traditional, more lecture-based instructional models to more inquiry approaches. STEM faculty members become involved in science education and learn and practice new

  20. Tablet and Face-to-Face Hybrid Professional Development: Providing Earth Systems Science Educators Authentic Research Opportunities through The GLOBE Program at Purdue University

    Science.gov (United States)

    Wegner, K.; Branch, B. D.; Smith, S. C.

    2013-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide hands-on, primary and secondary school-based science and education program (www.globe.gov). GLOBE's vision promotes and supports students, teachers and scientists to collaborate on inquiry-based authentic science investigations of the environment and the Earth system working in close partnership with NASA, NOAA and NSF Earth System Science Projects (ESSP's) in study and research about the dynamics of Earth's environment. GLOBE Partners conduct face-to-face Professional Development in more than 110 countries, providing authentic scientific research experience in five investigation areas: atmosphere, earth as a system, hydrology, land cover, and soil. This presentation will provide a sample for a new framework of Professional Development that was implemented in July 2013 at Purdue University lead by Mr. Steven Smith who has tested GLOBE training materials for future training. The presentation will demonstrate how institutions can provide educators authentic scientific research opportunities through various components, including: - Carrying out authentic research investigations - Learning how to enter their authentic research data into the GLOBE database and visualize it on the GLOBE website - Learn how to access to NASA's Earth System Science resources via GLOBE's new online 'e-Training Program' - Exploring the connections of their soil protocol measurements and the history of the soil in their area through iPad soils app - LIDAR data exposure, Hydrology data exposure